

A Hybrid Parallel Algorithm for the 3-D Method of

Characteristics Solution of the Boltzmann Transport Equation

on High Performance Compute Clusters
by

Brendan Matthew Kochunas

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Nuclear Engineering and Radiological Sciences)

in the University of Michigan

2013

Doctoral Committee:

Professor Thomas J. Downar, Chair

Professor Edward W. Larsen

Professor William R. Martin

Scott Palmtag, Core Physics Inc.

Professor Quentin F. Stout

© Brendan Matthew Kochunas

—————————————————

All Rights Reserved

2013

ii

DEDICATION

For my Dad, Brad Kochunas

For teaching me the value and joy of intellectual pursuits

iii

ACKNOWLEDGEMENTS

This work would not have been possible without the tireless efforts of my advisor, Prof.

Tom Downar. I followed him across the country and back, and have had the good fortune

(over the past 8 years) to have had invaluable learning experiences and inimitable

opportunities every step of the way. I also want to acknowledge the other members of my

PhD committee, and in particular Prof. Ed Larsen for their support. Each has contributed

in some way to my own insights. I would like to thank my first mentor, Dr. Justin

Thomas, for getting me started on the right foot, as well as several other former students

of Prof. Downar with whom I’ve had the pleasure of working. In particular, I want to also

thank Dr. Mathieu Hursin for being an exceptional colleague and mentor. I also owe

thanks to Zhouyu Liu, whose arrival could not have been more timely.

 I feel I am also incredibly indebted to the original authors of the DeCART code:

Prof. Han-Gyu Joo, Dr. Jin-Young Cho, and Dr. Kang-Seog Kim. Although I did not

personally work with any of them, they deserve a very special acknowledgement for

having designed a code that, to me, was an exceptional teaching tool.

 I must also acknowledge the CASL program for its support of this work and for

providing the necessary resources for enabling its completion. My colleagues at the

University of Michigan who also contribute to MPACT deserve to be acknowledged, as

they kept the final leg of my journey interesting to say the least.

 I would also like to thank my family (Brad, Marge, and Abbi) for all they have

done (or deny doing) to raise me. Certainly this would not have been possible without

them. Finally, I would also like to acknowledge the distinguished gentlemen of 144 Hill

Street, without whom this whole experience would have been far more tiresome.

