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4.6 Example 4.4.4. In this example, R[−2,0](N ◦ Nr) ∩ R[0,1](N ◦ Nr) =
∅. (a) Nondecreasing composite nonlinearity N ◦ Nr. Note that
(N ◦Nr)(0) = 1 > (N ◦ Nr)(1) = 0. (b) Auxiliary sorting nonlin-
earity Ns(ub) = 0.5ub + 1 for ub ∈ [−2, 0) and Ns(ub) = 2ub − 2 for
ub ∈ [0, 1]. (c) The composite nonlinearity N ◦ Nr ◦ Ns. . . . . . . . 120

4.7 Example 4.4.5. In this example, range of N ◦Nr on subintervals of its
domain has partially overlapping intervals, where neither R[−5,0](N ◦
Nr) nor R[0,5](N ◦ Nr) is contained in the other set. Note that
(N ◦Nr)(0) = 4 > (N ◦Nr)(5) = 1. (a) Piecewise nondecreasing
composite nonlinearity N ◦ Nr with partially overlapping intervals.
(b) Auxiliary sorting nonlinearity Ns(ub) = ub + 5 for ub ∈ [−5, 0)
and Ns(ub) = ub − 5 for ub ∈ [0, 5]. (c) The composite nonlinearity
N ◦ Nr ◦ Ns is piecewise nondecreasing on [−5, 5]. . . . . . . . . . . 121

4.8 Example 4.4.6. In this example, R[−5,0](N ◦Nr) ⊂ R[0,5](N ◦Nr). In
this case, Ns is not needed. (a) Piecewise nondecreasing composite
nonlinearity N ◦Nr, where R[−5,0](N ◦Nr) ⊂ R[0,5](N ◦Nr) and the
auxiliary sorting nonlinearity Ns(ub) = ub for ub ∈ [−5, 5]. (b) The
composite nonlinearityN ◦Nr◦Ns is piecewise nondecreasing on [−5, 5].122

4.9 Example 4.4.7. In this example, R[−5,0](N ◦Nr ◦Ns)∩R[0,5](N ◦Nr ◦
Ns) = ∅. (a) Nondecreasing composite nonlinearity N ◦Nr ◦Ns and
auxiliary blocking nonlinearity Nb(usat) = usat. (b) The composite
nonlinearity N ◦Nr ◦ Ns ◦ Nb is globally nondecreasing on [−5, 5]. . 123

4.10 Example 4.4.8. In this example, range of N ◦ Nr ◦ Ns on subinter-
vals of its domain has partially overlapping intervals, where neither
R[−5,0](N◦Nr◦Ns) norR[0,5](N◦Nr◦Ns) is contained in the other set.
(a) Piecewise nondecreasing composite nonlinearity N ◦Nr ◦Ns with
partially overlapping intervals, whereR[−2,0](N◦Nr◦Ns) = R[0,2](N◦
Nr ◦ Ns) and the auxiliary blocking nonlinearity Nb(usat) = usat. (b)
The composite nonlinearity N ◦Nr◦Ns◦Nb is globally nondecreasing
on [−5, 5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11 Example 4.4.9. In this example, R[−5,0](N ◦Nr◦Ns) ⊂ R[0,5](N ◦Nr◦
Ns). (a) Piecewise nondecreasing composite nonlinearity N ◦Nr ◦Ns,
where R[−5,0](N ◦ Nr ◦ Ns) ⊂ R[0,5](N ◦ Nr ◦ Ns) and the auxiliary
blocking nonlinearity Nb(usat) = −5 for usat ∈ [−5, 0) and Nb(usat) =
usat for usat ∈ [0, 5]. (b) The composite nonlinearity N ◦Nr ◦Ns ◦Nb

is globally nondecreasing on [−5, 5]. . . . . . . . . . . . . . . . . . . 124

xviii



4.12 Example 4.4.10. (a) Input nonlinearity given by (4.22). (b) The
auxiliary reflection nonlinearity Nr given by (4.23) for us ∈ [−5, 5],
the auxiliary sorting nonlinearity Ns given by (4.24) for ub ∈ [−5, 5],
and the auxiliary blocking nonlinearity Nb given by (4.25) for usat ∈
[−5, 5]. (c) Composite nonlinearity N ◦Nr◦Ns. Note that N ◦Nr◦Ns

is piecewise nondecreasing on [−5, 5]. (d) Composite nonlinearity
N ◦Nr ◦Ns ◦Nb. Note that N ◦Nr ◦Ns ◦Nb is globally nondecreasing
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4.14 Example 4.5.1. (a.i) shows the nonlinear input nonlinearity N (u) =
−u3 and the auxiliary nonlinearities Nb, Ns, and Nr. (a.ii) shows
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mand r(k) = 0.5 sin(Ω1k) + 0.5 sin(Ω2k), Ω1 = π/5 rad/sample, and
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4.16 Example 4.5.3. (a) shows the deadzone input nonlinearityN (u) given
by (4.35). (b) shows the closed-loop response of the asymptotically
stable NMP plant G given by (4.33) with the two-tone sinusoidal
command r(k) = sin(Ω1k)+0.5 sin(Ω2k), where Ω1 = π/4 rad/sample
and Ω2 = π/10 rad/sample. Figure 4.16(b.i) shows the time history
of the performance z with a = 10, where the transient behavior is
poor. Figure 4.16(b.ii) shows the time history of z with a = 2.
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command due to the fact that a = 1 is not large enough to provide
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4.20 Example 4.6.1. (a) shows the resulting time history of the command-
following performance z. In this case, the adaptive controller fails
to follow the command in the presence of the quadratic input non-
linearity (4.41). Figure 4.20 (c) shows the frequency response of
Gc,5000(z), which indicates thatGc,5000(z) has high gain at 2Ω1 = 2π/5
rad/sample, but not at the command frequency Ω1 = π/5 rad/sample.145

4.21 Example 4.6.2. Adaptive command-following problem for a Hammer-
stein plant with an even input nonlinearity (4.41). The command
signal r(k) = sin(Ω1k+ϕ), where Ω1 = π/5 rad/sample and ϕ = π/6
rad. The Hammerstein system runs open-loop for 100 time steps,
and RCAC with the pseudo-command rp(k) = sin(Ω1

2
k) is turned on

at k = 100. Figure 4.6.2(a) shows the time history of z. Figure
4.6.2 (b) shows the frequency response of Gc,3000(z), which indicates
that Gc,3000(z) has high gain at the command frequency Ω1 = π/5
rad/sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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R[0,4](N ◦ Nr ◦ Ns), which is not partially overlapping. (a.iii) shows
that the composite nonlinearity N ◦Nr◦Ns◦Nb is nondecreasing. (b)
shows the closed-loop response of the stable minimum-phase plant G
given by (4.30) with the sinusoidal command r(k) = sin(0.2πk) and
disturbance w(k) = 0.5 sin(π

2
k). . . . . . . . . . . . . . . . . . . . . 147
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of z, and (c) shows the time history of u. Finally, (d) shows the
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4.25 Example 4.7.2. (a) shows the non-monotonic input nonlinearityN (u)
given by (4.22), and (b) shows the auxiliary nonlinearitiesNb and Nr.
(c) shows that the composite nonlinearity N ◦ Nr ◦ Ns is piece-wise
nondecreasing. (d) shows that the composite nonlinearity N ◦ Nr ◦
Ns ◦Nb is globally nondecreasing. (e) shows the closed-loop response
to the sinusoidal command r(k) = sin(0.2πk) of the stable minimum-
phase plant G given by (4.46). (f) shows the resulting time history
of u, and (h) shows the time history of θ. . . . . . . . . . . . . . . . 150
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ABSTRACT

Retrospective Cost Adaptive Control of Uncertain Hammerstein Systems

by

Jin Yan

Chair: Dennis Bernstein

This dissertation extends retrospective cost adaptive control (RCAC) by broadening

its applicability to nonlinear systems. Specifically, we consider command following

and disturbance rejection for uncertain Hammerstein systems.

All real-world control systems must operate subject to constraints on the allowable

control inputs. We use convex optimization to perform the retrospective input opti-

mization, provided the saturation levels are known. The use of convex optimization

bounds the magnitude of the retrospectively optimized input and thereby influences

the controller update to satisfy the control bounds. We demonstrate this technique

on illustrative numerical examples involving single and multiple inputs. In particu-

lar, this technique is applied to a multi-rotor helicopter with constraints on the total

thrust magnitude and inclination of the rotor plane.

We develop RCAC for uncertain Hammerstein systems with odd, even, or arbi-

trary nonlinearities by constructing auxiliary nonlinearities to account for the non-

monotonic input nonlinearities. The purpose of the auxiliary nonlinearities is to

ensure that RCAC is applied to a Hammerstein system with a globally nondecreasing

composite input nonlinearity. We assume that the linear plant is either asymptoti-
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cally stable or minimum-phase, and only one Markov parameter of the linear plant

is known. The input nonlinearity is uncertain. The required modeling information

for the input nonlinearity includes the intervals of monotonicity as well as values of

the nonlinearity that determine overlapping segments of the range of the nonlinearity

within each interval of monotonicity. In addition, we prove that the auxiliary nonlin-

earities preserve the range of the original nonlinear system and the composite input

nonlinearity is globally nondecreasing.

Although RCAC is able to tune the linear controller to the command signal and

nonlinear characteristics of the plant, the ability of the linear controller to produce

accurate command following is limited by the distortion introduced by the nonlinear-

ities. The linear controller structure of RCAC is replaced by a NARMAX (nonlinear

ARMAX) controller structure, where the basis functions in the NARMAX controller

are chosen by the user, and the controller coefficients appear linearly. To account for

the case in which the input nonlinearity is uncertain, we investigate the performance

of retrospective cost adaptive NARMAX control (RCNAC) in the case of uncertainty.

In particular, we determine the minimal modeling information about the input non-

linearity that RCANC requires; once this information is known, an approximate input

nonlinearity, called the ersatz nonlinearity, can be used by RCANC for adaptation.

xxv



CHAPTER I

Introduction

1.1 Motivation and Goals

Stabilization, command following, and disturbance rejection for a plant whose

dynamics are uncertain and unknown can be challenging and difficult in many appli-

cations. For example, the airplane usually flies in the normal flight envelope, where

aerodynamic models of the aircraft are available from wind-tunnel data. However,

aircraft flight control under failure or damage conditions is demanding due to complex

and unknown physics. Under these circumstances, the airplane flies outside the wind-

tunnel data envelope, where the highly nonlinear aerodynamic models obtained by

extrapolating the wind-tunnel test data are uncertain and inaccurate. Therefore, con-

trol applications for safety-critical flight systems require that the controller maintain

the performance in the absence of either accurate aerodynamic models or predictable

changes in the environment. Additional applications include automotive engine con-

trol with process parameter variations caused by production deviations, variations of

external conditions, and aging; power systems with failure in the generator, transmis-

sion line, or distribution network; high-precision pointing systems with actuator and

sensor nonlinearities; process control for food, oil, and wastewater; and biomedical

applications to cardiovascular systems, where the cardiac outputs partially depend on

the patient’s unpredictable “states” (e.g., level of exercise, emotion, and posture). In
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the area of endocrine systems composed of a continuous glucose sensor and an insulin

infusion pump, the insulin is used to cancel the glucose rise from eating or to recover

from an elevated hyperglycemic state. The design of a controller that can regulate or

alter the insulin dosing in response to the time-varying glucose levels can be difficult

and challenging. Therefore, from safety considerations, those applications call for a

technique that is able to adapt to unknown and unpredictable changes.

Numerous design methods are commonly used in feedback control problems, rang-

ing from classical control to modern control. For example, as shown in Figure 1.1, the

controller inputs u are processed to produce plant outputs y. The controller design

goal is to choose the input u(t) such that the output y(t) satisfies certain performance

requirements.

Figure 1.1: Schematic of the system.

Model-based control techniques rely on the accuracy of the mathematical model

of the plant. An exact plant model with same initial conditions and inputs u pro-

duces the same outputs y as the plant. However, in many applications, the physics

of the systems may not be well understood. Under these circumstances, an exact

mathematical model of the plant is not only costly but may be impossible to obtain

as well. Furthermore, for some models of biological systems that are highly nonlinear,

time-varying, and infinite dimensional, even if the exact plant model is available, this

plant model cannot be used directly for control design. The difficulty in obtaining

reliable models motivates the need to consider the case where the nonlinear systems

are uncertain, and to develop a control technique for nonlinear systems that can adapt

to imperfect models and unknown changes.

Linearization and model order reduction techniques [1] are used to obtain simpli-
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fied models. For continuous time systems, the linearization can be either based on

Taylor expansion of the nonlinear function around operating points or achieved by

model fitting methods applied to experimental data. On the other hand, model order

reduction techniques replace the original large scale system with a much smaller one,

yet neglect the nonlinear effects that are outside the frequency range of interests.

An adaptive controller uses simplified models to tune itself to the actual plant

characteristics in order to overcome uncertainty in the model or unexpected changes

in the environment. Therefore, this simplified model containing limited model infor-

mation is crucial for adaptive control. Hence, the motivation for this dissertation is

to find the minimal but essential prior modeling information of the plant required by

a control law in order to achieve a specified level of performance. Thus, the goals of

this dissertation are to find answers to the following two questions:

• What must be modeled and what is the minimal prior modeling information

required by an adaptive control law to achieve desired performance for an un-

certain nonlinear system?

• The ability of the linear controller to produce accurate command following is

limited by the distortion introduced by the nonlinearities in the model. Can we

develop a technique to reduce this distortion?

1.2 Technical Approach and Impact

The design of autopilots for high-performance aircraft has motivated an intense

research activity in adaptive control in the 1950s. Model reference adaptive control

(MRAC) was proposed in [2, 3], where the sensitivity method and the MIT rule were

used to design the adaptive laws. In this case, the objective is to force an unknown

plant to follow the output of a known reference model. An adaptive pole placement

control law was proposed by Kalman in [4]. In addition, adaptive control has attracted
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growing interest since the 1960s. State space techniques and stability theory based on

Lyapunov method were introduced in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Adaptive control

with rich literature for the design, analysis, stability, and applications is presented

in [15, 16, 17, 18, 19, 20, 21]. Widely invoked assumptions in adaptive control are

passivity [22] and that plant is minimum-phase or stably invertible [11, 23]; these

assumptions are restrictive for practical applications and approaches to relax them

have been aproposed in the prior literature. With these challenges in mind, this work

focuses on retrospective cost adaptive control (RCAC), which is a direct digital control

approach that is applicable to linear plants that are possibly MIMO, nonminimum

phase (NMP), and unstable as shown in [24, 23, 25, 26, 27, 28, 29, 30]. RCAC relies on

knowledge of Markov parameters and, for NMP open-loop-unstable plants, estimates

of the NMP zeros. This information can be obtained from either analytical modeling

or system identification, see [31].

RCAC was developed for linear systems; the extension of RCAC in this disser-

tation broadens its applicability to nonlinear systems. If the nonlinear system is

uncertain, then adaptive control may be useful for learning the characteristics of the

nonlinearity online. Adaptive inversion control with uncertain input nonlinearities

and linear dynamics is considered in [32, 33, 34]. However, many practical nonlinear-

ities, such as saturation, deadzone, preload, and relay, are not one-to-one and onto,

and thus are not invertible. Therefore, in this dissertation, we make no attempt to

identify or invert the nonlinear plant.

All real-world control systems must operate subject to constraints on the allowable

control inputs. The work presented in this dissertation uses convex optimization to

perform the retrospective input optimization [35], provided the saturation levels are

known. The use of convex optimization bounds the magnitude of the retrospectively

optimized input and thereby influences the controller update to satisfy the control

bounds. We demonstrate this technique on illustrative numerical examples involving
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single and multiple inputs.

A nonlinear plant may be uncertain except for its ranges and intervals of its

argument on which it is increasing or decreasing. RCAC with auxiliary nonlinearities,

which capture the essential features of the uncertain nonlinearities for use by the

adaptive control algorithm, is then applied in place of the uncertain nonlinearity

to construct a globally nondecreasing nonlinear system. Numerical results provide

evidence for the effectiveness of this technique.

Although RCAC is able to tune the linear controller to the command signal and

nonlinear characteristics of the plant, the ability of the linear controller to produce

accurate command following is limited by the distortion introduced by the nonlinear-

ities. The linear controller structure of RCAC is replaced by a NARMAX (nonlinear

ARMAX) controller structure, where the basis functions in NARMAX controller are

chosen by the user, and the controller coefficients appear linearly. To account for the

case in which the input nonlinearity is uncertain, we investigate the performance of

Retrospective Cost Adaptive NARMAX Control (RCANC) in the case of uncertainty.

In particular, we determine the minimal modeling information about the input non-

linearity that RCANC requires; once this information is known, an approximate input

nonlinearity, called the ersatz nonlinearity, can be used by RCANC for adaptation.

The research to address the effects of uncertain nonlinear systems based on limited

modeling information of the plant extends the applicability and reliability of RCAC

to many applications. Examples such as aerospace, automotive, power network, and

biomedical system (mentioned above) can benefit from this technique.
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1.3 Problem Definition

1.3.1 Plant Models

The objective of this dissertation is to extend the applicability of RCAC to non-

linear systems. Nonlinear dynamic systems can be approximated by nonlinear block-

structured models. Specifically, plants with input nonlinearities (Hammerstein sys-

tems), plants with output nonlinearities (Wiener systems), and plants with both

input and output nonlinearities (Hammerstein-Wiener systems), are considered. The

nonlinear block-oriented models are shown in Figure 1.2, where N (·) represents a

deadzone, signum function, hysteresis, saturation, or other nonlinearities, and G rep-

resents a linear dynamic plant. Throughout the dissertation, we consider Hammer-

stein systems, in which the control input is transformed by a nonlinearity before being

applied to a linear plant.

(a)

(b)

(c)

Figure 1.2: Block-structured nonlinear models. (a) Hammerstein systems, (b) Wiener
Systems, and (c) Hammerstein-Wiener systems.
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1.3.2 Input Nonlinearities

In this section, we present four types of input nonlinearities that are ubiquitous

in mechanical, hydraulic, and magnetic systems, namely, deadzone, signum function,

hysteresis, and saturation.

Deadzone and signum function are static and memoryless. Deadzone describes the

system’s insensitivity to small signals. In heating-cooling systems, deadzone nonlin-

earity prevents simultaneous heating and cooling, and a signum function represents

on-off operation. In addition to memoryless nonlinearities, hysteresis and saturation

may depend on states or control inputs and are, in fact, dynamic. Smart actuators,

such as devices based on piezoelectric and magnetostrictive materials, use electrical

energy to realize large strains and forces. These devices enable control technology for

a wide range of new applications but are challenging, however, due to the fact that

these materials are hysteretic. The play operator or the generalized Prandtl-Ishlinskii

model are used to represent hysteresis in the system [36].

1.3.2.1 Deadzone

The deadzone function is given by

y(u) =


f1(u), if u > br,

0, if − bl ≤ u ≤ br,

f2(u), if u < −bl.

(1.1)

where bl, br ∈ R, f1 : R → R, and f2 : R → R. Figure 1.3 shows the output of (1.1)

for br = 1, bl = 2, f1(u) = u− 1, and f2(u) = u+ 2.
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Figure 1.3: Output of (1.1) for br = 1, bl = 2, f1(u) = u− 1, and f2(u) = u+ 2.

1.3.2.2 Signum Function

The signum function is given by

y(u) =
1

2
[sign(u− ur) + sign(u+ ul)], (1.2)

where ul, ur ∈ R. Note that y can assume only the values −1, 0, and 1, which

represents on-off operation. Figure 1.4 shows the output of (1.2) for ur = 1 and

ul = 2.

1.3.2.3 Play Operator

Let the input u(k) ∈ R be a piecewise monotone continuous function for k ∈ [0,m],

and let the initial state of the play operator be x(u(0)) = x0. The output of the play
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Figure 1.4: Output of (1.2) for ur = 1 and ul = 2.

operator for k ∈ [1,m] is defined as

x
(
u(k)

)
= max

(
u(k)− r,min

(
u(k) + r, x

(
u(k − 1)

)))
, (1.3)

where the threshold r determines the width of the play operator. Figure 1.5 shows

the output of the play operator (1.3) for r = 2, 4, 6.

1.3.2.4 Prandtl-Ishlinskii Model

The Prandtl-Ishlinskii (PI) model is a rate-independent hysteresis model with

nonlocal memory. This model is based on superposition of N play operators with

thresholds ri, i = 1, . . . , N . Let the input u(k) be as above, and let the initial state

of the i-th play operator be xi(u(0)) = x0i. The output of the i-th play operator at
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Figure 1.5: Output of the play operator (1.3) for r = 2, 4, 6.

step k, for k ∈ [1,m] is defined as

xi

(
u(k)

)
= max

(
γ(u(k))− ri,min

(
γ(u(k)) + ri, xi

(
u(k − 1)

)))
, (1.4)

where γ : R → R is a continuous increasing odd envelope function. Choosing the

trivial envelope function γ(v) = v gives the most commonly used form of the PI

model. The output of the PI model at step k is defined as

y(k) = qγ(u(k)) +
N∑
i=1

p(ri)xi(u(k)), (1.5)

where q is a positive constant and p(f) is a positive density function [36]. An example

of the PI model is shown in Figure 1.6 with parameters N = 100, rj = 0.01j for

j = 1, . . . , N , p(r) = 0.5e−0.5r, q = 0.5, γ(v) = 5 tanh(0.05v), and u(k) = 9.4 sin(ωt)+

6.9 cos(2.3ωt), ω = 0.001. The nonlocal memory of this model is represented by the

minor loops, which correspond to input reversals.
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Figure 1.6: Output of the PI model (1.4), (1.5) with N = 100, rj = 0.01j for
j = 1, . . . , N , p(r) = 0.5e−0.5r, q = 0.5, γ(v) = 5 tanh(0.05v), and
u(k)9.4 sin(ωt) + 6.9 cos(2.3ωt), ω = 0.001. The minor loops shown in
the figure correspond to input reversals and represent nonlocal memory.

1.3.2.5 Saturation

The saturation input nonlinearity is a function Sat : Rlu → U , where U ⊆ Rlu

is the control constraint set. We assume that the function “Sat” is onto, that is,

Sat(Rlu) = U . In particular, if U is rectangular, then

Sat(u) =


sata1,b1(u1)

...

satalu ,blu (ulu)

 , (1.6)
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where u = [u1 · · · ulu ]
T ∈ U = [a1, b1]× · · · × [alu , blu ] and sat : R → [a, b] is defined

as

sata,b(u) =


a, if u < a,

u, if a ≤ u ≤ b,

b, if u > b.

(1.7)

An example of (1.7) is shown in Figure 1.8, where a = −1 and b = 2. Note that for

MIMO systems, if U is rectangular, then Sat is a decentralized saturation function as

shown in Figure 1.8, that is, the ith output depends only on the ith component of the

input. Although decentralized saturations are the most common input nonlinearities

in control system design, the results presented in Chapter III also apply to a larger

class of centralized saturation nonlinearities.
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Figure 1.7: Output of (1.7), where a = −1 and b = 2.
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Figure 1.8: The decentralized saturation nonlinearities.

1.3.2.6 Other Nonlinearities

Many complex types of nonsmooth nonlinearities, can be interpreted as combi-

nations of these four elementary nonlinear characteristics, and nonmonotonic input

nonlinearities are discussed in Chapter IV.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows.

Chapter II Linear Retrospective Cost Adaptive Control Summary

In Chapter II, we apply retrospective cost adaptive control (RCAC) developed in

[23, 25] to a linear plant with deadzone and hysteresis nonlinearities. The hysteresis

is modeled with the play operator, Prandtl-Ishlinskii model, or modified Prandtl-

Ishlinskii model. Initially, the system with hysteresis is controlled with RCAC having

knowledge of the exact locations of the nonminimum-phase zeros of the plant. Then,

the system is controlled with RCAC when the locations of the nonminimum-phase

13



zeros are determined through least-squares identification of the linear plant with

hysteresis.

Next, we consider command-following and disturbance-rejection problems for a

diesel engine model. The engine is a multi-input, multi-output system, where the

transfer function of the linearized diesel engine model from EGR valve percent open

to the intake manifold pressure is nonminimum phase. We demonstrate that RCAC

is effective for both the linearized and nonlinear engine systems provided that two

Markov parameters of the linearized engine plant model are known, either analyti-

cally or through system identification. For the command-following and disturbance-

rejection problems, we consider the case when the disturbance is harmonic but other-

wise unknown, and while the command signal is harmonic and known but no advance

knowledge of its spectrum is assumed to be available.

Finally, we consider a command-following problem for the uncertain electromag-

netically controlled oscillator (ECO). We assume that an estimate of the first Markov

parameter of the discretized and linearized plant is known, but RCAC does not require

knowledge of the inertia, damping, or stiffness of the plant. In this case, a setpoint

feedback path is used to stabilize the unstable ECO at the commanded equilibria.

Chapter III Retrospective Cost Adaptive Control with Convex Saturation

Constraints Summary

Chapter III begins the main topic of this dissertation. All real-world control

systems must operate subject to constraints on the allowable control inputs. However,

the method of the unconstrained adaptive control algorithm presented in Chapter II

cannot be extended to the system with a saturation input nonlinearity. To account

for the saturation constraint, we use convex optimization to minimize the quadratic

retrospective cost function. The use of convex optimization bounds the magnitude

of the retrospectively optimized input and thereby influences the controller update
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to satisfy the control bounds. This technique is applied to a multi-rotor helicopter

with constraints on the total thrust magnitude and inclination of the rotor plane. In

particular, we formulate the multi-input constrained retrospective cost function as

a second-order cone optimization (SOCP) problem. With this approach, RCAC is

shown to adapt to these constraints.

The original contribution of Chapter III is the development of a constrained

retrospective-cost-based adaptive controller. We demonstrate this technique on il-

lustrative numerical examples involving single and multiple inputs. In the case of

multiple control inputs, it is usually the case for optimal PID controller to assume

that individual control inputs are subject to independent saturation. However, in

many applications, a saturation constraint may affect multiple control inputs. The

proposed control algorithm is able to deal with the problems in which multiple control

inputs may be subject to dependent saturation constraints, where the dependency is

assumed to be unknown.

Chapter IV Retrospective Cost Adaptive Control with Auxiliary Nonlin-

earities Summary

To further develop retrospective-cost-based adaptive control for uncertain Ham-

merstein systems, the results of Chapter IV generalize the results of Chapter II and

Chapter III to uncertain Hammerstein systems with possibly non-monotonic input

nonlinearities. We assume that only one Markov parameter of the linear plant is

known and that the input nonlinearity is uncertain. The required modeling infor-

mation for the input nonlinearity includes the intervals of monotonicity as well as

values of the nonlinearity that determine overlapping segments of the range of the

nonlinearity within each interval of monotonicity.

A novel feature of the adaptive control algorithms developed in Chapter IV of this

dissertation is the use of auxiliary nonlinearities. The purpose of the auxiliary nonlin-
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earities is to ensure that RCAC is applied to a Hammerstein system with a globally

nondecreasing composite input nonlinearity. In particular, if the input nonlinearity

is not nondecreasing, then an auxiliary blocking nonlinearity Nb, an auxiliary sorting

nonlinearity Ns, and an auxiliary reflection nonlinearity Nr are used to create a com-

posite nonlinearity N ◦Nr ◦ Ns ◦ Nb that is nondecreasing, thus preserving the signs

of the Markov parameters of the linearized system. An additional auxiliary satura-

tion nonlinearity Nsat, which is used to tune the transient response of the closed-loop

system, may depend on estimates of the range of the input nonlinearity and the gain

of the linear dynamics.

