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ABSTRACT 

The focus of this thesis is on the development of a highly scalable parallel algorithm for 

solving the 3-D method of characteristics (MOC) form of the Boltzmann neutron 

transport equation. The derivation of the 3-D MOC method is presented first, along with 

the details of the discretization techniques, that utilize the concept of modular ray tracing. 

The implementation of these equations is then described, and then the approach to 

parallelizing the algorithm is discussed. Results are shown for a range of benchmark 

problems typically solved by 3-D neutron transport codes. 

 The algorithm is parallelized in space, angle, and by characteristic rays, which is 

specific to the MOC solution method. Once the parallel algorithm is established, a 

performance model for the particular implementation is derived. This model contains 

detailed expressions for the number of floating point operations and execution time as a 

function of the problem size and fundamental computer hardware properties, such as the 

time per flop and cache access latency. 

 The procedure for determining the hardware coefficients required by the 

performance model is then presented and validated using experimental results. The 

performance model is shown to agree well with experiment for both types of execution, 

and the model is therefore used for subsequent analyses that explore the algorithm's 

sensitivities to the computer and network hardware characteristics. The model is also 

analyzed to assess the scaling of the algorithm for a quarter core PWR. 

 The optimization of the convergence of the parallel 3-D MOC algorithm through 

the use of the coarse mesh finite difference (CMFD) method is then developed. The 

CMFD accelerated parallel 3-D MOC algorithm is then used to compute solutions to 

several numerical benchmarks, that show good agreement with the reference results. 

Finally, the research performed in this thesis and its conclusions are summarized, and 

areas of future research are suggested. 
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Chapter 1  

INTRODUCTION 

The field of nuclear reactor physics has matured considerably since it began in the 1940's, 

and the use of computer simulations of reactor core neutronics behavior was adopted very 

early on [1]. Reactor physicists have been reasonably successful in predicting the 

behavior of a reactor for a wide range of both steady-state and transient conditions. 

Historically, the methods used for reactor simulation have largely been determined by the 

computational resources available at the time. A historical survey of the literature shows 

an evolution from the four and six factor formulas to two-group and few-group neutron 

diffusion theory for practical LWR core calculations, and today, two-group neutron 

diffusion theory continues to be the workhorse for practical LWR core calculations. A 

principal focus of much of the research over the years was to improve methods for 

generating homogenized few-group cross sections for the core calculation. It has only 

been recently with the availability of petascale computing that LWR researchers have 

focused considerable efforts on performing whole-core LWR calculations using higher 

order transport methods [2], [3], [4], [5], [6], [7], [8], [9], [10]. 

 High performance computing technology and the availability of petascale 

machines have made it possible to perform full core transport calculations in a reasonable 

amount of time. A simple estimate is shown below of the computational requirements for 

a practical LWR whole-core transport solution. This estimate assumes typical 

discretizations of the space, energy, and angular dependent neutron flux and solution 

times per unknown currently seen in routine assembly cross section calculations. 
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Table 1.1 – Estimated computational requirements for a deterministic whole-core transport 
calculation 

Number of Neutron Energy Groups 50 

Number of Discrete Angles 128 

Number of Spatial regions 1,140,528,096 

Number of Unknowns (Angular Flux) 7,299,379,814,400 

Average MFLOPS to Solve each Unknown 4 

Estimated Memory Requirements 

(for only Angular Flux) 
53.11 TB 

Estimated Run time (for 1 petflop machine) 8 hrs 

 

 The principal economic motivation for improved reactor core calculations has 

been to increase reactor power density and operational flexibility without compromising 

reactor safety. Higher fidelity core calculations make it possible to relax the conservatism 

in safety margins and provide the tools for better understanding the full physics of current 

operational constraints. In fact, this has been the mission of a recent significant DOE 

research program, the Consortium for the Advanced Simulation of Light Water Reactors 

(CASL) [10], which has focused on advancing the modeling and simulation of LWR 

technology. The work described in this thesis was supported through this program. 

1.1 Fundamental Challenges of High Fidelity Light Water 

Reactor Simulations 
Perhaps the first challenge in high fidelity LWR simulations is accurately representing 

the geometric complexity of many of the reactor components. Some of these are shown 

for a typical PWR in Figure 1.1, taken from a recent paper [11] describing these issues in 

detail. To be noted in this figure are such components as the upper plenum region of a 

fuel rod, spacer grids, the bottom and top nozzle of the assembly, and the core shroud or 

baffle and the barrel. Traditionally, these components have not been explicitly modeled in 

reactor core calculation, and instead were simply homogenized with the fuel, cladding, 

water and other materials into the few group assembly cross sections. One of the 

principal innovations of the next generation of methods is to explicitly represent each of 

these components and materials during the core calculation. 
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Figure 1.1 – LWR geometry 

Additionally there is significant complexity in modeling some fuel rods. Some pellets, 

known as integrated fuel burnable absorbers (IFBA™) are coated with a very thin layer 

(< 10 microns) of ZrB2, which is a strong neutron absorber and must be modeled 

explicitly. 

 Once the geometry is faithfully represented, the additional challenges of modeling 

a real reactor typically involve the inclusion of other physics which include: fuel 

depletion, thermal hydraulics and mechanics, heat transfer, and energy deposition from 

prompt fission gamma rays just to name a few. The focus of the work in this thesis is to 

advance the application of a 3-D transport method that is faithful to the physical 

geometry by making better use of modern computer architectures. 

1.2 Summary of State of the Art 3-D Transport Methods 
Several 3-D neutron transport methods have been developed over the years for 

performing the core calculation. This section provides a brief survey of the current state 

of the art methods as context for the work that is proposed for this thesis. The steady-

state, 3-D Boltzmann neutron transport equation to describe the neutron flux in a reactor 

is given as: 
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Eq. (1.1) 

where the standard notation, r


, 


, E , is used for the space, angle, and energy variables, 

respectively.  ,   represent the angular neutron flux, and cross sections, respectively. 

For the cross sections the subscript indicates the reaction type, where t denotes total, s 

denotes scattering, and f denotes fission.   is the normalized fission spectrum, and keff is 

the effective neutron multiplication factor, or eigenvalue, of the system. 

 Traditionally transport methods can be divided into two relatively broad 

categories: stochastic and deterministic; as illustrated in Figure 1.2. 

 

 

Figure 1.2 – Taxonomy of methods for solving the Boltzmann neutron transport equation 

 In the following sections, a brief overview is given for each method. This 

overview highlights the key approximations that are used in each of the methods and 

discusses their relative strengths and weaknesses. The chapter then ends with a summary 

of key points for why the thesis research on the 3-D Method of Characteristics (MOC) is 

a significant contribution to research on high fidelity transport calculations for full-core 

LWR applications. 
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1.2.1 Monte Carlo 
The primary stochastic method is referred to as the Monte Carlo method. This method 

simulates individual particle transport by generating random numbers and sampling 

probability distributions for particle interactions that depend on the physics being 

modeled. Monte Carlo is one of the simplest and most reliable methods of describing 

neutron transport, since it can simulate the complicated physics of neutron and material 

interactions in arbitrary geometries with relatively little approximation. Another major 

advantage of this method is the detailed treatment of the energy variable through the 

random sampling of the continuous energy cross section data. However, there are several 

reasons why the method has been limited in its application to practical LWR reactor 

analysis. 

 The first principal reason is that a stochastic process always includes a statistical 

error in whatever quantity is being calculated. Most often the reactor analyst is interested 

in the power distribution inside a reactor. Depending on the desired spatial fidelity of this 

field quantity, the number of particles that must be tallied in each spatial mesh region to 

sufficiently reduce the statistical error in the tally may require the simulation of an 

enormous number of particles, which consequently increases the computational time [8]. 

A second related issue is the convergence of Monte Carlo methods for practical reactor 

problems. Unless some special steps are taken, the fission source may require an 

impractical number of histories to converge for some large problems, due to statistical 

noise and a high dominance ratio [12]. A third issue for using Monte Carlo methods for 

practical LWR simulation methods is the difficulty in modeling detailed thermal-fluid 

feedback for temperature and density. The feedback is a function of the neutron and 

power distribution, and since the neutron cross sections are a function of the temperature 

and density, this results in a set of non-linear coupled equations. Typically, some form of 

approximate method is necessary to treat thermal-fluid feedback with Monte Carlo 

methods. However, recent research has been successful in explicitly modeling the 

temperature effects on the cross section within the Monte Carlo code. Such “on-the-fly” 

temperature feedback may provide a breakthrough to help overcome this issue for power 

reactor simulation. Finally, should the aforementioned issues all be resolved for the 

steady-state reactor problem, they must then be extended to the time-dependent reactor in 
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order to be useful for practical LWR safety analysis, which is yet another significant 

challenge. 

 During the past several years, Monte Carlo researchers have developed several 

innovative solutions addressing several of the issues identified [9], [12], [13]. In fact, 

many now consider Monte Carlo methods to be a viable method for practical reactor 

analysis, and full core calculations have been demonstrated with several existing codes 

[14]. However, several issues must be resolved before Monte Carlo becomes widely 

accepted for practical LWR analysis. Consequently, continued investigation into 

deterministic methods for full core 3-D transport is well warranted and remains an 

important part of the research portfolio for CASL. 

1.2.2 Discrete Ordinates 
One of the oldest deterministic transport methods that was developed was the discrete 

ordinates or Sn method [15]. All deterministic methods are based on the discretization of 

each of the independent solution variables and the discrete ordinates refers to the 

discretization of the angular dependence of the neutron flux. The starting point in the 

derivation of the Sn method is to discretize the neutron energy into G energy groups by 

applying the multi-group approximation to Eq. (1.1). This results in the multi-group 

transport equation for a group, g, which can then be written as: 
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 Eq. (1.2) 

It should also be noted that the multi-group approximation may be used by the Monte 

Carlo method, but it is not preferred over continuous energy treatments. However, all of 

the deterministic methods described in this section begin with the multi-group 

approximation shown in Eq. (1.2), since continuous energy treatment is not practical. 

 The main approximation that leads to a discrete ordinates method is to choose a 

set of discrete angles or directions of flight. The accuracy of this approximation is 

determined largely by the quadrature used to compute the integrals over 


. The "n" in Sn 

indicates the order of the polynomial or function that may be integrated exactly with a 
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given quadrature. The quadrature approximation is shown in Eq. (1.3), and is applied to 

the angular variable in Eq. (1.2). This leads to the discrete ordinates form of the multi-

group transport equation given in Eq. (1.4). 
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 Eq. (1.4) 

where m indicates the discrete ordinate. 

 For the last fifty years, the Sn method has been continuously developed with a 

variety of spatial discretization techniques, that include the full range of finite difference 

and finite element approximations. However, the finite difference approximation appears 

to be more commonly used; and when making use of this approximation an additional set 

of "auxiliary" equations must be developed to relate surface averaged angular flux 

quantities to volume averaged angular flux quantities. In general, the finite difference 

method is limited in its ability to model arbitrary geometries. Either a different 

discretized form of the equation must be derived using a specific approximation of the 

spatial derivative or approximations to the physical geometry must be made. Two of the 

discrete ordinates codes which have been adapted to massively parallel computing and 

been applied successfully to full core reactor analysis are the ORNL and ANL codes, 

Denovo [6] and UNÌC [7], respectively. 

 Denovo employs a first order finite difference approximation with a native mesh 

representation in a structured Cartesian grid. This imposes some limitations for reactor 

geometries that include cylindrical fuel pins. For performing its transport sweep, Denovo 

employs the well-established parallel KBA wave front algorithm [16] for spatial 

decomposition, which has shown some limitations in scalability for massive numbers of 

processors. A technique for parallelism in energy has also been recently implemented 

into the code which has been shown to scale quite well on the Cray XT5 machine Jaguar 
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[17]. Because of its scalability using space-angle-energy decomposition, the Denovo code 

has had several successes with large scale applications. However, Denovo has required 

prohibitive computational resources in order to resolve circular fuel pin boundaries, 

which are important for several of the relevant LWR problems. Therefore issues remain 

about the viability of Denovo’s implementation of the Cartesian geometry based discrete 

ordinates method for widespread practical reactor analysis. 

 UNÌC on the other hand uses a finite element approximation and solves the even-

parity form of the transport equation, which is second order in space; with a native mesh 

representation composed of arbitrary structured tetrahedrons and hexahedrons. This mesh 

representation is more suitable for representing the physical problem geometry. The 

solution algorithm in UNÌC poses the problem as a 1-group fixed source transport 

problem and represents this linear system with a large sparse matrix for each angle. This 

system is solved using the Conjugate Gradient method with preconditioning from the 

PETSc software library [18]. Because the PETSc solvers have been well designed and 

developed to perform on leadership class computers, the scaling of UNÌC on the IBM 

Blue Gene/P machines Intrepid [19], and JUGENE [20] and Cray XT5 machine Jaguar 

[17] is quite excellent, achieving >90% scalability up to ~130,000 cores. It is also worth 

noting that the Sn solver in UNÌC was a finalist for the Gordon Bell Prize in 2009 [21]. 

Presently, only space and angle are decomposed, and UNÌC does not employ energy 

decomposition. Because of this and other issues, considerable work remains in 

demonstrating the viability of UNÌC for practical full core LWR applications. 

1.2.3 Spherical Harmonics 
Spherical harmonics, or PN, methods differ from Sn methods by making a different 

angular approximation. Instead of considering discrete directions of flight, the terms of 

Eq. (1.2) that are functions of 


 are expanded into moments of the spherical harmonic 

functions. This is shown below for the multi-group angular flux: 
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With the spherical harmonics expansion, the series must be truncated, which introduces 

the PN approximation. The same spatial discretization techniques used in the Sn method 

are also applicable to the PN method. In practical implementations the order of PN may be 

varied and for extremely accurate results something like P23 may be needed for reactor 

problems [22]. The PN method has never been widely used in the reactor physics 

community, primarily because the form of the PN equations is more complicated 

compared to other methods. It also cannot treat material discontinuities or void regions 

well in certain situations, both of which are required for reactor analysis. Furthermore, 

the higher angular moments of the flux do not have a straightforward physical 

interpretation. 

 Nonetheless the UNÌC code [7] has an implementation of this method for 3-D 

whole core analysis. The implementation of the PN solver in UNÌC is similar to the Sn 

solver, where a sparse linear system is built and solved iteratively with an efficient 

implementation of a conjugate gradient method [18]. Unfortunately, the performance of 

the PN solver has not been studied systematically in the same way as the Sn solver, nor 

has its computational performance been analyzed in detail. This makes it somewhat 

harder to quantitatively assess the viability of the PN transport method for practical LWR 

analysis. However, because the PN equations have issues treating material discontinuities 

and voids, and do not always have a straightforward physical interpretation, it is likely 

that this method will remain to have limited use. 

1.2.4 Collision Probability Method 
The collision probability, CP, method [23] differs fundamentally from the deterministic 

methods described thus far, since it is based on discretizing an integral form, rather than 

a differential form, of the Boltzmann transport equation. To obtain the integral form of 

the transport equation, Eq. (1.2) is integrated over all angle and space. Additionally, from 

this integration, only the isotropic scattering can be represented explicitly thus leading to:  
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 The collision probability method then recasts Eq. (1.6) into terms of the collision 

probabilities Pij between the two discrete volumes Vi and Vj. These probabilities must 

then be determined numerically prior to the iterative solution scheme. 
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 The method has been used successfully in analyzing 2-D assembly-sized 

problems [24], [25], [26] to generate few group cross sections for lower order full core 

calculations. The advantages of this method are that it gives very accurate results and can 

easily treat completely arbitrary geometries. The eventual drawback of the method, which 

has seen a decline in popularity in the reactor physics community, is that the coefficient 

matrix for the transmission probabilities is fully dense and is the size of the square of the 

number of discrete spatial regions. Although the theory for extending this method to 3-D 

is very straightforward, there has not been much research into the method for 3-D 

applications, most likely because of the inherent computational costs. However, interface 

current techniques have been developed that allow one to decouple these collision 

probability matrices for different subdomains [24], [28]. Although, the interface current 

techniques require some approximations be introduced for the angular order of the 

currents, the CP method still has potential for 3-D whole core analysis but would require 

innovative methods for accurately treating interface currents. CP also suffers from 

limitations in representing the scattering source, since the integral equation is limited to 

isotropic scattering. Research would be required to develop innovative methods to treat 

anisotropic scattering within the framework of CP methods, since anisotropic scattering 

can be important for practical LWR applications. 
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1.2.5 Method of Characteristics 
The method of characteristics [29], MOC, is perhaps the newest of the transport solution 

techniques discussed so far. It was not first used in a production tool until 1980 [30]. 

Over the last several years it has been implemented in most of the popular lattice physics 

codes [2], [3], [27] and it has become the most popular transport method for routine 2-D 

assembly level analysis to generate cross sections for practical full core LWR 

simulations. 

 The MOC solution is a general mathematical technique for solving partial 

differential equations. For the transport equation, a coordinate transformation is applied 

to Eq. (1.2) to yield a first order ordinary differential equation for the solution along the 

“characteristic direction”. 
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 Eq. (1.8) 
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 Eq. (1.9) 

 This equation can then be integrated analytically along the characteristic direction 

for a homogenous region, provided some assumption is made regarding the shape of the 

source within the region. This leads to an equation for the propagation or transmission of 

the angular flux through a domain, which can then be integrated over some length to 

provide an expression for the average angular flux along the characteristic in the given 

region. These equations are shown below: 
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 Consequently, the problem must be discretized in the characteristic space, which 

means discrete directions of flight must be chosen. For a given direction, several 

characteristic lines or rays must be tracked through a discretized spatial domain. One 

notable difference of this method, compared to the CP method, is that in most 

implementations a linear system is never formed and instead a transport sweep is 

performed. An advantage of MOC is that it also readily handles any arbitrary geometry, 

provided one knows how to intersect a series of lines with surfaces of the geometry. The 

MOC method is typically thought to be superior to the CP method because it does not 

have the same restriction of assuming isotropic scattering. In fact extending the MOC 

source to higher orders in space or angle is relatively straightforward, which is also an 

advantage of the Sn method. Finally, the MOC method enjoys the same advantages of 

deterministic methods compared to Monte Carlo methods. 

 While MOC is the preferred 2-D method for reactor analysis and considerable 

research has been devoted to developing efficient 2-D kernels, the 3-D MOC method is 

generally viewed as the most computationally expensive of the 3-D transport methods. 

This is because when adding the third dimension, the number of rays that must be tracked 

and the number of discrete spatial regions required to accurately model a problem 

increase the computational requirements of the 2-D problem by a factor on the order of 

1000. Nonetheless there has been notable research into the 3-D MOC method [7], [31], 

[32], [33] with some efforts focusing on parallelism [7], [34]. 

 The non-parallel research [31], [32], [33] helped to demonstrate the efficacy of 

the modular ray tracing concept. The definition and implementation of this, used in the 

research here, is discussed in detail in Chapter 2. In the parallel algorithm research done 

in the DRAGON [34] code, the approach taken was to focus only on parallelism by angle 

and by ray. This work showed modest parallelism up to O(100) processors, which were 

reasonably large machines for their time. In the UNÌC [7] code a similar approach was 

taken at first, but eventually abandoned because of its inability to scale on petaflop 

machines. The new approach used in the UNÌC code was to make use of parallelism in 
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space and angle by forming a blocked linear system and then solving this using a 

hierarchy of GMRES solvers in PETSc. However, unlike the other transport methods 

implemented in UNÌC, the parallel performance of the MOC solver was observed to be 

relatively poor due primarily to issues of load imbalance, and further research was 

suggested. 

1.3 State of the Art Approximate 3-D Transport Methods 
In addition to 3-D transport methods, there are three other classes of methods that are 

relevant to the discussion of full core LWR analysis. The first class of approximate 

methods are based on the diffusion approximation which has been the work horse for full 

core analysis for nearly a half-century. The next is the simplified PN method which is 

similar to the PN method described previously, and the last class of methods are 

commonly referred to as the 2-D/1-D method, fusion method, or sometimes synthesis 

method. In this document the method is referred to as 2-D/1-D. This section discusses the 

key approximations made that characterize each of these methods and their relative 

strengths and weaknesses compared to 3-D transport. 

1.3.1 Diffusion 
In diffusion based methods the key approximation is to eliminate the angular dependence 

of the neutron flux. The diffusion equation, given in Eq. (1.12), can be derived from the 

multi-group transport equation, Eq. (1.2), by first computing the zero-th and first angular 

moments of Eq. (1.2). Next approximations are introduced to the second order terms to 

provide closure. This yields the P1 equations. For diffusion methods an additional 

approximation is introduced. In the diffusion approximation, the anisotropic scattering is 

assumed to be only within-group and not group to group. However, it should be noted 

that for some problems the diffusion equation is mathematically consistent with the P1 

approximation of Eq. (1.2). 
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 Eq. (1.12) 

 From Eq. (1.12), one may note that the primary approximation introduced affects 

the leakage term. Another heuristic derivation of the diffusion equation involves 

introducing Fick's Law: 

     .rrDrJ ggg


  Eq. (1.13) 

 Consequently, because the diffusion approximation simplifies the leakage term it 

break downs in regions or problems with strong gradients in the flux, but otherwise the 

method is extremely computationally efficient compared to transport because it does treat 

the angular dependence of the neutron flux explicitly. The diffusion method can be 

viewed as the lowest order approximation that is acceptable for solving the Boltzmann 

equation and is commonly viewed as the classical method for reactor analysis. It is 

relevant to the larger discussion of whole core LWR analysis because any 3-D transport 

method should be at least as accurate as 3-D diffusion, so in that sense it provides the 

upper bound for inaccuracy in the solution. Finally, a large body of work exists which 

shows how the diffusion equation can be used as an efficient low order operator to 

accelerate the convergence of a transport method, and since 3-D transport methods are 

the most computationally expensive, this form of acceleration becomes more important. 

1.3.2 Simplified PN 
The Simplified PN (SPN) approximation [35] is a leading order asymptotic limit of the 

transport equation. One way in which the SPN equations can derived from the PN 

equations is by starting with the 1-D PN equations and replacing the 1-D diffusion 

operator with the 3-D diffusion operator. This is equivalent to replacing the first order 

derivatives of the odd moments of the angular flux with divergence operators, and the 

first order derivatives of the even moments with gradient operators. The SP3 equations 

are given below: 
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where the diffusion coefficients D0 and D2 are those derived from the 1-D P3 equations 

and the scalar flux is computed from the 0th and 2nd order angular moments of the flux:  

     .2 ,2,0 rrr ggg


  Eq. (1.16) 

 The main advantage of the SPN method is that the structure and implementation of 

the equations is very similar to the diffusion equation, thus if one has an existing 

diffusion solver, it can be easily modified to be able to solve the SPN equations. 

Furthermore, the SPN approximation can be considerably more accurate than the 

diffusion approximation for a wider range of problems, and has been implemented 

successfully in some core simulators [36], [37]. 

1.3.3 2-D/1-D 
Perhaps the most recent advance in approximations of 3-D transport is the 2-D/1-D 

method [38], [39], [40]. The principal motivation for this method is that generally there is 

more heterogeneity in the LWR geometry in the radial (2-D) plane than in the axial (1-D) 

direction. This suggests that a lower order method could be used to solve the axial 

problem compared to the radial problem, and a “transverse leakage” could be used to 

couple the two solutions. 

 This method starts with the multi-group transport equation and introduces an 

approximation to the derivative in the z-direction. 
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 Eq. (1.17) 
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 In previous work the function F has been treated with a variety of approximations 

including the an Sn approximation, the SPN approximation and the diffusion 

approximation. Even with the lowest order approximation (diffusion), shown in Eq. 

(1.18), the 2-D/1-D method has been shown to preserve the 2-D transport equation and 

the 1-D (in z) and 3-D diffusion equation [40]. The advantage of the 2-D/1-D method is 

that it assumes the solution is weakly varying in the z-direction allowing for coarser 

discretizations in z and only having to discretize several 2-D domains. Again, for most 

LWR reactor designs the heterogeneity of the geometry is largely in the x-y plane and the 

geometry is fairly uniform in z, thus making the approximation of the 2-D/1-D method 

likely a good approximation for these problems. However, the accuracy of the method 

will suffer when transport effects are observed in the z-direction, and usually this 

corresponds to partially inserted control rods. 

1.4 Summary 
Of the methods surveyed in this section the Monte Carlo, the Sn, and the MOC methods 

have received the most attention throughout the research community for consideration in 

3-D full core LWR analysis. Parallel algorithms for the Sn method appear to be the most 

mature in terms of being able to scale well on petascale machines. However, the Monte 

Carlo method is not far behind Sn in its ability to map onto massively parallel 

architectures [41]. Both of these methods are still under active research in order to 

address the remaining issues noted previously. However, it is questionable whether an 

acceptable solution will present itself for the ability of the Sn method to deal with 
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complex geometries (e.g. curvilinear surfaces) and maintain the current parallel 

performance. The issues remaining for the Monte Carlo method are more about 

improving techniques for capturing the physics of a reactor accurately, namely the 

efficient computation of state vectors for high fidelity spatial discretizations with minimal 

statistical error, modeling of thermal-fluid feedback, and the treatment of time 

dependence. Conventional wisdom suggests that pursuing development of PN and CP 

methods for full core 3-D LWR analysis may not be worthwhile because of the inherent 

drawbacks of the methods themselves. 

 This leaves 3-D MOC as an area of research that may still have potential for 

practical LWR applications. As described in the previous section, past efforts have not 

been very successful in developing highly scalable parallel 3-D MOC algorithms. 

Therefore, the principal challenge and focus of this thesis research is the development of 

a highly scalable parallel algorithm for solving the 3-D neutron transport equation by the 

method of characteristics for practical LWR applications. 

 The rest of this thesis proceeds by first presenting the detailed derivation of the 

MOC solution of the 3-D Boltzmann transport equation in Chapter 2, along with the 

details for the discretization and iteration scheme to obtain a numerical solution. Chapter 

3 describes the actual implementation of the 3-D MOC kernel used in this work, along 

with some important optimizations. Chapter 4 presents the details of how the kernel 

described in Chapter 3 is parallelized. Chapter 5 introduces a performance model to 

analyze and predict the performance of the 3-D MOC solution algorithm. The validation 

of this model is also presented in Chapter 5. The focus of Chapter 6 is the detailed 

analysis of the parallel 3-D MOC kernel’s performance on a few architectures. Chapter 7 

then discusses how the convergence of the algorithm may be improved by extending well 

known diffusion-based acceleration techniques. Chapter 8 presents the results and 

performance of the parallel 3-D MOC algorithm for a select number of numerical 

benchmark problems with comparisons to 2-D/1-D results. Finally, the conclusions of 

this work are given in Chapter 9. 
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Chapter 2  

FUNDAMENTALS OF THE METHOD OF 

CHARACTERISTICS 

This chapter provides a detailed derivation of the discretized MOC equations and 

introduces several of the concepts and algorithms conventionally used in MOC solvers. 

First, a detailed derivation is provided, which highlights important approximations at 

each step. Next, the algorithm for the iterative solution of these equations is described. 

Then, the techniques required to discretize a problem that are common to any multi-

dimensional MOC transport solver are described. The descriptions primarily focus on 

2-D solvers at first, and then the concepts are extended to the case of a 3-D solver to 

highlight the additional challenges that must be addressed. Finally, detailed examples, 

again given in the context of 2-D, in which the MOC transport sweep can be performed, 

are presented and contrasted to highlight their relative merits. This establishes the basis 

for a 3-D MOC serial algorithm that can then be parallelized. 

2.1 Method of Characteristics Solution of the Boltzmann 

Transport Equation in 3-D 
The derivation of the MOC solution to the Boltzmann neutron transport equation starts 

with the steady-state continuous form of the equation given in Eq. (2.1) below. 
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Eq. (2.1) 

Eq. (2.1) is the same as Eq. (1.1) from the previous chapter. Next the variable q is 

introduced to simplify the right hand side. 
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yielding 
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2.1.1 Transformation to the Characteristic Direction 
Now, the method of characteristics is applied, in which the spatial and angle variables of 

the partial differential equation, Eq. (2.3), are transformed into the characteristic 

direction using the following identities. 
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This leads to the characteristic form of Eq. (2.3) shown in Eq. (2.5). 
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where 
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Eq. (2.6) 

Eq. (2.5) can then be solved analytically using the following integrating factor: 
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 Eq. (2.7) 

Eq. (2.7) is the solution of the characteristics form of the continuous Boltzmann transport 

equation. Next, this equation is discretized so that it may be solved numerically. Some 

reasonable approximations are introduced to accomplish this, and also so that the 

integrals of Eq. (2.7) may be evaluated more easily. 