The original contribution of Chapter IV is the construction of auxiliary nonlineari-

ties to modify RCAC to deal with the input nonlinearities, which could be odd, even,

or arbitrary, as well as monotonic or non-monotonic. In addition, we have proved

that the auxiliary nonlinearities preserve the range of the original nonlinear system

and construct a globally nondecreasing composite input nonlinearity.

Chapter V Retrospective Cost Adaptive NARMAX Control with Ersatz

Nonlinearities Summary

The results of Chapter V present an unconventional approach to nonlinear out-

put feedback control of Hammerstein systems by using adaptive control to directly

update the gains of a NARMAX controller. A NARMAX model is a discrete-time

ARMAX system in which the past output and inputs appear as arguments of basis

functions. These functions are chosen by the user, and the controller coefficients ap-

pear linearly. The constraint that the controller coefficients appear linearly implies

that the basis functions are fixed a priori and thus cannot be modified as part of

the adaptation process. We numerically demonstrated that RCANC can improve

the command-following performance for the Hammerstein systems over the linear

controller structure for compensating performance distortion caused by the input
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nonlinearity.

The original contribution of Chapter V is the modification of the adaptation mech-

anism to include a nonlinear adaptation mechanism. This modification ensures that

the retrospective optimization accounts for the presence of the input nonlinearity. To

account for the case in which the input nonlinearity is uncertain, we investigate the

performance of RCNAC control in the case of uncertainty. In particular, we deter-

mine the minimal modeling information about the input nonlinearity that RCANC

requires; once this information is known, an approximate input nonlinearity, called

the ersatz nonlinearity, can be used by RCANC for adaptation.
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CHAPTER II

Linear Retrospective Cost Adaptive Control

In this chapter, we apply retrospective cost adaptive control (RCAC) developed in

[23, 25] to a linear plant with deadzone and hysteresis nonlinearities. The hysteresis

is modeled with the play operator, Prandtl-Ishlinskii model, or modified Prandtl-

Ishlinskii model. Initially, the system with hysteresis is controlled with RCAC having

knowledge of the exact locations of the nonminimum-phase zeros of the plant. Then,

the system is controlled with RCAC when the locations of the nonminimum-phase

zeros are determined through least-squares identification of the linear plant with hys-

teresis. Next, we consider command-following and disturbance-rejection problems

for a diesel engine model. The engine is a multi-input, multi-output system, where

the transfer function of the linearized diesel engine model from EGR valve percent

open to the intake manifold pressure is nonminimum phase. We demonstrate that

RCAC is effective for both the linearized and nonlinear engine systems provided

that two Markov parameters of the linearized engine plant model are known, ei-

ther analytically or through system identification. For the command-following and

disturbance-rejection problems, we consider the case when the disturbance is har-

monic but otherwise unknown, and while the command signal is harmonic and known

but no advance knowledge of its spectrum is assumed to be available. Finally, we con-

sider a command-following problem for the uncertain electromagnetically controlled
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oscillator (ECO). We assume that an estimate of the first Markov parameter of the

discretized and linearized plant is known, but RCAC does not require knowledge of

the inertia, damping, or stiffness of the plant. In this case, a setpoint feedback path

is used to stabilize the unstable ECO at the commanded equilibria.

The work on hysteresis is in collaboration with Bojana Drincic, and the results

on the diesel engine and uncertain ECO are published in [37, 38].

2.1 Retrospective Cost Adaptive Controller

In this section, we briefly review the retrospective cost adaptive control algorithm

developed in [23, 25]. This adaptive controller is effective in the presence of the

hysteresis. Furthermore, this adaptive controller is effective for command following

where the spectrum of the commands is unknown.

2.1.1 Problem Formulation

Consider the multi-input, multi-output (MIMO) discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.1)

y(k) = Cx(k) +D2w(k), (2.2)

z(k) = E1x(k) + E0w(k), (2.3)

Where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. Our

goal is to develop an adaptive output feedback controller under which the performance

variable z is minimized in the presence of the exogenous signal w. We assume that

(A,B) is stabilizable, (A,C) and (A,E1) are detectable, and the measurements of y

and z are available for feedback. If the command signal is included as a component

of y, then the adaptive controller has a feedforward architecture.
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Consider the ARMAX representation of (2.1) and (2.3),

z(k) =
n∑

i=0

−αiz(k − i) +
n∑

i=0

βiu(k − i) +
n∑

i=0

γiw(k − i), (2.4)

where α1, · · · , αn ∈ R, β1, · · · , βn ∈ Rlz×lu , and γ1, · · · , γn ∈ Rlz×lw , and the relative

degree d is defined as the smallest non negative integer i such that the ith Markov

parameter Hi
△
= E1A

i−1B ∈ Rlz×lu and Hd = βd, if i > 0, or H0
△
= E2 if i = 0.

2.1.2 Controller Construction

We construct a strictly proper time series controller u(k) of order nc to formulate

an adaptive control algorithm for (2.1)–(2.3). The controller u(k) is given by

u(k) =
nc∑
i=1

Mi(k)u(k − i) +
nc∑
i=1

Ni(k)y(k − i), (2.5)

where, for all i = 1, · · · , nc,Mi(k) ∈ Rlu×lu and Ni(k) ∈ Rlu×lu . The control (2.5) can

be expressed as

u(k) = θ(k)ϕ(k), (2.6)

where the controller gain matrix

θ(k)
△
=

[
N1(k) · · · Nnc(k) M1(k) · · · Mnc(k)

]
∈ Rlu×nc(lu+ly), (2.7)
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and the regressor vector ϕ(k) is given by

ϕ(k)
△
=



y(k − 1)

...

y(k − nc)

u(k − 1)

...

u(k − nc)


∈ Rnc(lu+ly). (2.8)

Next, defining Θ̂
△
= vecθ̂ ∈ Rnclu(ly+lu) and Θ(k)

△
= vecθ(k) ∈ Rnclu(ly+lu), the retro-

spective performance vector ẑ(θ̂, k) is given by

ẑ(Θ̂, k) = z(k) +
ν∑

i=d

ΦT
i (k)[Θ̂−Θ(k − i)]

= z(k)−
ν∑

i=d

ΦT
i (k)Θ(k − i) + ΨT(k)Θ̂, (2.9)

where, for i = d, . . . , ν,

Φi(k)
△
= ϕ(k − i)⊗ β̄T

i ∈ R(nclu(ly+lu))×lz ,

where ⊗ represents the Kronecker product, and ν > d, θ̂ ∈ Rlu×(nc(ly+lu)) is an opti-

mization variable used to derive the adaptive law, and the selection matrix coefficients

β̄d, . . . , β̄ν is discussed in [25], and

Ψ(k)
△
=

ν∑
i=d

Φi(k). (2.10)

Note that ẑ(Θ̂, k) does not need either the information of the open-loop zeros nor

the transfer functions from the exogenous signal w to z. However, when w represents

a command, then w can be viewed as an additional measurement y, and thus the
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controller has feedforward action.

Next, define the cumulative retrospective cost function

J(Θ̂, k)
△
=

1

2

k∑
i=0

λk−iẑT(Θ̂, i)Rẑ(Θ̂, i) +
1

2
(Θ(k)−Θ(0))TQ(Θ(k)−Θ(0)), (2.11)

where λ ∈ (0, 1], and R ∈ Rlz×lz , andQ ∈ R(nclu(ly+lu))×(nclu(ly+lu)) are positive definite.

J(Θ̂, k) is minimized by the adaptive law

Θ(k + 1) = Θ(k)− P (k)Ψ(k)× [λR−1 +ΨT(k)P (k)Ψ(k)]−1zR(k), (2.12)

P (k + 1) =
1

λ
P (k)− 1

λ
P (k)Ψ(k)× [λR−1 +ΨT(k)P (k)Ψ(k)]−1ΨT(k)P (k), (2.13)

where P (0) = Q−1,Θ(0) ∈ Rnclu(ly+lu). Finally, the cumulative retrospective cost

adaptive control law is thus given by (2.12), (2.13), and

u(k) = θ(k)ϕ(k) = vec−1(Θ(k))ϕ(k). (2.14)

2.2 Examples of Adaptive Control of Linear Systems with

Deadzone Input Nonlinearity

We apply the linear retrospective cost adaptive (RCA) control algorithm devel-

oped in [23] to linear systems with deadzone input nonlinearities. Consider the linear

plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
(2.15)

with the deadzone input nonlinearity with f1(u) = u, f2(u) = u in (1.1), which is

not one-to-one but onto. Note that d = 1 and Hd = 1. We consider the sinusoidal

command r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample. We set nc = 10, P0 =
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0.01I2nc , η0 = 0, and H̃ = H1, and we vary the deadzone thresholds bl and br in (1.1).

The time history of z with bl = br = 5, 10, and 20 is shown in Figure 2.1, Figure 2.2,

and Figure 2.3, respectively. In all three cases, RCAC is able follow the command

due to fact that it provides the gains of u in (2.14) needed to drive z to a small value.
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Figure 2.1: Closed-loop response of the plant (2.15) with the sinusoidal command
r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample. Deadzone is modeled by
(1.1) with f1(u) = u, f2(u) = u, and bl = br = 5.

2.3 Examples of Adaptive Control of Linear Systems with

Hysteretic Input Nonlinearity

We apply the retrospective cost adaptive (RCA) control algorithm developed in

[23]. The definitions and notations of [23] are used in applying this algorithm to

nonminimum-phase systems with hysteretic input nonlinearities. RCA control is

applied to command following and disturbance rejection where the spectra of the

commands and disturbances are unknown and the commands are not measured.
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Figure 2.2: Closed-loop response of the plant (2.15) with the sinusoidal command
r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample. Deadzone is modeled by
(1.1) with f1(u) = u, f2(u) = u, and bl = br = 10.

2.3.1 Architecture and Parameters

The system architecture is shown in Figure 2.4, where RCAC is in a feedback loop

with a two-input two-output plant. The hysteretic nonlinearity is in the feedback loop

and has the control signal as the input. This configuration can be interpreted as an

approximation of a hysteretic actuator. We test the system with either a first- or

second-order linear plant. The hysteresis is modeled by a play operator or by the

Prandtl-Ishlinskii model.

The numerator coefficients β̄d, . . . , β̄ν of the linear plant (see [23]) are obtained

in two different ways, and the results of these two strategies are compared. Initially

we assume that the linear plant is known, and we use the numerator coefficients.

Next, we assume that the plant and the hysteretic nonlinearity are both unknown,

and we use off-line least-squares identification to find these coefficients. In this case,
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Figure 2.3: Closed-loop response of the plant (2.15) with the sinusoidal command
r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample. Deadzone is modeled by
(1.1) with f1(u) = u, f2(u) = u, and bl = br = 20.

we obtain a linear approximation of the hysteresis and the linear plant.

Figure 2.4: Schematic of the system architecture.
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2.3.2 Simulations With Exact Plant Information

In this section we assume that the plant is exactly known and we use the numerator

coefficients of the linear plant as the required modeling data β̄d, . . . , β̄ν . In all of the

examples the controller is turned on at time step k = 100.

Example 2.3.1. First-order plant, step command with play operator. For the

minimum-phase stable plant G1 = 1
z−0.5

, we consider a command-following problem

with the step command w(k) ≡ 10. Initially, we run the simulation without the hys-

teresis block and let the response reach steady state. Then we save the gain matrix θ

and insert the hysteresis block into the loop. We model the hysteresis with a play op-

erator of width r = 1. We use the saved gain matrix as a feedback gain instead of the

adaptive controller to demonstrate the degradation in the performance in presence

of hysteresis. Finally, we turn on the adaptive controller with the hysteresis nonlin-

earity in the loop to demonstrate that the performance is recovered. The closed-loop

response is shown in Figure 2.5. �

Example 2.3.2. First-order plant, unit step command with PI model. We

consider the plant and input as in Example 2.3.1, but model the hysteresis by the

Prandtl-Ishlinskii model (1.4), (1.5) with N = 10, rj = 0.5j for j = 1, . . . , N , p(r) =

0.5e−0.5r, q = 0.5, γ(v) = 5 tanh(0.05v). The closed-loop response is shown in Figure

2.6. �

Example 2.3.3. First-order plant, sinusoidal command with play operator. In

this example, we use the plant G1 in Example 2.3.1 with the sinusoid command

w(k) = 10 sinωk, where ω = π/6 rad/sample. The hysteresis is modeled by a play

operator with width r = 5. We first let the system run without the hysteresis.

Then we save the controller gains and switch off the adaptive controller. We add

the play operator to the system and use the saved gains in a feedback controller.

The performance of the system degrades significantly. Finally, we turn the adaptive
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Figure 2.5: Closed-loop response to a step command w(k) ≡ 10 of the plant G1 =
1

z−0.5
. (a) shows the response with no hysteresis present. (b) shows the

response with hysteresis and without the adaptive controller, using the
steady state gains that the adaptive controller converged to in (a). (c)
shows the response with the adaptive controller turned on and hysteresis
present. u is the input of the hysteresis, and v is the output of the
hysteresis.

controller on with the hysteresis present and recover the performance. The closed-loop

response is shown in Figure 2.7. �

Example 2.3.4. First-order plant, sinusoidal command with PI model. We

consider the plant G1 and input from Example 2.3.3, but model the hysteresis in

the system by a PI model (1.4), (1.5) with N = 10, rj = 0.5j for j = 1, . . . , N ,

p(r) = 0.5e−0.5r, q = 0.5, γ(v) = 5 tanh(0.05v). The closed-loop response is shown in

Figure 2.8. �

Example 2.3.5.Second-order plant with NMP zero, step input with play operator.

Consider the 2nd-order nonminimum phase stable plant with low damping G2NMP =

z−1.5
(z+0.8)(z−0.9)

and consider the step command w(k) ≡ 10. We model the hysteresis with
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Figure 2.6: Closed-loop response of the plant G1 =
1

z−0.5
to the unit step input. The

PI model of hysteresis has parameters N = 10, rj = 0.5j for j = 1, . . . , N ,
p(r) = 0.5e−0.5r, q = 0.5, γ(v) = 5 tanh(0.05v).

a play operator of width r = 1. We follow the same procedure outlined in Example

2.3.1. The closed-loop response is shown in Figure 2.9. �

Example 2.3.6. Second-order plant with NMP zero, step command with PI. We

use the plant G2NMP and input from Example 2.3.5. The hysteresis is modeled by the

PI model with parameters N = 100, rj = 0.05j for j = 1, . . . , N , p(r) = 0.5e−0.5r,

q = 0.5, and γ(v) = 5 tanh(0.05v). The closed loop response of the system is shown

in Figure 2.10. �

Example 2.3.7. Second-order plant with NMP zero, sinusoidal command with

play operator. We use the plant G2NMP with the sinusoidal command w(k) =

10 sinωk, where ω = π/6 rad/sample. Hysteresis is modeled by the play operator

with width r = 1. We use the procedure outlined in Example 2.3.3. The closed-loop

response is shown in Figure 2.11. �

Example 2.3.8. Second-order plant with NMP zero, sinusoidal command with
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Figure 2.7: Closed-loop response of the of the plant G1 = 1
z−0.5

with the command
w(k) = 10 sinωk, ω = π/6 rad/sample. (a) shows response without hys-
teresis. (b) shows the response with the steady-state adaptive controller
gains obtained in (a) and hysteresis present. (c) shows the performance
with hysteresis present and the adaptive controller turned on.

PI. We use the plant and input from Example 2.3.7. Hysteresis is modeled by a

PI model with parameters N = 100, rj = 0.05j for j = 1, . . . , N , p(r) = 0.5e−0.5r,

q = 0.5, and γ(v) = 5 tanh(0.05v). The closed loop response of the system is shown

in Figure 2.12. In this case, the controller cannot compensate for the nonlinearity of

the PI model and command following is not achieved. �

Example 2.3.9. Third-order plant with NMP zeros, sinusoidal command with

play. In this example we test RCAC with NMP plants of order higher than 2. The

plant is G3NMP = z2−2.2z+1.85
(z−0.3)(z+0.8)(z−0.9)

, hysteresis is modeled by a play operator with

width r = 1. The command is as in Example 2.3.8. The closed loop response of the

system is shown in Figure 2.13. �
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Figure 2.8: Closed-loop response of the plant G1 =
1

z−0.5
with the PI model of hystere-

sis with parameters N = 10, rj = 0.5j for j = 1, . . . , N , p(r) = 0.5e−0.5r,
q = 0.5, γ(v) = 5 tanh(0.05v) and command w(k) = 10 sinωk, ω = π/6
rad/sample.

2.3.3 Simulations with Off-Line ID

In this section we consider the more realistic case in which the only way to iden-

tify the plant would be in cascade with the hysteresis nonlinearity. We present the

results of simulations in which the coefficients β̄d, . . . , β̄ν are found through least-

squares identification (ID) of the hysteresis and plant. This method yields a linear

approximation of the system. The numerator coefficients of the linear approximation

are used in the controller algorithm. A white noise signal is applied as the input u

to the hysteresis block. The output of the hysteresis block v is used as the input to

the plant. The output of the plant z and the input to the hysteresis u are used for

the ID. The location of poles and zeros with the second order minimum-phase (MP)

plant G2MP = z−0.5
(z−0.2)(z+0.1)

is shown in Figures 2.14 (a) and (b), respectively, for three

levels of standard deviation of the input noise u. The location of poles and zeros with
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Figure 2.9: Closed-loop response to the step command w(k) ≡ 10 of the stable
nonminimum-phase plant G2NMP = z−1.5

(z+0.8)(z−0.9)
. (a) shows the response

with no hysteresis present. (b) shows the response with hysteresis and
with adaptive controller turned off, the steady-state gains from (a) are
used in the feedback loop. (c) shows the response with adaptive controller
turned on and hysteresis present. u is the input of the hysteresis, and v
is the output of the hysteresis.

the second-order NMP plant G2NMP is shown in Figures 2.14 (c) and (d), respectively,

for three levels of standard deviation of the input noise u. In all cases, it is assumed

that the order of the system is 5 with relative degree 1. The figures show that this

ID technique gives a good approximation of the NMP zero in the system even though

it may not capture the poles or minimum phase zeros accurately. This is consistent

with the results of [39].

In all of the following examples the identification was done with zero-mean white

noise input u with standard deviation 3.

Example 2.3.10. First-order plant, step command with play operator. We con-

sider the first-order stable plant G1, and model the hysteresis with the play operator

31



0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

Time steps

P
er

fo
rm

an
ce

 z
(k

)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.8

−0.6

−0.4

−0.2

0

u

v

Figure 2.10: Closed-loop response of the of the plant G2NMP = z−1.5
(z+0.8)(z−0.9)

with the
unit step command. Hysteresis is modeled by a PI model with parame-
ters N = 100, rj = 0.05j for j = 1, . . . , N , p(r) = 0.5e−0.5r, q = 0.5, and
γ(v) = 5 tanh(0.05v).

with r = 1. The coefficients β̄d, . . . , β̄ν are obtained through a least-squares identi-

fication. We assume that the plant order is n = 3 with relative degree d = 1. The

pole-zero map of the identified plant is shown in Figure 2.15(a). The closed-loop

response with adaptive controller is shown in Figure 2.15(b).

Example 2.3.11.First-order plant, sinusoidal command with play operator. We

consider the plant G1, and β̄ coefficients and the hysteresis model from Example

2.3.10, and set the input to a sinusoidal signal w(k) = 10 sinωk, where ω = π/6

rad/sample. The closed-loop response with adaptive controller is shown in Figure

2.16. �

Example 2.3.12. First-order plant, sinusoidal command with PI model. We

consider the plant, input, and β̄ coefficients as in Example 2.3.11, but use the PI model

of hysteresis with parameters N = 100, rj = 0.05j for j = 1, . . . , N , p(r) = 0.5e−0.5r,
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Figure 2.11: Closed-loop response of the plant G2NMP = z−1.5
(z+0.8)(z−0.9)

with the com-

mand w(k) = 10 sinωk, ω = π/6 rad/sample. The response without
hysteresis is shown in (a). (b) shows the response with the steady-state
adaptive controller gains in a feedback loop and hysteresis present. Per-
formance with hysteresis present and RCAC is shown in (c).

q = 0.5, and γ(v) = 5 tanh(0.05v). The closed-loop response with adaptive controller

is shown in Figure 2.17. �

Example 2.3.13. Second-order plant with MP zero, step command with play

operator. We consider the second order plant G2MP, and model the hysteresis with

the play operator with r = 1. The coefficients β̄d, . . . , β̄ν are obtained through a

least-squares ID method. We assume that the plant order is n = 5 with relative

degree d = 1. The pole-zero map of the identified plant is shown in Figure 2.18(a).

The closed-loop response with adaptive controller is shown in Figure 2.18(b). �

Example 2.3.14. Second-order plant with MP zero, sinusoidal command with

play operator. We consider the plant G2MP, and β̄ coefficients and hysteresis model

from Example 2.3.13, but set the input to a sinusoidal signal w(k) = 10 sinωk, where
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Figure 2.12: Closed-loop response of the of the plant G2NMP = z−1.5
(z+0.8)(z−0.9)

with com-

mand w(k) = 10 sinωk, ω = π/6 rad/sample. Hysteresis is modeled by
a PI model with parameters N = 100, rj = 0.05j for j = 1, . . . , N ,
p(r) = 0.5e−0.5r, q = 0.5, and γ(v) = 5 tanh(0.05v). This is an example
of hysteretic nonlinearity that cannot be compensated by RCAC.

ω = π/6 rad/sample. The closed-loop response with adaptive controller is shown in

Figure 2.19. �

Example 2.3.15. Second-order plant with NMP zero, step command with play

operator. We consider the step response of the second order stable plant with one

nonminimum-phase zero G2NMP = z−1.5
(z+0.8)(z−0.9)

, and model the hysteresis with the

play operator with r = 1. The coefficients β̄d, . . . , β̄ν are obtained through least-

squares ID. For ID, we assume that the plant order is n = 5 with relative degree

d = 1. The pole-zero map of the identified plant is shown in Figure 2.20(a). The

closed-loop response with adaptive controller is shown in Figure 2.20(b). �

Example 2.3.16. Second-order plant with NMP zero, step command with PI

model. We consider the plant G2NMP and input as in Example 2.3.15. We model the
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Figure 2.13: Closed-loop response of the of the plant G3NMP = z2−2.2z+1.85
(z−0.3)(z+0.8)(z−0.9)

with

command w(k) = 10 sinωk, ω = π/6 rad/sample. Hysteresis is modeled
by the play operator with r = 1.

hysteresis with a PI model with parameters N = 100, rj = 0.05j for j = 1, . . . , N ,

p(r) = 0.5e−0.5r, q = 0.5, and γ(v) = 5 tanh(0.05v). We use the least-squares ID to

get the β̄ coefficients and for ID we assume that the system order is 10 with relative

degree 1. The pole zero map of the plant from the ID is shown in Figure 2.21(a).

The closed-loop response is shown in Figure 2.21(b). �

Example 2.3.17. Second-order plant with NMP zero, sinusoidal command with

play operator. We consider the plant G2NMP, but model the hysteresis with a play

operator with r = 1 and set the input to a sinusoidal signal w(k) = 10 sinωk, where

ω = π/6 rad/sample. The closed-loop response with the fifth order plant is shown in

Figure 2.22. �

Example 2.3.18. Second-order plant with NMP zero, sinusoidal command with

PI model. We consider the plant and input from Example 2.3.17. We model the

hysteresis with a PI model with parameters N = 100, rj = 0.05j for j = 1, . . . , N ,
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Figure 2.14: Locations of poles and zeros obtained through the identification with
three levels of standard deviation of input noise. (a) and (b) show the
poles and the zeros, respectively, of the plant G2MP = z−0.5

(z−0.2)(z+0.1)
. (c)

and (d) show the poles and the zeros, respectively, of the plant G2NMP =
z−1.5

(z+0.8)(z−0.9)
. In all cases it is assumed that the order of the system is 5

with relative degree 1.

p(r) = 0.5e−0.5r, q = 0.5, and γ(v) = 5 tanh(0.05v). The closed-loop response with

the assumed tenth order plant is shown in Figure 2.23. �

Example 2.3.19. Third-order plant with NMP zero, sinusoidal command with

play operator. We consider the third order plant G3NMP and input as in Example

2.3.18. We model the hysteresis with the play operator with r = 1. The coefficients

β̄d, . . . , β̄ν are obtained through a least-squares ID method. For ID, we assume that
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Figure 2.15: Closed-loop response of the first order plant G1 with controller coeffi-
cients obtained from ID and hysteresis modeled by play operator with
r = 1. (a) shows the pole-zero map of the identified third order plant.
(b) shows the closed loop response. The plant order is assumed to be 3
with relative degree 1.
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Figure 2.16: Closed-loop response of the first order plant G1 with controller coef-
ficients obtained from ID with hysteresis modeled by a play operator
with r = 1. The command input is w(k) = 10 sinωk, where ω = π/6
rad/sample. For ID, the plant order is assumed to be 3 with relative
degree 1.

the plant order is n = 5 with relative degree d = 1. The pole-zero map of the identified

plant is shown in Figure 2.24(a). The closed-loop response with adaptive controller

is shown in Figure 2.24(b). �

2.3.4 Sensitivity to Hysteresis Width

We consider the minimum-phase first-order stable plant G1 = 1
z−0.5

, and use the

play operator to represent the input hysteresis. We consider a command-following

problem with either the unit step input w(k) ≡ 1 or the sinusoid input w(k) =

10 sinωk, where ω = π/6 rad/sample. We simulate the system and consider the

steady-state performance error z(k) for various values of the play width r. The

steady-state performance error, normalized by the open-loop steady-state error, is

shown in Figure 2.25. For a sinusoidal command, the performance is more sensitive
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Figure 2.17: Closed-loop response of the first order plant G1 with controller coeffi-
cients obtained from ID with PI hysteresis model. The command input
is w(k) = 10 sinωk, where ω = π/6 rad/sample. The plant order is
assumed to be 5 with relative degree 1.

to the width of the hysteresis than for the unit step command. When the ratio of zss
zol

is equal to 1, the performance of the closed-loop system is the same as the open-loop

system. The normalized error zss
zol

is less than 30% for r
uss

≤ 1. Note that the control

problem becomes more challenging as we increase the width of the play operator,

which results in larger steady-state control input uss. In particular, for r
uss

= 2,

Figure 2.26 compares the steady state control input uss with and without hysteresis.

2.3.5 Summary

In this section we tested the RCAC possibility of command tracking in nonmin-

imum phase systems with a hysteretic input nonlinearity. RCAC is used in all the

scenarios. The hysteresis is modeled with the play operator or the Prandtl-Ishlinskii

model. The RCA controller requires the knowledge of the NMP zeros in the system

in order to function properly. The system was simulated in two different scenarios.
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Figure 2.18: Closed-loop response of the second order plant G2MP with one minimum-
phase zero and controller coefficients obtained from ID. (a) shows the
pole-zero map of the identified fifth order plant. (b) shows the closed
loop response. The plant order is assumed to be 5 with relative degree
1.
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Figure 2.19: Closed-loop response of the second order plant G2MP with one minimum-
phase zero and with controller coefficients obtained from ID. The com-
mand input is w(k) = 10 sinωk, where ω = π/6 rad/sample.

First, we assumed that the plant and the location of the NMP zeros were exactly

known. Then, the NMP zeros were determined through a least-squares identification

of the hysteresis and the plant. In both cases, and for steps and sinusoidal commands,

RCAC was able to follow the reference command.