2.1.2 The Multi-group Approximation 
The first approximation to be introduced, which is common for almost all deterministic 

methods, is the multi-group approximation. This discretizes the energy variable by 

defining discrete neutron energy groups. The multi-group cross sections are determined 

exactly by Eq. (2.8). However,  Er ,,


  is generally not known a priori, therefore the 

approximation of Eq. (2.9) is introduced. The multi-group cross sections are then defined 

as shown in Eq. (2.10) using a weighting factor  Er ,


  in energy. This weighting factor 

should typically be representative of the neutron energy spectrum of the system, which 

cannot be known exactly for all potential problems a priori. As long as the energy 

distribution of the neutron flux in the system to be simulated is reasonably consistent with 

the weighting spectrum used to collapse the continuous energy cross section, the multi-
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group approximation is accurate since it preserves the reaction rates within each energy 

group. 
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 Eq. (2.11) does not use the weighting factor since the fission spectrum is not 

strictly a cross section. In Eq. (2.10), the subscript x is to indicate a reaction type. 

Applying the multi-group approximation to Eq. (2.7) leads to the steady-state multi-group 

MOC solution of Boltzmann neutron transport equation shown in Eq. (2.10), where the 

subscript g, is introduced to denote the neutron energy group index. 
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 Eq. (2.12) 

2.1.3 The Discrete Ordinates Approximation 
The next approximation that is introduced after the multi-group approximation is the 

discrete ordinates approximation for the angular variable. This is essentially a quadrature 

approximation, which for a given function of angle is written as: 
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Applying this approximation to Eq. (2.12) and Eq. (2.6) leads to: 
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 So long as the error introduced by Eq. (2.13) is minimal, the discrete ordinates 

approximation is valid. This approximation has been used for decades by the Sn and 

MOC methods, and in practice it is observed to be quite accurate if a sufficient number of 

angles are used. 

2.1.4 Constant Material Properties in a Discrete Region 
To discretize the spatial domain, the problem is divided into arbitrarily shaped discrete 

regions. Within each region it is assumed that the material properties are constant with 

respect to the spatial variable. This spatial discretization, as illustrated by Figure 2.1, 

essentially leads to a spatial discretization scheme that is first order accurate. 
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Figure 2.1 – Spatial discretization with constant properties 

 From these definitions and the constant material property, Eq. (2.14) and Eq. 

(2.15) are reduced to the following for each characteristic ray passing through each 

discrete region denoted by the subscripts k and i, respectively. 
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 In Eq. (2.16) the short hand notation,    0,,,0,,,,,  sr kmgimgi
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kmgi 


 and 
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, is used. For adjacent regions i and i+1 the 

identity, in

kmgi

out

kmgi ,,,1,,,  , is also true. 

2.1.5 Flat Source Region Approximation 
Next the source, qi,g,m(s), is assumed to be constant within each discrete spatial region. 

This is commonly referred to as the flat source approximation. It is the lowest order 

approximation for the spatial dependence of the source and is accurate in the fine limit of 

the spatial mesh. Other approximations, such as linear and quadratic have been 

developed, but for the work here only the flat source is considered. With the flat source 
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approximation, the remaining integral over s' can be evaluated analytically, which leads 

to Eq. (2.18) and Eq. (2.19): 
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 Eq. (2.19) introduces a new term, the region average angular flux, mgi ,, . This is 

computed from the segment-average angular flux which is defined as: 
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 The region average angular flux is then computed from the segment-average 

angular fluxes as shown in Eq. (2.21), where kmA ,  denotes the cross sectional area of the 

characteristic ray as illustrated in Figure 2.1. 
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 Eq. (2.18) and Eq. (2.20) are the fundamental discretized MOC equations that 

must be evaluated to obtain a solution of the angular flux for a given source q. 

2.1.6 Isotropic Scattering Approximation 
The final approximation is to assume that the source is isotropic. Again this is the 

simplest approximation, and higher order angular sources have been derived, but for the 

work here only the isotropic source is considered. In general, the level of anisotropy of 

the source is represented by expanding the source as a function of Legendre polynomials. 

For an isotropic source, Eq. (2.19) reduces to the following form. 
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where the scalar flux, gi , is computed as: 
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2.1.7 Iteration Scheme 
 In general the quantities of interest for reactor analysis such as reaction rates are 

determined from the scalar flux and not the angular flux, therefore the scalar flux is 

typically the primary solution variable updated by a transport kernel. Since any 3-D MOC 

kernel will make use of the above equations in some form, the kernel can be based on the 

concept of a 1-group fixed source problem which makes it possible to abstract the kernel 

into the following functional form: 
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 In Eq. (2.24), 
 nin

g

,


 is a vector of the discrete incoming angular flux boundary 

conditions in all space and angle for a single group, g. 
 n

gq


 is a vector of the 1-group 

source computed as shown in Eq. (2.25) for all regions and  n

g


 is a vector of the scalar 

fluxes for all regions. By alternately evaluating the function of Eq. (2.24) and updating 

the source defined by Eq. (2.25), it is possible to first define an inner iteration scheme to 

solve the 1-group fixed source problem for a given external source Qext,i,g. In these 

equations n is the inner iteration index and the algorithm for solving the 1-group fixed 

source problem is shown in Figure 2.2. 
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Figure 2.2 – Iterative algorithm for the MOC solution of 1-group fixed source problem 

 For the algorithm of Figure 2.2, steps 2 through 5 perform the function evaluation 

shown in Eq. (2.24). In the 1-group fixed source problem, the external source, Qext,i,g, is 

assumed to be known which is essentially the source from fission and in-scatter, or 

scattering from group g' to group g, and it is a function of the scalar flux as shown in 

Eq. (2.26). 
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Eq. (2.26) 

 In Eq. (2.26), 1/keff is the eigenvalue of the system and must also be determined as 

a part of the solution. This is traditionally calculated using the power method, which is an 

iterative algorithm for finding the largest eigenvalue of a system that follows naturally 

from the source iteration scheme described thus far. Briefly, the general form of the 

eigenvalue value problem in reactor physics can be written in operator notation as: 

,
1




FT
effk

  Eq. (2.27) 

where F represents the fission and T represents the streaming, absorption, and scattering 

of neutrons. Applying the power method to solve Eq. (2.27) results in the following 

iterative scheme: 

1. Guess initial source. 

2. Compute outgoing angular fluxes by evaluating Eq. (2.18) for 

all segments 

3. Compute segment-average angular flux by evaluating Eq. (2.20) 

for all segments. 

4. Compute region-wise angular flux by evaluating Eq. (2.21) for 

all regions 

5. Compute scalar flux by evaluating Eq. (2.23) for all regions 

6. Update 1-group source by evaluating Eq. (2.25) for all regions 

7. Check for convergence, if not converged return to step 2. 
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 This iterative scheme used in the second level of iteration for the eigenvalue, 

which is referred to as the outer iteration. For the outer iteration, denoted by the index  , 

the total fission source is computed as shown in Eq. (2.30) and Eq. (2.26) is rewritten as 

shown in Eq. (2.31). 
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The equation to update the eigenvalue based on the power method is shown in Eq. (2.32), 

where Vi is the region volume. 
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 The overall iterative procedure for solving the eigenvalue problem is shown in 

Figure 2.3 and is sometimes referred to as source iteration. In the source iteration 

technique described in this section, there is an inner iteration for the converging self-

scattering and an outer iteration for the eigenvalue which is equivalent to the power 

iteration. 
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Figure 2.3 – Iterative algorithm for the MOC solution of steady-state eigenvalue problem 

 This iteration scheme has the advantage of reducing memory usage, by allowing 

the transport method to only allocate data for a single group, with the exception of the 

boundary condition. In the loop over groups in Figure 2.3 the in-scatter source of Eq. 

(2.26) is also updated in a Gauss-Seidel fashion. This helps to improve convergence for 

reactor problems since most LWRs are thermal reactors and the physics of the slowing 

down source involves primarily the down-scatter of neutrons. 

2.2 Discretization of the Characteristics 
In Section 2.1 several kinds of discretizations were introduced for the different variables 

of the phase space. The discretization techniques for energy (the multi-group 

approximation) and space will not be discussed in this section since they are not specific 

to the MOC method, rather those discretizations are assumed and the focus will be on the 

specific discretization techniques required by the MOC method. 

 In the method of characteristics, the fundamental way that the problem is 

discretized is to choose a set of rays that traverse the problem domain to represent the 

flight paths (characteristic tracks) of the neutrons. This is illustrated in Figure 2.4 below. 

The end goal is to determine the segment lengths from each ray that pass through each 

discrete region, which are then used as the variable si,m,k in the evaluation of Eq. (2.18), 

Eq. (2.20), and Eq. (2.21). In general, one may choose any set of rays so long as the 

intersection between the ray and the spatial region boundaries can be determined. At this 

point there are several design choices possible for the algorithm that performs the ray 

tracing. 

1. Guess initial keff and scalar flux. 

2. Compute total fission source by evaluating Eq. (2.30) for all 

regions 

3. Loop over all groups 

a. Compute 1-group source by evaluating Eq. (2.25) for all 

regions. 

b. Solve 1-group fixed source problem with algorithm in 

Figure 2.2 

4. Update keff by evaluating Eq. (2.32) for all regions 

5. Check for convergence, if not converged return to step 2. 



29 

 

 

Figure 2.4 – Characteristic rays intersecting a set of discrete spatial regions 

 The first consideration is whether or not to store the ray tracing data (e.g. the 

segment lengths and mapping of ray segment index to region index). This information 

could be computed on the fly as a ray is swept during the transport sweep, or it can be 

stored. The criterion that is used to make this choice is to minimize computational time, 

and the tradeoff is essentially increased memory storage versus repetitive computation. 

The choice that is almost invariably made for any MOC implementation is to compute the 

ray tracing information once and then to store it. This has the benefit of decoupling the 

sweep algorithm from the ray trace algorithm, which allows each to be further optimized 

and developed essentially independently of the other. Another benefit of storing the ray 

tracing data is that during a normal calculation one may perform on the order of 1000 

sweeps, and each sweep may involve iterating over tens or hundreds of millions of rays, 

so even the slightest overhead from the repeated computation of the ray tracing data will 

substantially increase the total computation time. However, the memory requirements for 

storage can become prohibitive, so other design choices for the algorithm must be made 

to address this issue. Despite the memory requirements for storing the ray tracing data, 

this is the approach used in this work. 

 The next consideration is the choice of rays, specifically, which directions of 

flight should be considered. Since the discrete ordinates approximation described in 

Section 2.1.3 is used, it logically follows that these should be used for the directions of 

flight for the rays. In order to obtain accurate solutions, the discrete directions of flight 

should be obtained from a quadrature that minimizes the error of the quadrature 

approximation for the integration of functions of angle. There are a myriad other 
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considerations that go into developing a good quadrature, but this will not be discussed in 

great detail. The usual terms in the transport equation that are functions of angle and are 

integrated over angle are the angular flux and scattering cross section. 

 Once the directions of flight are chosen, it is then necessary to set up rays for a 

given angle. Ideally, one would want a few rays from each angle to intersect every spatial 

region in the problem, but at the very least a single ray should intersect each region. One 

of the most common design choices here is to choose equally-spaced rays. The advantage 

of this choice is that it minimizes the need to store ray-dependent quantities such as the 

cross sectional area. Instead of storing the discrete cross sectional area of each 

characteristic ray in a problem, this quantity can simply be stored once for all rays or for 

all rays of a given angle. However, a potential disadvantage of uniform rays is one may 

place extra rays in regions that do not necessarily require them. This is illustrated in 

Figure 2.5 below. 

  

Figure 2.5 – Equally spaced and non-equally spaced characteristic rays 

Since the segment volumes in a given region represent a numerical integration of the 

region volume, which will have some error, the segment lengths within a given region are 

renormalized so that they integrate the region volume exactly. This is shown in Figure 2.6 

and Eq. (2.33). 
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Figure 2.6 – Numerical integration of a region volume by ray segments 

2.2.1 Modular Ray Tracing 
In the design of the ray tracing algorithm, it is possible to take advantage of the fact that 

reactors generally have a high degree of regularity in their geometry. Considerable 

computational savings are possible by modeling only a small subdomain of the reactor 

that exhibits a unique geometry, and then constructing a ray tracing algorithm for the 

entire domain by replicating this information for the entire core. The technique for this 

has several names but is referred to as modular ray tracing here and is illustrated in 

Figure 2.7 below which has three ray tracing modules denoted as the black squares. The 

modular rays, depicted as blue lines, are defined only within the ray tracing module and 

connect at the ray tracing module boundaries. The long ray is shown by the red line and 

extends through the entire problem domain and consists of a particular sequence of 

modular rays. 

    

Figure 2.7 – Modular ray tracing concept in 2-D 

 It should be noted that the use of modular ray tracing introduces new 

requirements on the choice of the angles and also creates other subtle issues. The first 

requirement for modular ray tracing is that one be able to overlay a structured grid on 

their problem geometry. For the light water reactor problem this is a Cartesian grid, and 
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ideally will isolate the different unique geometries of the subdomains. The next 

requirement is that for rays with a given angle there must be an equal integer number of 

intersections of rays on opposing surfaces of a ray tracing module. This second 

requirement is basically satisfied by choosing to have equally spaced rays within a given 

angle. The computational advantages of modular ray tracing can be considerable. If 

modular ray tracing is not used, then it can increase the storage requirements of the ray 

tracing data by a factor up to as much as O(10
7
) for a problem using pin modular or 

quarter pin modular ray tracing that is approximately as large as a full core PWR. Should 

quarter assembly modular ray tracing be used, then the savings in memory requirements 

could be as much as O(10
5
) for a full core PWR. 

 The modular ray tracing technique has been previously used for 3-D MOC [32], 

[33], although a second, innovative technique for producing modular rays has been 

developed as a part of this work. The two algorithms basically differ in how the polar 

angle is determined. The result of this is that the first method is required to store twice as 

much ray tracing data when dealing with reflective boundary conditions. The new 

method also produces a finer ray spacings and consequently more rays, which can 

improve the accuracy of the solution but also increases computational work. 

 Once a modular geometric structure has been defined, the modular rays are 

determined by specifying a desired set of directions and ray spacing. In the work here a 

cuboid structure is used for the modular geometry with dimensions Px, Py, and Pz. The 

3-D modular ray parameters of spacing Δr and Δz, azimuthal angle, α, and polar angle, θ, 

are determined from the inputs of a desired azimuthal angle, α0, desired polar angle, θ0, 

and desired ray spacing Δ0. The first step in generating 3-D modular rays begins the same 

as it would for 2-D modular rays by only considering the x- and y- directions. The 

azimuthal angle, α, and radial ray spacing, Δr, are determined in this step from the 

following equations. For clarity, these terms are also illustrated in Figure 2.8. 
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Figure 2.8 – Modular ray tracing parameters 

 In the first method, each 2-D line in Figure 2.8 is actually a plane in z- xy


. This 

is illustrated in the part of Figure 2.9 above the black arrow. These planes are lined up in 

the order they are traversed along the direction xy


, which is indicated by the red 

numbers in the same part of Figure 2.9. For example when the polar plane labeled "1" 

intersects the right edge, the next plane to be traversed is the one labeled "2" starting at 

the left edge, and so on until "10" returns to "1". Once the sequence of polar planes are 

ordered, it gives a new 2-D domain, which is the part of Figure 2.9 below the black 
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arrow. In this new 2-D domain the polar angle θ and axial ray spacing Δz are determined 

using Eq. (2.34) and Eq. (2.35) from above, where Pz is substituted for Py and Pl is 

substituted for Px. 

 

Figure 2.9 – Polar plane used to determine polar angle 

 A subtlety now arises in that one prefers not to have the modular rays intersect at 

the corners of the 2-D ray tracing modules. To avoid this, a shift parameter p is 

introduced, which determines how far from the corner the first ray is drawn. This is 

illustrated in Figure 2.10. 
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Figure 2.10 – Effect of shift parameter 

 Now, there is a further subtlety. The different directions will have slightly 

different shift parameters, so the problem that one encounters is when reflecting off a 

surface that changes the azimuthal direction the points of intersection for the rays with 

those two directions on that surface do not exactly line up. Therefore, one must store the 

forward and backward directions separately. Because each line does represent a forward 

and backward direction, one would hope to only be able to store directions over half the 

octants of the unit sphere rather, than all of them. This problem is illustrated in 

Figure 2.11. 
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Figure 2.11 – Illustration of misaligned modular rays for reflecting directions 

 The new method developed for generating a set of modular rays as a part of this 

work avoids this problem by only considering the shortest polar plane. Noting that the 

rest of the polar planes for a given azimuthal direction have a length that is an integer 

multiple of the shortest plane means that the points of intersection along the x-z and y-z 

surfaces are the same for all polar planes and the forward and backward direction, so the 

ray tracing data of the four octants of the unit sphere in  0  must be stored. The 

method by which the polar angle is determined here is illustrated in the following figures. 

 

Figure 2.12 – Second way of determining the polar angle 

 Another subtlety in this method must also be noted. If the desired ray spacing is 

given preference instead of the desired polar angle, then the modular polar angle will be 

shifted substantially from the desired polar angle. This is due to the fact that the length of 

the polar plane is of the order of the desired ray spacing. This is illustrated in the Figure 
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2.13 below, where if the azimuthal angle is, 4  ; then polar angles in the range 

24    are essentially geometrically impossible if 
rz   is desired. 

 This can introduce considerable problems with the angular quadrature as 

illustrated in Figure 2.14. Because robust methods of recomputing the quadrature weights 

have yet to be developed, and because the algorithm tends to cluster directions, it is 

currently not possible to obtain a good angular quadrature that is modular and has a 

spacing ratio near one using this method. The modular quadrature error is shown in Table 

2.1 for the S8 level-symmetric quadrature by comparing the analytic values of the 

moments of the unit sphere before and after the angular quadrature is modularized. 

 

Figure 2.13 – Geometric limitation in the choice polar angle 

  

Figure 2.14 – Angular quadrature defined over an octant before and after modularization 
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Table 2.1 – S8 quadrature errors of spherical harmonic moments 

Moment 
Defined Quadrature 

Rel. Error (%) 

Modularized Quadrature 

Rel. Error (%) 




41
4




d  0.0 0.0 

34
4

2 





dx
 0.0 34.0 

34
4

2 





dy
 0.0 34.0 

34
4

2 





dz
 0.0 68.1 

54
4

4 





dx
 0.0 48.4 

54
4

4 





dy
 0.0 48.4 

54
4

4 





dz
 0.0 89.1 

154
4

22 





dyx
 0.0 61.6 

154
4

22 





dzx
 0.0 36.6 

154
4

22 





dzy
 0.0 36.6 

74
4

6 





dx
 0.0 54.5 

74
4

6 





dy
 0.0 54.5 

74
4

6 





dz
 0.0 35.5 

354
4

24 





dyx
 0.0 74.2 

354
4

24 





dzx
 0.0 7.6 

354
4

42 





dyx
 0.0 74.2 

354
4

42 





dzx
 0.0 73.1 

354
4

24 





dzy
 0.0 7.6 

354
4

42 





dzy
 0.0 73.1 

1054
4

222 





dzyx
 0.0 14.4 

 

 To address this issue, the way in which the polar angle is determined is modified 

so that an iteration is performed that adjusts the axial ray spacing Δz, typically reducing it, 

until the modular polar angle, θ, is found that most closely agrees with the desired polar 

angle, θ0. This process can cause the number of rays for different directions to vary 
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considerably, but insures that the modularized angular quadrature is accurate. In Table 

2.2, the improvement in the angular quadrature using this method is compared to the 

same quantities shown in Table 2.1 previously. 

Table 2.2 – S8 modular quadrature errors for preferred polar angle 

Moment Modularized Quadrature Rel. Error (%) 




41
4




d  0.0 

34
4

2 



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dx
 0.0 
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4
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dy
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4
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dz
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4

4 

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dx
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4
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dy
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4
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dz
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4
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dyx
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dzx
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
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dx
 0.8 
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4
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dy
 0.8 

74
4
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


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dz
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354
4

24 



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dyx
 0.3 
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24 



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dzx
 4.4 

354
4
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
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dyx
 0.3 

354
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42 
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


dzx
 4.4 

354
4
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
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dzy
 4.4 

354
4
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
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dzy
 4.4 

1054
4

222 
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
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dzyx
 0.0 
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 Again the drawback of doing this method is that a larger number of rays are 

required. A comparison of the total number of rays that must be stored and traced is given 

in Table 2.3 for the S8 quadrature and a desired spacing of 0.05 cm. 

Table 2.3 – Comparison of modular rays requirements for different algorithms1 

Angle 
Number of Modular Rays for 

Algorithm 1 (Previous Research) 

Number of Modular Rays for 

Algorithm 2 (This Research) 

1 900 936 

2 1038 1722 

3 1038 1722 

4 1050 1916 

5 1134 1944 

6 1050 1916 

7 917 1571 

8 1044 4122 

9 1044 4266 

10 917 1850 

Total
1
 81056 87860 

 

 From the data in this table it can be concluded that it would be more 

computationally efficient to use the algorithm 1 method because the total number of rays 

is less. Note that algorithm two is only storing half the rays, so the number that must be 

swept is actually double meaning that algorithm 2 produces a set of rays that requires 

roughly 2x the FLOPS to perform a sweep compared algorithm 1. 

 If modular ray tracing is used, then there is a second step in the setup to determine 

the long ray information for the entire problem domain. This information essentially 

makes it possible to connect the modular rays in order to traverse through the entire 

domain. Once the ray tracing is completed, the MOC transport sweeps can be performed. 

As noted at the beginning of this section, the method used to perform a sweep depends to 

some extent on how the ray tracing is performed. The next section describes a few 

methods in which the MOC transport sweep can be performed. 

 

 

 

                                                 
1
 Algorithm 1 stores rays for the whole unit sphere and Algorithm 2 stores rays for just half the unit sphere, 

so the number of rays for each angle is multiplied by 8 and 4, respectively. 
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2.3 Overview of MOC Sweep Algorithms 
This section presents an overview of a few of the MOC sweeping algorithms that have 

been successfully implemented. The description is focused on 2-D for ease of illustration. 

However, there is little that changes between a 2-D sweep and a 3-D sweep because in 

the MOC transport sweep, the fundamental serial operation is sweeping along all the 

segments in a long ray and evaluating Eq. (2.18) and Eq. (2.20). It is important to note 

that some implementations have been developed that formulate and solve a linear system 

for MOC [7], but these implementations have not received widespread application. The 

descriptions of the algorithms here are therefore limited to types of sweeps, rather than 

ways of solving a linear system. Because a linear system is not formed, the solution of the 

MOC transport method by sweeping presents a fundamentally different computational 

kernel than most other applications in scientific computing. 

 In the implementation of any sweeping algorithm, one of the first choices is the 

order in which the long rays are to be swept. Several techniques have been developed for 

performing a 2-D sweep; a few are explained here to highlight the important features 

characteristic of an efficient sweep algorithm. It is not practical to include descriptions of 

all approaches currently in use, since they are too numerous and some have not been 

documented. Nonetheless, the description here will highlight features that are common to 

all efficient sweep algorithms. 

 The first sweeping algorithm described is the very basic one, in which one 

assumes simply that there is some arbitrary set of rays that can be swept in an arbitrary 

manner. This is illustrated by Figure 2.15. 

 

Figure 2.15 – Agnostic sweep algorithm 
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 Because the ordering of rays in the sweep is arbitrary, it is most likely that this 

sweep is probably not optimal. The memory requirements for an arbitrary sweep are 

typically large because the boundary condition would need to be stored for the end of 

each ray, and the ray tracing data would be stored separately for the forward and 

backward direction. If modular ray tracing was not used, then an exact specular reflective 

boundary conditions cannot be treated, and some approximation will be required at the 

boundary which could affect the solution accuracy. Furthermore, it is difficult to 

conclude anything about the efficiency of the convergence of this type of sweep, since 

some rays could be swept and then rays that might update those boundary conditions will 

not be swept until sometime later. Additionally, it is expected that an arbitrary sweep 

algorithm will not have good cache coherency. A long ray may have its ray tracing data 

loaded into cache while it is swept for one direction, and then replaced by data for rays in 

another direction. At some later time, the data for long ray would have to be reloaded 

(albeit in the reverse order) in order to sweep in the reverse direction. Obviously, from 

the cache efficiency standpoint, a more efficient sweep method would be to sweep both 

forward and backward directions of a ray while the data resides in cache. 

 The oldest sweep algorithm is the cyclic method [30], which provides a method of 

sweeping the rays that is basically motivated by two fundamental observations about the 

problem. The first condition is that the problem has reflective boundary conditions. The 

second condition is that the ray tracing data is built modularly. A reflective boundary 

condition is typical of single assembly 2-D calculations, whereas full core calculations 

have at least some vacuum boundary conditions. Given these two conditions, the first 

obvious way to improve the efficiency of the ray sweeping is to sweep over a cycle or 

loop of rays. The benefits of sweeping a loop, rather than from one surface to another, is 

a reduction in memory requirements for storing the angular flux boundary condition, 

since it is computed on the fly at each surface. This will improve convergence because 

the angular flux boundary condition is updated in a Gauss-Seidel like fashion. The figure 

below illustrates how a cyclic ray is swept. 
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Figure 2.16 – Cyclic ray sweep algorithm 

 A potential disadvantage to this kind of sweeping is poor cache coherency. This is 

because each ray represents two directions of flight, so its ray tracing data is simply 

reversed for the forward and backward direction. If the cyclic rays are traced first for the 

forward direction and then, for the backward direction, the ray tracing data is essentially 

loaded into and out of the cache twice, which can diminish the performance and increase 

the time to perform a sweep by nearly a factor of two [42]. 

 This leads to the second idea of how to sweep rays, which probably seems more 

obvious to the procedural programmer, and that is to loop over the angles and then within 

each angle loop over all the long rays. The advantage of this kind of sweep is that it 

becomes easier to order all the associated data structures to have good cache coherency. 

If modular ray tracing is being performed, then the construction of the long ray can be 

done once and swept for both the forward and backward direction (e.g. a bi-directional 

sweep), further improving performance through better cache coherency. The figure below 

illustrates how the rays can be swept sequentially. 
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Mono-Directional 
 

Bi-Directional 

Figure 2.17 – Sequential sweep algorithm 

 The disadvantages for this kind of sweep ordering are basically the opposite of the 

advantages of the cyclic sweep. Namely, there is increased memory storage when there 

are reflective or periodic boundary conditions, and the convergence of the angular flux 

boundary condition will be more like Gauss-Jacobi than Gauss-Seidel. 

 Thus, the two approaches for sweeping the rays, either cyclically or a 

sequentially, have opposing advantages and disadvantages, and the most efficient 

algorithm would be an optimal compromise of the two methods. This type of algorithm is 

illustrated below. 

 

Figure 2.18 – Bi-directional surface-cyclic sweep algorithm 

 The surface-cyclic sweep algorithm is better able to allow for cache coherency 

than the cyclic algorithm, most notably because the total track length will be smaller and 
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thus more likely to fit within the lowest level of cache. This has the benefits of the 

sequential bi-directional sweep, and if there are reflective boundary conditions, then it 

also has the benefit of having to store fewer elements of the angular flux boundary 

condition. Also, since these elements will only be stored for one surface of the domain, it 

therefore has similar advantages as the full cyclic sweep. 

 Of the various sweep algorithms discussed here, the sequential bi-directional 

sweep is chosen as the basis for the optimizations and kernel implementation described in 

the next chapter and Chapter 4, which describes the parallelization method. The reason 

for choosing this algorithm is not readily apparent from the discussion in this chapter, but 

the relative merits of the sequential bi-directional sweep should become clear in the 

following chapters. 
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Chapter 3  

3-D MOC KERNEL IMPLEMENTATION 

This chapter describes how the equations derived in Chapter 2 are implemented within a 

programming model. The goal of this chapter is to establish the basis for a serial 3-D 

MOC kernel that can then be parallelized. Details are also given about some up-front 

optimizations that have been used previously in 2-D MOC kernels and leveraged in the 

3-D MOC kernel. The first section of this chapter shows how the equations of Section 2.1 

can be manipulated algebraically to minimize the number of floating point operations 

(FLOPs). Section 3.2 describes how the exponential function that must be evaluated can 

be pre-tabulated, to further improve the computational performance of the kernel. Finally, 

the detailed step-by-step procedure of the 3-D MOC kernel is presented. 

3.1 Algebraic Optimization of Discretized MOC Equations 
For the actual implementation of a MOC kernel there is some algebraic optimization that 

may be done to reduce the number of floating point operations. The approach described 

here is well known in the research community, and is shown here in detail so that there is 

no ambiguity about the order of operations in the kernel. The technique is based on the 

idea of using algebra to eliminate terms from some equations which essentially removes 

operation in inner loops to the outer loops. This approach makes several assumptions 

about the data available and the approximations used to derive the discrete equations; 

these are consistent with the derivation of Section 2.1. The derivation begins by repeating 

the relevant discretized equations from Section 2.1 solved by the MOC kernel: 
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Eq. (2.18) – MOC transmission equation 
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Eq. (2.20) – Equation for segment average angular flux 
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Eq. (2.21) – Equation for region average angular flux 
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Eq. (2.23) – Equation for region average scalar flux 
 

 Traditionally, for reactor applications it is sufficient for the MOC kernel to just 

update the scalar flux in all regions. Since this is ultimately the quantity of interest to be 

updated for the solution, the following steps will optimize the calculation for the scalar 

flux. It is noted that the evaluation of the transmission equation represents the operation 

performed in the inner most loop. 

 First is the definition of an intermediate quantity taken to be the angular flux 

difference across a segment. 
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kmgi    Eq. (3.1) 

This implies the following: 
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Now inserting Eq. (2.18) into Eq. (3.1) so it can be rewritten in terms of 
in

kmgi ,,,  gives: 
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 Eq. (3.2) and Eq. (3.3) then replace Eq. (2.18) and have removed at least 1 FLOP 

from the inner-most loop. Another useful definition is to define a "reduced" fixed source 

for the region given as:  
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  Eq. (3.4) 

 It is noted here that by dropping the angle index, an isotropic source has also been 

assumed, so this will not apply to MOC kernels that explicitly treat sources that are 

higher order in angle or space. Substituting Eq. (3.4) into Eq. (3.3) allows 
giq ,
 to be pre-

computed removing a division operation from the inner-most loop and also removing the 

angle dependence of the term. Rewriting Eq. (3.3) with Eq. (3.4) gives: 
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 Next, the focus is turned to Eq. (2.20) and Eq. (2.21). Substituting Eq. (3.1) and 

Eq. (3.4) into Eq. (2.20) gives:  
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Substituting the above into Eq. (2.21) and rearranging leads to: 
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The next operation is based on two observations about the ray tracing. In the case of 

modular ray tracing, and in general when there is a uniform ray spacing, the segment 

cross sectional area will only be a function of angle, and therefore: 

.,kmm AA    Eq. (3.8) 

Additionally, the ray segments must be adjusted to preserve region volumes, so the 

following should always be true: 
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Eq. (3.9) 

Substituting the above into Eq. (3.7) then gives: 
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Finally, inserting Eq. (3.10) into Eq. (2.23) gives: 
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The figure below outlines the procedure in which the sweep can now be performed more 

efficiently. For notational convenience, the following expressions are also defined: 
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Figure 3.1 – Iterative sequence for optimized equations 

 By rewriting the equations this way the overall number of FLOPs required to 

evaluate the MOC equations is reduced by approximately 70%. 

For group g: 

1. Evaluate Eq. (3.4) for all regions 

2. Loop over all angles 

a. Loop over all long rays in angle m 

i. Loop over all segments in long ray 

1. Evaluate Eq. (3.5) in forward direction 

2. Accumulate 
d

kmgi ,,,  into temporary for 

Eq. (3.12) for forward direction. 

3. Evaluate Eq. (3.5) in backward direction 

4. Accumulate 
d

kmgi ,,,  into temporary for 

Eq. (3.12) for backward direction. 

ii. Accumulate 
mgimm Aw ,,̂  into temporary for Eq. (3.13) 

3. Evaluate Eq. (3.14) for all regions 
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3.2 Tabulated Linear Interpolation of the Exponential 

Function 
Another well-known optimization of MOC kernels is to tabulate the exponential function 

or more specifically, 1-exp(x), since this is the term that appears in Eq. (3.5). In previous 

work [43], the tabulation error and speedup from using the table with various forms of 

interpolation were investigated. This work is replicated here and similar results are 

obtained. For the evaluation of the exponential function, the table with linear 

interpolation is used, since this should be the most efficient type of table evaluation as 

suggested in [43]. In the characteristics equation the argument for the exponential 

function is kmigit s ,,,, . The total cross section and segment length will always be 

positive, so the argument to the exponential function will always be less than or equal to 

zero. The value of the exponential function for negative real numbers is shown next: 

 

Figure 3.2 – Range of values of exponential function in characteristics problem 

 In this figure it is noted that the value of the exponential function changes very 

little in magnitude (< 1.e-4) beyond -10.0. Therefore, the range of interpolation is chosen 

to be  0,10x . The interpolation error can also be predetermined as a function of the 

number of intervals in the table. Generally, as small a table as possible is best so that it 

can remain completely in the L1 cache, which has the fastest memory access times. The 

error introduced from the linear interpolation table lookup was evaluated numerically and 
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bounded by theory; these errors are shown in Figure 3.3, which is consistent with the 

results of [43]. 

 

 

Figure 3.3 – Error of linear interpolation of exponential function 

 The performance gain of the table evaluation over evaluation of the intrinsic 

function is shown in Table 3.1. This performance gain can be attributed to trading 

floating point operations with memory accesses. As long as the table is capable of 

residing in fast memory, the number of processor clock cycles for a memory access is of 

the same order as that required to perform a FLOP, and therefore a performance 

improvement will be achieved. This was verified using the measurement system 

described in Chapter 5, with the GNU 4.6.3 Fortran compiler and -Ofast optimizations. 

The test consisted of 300 random accesses to the table and was averaged over 100,000 

samples and by using the table the number of FLOPs was reduced by roughly an order of 

magnitude, while a 76% reduction in time was observed. 

Table 3.1 – Performance gain from table evaluation of the exponential function 

 Intrinsic Exponential 

Function 

Table look up with Linear 

Interpolation (1000 intervals) 

Time 1.42 s 0.334 s 

FLOPS 1.051e9 2.414e8 
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3.3 Anatomy of the 3-D MOC Kernel 
In this section, the detailed algorithm for the serial 3-D MOC kernel is described. This 

serial algorithm is the basis for the extension to a parallel algorithm in Chapter 4 and the 

performance analysis of Chapter 5 and Chapter 6. Functionally, the kernel performs the 

operation shown by Eq. (3.15). This is to serve as the transport sweep at the heart of the 

overall eigenvalue iteration, as shown in Figure 3.4, which is valid for any transport 

method. The procedure by which the MOC kernel performs the transport sweep is shown 

in Figure 3.5. 

         .,, 11 
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g
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g
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gg qf  
 Eq. (3.15) 

 

Figure 3.4 – Basic algorithm for source iteration 

 

While not converged 

1. Compute total fission source 

2. Loop from group 1 to G 

a. Compute fission source for group g 

b. Add in-scatter source to fission source 

c. Add within-group scattering to source 

d. Evaluate Eq. (3.4) 

e. Evaluate Eq. (3.15) 

3. Update keff 

4. Check if solution is converged 
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Figure 3.5 – 3-D MOC kernel serial algorithm 

 The first step in this algorithm is to use the modular ray data to determine the 

spatial region index, segment length, and total cross section sequentially by segment for a 

single long ray from one end of the ray to the other. This data is stored into local 1-D 

arrays. Next, the segment length and cross section are used to evaluate the exponential 

function for all segments along the ray. Then a loop is performed over all the segments 

on the long ray, and the MOC equations, Eq. (3.3) and Eq. (3.12) are evaluated. Once all 

the long rays have been swept within a given angle, the sums accumulated in each region 

for Eq. (3.12) are scaled and accumulated based on Eq. (3.13). The final step is to 

evaluate Eq. (3.14) for all regions once the loop over all angles is completed. This is 

essentially steps 2 and 3 in Figure 3.1. Each of the steps of Figure 3.5 can be thought of 

as a different operational component, or microkernel, of the overall 3-D MOC kernel. 

These components are given the following monikers as shown in Table 3.2 for use in 

discussion and equations in subsequent chapters. 

 

 

1. Loop over all angles 

a. Loop over all long rays in angle 

i. Order the modular ray data for a complete long ray 

ii. Evaluate the exponential function for all segments 

in the long ray 

iii. Load incoming boundary conditions for each end of 

ray 

iv. Loop over all segments in the long ray 

1. Evaluate Eq. (3.5) in forward direction 

2. Accumulate 
d

kmgi ,,,  into temporary for 

Eq. (3.12) for forward direction. 

3. Evaluate Eq. (3.5) in backward direction 

4. Accumulate 
d

kmgi ,,,  into temporary for 

Eq. (3.12) for backward direction. 

v. Store outgoing boundary conditions for each end of 

ray 

b. Accumulate 
mgimm Aw ,,̂  into temporary for Eq. (3.13) 

c. Update all incoming boundary conditions 

2. Evaluate Eq. (3.14) for all regions 
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Table 3.2 – Components of 3-D MOC kernel 

Algorithm Step Name of micro-kernel Description 

i build Order the modular ray data sequentially to construct 

data for a single long ray 

ii exp Evaluate exponential functions for kmigit s ,,,,  

values of each segment in long ray. 

iii and v BC Load and store long ray boundary conditions in 

global memory 

iv MOC Evaluate MOC equations Eq. (3.5) and Eq. (3.12) 

b scal Scale region-wise flux sums by angular weight using 

Eq. (3.13) 

c BCUp Update all incoming boundary conditions  

2 flux Compute the scalar flux using Eq. (3.14) 

 

 



56 

Chapter 4  

PARALLEL ALGORITHM FOR SOLVING 3-D 

METHOD OF CHARACTERISTICS 

In this chapter the parallelization is described for the 3-D MOC kernel shown in Figure 

3.5 from the previous chapter. The general approach is to perform domain decomposition 

on each of the variables of the phase space in the transport equation. Additionally, some 

parallelism is implemented, which is specific to the discretization required for the MOC 

solution of the transport equation. Before the approach to the parallel decomposition is 

described in detail, some basic concepts of parallel computing are introduced. Finally an 

overall summary of the parallel algorithm is given. 

4.1 Basics of Parallel Computing 
The primary models of architecture in parallel computing are shared and distributed 

memory. In the shared memory model, it is assumed that all parallel processes have 

access to the same memory. The most common implementation of this model in scientific 

computing is OpenMP [44] and generally the term thread is used to refer to the different 

parallel processes, although there are other implementations that are also commonly used. 

In the distributed memory model each parallel process is assumed to have its own 

memory separate from other processes, and if different processes require the data from 

another process, it is communicated via message passing over a network. The most 

common implementation of the distributed memory model is MPI [45], although there 

are other implementations of this model as well, such as co-array Fortran. There is also a 

third model called the hybrid model, which is a combination of distributed and shared 
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memory models, where a small set of processors may have shared memory and be 

connected to other distributed sets of processors. 

 Most of the high end parallel computers today use the distributed memory model 

or a hybrid model, and it appears that the hybrid model will continue to be characteristic 

of high performance computing architectures through exascale computing, although the 

shared memory environments on distributed processes may undergo significant 

architectural changes [46]. 

 Other concepts of parallel computing that are important to understand are those of 

partitioning and load balancing. Partitioning is the algorithm by which a domain is 

decomposed. In a decomposed problem, the load balance refers to the amount of work 

given to each process. Generally in parallel algorithms there are synchronization points, 

and if some processors have a disproportionate amount of work, then this can cause other 

processors to wait for those with more work, creating a bottleneck. Therefore, achieving a 

good load balance helps to maximize the performance of almost any parallel algorithm. 

The load balance is determined by the partitioning algorithm, so in parallel algorithms the 

partitioning of the domain is often a critical component to achieving good performance. 

4.2 Decomposition of the Spatial Domain 
 The spatial decomposition is employed using a distributed memory model. This is 

necessary to alleviate the memory burden required by full core problems [7]. The basic 

idea behind the spatial decomposition is to divide the full core problem into enough 

spatial domains such that each domain is of a size that is manageable for a single process. 

In order to implement spatial domain decomposition, the principal issue is the overhead 

in communicating the boundary condition information across the spatial subdomain 

boundaries. This is evident in Eq. (2.18) and illustrated in Figure 4.1 for a 2-D domain. 
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Figure 4.1 – 2-D sweep with domain decomposition 

 Unless approximations are introduced, the characteristic rays must be directly 

connected across these boundaries, in order to transfer the interface angular fluxes. 

Furthermore, because the incoming boundary condition must be stored on all surfaces 

shared between parallel subdomains the bi-directional sequential sweep algorithm 

illustrated in Figure 2.18 would be the preferred sweep algorithm in a given spatial 

subdomain. Another detail of this decomposition is the order by which the subdomains 

may be traversed during a single iteration. In the work here, the subdomains are allowed 

to perform their local sweeps simultaneously with all other subdomains. This is 

essentially equivalent in concept to a block Jacobi type iteration scheme. The KBA wave 

front algorithm [16] could also be used instead, which would have better convergence 

properties, but the block Jacobi scheme was chosen to be studied first since it will 

maximize parallelism. By allowing the subdomains to solve their local problems 

simultaneously, it fundamentally changes the iteration scheme, and therefore the rate of 

convergence when compared to the serial iteration. Interior subdomains will not have the 

same boundary condition as the serial problem until it has been communicated through 

all other subdomains between the interior subdomain and the problem boundary. This is 

also illustrated by Figure 4.1. 

 When choosing the optimal spatial decomposition, it is important to consider the 

advantages provided by modular ray tracing, which imposes a virtual structured grid, 

in

kmgi

out

kmgi ,,,,,,  
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which is Cartesian in the case of LWRs. A direct connection of rays at the interfaces of 

this structured grid is also guaranteed, so there are no further approximations that are 

introduced. This was realized in previous work [47] on the parallelization of 2-D MOC 

solvers for full core problems where the modular geometry grid for the modular ray 

tracing was used as the basis for the spatial decomposition. Furthermore, the spatial mesh 

description within each modular geometry, or element of the grid, is relatively 

unrestricted and there is no significant limitation as to the complexity of the geometry 

that may be modeled. By choosing a decomposition centered on modular geometry, 

different locations in the grid are likely to have the same geometric description, and 

therefore each domain is likely to have the same amount of work, which facilitates load 

balance. Second, algorithms for partitioning a structured Cartesian modular grid are 

simpler to develop and implement. For these reasons the modular grid is ideal for use in 

decomposing the problem. 

 There are other considerations for the spatial decomposition that should help to 

achieve the best possible load balancing and minimization of communication time. For 

example, it is important for each partitioned subdomain to have a near optimal surface to 

volume ratio, since the amount of work is proportional to the volume, and the amount of 

communication is proportional to the subdomain surface area. Spatial subdomains are 

also restricted to only having one neighboring subdomain on each face, which minimizes 

the number of messages that must be used to communicate the boundary conditions. 

 A partitioning algorithm was developed based on the Morton, or Z-order, space 

filling curve [48]. Several types of space-filling curves exist, and the Morton curve was 

chosen primarily because of the simplicity with which it could be implemented. The 

Morton curve is pictured below in Figure 4.2 for 2-D and 3-D. Space filling curves 

usually have the advantage of being naturally hierarchical, and thus they can be easily 

represented by a tree data structure and recursive algorithms. They also insure that at any 

level within the hierarchy, the numbering will be continuous within each subdomain. To 

accomplish the partitioning, a tree data structure similar to a k-d tree or partially filled 

oct-tree was implemented and for the purposes of discussion it will be referred to as a 

Z-tree. 
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Figure 4.2 – Morton (Z-order) curve of the 2nd order in 2-D (left) and 3-D (right)2 

 The Z-Tree essentially determines a global indexing for the modular geometry 

mesh such that two domains that are geometrically close also have index values that are 

relatively close numerically. Furthermore, the indexing within a subdomain will be 

continuous. The other thing to note about the space filling curves is they are typically 

only defined in Cartesian space on grids with dimensions of 2
n
. 

 Since the generic reactor problem is not likely to have this kind of grid, equations 

for these curves should not be used directly, since it will create a non-contiguous 

numbering. The Z-tree generates the indexing by taking grid dimensions in x-, y-, and z-

dimensions and dividing this grid in half along each direction, e.g. binary spatial 

partitioning. If a grid dimension is odd then the extra grid node is placed to the "right". A 

particular dimension (e.g. x, y, or z) of the grid is only split under certain conditions as 

well. If the aspect ratio compared to the smallest dimension for any direction is greater 

than or equal to two, then only those directions will be divided, thus leading to domains 

that have a near optimal surface area to volume ratio. If the grid is a cube of dimension 2
n
 

then the indexing is equivalent to that of the Morton curve. The figures below illustrate 

how some simple domains are subdivided by this partitioning algorithm. 

 

                                                 
2
 Image from Wikipedia article on Z-order curve 
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Figure 4.3 – Basic Z-Tree indexing and partitioning 

 

 

Figure 4.4 – Z-Tree partitioning for odd-sized grids 

 

 

Figure 4.5 – Z-Tree partitioning for grids with high aspect ratios 

 For the reactor problem, the Z-Tree must also be able to handle grids with 

irregular outer boundaries, as depicted in Figure 4.6. This is achieved by first determining 

the indexing for the full rectangle (or cuboid in 3-D) and then performing a "trim" 

operation to remove a selected range of i, j, k grid coordinates and renumber the 

remaining grid points. This operation is illustrated in Figure 4.7. 
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Figure 4.6 – Possible 2-D grid with irregular outer boundaries 

 

 

Figure 4.7 – Z-Tree trim operation 

 Once the grid has been converted to a Z-tree and indexed, it is a relatively 

straightforward to partition. Currently, the partitioning is only performed at each level of 

the tree to ensure that nearly equal size domains and good surface area to volume ratios 

are achieved. This is also done so that the partitioning ensures that there is only one 

neighbor per face on the subdomain. It should be noted that this is not the only way to 

partition the grid, and that this approach is chosen out of simplicity. Other approaches are 

possible and could include using different space filling curves, or requiring that the 

number of parallel domains be an integer factor of the total grid volume. The subdomain 

volumes could then be sized from the remaining prime factors of the overall grid volume 

after division by the number of parallel domains. 

1 2 3 4 5 6 7

Trim (2:2,1:1:,1:1)
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 The communication of the boundary conditions is implemented using MPI_Isend 

and MPI_Irecv, which are non-blocking point-to-point communication operations. 

Individual messages are sent for all rays on a given face for a given angle and energy 

group. Both send and receive are initiated as soon as the sweep for a given angle has been 

completed. Because the communication is non-blocking the process will continue 

sweeping the other angles until there is no other work it can do. As will be shown in later 

chapters, this provides for better scaling, since most of the communication overhead can 

be hidden. An illustration of the timeline for execution of two processors with different 

subdomains sharing a boundary is shown in Figure 4.8. 

 

 

Figure 4.8 – Sequence diagram for two processes executing spatially decomposed 
3-D MOC kernel in parallel 

 It should also be noted that other communication routines are required in the 

computation of the eigenvalue and convergence criteria. Specifically, a reduce operation 

is required in the eigenvalue calculation to compute sums or integrals over space. This is 

presently implemented with an MPI_Allreduce and is not considered in the parallel 

performance of the MOC kernel. 
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4.3 Decomposition of the Angular Domain 
 The angular decomposition is naturally parallel, since each direction can be swept 

independently. The only coupling of the solution in angle occurs within the scattering 

source, which requires integration over angle, and reflective boundary conditions. The 

angular decomposition is implemented using a distributed memory model, since this will 

help to alleviate the additional memory burden of storing the angular flux boundary 

condition incurred through the spatial decomposition. 

 There are generally two types of communication required of the 3-D MOC kernel 

for the angular decomposition. The first is a reduction operation for the computation of 

the scalar flux defined by Eq. (2.23). This operation is presently implemented using 

MPI_Allreduce, which requires the communication of a vector of the size of the number 

of discrete spatial regions in the subdomain. This operation is a collective operation and 

is almost always blocking. Therefore, it generally incurs more overhead, especially in the 

case of poor load balancing, and is known to have limited scalability. However, this 

should not pose a significant problem given that the expected number of angular domains 

is generally less than 50. 

 The problem posed for the partitioning of the angular domain is similar to that of 

the general partitioning problem within computer science. To partition the angular 

domain, first a weight is assigned to each discrete angle. This weight, which should be 

representative of the amount of work associated with this angle, is taken to be the ratio of 

the number of modular rays for the angle to the sum of the modular rays over all angles. 

Once the weights for all angles are determined, the angles are assigned to the various 

subdomains. The process by which the angles are assigned to each angular subdomain is 

based on a "greedy" algorithm, whereby the subdomain whose angles have the smallest 

sum of weights gets the angle with the largest weight from the set of angles still to be 

assigned to a subdomain. This process is also illustrated in Figure 4.9. 
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Figure 4.9 – Greedy algorithm for angular partitioning 

 The other type of communication overhead that may be needed for the angular 

decomposition is to communicate the boundary condition on a surface, specifically for 

the case of reflective boundary conditions. The greedy algorithm used to partition the 

angles does not guarantee that angles that will reflect into one another on a given surface 

are assigned to the same process. Thus, after the angles are assigned, one must check if 

there is a reflective boundary on the spatial domain. If a reflective boundary exists and 

the reflected angle is not on the same process as its complementary angle, then the 

boundary conditions will need to be communicated on this surface. The model for this 

communication is identical to that required by the spatial decomposition described in the 

previous section (4.2). Figure 4.10 shows the partitioning of the angular domain for the S8 

quadrature using 1 cm
3
 ray tracing modules. The quadrature has 10 directions per octant 

and only half the unit sphere is stored, so there is a total of 40 discrete directions. 



66 

 The figure shows the minimum relative work and maximum relative work on all 

domains for the given partition. It also shows the load imbalance for the partitioning and 

the partitioning efficiency computed as shown by Eq. (4.1) and Eq. (4.2), respectively; 

where W


 is a vector of length Nd and describes the distribution of work over the number 

of domains, Nd. 

 
 

,
max

min
1Imbalance Load

W

W




  Eq. (4.1) 

 
.

max
EfficiencyPartition 

1
W

WNd 




  Eq. (4.2) 

 

Figure 4.10 – Partitioning of rays generated from S8 quadrature and 1 cm3 ray tracing module 

4.4 Decomposition of the Characteristics Domain 
 The ray decomposition involves parallelizing the loop over the long rays and the 

principal parallel challenge is dealing with the potential load imbalance issues since some 

rays are very long and others are very short, as illustrated in Figure 4.11. 
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Figure 4.11 – Potential load balancing issue with rays 

 The ray decomposition is implemented using a shared memory model (e.g. 

OpenMP). For this decomposition, the main overhead comes from having to evaluate Eq. 

(3.12), which is now being executed by multiple threads. The approach implemented is to 

have each thread compute the partial sums, and after all long rays in all angles have been 

swept, a reduction operation is performed to sum the values accumulated on each thread 

to the master. For the reduction operation, a vector that is the length of the number of 

spatial regions, essentially storing mgi ,,̂  on the right hand side of Eq. (3.13), is allocated 

to two dimensions with the outer dimension being the number of threads. This is 

essentially making the variable private to each thread, although it is shared, and avoids 

the need to use a critical section to avoid race conditions when evaluating Eq. (3.12) 

inside the parallelized loop. Consequently, the reduction over threads is moved outside 

the loop over angles and is performed prior to the reduction operation required by the 

angular decomposition. 

 A few additional details are related to implementation, rather than the equations 

that must be solved, that can be responsible for some overhead in the parallelization. The 

first is the overhead for creating and destroying threads when entering and exiting the 

threaded region of the MOC kernel. In this implementation the parallel region is defined 

over the whole MOC kernel to minimize the overhead for creating and destroying 

threads. However in doing so, this creates an issue in having to create synchronization 

points or single thread constructs outside of the parallelized loop. A barrier or 

synchronization point is required prior to updating the boundary condition (step c of 

Figure 3.5). This, along with the reduction operations for rays and angle and computation 

of the scalar flux, also only need to be performed by one thread. 

 The potential load balance issues are minimized by using the dynamic scheduling 

feature of OpenMP to distribute the rays dynamically among the threads. Although the 

Relatively short ray

Relatively long ray
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rays could be distributed statically onto each thread by using the number of segments in 

each ray as a weight, the former was chosen for ease of implementation. Figure 4.12 

shows the load balancing of OpenMP’s dynamic scheduler for a 2-D MOC assembly 

sized problem. 

 

 

Figure 4.12 – Partitioning of Long rays with OpenMP dynamic scheduler 

4.5 Summary 
Figure 4.13 illustrates the method in which the whole problem is decomposed by space, 

angle, and ray. The problem could also be decomposed in energy, although that was not 

studied in this work. The serial 3-D MOC kernel described in Figure 3.5 is updated for 

the parallel 3-D MOC kernel with space, angle, ray decomposition and shown in Figure 

4.14. 
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Figure 4.13 – 3-D MOC parallel decomposition scheme 

 

Figure 4.14 – 3-D MOC kernel parallel algorithm 
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Chapter 5  

PERFORMANCE BOUNDS MODEL DEVELOPMENT 

AND VALIDATION 

The focus of this chapter is to detail the development of a theoretical model to predict the 

performance and execution time of the 3-D MOC kernel, given some basic information 

about problem size and hardware characteristics. This chapter first describes a conceptual 

model for the target computer architecture. The general equations to predict the execution 

time and computational performance are then developed based on this model. The 3-D 

MOC kernel implementation is then examined in detail, to provide upper and lower 

bounds on expected operation counts, which provide the coefficients in the performance 

model. The last section of the chapter focuses on the experimental validation of the 

performance model and theoretical upper and lower bounds of the kernel’s operation 

counts. 

5.1 Architecture of High Performance Compute Clusters 
The target architecture assumed for this analysis is based on the common characteristics 

of compute clusters for high performance computing. In general, the term cluster refers to 

several compute nodes that are connected together via a network. This is illustrated by 

Figure 5.1. 
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Figure 5.1 – Model cluster architecture 

 Frequently, clusters consist of commodity parts; for example: the CPU, 

motherboard, RAM and network. On a given node, the architecture may vary 

significantly, and may continue to evolve through exascale computing as discussed in 

Section 4.1. The model architecture for the node assumes only that there is some number 

of symmetric multi-processors (SMPs) on a node and that they share global memory. A 

cache memory hierarchy is also assumed on each processor. The node architecture is 

illustrated in Figure 5.2. 

 

 

Figure 5.2 – Model node architecture 

 This model architecture assumes nothing about how the different nodes are 

physically connected or the underlying hardware used to connect them. Furthermore, the 

model architecture does not specify certain details of the node architecture, such as the 

number of floating point units or processors, number of levels of cache or how processors 

might share these resources. In Table 5.1 the hardware properties that are relevant to the 

performance model of Section 5.2 are defined. 
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Table 5.1 – Model architecture hardware performance properties 

Symbol Name Example Units Meaning 

C Clock Speed cycles/s Number of processor clock cycles per unit time 

tf time per FLOP 
cycles/FLOP 

Number of processor clock cycles required to 

execute a floating point instruction 

αj Cache Latency 
ns/access 

Time required to load data onto the processor for 

the j
th
 level of cache 

lj Cache Line 

Size 
bytes 

Largest amount of memory that can be loaded 

into cache at once for the j
th
 level of cache 

αmem Memory 

Latency 
cycles/access 

Time required to load data onto the processor 

from main memory 

αnetwork Network 

Latency 
μs 

Time required to transmit a single packet from 

one node to another 

βnetwork Inverse 

Network 

Bandwidth 

s/MB 

The inverse of the largest message size that may 

be transmitted in a single packet over the 

network. 