2.4 Examples of Adaptive Control of the Air and EGR Flow

System in a Diesel Engine

In contrast to spark-ignition engines, diesel engines use compression to initiate

ignition and achieve high fuel efficiency. According to [40], diesel engines presently

account for more than 50% of all new car sales in Europe. However, diesel engines

present various challenges in practice, primarily with regard to emissions [41]. Mo-

tivated by this challenge, we consider a control problem for a turbocharged diesel
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Figure 2.20: Closed-loop response of the second order plant with nonminimum-phase
zero G2NMP = z−1.5

(z+0.8)(z−0.9)
with controller coefficients obtained from ID

and unit step command. (a) shows the pole-zero map of the identified
fifth order plant. (b) shows the performance z(k) and the hysteresis in
the system. For ID, the plant order is assumed to be 5 with relative
degree 1.
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Figure 2.21: Closed-loop response of the second order plant G2NMP to a unit step
input with controller coefficients obtained from ID. The hysteresis is
modeled with a PI model with parameters N = 100, rj = 0.05j for
j = 1, . . . , N , p(r) = 0.5e−0.5r, q = 0.5, and γ(v) = 5 tanh(0.05v). (a)
shows the pole-zero map of the identified tenth order plant. (b) shows
the closed loop response.
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Figure 2.22: Closed-loop response of the second order plant G2NMP with one NMP
zero and with controller coefficients obtained from ID. The command
input is w(k) = 10 sinωk, where ω = π/6 rad/sample.
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Figure 2.23: Closed-loop response of the second order plant G2NMP with one NMP
zero and with controller coefficients obtained from ID. The hysteresis
is modeled with a PI model with parameters N = 100, rj = 0.05j for
j = 1, . . . , N , p(r) = 0.5e−0.5r, q = 0.5, and γ(v) = 5 tanh(0.05v). The
command input is w(k) = 10 sinωk, where ω = π/6 rad/sample.
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Figure 2.24: Closed-loop response of the third order plant with two nonminimum-
phase zeros G3NMP = z2−2.2z+1.85

(z−0.3)(z+0.8)(z−0.9)
with controller coefficients ob-

tained from ID. The plant order is assumed to be 5 with relative degree
1. We model the hysteresis with a play operator with r = 1 and set the
input to a sinusoidal signal w(k) = 10 sinωk, where ω = π/6 rad/sample.
(a) shows the pole-zero map of the identified fifth order plant. (b) shows
the performance z(k) and the hysteresis in the system. Comparing to
Figure 2.13, the large transient in this figure is due to identification error.

engine (Figure 2.27) with Exhaust Gas Recirculation (EGR) valve, EGR throttle,

and Variable Geometry Turbocharger (VGT) actuation. The turbocharger increases
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Figure 2.26: For r
uss

= 2 in Figure 2.25, we stimulate the steady state control input
uss corresponding to the systems with and without hysteresis. Note that
when hysteresis is present, the adaptive controller compensates for the
deadzone by producing a larger control amplitude.

46



engine air flow by utilizing the energy of the exhaust gas. The variable-geometry

actuator changes the effective flow area of the turbine as well as the angle at which

the flow is directed at the turbine blades. The EGR valve and EGR throttle are used

to recirculate a fraction of the burnt gas in the exhaust back to the engine cylin-

ders in order to reduce the emission of nitrogen oxides. For background on modeling

and control of diesel engines, see [42]. Several prior approaches to controlling diesel

engines with EGR and VGT actuation are discussed in the survey article [43].

Figure 2.27: Schematics of a typical diesel engine.

The goal of the present example is to develop a controller to track setpoints in

the intake manifold pressure (MAP) and EGR rate. The EGR rate is defined as the

percent ratio of flow through the EGR valve to the flow through the engine cylinders.

The setpoints depend on operating conditions of the engine and driver inputs. The

setpoint map is determined during engine calibration in order to reduce fuel con-

sumption and emissions. The control inputs are VGT percent closed, EGR throttle

percent closed, and EGR valve percent open. To ensure good vehicle drivability and

performance, the control objectives are to achieve fast tracking of the intake man-

ifold pressure setpoint with small overshoot. In addition, zero steady-state error is
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desirable for both EGR rate and intake manifold pressure outputs.

To develop a controller that achieves these objectives, we consider a mean-value

model with ten states, including pressure, density, and burnt-gas fraction in the intake

manifold; pressure, density, and burnt-gas fraction in the exhaust manifold; as well

as turbocharger speed, pre-throttle pressure, EGR cooler temperature, and exhaust

manifold heat transfer state. While the open-loop dynamics are stable, they are

known to be nonlinear. In addition, the linearized model possesses a nonminimum-

phase zero in one of the input-output channels [42].

To control the diesel air-flow system, we apply retrospective-cost adaptive control

(RCAC) to the linearized model. RCAC is a discrete-time approach to adaptive sta-

bilization, command following, and disturbance rejection for systems that are SISO or

MIMO and possibly nonminimum phase [23, 25, 26, 27]. The modeling information

that RCAC requires consists of Markov parameters of the plant transfer function from

the control input to the performance variables. For SISO systems, a single Markov

parameter typically provides sufficient modeling information, even for nonminimum-

phase plants [30, 29]. The Markov parameters provide a finite-impulse-response (FIR)

approximation of the plant that is used for controller update. In some cases, a more

efficient approximation can be constructed based on frequency-domain data; the ro-

bustness of RCAC to uncertainty in these data is discussed in [44]. From an iden-

tification perspective, RCAC provides guidance on the plant modeling information

needed for adaptive control and the required accuracy of that modeling data.

In the present example we apply RCAC to the linearized mean-value model, and

we consider a command-following problem involving intake manifold pressure and

EGR rate check. Since the plant has two outputs and three inputs, RCAC requires

two Markov parameters, which are obtained from the linearized state space model.

In practice, these data could be obtained using system identification techniques [31].

To demonstrate the operation of the closed-loop system, we simulate the RCAC
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controller with a model linearized at a chosen operating point. We also demonstrated

that RCAC is able to follow step commands for the nonlinear diesel engine model,

provided two Markov parameters of the linearized engine plant model are known.

2.4.1 Application to Turbocharged Diesel Engines

To apply RCAC to a turbocharged diesel engine, we control VGT percent closed V ,

EGR throttle percent closed Et, and EGR valve percent open Ev using measurements

of the intake manifold pressure Pi and an estimate of the EGR rate Er. The Markov

parameters are based on the state-space matrices of the linearized diesel engine model.

We linearize the nonlinear engine model at engine speed of 1671 RPM. For the

linearized diesel engine, the discrete state-space form of the model with a sample time

Ts = 0.01 sec is given by

x̃(k + 1) = Ãx̃(k) + B̃ũ(k) + D̃1w̃(k), (2.16)

ỹ(k) = C̃x̃(k) + D̃ũ(k), (2.17)

z̃(k) = r̃(k)− ỹ(k), (2.18)

where x̃
△
=

[
Pi Pe ωtc Pp Td ρ Cm ρe Fi Fe

]T
, ũ

△
=

[
V Et Ev

]T
, ỹ

△
=[

Pi Er

]T
, r̃ is the vector of the commands, and w̃ is the unknown disturbance.

The states are intake manifold pressure Pi (kPa), exhaust manifold pressure Pe (kPa),

turbo rotational speed ωtc, prethrottle manifold pressure Pp (kPa), EGR cooler tem-

perature Td, intake manifold density ρ (kg/m3), exhaust heat transfer state Cm, ex-

haust manifold density ρe (kg/m
3), intake manifold burnt gas fraction Fi, and exhaust

manifold burnt gas fraction Fe. The inputs are VGT percent closed V , EGR throttle

percent closed Et, and EGR valve percent open Ev, while the available measurements

are Pi and Er. The matrices Ã ∈ R10×10, B̃ ∈ R3×10, C̃ ∈ R2×10, and D̃ ∈ R2×3 are

given by (2.19)-(2.20). Note that all the eigenvalues of Ã are within the unit circle,
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Ã =


0.1962 0.0437 0.0033 0.1305 0.0024 0.7039 0.0011 −0.1524 −0.0098 −0.0000
0.0271 0.2926 0.0005 0.0860 −0.0050 13.4343 0.0182 28.5360 −0.2668 −0.0014
1.5911 1.9022 0.9702 1.2428 −0.0018 23.8505 0.0427 −30.0380 −0.3285 −0.0012
0.1861 0.0403 0.0034 0.1236 0.0022 0.6248 0.0010 −0.1527 −0.0083 −0.0000
0.0667 1.9737 0.0001 0.0456 0.3653 1.0430 0.0487 −390.9750 −0.3967 −0.0015
−0.0059 −0.0001 0.0000 0.0012 −0.0000 0.9401 −0.0000 0.0055 −0.0000 −0.0000
2.4830 0.0724 −0.0022 −0.2249 0.0083 −344.6835 0.3690 −1.0773 −12.2236 −0.0934
−0.0001 −0.0019 0.0000 0.0004 −0.0000 0.0887 −0.0000 0.9196 0.0003 0.0000
0.0005 0.0002 −0.0000 −0.0002 0.0000 0.0023 0.0000 0.0017 0.9412 0.0122
0.0003 0.0000 −0.0000 −0.0001 0.0000 −0.0533 0.0000 −0.0000 0.1646 0.8275

 ,

(2.19)

B̃ =


0.0246 −0.0061 0.0438
0.6297 −0.0021 −0.1892
−1.2203 0.0120 −0.1701
0.0206 0.0022 0.0391
0.2814 −0.0009 −0.0846
−0.0000 −0.0001 −0.0001
0.0262 0.0053 0.0670
0.0027 −0.0000 −0.0008
0.0001 0.0000 0.0002
0.0000 0.0000 0.0000

 , C̃ =
[

1.0000 0 0 0 0 0 0 0 0 0
−0.8792 0.8687 −0.0284 5.3820 0.0337 0 0 0 0 0

]
,

D̃ =

[
0 0 0
0 0 0.7219

]
. (2.20)

and thus the linearized diesel engine plant is asymptotically stable. However, the

transfer function of the linearized engine model from Ev to Er is nonminimum phase

at all operation points.

Since the linearized model is exactly proper, that is, D̃ in (2.17) is nonzero, we

add a unit delay to the output ỹ(k) such that y(k) = ỹ(k− 1), and therefore the first

two nonzero Markov parameters used to implement (2.14) in RCAC are H1
△
= C̃B̃

and H2
△
= C̃ÃB̃. RCAC generates a control signal u(k) that attempts to minimize

the performance variable z̃(k), which is the command-following error based on the

intake manifold pressure and EGR rate. We assume that measurements of only z̃(k)

are available for feedback. We initialize the adaptive control gains to zero, that is,

θ(0) = 0, and we choose the controller order nc = 12 and the covariance matrix

P (0) = 10−3I5nc . These values are found by trial and error. Furthermore, since the

linearized model is nonminimum phase, we choose the regularization η(k) = zT(k)z(k)

[25] and R2 =


0 0 0

0 0 0

0 0 1

 for the input from EGR Ev to Er. Finally we do not

use a forgetting factor in the adaptive controller, that is, λ = 1. Figure 2.28 and
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2.29 show the time history of the intake manifold pressure Pi and EGR rate Er in

response to step commands. The numerical results show the ability of RCAC to

make the outputs Pi and Er follow the commands, while Figure 2.30 shows the time

history of the control inputs V , Et, and Ev from RCAC. Note that zero steady-state

tracking errors are achieved for both the intake manifold pressure and EGR rate

outputs with satisfactory transient behavior. However, as shown in Figure 2.30(b),

the adaptive controller uses large control signals in the EGR throttle percent closed

(Et ∈ (−580, 520)), that exceeds the actuator range of travel (Et ∈ [0, 100]). We

note that the controller does not use the EGR valve extensively, which is reasonable

given that at this operating point the pressure drop across the EGR valve is small

and throttle authority is essential for following the commands.
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Figure 2.28: Command following for the linearized diesel engine model: Intake man-
ifold pressure Pi in response to step changes in the setpoint. Note that
zero steady-state tracking error is achieved for the intake manifold pres-
sure outputs.

Next, we implement the adaptive controller with saturated outputs. To do this, we
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Figure 2.29: Command following for the linearized diesel engine model: EGR rate Er

in response to step changes in the setpoint. Note that zero steady-state
tracking error is achieved for EGR rate.

set three different saturation levels based on the trim conditions of the control inputs

V , Et, and Ev. In particular, we choose η(k) = zT(k)z(k), nc = 12, P (0) = 10−4I5nc ,

R2 as above, and initialize the control gains to zero. Figures 2.31 and 2.32 show that

the output of the linearized model follows the step commands; however, the transient

response is degraded due to the limits imposed on the control inputs. Figure 2.33

shows the time history of the control inputs V , Et, and Ev. Note that, in this case,

all the control signals are within the admissible range, that is, between 0 and 100

percent.

Next, we consider a disturbance rejection problem, where the control objective is to

drive z to zero in the presence of the sinusoidal disturbance w(k) = 0.01 sin(0.25πk),

whose frequency, phase, and amplitude are unknown to the controller. We assume

that the first two nonzero Markov parameters are known, but no other information

about the system is assumed to be known. Figure 2.34 shows that RCAC rejects the
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Figure 2.30: Control inputs VGT percent closed V (a), EGR throttle percent closed
Et (b), and EGR valve percent open Ev (c) corresponding to the closed-
loop response shown in Figure 2.28 and Figure 2.29. Note that in this
case, the adaptive controller uses large control authority in the EGR
throttle percent closed (Et ∈ (−580, 520)), which exceeds the limits
Et ∈ [0, 100].

disturbance and drives z to zero.

Finally, we include preliminary results where we apply RCAC to the nonlinear

diesel engine system. The first two nonzero Markov parameters H1 = C̃B̃ and

H2 = C̃ÃB̃ of the linearized diesel engine (2.19)-(2.20) are used as the only model in-

formation for the nonlinear engine plant for the controller. We implement the RCAC

controller with saturated outputs, and we set three different saturation levels based on
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Figure 2.31: Command following for the linearized diesel engine model: Intake man-
ifold pressure Pi in response to step commands. Note that zero steady-
state tracking error is achieved for the intake manifold pressure outputs.
In this case, where the control signals are saturated, the transient re-
sponse is degraded relative to Figure 2.28.

the trim conditions of the control inputs V,Et and Ev. Measurements of only z(k) are

available for feedback. In particular, we choose η(k) = 0.01, nc = 12, P (0) = 10−3I5nc ,

R2 as above, and initialize the control gains to zero. Figures 2.35(a) and 2.35(b) show

that the output of the nonlinear diesel model follow the step commands. Figures

2.35(c), (d), and (e) show the time history of the control inputs V , Et, and Ev. Note

that, since we saturate the RCAC control, all of the control outputs are within the

admissible range, that is, between 0 and 100 percent.

2.4.2 Summary

In this example, we considered command-following and disturbance-rejection prob-

lems for a diesel engine. RCAC was used with limited modeling information, namely,

the first two nonzero Markov parameters of the linearized plant. The problem is chal-
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Figure 2.32: Command following for the linearized diesel engine model: EGR rate Er

in response to steps in the setpoint. Note that zero steady-state tracking
error is achieved for EGR rate. In this case, where the control signals are
saturated, the transient response is worse than the response in Figure
2.29.

lenging as the engine exhibits nonminimum phase characteristics. First, we assumed

there is no bound on the control inputs. Then, we considered the more realistic case

where we saturate the control outputs using physical bounds. In both cases, RCAC

was able to follow the reference commands. Finally, we demonstrated disturbance

rejection for disturbances with unknown spectra. Future research will focus on ro-

bustness of RCAC to uncertainty in the Markov parameters as well as completing the

development of RCAC for the full operating range of the diesel engine based on the

nonlinear model.
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Figure 2.33: Control inputs VGT percent closed V (a), EGR throttle percent closed
Et (b), and EGR valve percent open Ev (c) corresponding to the closed-
loop response shown in Figures 2.31 and 2.32. Note that in this case, all
of the control signals are within the admissible range, that is, between
0 and 100. Compared with Figure 2.30, the response is degraded due
to the limits imposed on the control input Et and high gains of the
controllers. Note that Ev to Pi is of nonminimum-phase.

2.5 Examples of Setpoint Control of the Uncertain Electro-

magnetically Controlled Oscillator

Inverse square laws are ubiquitous in physics, for example, in gravitational, electro-

magnetic, and electrostatic fields. Electromagnetic and electrostatic fields are widely

used as a means of actuation. When applied over a fixed gap, electromagnetic actua-

tion is easy to manage; this is the basis of rotary motors. When applied over a variable
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Figure 2.34: Disturbance rejection for the linearized diesel engine model: The adap-
tive control uses knowledge of the first two nonzero Markov parameters
to reject a sinusoidal disturbance acting on the linearized engine model.
The frequency, phase, and amplitude of the disturbance are assumed
to be unknown. The adaptive control is turned on after 5 seconds and
drives the performance z (a) to zero. Time history of control inputs
VGT percent closed V , EGR throttle percent closed Et, and EGR valve
percent open Ev are shown in (b), (c), and (d), respectively.

gap, however, electromagnetic actuation can be challenging to work with. The elec-

tromagnetically levitated ball is a staple of control labs [45]. However, the restoring

force in this case is uniform gravity and thus is independent of displacement. If, how-

ever, the restoring force is provided by a stiffness, then the restoring force depends
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Figure 2.35: Command following for the nonlinear diesel engine model: (a) shows the
intake manifold pressure Pi in response to a step command. (b) shows
the EGR rate Er in response to a step command. Figures 2.35(c), (d),
and (e) show the time history of the control inputs V , Et, and Ev. Note
that, since we saturated the RCAC controller, all the control outputs
are within the admissible range, that is, between 0 and 100 percent.

on the displacement, and this dependence leads to extremely challenging dynamics.

We call this system the electromagnetically controlled oscillator (ECO).

Control of the ECO is considered in [46, 47, 48, 49, 50, 51] with applications to
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linear motors in [52]. As shown in [50], the presence of the stiffness leads to unstable

equilibria; in fact, for a linear spring, all equilibria beyond one-third of the initial gap

are unstable, and these equilibria become increasingly unstable as the gap increases.

In addition, as shown in Figure 2.38, for each equilibrium current, the ECO has

two equilibria; consequently, the domain of attraction and transient response of the

adaptive controller can lead to convergence to the “wrong” equilibrium. Another

complicating factor is the fact that the applied force is proportional to the square

of the current, which introduces a quadratic input nonlinearity [53]. A consequence

of this quadratic nonlinearity is the fact that the electromagnetic force is able to

pull but not push (assuming a nonmagnetic target mass) and thus the actuation is

one-sided. The same observations apply to electrostatic actuation, which is used in

MEMS devices [54, 55] and flexible antennas [56, 57].

The goal of the present example is to develop a control law for the ECO that

is applicable to the case in which the mass, damping, and stiffness parameters are

uncertain and, in addition, does not use detailed knowledge of the quadratic depen-

dence on current and the inverse-quadratic dependence on the distance between the

mass and the electromagnet. This goal is motivated by the realistic situation in which

estimates of these parameters are uncertain due to measurement, identification, and

calibration errors. Consequently, we do not attempt to invert the input nonlinearities

as in [50].

The approach that we take in the present example is based on retrospective cost

adaptive control (RCAC). RCAC is a direct digital control approach that requires

minimal modeling information about the plant. RCAC was developed for linear sys-

tems, but is extended in [58, 59] to the case of Hammerstein systems with uncertain

memoryless input nonlinearities. For the ECO we modify the approach of [58] to

account for the fact that, for each equilibrium current, the ECO has two equilib-

ria. Consequently, the domain of attraction and transient response of the adaptive
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controller can lead to convergence to the “wrong” equilibrium. To counteract this

possibility, we introduce a setpoint feedback path to assist RCAC in reaching the

desired equilibrium as the position command increases and thus the mass is moved

farther into the unstable region.

2.5.1 Equations of Motion and Equilibria of the ECO

Consider the ECO shown in Figure 2.36, wherem is the mass, i is the manipulated

input current to the electromagnet, c > 0 is the damping constant, and k > 0 is the

spring constant. The displacement q = 0 corresponds to the position of the mass

where the spring is relaxed, and ℓ is the gap between the electromagnet and the

relaxed position of the mass. The dynamics of the oscillator are given by

mq̈ + cq̇ + kq =
εi2

(ℓ− q)2
, (2.21)

which can be written as  q̇

q̈

 = Ac

 q

q̇

+Bc
εi2

(ℓ− q)2
, (2.22)

where

Ac
△
=

 0 1

− k
m

− c
m

 , Bc
△
=

 0

1
m

 . (2.23)

The parameter ε is a force constant needed to render (2.21) dimensionally correct.

For simplicity, we assume ε = 1 N-m2/A2.

Next, let qeq ∈ (0, ℓ) denote the desired equilibrium of the ECO. The corresponding
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Figure 2.36: Schematic of the electromagnetically controlled oscillator.

equilibrium current ieq satisfies

kqeq =
i2eq

(ℓ− qeq)2
. (2.24)

Conversely, given a constant current ieq, (2.21) may have zero, one, or two equilibria

depending on whether (2.24) has either zero, one, or two solutions.

Proposition 2.5.1. The following statements hold:

1. If i2eq >
4
27
kℓ3, then (2.21) has no equilibria.

2. If i2eq =
4
27
kℓ3, then (2.21) has a unique equilibrium, which is given by qeq = ℓ/3.

3. If 0 < i2eq < 4
27
kℓ3, then (2.21) has two equilibria, namely, qeq1 = 2

3
ℓ(1 − cos α

3
)

and qeq2 =
2
3
ℓ
[
1 + cos

(
α
3
+ π

3

)]
), where α

△
= cos−1

(
27i2eq
2kℓ3

− 1
)
.

Proof. Let f1(qeq)
△
= kqeq and f2(qeq)

△
=

i2eq
(ℓ−qeq)2

. Then it follows that f ′
1(qeq) = k

and f ′
2(qeq) =

2kq
ℓ−q

∈ (0,∞). Furthermore, f ′
1(qeq) = f ′

2(qeq) = k if and only if qeq =

ℓ/3. Therefore, f1(qeq) has no intersection with f2(qeq) if and only if f1(ℓ/3) < f2(ℓ/3),

one intersection point if and only if f1(ℓ/3) = f2(ℓ/3), and two intersection points if

and only if f1(ℓ/3) > f2(ℓ/3).
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Proposition 2.5.2. Assume that 0 < i2eq < 4
27
kℓ3. Then, qeq1 < ℓ/3 and qeq2 >

ℓ/3.

Proof. Since −1 <
(

27i2eq
2kℓ3

− 1
)

< 1. It follows that 0 < α < π. Hence α
3
∈

(0, π
3
) and thus α

3
+ π

3
∈ (π

3
, 2π

3
). Furthermore, cos α

3
∈ (1

2
, 1) and cos

(
α
3
+ π

3

)
∈

(−1
2
, 1
2
). Therefore qeq1 = 2

3
ℓ(1 − cos α

3
) ∈ (0, ℓ/3) and qeq2 = 2

3
ℓ
[
1 + cos

(
α
3
+ π

3

)]
∈

(ℓ/3, ℓ).

Proposition 2.5.1 and Proposition 2.5.2 are illustrated in Figure 2.37.
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Figure 2.37: Forced equilibrium position qeq corresponding to various values of ieq for
m = 1 kg, ℓ = 3 m, and k = 5 N/m. The ECO has no equilibria if and
only if i2eq > 4

27
kℓ3, one equilibrium at qeq = ℓ/3 = 1 m if and only if

i2eq =
4
27
kℓ3, and two equilibria if and only if 0 < i2eq <

4
27
kℓ3. In the last

case, qeq1 < ℓ/3 is asymptotically stable, and qeq2 > ℓ/3 is unstable.
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2.5.2 Linearization, Local Stability Analysis, and Discretization of the

ECO

In this section, we linearize (2.21) around an equilibrium qeq, analyze the local

stability, and discretize the linearized plant.

Linearizing (2.21) around q = qeq yields

 ξ̇

ξ̈

 = Al

 ξ

ξ̇

+Blδi, (2.25)

where

Al
△
=

 0 1

− k
m
+

2i2eq
m(ℓ−qeq)3

− c
m

 , Bl
△
=

 0

2ieq
m(ℓ−qeq)2

 .

Next, we define

ωn
△
=

√
k

m
, ζ

△
=

c

2
√
mk

, (2.26)

where ωn > 0 denotes the undamped natural frequency of vibration and ζ > 0 denotes

the damping ratio. Now Al and Bl can be written as

Al =

 0 1

− ℓ−3qeq
ℓ−qeq

ω2
n −2ζωn

 , Bl =

 0

2qeqω2
n

ieq

 . (2.27)

The linearized system (2.25) with δi = 0 is asymptotically stable if and only if

− ℓ−3qeq
ℓ−qeq

ω2
n < 0, that is,

qeq < ℓ/3. (2.28)

Figure 2.38 shows the equilibrium current ieq and the spectral abscissa of Al for each
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equilibrium of the ECO. Note that ieq decreases as the mass moves farther into the

stable region toward the left of ℓ/3; ieq attains its maximum value ieq =
√

4
27
kℓ3 at

qeq = ℓ/3 = 1 m; and ieq decreases as the mass moves farther into the unstable region

to the right of ℓ/3. Meanwhile, note that the unstable equilibria become increasingly

unstable as the mass moves farther to the right of ℓ/3.
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Figure 2.38: Equilibrium current ieq and spectral abscissa of Al corresponding to each
equilibrium of the ECO for m = 1 kg, ℓ = 3 m, k = 5 N/m, and
c = 1, 5, 10 N-s/m respectively. Note that ieq decreases as the mass
moves farther into the stable region toward the left of ℓ/3; ieq attains

its maximum value ieq =
√

4
27
kℓ3 at qeq = ℓ/3 = 1; and ieq decreases

as the mass moves farther into the unstable region to the right of ℓ/3.
Meanwhile, the unstable equilibria become increasingly unstable as the
mass moves farther to the right of ℓ/3. Note that by decreasing the
damping ratio ζ, the system becomes more unstable.

Next, assuming a zero-order-hold input operator with a sample time of Ts, we

obtain the discretized dynamics

x(k + 1) = Ax(k) +Bu(k), (2.29)

where u(k)
△
= δi(k). Defining γ

△
= ωn

2

∣∣∣ζ2 − ℓ−3qeq
ℓ−qeq

∣∣∣1/2, A and B are given by (2.10)

and (2.11).
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A = eAlTs =



e−ζωnTs

[
cos γTs + ζωn sin γTs

1
γ
sin γTs

− ℓ−3qeq
(ℓ−qeq)γ

ω2
n sin γTs cos γTs − ζωn sin γTs

]
, ζ2 < ℓ−3qeq

ℓ−qeq
,

e−ζωnTs

[
Ts + ζωnTs bTs

− ℓ−3qeq
ℓ−qeq

ω2
nTs Ts − ζωnTs

]
, ζ2 = ℓ−3qeq

ℓ−qeq
,

e−ζωnTs

[
cosh γTs + ζωn sinh γTs

1
γ
sinh γTs

− ℓ−3qeq
(ℓ−qeq)γ

ω2
n sinh γTs cosh γTs − ζωn sinh γTs

]
, ζ2 > ℓ−3qeq

ℓ−qeq
,

(2.10)

B =

 Ts∫
0

eAlτdτ

Bl =


A−1

l (A− I)Bl, qeq ̸= ℓ/3,

m
c

[
0 m

c

0 −1

]
(A− I)Bl +

[ √
3k/ℓcTs

0

]
, qeq = ℓ/3.