5.2 Basic Equations of a Performance Model 
For the performance of an algorithm in scientific computing the conventional metric is 

the number of floating point operations (FLOPs) per unit time; typically this is expressed 

in units of millions of floating point operations per second or MFLOPS
3
. The basic 

equations presented here come from [49]. Eq. (5.1) is the equation that will be used for 

performance. 

.
T

F
P   Eq. (5.1) 

 Here F is the total number of FLOPs executed and T is the execution time. It is 

also often valuable to compare measured performance against the hardware’s theoretical 

peak performance to obtain a fraction of the theoretical peak. The theoretical peak 

performance is defined in terms of the hardware properties of Table 5.1 as: 

.fpeak tCP   Eq. (5.2) 

 In Eq. (5.1) F and T are naturally going to be functions of the problem size. These 

functions are derived in terms of the problem size factors for the 3-D MOC kernel 

detailed in Section 5.3. In general, F is a measure of the number of a given operation, and 

                                                 
3
 FLOPs, with a "s", denotes plural of FLOP (floating point operation) while FLOPS, with a "S", denotes 

FLOPs per second. 
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therefore is solely a function of the algorithm. However, the function for execution time 

is also a function of the hardware properties. A latency-based model for the execution 

time is shown in Eq. (5.3) where the memory access times to each level of the memory 

hierarchy are treated explicitly. 

    .
1

1

11 



 MMLFtT mem

j

jjjF  




  Eq. (5.3) 

 In this equation, α is the memory access time or cache latency, M is the number of 

cache misses at a given level of cache, and κ is the number of levels of cache on the 

machine. L is the number of load operations; where a load operation consists of moving a 

piece of data, such as a word or byte, from memory to a register on the processor. A 

cache miss occurs when a processor attempts to load some data from a given cache level 

and the data is not present in that cache level,. Therefore the processor must retrieve this 

data from a higher level of cache or main memory resulting in a cache miss. 

 As mentioned previously, F is a function of the algorithm. The other terms in Eq. 

(5.3) that are not strictly a function of the hardware are L and M. L is similar to F in that 

it is solely a function of the algorithm. However, the number of cache misses, M is 

somewhat more complicated since, it is strongly influenced by both the algorithm and the 

hardware and typically cannot be known exactly. Therefore, the performance of the 3-D 

MOC kernel will be bounded using reasonable assumptions to provide upper and lower 

bounds for the cache misses. The focus of the next section is to analyze the algorithm 

implemented for the 3-D MOC kernel described in Chapter 3. The objective is to 

determine F, L, and the upper and lower bounds for M; all in terms of parameters that 

describe the problem size for the 3-D MOC kernel. 

5.3 Performance Bounds of 3-D MOC Kernel 
As noted in Section 3.3, the 3-D MOC kernel is quite complex compared to other 

conventional kernels in scientific computing (e.g. matrix-matrix multiplication). 

Therefore, it is advantageous to think of the 3-D MOC kernel as a collection of micro-

kernels. These micro-kernels are listed in Table 3.2. The following section proceeds with 

this taxonomy and develops the detailed expressions for F and L for each component 
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micro-kernel as a function of the problem size. Then Section 5.3.2 lists the assumptions 

used to bound M and develops the expressions for these upper and lower bounds. 

Sections 5.3.1 and 5.3.2 only consider serial execution, so in Section 5.3.3 the list of 

components and expressions for F, L, and M are extended for the parallel model; adding 

terms for the number of parallel domains for each decomposition discussed in Chapter 4. 

5.3.1 Component-Based Description of Kernel 
From the list of micro-kernels in the Table 3.2, the execution time for a single transport 

sweep of the 3-D MOC kernel is expanded as: 

.exp fluxBCUpscalBCMOCbuildsweep TTTTTTTT   Eq. (5.4) 

Similarly, for the expression for the number of FLOPs is expanded as: 

.exp fluxBCUpscalBCMOCbuildsweep FFFFFFFF   Eq. (5.5) 

 The FLOP count for each component can be determined by examining equations 

Eq. (3.3), Eq. (3.12), Eq. (3.13), and Eq. (3.14). In the build component the segment 

lengths are multiplied with the total neutron cross section. This operation is performed 

exactly once for every discrete segment in the problem, so Fbuild = nseg. Next in the exp 

component, a linear interpolation of tabulated values is performed. To compute the table 

index and then perform the linear interpolation requires 3 FLOPs. The exponential is then 

evaluated for every discrete segment in the problem exactly once, and therefore Fexp =

nseg3 . In the MOC component Eq. (3.3) and Eq. (3.12) are evaluated, and since the 

exponential term has already been evaluated, the number of FLOPs to evaluate Eq. (3.3) 

for each segment is 3 and for Eq. (3.12) it is just one FLOP. In Figure 3.5 these equations 

are evaluated twice for each segment, for the forward and backward direction along the 

characteristic ray, and therefore nseg8MOCF . 

 The BC and BCUp components only move data in memory and do not perform 

any FLOPs, so FBC = 0 and FBCUp = 0. Eq. (3.13) scales the partial sums of Eq. (3.12) 

with the angular weights, which requires 2 FLOPs for each discrete spatial region and for 

all discrete angles. Because nangoct,4nang   nangoct.nreg8 scalF  Finally, 
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evaluating the scalar flux as shown by Eq. (3.14) requires 4 FLOPs for each region, and 

therefore nreg4fluxF . 

 To evaluate each component of Eq. (5.4) the number of loads in each component 

must be known as required by Eq. (5.3). Lbuild is discussed last, as it will become evident 

that the memory access patterns here are difficult to generalize for all problems. Starting 

with Lexp, the evaluation of the table first requires that the table index  be determined, 

which requires 2 loads. The segment optical thickness must then be determined which 

requires accessing two coefficients in the exponential table and a location to store the 

evaluated exponential. Again, the table is evaluated once for all segments, so  

Lexp nseg6 . 

 For LBC, the boundary condition for each end of each ray are copied from the 

global data structures to local arrays and then back. Each copy requires 2 loads, so 

nlongray8BCL . The boundary condition update, LBCUp, requires copying the outgoing 

boundary conditions to the incoming boundary conditions for each end of each long ray, 

therefore nlongray4BCUpL . 

 In the solution of the MOC equations, to evaluate a single direction requires 

loading the global region index, the incoming and outgoing angular flux, region source, 

the evaluated exponential term, and performing the partial sum of Eq. (3.12). This results 

in 6 loads, so when evaluating both directions, which is done for all segments, 

nseg12MOCL . When scaling the angular flux for each angle, it requires two loads for 

each region, and one load up front for the weight, so 

nangoct4nangoctnreg8 scalL . Next, for the computation of the scalar flux by 

Eq. (3.14), the region-wise source, volume, and total cross section must be loaded along 

with the scalar flux. In the implementation of this equation the same memory locations 

are used to store gi ,  and gi ,̂ , so a fifth load is not needed. Therefore, nreg4fluxL . 

 In order to quantify Lbuild, it is necessary to locate the starting surface and module 

of the ray. There is then a loop over the modular rays within this long ray, and inside of 

this loop there is another loop over segments in the modular ray. Ultimately, a loop is 

performed over each segment in the problem. However, it is not possible to know a priori 
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how many loads and stores are required in order to move through the modular ray data. 

The number of loads in this part is strongly dependent on the modularity of the problem, 

e.g. the number of modular rays per long ray and the number of segments per modular 

ray. Consequently, the best estimate of the number of loads is going to be a problem 

dependent constant, cbuild, multiplied by the number of segments. In other words, it is 

postulated that the number of loads in the build component is proportional to the number 

of segments. It may also be observed that at as a minimum the region index, the total 

cross section, the segment length, and the optical thickness are loaded for each segment. 

Therefore, it is expected  that cbuild > nseg4 . 

 The number of FLOPs and loads for each component are summarized in Table 

5.2. The ratio of the FLOPs to loads is also shown, which can be used as a metric for the 

computational intensity of the algorithm. The computational intensity is a good indicator 

of the maximum achievable performance of the algorithm, which is independent of any 

computer architecture. 

Table 5.2 – Number of FLOPs and Loads for serial 3-D MOC kernel 

Component FLOPs Loads 

Computational 

Intensity 

(FLOPs/Loads) 

build nseg  nsegbuildc  buildc1  

exp nseg3  nseg6  0.5 

MOC nseg8  nseg12  0.75 

BC 0 nlongray8  0 

BCUp 0 nlongray4  0 

scal nangoctnreg8   
nangoct4      

nangoctnreg8




 ~1.0 

flux nreg4  nreg4  1.0 

Sweep 

(Total) 
nreg4    

nregnangoct8  

nseg12







 

 

nangoct4        

nreg4      

nregnangoct8    

nlongray12  

nseg18









 buildc

 5.0~..0.0  IC  
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5.3.2 Cache Miss Bounds 
In bounding the cache misses for the MOC kernel, several guiding assumptions are 

required. First, the conflict misses and capacity misses are ignored, and therefore cache 

misses refers only to compulsory misses. This assumption is basically equivalent to 

assuming an infinite cache capacity and fully associative caches. 

 For each component the lower bound assumes that there are no cache misses. 

While this will never be observed in practice, except for perhaps trivially small problems, 

it nonetheless provides a useful assumption for the lower bound. Assuming the lower 

bound of cache misses is 0 greatly simplifies Eq. (5.3), and subsequently provides the 

absolute lower bound for the execution time, which will become solely a function of the 

computational intensity shown in Table 5.2. The analysis in Chapter 6 and Section 5.4.6 

of this chapter make use of this assumption to provide insight about the overall efficiency 

expected from MOC kernels regardless of the computer architecture, which is valuable 

when comparing the MOC method to other transport methods. 

 For the upper bound on cache misses, the basic assumption made is that all the 

data operands needed for computation within a given component reside entirely in global 

memory and not in any level of the cache. Again, this is an assumption that will typically 

not be true in practice, since many of the components reuse the same data operands. 

However, this is still a useful assumption to make because it provides a true upper bound 

in assuming the slowest memory access time for all memory accesses. 

 For each component in the kernel the lower and upper bounds of the cache misses 

for the j
th

 level of cache are computed using Eq. (5.6) and Eq. (5.7), respectively: 

,0, jlowerM  Eq. (5.6) 

.,

j

jupper
l

L
M   Eq. (5.7) 
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5.3.3 Parallel Overhead 
This section focuses on the additional operations that are added to the 3-D MOC kernel 

because of the parallel decompositions discussed in Chapter 4. In an efficient spatial 

decomposition, volume-dependent quantities such as nseg and nreg are evenly divided 

over the domains, so long as the modular domains are equivalent. However, the number 

of long rays reduces linearly with the reduction in surface area of the subdomain. 

Consequently, the execution times of each component are reduced by roughly the same 

factor. However, if there is a poor load balance, then execution time becomes a function 

of the max of the problem size values over all spatial domains. 

 For the overhead of the spatial decomposition, the time to update the boundary 

condition, TBCUp, will be reduced by a factor of (pspace)
2/3

, which is related to the reduction 

in surface area to volume when a cuboid region is subdivided. It will also include an 

additional factor for the time to communicate the boundary conditions via the spatial 

decomposition communication scheme. This communication scheme uses point-to-point 

communication. In general, the model for the execution time of point-to-point 

communication is given as a function of the message size, N, and the latency and inverse 

of the bandwidth of the network used to perform the communication. The equation for 

the time to perform point-to-point communication is shown in Eq. (5.8): 

.NT networknetworkcomm    Eq. (5.8) 

 As noted in Figure 4.8, the communication of the boundary conditions occurs 

with multiple messages. A message is sent for each face and each angle, so the message 

size will be a function of the number of long rays of a given angle intersecting a given 

face which may be written as: 

 .,nlongray ifaceiangN space   Eq. (5.9) 

 Typically, the message sizes for different angles and faces will vary considerably, 

so it is difficult to develop a priori an exact expression for Eq. (5.9). However, it is trivial 

to determine this information at run time for a given problem. 
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 Also, one may note that in Figure 4.8 the communication is non-blocking, 

meaning it is overlapped with useful work, and that the last message sent will have the 

least amount of work remaining to hide the communication time. This leads to the 

following modification of Eq. (5.4) to Eq. (5.10) to account for the execution time with 

spatial decomposition. In Eq. (5.10) pspace is the number of decomposed spatial domains 

being executed in parallel, and Tspace replaces TBCUp to account for the time to update the 

boundary condition. Because the overhead of the spatial decomposition is only the 

communication of data and no additional FLOPs are required compared to serial 

execution, Eq. (5.5) is not modified except to account for the number of processors used 

for the spatial decomposition and to remove FBCUp since this is zero. 

,,max
exp

















 space

space

flux

space

scalBCMOCbuild

sweep T
p

T

p

TTTTT
T  Eq. (5.10) 

,
exp

space

fluxscalBCMOCbuild

sweep
p

FFFFFF
F


  Eq. (5.11) 

 
 

.nface
32

space

BCUp

spacenetworknetworkspace
p

T
NT    Eq. (5.12) 

 For the angular decomposition, only those parameters of problem size directly 

related to angle are reduced. This includes nseg and nlongray, but not nreg. The overhead 

from the angular decomposition, as noted in Chapter 4, is an all reduce operation. Since 

this is operation is implemented using MPI_Allreduce its execution time may vary with 

MPI library. Nonetheless, for those algorithms found in the open literature [50], [51] the 

time to perform this operation is reported as either one of Eq. (5.13) or Eq. (5.14), 

depending on the message size. Since the message size for this operation in the 3-D MOC 

kernel is nreg, the algorithm for large message sizes is assumed. This operation also 

requires additional FLOPs, which are also performed in parallel, represented by γ which 

is the computation cost per unit memory. 
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  ,logsmall,All_reduce NNpT networknetwork    Eq. (5.13) 

 .2
1

log2large,All_reduce NN
p

p
pT networknetwork 


   Eq. (5.14) 

 In the angular decomposition the message size is equal the number of regions on a 

spatial subdomain. Eq. (5.10) is then modified as follows to account for the angular 

decomposition, pang, which represents the number of processors used for the angular 

domain. Once again, Eq. (5.5) for the FLOPs of the MOC kernel is not modified except 

to account for the number of processes used in the angle decomposition since the 

additional FLOPs of the reduction operation are included in Eq. (5.14). 
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 Finally, for the ray decomposition only the loop over long rays is parallelized and 

the added overhead is another reduction operation in order to reduce the partial sums 

across threads onto the master thread. The overhead for the reduction over threads adds 

nregrayp  FLOPS per sweep. The evaluation of the execution time, Tray, is also based 

on Eq. (5.3), and the additional number of loads, Lray, for this component is 

nreg2  rayp . Furthermore, the OpenMP routines called at run time have some 

overhead. These routines are typically compiler or machine dependent, and their 

overhead is represented by introducing a new term, TOMP, defined in Eq. (5.20), where the 

subscript refers to the OpenMP directive or construct, and "chunk" refers the chunk size 
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used for the scheduling directive. One may note that, in general, this equation should be 

consistent with the implementation, and there are multiple ways to implement the 

OpenMP parallelism; particularly with respect to the choice of loop scheduling and 

thread synchronization, which can have huge affects on performance. Furthermore, it is 

likely the case that little is known about the supplied OpenMP run time library, 

consequently the various factors in Eq. (5.20) should be determined experimentally for a 

given platform and library. Thus, after introducing the ray parallelism into Eq. (5.15) and 

Eq. (5.16) the final form of the performance model becomes: 
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 Eq. (5.18) and Eq. (5.19) provide a theoretical basis for predicting the 

performance of the parallel 3-D MOC kernel described in Figure 4.14. However, before 

this model can be used with any confidence, it should be validated against measurement 

to ensure that the kernel description and implementation are consistent with the models 

and operation counts described in this section and Section 5.2. 

5.4 Experimental Evaluation of Performance Model 
The source code was instrumented and profiled in order to evaluate the performance 

model developed thus far in this chapter. Instrumenting refers to the process of modifying 

the source code to take a measurement, and profiling refers to the process of collecting 
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time integrated quantities from typical executions of the code. As with any experimental 

measurement, there are several best practices when designing a good experiment and 

collecting accurate measurement data. Some important considerations include 

understanding the effects of instrumentation and the test environment. When a section of 

code is instrumented, it affects how the compiler converts the source code into executable 

code. This can have a considerable impact on the effectiveness of the compiler 

optimizations. Furthermore, the instrumentation code that must be added to collect the 

measurement data requires the use of resources in the computer, and therefore the 

instrumentation incurs its own overhead during execution. If the test machine being used 

to run the instrumented executable is a shared resource, then machine load is also an 

important factor that must be considered in analyzing measurement results. The 

measurement of some quantities is also far easier than others, as will become apparent 

later in the section. Measuring the number of FLOPs can be done with no uncertainty, but 

measuring L1 cache accesses and cache misses can have considerable uncertainty 

because of compiler optimizations and the overhead introduced by the measurement 

itself. In summary, to properly understand measurement data, it is essential to understand 

the above effects. 

 The remainder of this section presents the system used to collect performance 

data, the techniques by which the hardware coefficients listed in Table 5.1 are 

determined, and a description of the test problems used to collect performance data. The 

results from the performance experiments are then analyzed to show that the models of 

Section 5.3 provide reasonable accuracy in predicting the performance of the 3-D MOC 

algorithm. 

5.4.1 Measurement system 
The test machine for the performance model evaluation was sunspear.engin.umich.edu, a 

Linux workstation running Ubuntu 12.0.4. Sunspear’s architecture includes a 4 socket 

motherboard, each having an AMD Opteron
™

 6238. The AMD Opteron
™

 6238 processor 

has 12 cores and 6 floating point units. The architecture of a single socket on the 

Sunspear is illustrated in Figure 5.3. 
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Figure 5.3 – Socket architecture of AMD Opteron™ 6238 on Sunspear 

 The measurements were obtained with only other minimal OS processes running 

concurrently, and therefore the machine had no abnormal or varying loads. For the base 

components of the kernel represented in Eq. (5.4) and Eq. (5.5) the measurements were 

performed using a single core. 

 In all cases, the executables were generated with the GNU 4.6.3 compiler with 

OpenMP and the OpenMPI 1.6 implementation of MPI. Some experiments were run 

without optimization using the -O0 compiler flag, and others were run with optimizations 

using the -Ofast compiler flag. The results indicate which compilation was used to 

generate them. More advanced optimizations were avoided that take advantage of 

advanced machine specific instruction sets, such as Streaming SIMD Extensions (SSE) or 

Advanced Vector Extensions (AVX). Additionally, when measuring the components of 

base 3-D MOC kernel, a separate executable was generated for measuring each 

component so as to restrict the instrumentation to only the component of interest and 

thereby minimize the instrumentation overhead. In the measurements obtained, the data 

analysis includes an adjustment for the overhead from instrumentation, which was 

estimated using the code illustrated by Figure 5.4. 
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Figure 5.4 – Pseudo-code for estimating instrumentation overhead 

 The measurements were obtained using the Performance Application 

Programming Interface (PAPI) library v4.4.0.0 [52]. In addition to other features, the 

PAPI interface provides subroutine interfaces in Fortran for timing a section of code with 

nanosecond precision, and also for counting certain hardware events. The PAPI library 

interfaces with a machine’s OS kernel to read data from processor hardware counters. 

Many modern processors include a dedicated set of registers on the chip for counting 

specified events within the hardware. The PAPI library provides several preset hardware 

events from which a developer can choose to count. They are each given a standardized 

name by the PAPI library. The hardware events that were measured in this study are 

listed in Table 5.3, which has the PAPI preset event name and description. 

Table 5.3 – List of measured hardware events 

PAPI Library Preset Event Name Description 

PAPI_FP_OPS Counts floating point operations 

PAPI_L1_DCA Counts L1 data cache accesses 

PAPI_L1_DCM Counts L1 data cache misses 

PAPI_L2_DCM Counts L2 data cache misses 

 

 It should be noted that the test machine has three levels of cache, although it is not 

possible with the PAPI library to measure cache misses at this level. This somewhat 

n=0 

DO WHILE (elapsed_time < one_second) 

  n=n+1 

  tstart=tic() 

  DO i=1,10000 

    CALL BEGIN_MEASUREMENT() 

    CALL END_MEASUREMENT() 

  ENDDO 

  tstop=toc() 

  elapsed_time=tstop-tstart 

ENDDO 

 

!Average measurements over n*10000 samples 
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complicates the following analysis, but it appears from the results that there is only a 

minimal contribution to execution time from the L3 cache misses. 

5.4.2 Determining Hardware Coefficients 
The hardware coefficients listed in Table 5.1 must be determined to evaluate the 

execution time model of Eq. (5.3). Table 5.4 below shows the methods by which each of 

these values was determined for Sunspear. In general, these procedures may be repeated 

on almost any platform to obtain the necessary values required by the performance model 

presented in the previous sections. Much of the data can be obtained from the machine or 

vendor documentation. However, cache access latencies are typically not reported, and 

therefore micro-benchmarks were used as an alternative to determine these values as well 

as a few others. It is also important to note that some of these values, especially the cache 

access latencies, may encompass a range of values. This is due to the inherent difficulties 

in measuring such quantities, and also due to limitations in the performance model which 

does not necessarily account for all of the hardware on the computer involved in the 

given operation. 

Table 5.4 – Methods used to obtain values of performance model hardware coefficients for Sunspear 

Symbol Name Method used to obtain value 

C Clock Speed Machine/vendor documentation 

tf time per FLOP Computed from machine/vendor documentation with 

some assumptions 

αj Cache Latency Deduced from the Saavedra-Barrera micro-benchmark 

lj Cache Line Size Machine/vendor documentation 

αmem Memory Latency Deduced from the Saavedra-Barrera micro-benchmark 

αnetwork Network Latency OMB MPI Tests from NERSC Trinity Benchmarks 

βnetwork Inverse Network 

Bandwidth 

OMB MPI Tests from NERSC Trinity Benchmarks 

 

 The clock speed of AMD Opteron
™

 6238 is reported as 2.6GHz and the cache 

line size of the machine is 64 bytes for all three levels of cache. The floating point unit 

has two 128-bit floating point multiply accumulators (FMACs). and therefore it can 

complete four 64-bit floating point operations in each cycle. However, since this test does 

not use advanced instruction sets like SSE or AVX it is more likely that each FMAC can 

only execute 2 floating point operations per cycle. Typically it is very difficult to achieve 

the peak FLOPs/cycle during execution unless some detailed information about the 
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specific compiler and target processor is known. Therefore, tf is given a range of values to 

account for the uncertainty of how efficiently the compiler may be able to convert source 

code to the processor’s instruction set. 

 The cache access latencies are determined using the Saavedra-Barrera micro-

benchmark [53]. The basic purpose of this benchmark is to measure how long it takes to 

loop through an array using different strides, and then to repeat this process for arrays of 

different sizes. The resulting output of this benchmark when run on Sunspear is shown in 

Figure 5.5. 

 

 

Figure 5.5 – Saavedra-Barrera benchmark results 

 It is apparent in these results that there are several plateaus that correspond to the 

different access times to the different levels of cache. In some cases there is a range, 

which can result from varying loads on the hardware or be attributed to hardware 

components at work that are not assumed to be present in the model. One other important 

observation about Figure 5.5 is the 4096 B case shows sub-cycle performance. This is not 

physically possible but is observed due to insufficient precision in the timing 

measurements of the benchmark. The first plateau is ~1 cycle, which corresponds to the 

L1 cache as this is the access latency observed for most of the unit stride cases. The next 

plateau is ~8-10 cycles and corresponds with the L2 cache. Beyond this the plateaus are 
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more difficult to discern, but the L3 cache access time is likely between ~20-110 cycles. 

The access time to main memory should be the highest plateau, and for the array sizes 

that were tested this upper asymptote was not reached. The largest arrays had their peak 

access times between ~300-500 cycles, so memory access time is at least 300 cycles, but 

the upper range is not known exactly. The final list of hardware values for Sunspear are 

shown in Table 5.5. 

Table 5.5 – Performance model hardware values for Sunspear 

Symbol Name Value 

C Clock Speed 2.6 GHz 

tf time per FLOP 0.25-1 FLOPs/cycles 

α1 L1 Cache Latency ~1 cycle 

α2 L2 Cache Latency ~8-10 cycles 

α3 L3 Cache Latency ~20-110 cycles 

l1 L1 Cache Line Size 64 bytes 

l2 L2 Cache Line Size 64 bytes 

l3 L3 Cache Line Size 64 bytes 

αmem Memory Latency 300-500 cycles 

αnetwork Network Latency  

βnetwork Inverse Network 

Bandwidth 

 

5.4.3 Test Problem Description 
Four test problems were constructed in order to gather performance measurements. The 

test problems included a basic case, and then three other cases that refine a specific 

component of the mesh, e.g. spatial mesh, rays, and angles. The basic model consists of a 

4x4x4 array of 1 cm
3
 ray tracing modules. Each ray tracing module has 360 flat source 

regions. The S8 quadrature was used with 0.05 cm ray spacing. The fine ray case used a 

0.01 cm ray spacing. The fine angle case used the S10 quadrature, and the fine space case 

had 1440 flat source regions per module. Each run averaged measurements of 105 

sweeps. The problem size parameters for each test case are given in Table 5.6. 

Table 5.6 – Test problem size parameters 

Parameter Default Fine Angle Fine Ray Fine Space 

nreg 23,040 23,040 23,040 92,160 

nangoct 10 15 10 10 

nlongray 1,405,760 2,159,680 3,948,288 1,405,760 

nseg 50,329,088 77,776,384 142,061,056 69,005,824 
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5.4.4 Validation of FLOP and Load Counts 
The executable code was run in serial for the validation of the kernel FLOP and load 

counts. The code was compiled using optimizations because it was observed that the 

number of loads that were measured varied by several orders of magnitude; with the non-

optimized code having more loads. This was investigated for several simple statements in 

the source code. For example, in a statement such as a=b+c, the measurement system 

with optimized code would count two loads and one store, while the non-optimized code 

would measure three loads and three stores. It was also observed that one of the primary 

optimizations performed by the compiler is minimizing load and store operations. 

Therefore, the optimized code was used to more consistently measure the loads based on 

how they were counted to produce the values in Table 5.2. 

 The comparison of measured FLOP and load counts averaged per sweep from the 

four test cases are given in Table 5.7 and Table 5.8, respectively; with the estimated 

theoretical values based on the expressions in Table 5.2 and the problem size values of 

Table 5.6. In general, the measured results in these tables must be adjusted for overhead 

and the adjustment calculation is shown by Eq. (5.21), where Nraw is the raw counts, 

Nsample is the number of measurement samples per sweep, and Cover is the overhead per 

sample for the given metric: 

.oversamplerawadjusted CNNN   Eq. (5.21) 

 The measurement system incurs no overhead in measuring FLOPs (Cover,FLOP = 0), 

so the adjustment of the measured values does not change when counting FLOPs. As can 

be seen from the data, the expressions for the FLOP counts developed in Section 5.3 and 

summarized in Table 5.2 are exact for each component. In terms of the overall number of 

FLOPs per sweep there is a slight difference between measurement and estimated values. 

This is due to the fact that the component description of Eq. (5.5) does not account for all 

FLOPs in the actual routine. However, those FLOPs being ignored are negligible. Thus, 

the analytic expressions for FLOP counts as a function of problem size appear to be 

validated with measurement. 
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Table 5.7 – Comparison of measured and estimated FLOP counts for 3-D MOC kernel 

Operation Case Measured Estimated Rel. Difference 

build 

Default 50,329,088 50,329,088 0.00% 

Fine Angle 77,776,384 77,776,384 0.00% 

Fine Rays 142,061,056 142,061,056 0.00% 

Fine Space 69,005,824 69,005,824 0.00% 

exp 

Default 150,987,264 150,987,264 0.00% 

Fine Angle 233,329,152 233,329,152 0.00% 

Fine Rays 426,183,168 426,183,168 0.00% 

Fine Space 207,017,472 207,017,472 0.00% 

BC 

Default 0 0 0.00% 

Fine Angle 0 0 0.00% 

Fine Rays 0 0 0.00% 

Fine Space 0 0 0.00% 

MOC 

Default 402,632,704 402,632,704 0.00% 

Fine Angle 622,211,072 622,211,072 0.00% 

Fine Rays 1,136,488,448 1,136,488,448 0.00% 

Fine Space 552,046,592 552,046,592 0.00% 

scal 

Default 1,843,200 1,843,200 0.00% 

Fine Angle 2,764,800 2,764,800 0.00% 

Fine Rays 1,843,200 1,843,200 0.00% 

Fine Space 7,372,800 7,372,800 0.00% 

BCUp 

Default 0 0 0.00% 

Fine Angle 0 0 0.00% 

Fine Rays 0 0 0.00% 

Fine Space 0 0 0.00% 

flux 

Default 92,160 92,160 0.00% 

Fine Angle 92,160 92,160 0.00% 

Fine Rays 92,160 92,160 0.00% 

Fine Space 368,640 368,640 0.00% 

sweep 

Default 605,907,578 605,907,456 2e-4% 

Fine Angle 936,196,790 936,196,608 2e-4% 

Fine Rays 1,706,691,194 1,706,691,072 7e-5% 

Fine Space 835,903,610 835,903,488 1e-4% 

 

 Table 5.8 summarizes the load counts for each component. Previously, the 

coefficient cbuild for determining the number of loads in the build component could not be 

determined exactly for the general case. For that reason, these values are back-calculated 

from the measurements obtained for each case, and the average of the cases is 10.46 with 

a standard deviation between cases of 1.07 loads. These values would indicate that 

assuming that the number of loads is proportional to the number of segments is a 

reasonable assumption, provided the modularity of the problem is constant. A value of 

10.5 is used as the assumed value for cbuild for the test problems, which falls in the 
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expected range since it is larger than the theoretical lower bound of 3. The load counts for 

the build component and the integral counts of the kernel are given in Table 5.9. 

Table 5.8 – Comparison of measured and estimated Load counts for 3-D MOC kernel 

Operation Case Measured Estimated Rel. Difference 

build 

Default 528,904,622 nsegbuildc  --- 

Fine Angle 817,008,179 nsegbuildc  --- 

Fine Rays 1,666,736,866 nsegbuildc  --- 

Fine Space 628,680,880 nsegbuildc  --- 

exp 

Default 322,573,693 30,197,4528 -6.39% 

Fine Angle 489,187,877 466,658,304 -4.61% 

Fine Rays 924,320,105 852,366,336 -7.78% 

Fine Space 429,281,428 414,034,944 -3.55% 

BC 

Default 46,801,877 11,246,080 -75.97% 

Fine Angle 107,663,972 17,277,440 -83.95% 

Fine Rays 233,480,800 31,586,304 -86.47% 

Fine Space 36,340,420 11,246,080 -69.05% 

MOC 

Default 631,671,872 603,949,056 -4.39% 

Fine Angle 984,663,869 933,316,608 -5.21% 

Fine Rays 1,823,083,997 1,704,732,672 -6.49% 

Fine Space 862,377,147 828,069,888 -3.98% 

scal 

Default 2,124,028 1,843,200 -13.22% 

Fine Angle 3,403,315 2,764,800 -18.76% 

Fine Rays 2,014,059 1,843,200 -8.48% 

Fine Space 8,445,750 1,843,200 -78.18% 

BCUp 

Default 6,290,129 5,623,040 -10.62% 

Fine Angle 9,633,163 8,638,720 -10.32% 

Fine Rays 17,195,244 15,793,152 -8.15% 

Fine Space 6,390,347 5,623,040 -12.01% 

flux 

Default 95,547 92,160 -3.54% 

Fine Angle 97,549 92,160 -5.52% 

Fine Rays 97,309 92,160 -5.29% 

Fine Space 384,086 368,640 -4.02% 

 

 There appears to be a general trend of under-predicting the number of loads for 

the load counts of the other components listed in Table 5.8. Because this is a systematic 

trend, the cause of this may be due to the way the overhead of the measurement is 

estimated. The predicted loads agree within 10% of the measurement for the exp, MOC, 

ray, and flux components. The difference of measurement and estimated load counts for 

BCUp and scal is notably higher, with the fine space case of the scal component having 

an extremely large difference. It is unclear why this one case has such a large difference, 
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but it may be that the load of the machine was abnormal for that measurement. The BC 

component is consistently and significantly under-predicted. It is very likely that the 

method for estimating the overhead is not valid for this component. Since the component 

represents such a small set of operations (4 loads per measurement), the relative overhead 

is much larger than the number of operations that are expected to be measured. Therefore, 

it was concluded that the resolution of the measurement system is not fine enough to 

accurately obtain measurements for BC component. 

 Table 5.9 shows the measured load counts for the build component and the whole 

kernel, along with the sum of each component. The sum of the measurements for each 

component agrees well with the sum of the estimated loads for each component. 

However, there is a definite bias in the sum of the measurements of each component 

compared to the integral measurement of the 3-D MOC kernel. Similar to the case with 

the FLOP counts, this is likely due to not capturing all the load operations of the kernel in 

the component model of Eq. (5.4). In the case of the load counts, the differences are 

notably higher than they are for the FLOP counts, though the data suggests that 

approximately 5%-10% of the loads that occur within the kernel are not captured with the 

component model. Some of this difference may also be due to the manner in which the 

compiler optimizes the instrumented code. 

Table 5.9 – Comparison of measured and estimated Load counts with cbuild = 10.5 

Operation Case Measured Estimated Rel. Difference 

build 

Default 528,904,622 528,455,424 -0.08% 

Fine Angle 817,008,179 816,652,032 -0.04% 

Fine Rays 1,666,736,866 1,491,641,088 -10.51% 

Fine Space 628,680,880 724,561,152 +15.25% 

sweep 

Default 1,703,277,947 1,453,206,528 -14.68% 

Fine Angle 2,629,365,246 2,245,423,104 -14.60% 

Fine Rays 4,921,813,948 4,098,100,992 -16.74% 

Fine Space 2,204,301,869 1,985,839,104 -9.91% 

Sum of 

components 

Default 1,538,461,768 1,453,206,528 -5.54% 

Fine Angle 2,411,657,923 2,245,423,104 -6.89% 

Fine Rays 4,548,577,055 4,098,100,992 -12.19% 

Fine Space 1,954,089,078 1,985,839,104 +0.70% 

 

 In summary, the measurement system confirms the methodology of estimating the 

FLOP count. The estimated load counts have some non-trivial differences, and it is 
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considerably more difficult in this case to obtain accurate measurements of the number of 

loads. Most of these differences can be attributed to not being able to accurately estimate 

the measurement overhead for all components. However, in the subsequently analyses the 

component model is only used to obtain the integral number of loads for the entire kernel, 

and the differences in the estimated and measured integral load counts is roughly 10%. 

Thus, while the differences between the model and measurement may be quite large for 

some components (80%), the differences for the kernel are considerably smaller. This 

difference in the integral loads will be treated as an uncertainty in the number of loads, 

since the root cause is an uncertainty in the measurement overhead. Fortunately, this 

uncertainty is bounded by the upper and lower cache miss values, and so this 5%-10% 

difference in the integral counts should be acceptable for providing an upper and lower 

performance bound of the 3-D MOC kernel. 

5.4.5 Validation of Execution Time in Serial 
Having established some level of consistency between the measurements and expected 

counts for at least loads and FLOPs, the focus can now move to the prediction of 

execution time and performance. First, the measured execution time is compared to the 

execution time computed from Eq. (5.3) using the measured values of FLOPs, loads, and 

cache misses, and the hardware values of Table 5.5. Because the L3 cache misses could 

not be measured directly, their values were estimated as 10% of the number of L2 misses. 

Assuming no L3 misses changes the relative difference between the measured and 

computed execution time by roughly 0.5%, so the effect of L3 misses on the overall 

differences is minimal. 

 The measured average sweep time and computed sweep time for non-optimized 

and optimized executables are compared in Table 5.10 and Table 5.11, respectively. The 

differences in the measured and calculated execution time is just over 10% for the non-

optimized case. This can be attributed to one of two things: the accuracy of the hardware 

values of Table 5.5, or the fact that an assumption was made as to the number of L3 

misses, since this value could not be measured. Since the assumption about the L3 misses 

has minimal effect, the majority of the difference can be attributed to uncertainties in L1 
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cache access time and to the time to execute a FLOP. The L2 access time also plays a 

role, but it is less important. 

 In the optimized case, the agreement is slightly better and is within 10%. The 

predicted execution time for the fine ray case is actually higher than the measured time, 

suggesting that some additional performance gain is achieved through optimizations by 

decreasing the apparent time for some hardware event (either a FLOP or cache access), 

which is not unusual. Since the use case for performance will be the optimized 

executable, this analysis suggests that the model should be able to predict the execution 

time to within 8%, of the actual time. This is reasonably accurate for the prediction of the 

execution time, and suggests that the methodologies used to obtain the model hardware 

values for the evaluation of Eq. (5.3) are acceptable, although could be slightly improved. 

Table 5.10 – Comparison of measured and computed execution times with no optimizations 

Case 
Measured 

Execution Time 

Computed 

Execution Time 
Rel. Difference 

Default 7.1835 6.2129 -13.51% 

Fine Angle 11.0630 9.5784 -13.42% 

Fine Ray 20.5691 18.1020 -11.99% 

Fine Space 9.7376 8.4605 -13.11% 

Table 5.11 – Comparison of measured and computed execution times with optimizations 

Case 
Measured 

Execution Time 

Computed 

Execution Time 
Rel. Difference 

Default 1.2991 1.2029 -7.41% 

Fine Angle 2.0150 1.8663 -7.38% 

Fine Ray 3.8637 4.0357 +4.45% 

Fine Space 1.7228 1.6902 -1.89% 

 

 The relative contribution to total measured and calculated execution time of the 

various components for the non-optimized executable are shown in Figure 5.6 and Figure 

5.7, respectively. Somewhat surprisingly, the component that builds the long ray data is 

one of the most expensive parts of the kernel, which suggests that this area should be 

addressed in order to improve the performance of this kernel in the future. This is also 

likely true of most other MOC kernels, whether they are 2-D or 1-D. 

 As for the agreement between the measured relative execution times and the 

predicted execution times, the largest difference in the predicted percentage occurs for 

the build component, with a magnitude of 7%. This is primarily due to inaccuracy in 
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some of the ratios of the average values for the model hardware data. These ratios for the 

model values (e.g. timer per FLOP to time per L1 access) would need to be adjusted in 

order to achieve better agreement between the model and measured relative execution 

times. The components based on the number of regions have the smallest contribution, 

which is consistent with the observation that this value is several orders of magnitude less 

than the number of segments or number of long rays. The other observation is that the 

ratios between the different components do not change significantly between the different 

cases; this suggests that the ratio of segments to long rays does not vary much between 

these cases. 
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Figure 5.6 – Measured component 
relative execution times 

Figure 5.7 – Calculated component 
relative execution times 
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5.4.6 Baseline Performance in Serial 
Table 5.12 shows the measured performance for the kernel and estimated upper and 

lower bounds. The measured performance is within the estimated bounds, therefore the 

performance model and estimated upper and lower bounds are assumed to be valid for 

predicting the performance of the kernel as a function of the problem size and machine 

hardware characteristics. 

Table 5.12 – 3-D MOC kernel performance in serial on Sunspear 

Case 
Measured 

(MFLOPS) 

Lower Bound 

(MFLOPS) 

Upper Bound 

(MFLOPS) 

Realized Fraction of 

Upper Bound 

Default 466.4 0.467 897.0 52.0% 

Fine Angle 464.6 0.469 897.0 51.8% 

Fine Rays 441.7 0.468 896.2 49.3% 

Fine Space 485.2 0.166 904.1 53.7% 

 

 Because only about 50% of the theoretical upper bound is realized, this suggests 

that some improvements may be possible to further reduce cache misses. The theoretical 

peak performance of one core on Sunspear is 10.4 GFLOPS, which means that the initial 

performance of the kernel is getting roughly 4.5% of this peak. 

 The upper bound on the kernel performance neglects all cache misses and only 

counts L1 accesses. The upper bounds in Table 5.12 used execution times based on 1 

FLOP/cycle and 1 load/cycle; the ~900 MFLOPS predicted as the upper bound on 

performance is approximately 9% of the processor’s theoretical peak. If Eq. (5.3) is 

simplified to only include the time for stores, then it can reduced to: 

.1 1
















F

L

t
FtT

f

f


 Eq. (5.22) 

 Eq. (5.22) provides some insight into the maximum possible performance 

expected from the MOC kernel. For the 9% of peak performance estimated for the MOC 

kernel the α1/tf factor is 1.0. To achieve at least half of the peak performance, an 

algorithm would need an L/F ratio of 1.0. From data in Table 5.2, it is estimated that the 

L/F ratio for the kernel is at least 2.0. With this value, the maximum fraction of the peak 

performance achievable would only be 33%. In actuality the L/F of the problems tested is 
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probably closer to 9.0, implying that the observed computational intensity of the kernel is 

quite low at ~0.10. This also suggests some possible improvement to the kernel through 

reducing the L/F ratio. Through further analysis of Eq. (5.22), it can be deduced that an 

architecture that gives better performance would mean that the machine balance, α1/tf, 

would need to be less than 1.0. Unfortunately, for the assumed target architecture, this is 

never the case, and does not appear to be the case for any near term architectures. 

5.5 Sensitivity of Serial Performance to Hardware 

Characteristics 
In this section the performance model of Eq. (5.4) and Eq. (5.5) is examined for a range 

of hardware values for the memory access latencies and FLOP execution times. For this 

analysis, the assumed problem size is the default test case described in Section 5.4.3. 

Other simplifying assumptions are used based on the measurement results of Section 5.4. 

Instead of using the theoretical upper and lower bounds of the cache misses, the cache 

misses at each level are based on those observed for the default test case. In this case, M1 

was approximately 8.43% of the number of loads, and M2 was 0.07% the number of 

loads. For the analysis M1 is assumed to be 8.5% of the number of loads and for other 

levels of cache Mj = 0.01Mj-1 for j > 1 is assumed; αmem is assumed to be 1000 ns.  

 The first sensitivity examined is the model’s sensitivity to tf and α1 and levels of 

cache, κ. The predicted performance for each case is shown as a contour plot in Figure 

5.8 through Figure 5.11 for the different values of κ. The cache latencies for levels of 

cache are assumed where the access latency for each level αj = 10αj-1 for j > 1. 
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Figure 5.8 – Sensitivity of peak performance to 
α1 and tf 

 

Figure 5.9 – Sensitivity of performance to α1 and 
tf for single-level cache 

 

Figure 5.10 – Sensitivity of performance to α1 
and tf for two-level cache 

 

Figure 5.11 – Sensitivity of performance to α1 
and tf for three-level cache 

 The data in Figure 5.8 is consistent with the theoretical upper bound (zero cache 

misses) of performance for the 3-D MOC kernel. Several lines are overlaid on the 

contours to show when the performance becomes more sensitive to a particular hardware 

property. The region above the magenta line describes an architecture in which the time 

per flop is at least 4x faster than the time for a memory access. In this region it is 

observed that the performance is more sensitive to the average memory access time, and 

the performance of the kernel will be limited by this hardware characteristic. The other 
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line (blue) in Figure 5.8 describes when the time per flop and L1 cache access time are 

equivalent. The region below this line is indicative of an architecture in which the cache 

access time is faster than the time per flop, which is generally not the type of architecture 

that is manufactured. However, for an architecture of this type the performance would be 

dictated by the time per flop. The region between the two lines is fairly indicative of most 

commodity architectures, and in this region the performance is generally more sensitive 

to cache access time compared to the time per flop. The magenta and cyan regions denote 

where the hardware characteristics of test machines used in this chapter and Chapter 6 

were measured. 

 In Figure 5.9 the performance does not really change with either hardware 

property, and instead is limited by the 1 μs access time to retrieve data form main 

memory. Figure 5.10 shows the performance sensitivity for an architecture with a two 

level cache. Here the performance is still severely limited by the access time to main 

memory compared to the peak performance of Figure 5.8. However, there is some 

sensitivity to the time per flop and the cache access latency. The sensitivities for the two 

level cache basically behave in a similar manner as peak performance case, although the 

magnitude of these sensitivities is reduced considerably. 

 With the three level cache architecture shown in Figure 5.11, the performance 

sensitivity to the hardware properties is very similar to that observed in Figure 5.8. 

However, for a given (tf,α1) pair, the predicted performance in Figure 5.11 is 

approximately half of Figure 5.8, which is consistent with Table 5.12. This would 

indicate that, assuming the cache misses are reduced by a factor of 100 at each level and 

the memory access times are increased by only a factor of 10, then this becomes a very 

good architecture for achieving behavior similar to the peak performance of the 

algorithm. Although it is not shown, the case of an architecture with a four level cache 

was also investigated and it was observed to have almost exactly the same performance 

as the architecture with three cache levels. 

 The performance sensitivities are also examined for the L1 and L2 cache access 

times. In this study the time per flop and main memory access times are assumed to be 

constant at 0.2 ns and 1 μs, respectively. A contour plot of the performance as a function 

of these two hardware properties is shown in Figure 5.12. Again, the test machine 
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hardware characteristics are highlighted by magenta and cyan boxes that are labeled with 

the machine names. In this figure, the region below the magenta dashed line can be 

ignored. This region would indicate where the L2 cache access time is faster than the L1 

cache access time. The blue line divides the plot into two regions. The region above the 

line denotes where the performance is limited by the L2 cache access time, and 

conversely below this line is where the performance is limited by the L1 cache access 

time. The sensitivity of the performance with respect to the L1 cache access time is 5x 

higher than the L2 access time. 

 

 

Figure 5.12 – Performance as a function of L1 and L2 cache latencies 

5.6 Summary 
This chapter presents a conceptual model of the target architecture and the basic 

equations for a latency based performance model. Expressions for the FLOP and load 

counts for the 3-D MOC kernel were developed in terms of key problem size parameters. 

The performance model was validated for a specific machine whose architecture fits 

within the conceptual model, and using four small problems with representative meshing. 

This required methods for determining the performance model hardware coefficients for 

the test machine. The measurement system was used to validate the expressions for FLOP 
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and load counts, and then to validate the execution time model. The FLOP counts are 

exact, while the load counts and execution time may have uncertainties of up to 10%. The 

baseline performance of the serial kernel was then given, and the measured performance 

was shown in comparison to the model performance bounds. This provides a solid 

foundation for the next chapter in which the performance model analysis of the parallel 

3-D MOC kernel is described. Finally, a parametric study of the performance as a 

function of the hardware properties is presented to indicate the types of architectures that 

are likely to get the best performance, and which properties have the greatest influence on 

performance. 
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Chapter 6  

PERFORMANCE ANALYSIS OF THE PARALLEL 3-D 

MOC KERNEL 

In this chapter the performance model developed in Chapter 5 is applied to the parallel 

execution of the MOC kernel. First, the parallel efficiency and speedup are defined with 

respect to two types of scaling metrics. The methods are then described for determining 

the model hardware coefficients for the network latency and bandwidth required by the 

parallel execution time models. In order to show that the performance model developed 

in Chapter 5 is still valid when extended to the parallel domain, a section is included on 

the experimental validation of the performance model. The performance model is then 

analyzed, given a range of input parameters, to show the sensitivity of the algorithm to 

the hardware coefficients. A parametric study is also presented to show the efficacy of 

the various decomposition strategies and the preferred optimum decomposition for a 

given problem. Finally, the results and conclusions of these analyses are summarized. 

6.1 Parallel Performance Metrics 
In the previous chapter the performance of the 3D MOC kernel for serial execution was 

quantified with respect to the processor’s theoretical peak performance. In parallel 

computing, other metrics are typically used to quantify and describe the performance of 

an algorithm. Of primary importance is how well the algorithm scales, or how well it 

performs as more processors are added to a calculation. For a parallel algorithm there are 

two notions of scaling: strong scaling and weak scaling. Strong scaling refers to how the 

solution time varies when the input problem size is fixed and the number of processors is 

varied. For strong scaling, two metrics are often used to quantify the performance; 
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namely the speedup and efficiency. The speedup, S, is defined by Eq. (6.1) and the 

efficiency, Estrong, is defined by Eq. (6.2); where T is the time, Psize is the problem size, 

and Np is the number of processors. Strong scaling is indicative of how finely grained an 

algorithm may be executed in parallel, and how much overhead exists for the parallelism 

relative to the actual computation. 
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 For the weak scaling of an algorithm the work per process is fixed and the number 

of processors is varied. The weak scaling indicates whether the parallel overhead varies 

faster or slower than the amount of work as the problem size increases, and is relevant in 

determining the overall size of a problem that can be solved efficiently. The primary 

metric for weak scaling is the parallel efficiency, given below in Eq. (6.3), which has a 

slightly different definition than Eq. (6.2). 
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 In the following analyses of Section 6.3 and 6.4 the expression for T in the above 

equations is the Tsweep of Eq. (5.18) derived in Chapter 5. 

6.2 Experimental Evaluation of Parallel Performance Model 
For the experimental validation of the performance model in parallel, the specific 

components related to the parallelism, Tray, Tang, Tspace, are individually measured and 

compared to the model. In validating these components, the test problem used in the 

default case described in Chapter 5 is again used. The measurement system used to 

collect data is the same as that described in Section 5.4.1. However, the machine used to 

run the performance tests is different than the one used in Chapter 5. For these 
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performance tests Titan [54] is used, which is a Cray XK7 having a single AMD 

Opteron
™

 6274 processor and 32GB of RAM on each compute node. The AMD 

Opteron
™

 6274 is a 16-core processor of the same class as the one in Sunspear, but the 

clock speed is 2.2GHz. The node architecture on Titan is similar to the illustration in 

Figure 5.3, but there are 8 core-pairs instead of 6. Titan has 18,688 physical compute 

nodes, which are connected using Cray’s Gemini
™

 interconnect.  

6.2.1 Determining Network Model Hardware Coefficients 
The cache latencies and time per flop are determined using the same methodology as in 

Chapter 5. The hardware coefficients for the network needed to evaluate Eq. (5.8) and 

Eq. (5.13) or Eq. (5.14), are determined using another suite of micro benchmarks. The 

OSU micro-benchmarks for MPI (OMB MPI tests) [55], are used for this purpose. The 

OMB MPI tests evaluate multiple communication patterns on a network to measure the 

network latencies and bandwidth. Three of the benchmark suite's tests were executed: the 

latency test, the bandwidth test, and the all reduce test. 

 The latency test characterizes the time required for a message to travel from 

point-to-point. The benchmark measures the time required for a message to be sent from 

one processor to another and then back, and then reports the average time for a one way 

communication. This is done for various message sizes, and the resulting output should 

fit Eq. (5.8), provided that αnetwork and βnetwork are known. The test is also performed with 

a message size of 0, and this is the case used to determine αnetwork. This benchmark was 

used to measure the point-to-point communication time between the physical nodes, the 

two NUMA nodes on a single physical node, and two core pairs within a NUMA node. 

This is because it will not necessarily be known which processors will be using which 

communication layer at run time, since it could potentially be any of the three. The 

maximum message size measured was 32 MB. The benchmark output for Titan is shown 

in Figure 6.1 and includes the average of three runs. 
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Figure 6.1 – Output of OMB point-to-point latency test 

 There are error bars for the standard deviation, but they are so small that they are 

not visible in Figure 6.1. The maximum relative standard deviation observed was 3.98%, 

with the between node communication having the highest standard deviation. The 

measured latency was 1.57 μs between physical nodes, 0.53 μs between NUMA nodes, 

and 0.28 μs between cores in a core pair. 

 The bandwidth test determines the network’s bandwidth, which measures the data 

throughput for a given time window using multiple message sizes. The number of 

concurrent messages is fixed, so as the message size is increased, the measured 

bandwidth should become asymptotic as the network hardware becomes saturated. Again, 

this benchmark was used to measure the bandwidth of the three communication layers, 

and the results reported are the average of three trials. A maximum message size of 32 

MB was also used in this test. The results of this benchmark are shown in Figure 6.2. In 

this figure the measured bandwidth appears to go asymptotic in the range of 5000 MB/s 

and 6400 MB/s. However, the NUMA node bandwidth exceeds this by nearly a factor of 

two for a limited range of message sizes before decreasing to the indicated range. 
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Figure 6.2 – Output of OMB point-to-point bandwidth test 

 The all reduce micro benchmark measures the time to perform an all reduce 

operation for various message sizes and reports the average of all processors involved in 

the operation. This benchmark was executed for message sizes up to 32 MB and used 

processor counts of 1 through 8, and then powers of two afterward up to 512 processors. 

The results of the benchmark are shown in Figure 6.3. 

 

 

Figure 6.3 – Output of OMB all reduce test 
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 As noted in [50] an MPI library may include multiple algorithms, and in order to 

achieve optimal performance, different algorithms will be chosen based on the message 

size and number of processors. Furthermore, multiple algorithms may be used for 

different parts of the communication in the all reduce operation. Thus, unless the exact 

implementation of the all reduce operation is known, it is difficult to rely on a algorithm 

specific model, such as those given in Eq. (5.13) or Eq. (5.14). Nonetheless, these models 

may be generalized into a semi-empirical formula, and the remaining coefficients may be 

determined through analysis of the data in Figure 6.3. The execution time for the all 

reduce operation may be generalized from of Eq. (5.13) and Eq. (5.14) and expressed in 

the form shown in Eq. (6.4). Here c1 and c2 are the general coefficients, which are 

functions of the number of processors, that may be fit to an implementation of all reduce 

when the algorithm used is not known. The rest of the terms in Eq. (6.4) have the same 

meaning as in Eq. (5.13) and Eq. (5.14), although    has a slightly different meaning. 

This is illustrated by comparing Eq. (5.14) to Eq. (6.4) and noting that βnetwork and   have 

different coefficients in Eq. (5.14). However, since it is difficult to measure   directly, 

this term is allowed to be adjusted by a constant factor to fit the semi-empirical model of 

Eq. (6.4), hence the use of the    notation. In Eq. (6.4), the functions for the coefficients 

c1 and c2 are likely to be non-linear. 

       ., 21 NNcNcNNT networkpnetworkppallreduce    Eq. (6.4) 

 First, the coefficient of the latency, c1, is determined. This can be done using the 

benchmark output for the cases with the smallest message size and varying processor 

counts, since the execution time of these cases will be latency dominated. Figure 6.4 

shows this data along with two different expressions for c1. The measured data clearly 

has a non-linear trend when plotted on the log2(Np) scale, which is contrary to the latency 

coefficients proposed by Eq. (5.13) and Eq. (5.14). It is however remarkably well fit by 

the expression pN . 

 It is less straightforward to determine the remaining coefficients c2 and   , since 

it is not possible to separate the   network  term from c2 using the data collected from 
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the benchmark. Therefore, the approach used is to assume that the   network  term is 

an unknown constant, and then to determine an expression for c2 to the measured data by 

scaling this expression until the measured data is reasonably well fit. This still requires 

the correct functional dependence for c2, even though it is allowed to be scaled. Once c2 

is known,    can be determined from the unknown constant and βnetwork can be 

determined as previously described. 

 In order to determine c2, it is necessary to use a case with a sufficiently large 

message so the influence of the latency on the operation time can be minimized. Then the 

operation time may be divided by the message size, which leaves the term of interest. 

These values are then plotted as a function of the number of processors. The 32 MB 

message size case is shown in Figure 6.5, along with some possible expressions for c2. 

The (Np-1)/Np curve fits the trend in the measurement data fairly well. Selecting 

  network  to be 0.011 μs/B bounds the data and minimizes the error for large 

processor counts, but the value of 0.0095 μs/B fits the data better for lower processor 

counts. The difference here is likely related to the different hardware involved with 

communication on the node and between the nodes. This supported by the observation 

that the measured data seems to have a jump right at 16, which is the number of cores on 

a node. 

 

 

Figure 6.4 – Curve fit for c1(Np) 

 

Figure 6.5 – Curve fit for c2(Np) 

 From the analysis of these benchmarks, the final hardware values selected for 
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used to evaluate the all reduce operation is given in Eq. (6.5), which applies when Np is a 

power of 2. 