(2.11)

2.5.3 Command-Following Problem for the ECO

We now consider the ECO command-following problem shown in Figure 2.39. We

apply a feedforward/feedback controller to have the output y follow the command

signal r. The goal is to develop an adaptive feedforward/feedback controller that

minimizes the command-following error z in the presence of the command signal r

with minimal modeling information about the dynamics of the ECO. For the feedfor-

ward path, the controller uses a measurement of the command r. For the feedback

path, we apply RCAC to the ECO assuming that the state q is available for feedback.

To account for the nonlinearity of the ECO, the feedforward/feedback controller

is constructed as follows. As shown in Figure 2.40, the RCAC controller uses one

auxiliary nonlinearity. The auxiliary nonlinearity N1 modifies the RCAC controller

output uc to obtain the regressor input ur. The offset current ioffset is determined by

the setpoint feedback rule described below.
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Figure 2.39: ECO command-following problem.

Figure 2.40: ECO command-following problem with the RCAC adaptive controller
and auxiliary nonlinearity N1. The offset current ioffset is determined by
the setpoint feedback rule.

Define the saturation function sata by

sata(x) =


−a, x < −a,

x, −a ≤ x ≤ a,

a, x > a,

(2.12)

where a > 0 is the saturation level.
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2.5.3.1 Offset Current ioffset

Let r be a nondecreasing sequence of step commands, that is, r(k1) ≤ r(k2) for

all k1 < k2. Then ioffset(k) is given by

ioffset(k) =


0, if 0 < r(k) ≤ ℓ/3,

ρe
− α

|q(k)−r(k)|β , if ℓ/3 < r(k) < ℓ,

(2.13)

where ρ ≥ 0, α > 0, β > 0, and q(k) is the position of the mass at time step k.

As an example, consider ρ = 1, α = 1, β = 1, and r(k) = ℓ/2, where ℓ = 3

m. Figure 2.41 shows the offset current ioffset corresponding to each mass position

q(k). Note that the offset current is nonzero except for q(k) = r(k). The offset current

increases as the distance between current mass position and commanded mass position

increases.
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Figure 2.41: Offset current ioffset corresponding to each mass position q(k) for the
ECO for r(k) = 1.5 m, ρ = 1, α = 1, and β = 1. Note that the offset
current is nonzero except for q(k) = r(k). The offset current increases
as the distance between current mass position and commanded mass
position increases.

2.5.4 Simulation Results

We now use RCAC with the auxiliary nonlinearity N1 and the offset current ioffset

to control the position of the mass. In particular, we consider the command-following
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problem with the step command r = qeq ≥ ℓ/3.

The adaptive controller requires an estimate of the first nonzero Markov parameter

of the linearized plant (2.29). This Markov parameter is used to implement the

retrospective optimization (5.18). RCAC generates the control signal uc, which is

added to the offset current ioffset.

For simulation we consider m = 1 kg, k = 5 N/m, c = 5 N-s/m, and ℓ = 3 m

with a sample time Ts = 0.01 sec. Hence ωn = 2.2361 rad/s and ζ = 1.1180. First,

numerical simulations are performed for the constant command input qeq = ℓ/3 = 1.0

m. The first nonzero Markov parameter of (2.25) is H1(qeq)
△
= CB, where B is

defined in (2.11) and C
△
=

[
1 0

]
. We choose H1(qeq) = H1(1) = 1.0996 × 10−4

m/A. Figure 3.51 shows the dependence of H1 on the equilibria of the ECO. We

initialize the control gains to zero, that is, θ(0) = 0, and we choose the controller

order nc = 8 and the covariance matrix P (0) = 10−9I3nc . Furthermore, since the

linearized model is minimum phase, we choose the regularization η = 0. Finally, we

set ρ = 0 so that ioffset = 0, and we do not use a forgetting factor in the adaptive

controller, that is, λ = 1. Figure 2.43 shows that the controller stabilizes the plant

and follows the command input. Figure 2.44 shows the time history of the control

input uc. It follows from Proposition 2.5.1 that the steady-state value of the current

i = uc is the maximum current such that (2.21) has an equilibrium.
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Figure 2.42: H1 corresponds to each equilibrium of the ECO for m = 1 kg, ℓ = 3 m,
c = 5 N-s/m, and k = 5 N/m.
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Figure 2.43: Position of the mass with the step command r(k) = 1(k) for m = 1 kg,
ℓ = 3 m, c = 5 N-s/m, and k = 5 N/m. In this simulation, Ĥ1(1) =
H1(1). Since r(k) = 1(k) = ℓ/3, it follows that ioffset = 0.
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Figure 2.44: Time history of the control input uc corresponding to the closed-loop
response shown in Figure 2.43. In this case, ioffset = 0.

Next, we do not assume that H1(1) is known exactly. Figure 2.45 shows the

position of the mass with various estimates Ĥ1(1) of H1(1). The RCAC controller

is able to stabilize the plant and follow the step command with erroneous estimates

of H1(1). However, the best overall performance for both the transient response and

the convergence time is obtained for Ĥ1(1) = H1(1).

Now, we implement the adaptive controller with a nondecreasing sequence of

setpoint commands as shown in Figure 2.46. To do this, we set ioffset based on (2.41)

when r(k) > ℓ/3. In particular, we choose ρ = 1, α = 1, β = 1, Ĥ1(1) = H1(1),
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Figure 2.45: Position of the mass with the step command r(k) = 1(k) with various
estimates Ĥ1(1) of H1(1) for m = 1 kg, ℓ = 3 m, c = 5 N-s/m, and
k = 5 N/m. The controller is able to stabilize the plant and follow the
step commands in all cases. However, the accuracy of Ĥ1(1) affects the
transient response. In this case, ioffset = 0.

nc = 8, and initialize the control gains to zero. Figure 2.46 shows that the control

algorithm is able to stabilize the system up to qeq = 1.79. Figure 2.47(a) shows the

time history of the current offset ioffset, and Figure 2.47(b) shows the time history of

the control input uc from the RCAC.

Finally, we reduce the damping coefficient so that c = 4 N-s/m, and thus the

ECO is underdamped with ζ = 0.8944. Following the same procedure, and using

the same parameters for initializing RCAC, Figure 2.48 shows that RCAC is able to

stabilize the underdamped system up to qeq = 1.79. Figure 2.49(a) shows the time

history of the current offset ioffset, and Figure 2.49(b) shows the time history of the

control input uc from RCAC. Note that, in this case, the transient response for the

open-loop underdamped ECO system is worse than the response in the open-loop

overdamped case. Figure 2.50 shows the largest distance the mass can be moved by
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Figure 2.46: Position of the mass with a nondecreasing sequence of step commands
for m = 1 kg, ℓ = 3 m, c = 5 N-s/m, and k = 5 N/m, where ζ = 1.1180.
In order to stabilize the mass close to the electromagnet, the command
signal is a nondecreasing sequence of step commands, which is shown
as the red dash line. Note that all equilibria greater than qeq = 1 are

open-loop unstable. In this simulation, we choose Ĥ1 = H(1).

the feedforward/feedback controller versus the open-loop damping ratio of the ECO

system. Note that, in all those cases, we choose Ĥ1 = H(1).

Finally, to demonstrate the potential benefits of scheduling the Markov parameters

as a function of qeq, we consider the same example shown in Figure 2.46. Since the

Markov parameter increases as the mass moves farther into the unstable region (in

Figure 3.51), we thus let Ĥ1 = H(1) for qeq ∈ (0, 1.7) and Ĥ1 = 1.2H(1) for qeq ≥ 1.7.

Figure 2.51 shows that RCAC is able to stabilize the system up to qeq = 1.815.

2.5.5 Summary

In this example, we considered a command-following problem for the electromag-

netically controller oscillator (ECO). RCAC was used with limited modeling infor-
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Figure 2.47: Current offset ioffset (a) and control input uc (b) corresponding to the
closed-loop response shown in Figure 2.46.

mation, namely, an estimate of the first nonzero Markov parameter of the linearized

system. To handle the effect of the nonlinearities and the unstable region of the ECO,

RCAC was augmented by an auxiliary nonlinearity. An equilibrium feedback path

was also used to assist RCAC in reaching the desired unstable equilibrium. Future

research will focus on the effect of noise and sample rate as well as the potential

benefits of scheduling the Markov parameters as a function of qeq.
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Figure 2.48: Position of the mass with a nondecreasing sequence of step commands
for m = 1 kg, ℓ = 3 m, c = 4 N-s/m, and k = 5 N/m, where ζ =
0.8944. In order to stabilize the mass close to the electromagnet, the
command signal is a nondecreasing sequence of step commands, which
is shown as the red dash line. Note that we choose Ĥ1 = H(1), and
all equilibria greater than qeq = 1 are open-loop unstable. In this case,
which is underdamped, the transient response is worse than the response
in Figure 2.46.
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Figure 2.49: Current offset ioffset (a) and control input uc (b) corresponding to the
closed-loop response shown in Figure 2.48.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.55

1.6

1.65

1.7

1.75

1.8

1.85

M
ax

im
um

 M
as

s 
P

os
iti

on
 q

(k
)

Damping Ration ζ

Figure 2.50: Largest distance that RCAC is able to move the mass for various open-
loop damping ratios of the ECO. In all cases, we choose Ĥ1 = H(1),
that is, the Markov parameter for the ECO linearized at q = 1 for the
simulation.
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Figure 2.51: Position of the mass with a nondecreasing sequence of step commands
for m = 1 kg, ℓ = 3 m, c = 5 N-s/m, and k = 5 N/m, where ζ = 1.1180.
Note that all equilibria greater than qeq = 1 are open-loop unstable. In

this simulation, we let Ĥ1 = H(1) for qeq ∈ (0, 1.7) and Ĥ1 = 1.2H(1)
for qeq ≥ 1.7. RCAC is able to stabilize the system up to qeq = 1.815.
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CHAPTER III

Retrospective Cost Adaptive Control with Convex

Saturation Constraints

In this chapter, we apply retrospective cost adaptive control (RCAC) to command

following in the presence of multivariable convex input saturation constraints. To

account for the saturation constraint, we use convex optimization to minimize the

quadratic retrospective cost function. The use of convex optimization bounds the

magnitude of the retrospectively optimized input and thereby influences the controller

update to satisfy the control bounds. This technique is applied to a multi-rotor

helicopter with constraints on the total thrust magnitude and inclination of the rotor

plane. The results of this chapter are published in [60].

3.1 Introduction

All real-world control systems must operate subject to constraints on the allowable

control inputs. These constraints typically have the form of a saturation input non-

linearity [61]. Within classical control, the effects of saturation are addressed through

anti-windup strategies [62, 63]. Within the context of modern multivariable control,

techniques for dealing with saturation are addressed in [64, 65, 66, 67]. Saturation

within the context of adaptive control is addressed in [68, 69, 70].
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In the case of multiple control inputs, it is usually the case that individual control

inputs are subject to independent saturation [71]. However, in many applications, a

saturation constraint may affect multiple control inputs. This is the case, for example,

if the control inputs are produced by common hardware, such as a single power supply,

amplifier, or actuator.

In the present chapter we consider adaptive control for problems in which multiple

control inputs may be subject to dependent saturation constraints. In particular, we

are motivated by the problem of safely controlling the trajectory of a multi-rotor

helicopter by constraining the total thrust magnitude and inclination in order to

restrict the vehicle acceleration.

To address this problem, we revisit the problem of retrospective cost adaptive

control (RCAC) under constraints [70]. RCAC can be used for adaptive command

following and disturbance rejection for possibly nonminimum-phase systems under

minimal modeling information [23, 25, 28, 26]. Unlike [71], the present chapter uses

convex optimization to perform the retrospective input optimization [35]. The use

of convex optimization bounds the magnitude of the retrospectively optimized in-

put and thereby influences the controller update to satisfy the control bounds. We

demonstrate this technique on illustrative numerical examples involving single and

multiple inputs. We then apply this approach to trajectory control for a multi-rotor

helicopter. We use the convex programming code [72] for the numerical optimization.

The same technique was used within the context of RCAC in [73] to address the

problem of unknown nonminimum-phase zeros.

The contents of the chapter are as follows. In Section 3.2, we describe the

command-following problem with input saturation nonlinearities. In Section 3.3,

we summarize the RCAC algorithm. Numerical simulation results are presented in

Section 3.4, and conclusions are given in Section 3.5.
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3.2 Problem Formulation

Consider the MIMO discrete-time Hammerstein system

x(k + 1) = Ax(k) +BSat(u(k)) +D1w(k), (3.1)

y(k) = Cx(k) +D2w(k), (3.2)

z(k) = E1x(k) + E0w(k), (3.3)

where, for all k ≥ 0, x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , w(k) ∈ Rlw , and u(k) ∈

Rlu . The signal u(k) is the commanded control input. However, due to saturation,

the actual control input is given by v(k) = Sat(u(k)), where the saturation input

nonlinearity is Sat : Rlu → U , and U ⊆ Rlu is the convex control constraint set. We

assume that the function “Sat” is onto, that is, Sat(Rlu) = U . In particular, if U is

rectangular, then

Sat(u) =


sata1,b1(u1)

...

satalu ,blu (ulu)

 , (3.4)

where u = [u1 · · · ulu ]
T ∈ U = [a1, b1]× · · · × [alu , blu ] and sat : R → [a, b] is defined

as

sata,b(u) =


a, if u < a,

u, if a ≤ u ≤ b,

b, if u > b.

(3.5)

The goal is to develop an adaptive output feedback controller that minimizes

the command-following error z with minimal modeling information about the plant

dynamics. Note that w can represent either a command signal to be followed, an
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external disturbance to be rejected, or both. For example, if D1 = 0 and E0 ̸= 0,

then the objective is to have the output E1x follow the command signal −E0w. On

the other hand, if D1 ̸= 0 and E0 = 0, then the objective is to reject the distur-

bance w from the performance variable E1x. The combined command-following and

disturbance-rejection problem is considered whenD1 =

[
D11 0

]
, E0 =

[
0 E02

]
,

and w(k) =

[
wT

1 (k) wT
2 (k)

]T
, where the objective is to have E1x follow −E0w2

while rejecting the disturbance w1. Finally, if D1 and E0 are zero matrices, then the

objective is output stabilization, that is, convergence of z to zero.

3.3 Retrospective Cost Adaptive Control

In this section, we describe the constrained retrospective cost optimization algo-

rithm.

3.3.1 ARMAX Modeling

Consider the ARMAX representation of (3.1)–(3.3) given by

z(k) =
n∑

i=1

−αiz(k − i) +
n∑

i=d

βiSat(u(k − i)) +
n∑

i=0

γiw(k − i), (3.6)

where α1, . . . , αn ∈ R, β1, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈ Rlz×lw , and d is the relative

degree. Next, let v(k)
△
= Sat(u(k)), and define the transfer function

Gzv
△
= E1(zI − A)−1B =

∞∑
i=d

z−iHi = Hd
α(z)

β(z)
, (3.7)

where, for each positive integer i, the Markov parameter Hi of Gzv is defined by

Hi
△
= E1A

i−1B ∈ Rlz×lu . (3.8)
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Note that, if d = 1, then H1 = β1, whereas, if d ≥ 2, then

β1 = · · · = βd−1 = H1 = · · · = Hd−1 = 0 (3.9)

and Hd = βd. The polynomials α(z) and β(z) have the form

α(z) = zn−1 + α1z
n−1 + · · ·+ αn−1z+ αn, (3.10)

β(z) = zn−d + βd+1z
n−d−1 + · · ·+ βn−1z+ βn. (3.11)

Next, define the extended performance Z(k) ∈ Rplz and extended plant input

V (k) ∈ Rqclu by

Z(k)
△
=


z(k)

...

z(k − p+ 1)

 , V (k)
△
=


v(k − 1)

...

v(k − qc)

 =


Sat(u(k − 1))

...

Sat(u(k − qc))

 , (3.12)

where the data window size p is a positive integer, and qc
△
= n+p−1. Therefore (5.6)

can be expressed as

Z(k) = Wzwϕzw(k) +BfV (k), (3.13)

where

Wzw
△
=

 −α1Ilz · · · −αnIlz 0lz×lz · · · 0lz×lz γ0 · · · γn 0lz×lw · · · 0lz×lw

0lz×lz

. . .
. . .

. . .
... 0lz×lw

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lz

...
. . .

. . .
. . . 0lz×lw

0lz×lz · · · 0lz×lz −α1Ilz · · · −αnIlz 0lz×lw · · · 0lz×lw γ0 · · · γn


∈ Rplz×[qclz+(qc+1)lw], (3.14)

80



Bf
△
=



β1 · · · βn 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu β1 · · · βn


∈ Rplz×qclu , (3.15)

and

ϕzw(k)
△
=



z(k − 1)

...

z(k − p− n+ 1)

w(k)

...

w(k − p− n+ 1)


∈ Rqclz+(qc+1)lw . (3.16)

Note that Wzw includes modeling information about the poles of Gzv and the exoge-

nous signals, while Bf includes modeling information about the zeros of Gzv.

For the open-loop system (3.6), we make the following assumptions:

(A.1) The relative degree d is known.

(A.2) The first nonzero Markov parameter Hd is known.

(A.3) There exists an integer n̄ such that n < n̄ and n̄ is known.

(A.4) If ζ ∈ C, |ζ| > 1, and β(ζ) = 0, then the spectral radius of A is less than 1.

(A.5) The performance variable z(k) is measured and available for feedback.

(A.6) The function Sat is monotonically nondecreasing in each component in u with

the remaining components of u fixed.
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(A.7) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k), (3.17)

w(k) = Cwxw(k), (3.18)

where xw ∈ Rlw and all of the eigenvalues of Aw are on the unit circle and do

not coincide with the transmission zeros of Gzv.

(A.8) There exists an integer n̄w such that nw < n̄w and n̄w is known.

(A.9) The exogenous signal w(k) is not measured.

(A.10) α(z), β(z), n, and x(0) are unknown.

The assumption (A.6) is motivated by [58, 59].

3.3.2 Controller Construction

The commanded control u(k) is given by the exactly proper time-series controller

u(k) =
nc∑
i=1

Mi(k)u(k − i) +
nc∑
j=0

Nj(k)z(k − j), (3.19)

where, for all i = 1, . . . , nc, Mi(k) ∈ Rlu×lu , and, for all j = 0, . . . , nc, Nj(k) ∈ Rlu×lz .

We express (3.19) as

u(k) = θ(k)ϕ(k − 1), (3.20)

where

θ(k)
△
=

[
M1(k) · · · Mnc(k) N0(k) · · · Nnc(k)

]
∈ Rlu×(nclu+(nc+1)lz) (3.21)
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and

ϕ(k − 1)
△
=



u(k − 1)

...

u(k − nc)

z(k)

...

z(k − nc)


∈ Rnclu+(nc+1)lz . (3.22)

3.3.3 Retrospective Performance

Define the retrospective performance Ẑ(k) ∈ Rplz by

Ẑ(k)
△
= Wzwϕzw(k) +BfV (k) + B̄f [Û(k)− U(k)], (3.23)

where

B̄f
△
=



0lz×(d−1)lu H̄d · · · H̄m 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×(d−1)lu 0lz×lu

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0lz×(d−1)lu 0lz×lu · · · 0lz×lu H̄d · · · H̄m 0lz×lu · · · 0lz×lu


∈ Rplz×qclu ,

(3.24)

is the retrospective input matrix with the model information of Gzv. Specifically,

H̄1, . . . , H̄m in (3.24) are estimates of the Markov parameters of Gzv. Next, define the

extended commanded control U(k) ∈ Rqclu and the retrospectively optimized extended
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control vector Û(k) ∈ Rqclu by

U(k)
△
=


u(k − 1)

...

u(k − qc)

 , Û(k)
△
=


ûk(k − 1)

...

ûk(k − qc)

 , (3.25)

where ûk(k − i) ∈ Rlu is a recomputed control. Subtracting (3.13) from (3.23) yields

Ẑ(k) = Z(k) + B̄f [Û(k)− U(k)]. (3.26)

Note that the retrospective performance Ẑ(k) does not depend on Wzw or the exoge-

nous signal w. For disturbance rejection, we do not assume that the disturbance is

known; for command-following, the command w need not be measured. The model

information matrix B̄f is discussed in Section 3.3.5.

3.3.4 Retrospective Cost and RLS Controller Update Law

3.3.4.1 Retrospective Cost

We define the retrospective cost function

J(Û(k), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k)Û(k)TÛ(k), (3.27)

where, for all k > 0, η(k) ≥ 0 is a scalar and R(k) ∈ Rplz×plz is a positive-definite

performance weighting. The goal is to determine retrospectively optimized controls

Û(k) that would have provided better performance than the controls U(k) that were

applied to the plant. The retrospectively optimized controls Û(k) are subsequently

used to update the controller. Using (3.26), (3.27) can be rewritten as

J(Û(k), k) = Û(k)TA(k)Û(k) + B(k)Û(k) + C(k), (3.28)
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where

A(k)
△
= B̄T

f R(k)B̄f + η(k)Iqclu ,

B(k) △
= 2B̄T

f R(k)[Z(k)− B̄fU(k)],

C(k) △
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)B̄fU(k) + U(k)TB̄T

f R(k)B̄fU(k).

Note that if either B̄f has full rank or η(k) > 0, then A(k) is positive definite.

Next, we consider the problem of minimizing (3.27) subject to

Û(k) ∈ U × · · · × U . (3.29)

The following result follows from the Weierstrass theorem.

Lemma 3.3.1. If U is compact, then (3.27) has at least one minimizer. If, in

addition, U is convex, then (3.27) has a unique minimizer. In particular, if U = Rlu,

then the unique global minimizer of J(Û(k), k) is

Û(k) = −1

2
A−1(k)B(k). (3.30)

3.3.4.2 Cumulative Cost and RLS Update

Define the cumulative cost function

Jcum(θ, k)
△
=

k∑
i=d+1

λk−i∥ϕT(i− d− 1)θ(i− 1)− ûk(i− d)∥2

+ λk[θ(k)− θ(0)]TP−1
0 [θ(k)− θ(0)], (3.31)

where ∥ · ∥ is the Euclidean norm, P0 ∈ Rlu[nclu+(nc+1)lz ]×[nclu+(nc+1)lz ] is positive def-

inite, and λ ∈ (0, 1] is the forgetting factor. The next result follows from standard

recursive least-squares (RLS) theory [74, 75].
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Lemma 3.3.2. For each k ≥ d, the unique global minimizer of the cumulative

retrospective cost function (3.31) is given by

θ(k) = θ(k − 1) +
P (k − 1)ϕ(k − d)ε(k − 1)

λ+ ϕT(k − d)P (k − 1)ϕ(k − d)
, (3.32)

where

P (k) =
1

λ

[
P (k − 1)− P (k − 1)ϕ(k − d)ϕT(k − d)P (k − 1)

λ+ ϕT(k − d)P (k − 1)ϕ(k − d)

]
, (3.33)

P (0) = P0, and ε(k − 1)
△
= ϕT(k − d− 1)θ(k − 1)− û(k − d).

3.3.5 Model Information B̄f

For SISO, minimum-phase, asymptotically stable linear plants, using the first

nonzero Markov parameter in B̄f yields asymptotic convergence of z to zero [25,

30]. In this case, let m = d and H̄d = Hd in (3.24). Furthermore, if the open-

loop linear plant is nonminimum-phase and the absolute values of all nonminimum-

phase zeros are greater than the plant’s spectral radius, then a sufficient number of

Markov parameters can be used to approximate the nonminimum-phase zeros [25].

Alternatively, a phase-matching condition with η > 0 is given in [44, 76] to construct

B̄f . For MIMO Lyapunov-stable linear plants, an extension of the phase-matching-

based method is given in [77]. For unstable, nonminimum-phase plants, knowledge of

the locations of the nonminimum-phase zeros is needed to construct B̄f . For details,

see [25, 78].

In this chapter, we consider only the case where the zeros of Gzv are either

minimum-phase or on the unit circle. Therefore, we set p = 1 and let

B̄f =

[
01z×(d−1)lu Hd 01z×(n−d)lu

]
∈ Rlz×nlu .
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3.4 Numerical Examples

In this section, we present numerical examples to illustrate the response of RCAC

for plants with input saturation based on constrained retrospective optimization under

saturation. The numerical examples are constructed such that the objective is to

minimize the performance z = y − w, with ϕ(k) given by (3.22). In all simulations,

we choose λ = 1, and we initialize θ(0) to zero.

Example 3.4.1. Step command following for a minimum-phase, asymptotically

stable plant with saturation. Consider the asymptotically stable, minimum-phase

plant transfer function from v to y, given by

Gzv(z) =
0.04758

z− 0.9048
. (3.34)

Our goal is to have the plant output y follow the step command w(k) = 0.4. First,

consider the fixed-gain PI controller u = GPI(z)z, where

GPI(z)
△
= 8 +

0.8

z− 1
=

8z− 7.2

z− 1
. (3.35)

The controller (3.35) is implemented in feedback with the plant (3.34), where the

input to the plant v = sata,b(u) is given by (3.5). We consider the unsaturated case,

that is, a = −∞ and b = ∞, and the saturated case, where a = −1 and b = 1. Figure

3.1 shows the time history of w, y, u, and v for the case without amplitude saturation

as well as the case where a = −1 and b = 1. For the case without saturation, y follows

the command with zero steady-state error. For the case with saturation, u exhibits

integrator windup. In particular, the integrator windup results in the overshoot in y.

Next, consider the adaptive controller (3.19) with a = −1 and b = 1 in (3.29) is

implemented in feedback with nc = 1, η = 0.1, P0 = I, and B̄f =

[
01×d−1 Hd

]
=

0.04758. Note that, a, b, and B̄f are the only required model information for the adap-
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tive controller. We initialize RCAC as the PI controller in (3.35). Specifically, we let

θ(0) =

[
8 −7.2 −1

]
. Figure 3.2 shows that y follows w with zero steady-state

error and no overshoot. Note that the controller output u doesn’t exceed the satu-

ration b = 1, hence, u does not exhibit integrator windup. This compares favorably

with the fixed gain proportional-integral controller used in Figure 3.1. �
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Figure 3.1: Example 3.4.1. Step command following for a minmimum-phase, asymp-
totically stable plant with a proportional-integral controller. The controller
(3.35) is implemented in feedback with the plant (3.34), where the input
to the plant v = sata,b(u) is given by (3.5). We consider the unsaturated
case, that is, a = −∞ and b = ∞, and the saturated case, where a = −1
and b = 1. For the case without saturation, y follows the command with
zero steady-state error. For the case with saturation, u exhibits integrator
windup. In particular, the integrator windup results in the overshoot in
y.

Example 3.4.2. Square-wave command following for a minimum-phase, asymp-
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Figure 3.2: Example 3.4.1. Step command following for a minmimum-phase, asymp-
totically stable plant with RCAC. The adaptive controller (3.19) with
a = −1 and b = 1 in (3.29) is implemented in feedback with nc = 1,
η = 0.1, P0 = I, and B̄f = 0.04758. Note that, a, b, and B̄f are the
only required model information for the adaptive controller. We initialize
RCAC as the PI controller in (3.35). For the case saturation a = −1 and
b = 1, y follows w with zero steady-state error and no overshoot. Note
that the controller output u doesn’t exceed the saturation b = 1, hence,
u does not exhibit integrator windup.

totically stable plant with saturation. Consider the asymptotically stable, minimum-

phase plant

Gzv(z) =
(z− 0.5)(z− 0.9)

(z− 0.7)(z− 0.5− ȷ0.5)(z− 0.5 + ȷ0.5)
. (3.36)

The goal is to have the plant output y follow a square-wave command w(k). The con-

trol saturation v = Sat(u) = sata,b(u) is given by (3.5). We consider the unsaturated

case, that is, a = −∞ and b = ∞, together with four levels of saturation. For the

plant (3.36), the saturation bounds umax = 3 and umin = −3 are sufficient to drive

the performance z to zero. Next, we define the saturation levels, b10% = 0.9umax,

b20% = 0.8umax, b40% = 0.6umax, b80% = 0.2uss,max, a10% = 0.9umin, a20% = 0.8umin,
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a40% = 0.6umin, and a80% = 0.2umin. In all four cases, the adaptive controller (3.19)

with saturation is implemented in feedback with nc = 3, η = 0, P0 = 10−2I, and

B̄f =

[
1 0 0

]
. Note that a, b, and B̄f are the only model information required

by the adaptive controller.