Table 6.1 – Performance model hardware values for Titan 

Symbol Name Value 

C Clock Speed 2.2 GHz 

tf time per FLOP 0.25-1 FLOPs/cycles 

α1 L1 Cache Latency ~1 cycle 

α2 L2 Cache Latency ~8-10 cycles 

α3 L3 Cache Latency ~20-110 cycles 

l1 L1 Cache Line Size 64 bytes 

l2 L2 Cache Line Size 64 bytes 

l3 L3 Cache Line Size 64 bytes 

αmem Memory Latency 300-500 cycles 

αnetwork Network Latency ~0.25-1.6 μs 

βnetwork Inverse Network Bandwidth ~1.49e-4 - 1.91 e-4 μs/B 

   Computation cost ber byte ~0.009309 - 0.010851 μs/B 

 

    .
1

, N
N

N
NNNT network

p

p

networkppallreduce  


  Eq. (6.5) 

6.2.2 Determining OpenMP Run-time Library Overhead 
The final set of unknown expressions that must be determined to evaluate the parallel 

performance model involve the ray decomposition from Eq. (5.20). These terms account 

for the overhead of the OpenMP run-time library routines, and in general these are not 

known exactly. The general approach is to determine the parameters for a specific library 

and architecture, and assume they are reasonably valid for a wider range of compilers and 

architectures. To determine the overhead of the OpenMP routines used in the MOC 

kernel, another set of micro-benchmarks are analyzed on the test machine. The EPCC 

OpenMP Microbenchmark v2.0 suite [56] developed at the University of Edinburgh is 

used to evaluate the overhead of the OpenMP library for the barrier, single, and 

parallel constructs, and the various scheduling strategies of the do construct. The basic 

methodology of these benchmarks is described in detail in [57] and essentially involves 

the execution of a block of code with and without the OpenMP constructs. The results 

obtained on Titan are shown in Figure 6.6 and Figure 6.7 below. 
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Figure 6.6 – OpenMP run-time library overhead for various constructs involving synchronization 

 

Figure 6.7 – OpenMP run-time library overhead for various scheduling algorithms 

 It is apparent in Figure 6.6 that all the constructs’ overheads grow at a rate larger 

than O(nt), where nt is the number of threads, so there will be definite issues in scaling 

the ray decomposition to large thread counts. The overhead for the single construct is 

comparable to the barrier; this is because the single construct has an implied barrier 

on exit. In Figure 6.7, the dynamic scheduling algorithm used by the kernel has the 

highest overhead per loop iteration of the scheduling methods provided by the OpenMP 

run time library. The overhead for the dynamic scheduling also grows at a rate larger than 

O(nt). Linear regressions were performed to fit the data with 2
nd

 order polynomials, 

which could then be used in the performance model. These equations are also shown in 

the figures. 
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6.2.3 Validation of Parallel Performance Model 
In this section the parallel efficiency predicted by the performance model is compared to 

the measured parallel efficiency for the default case test problem. The performance 

model for the strong scaling efficiency is evaluated against each of the ray 

decomposition, angle decomposition, and spatial decomposition separately. For the angle 

and ray decomposition 2, 4, 8, and 16 processors are used. The Titan nodes only have 16 

cores, which is the reason for limiting this study to this processor count. The angular 

decomposition does not have good partitioning beyond 20. Furthermore the semi-

empirical model for which coefficients were determined in the previous section was only 

evaluated for powers of two. In general, execution time models for the all reduce 

operation vary noticeably when non-power of two numbers of processors are used. 

Therefore, using this set of numbers of processors ensures a more straightforward 

comparison to the performance model. The spatial decomposition uses 8 and 64 

processors for the strong scaling because this creates equal-sized subdomains that 

maintain the same surface area to volume ratio. The spatial decomposition also includes 

an additional component for the weak scaling. 

 Table 6.2 below shows the measured parallel efficiency for the strong scaling of 

the various decompositions and processor counts compared to the parallel efficiency 

predicted by the performance model. 

 Before assessing the comparison of measurement to the performance model, it is 

essential to point out that, where possible, the decompositions were mapped to the node 

architecture in two distinct ways. This was done to highlight the effect of a unique 

architectural feature of the AMD Opteron
™

 6200 series processors noted previously in 

Section 5.4.2; namely that the chip has two integer cores that share a floating point 

arithmetic unit (FPU). The reasoning behind this processor design feature is that one core 

will be performing data fetches while the other will be using the FPU, this is a suitable 

assumption for data servers. However, for numerically intensive scientific software, this 

does affect performance. This effect becomes apparent by comparing the columns in the 

table labeled "by FPU" and "by core". The "by FPU" column are results measured when 



112 

only one process per core pair, or one core process per FPU is used. The columns labeled 

"by-core" refer to measurements taken when both cores sharing a FPU are used.  

Table 6.2 – Comparison of measured and predicted parallel efficiency 

Np 
Ray Decomposition Angle Decomposition Space Decomposition 

by FPU by core Model by FPU by core Model by FPU by core Model 

2 104.9% 53.5% 99.40% 101.8% 80.00% 99.03% N/A N/A N/A 

4 100.5% 67.04% 97.89% 98.18% 78.88% 97.15% N/A N/A N/A 

8 87.49% 67.33% 94.22% 96.05% 71.03% 93.60% 98.91% 76.32% 99.52% 

16 N/A 62.17% 86.78% 89.30% 63.85% 87.22% N/A N/A N/A 

64 N/A N/A N/A N/A N/A N/A 93.14% 71.66% 98.69% 

 

 Comparing these two columns of Table 6.2 it is apparent that overloading the 

FPU reduces the parallel efficiency for any parallel decomposition of the kernel by 20% 

to 50%. This raises questions about the most meaningful choice for the reference 

calculation to measure the efficiency of the parallel decomposition for this kind of 

processor. 

 To illustrate this point, one may note that the efficiency for the ray decomposition 

when using both integer cores sharing the FPU are ~50%-60%. However, if the reference 

case is taken to be the execution time of two threads sharing the FPU then the efficiencies 

of the cases of 4, 8, and 16 threads all increase by roughly a factor of 2 or more, and the 

parallel efficiency can be considered quite good. The important conclusion for the 

purposes here is that the performance model does not consider the effect of this 

architectural feature, so comparing the performance model to the "by FPU" column is 

more consistent. 

 From the comparison to the "by FPU" results it is clear that the model for the 

angular decomposition matches the measurement very well, having no differences in 

predicted efficiency larger than 3%. This indicates that the model correctly characterizes 

the overhead contributing to the execution time as the time to execute the call to 

MPI_Allreduce, and that the other components of the kernel are decreased linearly by 

the reciprocal of the number of angular domains. 
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 For the ray decomposition, the model under-predicts the observed parallel 

efficiency slightly for low processor counts when the measurement shows the efficiency 

to be super-linear. This super-linear scaling is likely due to better cache utilization from 

introducing more cache with the other processors. The other observed differences 

between the model and the measurement can be attributed to subtleties in the hardware 

not captured by the latency-based performance model. For the 8 threads case in the "by 

FPU" column, 4 threads exist on each NUMA node, and the memory access times 

between NUMA nodes to the same shared memory is probably longer than memory 

access times to the memory shared by threads on the same NUMA node. Consequently, 

the performance model’s ability to predict the parallel efficiency for the ray 

decomposition is acceptable. It lacks some important terms to capture the effects of 

subtleties of the hardware, but so long as careful attention is given to these details, the 

model agrees within 5% of the measured result. 

 The spatial decomposition also agrees reasonably well with the performance 

model for the strong scaling efficiency, but there are only two points for comparison in 

this test problem. The model over-predicts the efficiency compared to the measured 

result, which suggests that the effect the model is not accounting for that causes 

additional degradation in the parallel efficiency is related to having the MPI library deal 

with multiple outstanding messages simultaneously. The weak scaling results, shown in 

Figure 6.8 differ slightly from the model’s prediction by a small constant factor for the 

"by FPU" measurement, indicating a systemic issue, probably with a hardware 

coefficient. Otherwise, the model is accurate in predicting the parallel performance to 

within about 7% of measurement. Figure 6.9 shows the "by core" results using two 

references, one a single core, and the other a single NUMA node. These results show the 

same trend for the weak scaling as the "by FPU" measurement. This again illustrates the 

issue of overloading the FPU and choosing a meaningful reference calculation from 

which to measure the efficiency. 
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Figure 6.8 – Comparison of predicted and 
measured weak scaling efficiency for spatial 

decomposition 

 

Figure 6.9 – Weak scaling efficiency for spatial 
decomposition with different reference cases 

 In conclusion, the performance model is shown to agree within 7% of the 

measured results for predicting the parallel efficiency for each implementation of the 

parallel decomposition. This is in spite of the observation that the model is shown to be 

deficient for capturing a subtle, yet key, architectural feature of the processors on the test 

machine: sharing an FPU between two cores. However, provided the measurement is 

made consistently with the assumption of the model, in which each processor has its own 

FPU, this is a non-issue. The model can also easily account for the shared FPU by using a 

different reference measurement, namely the time for the core pair to execute the kernel. 

It could be debated whether this is a more meaningful reference, but it provides a more 

consistent reference for the performance model and makes it possible to obtain better 

agreement between the model and measurement. 

6.3 Parallel Performance Model Sensitivity 
In this section the performance model is evaluated for a range of hypothetical hardware 

characteristics and OpenMP run time library overhead. The purpose of this analysis is to 

quantify the effect of the hardware or supplied OpenMP or MPI libraries on the 

algorithms performance, and to identify regimes in which more optimal performance may 

be achieved. Much like the model validation in the previous section, the model is 

analyzed separately for each type of decomposition. 

 First, the effect of the network latency and bandwidth on the spatial 

decomposition overhead is examined, specifically the Tspace term of Eq. (5.12). In Figure 

6.10 this function is plotted against the bandwidth and latency of the network hardware. 
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The measured range of latency and bandwidth for the test machine, Titan, is highlighted 

by the magenta rectangle. 

 As the bandwidth limits to large numbers and the latency limits to 0, Tspace 

asymptotically approaches the reduced TBCUp time. The contours of Figure 6.10 show that 

Tspace approaches this asymptote rather quickly. Furthermore, very little reduction in the 

overhead is obtained once the bandwidth exceeds 10 MB/s and the latency is less than 10 

μs. This suggests that efforts to improve the performance of the network architecture 

would have little benefit in reducing the overhead of the spatial decomposition, and that 

the performance of the network hardware on Titan is already near optimal for this 

algorithm. 

  

Figure 6.10 – Sensitivity of the spatial decomposition overhead to network hardware characteristics 

 In Figure 6.11, the competing factors of the "max" function of Eq. (5.18) are 

plotted along with the time to perform a sweep for a problem as a function of the number 

of spatial domains. This figure is therefore representative of the spatial strong scaling. 

The problem assumed in generating the data in this figure consists of a block of cubic pin 

cells that is 64x64x64, which represents roughly a 3x3 block of assemblies at roughly 

1/5th their full height. Two main observations can be made about Figure 6.11. The first is 

that the time to do the spatial communication is always greater than the time to do any 
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remaining useful work when only one angular domain and one thread are assumed. The 

second observation is that Tsweep is still very close to ideal, even though the spatial 

decomposition overhead is the dominant term. This is because the overhead is still 

approximately an order of magnitude lower than the sweep time at the highest possible 

decomposition. 

 

Figure 6.11 – Estimated execution times for spatial strong scaling 

 Next, for the angular decomposition, the sensitivity of the overhead is evaluated 

against the network hardware characteristics, and the problem size and number of 

domains. These sensitivities are examined for the three MPI_Allreduce algorithms given 

by Eq. (5.13), Eq. (5.14), and the semi-empirical model of Eq. (6.5) for the Cray MPI 

library on Titan. The sensitivities to the network hardware are shown in Figure 6.12 

through Figure 6.14, and the measured network hardware latency and bandwidth are 

indicated by a magenta box in each figure. The Cray library and Rabensiefner’s 

MPI_Allreduce algorithm clearly outperform the binary tree algorithm. The overhead is 

observed to be largely a function of the network bandwidth and, the magnitude of the 

overhead is about 1000x times higher for the angular decomposition compared to the 

spatial decomposition. Additionally, any increase in bandwidth above 100 MB/s provides 

little benefit to reducing the angle decomposition overhead. 
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Figure 6.12 – Sensitivity of angle decomposition 
overhead to network hardware characteristics 

for Cray MPI_Allreduce algorithm 

 

Figure 6.13 – Sensitivity of angle decomposition 
overhead to network hardware characteristics 
for Rabenseifner’s MPI_Allreduce algorithm 

 

Figure 6.14 – Sensitivity of angle decomposition overhead to network hardware characteristics for 
binary tree MPI_Allreduce algorithm 

 In Figure 6.15 through Figure 6.17, the sensitivity of the angular decomposition 

overhead is shown as a function of the number of flat source regions in the domain and 

the number of angular domains. For this analysis the basic discretization of the default 

case test used to validate the performance model is assumed, and the number of flat 

source regions and angular domains is increased by a factors of 2 up to 16. Once again, 

the binary tree algorithm is clearly outperformed by the other two algorithms. Overall, 
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the angular decomposition overhead is fairly insensitive to the number of flat source 

regions once that number exceeds ~500,000. For the Cray and Rabenseifner all reduce 

algorithms, the overhead increases monotonically at a rate of approximately 

  
angleangle ppO 1 . In Figure 6.17, the curves have a staircase feature, which is due to 

the ceiling function in Eq. (5.13). 

 

Figure 6.15 – Sensitivity of angle decomposition 
overhead to problem size and number of 

domains for Cray MPI_Allreduce algorithm 

 

Figure 6.16 – Sensitivity of angle decomposition 
overhead to problem size and number of 

domains for Rabenseifner’s MPI_Allreduce 
algorithm 

 

Figure 6.17 – Sensitivity of angle decomposition overhead to problem size and number of domains 
for binary tree MPI_Allreduce algorithm 
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 The primary overhead for the ray decomposition comes from the OpenMP run 

time library. The parallel performance will not be especially sensitive to the serial 

hardware coefficients, such as tf or αj, but rather the ratio of these values to the run time 

library overhead. Therefore, the sensitivity of the ray decomposition overhead is 

evaluated as a function of the overhead values of the different functions used from the 

OpenMP run time library. Figure 6.18 shows the predicted strong scaling of the default 

case test problem, along with ideal scaling and the values of Tray as the different OpenMP 

overheads limit to zero. 

 

Figure 6.18 – Sensitivity of ray decomposition overhead to OpenMP library overhead 

 The sensitivity to the scheduling overhead is fairly small, which seems 

counterintuitive since the coefficient of this term in Eq. (5.20) is proportional to 

nlongray, which is typically quite large even for small problems. The scheduling 

overhead is small because the chunk size may be chosen to minimize the coefficient of 

TSCHEDULE, thus minimizing its overhead. If optimization of the chunk size is performed, 

as it is represented by the model, then the ray scaling becomes relatively insensitive to the 

OpenMP scheduling overhead. Consequently, it is apparent in Figure 6.18, that the ray 

decomposition overhead is much more sensitive to the overhead of the barriers and 
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single construct. This indicates a potential future improvement to the parallel 3-D MOC 

kernel. 

6.4 Decomposition Strategy for Optimizing Parallel 

Performance 
The focus of this section is to understand the impact of changes to the parallel 

decomposition on the overall parallel efficiency of the kernel, and specifically to provide 

answers to the questions: If one has n processors, is there an optimal decomposition, and 

if so, what is it? For this study the basic hardware characteristics of Titan are used, and 

the assumed problem for the analysis is an idealized quarter core PWR that uses pin 

modular ray tracing and a pin-wise discretization that is consistent with the default case 

performance test problem studied in this chapter and Chapter 5. 

 First, in Figure 6.19, the strong scaling efficiency is shown for a single pin cell 

based on angle and ray decomposition. This plot shows that there is very little work for a 

problem of this size before the overhead of the various decompositions begins to 

dominate. The figure also shows that the ray decomposition scales with better efficiency 

than the angular decomposition, and perhaps only 4 to 8 processors can be used to 

efficiently parallelize the smallest spatial subdomain. The other observation of note for 

Figure 6.19 is that the rate at which the parallel efficiency decreases for the number of 

angles increases with the number of threads. 

 Figure 6.20 through Figure 6.24 show the predicted strong scaling efficiency for a 

quarter core PWR sized problem using pin modular ray tracing. With only one thread, the 

model predicts excellent scaling (>90%) out to O(10
5
) processors. By comparison, the 

change in strong scaling efficiency is relatively insensitive to the number of angular 

domains, meaning that for a single thread, the angular domain could be decomposed by a 

factor of almost 16 without a significant loss in efficiency. 
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Figure 6.19 – Estimated angle-ray strong scaling 
efficiency for a pin cell 

 

Figure 6.20 – Estimated space-angle strong 
scaling for a PWR 1/4 core (1 thread) 

 

Figure 6.21 – Estimated space-angle strong 
scaling for a PWR 1/4 core (2 threads) 

 

Figure 6.22 – Estimated space-angle strong 
scaling for a PWR 1/4 core (4 threads) 

 

Figure 6.23 – Estimated space-angle strong 
scaling for a PWR 1/4 core (8 threads) 

 

Figure 6.24 – Estimated space-angle strong 
scaling for a PWR 1/4 core (16 threads) 
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 As the number of threads is increased, the strong scaling efficiency becomes 

noticeably worse. This is consistent with observations made from Figure 6.19, at which 

point the single pin cell problem becomes over decomposed. And as noted in Figure 6.19, 

the parallel efficiency degrades more rapidly for the angular decomposition when more 

threads are used. A similar effect is seen for the number of spatial domains. That is to be 

expected, since the amount of work in a given domain is decreased significantly by the 

number of threads. Figure 6.25 shows the aggregate data of Figure 6.20 through Figure 

6.24 as a function of the number of processors. In Figure 6.25 it is observed that the 

model predicts that parallel efficiencies greater than 90% can be achieved out to nearly 

30 million processors, using only space and angle decomposition. However, it is highly 

unlikely this performance could be observed in practice because the model assumes the 

hardware and run time system will scale to this many cores. The construction of 

computers having O(10
6
) processors still has yet to be demonstrated, and the current node 

architecture is likely to change drastically in the next generation of leadership class 

architectures.  

 

Figure 6.25 – Estimated strong scaling efficiency for PWR 1/4 core 

 Also in Figure 6.25, the rate of decrease in parallel efficiency is faster for space-

ray decomposition than it is for space-angle decomposition. Therefore, in order to 
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perhaps because of poor load balancing or an insufficient number of processors for the 

next level of spatial decomposition, then it is better to add more processors through ray 

decomposition rather than angle decomposition. This analysis assumed perfect load 

balancing in the decomposition. In practice, this is not always possible, and using 

decompositions with a poor load balance will negatively affect the parallel efficiency 

much more than the estimate in this parametric study. 

6.5 Summary 
This chapter presented several new key insights about the parallelism of the 3-D MOC 

algorithm. First, new metrics for the parallel performance were introduced and defined. 

Then the execution time models derived in Chapter 5 were validated against 

measurements for the parallel execution. This required the use of several new micro-

benchmarks for MPI and OpenMP to measure the network hardware’s latency and 

bandwidth, as well as run time library overheads. It was found that having an accurate 

execution time model for MPI_Allreduce is essential to accurately predicting the angular 

decomposition overhead. The comparison of the parallel performance model to 

measurement showed that the model agreed quite well with measurement, with an 

absolute difference of less than 7%, in the prediction of the parallel efficiency. The other 

conclusion from this comparison was that special attention must be paid to the hardware 

used to obtain the measurement, and that when cores are added, the model assumes that 

this includes an additional floating point unit. In other words, the model assumes perfect 

scaling in the hardware. This may not always be the case with the hardware. However, 

the differences can be overcome if a more consistent reference measurement is used to 

account for the model’s assumptions with respect to the hardware. 

 After establishing confidence in the parallel performance model, sensitivities to 

several factors in the model were examined through parametric studies. The overhead for 

the spatial and angular decomposition were examined separately with respect to the 

network’s latency and bandwidth. Both types of decomposition were shown to be 

relatively insensitive to the network latency, provided the network bandwidth was at least 

100 MB/s. Additionally, further increasing the network bandwidth beyond 100 MB/s or 

reducing the network latency below 0.1 ms would give little improvement in 
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performance. Since many modern high performance compute clusters already have 

networks with a higher bandwidth and lower latency, it may be concluded that these 

types of decompositions will continue to perform well on future network architectures. 

 The performance of the angular decomposition was also evaluated against the 

problem size and number of domains for various algorithms for MPI_Allreduce. This 

was shown to have a significant effect and that the preferred all reduce algorithms are 

those that are more optimal for large message sizes. While the current implementation of 

the parallel 3-D MOC kernel performs an all reduce, this may not strictly be required. 

 The overhead for the spatial decomposition was also evaluated against the number 

of domains, and it was shown that when other decompositions are not used, the overhead 

for the spatial decomposition is always greater than the amount of time it takes to do any 

remaining useful work. This is because the spatial decomposition is limited by the time 

required to copy the data to global memory. Also, the amount of data to be copied 

decreases at the rate at which the subdomain surface area is decreased, rather than by the 

subdomain’s volume; that decreases faster for cuboids. 

 The ray decomposition overhead was shown to be limited mostly by the overhead 

of the synchronization of the threads which suggests a possible future area of 

improvement to the current implementation. This is assuming that the chunk size has 

been optimized to minimize the overhead of the OpenMP scheduling algorithm for the 

parallelized loop over long rays. 

 Finally, the parallel performance model for the strong scaling efficiency was 

evaluated for various decompositions, assuming problem size of the order of a quarter 

core PWR. The parallel performance model estimates that up to 30 million processors can 

be used while still maintaining efficiency greater than 90%, provided the hardware and 

run-time system scale. This analysis also showed that the best way to decompose a 

problem is to perform spatial decomposition to the point where the subdomain size is 

approximately a 2x2x2 or 4x4x4 block of pin cells. Then the number of ray or angle 

domains on each spatial subdomain can be increased by a factor of 8 and still have 

parallel efficiencies near 90%. Since the performance model assumes ideal load 

balancing for each decomposition, future work might focus on examining cases in which 

there is not an ideal load balance for some decomposition. 
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Chapter 7  

ALGORITHM CONVERGENCE OPTIMIZATION WITH 

CMFD ACCELERATION 

The primary focus of the thesis thus far has been on the optimization of the parallel 

performance of the 3-D MOC transport sweep. To some extent the optimal performance 

was achieved at the expense of the rate of convergence of the iterative solution scheme. 

This is illustrated by considering a problem that is purely absorbing with a known source. 

For such a problem, the transport sweep with one spatial domain would converge in one 

iteration, but for decomposed spatial domains, it would require more than one iteration. 

Therefore, this chapter focuses on further optimization of the algorithm by accelerating 

the convergence of the iterative scheme and reducing the overall number transport 

sweeps that must be performed to achieve a converged solution. 

7.1 Convergence Acceleration 
Considerable research has been performed on methods to accelerate iterative convergence 

of neutron transport problems [58], [59], [60], [61], [62]. In this section, the basic 

underlying concept of an acceleration technique is developed. The basic approach to 

acceleration has been to use what are known as synthetic acceleration techniques. The 

essential idea of synthetic acceleration can be summarized as follows. Suppose a problem 

has the following form: 
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  ,S


 FM  Eq. (7.1) 

where M-F is difficult to invert directly, but M is relatively easy to invert. Then an 

iterative scheme that should work well would be: 

    ., 111 FMAMA   S


   Eq. (7.2) 

The rate of convergence of this iterative scheme will depend on the spectral radius  of A. 

If A has a "large" spectral radius (less than, but close to unity) and is slow to converge, 

then it is possible to accelerate convergence using a new low-order operator L. First, one 

can show that the exact solution, 


, may be obtained from two consecutive iterates by 

subtracting the term (M-F)
 1


  from both sides of Eq. (7.1) and substituting Eq. (7.2) 

on the right hand side giving: 

         .11 

   FFM  Eq. (7.3) 

Next, if one substitutes the low-order operator L for M-F in Eq. (7.3), where L is close to 

M-F and easily invertible, then one may use the new iterative scheme: 

    ,121 S


   MA  Eq. (7.4) 

        .212111   

 FL  Eq. (7.5) 

 Since L is close to M-F the iterate 
 1


  of Eq. (7.5) should be close to the 

converged solution, 


, of Eq. (7.1). Eq. (7.5) is also assumed to be cheaper to evaluate 

than Eq. (7.4) and the operator L-1F should have better convergence properties than A. 

Very early on it was noted that diffusion-based operators were good low-order operators 

for synthetic acceleration of the transport equation [63], and significant research has gone 

into developing diffusion synthetic acceleration (DSA) techniques [58]. 

 However, it should be noted in the above description of synthetic acceleration, 

Eq. (7.1) represents a fixed source problem and a linear update. Because the steady-state 
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problem of interest for a reactor is an eigenvalue problem, a non-linear acceleration 

technique would be more appropriate. One such method, the coarse mesh finite difference 

(CMFD) method, has been used with pronounced success for reactor analysis for the last 

several decades. CMFD was developed independently of many of the other diffusion 

synthetic acceleration schemes, but in recent work [64] it was shown that CMFD is 

algebraically equivalent to non-linear coarse mesh DSA. Therefore, CMFD was the 

logical choice for an acceleration technique in the research here and the derivation of this 

method is discussed in the following section. 

7.2 Coarse Mesh Finite Difference 
The coarse mesh finite difference method (CMFD) was originally developed as a 

technique for the nodal diffusion based methods used in reactor analysis [61]. However, 

its fundamental concept applies equally as well to transport methods, and has been shown 

to be very effective at accelerating 2-D MOC transport methods where it has been used 

extensively. 

 In CMFD, the lower order acceleration equation is based on the multi-group 

diffusion equation shown in Eq. (7.6). The discretized form of this equation is used to 

define the node balance and is shown in Eq. (7.7) where the subscript s is used to denote 

a surface of a node and j is a node index. Aj,s is the area of surface s of node j, and Vj is 

the node volume. The over-bar notation is also added to indicate a node-averaged 

quantity. Node average quantities are defined in Eq. (7.10) and Eq. (7.11). 
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 In classic diffusion theory, the net current that is derived is based on Fick’s Law 

with a finite difference approximation in space, and is shown in Eq. (7.8), where hj,s is the 
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distance between node j and its neighboring node on surface s. CMFD introduces a 

correction coefficient, sgjD ,,
ˆ , so that the expression for the net current is given by 

Eq. (7.9). 
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 CMFD also introduces the coarse mesh, or node, concept on which the diffusion 

equation is solved. This requires the development of restriction and prolongation transfer 

operators for the solution between the fine mesh defined by the MOC flat source region 

mesh, and the CMFD coarse mesh. The restriction operator, also known as 

homogenization, which reduces the fine mesh solution onto the course mesh and is shown 

in Eq. (7.10) and Eq. (7.11) for the cross sections and scalar flux, respectively. The 

prolongation operator is used to transfer the coarse mesh solution onto the fine mesh for 

the scalar flux and boundary condition are given by Eq. (7.12) and Eq. (7.13), 

respectively. 
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 The correction factor, 
sgjD ,,

ˆ , introduced in Eq. (7.9) is then computed as shown 

by Eq. (7.14), where the fine mesh transport method computes the neutron net current 

along the surfaces of the coarse mesh. Consequently this correction factor along with 

cross section homogenization creates equivalence between the solution of the fine mesh 

MOC equations and the coarse mesh diffusion equations. The homogenization process in 

general preserves all the node volume integrated quantities based on the fine mesh 

solution, and specifically the node average reaction rates. The correction factor of Eq. 

(7.9) and Eq. (7.14) allows the low order system to also preserve the node surface 

integrated quantities of the fine mesh solution, and specifically the average leakage. 

Because of this equivalence, the multiplication factor, keff, of the CMFD linear system is 

the same as that of the fine mesh transport method computed from source iteration when 

sgjD ,,
ˆ  is converged. 
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 The iterative solution algorithm with CMFD then becomes: 
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Figure 7.1 – Solution algorithm with CMFD 

7.2.1 Spatial Domain Decomposed Coarse Mesh Finite Difference 
Recently other work has been done to extend the CMFD theory to the application of 

spatially decomposed transport problems [65] that can be solved in parallel. In that work, 

additional update equations for the parallel subdomain interface angular fluxes were 

derived and the convergence properties of the system were examined using a Fourier 

analysis of a model problem. Numerical results were produced in 1-D for a discrete 

ordinates transport method that agreed with the convergence rate predicted by the Fourier 

analysis. 