Figure 3.3 shows the time history of w, y, u, and v without saturation as well

as with 10%, 20%, 40%, and 80% saturation. For the case without saturation, y

follows the command w after each step. For the case with saturation, note that

the adaptive controller is not able to follow the command because the saturation

makes this impossible. However, the output y follows w without phase lag that is

characteristic of integrator windup. �

Example 3.4.3.Triangle-wave command following for a minimum-phase, Lyapunov-

stable plant with saturation. Consider the Lyapunov-stable, minimum-phase plant

Gzv(z) =
1

z− 1
. (3.37)

The goal is to have the plant output y follow a triangle-wave command. Following

the procedure in Example 3.4.2, we choose nc = 3, η = 0, P0 = 10−2, and B̄f = 1.

Figure 3.4 shows the time history of w, y, u, and v for the case without saturation

as well as with 10%, 20%, 40%, and 80% saturation. Without saturation, y follows

the command w. Each time the slope of w changes sign, the control u experiences a

transient. For the case with saturation, the adaptive controller is not able to follow

the command because the saturation makes this impossible. �

Example 3.4.4. Square-wave command following for a nonminimum-phase, un-

stable plant with saturation. Consider the unstable (double integrator) plant

Gzv(z) =
z+ 1

(z− 1)2
. (3.38)
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Figure 3.3: Example 3.4.2. Square wave command following for a minimum-phase,
asymptotically stable plant with saturation. We consider no saturation as
well as 10%, 20%, 40%, and 80% saturation. Without saturation, y follows
the command w at each step. With saturation, note that the adaptive
controller is not able to follow the command because the saturation makes
this impossible. However, the output y follows w without the phase lag
that is characteristic of integrator windup.

The command is a square wave. We consider the saturation control v = Sat(u) =

sata,b(u) with a = −1 and b = 1. The adaptive controller (3.19) with known saturation

bounds in (3.29) is implemented in feedback with nc = 3, η = 0.01, P0 = I, and
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Figure 3.4: Example 3.4.3. Triangle-wave command following for a minimum-phase,
Lyapunov-stable plant with saturation. We consider no saturation as well
as with 10%, 20%, 40%, and 80% saturation. Without saturation, y
follows the command w. Each time the slope of w changes sign, the control
u experiences a transient, and the output y(k) follows the command. With
saturation, the adaptive controller is not able to follow the command
because the saturation makes this impossible.

B̄f =

[
1 0

]
. Figure 3.5 shows the time history of w, y, u, and v. Note that the

response converges after the transient in the first period. �

Example 3.4.5.Command-following for an undamped mass-spring structure with
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Figure 3.5: Example 3.4.4. Square-wave command following for a double-integrator
plant with saturation. We consider v = sat−1,1(u). The adaptive controller
(3.19) is implemented in feedback with nc = 3, η = 0.01, P0 = I, and
B̄f = [1 0].

single-direction force actuation. Consider the mass-spring-damper structure shown in

Figure 3.6 modeled by (3.39)

mq̈ + kq = v, (3.39)

where m = 1 kg and k = 30 N/m are the mass and stiffness, q and q̇ are the position

and velocity, respectively, of the mass, and q(0) = 3 m, q̇(0) = 5 m/s. w is the

command signal, and v is the saturated control given by

v = Sat(u) = sat0,50(u) (3.40)

93



The discrete-time transfer function is given by

Gzv(z) =
0.004(z+ 1)

z2 − 1.707z+ 1
. (3.41)

The goal is to have the plant output y follow the step command w(k) = 0. We

consider (3.5) with v = sat0,50(u). Note that this problem is related to the classical

problem of controllability using positive controls considered in [79, 80, 81]. However,

Brammer’s theorem given in [79, 80] assumes that B = I, which is not the case in

this example.

The adaptive controller (3.19) with known saturation bounds is implemented in

feedback with nc = 5, η = 0.0001, P0 = 0.1I, and B̄f =

[
0.004 0

]
.

The goal is to bring the mass to q = 0 with single-direction force actuation.

Figure 3.7 shows the response with q(0) = 3 m and q̇(0) = 5 m/s. Note that, by

constraining the retrospectively optimized control û(k), the commanded control u(k)

is nonnegative for all k > 25. �

Figure 3.6: Example 3.4.5. Mass-spring structure with single-direction force actua-
tion.

Example 3.4.6. Command following for a multi-rotor helicopter. The transla-
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Figure 3.7: Example 3.4.5. Command-following for an undamped mass-spring-
damper structure with single-direction force actuation. The adaptive con-
troller (3.19) is implemented with nc = 5, η = 0.0001, P0 = 0.1I, and
B̄f = [0.004 0]. The goal is to bring the mass to q = 0 with single-
direction force actuation with q(0) = 3 m and q̇(0) = 5 m/s.

tional motion of a multi-rotor helicopter is described by

q̈ =
1

m
u+


0

0

−g

 , (3.42)

where q =

[
q1 q2 q3

]T
∈ R3 denotes the position of the vehicle center of mass

resolved in the Earth frame, where q1 and q2 denote horizontal displacements, while

q3 denotes the vertical displacement. The initial conditions are q(0) =

[
0 0 0

]T
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and q̇(0) =

[
0 0 0

]T
. u =

[
u1 u2 u3

]T
∈ R3 is the control force, g = 9.8

m/s2 is the gravitational acceleration, and m = 0.5 kg is the mass of the vehicle.

Define the inclination angle φ of u to be

φ
△
= cos−1 u3

∥u∥
, (3.43)

where ∥u∥ denotes the Euclidean norm of u. Let

w(t) =


2 cos(0.1t)

2 sin(0.1)t

0.3t+ 1

 ∈ R3 (3.44)

denote the position command, and define the tracking error z ∈ R3 by

z
△
= q − w. (3.45)

Let the positive real numbers φmax = 20 deg and umax = 6 N denote the maximum

allowable values of φ and ∥u∥, respectively. The control problem is thus to construct

a feedback control law for u that minimizes ∥z∥ subject to

√
u2
1 + u2

2

∥u∥
≤ sinφmax, (3.46)

u3 ≥ 0, (3.47)

and

∥u∥ ≤ umax, (3.48)
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where (3.46)-(3.48) form the convex control constraint set U shown in Figure 3.8. The

problem of minimizing the retrospective cost function on U can thus be rewritten as

the following second-order cone programming (SOCP) problem:

min J(Û(k), k) (3.49)

subject to

∥PÛ(k)∥2 ≤ QÛ(k) and ∥Û(k)∥2 ≤ 6, (3.50)

where P
△
=


1 0 0

0 1 0

0 0 0

 and Q
△
= tan(φmax)

[
0 0 1

]T
. The nonlinear program-

ming method SOCP in the CVX toolbox [72] is used to solve the optimization problem

(3.49) and (3.50).

Figure 3.8: Example 3.4.6. The convex control constraint set U formed by (3.46)-
(3.48).
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Next, a state space representation of the multi-rotor helicopter is given by

 q̇

q̈

 =

 03×3 I3×3

03×3 03×3


 q

q̇

+

 03×3

1
m
I3×3

 v +



03×1
0

0

−g




, (3.51)

y =

[
I3×3 03×3

] q

q̇

 , (3.52)

z = y − w, (3.53)

where v = Sat(u) ∈ U is the saturated control input given by

v =


v1

v2

v3

 = Sat(u) =


Sat1(u1, u2, u3)

Sat2(u1, u2, u3)

Sat3(u3)

 , (3.54)

where

Sat1(u1, u2, u3)
△
=


u1 if u1 ≤ Sat3(u3) tanφmax cosϑ,

Sat3(u3) tanφmax cosϑ otherwise,

(3.55)

Sat2(u1, u2, u3)
△
=


u2 if u2 ≤ Sat3(u3) tanφmax sinϑ,

Sat3(u3) tanφmax sinϑ otherwise,

(3.56)

Sat3(u3)
△
= sat0,6(u3), (3.57)
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and

ϑ
△
= atan2(u2, u1) = 2 arctan

u2√
u2
1 + u2

2 + u1

. (3.58)

Note that the function Sat in (3.54) satisfies (A.6). Next, we discretize (3.51)-(3.53)

using zero-order-hold. The adaptive controller (3.19) with knowledge of the saturation

(3.50) is implemented in feedback with nc = 8, η = 0, P0 = 0.1I, d = 1, H1 = I3×3,

and we let B̄f =

[
0.01I3×3 03×3

]
.

Figure 3.9 shows the time history of y1, y2, and y3 of the helicopter. The transient

especially along y3 direction is due to the fact that (3.51)-(3.53) is unstable, the

discretized equivalent of (3.51)-(3.53) has nonminimum-phase zeros at −1, and the

gravitational acceleration g is unmodeled. Furthermore, we initialize the adaptive

controller at θ(0) = 0. Note that the commanded control signal u does not exhibit

integrator windup and remains bounded as shown in Figure 3.10, where the black dots

represent the control constraint set U , and the blue crosses represent the commanded

control u. Note that the blue crosses outside the control constraint set U (black dots

region) are caused by the transient behavior of RLS update in (3.32) and (3.33).

Figure 3.11 shows the distance between the unsaturated commanded control u(k)

(blue crosses that are outside the control constraint set U in Figure 3.10) and the

saturated control v(k) at each time step. �

3.5 Conclusions

Adaptive control based on constrained retrospective cost optimization was ap-

plied to command following for Hammerstein systems with multivariable convex in-

put saturation. We numerically demonstrated that convex optimization applied to

the retrospective cost can improve the tracking performance when following square-

wave and triangle-wave commands in the presence of saturation. We also applied
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Figure 3.9: Example 3.4.6. Command following for a multi-rotor helicopter. The
adaptive controller (3.19) with the saturation bounds in (3.50) is imple-
mented in feedback with nc = 8, η = 0, P0 = 0.1I, B̄f = [0.01I3×3 03×3],
and θ(0) = 0. Note that the outputs of y1, y2, y3 follow the commands
w1, w2, and w3 after the transient.

this technique to a multi-rotor helicopter command-following problem by formulating

the multi-input constrained retrospective cost function as a second-order cone opti-

mization (SOCP) problem. With this approach, RCAC is shown to adapt to these

constraints. Future research will include a stability analysis of RCAC under input
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Figure 3.10: Example 3.4.6. The adaptive controller (3.19) with known saturation
bounds in (3.50) is implemented in feedback with nc = 8, η = 0, P0 =
0.1I, B̄f = [0.01I3×3 03×3], and θ(0) = 0. The black dots represent
the constraint set in (3.46) and (3.48), and the blue dots represent the
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RLS update in (3.32) and (3.33).

saturation.
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CHAPTER IV

Retrospective Cost Adaptive Control with

Auxiliary Nonlinearities

In this chapter, we augment retrospective cost adaptive control (RCAC) with

auxiliary nonlinearities to address a command-following problem for uncertain Ham-

merstein systems with possibly non-monotonic input nonlinearities. We assume that

only one Markov parameter of the linear plant is known and that the input nonlinear-

ity is uncertain. Auxiliary nonlinearities are used within RCAC to create a globally

non-decreasing composite input nonlinearity. The required modeling information for

the input nonlinearity includes the intervals of monotonicity as well as values of the

nonlinearity that determine overlapping segments of the range of the nonlinearity

within each interval of monotonicity. The results of this chapter are published in

[58, 59, 82].

4.1 Introduction

A Hammerstein system consists of linear dynamics preceded by an input nonlin-

earity as considered in [83, 84, 85]. This nonlinearity may represent the properties of

an actuator, such as saturation to reflect magnitude restrictions on the control input,

deadzone to represent actuator stiction, or a signum function to represent on-off op-
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eration. The ability to invert the input nonlinearity is often precluded in practice by

the fact that the nonlinearity may be neither one-to-one nor onto, and it may also be

uncertain.

If the input nonlinearity is uncertain, then adaptive control may be useful for

learning the characteristics of the nonlinearity online and compensating for the dis-

tortion that it introduces. Adaptive inversion control of Hammerstein systems with

uncertain input nonlinearities and linear dynamics is considered in [32, 33, 34]. In

contrast, in the present chapter we make no attempt to identify or invert the in-

put nonlinearity. In particular, we apply retrospective cost adaptive control (RCAC)

along with auxiliary nonlinearities that account for the presence of the input nonlin-

earity.

RCAC is applicable to linear plants that are possibly MIMO, nonminimum phase

(NMP), and unstable as shown in [24, 23, 25, 26, 27, 28, 29, 30]. RCAC relies on

knowledge of Markov parameters and, for NMP open-loop-unstable plants, estimates

of the NMP zeros. This information can be obtained from either analytical modeling

or system identification, see [31]. As shown in [30], the Markov parameters provide

an approach to matching the phase of the plant at the frequencies present in the

command and disturbances. Alternative phase-matching techniques are given in [76].

The purpose of the auxiliary nonlinearities is to ensure that RCAC is applied to a

Hammerstein system with a globally nondecreasing composite input nonlinearity. In

particular, if the input nonlinearity is not nondecreasing, then an auxiliary blocking

nonlinearity Nb, an auxiliary sorting nonlinearity Ns, and an auxiliary reflection

nonlinearity Nr are used to create a composite nonlinearity N ◦Nr ◦ Ns ◦ Nb that is

nondecreasing, thus preserving the signs of the Markov parameters of the linearized

system. An additional auxiliary saturation nonlinearity Nsat, which is used to tune

the transient response of the closed-loop system, may depend on estimates of the

range of the input nonlinearity and the gain of the linear dynamics.
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In [32, 33, 34], the input nonlinearities are assumed to be piecewise linear. The

present chapter does not impose this restriction. A preliminary version of some of

the results in this chapter is given in [58].

The contents of the chapter are as follows. In Section 4.2, we describe the Ham-

merstein command-following problem. In Section 4.3, we summarize the RCAC algo-

rithm. In Section 4.4, we apply an extension of RCAC using auxiliary nonlinearities

to the Hammerstein command-following problem with non-monotonic input nonlin-

earities. Next, we present examples to illustrate the construction of the auxiliary

nonlinearities. Numerical simulation results are presented in Section 4.5, 4.6, and

4.7. In section 4.5, we consider the case where the input nonlinearities are odd. In

section 4.6, we propose two approaches for the case where input nonlinearities are

even. In section 4.7, we present examples for the case where the input nonlinearities

are neither odd or even. Conclusions are given in Section 4.8.

4.2 Hammerstein Command-following Problem

Consider the SISO discrete-time Hammerstein system

x(k + 1) = Ax(k) +BN (u(k)) +D1w(k), (4.1)

y(k) = Cx(k), (4.2)

where x(k) ∈ Rn, u(k), y(k) ∈ R, w(k) ∈ Rd, N : R → R, and k ≥ 0. To avoid

unnecessary complications, we assume that N is piecewise right continuous. We

consider the Hammerstein command-following problem with the performance variable

z(k) = y(k)− r(k), (4.3)
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where z(k) ∈ R is the performance variable and r(k) ∈ R is the command. The goal

is to develop an adaptive output feedback controller that minimizes the command-

following error z using minimal modeling information about the dynamics, distur-

bance w, and input nonlinearity N . We assume that measurements of z(k) are

available for feedback; however, measurements of v(k) = N (u(k)) are not available.

A block diagram for (4.1)-(4.3) is shown in Figure 4.1.

Figure 4.1: Adaptive command-following problem for a Hammerstein plant with in-
put nonlinearity N . We assume that measurements of z(k) are available
for feedback; however, measurements of v(k) = N (u(k)) and w(k) are not
available.

4.3 Controller Construction

To formulate an adaptive control algorithm for (4.1)-(4.3), we use a strictly proper

time-series controller with auxiliary nonlinearities Nsat, Nb, Ns, and Nr to account

for the presence of the input nonlinearity N in Figure 4.2. The construction of Nsat,

Nb, Ns, and Nr is described in Section 4.4. The RCAC controller of order nc is given

by

uc(k) =
nc∑
i=1

Mi(k)uc(k − i) +
nc∑
i=1

Ni(k)z(k − i), (4.4)
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where, for all i = 1, . . . , nc, Mi(k) ∈ R, and Ni(k) ∈ R. The control (4.4) can be

expressed as

uc(k) = θ(k)ϕ(k − 1),

where

θ(k)
△
=

[
M1(k) · · · Mnc(k) N1(k) · · · Nnc(k)

]
∈ Rlu×2nc

is the controller gain matrix, and the regressor vector ϕ(k) is given by

ϕ(k − 1)
△
= [uc(k − 1) · · · uc(k − nc) z(k − 1) · · · z(k − nc)]

T ∈ R2nc .

The transfer function matrix Gc,k(q) from z to uc at time step k can be represented

by

Gc,k(q)
△
=

N1(k)q
nc−1 +N2(k)q

nc−2 + · · ·+Nnc(k)

qnc −
(
M1(k)qnc−1 + · · ·+Mnc−1(k)q+Mnc(k)

) ,
where the forward shift operator q accounts for both the free and forced response of

the system.

Figure 4.2: Hammerstein command-following problem with the RCAC adaptive con-
troller and auxiliary nonlinearities Nsat, Nb, Ns, and Nr.

107



Next, for i ≥ 1, define the Markov parameter

Hi
△
= CAi−1B.

For example, H1 = CB and H2 = CAB. Let ℓ be a positive integer. Then, for all

k ≥ ℓ, (4.1) can be written as

x(k) = Aℓx(k − ℓ) +
ℓ∑

i=1

Ai−1BN (Nb(Ns(Nr(Nsat(uc(k − i)))))) +
ℓ∑

i=1

Ai−1D1w(k − i),

(4.5)

and thus

z(k) = CAℓx(k − ℓ) +
ℓ∑

i=1

CAi−1D1w(k − i)− r(k) + H̄Ū(k − 1), (4.6)

where

H̄
△
=

[
H1 · · · Hℓ

]
∈ R1×ℓ

and

Ū(k − 1)
△
=


N (Nb(Ns(Nr(Nsat(uc(k − 1))))))

...

N (Nb(Ns(Nr(Nsat(uc(k − ℓ))))))

 .

Next, we rearrange the columns of H̄ and the components of Ū(k − 1) and partition

the resulting matrix and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (4.7)

where H′ ∈ R1×(ℓ−lU ), H ∈ R1×lU , U ′(k − 1) ∈ Rℓ−lU , and U(k − 1) ∈ RlU . Then, we
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can rewrite (4.6) as

z(k) = S(k) +HU(k − 1), (4.8)

where

S(k) △
= CAℓx(k − ℓ) +

ℓ∑
i=1

CAi−1D1w(k − i)− r(k) +H′U ′(k − 1). (4.9)

Next, for j = 1, . . . , s, we rewrite (4.8) with a delay of kj time steps, where

0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

zj(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (4.10)

where (4.9) becomes

Sj(k − kj)
△
= CAℓx(k − kj − ℓ) +

ℓ∑
i=1

CAi−1D1w(k − kj − i)− r(k − kj) +H′
jU

′
j(k − kj − 1)

and (4.7) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) +HjUj(k − kj − 1),

where H′
j ∈ R1×(ℓ−lUj

), Hj ∈ R1×lUj , U ′
j(k−kj−1) ∈ Rℓ−lUj , and Uj(k−kj−1) ∈ RlUj .

Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=


z1(k − k1)

...

zs(k − ks)

 ∈ Rs. (4.11)
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Therefore,

Z(k) = S̃(k) + H̃Ũ(k − 1), (4.12)

where

S̃(k) △
=


S1(k − k1)

...

Ss(k − ks)

 ∈ Rs,

Ũ(k − 1) has the form

Ũ(k − 1)
△
=


N (Nb(Ns(Nr(Nsat(uc(k − q1))))))

...

N (Nb(NsNr(Nsat(uc(k − qlŨ ))))))

 ∈ RlŨ ,

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + ℓ, and H̃ ∈ Rs×lŨ is constructed according

to the structure of Ũ(k − 1). The vector Ũ(k − 1) is formed by stacking U1(k − k1 −

1), . . . , Us(k − ks − 1) and removing copies of repeated components.

Next, for j = 1, . . . , s, we define the retrospective performance

ẑj(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (4.13)

where the past controls Uj(k − kj − 1) in (4.10) are replaced by the retrospective

controls Ûj(k−kj−1). In analogy with (4.11), the extended retrospective performance
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for (4.13) is defined as

Ẑ(k)
△
=


ẑ1(k − k1)

...

ẑs(k − ks)

 ∈ Rs

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (4.14)

where the components of ˆ̃U(k−1) ∈ RlŨ are the components of Û1(k−k1−1), . . . , Ûs(k−

ks − 1) ordered in the same way as the components of Ũ(k − 1). Subtracting (4.12)

from (4.14) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (4.15)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (4.16)

where R(k) ∈ Rs×s is a positive-definite performance weighting. The goal is to de-

termine retrospectively optimized controls ˆ̃U(k− 1) that would have provided better

performance than the controls U(k) that were applied to the system. The retro-

spectively optimized control values ˆ̃U(k − 1) are subsequently used to update the

controller.

Next, to ensure that (4.16) has a global minimizer, we consider the regularized

cost

J̄( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (4.17)
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where η(k) ≥ 0. Substituting (4.15) into (4.17) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + B(k) ˆ̃U(k − 1) + C(k),

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlŨ ,

B(k) △
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)],

C(k) △
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J̄( ˆ̃U(k − 1), k) has the unique global minimizer

ˆ̃U(k − 1) = −1

2
A−1(k)B(k). (4.18)

Next, let d be a positive integer such that ˆ̃U(k − 1) contains û(k − d), and define

the cumulative cost function

JR(θ, k)
△
=

k∑
i=d+1

λk−i∥θ(k)ϕ(i− d− 1)− û(i− d)∥2 + λk(θ(k)− θ0)P
−1
0 (θ(k)− θ0)

T,

(4.19)

where ∥ · ∥ is the Euclidean norm, and λ ∈ (0, 1] is the forgetting factor. Minimizing

(4.19) yields

θ(k) = θ(k − 1) + β(k)[ϕT(k − d)P (k − 1)ϕ(k − d− 1) + λ]−1P (k − 1)ϕ(k − d− 1)

· [θ(k − 1)ϕ(k − d− 1)− û(k − d)],
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where β(k) is either zero or one. The error covariance is updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)− β(k)λ−1P (k − 1)ϕ(k − d− 1)

· [ϕT(k − d− 1)P (k − 1)ϕ(k − d) + λ]−1 · ϕT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI2nc , where α > 0. Note that

when β(k) = 0, θ(k) = θ(k − 1) and P (k) = P (k − 1). Therefore, setting β(k) = 0

switches off the controller adaptation, and thus freezes the control gains. When

β(k) = 1, the controller is allowed to adapt. The parameter β(k) is used only for

numerical examples to illustrate the effect of adaptation.

4.4 Auxiliary Nonlinearities

In this section, we construct the auxiliary nonlinearities Nsat,Nb,Ns, and Nr in

Figure 4.2 along with the required model information. Nsat modifies uc to obtain the

regressor input usat, while Nb, Ns, and Nr modify usat to produce the Hammerstein

plant input u. The auxiliary nonlinearities Nb, Ns, and Nr are chosen such that the

composite input nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally nondecreasing. To avoid

unnecessary complications, we assume that N ◦Nr ◦Ns ◦Nb is redefined at points of

discontinuity to render it piecewise right continuous.

For the Hammerstein command-following problem, we assume that G is uncertain

except for an estimate of a single nonzero Markov parameter. The input nonlinearity

N is also uncertain, as described below.
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4.4.1 Auxiliary Saturation Nonlinearity Nsat

The auxiliary saturation nonlinearity Nsat is defined to be the saturation function

satp,q given by

Nsat(uc) = satp,q(uc) =


p, if uc < p,

uc, if p ≤ uc ≤ q,

q, if uc > q,

(4.20)

where the real numbers p and q are the lower and upper saturation levels, respec-

tively. For minimum-phase plants, the auxiliary nonlinearity Nsat is not needed, and

thus, in this case, the saturation levels p and q are chosen to be large negative and

positive numbers, respectively. For NMP plants, the saturation levels are used to

tune the transient behavior. In addition, the saturation levels are chosen to provide

a sufficiently large range of the control input to follow the command r. These values

depend on the range of the input nonlinearity N as well as the gain of the linear

system G at frequencies in the spectra of r and w.

4.4.2 Auxiliary Reflection Nonlinearity Nr

If the input nonlinearity N is not monotonic, then the auxiliary reflection nonlin-

earity Nr is used to create a composite nonlinearity N ◦ Nr that is piecewise nonde-

creasing. To construct Nr, we assume that the intervals of monotonicity of the input

nonlinearity N are known, as described below.

In Section 4.4.3 and 4.4.4 below we restrict Ns and Nb so that Ns : [p, q] → [p, q]

and Nb : [p, q] → [p, q]. With this construction, we need to consider only us ∈ [p, q].

Therefore, let I1, I2, . . . be the smallest number of intervals of monotonicity of N that

are a partition of the interval [p, q]. If N is nondecreasing on Ii, then Nr(us)
△
= us

for all us ∈ Ii. Alternatively, if N is nonincreasing on Ii = [pi, qi), then Nr(us)
△
=
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pi + qi − us ∈ Ii for all us ∈ Ii. Finally, if N is constant on Ii, then either choice

can be used. Thus, Nr is a piecewise-linear function that reflects N about us =
pi+qi

2

within each interval of monotonicity so that N ◦Nr is nondecreasing on Ii, and thus

N ◦ Nr is piecewise nondecreasing on I. Let RI(f) denote the range of the function

f with arguments in I.

Proposition 4.4.1. Assume that Nr is constructed by the above rule. Then the

following statements hold:

1. N ◦ Nr is piecewise nondecreasing on [p, q].

2. RI(N ◦Nr) = RI(N ).

Proof. Let Ii = (pi, qi). We first assume thatN is nondecreasing on Ii. SinceNr(us) =

us for all us ∈ Ii, it follows that N ◦ Nr(us) = N (us) for all us ∈ Ii. Hence N ◦ Nr is

nondecreasing on Ii and thus piecewise nondecreasing.

Alternatively, assume that N is nonincreasing on Ii. Let us,1, us,2 ∈ Ii, where

us,1 ≤ us,2. Then, u2
△
= pi + qi − us,2 ≤ u1

△
= pi + qi − us,1. Therefore, since N is

nonincreasing on Ii, it follows that N (Nr(us,1)) = N (u1) ≤ N (u2) = N (Nr(us,2)).

Thus, N ◦ Nr is nondecreasing on Ii.

To prove ii), assume that N is nondecreasing on Ii. Since Nr(us) = us for all

us ∈ Ii, it follows that Nr(Ii) = Ii, that is, Nr : Ii → Ii is onto. Alternatively, assume

that N is nonincreasing on Ii so that Nr(us) = pi + qi − us. Note that Nr(pi) = qi,

Nr(qi) = pi, and Nr is continuous and decreasing on Ii. Therefore, Nr(Ii) = Ii, and

thus Nr : Ii → Ii is onto. Hence, RI(N ◦ Nr) = RI(N ).

Example 4.4.1.Consider the nonincreasing input nonlinearityN (u) = −sat−1,1(u−

5) shown in Figure 4.3(a). Let Nr(us) = −us + 10 for all us ∈ [3, 7] according to

Proposition 4.4.1. Figure 4.3(c) shows that the composite nonlinearity N ◦ Nr is

nondecreasing on I
△
= [−2, 2]. Note that RI(N ◦Nr) = RI(N ) = [−1, 1]. �
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Figure 4.3: Example 4.4.1. (a) Input nonlinearity N (u) = −sat−1,1(u − 5). (b)
Auxiliary reflection nonlinearity Nr(us) = −us + 10 for us ∈ [3, 7]. (c)
Composite nonlinearity N ◦ Nr. Note that N ◦ Nr is nondecreasing on

I
△
= [3, 7] and RI(N ◦Nr) = RI(N ) = [−1, 1].

Example 4.4.2. Consider the non-monotonic input nonlinearity N (u) = |u − 5|

shown in Figure 4.4(a). Let Nr(us) = −us + 6 for all us ∈ [1, 5) and Nr(us) = us

otherwise according to Proposition 4.4.1. Figure 4.4(c) shows that the composite

nonlinearity N ◦ Nr is piecewise nondecreasing but not globally nondecreasing on

I
△
= [1, 9], and that RI(N ◦Nr) = RI(N ) = [0, 4]. �

Example 4.4.3. Consider the non-monotonic input nonlinearity

N (u) =


−1

2
u, if u ≤ 0,

u− 1, if u > 0,

(4.21)

shown in Figure 4.5(a). Let Nr(us) = −us − 2 for all us ∈ [−2, 0) and Nr(us) = us

otherwise according to Proposition 4.4.1. Figure 4.5(c) shows that the composite

nonlinearity N ◦ Nr is piecewise nondecreasing but not globally nondecreasing on
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Figure 4.4: Example 4.4.2 (a) Non-monotonic input nonlinearity N (u) = −|u − 5|.
(b) Auxiliary reflection nonlinearity Nr(us) = −us + 6 for us ∈ [1, 5)
and Nr(us) = us otherwise. (c) Composite nonlinearity N ◦ Nr. Note
that N ◦Nr is piecewise nondecreasing but not globally nondecreasing on

I
△
= [1, 9], and that RI(N ◦Nr) = RI(N ) = [0, 4].

I
△
= [−2, 1], and that RI(N ◦Nr) = RI(N ) = [−1, 1]. �

4.4.3 Auxiliary Sorting Nonlinearity Ns

As illustrated by Example 4.4.2 and Example 4.4.3, N ◦ Nr is piecewise nonde-

creasing but not globally nondecreasing. In order to construct a composite input

nonlinearity that is globally nondecreasing, we introduce the auxiliary sorting nonlin-

earity Ns and auxiliary blocking nonlinearity Nb. The auxiliary sorting nonlinearity

Ns sorts portions of the piecewise nondecreasing nonlinearity N ◦Nr to create a com-

posite nonlinearity N ◦Nr ◦Ns so that the composite nonlinearity N ◦Nr ◦Ns ◦Nb is

globally nondecreasing. Nb is discussed in Section 4.4.4. To construct Ns, we assume

that the range of N ◦ Nr within each interval of monotonicity is known. No further

modeling information about N is needed.
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Figure 4.5: Example 4.4.3 (a) Non-monotonic input nonlinearity (4.21). (b) Auxiliary
reflection nonlinearity Nr(us) = −us − 2 for us ∈ [−2, 0) and Nr(us) = us

otherwise. (c) Composite nonlinearity N ◦ Nr. Note that N ◦ Nr is

piecewise nondecreasing but not globally nondecreasing on I
△
= [−2, 0],

and that RI(N ◦Nr) = RI(N ) = [−1, 1].

Let Ns be the piecewise right-continuous affine function defined as follows. Let

I1 = [p1, q1), I2 = [p2, q2), . . . be the smallest number of intervals of monotonicity

of N that are a partition of the interval [p, q]. If RIi(N ◦ Nr) ⊂ RIj(N ◦ Nr) for

all i ̸= j or (N ◦ Nr)(qi) ≤ (N ◦ Nr)(qj), where qi < qj, then Ns(ub)
△
= ub for

all ub ∈ Ii ∪ Ij = [pi, qi) ∪ [pj, qj), and thus Ns is not needed. Alternatively, if

RIi(N ◦Nr) * RIj(N ◦Nr) for all i ̸= j and (N ◦Nr)(qi) > (N ◦Nr)(qj), where qi < qj,

then Ns(ub)
△
= 1

qi−pi
[(qj − pj)ub + pjqi − piqj] ∈ Ij for all ub ∈ Ii and Ns(ub)

△
=

1
qj−pj

[(qi − pi)ub + piqj − pjqi] ∈ Ii for all ub ∈ Ij.

Proposition 4.4.2. Assume that Ns is constructed by the above rule. Then the

following statements hold:

1. N ◦ Nr ◦ Ns is piecewise nondecreasing on [p, q].
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2. RI(N ◦Nr ◦ Ns) = RI(N ).

Proof. Let Ii = (pi, qi) and Ij = (pj, qj). We first assume that RIi(N ◦ Nr) ⊂

RIj(N ◦Nr) for all i ̸= j or N ◦Nr(qi) ≤ N ◦Nr(qj), where qi < qj. Since Ns(ub) = ub

for all ub ∈ Ii ∪ Ij, it follows from Proposition 4.4.1 i) that N ◦ Nr ◦ Ns is piecewise

nondecreasing on [p, q].

Alternatively, assume that RIi(N ◦ Nr) * RIj(N ◦ Nr) for all i ̸= j and (N ◦

Nr)(qi) > (N◦Nr)(qj), where qi < qj. It follows fromNs(ub)
△
= 1

qi−pi
[(qj − pj)ub + pjqi − piqj] ∈

Ij for all ub ∈ Ii and Ns(ub)
△
= 1

qj−pj
[(qi − pi)ub + piqj − pjqi] ∈ Ii for all ub ∈ Ij that

Ns : Ii → Ij and Ns : Ij → Ii. Next, Let ub,1, ub,2 ∈ Ii, where ub,1 ≤ ub,2. Then,

us,1
△
=

1

qi − pi
[(qj − pj)ub,1 + pjqi − piqj] ∈ Ij ≤ us,2

△
=

1

qi − pi
[(qj − pj)ub,2 + pjqi − piqj] ∈ Ij.

Therefore, since N ◦ Nr is nondecreasing on Ij, it follows that (N ◦ Nr ◦ Ns)(ub,1) =

(N◦Nr)(us,1) ≤ (N◦Nr)(us,2) = (N◦Nr◦Ns)(ub,2). Thus, N◦Nr◦Ns is nondecreasing

on Ii. Similarly, the same argument shows that N ◦Nr ◦ Ns is nondecreasing on Ii.

To prove ii), assume that RIi(N ◦ Nr) ⊂ RIj(N ◦ Nr) for all i ̸= j or (N ◦

Nr)(qi) ≤ (N ◦ Nr)(qj), where qi < qj. Since Ns(ub) = ub for all ub ∈ Ii ∪ Ij,

it follows that Ns : Ii → Ii is onto. Alternatively, assume that RIi(N ◦ Nr) *

RIj(N ◦ Nr) for all i ̸= j and N ◦ Nr(qi) > N ◦ Nr(qj), where qi < qj. It follows

from Ns(ub)
△
= 1

qi−pi
[(qj − pj)ub + pjqi − piqj] ∈ Ij for all ub ∈ Ii and Ns(ub)

△
=

1
qj−pj

[(qi − pi)ub + piqj − pjqi] ∈ Ii for all ub ∈ Ij that Ns : Ii → Ij and Ns : Ij → Ii.

Therefore, Ns : Ii → Ij and Ns : Ij → Ii . Hence, RI(N ◦ Nr ◦ Ns) = RI(N ◦ Nr) =

RI(N ).

Example 4.4.4. Consider the case where R[−2,0](N ◦ Nr) ∩ R[0,1](N ◦ Nr) = ∅

as shown in Figure 4.6(a). We assume that values of (N ◦ Nr)(0) and (N ◦ Nr)(1)

are known. In particular, (N ◦Nr)(0) = 1 > (N ◦Nr)(1) = 0. We thus choose

Ns(ub) = 0.5ub + 1 for ub ∈ [−2, 0) and Ns(ub) = 2ub − 2 for ub ∈ [0, 1] as shown
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in Figure 4.6(b). Note that N ◦ Nr is piecewise nondecreasing on [−2, 1]. Figure

4.6(c) shows that the composite nonlinearity N ◦ Nr ◦ Ns is piecewise nondecreasing

on [−2, 1]. �

−2 −1 0 1
−1

−0.5

0

0.5

1

X: 1
Y: 0

(a) us

N
◦
N

r

X: 0
Y: 1

−2 −1 0 1
−2

−1

0

1

(b) ub

N
s

−2 −1 0 1
−1

−0.5

0

0.5

1

(c) ub

N
◦
N

r
◦
N

s

Figure 4.6: Example 4.4.4. In this example, R[−2,0](N ◦Nr)∩R[0,1](N ◦Nr) = ∅. (a)
Nondecreasing composite nonlinearity N ◦ Nr. Note that (N ◦Nr)(0) =
1 > (N ◦Nr)(1) = 0. (b) Auxiliary sorting nonlinearity Ns(ub) = 0.5ub+
1 for ub ∈ [−2, 0) and Ns(ub) = 2ub− 2 for ub ∈ [0, 1]. (c) The composite
nonlinearity N ◦Nr ◦ Ns.

Example 4.4.5. Consider the case where range of N ◦ Nr on subintervals of its

domain has partially overlapping intervals as shown in Figure 4.7(a), where neither

R[−5,0](N ◦ Nr) nor R[0,5](N ◦ Nr) is contained in the other set. We assume that

values of (N ◦ Nr)(0) and (N ◦ Nr)(5) are known. In particular, (N ◦Nr)(0) = 4 >

(N ◦Nr)(5) = 1, we thus choose Ns(ub) = ub + 5 for ub ∈ [−5, 0) and Ns(ub) =

ub − 5 for ub ∈ [0, 5] as shown in Figure 4.7(b). Note that N ◦ Nr ◦ Ns is piecewise

nondecreasing on [−5, 5], and Figure 4.7(c) shows that the composite nonlinearity

N ◦Nr ◦ Ns is piecewise nondecreasing on [−5, 5]. �

Example 4.4.6. Consider the case where R[−5,0](N ◦ Nr) ⊂ R[0,5](N ◦ Nr) as
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Figure 4.7: Example 4.4.5. In this example, range of N ◦ Nr on subintervals of its
domain has partially overlapping intervals, where neither R[−5,0](N ◦Nr)
nor R[0,5](N ◦Nr) is contained in the other set. Note that (N ◦ Nr)(0) =
4 > (N ◦Nr)(5) = 1. (a) Piecewise nondecreasing composite nonlinearity
N ◦Nr with partially overlapping intervals. (b) Auxiliary sorting nonlin-
earity Ns(ub) = ub+5 for ub ∈ [−5, 0) and Ns(ub) = ub−5 for ub ∈ [0, 5].
(c) The composite nonlinearity N ◦Nr ◦Ns is piecewise nondecreasing on
[−5, 5].

shown in Figure 4.8(a), and thus Ns is not needed. We choose Ns(ub) = ub, and

Figure 4.8(b) shows that N ◦Nr ◦ Ns is piecewise nondecreasing on [−5, 5]. �

4.4.4 Auxiliary Blocking Nonlinearity Nb

As shown in Proposition 4.4.2 and illustrated by Example 4.4.5, N ◦ Nr ◦ Ns

is piecewise nondecreasing. In order to construct a composite input nonlinearity

that is globally nondecreasing, we introduce the auxiliary blocking nonlinearity Nb.

To construct Nb, we assume that the range of N ◦ Nr ◦ Ns within each interval of

monotonicity is known. If, in addition, these ranges are partially overlapping, then

selected intermediate values of N ◦Nr ◦Ns must also be known. No further modeling
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Figure 4.8: Example 4.4.6. In this example, R[−5,0](N ◦Nr) ⊂ R[0,5](N ◦Nr). In this
case, Ns is not needed. (a) Piecewise nondecreasing composite nonlin-
earity N ◦ Nr, where R[−5,0](N ◦ Nr) ⊂ R[0,5](N ◦ Nr) and the auxiliary
sorting nonlinearity Ns(ub) = ub for ub ∈ [−5, 5]. (b) The composite
nonlinearity N ◦Nr ◦ Ns is piecewise nondecreasing on [−5, 5].

information about N is needed.

Let Nb be the piecewise right-continuous affine function defined as follows. Let

I1, I2, . . . be the smallest number of intervals of monotonicity of N that are also a

partition of the interval [p, q]. If RIi(N ◦ Nr ◦ Ns) ∩ RIj(N ◦ Nr ◦ Ns) = ∅ for

all i ̸= j, then we choose Nb(usat)
△
= usat for all usat ∈ Ij ∪ Ij. Alternatively, if

RIi(N ◦Nr ◦Ns)∩RIj(N ◦Nr ◦Ns) ̸= ∅ and RIi(N ◦Nr ◦Ns) ( RIj(N ◦Nr ◦Ns),

we block the overlapping segments as shown by the following examples.

Example 4.4.7. Consider the case where R[−5,0](N ◦ Nr ◦ Ns) ∩ R[0,5](N ◦ Nr ◦

Ns) = ∅ as shown in Figure 4.9(a). In this case, Nb is not needed, we thus choose

Nb(usat) = usat. Note that N ◦Nr ◦ Ns is piecewise nondecreasing on [−5, 5]. Figure

4.9(b) shows that the composite nonlinearityN ◦Nr◦Ns◦Nb is globally nondecreasing

on [−5, 5]. �

Example 4.4.8. Consider the case where range of N ◦ Nr ◦ Ns on subintervals

of its domain has partially overlapping intervals, where neither R[−5,0](N ◦ Nr ◦ Ns)

nor R[0,5](N ◦ Nr ◦ Ns) is contained in the other set. In particular, as shown in
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Figure 4.9: Example 4.4.7. In this example, R[−5,0](N ◦Nr◦Ns)∩R[0,5](N ◦Nr◦Ns) =
∅. (a) Nondecreasing composite nonlinearity N ◦ Nr ◦ Ns and auxiliary
blocking nonlinearity Nb(usat) = usat. (b) The composite nonlinearity
N ◦ Nr ◦ Ns ◦ Nb is globally nondecreasing on [−5, 5].

Figure 4.10(a), R[−2,0](N ◦ Nr ◦ Ns) = R[0,2](N ◦ Nr ◦ Ns). In this case, we assume

that intermediate values of N ◦ Nr ◦ Ns are known. In particular, knowledge of

(N ◦ Nr ◦ Ns)[−5,0] (0) = 1 is sufficient to construct Nb. We choose Nb(usat) = −2

for usat ∈ [−2, 0) and Nb(usat) = usat otherwise. Note that N ◦ Nr ◦ Ns is piecewise

nondecreasing on [−5, 5], and Figure 4.10(b) shows that the composite nonlinearity

N ◦Nr ◦ Ns ◦ Nb is globally nondecreasing on [−5, 5]. �

Example 4.4.9. Consider the case R[−5,0](N ◦ Nr ◦ Ns) ⊂ R[0,5](N ◦ Nr ◦ Ns) as

shown in Figure 4.11(a). In particular, R[−5,0](N ◦ Nr ◦ Ns) = [−2, 3] and R[0,5](N ◦

Nr ◦ Ns) = [−5, 5]. We let Nb(usat) = −5 for all usat ∈ [−5, 0) and Nb(usat) = usat

for all usat ∈ [0, 5]. Note that N ◦ Nr ◦ Ns is piecewise nondecreasing on [−5, 5] and

Figure 4.11(b) shows that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally

nondecreasing on [−5, 5]. �

Proposition 4.4.3. Assume that Nb is constructed by the above rule. Then the

following statements hold:

1. N ◦ Nr ◦ Ns ◦ Nb is globally nondecreasing on I
△
= [p, q].

2. RI(N ◦Nr ◦ Ns ◦ Nb) = RI(N ).
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Figure 4.10: Example 4.4.8. In this example, range of N ◦ Nr ◦ Ns on subinter-
vals of its domain has partially overlapping intervals, where neither
R[−5,0](N◦Nr◦Ns) norR[0,5](N◦Nr◦Ns) is contained in the other set. (a)
Piecewise nondecreasing composite nonlinearityN◦Nr◦Ns with partially
overlapping intervals, whereR[−2,0](N ◦Nr◦Ns) = R[0,2](N ◦Nr◦Ns) and
the auxiliary blocking nonlinearity Nb(usat) = usat. (b) The composite
nonlinearity N ◦Nr ◦ Ns ◦ Nb is globally nondecreasing on [−5, 5].
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Figure 4.11: Example 4.4.9. In this example, R[−5,0](N◦Nr◦Ns) ⊂ R[0,5](N◦Nr◦Ns).
(a) Piecewise nondecreasing composite nonlinearity N ◦ Nr ◦ Ns, where
R[−5,0](N ◦ Nr ◦ Ns) ⊂ R[0,5](N ◦ Nr ◦ Ns) and the auxiliary blocking
nonlinearity Nb(usat) = −5 for usat ∈ [−5, 0) and Nb(usat) = usat for
usat ∈ [0, 5]. (b) The composite nonlinearity N ◦Nr ◦Ns ◦Nb is globally
nondecreasing on [−5, 5].

Proof. First, consider the case RIi(N ◦Nr ◦Ns)∩RIj(N ◦Nr ◦Ns) = ∅ for all i ̸= j.

It follows from i) of Proposition 4.4.2 and Nb(usat) = usat that N ◦ Nr ◦ Ns ◦ Nb is
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nondecreasing on I. Next, consider the case RIi(N ◦Nr ◦Ns)∩RIj(N ◦Nr ◦Ns) ̸= ∅,

(N ◦Nr ◦Ns ◦Nb)(usat) is constant for all usat ∈ RIi(N ◦Nr ◦Ns)∩RIj(N ◦Nr ◦Ns).

Therefore, N ◦ Nr ◦ Ns ◦ Nb is nondecreasing.

To prove ii), let I1, I2, . . . be the smallest number of intervals of monotonicity of N

that are a partition of the interval [p, q]. SinceRI(N◦Nr◦Ns) =
∪∞

k=1 RIk(N◦Nr◦Ns).

Note thatNb(usat) = usat for all intervals Ii and Ij such thatRIi(N◦Nr◦Ns)∩RIj(N◦

Nr ◦ Ns) = ∅. For the intervals where RIi(N ◦ Nr ◦ Ns) ∩ RIj(N ◦ Nr ◦ Ns) ̸= ∅.

Let Nb(usat) = µ, where µ ∈ RIi(N ◦ Nr ◦ Ns) ∩ RIj(N ◦ Nr ◦ Ns). Therefore,

RI(N ◦Nr ◦Ns ◦Nb) = RI(N ◦Nr ◦Ns). It thus follows from Proposition 4.4.2 that

RI(N ◦Nr ◦ Ns ◦ Nb) = RI(N ◦Nr ◦ Ns) = RI(N ).

4.4.5 Examples Illustrating the Construction of Nb, Ns, and Nr

Example 4.4.10. Consider the non-monotonic input nonlinearity

N (u) =


10, if u < 2,

−3u+ 4, if − 2 ≤ u < 2,

u2 − 6, if u ≥ 2,

(4.22)

which is shown in Figure 4.12(a). Let Nsat(uc) = satp,q(uc), where p = −5 and q = 5.

According to Propositions 4.4.1, 4.4.2, and 4.4.3, let

Nr(us) =


−us, if − 2 ≤ us < 2,

us, if us ∈ [−5,−2) ∪ (2, 5),

(4.23)

Ns(ub) = ub, if ub ∈ [−5, 5], (4.24)
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and

Nb(usat) =


−2, if − 5 ≤ usat < 2,

usat, if 2 ≤ usat ≤ 5.

(4.25)

Figure 4.12(b) shows the auxiliary nonlinearities Nb, Ns, and Nr. Figures 4.12(c) and

4.12(d) show that the composite nonlinearityN◦Nr◦Ns is piecewise nondecreasing on

I
△
= [−5, 5] and the composite nonlinearity N ◦Nr ◦Ns ◦Nb is globally nondecreasing

on I. Note that RI(N ◦Nr ◦ Ns ◦ Nb) = RI(N ) = [−2, 19]. �
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Figure 4.12: Example 4.4.10. (a) Input nonlinearity given by (4.22). (b) The auxiliary
reflection nonlinearity Nr given by (4.23) for us ∈ [−5, 5], the auxiliary
sorting nonlinearity Ns given by (4.24) for ub ∈ [−5, 5], and the auxiliary
blocking nonlinearityNb given by (4.25) for usat ∈ [−5, 5]. (c) Composite
nonlinearityN ◦Nr◦Ns. Note thatN ◦Nr◦Ns is piecewise nondecreasing
on [−5, 5]. (d) Composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb. Note that
N ◦ Nr ◦ Ns ◦ Nb is globally nondecreasing on [−5, 5] and R[−5,5](N ◦
Nr ◦ Ns ◦ Nb) = R[−5,5](N ) = [−2, 19].
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Example 4.4.11. Consider the non-monotonic input nonlinearity

N (u) =


−sat−0.5,0.5u, if u < 2,

0.5u− 2, if 2 ≤ u < 4,

0, if u ≥ 4,

(4.26)

which is shown in Figure 4.13(a). Let Nsat(uc) = satp,q(uc), where p = −2 and q = 6.

According to Propositions 4.4.1, 4.4.2, and 4.4.3, let

Nr(us) =


−us, if − 2 ≤ us < 2,

us, if 2 ≤ us ≤ 6,

(4.27)

Ns(ub) =


ub + 4, if − 2 ≤ ub < 2,

ub − 4, if 2 ≤ ub ≤ 6,

(4.28)

and

Nb(usat) =


4, if 2 ≤ usat < 4,

usat, otherwise.

(4.29)

Figure 4.13(b) shows the auxiliary nonlinearities Nr and Ns. Figures 4.13(c) and

4.13(d) show that the composite nonlinearity N ◦ Nr and N ◦ Nr ◦ Ns are piecewise

nondecreasing on I
△
= [−2, 6]. Figures 4.13(e) shows auxiliary blocking nonlinearities

Nb and Figures 4.13(f) shows the composite nonlinearity N ◦Nr ◦Ns ◦Nb is globally

nondecreasing on I. Note thatRI(N◦Nr◦Ns◦Nb) = RI(N◦Nr◦Ns) = RI(N◦Nr) =

RI(N ) = [−1, 0.5]. �

Knowledge of the intervals of monotonicity of N , the ranges of N ◦ Nr and N ◦

Nr ◦ Ns within each interval of monotonicity, and selected intermediate values of
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Figure 4.13: Example 4.4.11. (a) Input nonlinearity N (u) given by (4.26). (b) The
auxiliary reflection nonlinearity Nr given by (4.27) for us ∈ [−2, 6] and
the auxiliary sorting nonlinearity Ns given by (4.28) for ub ∈ [−2, 6].
(c) Composite nonlinearity N ◦ Nr. Note that N ◦ Nr is piecewise non-
decreasing on [−2, 6]. (d) Composite nonlinearity N ◦ Nr ◦ Ns. Note
that N ◦Nr ◦Ns is piecewise nondecreasing on [−2, 6]. (e) The auxiliary
blocking nonlinearity Nb given by (4.29) for usat ∈ [−2, 6]. (f) Compos-
ite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally nondecreasing on [−2, 6],
and RI(N ◦Nr ◦Ns ◦Nb) = RI(N ◦Nr ◦Nb) = RI(N ◦Nr) = RI(N ) =
[−1, 0.5].

N ◦ Nr ◦ Ns in the case of partially overlapping interval ranges is needed to modify

the controller output usat so that N ◦Nr ◦ Ns ◦ Nb is globally nondecreasing. It thus

follows that N ◦ Nr ◦ Ns ◦ Nb preserves the signs of the Markov parameters of the

linearized Hammerstein system.
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4.5 Adaptive Control of Hammerstein Systems with Odd In-

put Nonlinearities

We now present numerical examples to illustrate the response of RCAC for Ham-

merstein systems with odd input nonlinearities. We consider a sequence of exam-

ples of increasing complexity, including minimum-phase, non-minimum-phase plants,

asymptotically stable, and unstable cases. The odd input nonlinearities may be ei-

ther monotonic or non-monotonic. For each example, we assume that d and Hd are

known. In all simulations, the adaptive controller gain matrix θ(k) is initialized to

zero. Unless otherwise stated, all examples assume x(0) = 0 and λ = 1.

Example 4.5.1.(Minimum-phase, asymptotically stable plant, nonincreasing N ).

Consider the asymptotically stable, minimum-phase plant

G(z) =
1

z− 0.5
(4.30)

with the cubic input nonlinearity

N (u) = −u3, (4.31)

which is nonincreasing, one-to-one, and onto. Note that d = 1 and Hd = 1. We

consider the sinusoidal command r(k) = 5 sin(Ω1k), where Ω1 = π/5 rad/sample.

Since the linear plant is minimum phase, we choose Nsat(uc) = satp,q(uc), where

p = −106 and q = 106 in (4.20). As shown in Figure 4.14(a), N is decreasing for

all u ∈ R, we let Nb = usat, Ns = ub, and Nr = −us. Figure 4.14(a.iii) shows that

the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is nondecreasing. Note that knowledge

of only the monotonicity of N is used to choose Nb, Ns, and Nr. We let nc = 10,

P0 = 0.01I2nc , η0 = 0, and H̃ = H1. Figures 4.14(b.i) and (b.ii) show the time history

of z, while Figure 4.14(b.iii) shows the input nonlinearity N and (b.iv) shows the time
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history of u. Finally, Figure 4.14(b.v) shows the time history of θ and (b.vi) shows

the frequency response of Gc,2000(z). Note that Gc,2000(z) has the form of an internal

model controller with high gain at the command frequency Ω1 and the harmonic 3Ω1.

�

Consider the nonlinearity N (u) = un, where n is odd, with the input signal

u(k) = cos(Ωk). Then the response y(k) = N (u(k)) is given by

y(k) = cosn(Ωk) =
1

2n−1

(n−1)/2∑
r=0

(
n

r

)
cos[(n− 2r)Ωk]. (4.32)

Note that, if N is an odd polynomial, then y(k) contains harmonics at only odd

multiples of Ω. Furthermore, if N is an odd analytic function such as N (u) = sin u,

then this observation applies to truncations of its Taylor expansion.