 The spatially domain decomposed CMFD (SDD-CMFD) method was 

implemented in the work here to accelerate the parallel 3-D MOC kernel described in 

Chapter 4. In the original work the equation to update the interface angular fluxes 

between parallel domains is derived from P1 theory and is given by Eq. (7.15). This 

essentially replaces Eq. (7.13), although in [65] the authors note that other sensible 

update equations, such as Eq. (7.13), may be appropriate. 

While not converged 

1. Perform Transport Sweep (step 2 Figure 3.4):
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2. Compute node averaged values for CMFD coefficients: Eq. 

(7.10), Eq. (7.11), and Eq. (7.14) 

     gixgisgjgjxgj fD ,,

21

,hom,,,,

21

, ,ˆ,,      

3. Solve CMFD balance equation, Eq. (7.7) and Eq. (7.9), for node 

averaged scalar flux 
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4. Update fine mesh solution: Eq. (7.12) and Eq. (7.13) 
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 The convergence behavior predicted by Fourier analysis for the SDD-CMFD 

method using Eq. (7.15) is reproduced from [65] and shown in Figure 7.2 as a function of 

the scattering ratio and optical thickness. 

 

  

Figure 7.2 – Convergence properties of SDD-CMFD 

7.3 SDD-CMFD Convergence with Parallel 3-D MOC 
In this section, the implementation of the SDD-CMFD is evaluated for multi-dimensional 

problems and two update equations by comparing the spectral radius of several cases to 

that predicted by theory. First, simple infinite homogeneous media cases are decomposed 

along one dimension to reproduce the convergence behavior from previous work. Then 

these cases are extended to decompose the problem in two dimensions and then all three 

dimensions. The convergence of these other cases are then compared to the convergence 

predicted by Fourier analysis and the results are discussed. 

7.3.1 Solution of SDD-CMFD Equations 
The SDD-CMFD equations in 3-D form a seven-stripe sparse linear system. This linear 

system is solved using the well known generalized minimum residual (GMRES) [66] 
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GMRES solver and a block ILU(0) preconditioner, since this library is already well 

optimized and has been shown to scale well on large parallel systems [21].  

 In this work the full space-energy system of equations is formed and solved 

simultaneously. Furthermore, the SDD-CMFD equations are used to compute the 

eigenvalue of the reactor system, since it will be equivalent to the eigenvalue of the 

computed by the algorithm of Figure 2.3 at convergence. The solution algorithm for the 

eigenvalue problem using the SDD-CMFD equations is essentially the power method and 

shown in Figure 7.1. However, because the full space-energy linear system is formed in 

this implementation, the convergence for the power method is further improved using 

Weilandt acceleration [67], or eigenvalue deflation. 

 The inclusion of SDD-CMFD acceleration technique into the overall algorithm 

for solving the reactor criticality problem introduces a great deal of complexity into 

quantifying the computational performance. Since the SDD-CMFD equations are less 

computationally expensive to evaluate and because PETSc is used to provide the solver 

for the SDD-CMFD equations, it is assumed that the time spent in this part of the 

calculation will be less than the time spent in the transport sweep that is the main focus of 

this research. Thus, a detailed performance model for the SDD-CMFD method and 

accelerated solution algorithm was not developed, and instead left for future work.  

7.3.2 Model Problem Description 
The original work [65] examined the convergence properties of SDD-CMFD as a 

function of several parameters, including the coarse cell optical thickness, the spatial 

subdomain optical thickness, the scattering ratio, the number of coarse cells per spatial 

subdomain and the number of fine cells per coarse cell. In this analysis, only two 

parameters are evaluated: the spatial subdomain optical thickness for a fixed coarse cell 

optical thickness and fixed number of fine cells per coarse cell, and the coarse cell optical 

thickness for a fixed number of coarse cells per spatial subdomain and fixed number of 

fine cells per coarse cell. Both cases use 1-group cross sections with a fixed scattering 

ratio, c, of 0.99, since higher scattering ratios are generally more limiting to the 

convergence of CMFD. The update equations for the boundary angular flux that are 
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examined are Eq. (7.15), which is a P1 update, and Eq. (7.13) which is a double-P0 (DP0) 

update. 

 The model problem uses a fixed multiplication factor of 1.0, and during the 

iterations the spatial distribution of the fission and scattering source and spatial and 

angular boundary conditions are allowed to vary. The initial guess of the scalar flux and 

boundary angular flux is chosen to be random. 

 The spectral radius is determined by computing the error norm, ε, of Eq. (7.16) at 

each iteration. The spectral radius, ρ, is then related to this quantity as shown by 

Eq. (7.17). 

          ,
2

2

1,,
2

2

1    
inin   Eq. (7.16) 

    .0     Eq. (7.17) 

 A linear regression of the natural logarithm of this error norm as a function of the 

iteration number (Eq. (7.18)) is performed for a subset of the iterations for which the 

convergence behavior is smooth. The slope of the error norm can then be used to 

determine the spectral radius, as shown by Eq. (7.20). This is consistent with the methods 

used in the original work [55] for estimating the spectral radius by experiment. 

      ,expln 1001   aaaa    Eq. (7.18) 

   ,exp 0

0 a  Eq. (7.19) 

 .exp 1a  Eq. (7.20) 

7.3.3 Results and Discussion 
Figure 7.3 and Figure 7.4 show the comparison of the spectral radius predicted by the 

Fourier analysis from [65] and the experimentally computed spectral radii for the various 

update equations and spatial dimensionality. The 3-D MOC kernel is used in all cases to 
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produce the results from which the spectral radius is calculated. For the data points 

denoted as "1-D" in the legend, the problem is only discretized in 1-D, similarly for the 

"2-D" and "3-D" data points. In this way, the solution is able to behave as if the problem 

were 1-D or 2-D even though a 3-D transport method is being used. 

 Figure 7.3 shows the spectral radius as a function of the coarse cell optical 

thickness. The spatial subdomain consists of a single coarse cell, and the coarse cells 

have two fine mesh regions in 1-D. For 2-D, the number of fine cells per coarse cell is 

four; essentially replicating the 1-D discretization in the second spatial dimension. 

Similarly, for the 3-D case it is eight fine cells per coarse cell. 

 

 

Figure 7.3 – Convergence properties of SDD-CMFD for c=0.99 and 
one coarse cell per spatial subdomain 

 It is observed that the 1-D results agree reasonably well with the Fourier Analysis, 

thus supporting the results of the previous work. In examining the effect of the spatial 

dimensionality it is observed that the spectral radius increases with increasing 

dimensionality. It is hypothesized that the reason the spectral radius increases with the 

spatial dimensionality is because the incoming angular flux on orthogonal surfaces of the 

spatial subdomain boundaries will always be coupled. This is due to the characteristic 

rays that are very close to the corners of the spatial subdomain boundaries. The optical 

thicknesses along these trajectories will always be less than in the 1-D case, where the 

optical thickness is based on the distance between opposing faces on the subdomain. It is 
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expected that this effect will reduce the rate of convergence. From the results in Figure 

7.3 it would appear that this effect is more severe for smaller spectral radii. However, the 

absolute change in the magnitude of the spectral radius is approximately 0.1 between 1-D 

and 3-D, with an optical thickness of 1.0, or roughly 25% increase in the spectral radius 

from 1-D to 3-D. This suggests the SDD-CMFD method, while less effective in higher 

spatial dimensions, is still fairly effective at accelerating the convergence even in 3-D. 

The DP0 update and P1 update also agree well in 1-D and 2-D, but for some data points 

the agreement in 3-D is not as good. The possible reason for this is discussed later in this 

section. 

 Figure 7.4 shows the variation of the spectral radius as a function of the spatial 

subdomain's, or sweep region's, optical thickness for a fixed coarse cell optical thickness 

of 0.1. The spatial domain optical thickness is varied by changing the number of coarse 

cells in the spatial subdomain. The number of fine cells per coarse cell vary in the same 

fashion in Figure 7.4 as they did for the results shown in Figure 7.3. 

 

 

Figure 7.4 – Convergence properties of SDD-CMFD for c=0.99 and 
coarse cell optical thickness of 0.1 

 In Figure 7.4 the trend of the numerical data follows the general trend of the 

spectral radius predicted by the Fourier analysis, although there are some notable 

differences. The experimentally determined spectral radii are observed to decrease at a 

faster rate than that predicted by the Fourier analysis with an increasing spatial 
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subdomain optical thickness. The next notable difference is the spectral radius predicted 

for the 2-D case with the sweep region optical thickness equal to 1.0. In the 2-D case the 

spectral radius increases dramatically, rather than continuing to decrease. This is also 

assumed to be an effect of boundary conditions being coupled on orthogonal faces and 

from the neutron trajectories with smaller mean free paths that pass near the corners of 

the spatial subdomains. The data for the 3-D case with this optical thickness was not 

calculated because of initialization times that exceeded several hours. However, it is 

assumed the 3-D case would have been similar to the 2-D case. Finally, in comparing the 

experimentally determined spectral radii, the same trend of an increasing spectral radius 

with increasing spatial dimensionality is again observed. 

 The final result to be discussed further highlights the differences between the DP0 

and P1 updates of the incoming angular flux boundary conditions. The previous figures 

showed reasonable agreement for either update method in most cases. However, in Figure 

7.5 below, the full error history for the 2-D case with a spatial subdomain optical 

thickness of 1.0 with the P1 and DP0 update is shown to have a markedly different 

behavior after a certain number of iterations. 

 

 

Figure 7.5 – Comparison of convergence properties of SDD-CMFD with 
DP0 and P1 updates of the boundary angular flux 

 In Figure 7.5 it is observed that the error history when using the DP0 update 
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after some number of iterations. Because the DP0 updates the boundary angular flux 

isotropocally, it is hypothesized that this dominant error mode must be an error mode that 

is related to the linear variation of the solution in angle. However, this effect is also 

observed in the 1-D numerical results, and so it may be a result of inconsistencies in the 

numerical iteration technique actually being 3-D instead of truly 1-D. To verify whether 

the source of the DP0 convergence behavior is because of an error mode that is linearly 

dependent in angle or inconsistencies in the numerical experiment, a Fourier analysis 

using the DP0 update equation will be performed in future work. 

7.4 Summary 
This chapter introduced the basic idea behind synthetic acceleration techniques. It then 

presented recent work on the application of one such synthetic acceleration technique, 

CMFD, to problems that are decomposed in space. In this previous work [65], the 

convergence properties of this method, SDD-CMFD, were predicted for model problems 

in 1-D by Fourier analysis and verified numerically with a 1-D method. The work of this 

chapter added to these experimental results by using a 3-D transport method on a similar 

model problem that was first designed to have a strictly 1-D solution. The numerical 

estimates of the spectral radius for the "1-D" problem agreed reasonably well with the 

previous results suggesting that the numerical experimentation method is sound. 

Numerical estimates of the convergence behavior of SDD-CMFD were then generated 

for 2-D and 3-D model problems, and looked at an alternative update equation that was 

based on a DP0 approximation to the boundary angular flux, rather than a P1 

approximation. In these new results it was observed that the SDD-CMFD method was not 

as effective for multi-dimensional problems compared to 1-D, but showed a considerable 

improvement on the rate of convergence. Additionally, the DP0 update was observed to 

produce convergence behavior similar to the P1 update of the boundary angular fluxes in 

some cases. However, in others it was observed to be less efficient at accelerating the 

convergence. 
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Chapter 8  

SOLUTIONS TO NUMERICAL BENCHMARKS 

In this chapter the parallel performance of the 3-D MOC kernel is assessed using several 

numerical benchmarks. The purpose of doing this is not only to evaluate the accuracy and 

efficiency of the parallel 3-D MOC method, but also to examine the sensitivity of the 

accuracy and execution times to the level of discretization. In previous work [32], [33], 

the 3-D MOC method was used to compute solutions to one of the Takeda benchmarks 

[68]. This will be the first benchmark discussed in this chapter. The other benchmarks 

analyzed include the C5G7 benchmarks [69], [70] for a heterogeneous reactor model and 

a single PWR assembly based on one of the CASL AMA Benchmarks [71], that includes 

a more realistic PWR geometry. 

8.1 Takeda Benchmark: Model 1 
The Takeda Benchmark suite [68] is a set of 3-D transport benchmarks that include 

several simplified reactor core models for the purposes assessing 3-D transport codes for 

reactor applications. Only the first model is examined here, since it is intended to be 

representative of a small LWR core. 

8.1.1 Model Description and Calculation Details 
The model includes two cases for a rodded and unrodded condition. The benchmark 

specification includes four types of materials with two-group cross sections. The core 

model geometry is shown in Figure 8.1. In discretizing this model, modular ray tracing 

for a 1cm x 1cm x 1cm domain is used for all computed results reported. The 

convergence criteria used for all the calculations was 
610keff  and 

610flux , where 
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the eigenvalue residual, εkeff, and the flux residual, εflux, are given by Eq. (8.1) and Eq. 

(8.2) respectively. All calculations were performed on Titan [54]. 

    ,1 
effeffkeff kk  Eq. (8.1) 

    .
2

1 

 flux  Eq. (8.2) 

 

Figure 8.1 – Takeda benchmark problem 1 geometry 

 In calculating solutions to this benchmark, several discretizations were used to 

demonstrate mesh convergence and to show that the computed solution approaches the 

benchmark reference. The calculations were performed using several different parallel 

decompositions, and with and without SDD-CMFD (referred to as CMFD in the 

remainder of the chapter) for convergence acceleration. The different discretizations of 

the different phase spaces of the solution that were used are shown in Table 8.1. 

Table 8.1 – Takeda problem 1 discretizations 

Discretization 

Level 
Flat Source Region Size Angular Quadrature 

Max Ray 

Spacing 

Coarse 1 cm x 1 cm x 1 cm S4 Level Symmetric 0.1 cm 

Medium 0.5 cm x 0.5 cm x 0.5 cm S8 Level Symmetric 0.05 cm 

Fine 0.25 cm x 0.25 cm x 0.25 cm S16 Level Symmetric 0.01 cm 
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 For the medium discretization level (e.g. 0.5 cm sized flat source region, S8 

angular quadrature, and 0.05 cm ray spacing), the time to convergence for various 

parallel decompositions is also examined. In these calculations a basic source iteration is 

used instead, and the CMFD acceleration is not performed. This is to highlight the effect 

of the spatial decomposition on the rate of convergence. Finally, using this same 

discretization and a varying number of spatial domains, the effectiveness of the CMFD is 

examined. 

8.1.2 Results and Discussion 
Figure 8.2 shows the computed eigenvalues for the different discretizations, compared to 

the benchmark reference. In these figures it is observed that the eigenvalue change is 

relatively small with variations to the angular quadrature order and ray spacing, once the 

flat source region mesh is refined to (0.5 cm)
3
. This suggests that this mesh is sufficient 

for fully resolving the region-wise flat source. It is also observed that increasing the 

angular order has the next largest effect on keff. There is a more noticeable improvement 

in the solution going from S8 to S16 than from S4 to S8. The ray spacing seems to have the 

smallest effect, which is likely due to the problem having little spatial heterogeneity, so 

even coarse ray discretizations numerically integrate the spatial mesh regions well. Using 

(0.5 cm)
3
 flat source regions with the S8 quadrature and 0.05 cm ray spacing for the 

discretization give a solution that is reasonably accurate. 

 

 

Figure 8.2 – Computed keff of Takeda benchmark for various discretizations 
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 The effective multiplication factors for each benchmark case with the 

aforementioned discretization are shown in Table 8.2, along with the averages of the 

original benchmark participants’ results and the reference eigenvalue. The region average 

fluxes for case 1 (unrodded) and case 2 (rodded) are shown in Table 8.3 and Table 8.4, 

respectively. 

Table 8.2 – Comparison of reference average keff for Takeda benchmark model 1 

Method Case 1 keff Case 2 keff Case 1 Δkeff (pcm) Case 2 Δkeff (pcm) 

Reference 
0.9780 

(±0.0006) 

0.9624 

(±0.0006) 
--- --- 

PN 0.9778 0.9625 -20 10 

S4 0.9766 0.9630 -140 60 

S8 0.9766 0.9622 -140 -20 

MPACT(3-D MOC) 0.97763 0.96253 -37 -13 

Table 8.3 – Comparison of region average fluxes for Takeda benchmark model 1 case 1 

Method  
Core Reflector Void 

Avg. Rel. Diff. Avg. Rel. Diff. Avg. Rel. Diff. 

Reference 1 4.7509E-03 0.10% 5.9251E-04 0.21% 1.4500E-03 0.47% 

2 8.6998E-04 0.12% 9.1404E-04 0.23% 9.7406E-04 0.63% 

Monte Carlo 1 4.7835E-03 0.69% 5.9722E-04 0.79% 1.4529E-03 0.20% 

2 8.7841E-04 0.97% 9.2036E-04 0.69% 9.7684E-04 0.29% 

PN 1 4.7472E-03 -0.08% 5.9439E-04 0.32% 1.4096E-03 -2.79% 

2 8.6452E-04 -0.63% 9.2059E-04 0.72% 9.0113E-04 -7.49% 

Sn 1 4.7650E-03 0.30% 5.9361E-04 0.19% 1.4453E-03 -0.32% 

2 8.7162E-04 0.19% 9.1520E-04 0.13% 9.6997E-04 -0.42% 

MPACT 

(3-D MOC) 

1 4.7445E-03 -0.13% 5.9552E-04 0.51% 1.4568E-03 0.47% 

2 8.7239E-04 0.28% 8.8513E-04 -3.16% 9.5427E-04 -2.03% 

Table 8.4 – Comparison of region average fluxes for Takeda benchmark model 1 case 2 

Method  
Core Reflector CR 

Avg. Rel. Diff. Avg. Rel. Diff. Avg. Rel. Diff. 

Reference 1 4.9125E-03 0.10% 5.9109E-04 0.21% 1.2247E-03 0.48% 

2 8.6921E-04 0.13% 8.7897E-04 0.23% 2.4604E-04 0.72% 

Monte Carlo 1 4.9006E-03 -0.24% 5.8989E-04 -0.20% 1.2264E-03 0.14% 

2 8.6814E-04 -0.12% 8.8012E-04 0.13% 2.4615E-04 0.04% 

PN 1 4.8581E-03 -1.11% 5.8854E-04 -0.43% 1.1996E-03 -2.05% 

2 8.6003E-04 -1.06% 8.8412E-04 0.59% 2.4257E-04 -1.41% 

Sn 1 4.8968E-03 -0.32% 5.8980E-04 -0.22% 1.2218E-03 -0.24% 

2 8.6751E-04 -0.20% 8.8074E-04 0.20% 2.4538E-04 -0.27% 

MPACT 

(3-D MOC) 

1 4.8785E-03 -0.69% 5.9171E-04 0.11% 1.2285E-03 0.31% 

2 8.6820E-04 -0.12% 8.5024E-04 -3.27% 2.5147E-04 2.21% 
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 The eigenvalues compare within the statistical uncertainty of the reference and 

except for the group 2 fluxes in the reflector and void or core regions, the agreement of 

the region average fluxes with reference is comparable to the averages of the other 

participants. The cause of flux differences was not investigated rigorously, but is thought 

to be related to the discretization. Therefore, from these results it can be concluded that 

the methodology of the parallel 3-D MOC kernel is correct. 

 Figure 8.3 and Figure 8.4 show the parallel efficiency and speedup as defined by 

Eq. (6.1) and Eq. (6.2), respectively, for various decompositions measured against a 

reference calculation using a full NUMA node. For this problem, effective strong scaling 

(parallel efficiency > 80%) is achieved for up to 2048 processors using 64 spatial 

domains, 8 angular domains and 4 threads; only two other cases were run with processor 

counts larger than 2048. The first was with 4000 processors that used 125 spatial 

domains, 8 angular domains and 4 threads and had a parallel efficiency of 77%. The other 

case used 15625 cores to fully decompose the spatial domain and the parallel efficiency 

of this decomposition was 61%. The performance of the  worst case, with 256 processors 

and 50% parallel efficiency used 1 spatial domain, 16 angular domains and 16 threads 

and is corroborated by the analysis of the performance model in Section 6.4. The average 

time for a transport sweep and the total solution time are also shown in Figure 8.5, where 

the "ideal" time is execution time on one processor divided by the n processors. 

 

 

Figure 8.3 – Strong scaling parallel efficiency for 
Takeda problem on Titan 

 

Figure 8.4 – Strong scaling speedup for Takeda 
problem on Titan 
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Figure 8.5 – Takeda problem run times with 3-D MOC for various parallel decompositions on Titan 

 The number of iterations and overall run time to converge for various 

decompositions with and without CMFD are shown in Table 8.5. From this data it is 

observed that the number of iterations to converge is far less sensitive to the spatial 

decomposition when CMFD is used. The factor by which the iterations are reduced 

ranges between 13 and 18 for this problem. The overall speedup achieved with CMFD 

does not scale exactly with the reduction in the number of iterations. This is to be 

expected, since CMFD introduces some computational overhead. To a point, the effective 

speedup increases with an increasing number of spatial domains. The effective speedup 

likely varies because the factor by which the number of iterations is reduced is changing. 

Additionally, this speedup is affected by the parallel efficiency of the CMFD linear 

solver, which is likely more important than the reason noted above. With 1000 spatial 

domains, the domain sizes vary between 2x2x2 and 3x3x3 blocks of CMFD nodes. The 

decrease in effective speedup from 125 domains to 1000 domains is most likely because 

the subdomain sizes are not balanced, and because subdomains are too small to solve the 

CMFD linear system efficiently in parallel. This highlights the importance of having a 

good parallel linear solver for CMFD. 

 

 

 

0.001

0.01

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024 4096 16384

Ti
m

e 
(s

)

Number of Processors

Average Sweep Time Total Time

Ideal Avg. Sweep Time Ideal Total Time



144 

Table 8.5 – Effectiveness of CMFD with spatial decomposition 

Number of 

Spatial Domains 

No CMFD With CMFD Effective 

Speedup No. of Iters. Run Time (s) No. of Iters. Run Time (s) 

1 107 101224.00 8 10025 10.10 

8 109 18759.70 7 1762 10.65 

64 121 2985.12 7 240.21 12.43 

125 124 1150.74 7 93.06 12.37 

1000 146 303.15 11 39.86 7.61 

 

 The breakdown of the calculation time for MOC and the different components of 

the SDD-CMFD calculation is shown in Figure 8.7 through Figure 8.10. It is apparent in 

these figures that the MOC time dominates in all cases. However, the fraction of time 

spent in the CMFD portion of the calculation increases with the increasing number of 

spatial domains. This suggests that the scaling of the GMRES solver in PETSc does not 

perform as well as the 3-D MOC kernel. Therefore, fully decomposing a problem in 

space may not be optimal when using CMFD, especially if the spatial subdomain is a 

single CMFD node. The other interesting observation from the data in these figures is 

that the time to update the MOC solution takes almost as much or more time than it does 

to solve the CMFD equations. Although, the update component of the CMFD takes less 

time than the solve when the problem becomes over-decomposed. 

 The times for the MOC calculation, total CMFD calculation time, and solution 

time are shown in Table 8.6. There is a notable increase in the CMFD solution time 

between the 125 processor and 1000 processor case. It is possible that this may be 

improved by developing a solver more specific to the CMFD and parallel decomposition, 

but it appears from this data that the strong scaling efficiency of the CMFD solver 

decreases when the spatial subdomain sizes become smaller than ~200 CMFD nodes. 

Table 8.6 – Scaling of calculation component times for Takeda benchmark 

Number of 

Processors 

Number of 

Iters. 
Run Time (s) 

Average Time (s) 

MOC CMFD 

1 8 10025.00 9833.00 191.38 

8 7 1762.37 1720.59 25.16 

64 7 240.21 218.38 4.74 

125 7 93.06 88.05 3.95 

1000 11 39.86 29.89 8.36 
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Figure 8.6 – Solution time breakdown with CMFD for Takeda benchmark (1 spatial domain) 

 

Figure 8.7 – Solution time breakdown with CMFD for Takeda benchmark (8 spatial domains) 

 

Figure 8.8 – Solution time breakdown with CMFD for Takeda benchmark (64 spatial domains) 

 

Figure 8.9 – Solution time breakdown with CMFD for Takeda benchmark (125 spatial domains) 
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Figure 8.10 – Solution time breakdown with CMFD for Takeda benchmark (1000 spatial domains) 

8.2 C5G7 Benchmark 
The C5G7 benchmarks [69], [70] were an important addition to the set of publically 

available 3-D transport benchmarks because they were the first major benchmarks to 

include the detailed heterogeneity of reactor geometry for a modestly large domain. The 

original benchmark specified a 2-D and 3-D problem, and a second benchmark was 

created as an extension of the first which included multiple control rod configurations. 

The purpose of these benchmarks was to test the ability of modern deterministic transport 

codes to treat explicit reactor geometries without homogenization. 

8.2.1 Model Description and Calculation Details 
In the work here, the original 3-D benchmark was performed, as well as all three of the 

extended cases. The benchmark geometry shown in Figure 8.11 through Figure 8.13 is 

for the original 3-D benchmark description. 

 

Figure 8.11 – C5G7 pin cell geometry 
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Figure 8.12 – C5G7 assembly descriptions 
 

 

Figure 8.13 – C5G7 3-D core description 
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 For the extended benchmark cases, which include control rods, the core geometry 

was reduced axially as shown in Figure 8.14. The geometry description for the pin cell 

(Figure 8.11) and assemblies (Figure 8.12) remain unchanged in the extended benchmark 

cases. The control rod positions for the three configurations: unrodded, rodded A, and 

rodded B are shown in Figure 8.15, Figure 8.16, and Figure 8.17, respectively. Figure 

8.18 shows the layout of the rodded upper reflector, and in general when an assembly is 

rodded the control rod material replaces the guide tube material. 

 

 

Figure 8.14 – C5G7 extended benchmark core description for rodded configurations 

 

Figure 8.15 – C5G7 extended benchmark unrodded configuration 
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Figure 8.16 – C5G7 extended benchmark rodded A configuration 

 

Figure 8.17 – C5G7 extended benchmark rodded B configuration 

 

Figure 8.18 – Upper reflector assembly with control rod 
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 Due to the increased problem size, a much smaller set of discretizations were 

examined compared to the Takeda problem. Furthermore, it was possible to choose the 

most appropriate discretizations based on previous experiences with the C5G7 

benchmark using the 2-D/1-D solution scheme in previous work [69], [72]. For the 

spatial discretization the pin cells were discretized in the x-y plane using eight azimuthal 

sectors, five equal volume radial rings in the cylinder, and three equal volume rings in the 

moderator. The axial mesh in the pin cells was 0.252 cm and the reflector region was 

meshed using (0.252 cm)
3
 flat source regions. The dimensions of the modular ray tracing 

unit were 1.26 cm x 1.26 cm x 3.57 cm. The angular quadratures used were S8 and S16, 

which is the largest level symmetric quadrature order currently implemented. Ray 

spacings of 0.05 cm and 0.03 cm were also used. The spatial decomposition that was used 

for the original 3-D benchmark was 2160 domains, and the extended benchmarks used 

648 spatial domains. Therefore, each process had approximately a quarter assembly sized 

domain, 3.57 cm tall. For all reported results 4 angular domains and 2 threads were used, 

and the convergence criteria used for Eq. (8.1) and Eq. (8.2) was 1.e-6 and 1.e-5, 

respectively. 