Example 4.5.2.(Non-minimum-phase, asymptotically stable plant, nondecreasing

N ). We consider the asymptotically stable, NMP plant

G(z) =
z− 1.5

(z− 0.8)(z− 0.6)
, (4.33)

with the saturation input nonlinearity

N (u) =


−0.8, if u < −0.8,

u, if − 0.8 ≤ u ≤ 0.8,

0.8, if u > 0.8,

(4.34)

which is nondecreasing and one-to-one but not onto. Note that d = 1 and Hd = 1. We

consider the two-tone sinusoidal command r(k) = 0.5 sin(Ω1k) + 0.5 sin(Ω2k), where

Ω1 = π/5 rad/sample and Ω2 = π/2 rad/sample for the Hammerstein system with

the input nonlinearity N . As shown in Figure 4.15(a), since N is nondecreasing for

all u ∈ R, we choose Nsat(uc) = satp,q(uc), where p = −2 and q = 2 in (4.20), and
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let Nb = usat, Ns = ub, and Nr = us. Figure 4.15(a.iii) shows that the composite

nonlinearity N ◦Nr◦Ns◦Nb is nondecreasing on [−2, 2]. We set nc = 10, P0 = 0.1I2nc ,

η0 = 2, and H̃ = H1. The Hammerstein system runs open-loop for 100 time steps, and

RCAC is turned on at k = 100. Figure 4.15(b) shows the time history of z. Figure

4.15(c) shows the frequency response of Gc,1000(z), which indicates that Gc,1000(z) has

high gain at the command frequencies Ω1 and Ω2. �

Example 4.5.3. (Non-minimum-phase, asymptotically stable plant, nondecreas-

ing N ). To illustrate the choice of Nsat for a NMP plant, consider (4.33) with the

deadzone input nonlinearity

N (u) =


u+ 0.5, if u < −0.5,

0, if − 0.5 ≤ u ≤ 0.5,

u− 0.5, if u > 0.5,

(4.35)

which is not one-to-one but onto. Note that d = 1 and Hd = 1. We consider the two-

tone sinusoidal command r(k) = sin(Ω1k)+0.5 sin(Ω2k), where Ω1 = π/4 rad/sample,

and Ω2 = π/2 rad/sample. As shown in Figure 4.16(a), since N (u) is nondecreasing

for all u ∈ R, we choose Nsat(uc) = satp,q(uc), where p = −a, q = a, and let Nb = usat,

Ns = ub, and Nr = us on R. Figure 4.16(a.iii) shows that the composite nonlinearity

N ◦ Nr ◦ Ns ◦ Nb is nondecreasing on R. We set nc = 10, P0 = 0.1I2nc , η0 = 0.2,

and H̃ = H1, and we vary the saturation level a for the NMP plant (4.33). Figure

4.16(b.i) shows the time history of z with a = 10, where the transient behavior is

poor. Figure 4.16(b.ii) shows the time history of z with a = 2, where the transient

performance is improved and z reaches steady state in about 300 time steps. Finally,

we further reduce the saturation level. Figure 4.16(b.iii) shows the time history of z

with a = 1; in this case, RCAC cannot follow the command due to fact that a = 1 is

not large enough to provide the control uc needed to drive z to a small value. Figure
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4.16(c) shows the time history of u for the case a = 2, and (d) shows the frequency

response of Gc,1200(z) with a = 2, which indicates that Gc,1200(z) has high gain at the

command frequencies Ω1 and Ω2. �

Example 4.5.4. (Minimum-phase, unstable plant, nondecreasing N ). We con-

sider the discretized unstable double integrator plant over sample period h = 1/
√
2

G(z) =
h2(z+ 1)

2(z− 1)2
(4.36)

with the piecewise-constant input nonlinearity

N (u) =
1

2
[sign(u− 0.2) + sign(u+ 0.2)], (4.37)

which can assume only the values −1, 0, and 1. Note that d = 1 and Hd = 1. We

let the command r(k) be zero, and consider stabilization using RCAC with the input

relay nonlinearity given by (4.37). As shown in Figure 4.17(a), the relay nonlinearity

is nondecreasing for all u ∈ R, and we thus choose Nsat(uc) = satp,q(uc), where

p = −3, q = 3. We let Nb = usat, Ns = ub, and Nr = us. We choose nc = 2,

P0 = I2nc , η0 = 0, and H̃ = H1. For k ≥ 1000, the command is the step r = −200 as

shown in Figure 4.17(b). Figure 4.17(c) shows the time history of z with the initial

condition x0 =

[
−5.2 −1.1

]T
and (d) shows the time history of u. �

Example 4.5.5. (Minimum-phase, asymptotically stable plant, non-monotonic

N ). Consider the asymptotically stable, minimum-phase plant

G(z) =
(z− 0.5)(z− 0.9)

(z− 0.7)(z− 0.5− ȷ0.5)(z− 0.5 + ȷ0.5)
, (4.38)
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with the non-monotonic input nonlinearity

N (u) =


−0.5−(u+2) − 3, if u < −2,

sign(u)u2, if − 2 ≤ u ≤ 2,

0.5u−2 + 3, if u > 2.

(4.39)

Note that d = 1 and Hd = 1. We consider the sinusoidal command r(k) = sin(Ω1k),

where Ω1 = π/5 rad/sample. Since the linear plant is minimum phase, we choose

Nsat(uc) = satp,q(uc), where p = −5 and q = 5 in (4.20). As shown in Figure

4.21(a), N is non-monotonic, we let Nr(us) = −us − 7 for us ∈ [−5,−2], Nr(us) =

−us + 7 for us ∈ [2, 5], and Nr(us) = us otherwise, and choose Nsub = ub so that the

composite nonlinearity N ◦Nr ◦Ns is piecewise nondecreasing on [−5, 5] as shown in

Figure 4.21(a.ii). Knowledge of only the monotonicity of N is used to choose Nr. To

constructNb, note that the piecewise nondecreasing composite nonlinearityN◦Nr◦Ns

satisfies R[−5,−2](N ◦ Nr ◦ Ns) ∪R[2,5](N ◦ Nr ◦ Ns) ⊂ R[−5,5](N ◦ Nr ◦ Ns), which is

not partially overlapping. Therefore, no additional information about N ◦Nr ◦ Ns is

needed. We let Nb(usat) = −2 for usat ∈ [−5,−2], Nb(usat) = 2 for usat ∈ [2, 5] and

Nb(usat) = usat otherwise. Figure 4.21(a.iii) shows that the composite nonlinearity

N ◦Nr ◦Ns ◦Nb is nondecreasing on [−5, 5]. We choose nc = 10, P0 = I2nc , η0 = 0.01,

and H̃ = H1. Figure 4.21(b) shows the resulting time history of z, while Figure

4.21(c) shows the frequency response of Gc,1200(z) with a = 2. Note that Gc,1200(z)

has high gain at the command frequency Ω1 and the harmonic 3Ω1. �
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4.6 Adaptive Control of Hammerstein Systems with Even

Input Nonlinearities

We now present numerical examples to illustrate the response of RCAC for Ham-

merstein systems with even input nonlinearities. Consider the nonlinearity N (u) =

un, where n is even, with the input signal u(k) = cos(Ωk). Then the response

y(k) = N (u(k)) is given by

y(k) = cosn(Ωk) =
1

2n

(
n

n/2

)
+

1

2n−1

n/2−1∑
r=0

(
n

r

)
cos((n− 2r)Ωk). (4.40)

Therefore, if N is an even polynomial, then y(k) contains harmonics at only even

multiples of Ω. In particular, y(k) lacks spectral content at the command frequency.

If N is an even analytic function, then this observation applies to truncations of its

Taylor expansion.

To achieve command following in this case, we propose two approaches. First, we

inject a pseudo-command into the controller, where the frequency of the pseudo-

command is equal to half of the frequency of the command as shown in Figure

4.19. Therefore, the plant intermediate signal v contains a harmonic at the com-

mand frequency Ω if N is even. Note that the pseudo-command is not necessarily

phase-matched with the command. Alternatively, we use auxiliary nonlinearities to

construct a composite input nonlinearities that is not even.
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4.6.1 Adaptive Control of Hammerstein Systems with Even Input Non-

linearities Using Pseudo-commands

Example 4.6.1.(Minimum-phase, stable plant, even N ). We consider the asymp-

totically stable, nonminimum-phase plant (4.38) with the quadratic input nonlinearity

N (u) = u2 − 2, (4.41)

which is neither one-to-one nor onto and satisfies N (0) = −2, see Figure 4.20(b).

Note that d = 1 and Hd = 1. We consider the sinusoidal command r(k) = sin(Ω1k),

where Ω1 = π/5 rad/sample. We let nc = 10, P0 = I2nc , η0 = 0.01, H̃ = H1, and do

not use a pseudo-command. Figure 4.20(a) shows the resulting time history of z. In

this case, the adaptive controller fails to follow the command in the presence of the

input nonlinearity. Figure 4.20(c) shows the frequency response of Gc,5000(z), which

has high gain at 2Ω1, but not at the command frequency Ω1. �

Example 4.6.2. (Minimum-phase, stable plant, even N , and pseudo-command).

As in Example 4.6.1, we consider the asymptotically stable, nonminimum-phase

plant (4.38) with the quadratic input nonlinearity (4.41) and the sinusoidal com-

mand r(k) = sin(Ω1k + ϕ), where Ω1 = π/5 rad/sample and ϕ = π/6 rad. The

pseudo-command frequency is Ωp = Ω1/2 = π/10 rad/sample, and we let nc = 10,

P0 = 0.01I2nc , η0 = 0.01, and H̃ = H1. The Hammerstein system runs open-loop for

100 time steps, and RCAC is turned on at k = 100. Figure 4.21(a) shows the time

history of z. Figure 4.21(b) shows the frequency response of Gc,3000(z), which has

high gain at the command frequency Ω1. �
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4.6.2 Adaptive Control of Hammerstein Systems with Even Input Non-

linearities Using Auxiliary Nonlinearities

We now present numerical examples for RCAC controller with auxiliary non-

linearities under the condition that the input nonlinearity is even. The auxiliary

nonlinearities are used such that the input nonlinearity N ◦ Nr ◦ Ns ◦ Nb is globally

nondecreasing and thus not even.

Example 4.6.3.We consider the asymptotically stable, nonminimum-phase plant

G(z) =
z− 1.2

z2 + 0.3z− 0.1
, (4.42)

with the quadratic input nonlinearity (4.41), which is neither one-to-one nor onto and

satisfies N (0) = −2. Note that d = 1 and Hd = 1. As shown in Figure 4.22(a.i), since

N (u) is not monotonic and G is nonminimum-phase, we choose Nsat(uc) = satp,q(uc),

where p = −4 and q = 4 in (4.20), let Nr(ub) = −ub − 4 for ub ∈ [−4, 0] and

Nr(ub) = ub otherwise, and select Ns(ub) = ub so that the composite nonlinearity

N ◦ Nr ◦ Ns is piecewise nondecreasing in Figure 4.22(a.ii). Knowledge of only the

monotonicity of N is used to choose Nr. To construct Nb, note that the piecewise

nondecreasing composite nonlinearity N ◦ Nr ◦ Ns satisfies R[−4,0)(N ◦ Nr ◦ Ns) ⊂

R[0,4](N ◦ Nr ◦ Ns), which is not partially overlapping. Therefore, no additional

information about N ◦ Nr ◦ Ns is needed. We let Nb(usat) = 0 for usat ∈ [−4, 0) and

Nb(usat) = usat otherwise. Figure 4.22(a.iii) shows that the composite nonlinearity

N ◦Nr ◦ Ns ◦ Nb is nondecreasing.

We consider the single-tone sinusoidal command r(k) = sinΩ1k, where Ω1 = π/5

rad/sample, and the disturbance w(k) = 0.5 sin(π
2
k). We let nc = 10, P0 = 0.01I2nc ,

η0 = 0.1, and H̃ = H1. Figure 4.22(b) shows the time history of z with the input

nonlinearity and disturbance present and RCAC is able to follow the command. �
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Example 4.6.4. We consider the asymptotically stable, minimum-phase plant

(4.30) with the non-monotonic input nonlinearity

N (u) = cos(2u), (4.43)

which is neither one-to-one nor onto and satisfiesN (0) = 1. Note that d = 1 andHd =

1. As shown in Figure 4.23(b), N (u) is increasing for all u ∈
∪

n∈Z

(
(n − 1

2
)π, nπ

)
,

and decreasing for all u ∈
∪

n∈Z

(
nπ, (n+ 1

2
)π
)
. We thus choose Nsat(uc) = satp,q(uc),

where p = −106 and q = 106 in (4.20), let Nr(us) = us in the intervals where N is

increasing, andNr(us) = −us+(2n+1/2)π in the intervals whereN is decreasing, and

select Ns(ub) = ub. The composite nonlinearity N ◦Nr◦Ns is piecewise nondecreasing

in Figure 4.23(e). Knowledge of only the monotonicity intervals ofN is used to choose

Nr. To construct Nb, note that the piecewise nondecreasing composite nonlinearity

N ◦ Nr ◦ Ns satisfies RIi(N ◦ Nr ◦ Ns) ⊂ RIj(N ◦ Nr ◦ Ns) for all i ̸= j. Therefore,

no additional information of N ◦Nr ◦ Ns is needed. We let Nb(usat) = 0 for usat < 0,

Nb(usat) = π/2 for usat > π/2 and Nb(usat) = usat otherwise. Figure 4.23(f) shows

that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is nondecreasing.

We consider the single-tone sinusoidal command r(k) = sinΩ1k, where Ω1 = π/5

rad/sample. We let nc = 10, P0 = 0.1I2nc , η0 = 0, and H̃ = H1. Figure 4.23(a) shows

the time history of the performance z with the input nonlinearity present and z

approaches zero in about 500 time steps. Figure 4.23(b) shows the input nonlinearity

N , (c) and (d) show the auxiliary nonlinearity Nr and Nb. �

4.7 Hammerstein Systems with Arbitrary Input Nonlineari-

ties

We now present numerical examples to illustrate the response of RCAC with

auxiliary nonlinearities for the case where the input nonlinearities are neither odd
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nor even.

Example 4.7.1.We consider the asymptotically stable, minimum-phase plant

G(z) =
1

z− 0.5
, (4.44)

with the input nonlinearity

N (u) =


u3, if u < −1,

−u− 2, if − 1 ≤ u ≤ 1,

3u2 − 6, if u > 1.

(4.45)

The command is r(k) = sin(0.2πk). Note that d = 1 and Hd = 1. As shown in

Figure 4.24 (a.i), the input nonlinearity N is one-to-one and onto and has the offset

N (0) = −2. Since N is non-monotonic and has partially overlapping intervals, and G

is asymptotically stable, we choose Nsat(uc) = satp,q(uc), where p = −106 and q = 106

in (4.20), let Nr(ub) = −us for us ∈ [−1, 1] and Nr(us) = us otherwise, and select

Ns(ub) = ub so that the composite nonlinearity N ◦Nr◦Ns is piecewise nondecreasing

in Figure 4.24 (a.ii). Knowledge of only the monotonicity of N is used to choose Nr.

To construct Nb, note that piecewise nondecreasing input nonlinearity N ◦Nr◦Ns has

partially overlapping intervals. Therefore, we assume that (N ◦ Nr ◦ Ns) (1.29) = −1

is known. We thus choose Nb(usat) = 1 for usat ∈ [−1, 1.29] and Nb(usat) = usat

otherwise. Figure 4.24(a.iii) shows that the composite nonlinearity N ◦Nr ◦ Ns ◦ Nb

is nondecreasing. We let nc = 10, P0 = 0.1I2nc , η0 = 0.1, and H̃ = H1. Figure 4.24(b)

shows the resulting time history of z, while Figure 4.24(c) shows the time history of

u. Finally, Figure 4.24(d) shows the frequency response of Gc,2000(z), which indicates

that Gc,2000(z) has high gain at the command frequency 0.2π rad/sample. �
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Example 4.7.2.We consider the asymptotically stable, minimum-phase plant

G(z) =
z − 0.3

(z − 0.6)(z − 0.8)
, (4.46)

with the input nonlinearity (4.22). The command is r(k) = sin(0.2πk). Note that

d = 1 and Hd = 1. As shown in Figure 4.25(a), the input nonlinearity N is neither

one-to-one nor onto. Following the same procedures in Example 4.4.10, We thus

choose Nb, Ns, and Nr as in (4.23), (4.24), and (4.25). Figure 4.25(d) shows that

the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is nondecreasing. We let nc = 10,

P0 = 0.01I2nc , η0 = 0.01, and H̃ = H1. Figure 4.25(e) shows the time history of the

performance z with the input nonlinearity present and z approaches zero in about

1000 time steps and (f) shows the time history of u. Figure 4.25(g) shows the input

nonlinearity N and (h) shows the time history of θ. �

4.8 Conclusions

Retrospective cost adaptive control (RCAC) was applied to a command-following

problem for Hammerstein systems. The input nonlinearities could be odd, even,

or arbitrary, as well as monotonic or non-monotonic. RCAC was used with lim-

ited modeling information. In particular, RCAC uses knowledge of the first nonzero

Markov parameter of the linear dynamics. To handle the effect of the non-monotonic

nonlinearity, RCAC was augmented by auxiliary nonlinearities chosen based on the

properties of the input nonlinearity. The auxiliary nonlinearities combine with the

input nonlinearity to form a composite nonlinearity that is globally nondecreasing.

Simulation results show that RCAC is able to follow the commands for the Hammer-

stein systems with an unknown disturbance when the composite input nonlinearity

is globally nondecreasing.
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Figure 4.14: Example 4.5.1. (a.i) shows the nonlinear input nonlinearity N (u) =
−u3 and the auxiliary nonlinearities Nb, Ns, and Nr. (a.ii) shows the
nondecreasing input nonlinearity N ◦ Nr ◦ Ns. (a.iii) shows that the
composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is nondecreasing. (b) shows
the closed-loop response of the asymptotically stable minimum-phase
plant G given by (4.30) with the sinusoidal command r(k) = 5 sin(Ω1k),
where Ω1 = π/5 rad/sample. (b.iii) shows the input nonlinearity N
for all u ∈ R, and (b.iv) shows the time history of u. Finally, Figure
4.14(b.v) shows the time history of θ and (b.vi) shows the frequency
response of Gc,2000(z), which indicates that Gc,2000(z) has high gain at
the command frequency Ω1 and the harmonic 3Ω1.
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Figure 4.15: Example 4.5.2. (a) shows the saturation input nonlinearity N given by
(4.34). (b) shows the closed-loop response of the asymptotically stable
NMP plant G given by (4.33) with the two-tone sinusoidal command
r(k) = 0.5 sin(Ω1k) + 0.5 sin(Ω2k), Ω1 = π/5 rad/sample, and Ω2 =
π/2 rad/sample. (c) shows the frequency response of Gc,1000(z), which
indicates that Gc,1000(z) has high gain at the command frequencies Ω1

and Ω2. 141
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Figure 4.16: Example 4.5.3. (a) shows the deadzone input nonlinearity N (u) given
by (4.35). (b) shows the closed-loop response of the asymptotically sta-
ble NMP plant G given by (4.33) with the two-tone sinusoidal com-
mand r(k) = sin(Ω1k) + 0.5 sin(Ω2k), where Ω1 = π/4 rad/sample and
Ω2 = π/10 rad/sample. Figure 4.16(b.i) shows the time history of the
performance z with a = 10, where the transient behavior is poor. Figure
4.16(b.ii) shows the time history of z with a = 2. Note that the tran-
sient performance is improved and z reaches steady state in about 300
time steps. Finally, Figure 4.16(b.iii) shows the time history of z with
a = 1; in this case, RCAC cannot follow the command due to the fact
that a = 1 is not large enough to provide the control uc needed to drive
z to a small value. (c) shows the time history of u for the case a = 2,
and (d) shows the frequency response of Gc,1200(z) with a = 2, which
indicates that Gc,1200(z) has high gain at the command frequencies Ω1

and Ω2.
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Figure 4.17: Example 4.5.4. Closed-loop response of the plant G given by (4.36)
with the initial condition x0 = [−5.2 − 1.1]T. The system runs open
loop for 100 time steps, and the adaptive controller is turned on at
k = 100 with the relay input nonlinearity given by (4.37) and x(100) =
[−415.2 −411.1]T. For k ≥ 1000, the command is the step r(k) = −200
as shown in (b). (c) shows the time history of the performance z, and
(d) shows the time history of u.
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Figure 4.18: Example 4.5.5. (a.i) shows the input nonlinearity (4.39) and the auxil-
iary nonlinearities Nb and Nr. (a.ii) shows the piecewise nondecreasing
input nonlinearity N ◦Nr. (a.iii) shows that the composite nonlinearity
N ◦ Nr ◦ Nb is nondecreasing. (b) shows the closed-loop response of
the stable minimum-phase plant G given by (4.38) with the sinusoidal
command r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample. (c) shows the
frequency response of Gc,1200(z), which indicates that Gc,1200(z) has high
gain at the command frequency Ω1 and the harmonic 3Ω1.
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Figure 4.19: Adaptive command-following problem for a Hammerstein plant with an
even input nonlinearity N . The command signal r has frequency Ω and
phase angle ϕ, while the pseudo-command is a sinusoid with frequency
Ω/2. The pseudo-command provides the harmonic content needed by
RCAC due to the even nonlinearity, which produces harmonics at only
DC and 2Ω.
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Figure 4.20: Example 4.6.1. (a) shows the resulting time history of the command-
following performance z. In this case, the adaptive controller fails to
follow the command in the presence of the quadratic input nonlinearity
(4.41). Figure 4.20 (c) shows the frequency response of Gc,5000(z), which
indicates that Gc,5000(z) has high gain at 2Ω1 = 2π/5 rad/sample, but
not at the command frequency Ω1 = π/5 rad/sample.
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Figure 4.21: Example 4.6.2. Adaptive command-following problem for a Hammer-
stein plant with an even input nonlinearity (4.41). The command signal
r(k) = sin(Ω1k + ϕ), where Ω1 = π/5 rad/sample and ϕ = π/6 rad.
The Hammerstein system runs open-loop for 100 time steps, and RCAC
with the pseudo-command rp(k) = sin(Ω1

2
k) is turned on at k = 100.

Figure 4.6.2(a) shows the time history of z. Figure 4.6.2 (b) shows the
frequency response of Gc,3000(z), which indicates that Gc,3000(z) has high
gain at the command frequency Ω1 = π/5 rad/sample.
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Figure 4.22: Example 4.6.3. (a.i) shows the quadratic input nonlinearity N (u) =
u2 − 2 and the auxiliary nonlinearities Nb and Nr. (a.ii) shows the
piecewise nondecreasing input nonlinearity R[−4,0)(N ◦ Nr ◦ Ns) ⊂
R[0,4](N ◦Nr ◦Ns), which is not partially overlapping. (a.iii) shows that
the composite nonlinearity N ◦Nr ◦Ns ◦Nb is nondecreasing. (b) shows
the closed-loop response of the stable minimum-phase plant G given by
(4.30) with the sinusoidal command r(k) = sin(0.2πk) and disturbance
w(k) = 0.5 sin(π

2
k).
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Figure 4.23: Example 4.6.4. (a) shows that RCAC follows the sinusoidal command
for the Hammerstein system. (b) shows the input nonlinearity N , (c)
and (d) show the auxiliary nonlinearities Nr and Nb, (e) shows that the
composite nonlinearity N ◦Nr ◦Ns is piecewise increasing, and (f) shows
that the composite nonlinearity N ◦ Nr ◦ Ns ◦ Nb is nondecreasing.
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Figure 4.24: Example 4.7.1. (a.i) shows the input nonlinearity N (u) given by (4.45)
and the auxiliary nonlinearities Nb and Nr. (a.ii) shows the piecewise
nondecreasing input nonlinearity N ◦Nr ◦Ns with partially overlapping
intervals. (a.iii) shows that the composite nonlinearity N ◦Nr ◦Ns ◦Nb

is nondecreasing. (b) shows the closed-loop response to the sinusoidal
command r(k) = sin(0.2πk) of the stable minimum-phase plant G given
by (4.44). (b) shows the resulting time history of z, and (c) shows the
time history of u. Finally, (d) shows the frequency response of Gc,2000(z),
which indicates that Gc,2000(z) has high gain at the command frequency
Ω = π/5 rad/sample.
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Figure 4.25: Example 4.7.2. (a) shows the non-monotonic input nonlinearity N (u)
given by (4.22), and (b) shows the auxiliary nonlinearities Nb and Nr.
(c) shows that the composite nonlinearity N ◦ Nr ◦ Ns is piece-wise
nondecreasing. (d) shows that the composite nonlinearityN◦Nr◦Ns◦Nb

is globally nondecreasing. (e) shows the closed-loop response to the
sinusoidal command r(k) = sin(0.2πk) of the stable minimum-phase
plant G given by (4.46). (f) shows the resulting time history of u, and
(h) shows the time history of θ.
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CHAPTER V

Retrospective Cost Adaptive NARMAX Control

with Ersatz Nonlinearities

In this chapter, we generalize retrospective cost adaptive NARMAX control (RCANC)

to a command-following problem for uncertain Hammerstein systems. In particular,

RCANC with ersatz nonlinearities is applied to linear systems cascaded with input

nonlinearities. We assume that one Markov parameter of the linear plant is known.

RCANC also uses knowledge of the monotonicity properties of the input nonlinearity

to select the ersatz nonlinearity. The goal is to determine whether RCANC can im-

prove the command-following performance compared to the linear RCAC controller.

The results of this chapter are published in [86, 87].

5.1 Introduction

While nonlinear control techniques have been extensively developed, the vast ma-

jority of modern methods assume the availability of full-state measurements. This is

largely due to the fact that optimal control methods produce control laws that depend

on full-state feedback as well as the fact that output-feedback control laws consist-

ing of nonlinear observers combined with full-state feedback control laws may not be

stabilizing. The lack of a widely applicable separation principle within a nonlinear
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setting thus remains an impediment to nonlinear output-feedback control [88].

In the present chapter we focus on Hammerstein systems, which comprise a class

of nonlinear systems consisting of an input nonlinearity cascaded with linear dynam-

ics. These systems encompass plants that involve linear dynamics with, for example,

saturation [70], deadzone, or on-off input nonlinearities. Identification of Hammer-

stein systems is widely studied [89, 90, 85], while control of Hammerstein systems

includes the entire literature on control of linear systems with saturation [84] and

actuator nonlinearities [91, 92].

For command-following problems, performance is degraded by the input nonlin-

earity in various ways. If the range of the input nonlinearity is insufficient for the

plant output to follow the command, then the performance error is unavoidable; this

is the case with saturation, which can also cause instability due to windup. On the

other hand, if the range of the input nonlinearity is sufficiently large for the output

to follow the command, performance degradation may result from the distortion in-

troduced by the shape of the input nonlinearity. If the input nonlinearity is known,

then this effect can be mitigated or removed by inversion; if the input nonlinearity is

uncertain, or has a critical point, then adaptive inversion may be feasible [34].

In the present chapter we take an unconventional approach to nonlinear output

feedback control of Hammerstein systems by using adaptive control to directly update

the gains of a NARMAX controller. A NARMAX model is a discrete-time ARMAX

system in which the past output and inputs appear as arguments of basis functions.

These functions are chosen by the user, and the controller coefficients appear lin-

early. The constraint that the controller coefficients appear linearly implies that the

basis function functions are fixed a priori and thus cannot be modified as part of

the adaptation process. NARMAX models have been applied to nonlinear system

identification [93, 94].

For adaptive NARMAX control, we apply retrospective cost adaptive control
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(RCAC). RCAC has been developed in [95, 23, 25, 28, 30] and applied to Hammer-

stein systems in [58, 59] and NARMAX control in [86]. The present chapterextends

and improves the results of [58, 59, 86] by modifying the adaptation mechanism to

include a nonlinear adaptation mechanism. This modification ensures that the retro-

spective optimization accounts for the presence of the input nonlinearity. To account

for the case in which the input nonlinearity is uncertain, we investigate the perfor-

mance of RCNAC control in the case of uncertainty. In particular, we determine the

minimal modeling information about the input nonlinearity that RCANC requires;

once this information is known, an approximate input nonlinearity, called the ersatz

nonlinearity, can be used by RCANC for adaptation.