8.2.2 Results and Discussion 
In addition to the 3-D MOC results, a solution from the 2-D/1-D method was also 

calculated and compared to the benchmark reference. The results for 0.05 cm ray spacing 

and the S8 quadrature are shown in Table 8.7, and the results for the 0.03 cm ray spacing 

and S16 quadrature are shown in Table 8.8. Results are also shown in Table 8.9 using 0.05 

cm and a rectangular Chebyshev-Gauss (C-G) product quadrature, with 16 azimuthal 

directions and 4 polar directions per octant for the 3-D MOC and the 2-D MOC solution 

of the 2-D/1-D method. The computational cost for 2-D/1-D and 3-D MOC for the 

various benchmark cases are shown in Table 8.10. 
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Table 8.7 – Eigenvalue comparison for C5G7 3-D benchmark with 
S8 quadrature and 0.05 cm ray spacing 

Case 
Reference keff 

(Δkeff pcm) 

3-D MOC 

(Diff. Δkeff pcm) 

2-D/1-D 

(Diff. Δkeff pcm) 

3-D Benchmark 1.183810 (±10) 1.18149 (-232) 1.18143 (-238) 

Unrodded 1.14308 (±7) 1.14090 (-218) 1.13943 (-365) 

Rodded A 1.12806 (±7) 1.12580 (-226) 1.12503 (-303) 

Rodded B 1.07777 (±7) 1.07493 (-284) 1.07465 (-312) 

Table 8.8 – Eigenvalue comparison for C5G7 3-D benchmarks with 
S16 quadrature and 0.03 cm ray spacing 

Case 
Reference keff 

(Δkeff pcm) 

3-D MOC 

(Diff. Δkeff pcm) 

2-D/1-D 

(Diff. Δkeff pcm) 

3-D Benchmark 1.183810 (±10) 1.18344 (-37) 1.18208 (-173) 

Unrodded 1.14308 (±7) 1.14165 (-143) 1.14004 (-304) 

Rodded A 1.12806 (±7) 1.12638 (-168) 1.12568 (-238) 

Rodded B 1.07777 (±7) 1.07530 (-247) 1.07546 (-231) 

Table 8.9 – Eigenvalue comparison for C5G7 3-D benchmarks with 
C16-G4 quadrature and 0.05 cm ray spacing 

Case 
Reference keff 

(Δkeff pcm) 

3-D MOC 

(Diff. Δkeff pcm) 

2-D/1-D 

(Diff. Δkeff pcm) 

3-D Benchmark 1.183810 (±10) 1.18250 (-131) 1.18383 (2) 

Unrodded 1.14308 (±7) 1.14267 (-41) 1.14164 (-144) 

Rodded A 1.12806 (±7) 1.12735 (-71) 1.12738 (-68) 

Rodded B 1.07777 (±7) 1.07624 (-153) 1.07746 (-31) 

Table 8.10 – Computational Cost for C5G7 3-D benchmarks with 
2-D/1-D and 3-D MOC (CPU Hours) 

Case 3-D MOC 2-D/1-D 

3-D Benchmark 35884.80 1947.55 

Unrodded 11805.12 108.55 

Rodded A 10827.36 95.89 

Rodded B 10085.76 108.13 

 

 Results for the S8 quadrature are quite poor for both 3-D MOC and 2-D/1-D when 

compared to the benchmark reference. However, as the quadrature order is increased, the 

results improve, but it is clear that the S16 quadrature is still probably not a sufficient 

discretization for the rodded cases. The Chebyshev-Gauss quadrature gives surprisingly 

accurate results with the 2-D/1-D solver for the original 3-D case, but there is some 

inconsistent variation of the predicted eigenvalue for the rodded configurations. While 

the overall results may not be as accurate as the original benchmark participants, it is 

suggested that the primary reason for the differences observed in these results is from an 
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insufficient angular quadrature. It should be noted that this observation about the above 

results is consistent with the conclusions in [69], in which many of the participants used 

significantly higher order quadratures to obtain accurate results. The results from [69] are 

duplicated in Table 8.11 along with the angular quadrature order used by each 

participant, to illustrate this point. As for the computational cost, the CPU hours required 

for the 3-D MOC calculations are about a factor of 100 higher than the 2-D/1-D 

calculations for the rodded case, but only 20 times higher for the original 3-D benchmark. 

Table 8.11 – C5G7 3-D benchmark participants’ angular quadratures [69] 

Code Δkeff (pcm) Angular Quadrature 

CRONOS2-SN -658 S4 

TORT-GRS -336 S16 

THREEDANT 11 S8 

DeCART 5 

Chebyshev-Chebyshev 

Product Quadrature 

8 azimuthal/8 polar per octant 

CRX 155 

Chebyshev-Chebyshev 

Product Quadrature 

8 azimuthal/2 polar per octant 

MCCG3D -36 
S2 (1-D Gauss) for azimuthal 

1 polar direction in 45° 

PARTISN -19 S26 square Chebyshev-Legendre 

ATTILA -33 
S12 square 

Chebyshev-Double Legendre 

TORT-ORNL -147 S16 

 

 In addition to the eigenvalue comparisons, summaries of the comparisons of the 

pin power for each case are shown in Table 8.12 through Table 8.15. These comparisons 

used the results of the S16 angular quadrature with 0.03 cm ray spacing. For the 

comparison of the 3-D benchmark the 3-D MOC eigenvalue is closer, but the errors in the 

pin power distribution are higher. For the extended cases the error in the solution of the 

3-D MOC and 2-D/1-D are approximately the same in the unrodded case, however, once 

the rods enter the fuel region the 3-D MOC solution has less error compared to the 

reference than the 2-D/1-D. However, compared to the reference the 3-D MOC solution 

still shows some non-trivial error. The RMS error in the pin power for the 3-D MOC 

cases is about 0.5% in all cases. Based on this metric, these results place the 3-D MOC 

solution in about the middle of the spread of the original benchmark participants with 6 

participants reporting higher RMS values, and 6 participants with less RMS error, and 2 



153 

participants with about the same error. Similar trends are observed for the metrics 

reported in Table 8.13 through Table 8.15. As noted earlier, the error in the 3-D MOC 

solution is attributed to the angular quadrature. Furthermore, it is noted that this 

quadrature does not provide the most accurate 2-D/1-D solution, therefore it is assumed 

that this is not the most accurate 3-D MOC solution. Thus, these results should be treated 

as preliminary and not representative of the most accurate results that are reasonably 

obtainable for this problem. That being said, these results when compared to the original 

benchmark participants results, are approximately in the middle, which is encouraging to 

the methods' overall accuracy. 

Table 8.12 – C5G7 3-D benchmark pin power comparison 

Metric Axially Integrated Pin Powers 

Specific Pin Power Data Reference 3-D MOC 2-D/1-D 

Maximum Pin Power 2.500 2.515 2.504 

Percent Error (associated 68% MC) 0.07 0.617 0.144 

Distribution Percent Error Results       

Maximum Error (associated 68% MC) 0.190 1.457 2.045 

AVG Error 0.139 0.469 0.376 

RMS Error 0.145 0.563 0.504 

MRE Error 0.118 0.461 0.296 

Number of Accurate Fuel Pin Powers       

Number of Fuel Pins Within 68% MC N/A 178 291 

Number of Fuel Pins Within 95% MC N/A 287 422 

Number of Fuel Pins Within 99% MC N/A 396 558 

Number of Fuel Pins Within 99.9% MC N/A 485 664 

Total Number of Fuel Pins 1056 1056 1056 

Average Pin Power In Each Assembly       

UO2-1 Power 1.867 1.876 1.869 

MOX   Power 0.802 0.798 0.801 

UO2-2 Power 0.529 0.528 0.530 

UO2-1 Power Percent Error N/A 0.474 0.082 

MOX   Power Percent Error N/A -0.493 -0.175 

UO2-2 Power Percent Error N/A -0.179 0.240 
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 Finally, some additional runs were executed on Titan to obtain more scaling 

information on the 3-D MOC kernel. These calculations did not run till convergence, 

instead only a few iterations were performed to obtain timing information. The original 

3-D benchmark was fully decomposed in space to run on 156,060 processors and the 

unrodded extended benchmark case was fully decomposed in space to run on 46,818 

processors. The subdomain sizes in each of these cases was a single pin cell so these data 

points represent the weak scaling in space of the 3-D MOC kernel. Figure 8.19 shows the 

parallel efficiency of the spatial decomposition weak scaling relative to a 2x2x2 pin cell 

case decomposed onto all 8 cores on a single NUMA node on Titan to provide a 

consistent reference. From the data in Figure 8.19 the spatial decomposition weak scaling 

is observed to be excellent with greater than 95% efficiency to O(10
5
) processors. 

 

 

Figure 8.19 – Spatial decomposition weak scaling for C5G7 
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8.3 Realistic PWR Assembly 
The problem studied in this section is adapted from the suite of CASL AMA Benchmarks 

[71]. In this suite there is a specification for a single 3-D PWR assembly, this is 

essentially the problem analyzed here, although some slight modification to the problem 

specifications is needed to accommodate a present limitation in the 3-D geometry 

modeling and modular ray tracing. This is described in more detail in the following 

section. The purpose of this benchmark is to begin to estimate the computational 

requirements of 3-D MOC and to evaluate the accuracy of 3-D MOC for a fairly realistic 

model. In addition to the increased geometric complexity of the model compared to the 

previous problems examined in this chapter, is the increased complexity of the cross 

sections and material descriptions in this model. The previous problems provided 

macroscopic cross sections in a few energy groups. However, in this problem the cross 

sections contain 60 energy groups, and the problem specifies only the material 

composition, so the macroscopic cross sections must be computed from this information 

and microscopic cross section data. A key step in this process is the resonance calculation 

which was performed here using the subgroup method [78]. Therefore, an additional 

feature in the analysis of this problem is the dependence of the resonance calculation on 

the dimensionality of the transport solution. 

8.3.1 Model Description and Calculation Details 
As mentioned previously, the model studied here deviates slightly from the specification 

in order to accommodate a limitation of the 3-D modular ray tracing implementation. 

This present limitation is that the modular ray tracing units must have a uniform height 

and there is currently no way to describe an axially heterogeneous material description in 

the ray tracing module. Therefore, the material boundaries of the model's geometry must 

align with the ray tracing modules. This requires that only the axial description of the 

original specification be modified. The modified axial description is shown in Figure 

8.20. This limitation will be straightforward to eliminate in future work by allowing for 

axially heterogeneous material descriptions within the ray tracing module. 
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Figure 8.20 – Axial description of realistic PWR assembly (not to scale) 

 The radial description of the assembly is given in Figure 8.21. The assembly is a 

standard 17x17 PWR design. It has a uniform fuel enrichment of 3.1% U-235. The 

moderator contains 1300 ppm boron and the calculation is for hot zero power conditions. 

The model also includes a pellet-clad gap and the inter-assembly gap. The nozzles, core 

plate and reflector are each their own homogenous materials, and the grid spacers are 

homogenized into the coolant. The nozzle gap regions contain the guide tube structures. 

The rest of the detailed material compositions and geometry description are excluded for 

brevity, for the complete information it is suggested to consult the reference [71]. 
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Figure 8.21 – Realistic PWR assembly radial geometry 

 Two models were developed, one for the 3-D MOC solver, and one for the 

2-D/1-D solver. The cross sections are discretized into 60 neutron energy groups in both 

cases. The angular discretization used for the 2-D/1-D model was the Chebyshev-Gauss 

product quadrature with 16 azimuthal angles and 4 polar angles, and the S16 level 

symmetric quadrature was used for the 3-D MOC calculation. The ray spacing used was 

0.05 cm. The models also made use of quarter symmetry and the ray tracing module 

dimensions were 10.75 cm x 10.75 cm x 1.64 cm. For the spatial discretization of the 3-D 

MOC model the fuel pins contained 224 flat source regions, the guide tubes had 128 flat 

source regions and the cells for the structural components and reflector had 64 flat source 

regions. The 2-D/1-D model used 56, 32, and 16 flat source regions for each pin cell type 

respectively. The difference is that the 3-D MOC model discretized each pin cell into 

four axial levels. The total number of flat source regions, segments and long rays is given 

in Table 8.16 for the 3-D MOC model. Additionally, the model was run with P0 

scattering rather than transport corrected P0 scattering so that the 2-D/1-D model could 

converge. 

 The 3-D MOC model was run with a 261 spatial domains, 16 angular domains, 

and 4 threads for each MPI process for a total of 16,704 processors. The 2-D/1-D 

calculation was run with 46 spatial domains and 8 angular domains and 1 thread for each 
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MPI process for a total of 368 processors. The convergence criteria used was 1.e-5 for 

εkeff and εflux. 

Table 8.16 – Realistic PWR problem size parameters 

Problem Size Parameter 3-D MOC Model Value 2-D/1-D Model Value 

nseg 55,952,023,038 28,981,236 

nlongray 2,238,077,088 407,008 

nreg 3,697,984 157,496 

nangoct 36 64 

 

 Finally, as a result of the slight modification to the axial description of the model, 

there is no longer a quality Monte Carlo reference solution for comparison. 

Consequently, there is only a comparison between the 3-D MOC result and a 2-D/1-D 

result. 

8.3.2 Results and Discussion 
Table 8.17 shows the computed keff for each case and the number of iterations to 

converge, as well as run time. 

Table 8.17 – Comparison of realistic PWR problem 

 3-D MOC 2-D/1-D Difference 

keff 1.17180 1.17323 143 pcm 

No. of Iterations 7 18 11 

Run Time 2103 s 630 s 1437 s 

 

 The primary difference in the keff is the different angular quadratures used for the 

two models. From the C5G7 results it was observed that the differences in these 

quadratures could easily account for 143 pcm. The ideal comparison would be to have the 

same angular quadrature for both, however, it was observed that the 2-D/1-D solver could 

not converge when using the S16 quadrature. This is likely due to a bug in the 

implementation of the 2-D/1-D solver. Additionally, the 3-D MOC could not successfully 

perform the ray tracing using the Chebyshev-Gauss quadrature, and that is likely caused 

by a different coding problem. 

 The number of iterations to converge is significantly higher for the 2-D/1-D 

solver and this is because the iteration scheme must be under-relaxed to remain stable 

when solving a problem like the realistic PWR assembly. Additionally, the 2-D/1-D 
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solver is using a DP0 update for the angular flux boundary condition in the SDD-CMFD, 

while the 3-D MOC is using the P1 update. It is remarkable though that the 3-D MOC 

solution is able to converge in just 7 iterations. This is the same number of iterations 

required to converge the Takeda problem which is drastically less complex. This is a 

testament to the effectiveness of the SDD-CMFD. Finally, despite the 3-D MOC using a 

factor of 45 more processors than the 2-D/1-D solution, it was still a factor of 3 slower in 

run time, which again highlights the computational burden of 3-D MOC. 

8.4 Summary 
In this chapter three numerical benchmark problems were evaluated with the parallel 3-D 

MOC kernel. The Takeda problem showed that the implementation of the 3-D MOC 

method is accurate and that the mesh converged solution is within the error of the 

benchmark reference. Additionally, the effectiveness of the SDD-CMFD was 

demonstrated and the parallel efficiency was demonstrated for this problem. 

 The C5G7 showed that the discretizations available for the 3-D MOC are not 

quite sufficient to achieve a mesh converged solution, but as the discretizations were 

refined the solution did approach the benchmark reference. This also provides confidence 

in the accuracy of the method. However, future work is needed to obtain solutions for 

more refined discretizations, particularly in angle, which will better show the accuracy 

and cost of the method compared to the other benchmark participants' results. The 

parallel efficiency for this problem was also observed to be greater than 90% with only 

spatial decomposition out to 156,060 processors. 

 Finally, a realistic PWR assembly was simulated and compared to 2-D/1-D 

results. The results of this problem contained some inconsistencies that cannot yet be 

resolved, thus making it difficult to draw any final conclusions. However, it was observed 

that the SDD-CMFD acceleration of the 3-D MOC was still very effective, even for such 

a complex problem. Furthermore, stability issues were encountered in the 2-D/1-D 

simulation, that are inherent to this method, and the 3-D MOC method had no stability 

issues. Also, the inconsistencies between the 3-D MOC and 2-D/1-D solutions is 

attributed to the differences in the models. 
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Chapter 9  

SUMMARY, CONCLUSIONS, AND 

CONTINUING WORK 

9.1 Summary of Work 
This thesis began with the assertion that despite its computational intensity, the method of 

characteristics is a viable solution method for whole core, pin resolved, 3-D transport 

analysis of light water reactors. This is particularly true when compared to the other 

transport methods that have received significant attention for LWR application, such as 

the discrete ordinates method and the Monte Carlo method. However, each of these 

methods was shown to still have some outstanding issues for LWR applications that are 

currently being addressed. 

 In Chapter 2 the derivation of the 3-D MOC equations was presented, with 

particular attention to the important approximations that are commonly applied to 2-D 

MOC. It was also shown that after the transformation to the characteristic direction, the 

final form of the discrete MOC equations in 3-D are almost identical to the 2-D form. 

The primary difference in 2-D and 3-D MOC is the discretization of the problem. One of 

the original aspects of the research here is the extension of the modular ray tracing 

concept from 2-D MOC to 3-D MOC in a way that was slightly different from previous 

work and that reduces the number of angles that must be stored for 3-D MOC. 

 In Chapter 3, the specific details of the implementation of the MOC equations 

were presented. This chapter leveraged the considerable progress made in previous work 

on 2-D MOC methods over the last several years, which helped ensure that the serial 

performance of the 3-D MOC kernel is nearly as good as what is observed for 2-D MOC 

kernels. The other purpose of presenting this detail is to remove any ambiguity of how 
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the equations are mapped to the programming model, which was an essential component 

needed for the work done in Chapter 4, Chapter 5, and Chapter 6. 

 Once a clear description of the 3-D MOC kernel was established, the methods 

were presented for parallelizing the kernel in Chapter 4. The parallelization used both 

shared and distributed memory models and included three types of decomposition. The 

parallelization of the space and angle phase space was performed using a distributed 

memory model. The communication pattern for the spatial decomposition involved using 

non-blocking point-to-point communication between neighboring domains, which is 

required to exchange the boundary condition between the domains. The communication 

pattern for the angular decomposition involved an all reduce operation to compute the 

scalar flux from partial sums accumulated on each angular domain. The remaining 

decomposition for the characteristic rays used the shared memory model for very fine 

grained parallelism. 

 For each decomposition the methods by which the domains were partitioned was 

also described in Chapter 4. For the spatial domain, the concept of modular ray tracing 

was again leveraged, since it superimposes a structured Cartesian grid over the problem 

domain, which simplifies the partitioning algorithm. The Z-order space filling curve was 

used to define a tree data structure through which this grid is indexed and partitioned. The 

use of a space filling curve helps to preserve several properties that are advantageous for 

achieving good parallel performance. The angular domain was partitioned using a greedy 

algorithm, since the work for each angle may vary considerably, and without a good load 

balance from the partitioning it was not possible to achieve acceptable parallel 

performance. The ray decomposition that was implemented with OpenMP uses a built in 

library routine for dynamic scheduling, and the MPI standard was used to implement the 

distributed memory parallelism. 

 The next phase in the research, was the development of a performance model 

capable of predicting the execution time and other performance metrics of the MOC 

kernel as a function of the problem size input and computer architecture hardware 

properties. The model was validated and used to predict and to analyze the performance 

of the MOC kernel for a wide range of problem inputs on a wide variety of architectures 
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without having to actually execute the code. The development and application of this 

model was another original aspect of the research performed as a part of this thesis. 

 Chapter 5 presented the experimental validation of the performance model for 

serial execution, and the experimental procedure and measurement system for collecting 

the data to validate the model was described in detail. The methods used to measure the 

hardware properties required to evaluate the performance model were also presented. The 

experimental measured values and the computed values of the model were compared for 

several metrics. The model was shown to predict the number of FLOPs exactly, and the 

number of loads to within about 12% of the measured values. When the cache misses 

were known, the execution time predicted by the model was shown to agree with 

measurement to within 8%. This was bounded by the assumed cache misses, where the 

lower bound is zero and the upper bound assumes a cache miss at every level of cache for 

each load. The serial performance of the kernel was base lined between 440 and 490 

MFLOPS, which was approximately 4.5% of the machine's theoretical peak performance 

and 50% of the kernel's theoretical upper bound for performance. 

 In Chapter 6 the performance model was applied to parallel performance and first 

validated against experiments for the prediction of the parallel efficiency and speedup. 

This was done separately for each type of parallel decomposition. Again, the 

experimental procedure and methods were described for measuring the coefficients of the 

hardware properties required by the model. The performance model was shown to predict 

the parallel efficiency to within 7% (absolute difference) of the measured parallel 

efficiency for all decompositions. It was noted that the model assumes a perfect scaling in 

the hardware, whereas this may not always be the case. Furthermore, the machine used to 

collect the performance data has only one floating point arithmetic unit for every two 

cores, and this raised questions about what is the most meaningful or consistent choice to 

use as a reference calculation when measuring parallel efficiency. 

 Once the validation of the model was established for parallel execution, the 

remainder of the Chapter 6 focused on the analysis of the sensitivity of this model to the 

network hardware characteristics and OpenMP run time library routines. It was found 

that the overhead for space or angle decomposition is relatively insensitive to the network 

hardware properties, and that networks on today's high performance compute clusters are 
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probably already sufficiently fast to achieve the asymptotic lower bound of the overhead. 

The algorithm used for the MPI_Allreduce operation was shown to have a nontrivial 

impact on the angular decomposition overhead, and algorithms that are more optimal for 

large message sizes were shown to have a lower overhead. When analyzing the ray 

decomposition's sensitivity to the OpenMP run time library, it was found that the bottle 

neck limiting parallel efficiency is the barriers for synchronization. The model was then 

evaluated for various parallel decompositions in an attempt to understand the 

decomposition strategies for achieving optimal parallel efficiencies. It was determined 

that it was most important to optimize the spatial decomposition first, and then the 

optimal angular and ray decomposition depended on how finely in space the problem was 

decomposed. For typical discretizations of a pin cell, it was noted that a spatial 

subdomain consisting of 2x2x2 or 4x4x4 pin cells can be efficiently parallelized with an 

additional 16 processors. The strong scaling predicted by the performance model for a 

quarter core sized problem was also evaluated and determined to scale to nearly 30 

million processors, with a parallel efficiency of at least 90%. 

 The next phase of the research was to focus on the optimization of the solution 

algorithm. Based on the considerable previous research in methods for accelerating the 

transport equation, the focus of the work here was on the well-established coarse mesh 

finite difference (CMFD) method. Chapter 7 began with a description of the CMFD 

method as a non-linear diffusion synthetic acceleration, which has been shown to perform 

well for reactor problems. Other researchers have also recently extended CMFD to 

problems that are decomposed in space. This method was implemented and shown to 

reproduce the convergence properties of model problems in 1-D, and that the 

convergence properties for 3-D transport with heterogeneous domains behaved similarly. 

 Finally, in Chapter 8 the 3-D MOC kernel was used to perform several numerical 

3-D transport benchmarks commonly used in the reactor physics community. Three 

problems were investigated, and for the first benchmark, the Takeda benchmark, the 3-D 

MOC method was shown to provide excellent accuracy and to scale well on several 

thousand processers. The effectiveness of the CMFD was also shown to be very good, 

reducing the number of iterations by an order of magnitude for most decompositions. It 
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was also shown that the number of iterations to converge with CMFD was relatively 

insensitive to the number of spatial domains. 

 The results of the next benchmark, the C5G7 heterogeneous MOX core, were not 

as good as the Takeda benchmark, but still provided reasonable accuracy. The principal 

issues uncovered were the need for a higher order angular quadrature to improve the 

accuracy and that the product quadratures tended to perform a little better than the level 

symmetric quadrature, which was consistent with the observations from the original 

benchmark report. For this problem the accuracy and computational cost of the 3-D MOC 

method was also compared to the 2-D/1-D solution method. It was noted that the 

computational cost of the 3-D MOC was considerably higher (i.e. 20x to 200x that of the 

2-D/1-D method), and the accuracy was shown to be only marginally better for consistent 

discretizations. Finally, with the C5G7 problem the parallel efficiency of the 3-D MOC 

kernel was demonstrated to scale to O(10
5
) processors with >95% efficiency. 

 For the last benchmark problem of a realistic PWR assembly, the model had to 

deviate slightly from the original benchmark specification to accommodate a modeling 

deficiency in the code. This deviation only required changing the relative heights of the 

different material regions. The 3-D MOC results were again compared to 2-D/1-D results 

and the differences in eigenvalue were minor. The 3-D MOC case converged very 

efficiently and the run time was approximately 35 minutes on 16704 processors while the 

2-D/1-D case ran in 10 minutes on 368 processors. 

9.2 Suggested Future Research 
The work performed in this research has provided some original insights that have 

contributed to the current understanding of the 3-D MOC. However, the overall 

understanding and experience with 3-D MOC is still far less than that of other 3-D 

transport methods, or even the 2-D MOC, for which there is an extensive research base. 

Based on the research here and the observations of other researchers, there are several 

areas of future research that are important to further establish the viability of the parallel 

3-D MOC for practical reactor analysis. 
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9.2.1 Modular Rays and Angular Quadratures 
The first area of recommended future research is related to the construction of the 

modular rays. In Chapter 2 it was noted that the method used in this work could be 

improved, as it was not necessarily an improvement over previous methods. It is 

suggested that further research be performed to investigate more optimal methods of 

determining the modular ray directions and spacing. Closely related to this is the choice 

of a starting quadrature for the discrete ordinates. The results from Chapter 8 suggest that 

product quadratures may be better for reactor problems, and therefore one area of future 

work should be to investigate in more detail optimal quadratures for LWR applications. 

Additionally, in the current work the renormalization of the weights of the discrete 

ordinates has only been demonstrated for the level symmetric quadrature. More 

generalized techniques for recomputing the weights that can be applied to product 

quadratures should also be investigated in future work. Another alternative is to attempt 

to develop new angular quadratures that are already modular. 

9.2.2 Spatially Higher Order Sources 
Another suggested area of future research is to investigate higher order sources. It has 

been shown in previous work [73] that using a linear source in 2-D can substantially 

reduce requirements for the spatial discretization. For 3-D problems, it has been shown to 

provide speedup factor of about a factor of 8 [74]. It is expected that similar results can 

be obtained for the implementation performed here. Additionally, it may be worthwhile 

to investigate quadratic sources or sources that are only linear in the axial direction as a 

more optimal way of representing the source. 

9.2.3 Acceleration Techniques 
Considerable work has been done within the transport community to investigate 

acceleration techniques. In particular, there is the class of methods for boundary 

projection acceleration [59], and also a similar class of methods, known as DPN 

acceleration [75], that may better accelerate the interface angular fluxes on spatial 

subdomains. Acceleration techniques that are higher order in angle, such as an angularly 
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dependent form of CMFD or coarse mesh rebalance (CMR) [76], could also be better 

than traditional CMFD for accelerating the subdomain interface angular fluxes. 

9.2.4 Optimizing Performance and Parallelism for Energy Groups  
Further research is suggested on the overall performance and parallelism of the 3D MOC 

kernel. Recently, it was shown that moving the loop over groups to be the inner-most 

loop, rather than the outermost loop can provide better performance [77]. This is 

consistent with the observations in Chapter 5, which showed that nearly half the kernel 

time was spent building the long ray information, and considerable savings could be 

achieved by inverting the looping structure for the energy groups instead of rebuilding 

each long ray for each group. This could lead to a potential speedup by a factor of G, 

where G, is the number of neutron energy groups. However, this would change the 

convergence properties of the scattering source, which may require more iterations to 

converge. If this iteration scheme is shown to still converge reasonably well with an 

acceleration technique, then it could be a significant step forward in improving 

performance. The result of this research would also be important for guiding the research 

into parallelization over the energy domain. 

9.2.5 Mapping to GPU architectures 
The final area to consider for future work is modifying the kernel's on-node problem to 

execute on a GPU instead of a multi-core processor. Many high performance compute 

clusters are currently moving towards this type of heterogeneous architecture. This 

research would be important if the 3-D MOC algorithm is going to be able to take 

advantage of the near-term future architectures. 

9.3 Final Remarks 
The research in this thesis has extended the state of the current knowledge of 3-D MOC 

and its application to reactor problems. The goal of developing a highly scalable parallel 

algorithm for 3-D MOC was achieved, and many of the ideas developed and explored for 

the parallelism and performance modeling can be applied in a relatively straightforward 

manner to other transport methods. It is still not clear which 3-D transport method is best 
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for whole core pin resolved LWR analysis, but as research in this area continues, there is 

now a well defined and quantifiable method to establish the cost, performance, and 

accuracy of the 3-D MOC method, which can help establish the basis for a consistent 

comparison and clarify the most important issues. 
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