5.2 Hammerstein Command-Following Problem

Consider the MIMO discrete-time Hammerstein system

x(k + 1) = Ax(k) +BN (u(k)) +D1w(k), (5.1)

y(k) = Cx(k) +D2w(k), (5.2)

z(k) = E1x(k) + E0w(k), (5.3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , w(k) ∈ Rlw , u(k) ∈ Rlu , N : Rlu → Rlu ,

and k ≥ 0. The goal is to develop an adaptive output feedback controller that

minimizes the command-following error z with minimal modeling information about

the dynamics, and input nonlinearity N . We assume that measurements of z(k) are

available for feedback; however, measurements of v(k) = N (u(k)) are not available.

A block diagram for (5.1)-(5.3) is shown in Figure 5.1.
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Figure 5.1: Adaptive command-following problem for a Hammerstein plant with in-
put nonlinearity N . We assume that measurements of z(k) are available
for feedback; however, measurements of v(k) = N (u(k)) and w(k) are not
available.

5.3 Retrospective-Cost Adaptive NARMAX Control

5.3.1 ARMAX Modeling

Consider the ARMAX representation of (5.1)–(5.3) given by

z(k) =
n∑

i=1

−αiz(k − i) +
n∑

i=1

βiN (u(k − i)) +
n∑

i=0

γiw(k − i), (5.4)

where α1, . . . , αn ∈ R, β1, . . . , βn ∈ Rlz×lu , and γ0, . . . , γn ∈ Rlz×lw . Next, for each

positive integer i, we define the ith Markov parameter of Gzv as

Hi
△
= EiA

i−1B ∈ Rlz×lu . (5.5)

Note that if i < d, where d is the relative degree, then

β1 = · · · = βd−1 = H1 = · · · = Hd−1 = 0,

and Hd = βd.
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Next, define the extended performance Z(k) ∈ Rplz and U(k) ∈ Rqclu by

Z(k)
△
=


z(k)

...

z(k − p+ 1)

 , U(k)
△
=


u(k − 1)

...

u(k − qc)

 , (5.6)

where the data window size p is a positive integer, and qc
△
= n+p−1. Therefore (5.6)

can be expressed as

Z(k) = Wzwϕzw(k) +BfN (U(k)), (5.7)

where

Wzw
△
=

 −α1Ilz · · · −αnIlz 0lz×lz · · · 0lz×lz γ0 · · · γn 0lz×lw · · · 0lz×lw

0lz×lz

. . .
. . .

. . .
... 0lz×lw

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lz

...
. . .

. . .
. . . 0lz×lw

0lz×lz · · · 0lz×lz −α1Ilz · · · −αnIlz 0lz×lw · · · 0lz×lw γ0 · · · γn


∈ Rplz×[qclz+(qc+1)lw], (5.8)

Bf
△
=



β1 · · · βn 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu β1 · · · βn


∈ Rplz×qclu , (5.9)
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and

ϕzw(k)
△
=



z(k − 1)

...

z(k − p− n+ 1)

w(k)

...

w(k − p− n+ 1)


∈ Rqclz+(qc+1)lw . (5.10)

Note that Wzw and Bf are of block-Toeplitz structure. Wzw includes modeling infor-

mation about the poles of the linear plant G and exogenous signals, that is, either

the command signals to be followed or the disturbance to be rejected. Bf includes

modeling information about the zeros of the linear plant G.

5.3.2 NARMAX Controller Construction

In this section, we assume a NARMAX structure for the adaptive controller, which

uses a nonlinear difference equation to model the relation between the input z and

output u of the controller. The nonlinear controller may include nonlinearities on the

input to the controller (NARMAX/I), the output of the controller (NARMAX/O), or

both (NARMAX/IO). The NARMAX controller structure is linear in the controller

parameters, and linear regression is used to update the controller coefficients.

The control u(k) is given by the strictly proper time-series controller of order nc

written as

u(k) =
s∑

j=1

nc∑
i=1

Mji(k)fj(u(k − i)) +
t∑

j=1

nc∑
i=1

Nji(k)gj(y(k − i)), (5.11)

where, for all j = 1, . . . , s, i = 1, . . . , nc, s ∈ Z+, Mji(k) ∈ Rlu×lu , and for all

j = 1, . . . , t, i = 1, . . . , nc, t ∈ Z+, Nji(k) ∈ Rlu×ly . The control (5.11) can be
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expressed as

u(k) = θ(k)ϕ(k − 1),

where

θ(k)
△
=

[
M11(k) · · · Msnc(k) N11(k) · · · Ntnc(k)

]
∈ Rlu×nc(slu+tly)

and

ϕ(k − 1)
△
=



f1(u(k − 1))

...

fs(u(k − nc))

g1(y(k − 1))

...

gt(y(k − nc))


∈ Rnc(slu+tly). (5.12)

To illustrate the NARMAX/O controller structure, let f1(u) = u, f2(u) = u2, and

f3(u) = u3. Then θ(k) and ϕ(k − 1) can be expressed as

θ(k)
△
= [M1(k) ··· Mnc (k) Mnc+1(k) ··· M2nc (k) M2nc+1(k) ··· M3nc (k) N1(k) ··· Nnc (k) ] ∈ Rlu×nc(3lu+ly)

and

ϕ(k − 1)
△
= [ u(k−1) ··· u(k−nc) u2(k−1) ··· u2(k−nc) u3(k−1) ··· u3(k−nc) y(k−1) ··· y(k−nc) ]T ∈ Rnc(3lu+ly).

To illustrate the NARMAX/I controller structure, let g1(y) = y and g2(y) = y2. Then
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θ(k) and ϕ(k − 1) can be expressed as

θ(k)
△
=

[
M1(k) · · · Mnc(k) N1(k) · · · Nnc(k) Nnc+1(k) · · · N2nc(k)

]
∈ Rlu×nc(lu+2ly)

and

ϕ(k − 1)
△
=

[
u(k − 1) · · · u(k − nc) y(k − 1) · · · y(k − nc) y2(k − 1) · · · y2(k − nc)

]T
∈ Rnc(lu+2ly).

5.3.3 Retrospective Performance

Define the retrospective performance Ẑ(k) ∈ Rplz by

Ẑ(k)
△
= Wzwϕzw(k) +BfN (U(k)) + B̄f [Ñ (Û(k))− Ñ (U(k))], (5.13)

where B̄f ∈ Rplz×pclu is the retrospective input matrix, Ñ : R → R is the ersatz

nonlinearity, Ñ (Û(k)) means componentwise evaluation, and Û(k) ∈ Rqclu is the

recomputed extended control vector, the components of Û(k) are the recomputed

control û(k − 1) . . . û(k − qc) ordered in the same way as the components in (5.6).

Subtracting (5.7) from (5.13) yields

Ẑ(k) = Z(k) + B̄f [Ñ (Û(k))− Ñ (U(k))]. (5.14)

Note that the retrospective performance Ẑ(k) does not depend on Wzw or the ex-

ogenous signal w. For the disturbance rejection problem, we do not need to assume

that the disturbance is known; for the command-following problem, the command w

can be unknown. Therefore, only limited model information is needed. The model

information matrix B̄f is discussed in Section 5.4, and the construction of ersatz

nonlinearity Ñ is discussed in Section 5.5.
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5.3.4 Retrospective Cost and Recursive Least Square (RLS) Update Law

5.3.4.1 Retrospective Cost

We define the retrospective cost function

J(Ñ (Û(k)), k)
△
= ẐT(k)R(k)Ẑ(k), (5.15)

where R(k) ∈ Rplz×plz is a positive-definite performance weighting. The goal is to

determine retrospectively optimized controls Û(k) that would have provided better

performance than the controls U(k) that were applied to the system. The retrospec-

tively optimized control values Û(k) are subsequently used to update the controller.

Next, to ensure that (5.15) has a global minimizer, we consider the regularized

cost

J̄(Ñ (Û(k)), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k)ÑT(Û(k))Ñ (Û(k)), (5.16)

where η(k) ≥ 0. Substituting (5.7) into (5.16) yields

J̄(Ñ (Û(k)), k) = ÑT(Û(k))AÑ (Û(k)) + B(k)Ñ (Û(k)) + C(k),

where

A(k)
△
= B̄T

f R(k)B̄f + η(k)Iqclu×qclu ,

B(k) △
= 2B̄T

f R(k)[Z(k)− B̄fÑ (U(k))],

C(k) △
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)B̄fÑ (U(k)) + ÑT(U(k))B̄T

f R(k)B̄fÑ (U(k)).

If either B̄f has full column rank or η(k) > 0, then A(k) is positive definite. In this
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case, J̄(Ñ (Û(k)), k) has the unique global minimizer

Ñ (Û(k)) = −1

2
A−1(k)B(k). (5.17)

If Ñ is not onto, then Û(k) in (5.17) may not have a solution. Hence, we take

Û(k) = argmin

∥∥∥∥Ñ (Û(k)) +
1

2
A−1(k)B(k)

∥∥∥∥
2

. (5.18)

An arbitrary choice is made if the argmin in (5.18) is not unique.

5.3.4.2 Cumulative Cost and RLS Update

Let ρ be a positive integer such that U(k) contains u(k− ρ) and define the cumu-

lative cost function

Jcum(θ, k)
△
=

k∑
i=ρ+1

λk−i∥ϕT(i− ρ− 1)θ(k)− û(i− ρ)∥2 + λk(θ(k)− θ0)
TP−1

0 (θ(k)− θ0),

(5.19)

where ∥ · ∥ is the Euclidean norm, λ ∈ (0, 1] is the forgetting factor, and P0 ∈

Rlunc(slu+tly)×lunc(slu+tly) is positive definite. Minimizing (5.19) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)ϕ(k − ρ− 1) · [ϕT(k − ρ)P (k − 1)ϕ(k − ρ− 1) + λ]−1

· [ϕT(k − ρ− 1)θ(k)− û(k − ρ)],

where β(k) is either zero or one. The error covariance is updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)− β(k)λ−1P (k − 1)ϕ(k − ρ− 1)

· [ϕT(k − ρ− 1)P (k − 1)ϕ(k − ρ) + λ]−1 · ϕT(k − ρ− 1)P (k − 1).
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Note that when β(k) = 0, θ(k) = θ(k − 1) and P (k) = P (k − 1). Therefore, setting

β(k) = 0 switches off the controller adaptation, and thus freezes the control gains.

When β(k) = 1, the controller is allowed to adapt.

5.4 Model Information B̄f

For SISO, minimum-phase, asymptotically stable linear plants, using the first

nonzero Markov parameter in B̄f yields asymptotic convergence of z to zero [25, 30].

In this case, let m = d and H̄d = Hd. Furthermore, if the open-loop linear plant

is nonminimum-phase and the absolute values of all nonminimum-phase zeros are

greater than the plant’s spectral radius, then a sufficient number of Markov parame-

ters can be used to approximate the nonminimum-phase zeros [25]. Alternatively, a

phase-matching condition with η > 0 is given in [44, 76] to construct B̄f . For MIMO

Lyapunov-stable linear plants, an extension of the phase-matching-based method is

given in [77]. For unstable, nonminimum-phase plants, knowledge of the locations of

the nonminimum-phase zeros is needed to construct B̄f . For details, see [25, 78].

In this chapter, we assume that the Hammerstein system is Lyapunov stable, and

we choose B̄f =

[
01×d−1 Hd

]
, that is, the first nonzero Markov parameter of G.

5.5 Construction of Ersatz Nonlinearity Ñ

In this section, we investigate the performance of various constructions for the

ersatz nonlinearity Ñ . The objective is to determine the effect of model error in

identifying N . We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
, (5.20)
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with the input nonlinearity

N (u) = (u− 2)2 − 3. (5.21)

We consider the sinusoidal command r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample.

Let the controller structure be NARMAX/IO with s = t = 6 in (5.11). In particular,

we choose f1(u) = u, f2(u) = exp(−(u + 0.2)2), f3(u) = exp(−(u − 0.2)2), f4(u) =

exp(−(u + 0.4)2), f5(u) = exp(−(u − 0.4)2), f6(u) = exp(−u2), and g1(y) = y,

g2(y) = exp(−(y+0.2)2), g3(y) = exp(−(y−0.2)2), g4(y) = exp(−(y+0.4)2), g5(y) =

exp(−(y − 0.4)2), g6(y) = exp(−y2) for the NARMAX/IO model. Furthermore, we

let nc = 10, P0 = 10I12nc , η0 = 0, and B̄f = H1 = 1 as the required linear plant

information.

We consider various choices of the ersatz nonlinearity Ñ in order to elicit the

required minimum model information of the input nonlinearity N . First, we consider

the ersatz nonlinearity Ñ (u) = (u− 2)2. The closed-loop response is shown in Figure

5.2. Note that the steady-state average performance zss,avg = 5.7154 × 10−4. Note

that RCANC compensates for the unknown bias in N .

Next, we consider the ersatz nonlinearity Ñ (u) = u2, and note that the intervals

of monotonicity of Ñ and N are different. As shown in Figure 5.3, RCANC is not

able to follow the command.

Furthermore, consider the ersatz nonlinearity Ñ (u) = 5(u − 2)2. As shown in

Figure 5.4, the steady-state average performance zss,avg = 9.0578 × 10−4, and the

performance degradation is 58.48%.

Last, consider the ersatz nonlinearity Ñ (u) = |u − 2|, which matches the mono-

tonicity but not the shape of N . The closed-loop response is shown in Figure 5.5.

Note that the steady-state average performance zss,avg = 0.0241, which represents two

orders of magnitude degradation.
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Figure 5.2: Response of the reference signal r(k) = sin(π/5k) with input nonlinearity
N (u) = (u − 2)2 − 3. We consider Ñ (u) = (u − 2)2 and the steady-
state average performance zss,avg = 5.7154 × 10−4. Note that RCANC
compensates for the unknown bias in N .

These examples suggest that the monotonicity intervals of N are needed to con-

struct Ñ , and the more accurately Ñ approximates N , the better the performance

is.

5.6 Effect of Basis Functions

We now present numerical examples to illustrate the response of the RCANC with

different basis functions. We assume that first nonzero Markov parameter of G and

the monotonicity of N are known. For convenience, each example is constructed such

that the first nonzero Markov parameter Hd = 1, where d is the relative degree of
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Figure 5.3: Response of the reference signal r(k) = sin(π/5k) with input nonlinearity
N (u) = (u− 2)2 − 3. We consider Ñ (u) = u2 and note that the intervals
of monotonicity of Ñ and N are different. As shown in Fig 5.3, RCANC
is not able to follow the command.

G. All examples assume y = z, with ϕ(k) given by (5.12), where f and g are chosen

based on the choice of NARMAX structure. In all cases, we initialize the adaptive

controller to be zero, that is, θ(0) = 0. We let λ = 1 for all examples.

We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)

z2
, (5.22)

with the input nonlinearity

N (u) = (u− 2)2 − 3. (5.23)
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Figure 5.4: Response of the reference signal r(k) = sin(π/5k) with input nonlinearity
N (u) = (u− 2)2 − 3. We consider Ñ (u) = 5(u− 2)2 and the steady-state
average performance zss,avg = 9.0578 × 10−4. Note that the performance
degradation is 58.48%.

We consider the sinusoidal command r(k) = sin(Ω1k), where Ω1 = π/5 rad/sample.

We choose the ersatz nonlinearity Ñ (u) = (u − 2)2. Furthermore, we let nc = 10,

P0 = I(s+t)nc , η0 = 0.011, and select B̄f = H1 = 1 as the required linear plant

information.

First, we consider a linear controller structure, that is, f(u) = u and f(y) = y.

The closed-loop response is shown in Figure 5.6. In this case, the steady-state average

performance zss,avg = 0.0110.

Next, we consider NARMAX controllers with four types of nonlinear functions,

namely Fourier basis function, radial basis function [96], logistic basis function [96],

and triangular basis function. In all simulations, we compute the closed-loop steady-
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Figure 5.5: Response of the reference signal r(k) = sin(π/5k) with input nonlinearity
N (u) = (u − 2)2 − 3. Using Ñ (u) = |u − 2|, the steady-state average
performance zss,avg = 0.0241 and the performance degradation is of two
orders of magnitude. In this case, the ersatz nonlinearity Ñ matches the
monotonicity but not the shape of N .

state average performance |zss,avg| as we increase the number of basis functions using

NARMAX/O, NARMAX/I, and NARMAX/IO structures.

5.6.1 Fourier basis function

Consider sine and cosine functions of increasing frequency

fi(u) = u, sin(
1

4
u), cos(

1

4
u), sin(

1

2
u), cos(

1

2
u), sin u, cosu, . . . ,

gj(y) = y, sin(
1

4
y), cos(

1

4
y), sin(

1

2
y), cos(

1

2
y), sin y, cos y, . . . ,
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Figure 5.6: Response of reference signal r(k) = sin(π/5k) with input nonlinearity
N (u) = (u−2)2−3. We consider Ñ (u) = (u−2)2 with a linear controller
structure and the steady-state average performance |zss,avg| = 0.0110.

For NARMAX/O controller structure, we let g(y) = y, that is, t = 1 in (5.11),

and increase the number of basis functions in f(u). Figure 5.7 shows the closed-

loop steady-state average performance |zss,avg| decreases as we increase the number

of basis functions in f(u) using the NARMAX/O structure. Following the same

procedure, the closed-loop steady-state average performance |zss,avg| for NARMAX/I

and NARMAX/IO structures are shown in Figure 5.7. Note that overall NARMAX/O

structure provides the best steady-state average performance |zss,avg|.
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Figure 5.7: Closed-loop steady-state average performance |zss,avg| with Fourier ba-
sis function for NARMAX/O, NARMAX/I and NARMAX/IO structure.
|zss,avg| decreases as we increase the number of basis functions for all three
cases. Note that NARMAX/O structure provides the best steady-state
average performance |zss,avg|.

5.6.2 Radial Basis Function

Consider the radial basis functions

fi(u) = u, e−u2

, e−(u−0.2)2 , e−(u+0.2)2 , e−(u−0.4)2 , e−(u+0.4)2 , . . . ,

gj(y) = y, e−y2 , e−(y−0.2)2 , e−(y+0.2)2 , e−(y−0.4)2 , e−(y+0.4)2 , . . . ,

Following the same procedures, the closed-loop steady-state average performance

|zss,avg| for NARMAX/O, NARMAX/I, and NARMAX/IO structures are shown in

Figure 5.8. Note that overall NARMAXI/O structure provides the best steady-state
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average performance |zss,avg|.
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Figure 5.8: Closed-loop steady-state average performance |zss,avg| with RBF for NAR-
MAX/O, NARMAX/I and NARMAX/IO structure. |zss,avg| decreases as
we increase the number of basis functions for all the cases. Note that
overall NARMAX/IO structure provides the best steady-state average
performance |zss,avg|.

5.6.3 Logistic Basis Function

Consider the logistic basis functions

fi(u) = u,
1

1 + e−u
,

1

1 + e−(u−0.2)
,

1

1 + e−(u+0.2)
,

1

1 + e−(u−0.4)
,

1

1 + e−(u+0.4)
, . . . ,

gj(y) = y,
1

1 + e−y
,

1

1 + e−(y−0.2)
,

1

1 + e−(y+0.2)
,

1

1 + e−(y−0.4)
,

1

1 + e−(y+0.4)
, . . . ,

169



Following the same procedures, the closed-loop steady-state average performance

|zss,avg| for NARMAX/O, NARMAX/I, and NARMAX/IO structures are shown in

Figure 5.9. Note that overall NARMAX/O structure provides the best steady-state

average performance |zss,avg|.
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Figure 5.9: Closed-loop steady-state average performance |zss,avg| with logistic ba-
sis function for NARMAX/O, NARMAX/I and NARMAX/IO structure.
|zss,avg| decreases as we increase the number of basis functions for all three
cases. Note that NARMAX/O structure provides the best steady-state
average performance |zss,avg|.
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5.6.4 Triangular Basis Function

Consider the triangular basis functions

fi(u) = u, 1−max(1− |u|, 0), 1−max(1− |u− 0.2|, 0), 1−max(1− |u+ 0.2|, 0), . . . ,

gj(y) = y, 1−max(1− |y|, 0), 1−max(1− |y − 0.2|, 0), 1−max(1− |y + 0.2|, 0), . . . ,

Following the same procedures, the closed-loop steady-state average performance

|zss,avg| for NARMAX/O, NARMAX/I, and NARMAX/IO structures are shown in

Figure 5.10. Note that overall NARMAX/O structure provides the best steady-state

average performance |zss,avg|.

5.6.5 Numerical Example Summary

RCANC can improve the command-following performance for the Hammerstein

systems over the linear controller structure and the closed-loop steady-state av-

erage performance decreases as we increase the number of basis functions for all

three controller structures. Simulation also demonstrates that NARMAX/O and

MARMAX/IO provides better command-following performance compared with NAR-

MAX/I. However, for NARAMX/IO, the number of parameters in θ is much larger

than the number of parameters for NARMAX/O, which is more computational ex-

pansive. Therefore, the NARMAX/O controller structure is recommended for Ham-

merstein systems.

5.7 Conclusions

Retrospective cost adaptive NARMAX control (RCANC) was applied to com-

mand following for Hammerstein systems. RCANC was used with limited modeling

information. In particular, RCANC uses knowledge of the first nonzero Markov pa-

rameter of the linear system and the monotonicity intervals of the input nonlinearity
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Figure 5.10: Closed-loop steady-state average performance |zss,avg| with triangular ba-
sis function for NARMAX/O, NARMAX/I and NARMAX/IO structure.
|zss,avg| decreases as we increase the number of basis functions for all
the cases. Note that overall NARMAX/O structure provides the best
steady-state average performance |zss,avg|.

to construct the ersatz nonlinearity. To handle the effect of the input nonlinear-

ity, we numerically demonstrated that RCANC can improve the command-following

performance for the Hammerstein systems over the linear controller structure for com-

pensating performance distortion caused by the input nonlinearity. Future research

will focus on choosing the ersatz nonlinearity and basis functions for RCANC based

on limited knowledge of Hammerstein nonlinearities.
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CHAPTER VI

Concluding Remarks

This dissertation presented an extension in adaptive control for uncertain Ham-

merstein systems. Adaptive control is applicable to nonlinear systems that are expen-

sive and difficult to model. In addition, adaptive control compensates for the unantic-

ipated changes in the environment. Chapter II focus on applying adaptive control to

various applications, whereas Chapter III-V modify retrospective-cost-based adaptive

control to uncertain Hammerstein systems.

Chapter II presented nonlinear applications of linear retrospective cost adaptive

control (RCAC) presented in [24, 30]. Four examples of input nonlinearities are

considered. Specifically, we apply RCAC to command-following and disturbance-

rejection problems for input nonlinearities of deadzone, hysteresis, diesel engine model,

and uncertain electromagnetically controlled oscillator (ECO). Numerical examples

demonstrate that RCAC was able to drive the Hammerstein system to follow the

reference command in all those four examples.

Chapter III began the main topic of this dissertation. Adaptive control based

on constrained retrospective cost optimization was applied to command following for

Hammerstein systems with multivariable convex input saturation. We numerically

demonstrated that convex optimization applied to the retrospective cost can improve

the tracking performance when following squarewave and triangle-wave commands in
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the presence of saturation. We also applied this technique to a multi-rotor helicopter

command-following problem by formulating the multi-input constrained retrospec-

tive cost function as a second-order cone optimization (SOCP) problem. With this

approach, RCAC is shown to adapt to these constraints.

Chapter IV considered the uncertain Hammerstein systems, where the input

nonlinearities could be odd, even, or arbitrary, which may be monotonic or non-

monotonic. To handle the effect of the non-monotonic nonlinearity, RCAC was aug-

mented by auxiliary nonlinearities chosen based on the properties of the input non-

linearity. The auxiliary nonlinearities combine with the input nonlinearity to form a

composite nonlinearity that is globally nondecreasing. Simulation results show that

RCAC is able to follow the commands for the Hammerstein systems with an unknown

disturbance when the composite input nonlinearity is globally nondecreasing.

Chapter V demonstrated that RCANC can improve the command-following per-

formance for the Hammerstein systems over the linear controller structure for compen-

sating performance distortion caused by the input nonlinearity. Numerical examples

show that the closed-loop steady-state average performance decreases as we increase

the number of basis functions in the nonlinear controller structures.

6.1 Extensions and Future Work

The results in this dissertation may be extended to uncertain Wiener systems.

Future work includes understanding minimal model information for Wiener systems

to compensate for output nonlinearities.

Moreover, we can explore the ideas of adaptive control based on constrained ret-

rospective cost optimization in many applications. For example, the technique de-

veloped in Chapter III can be applied to the setpoint control of the uncertain elec-

tromagnetically controlled oscillator, where the control output current is constrained

to be nonnegative, and the maximum current is also limited. Furthermore, the colli-
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sions of the mass with the fixed electromagnet must be avoided. Further theoretical

work including a stability analysis of RCAC based on constrained retrospective cost

optimization under input saturation will be developed. In addition, the idea of con-

vex optimization can be explored further for RCAC. For instance, for NMP system,

constrained optimization for controller update can be formulated so as to prevent

unstable pole-zero cancelation during the adaptation.

Last but not the least, for retrospective cost adaptive NARMAX control, future

research will focus on the rule of choosing the ersatz nonlinearity and basis functions.

175



BIBLIOGRAPHY

176



BIBLIOGRAPHY

[1] P. Kokotovic, H. Khalil, and J. OReilly, Singular Perturbation Methods in Con-
trol: Analysis and Design. Academic Press, New York, 1986.

[2] H. P. Whitaker, J. Yamron, and A. Kezer, Design of Model-Reference Adaptive
Control Systems for Aircraft. Massachusetts Institute of Technology, Instru-
mentation Laboratory, 1958.

[3] P. Osburn, New Developments in the Design of Model Reference Adaptive Control
Systems. Institute of the Aerospace Sciences, 1961.

[4] R. E. Kalman, “Design of a self-optimising control system,” Trans. ASME,
vol. 80, pp. 468–478, 1958.

[5] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton university
press Princeton, 1961, vol. 4.

[6] Y. Z. Tsypkin and S. Nikolic, Adaptation and Learning in Automatic Systems.
Academic Press, Inc., 1971.

[7] B. Egardt and A. V. Balakrishnan, Stability of Adaptive Controllers. Springer
Berlin, 1979, vol. 20.

[8] A. Morse, “Global stability of parameter-adaptive control systems,” Automatic
Control, IEEE Transactions on, vol. 25, no. 3, pp. 433–439, 1980.

[9] K. Narendra, Y.-H. Lin, and L. Valavani, “Stable adaptive controller design, part
ii: Proof of stability,” Automatic Control, IEEE Transactions on, vol. 25, no. 3,
pp. 440–448, 1980.

[10] Y. D. Landau, Adaptive Control: the Model Reference Approach. IET, 1979.

[11] G. Goodwin, P. Ramadge, and P. Caines, “Discrete-time multivariable adaptive
control,” Automatic Control, IEEE Transactions on, vol. 25, no. 3, pp. 449–456,
1980.

[12] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Courier
Dover Publications, 2013.

[13] C. J. Harris and S. Billings, Self-tuning and Adaptive Control: Theory and Ap-
plications. P. Peregrinus, 1981.

177



[14] H. Unbehauen, Methods and Applications in Adaptive Control. Springer Verlag,
1980, vol. 24.

[15] P. A. Ioannou and J. Sun, Robust Adaptive Control. Courier Dover Publications,
2012.

[16] B. D. Anderson, R. R. Bitmead, C. Johnson, P. V. Kokotovic, R. L. Kosut, I. M.
Mareels, L. Praly, and B. D. Riedle, Stability of Adaptive Systems: Passivity and
Averaging Analysis. MIT press Cambridge, MA, 1986.
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