iv

TABLE OF CONTENTS

Dedication ... ii

Acknowledgements ... iii

List of Figures ... viii

List of Tables .. xiii

Abstract .. xv

Chapter 1 Introduction... 1

1.1 Fundamental Challenges of High Fidelity Light Water Reactor Simulations 2

1.2 Summary of State of the Art 3-D Transport Methods .. 3

1.2.1 Monte Carlo ... 5

1.2.2 Discrete Ordinates .. 6

1.2.3 Spherical Harmonics .. 8

1.2.4 Collision Probability Method ... 9

1.2.5 Method of Characteristics .. 11

1.3 State of the Art Approximate 3-D Transport Methods ... 13

1.3.1 Diffusion .. 13

1.3.2 Simplified PN ... 14

1.3.3 2-D/1-D .. 15

1.4 Summary ... 16

Chapter 2 Fundamentals of the Method of Characteristics.. 18

2.1 Method of Characteristics Solution of the Boltzmann Transport Equation in 3-D 18

2.1.1 Transformation to the Characteristic Direction ... 19

2.1.2 The Multi-group Approximation ... 20

2.1.3 The Discrete Ordinates Approximation ... 21

2.1.4 Constant Material Properties in a Discrete Region .. 22

v

2.1.5 Flat Source Region Approximation ... 23

2.1.6 Isotropic Scattering Approximation ... 24

2.1.7 Iteration Scheme .. 25

2.2 Discretization of the Characteristics ... 28

2.2.1 Modular Ray Tracing ... 31

2.3 Overview of MOC Sweep Algorithms ... 41

Chapter 3 3-D MOC Kernel Implementation .. 46

3.1 Algebraic Optimization of Discretized MOC Equations .. 46

3.2 Tabulated Linear Interpolation of the Exponential Function 51

3.3 Anatomy of the 3-D MOC Kernel .. 53

Chapter 4 Parallel Algorithm for Solving 3-D Method of Characteristics 56

4.1 Basics of Parallel Computing ... 56

4.2 Decomposition of the Spatial Domain .. 57

4.3 Decomposition of the Angular Domain .. 64

4.4 Decomposition of the Characteristics Domain ... 66

4.5 Summary ... 68

Chapter 5 Performance Bounds Model Development and Validation 70

5.1 Architecture of High Performance Compute Clusters .. 70

5.2 Basic Equations of a Performance Model ... 72

5.3 Performance Bounds of 3-D MOC Kernel ... 73

5.3.1 Component-Based Description of Kernel .. 74

5.3.2 Cache Miss Bounds.. 77

5.3.3 Parallel Overhead ... 78

5.4 Experimental Evaluation of Performance Model ... 81

5.4.1 Measurement system .. 82

5.4.2 Determining Hardware Coefficients .. 85

5.4.3 Test Problem Description .. 87

5.4.4 Validation of FLOP and Load Counts ... 88

5.4.5 Validation of Execution Time in Serial ... 92

5.4.6 Baseline Performance in Serial .. 96

5.5 Sensitivity of Serial Performance to Hardware Characteristics 97

vi

5.6 Summary ... 100

Chapter 6 Performance Analysis of the Parallel 3-D MOC Kernel 102

6.1 Parallel Performance Metrics .. 102

6.2 Experimental Evaluation of Parallel Performance Model 103

6.2.1 Determining Network Model Hardware Coefficients 104

6.2.2 Determining OpenMP Run-time Library Overhead 109

6.2.3 Validation of Parallel Performance Model .. 111

6.3 Parallel Performance Model Sensitivity ... 114

6.4 Decomposition Strategy for Optimizing Parallel Performance 120

6.5 Summary ... 123

Chapter 7 Algorithm Convergence Optimization with CMFD Acceleration 125

7.1 Convergence Acceleration .. 125

7.2 Coarse Mesh Finite Difference ... 127

7.2.1 Spatial Domain Decomposed Coarse Mesh Finite Difference 130

7.3 SDD-CMFD Convergence with Parallel 3-D MOC ... 131

7.3.1 Solution of SDD-CMFD Equations ... 131

7.3.2 Model Problem Description ... 132

7.3.3 Results and Discussion .. 133

7.4 Summary ... 137

Chapter 8 Solutions to Numerical Benchmarks ... 138

8.1 Takeda Benchmark: Model 1 .. 138

8.1.1 Model Description and Calculation Details ... 138

8.1.2 Results and Discussion .. 140

8.2 C5G7 Benchmark ... 146

8.2.1 Model Description and Calculation Details ... 146

8.2.2 Results and Discussion .. 150

8.3 Realistic PWR Assembly .. 158

8.3.1 Model Description and Calculation Details ... 158

8.3.2 Results and Discussion .. 161

8.4 Summary ... 162

Chapter 9 Summary, Conclusions, and Continuing Work 163

vii

9.1 Summary of Work .. 163

9.2 Suggested Future Research ... 167

9.2.1 Modular Rays and Angular Quadratures ... 168

9.2.2 Spatially Higher Order Sources ... 168

9.2.3 Acceleration Techniques .. 168

9.2.4 Optimizing Performance and Parallelism for Energy Groups 169

9.2.5 Mapping to GPU architectures... 169

9.3 Final Remarks ... 169

Bibliography .. 171

viii

LIST OF FIGURES

Figure

Figure 1.1 – LWR geometry ... 3

Figure 1.2 – Taxonomy of methods for solving the Boltzmann neutron transport equation

 ... 4

Figure 2.1 – Spatial discretization with constant properties ... 23

Figure 2.2 – Iterative algorithm for the MOC solution of 1-group fixed source problem 26

Figure 2.3 – Iterative algorithm for the MOC solution of steady-state eigenvalue problem

 ... 28

Figure 2.4 – Characteristic rays intersecting a set of discrete spatial regions 29

Figure 2.5 – Equally spaced and non-equally spaced characteristic rays 30

Figure 2.6 – Numerical integration of a region volume by ray segments 31

Figure 2.7 – Modular ray tracing concept in 2-D ... 31

Figure 2.8 – Modular ray tracing parameters .. 33

Figure 2.9 – Polar plane used to determine polar angle .. 34

Figure 2.10 – Effect of shift parameter ... 35

Figure 2.11 – Illustration of misaligned modular rays for reflecting directions 36

Figure 2.12 – Second way of determining the polar angle ... 36

Figure 2.13 – Geometric limitation in the choice polar angle .. 37

Figure 2.14 – Angular quadrature defined over an octant before and after modularization

 ... 37

Figure 2.15 – Agnostic sweep algorithm .. 41

Figure 2.16 – Cyclic ray sweep algorithm .. 43

Figure 2.17 – Sequential sweep algorithm .. 44

Figure 2.18 – Bi-directional surface-cyclic sweep algorithm ... 44

Figure 3.1 – Iterative sequence for optimized equations .. 50

ix

Figure 3.2 – Range of values of exponential function in characteristics problem 51

Figure 3.3 – Error of linear interpolation of exponential function 52

Figure 3.4 – Basic algorithm for source iteration ... 53

Figure 3.5 – 3-D MOC kernel serial algorithm... 54

Figure 4.1 – 2-D sweep with domain decomposition ... 58

Figure 4.2 – Morton (Z-order) curve of the 2nd order in 2-D (left) and 3-D (right) 60

Figure 4.3 – Basic Z-Tree indexing and partitioning .. 61

Figure 4.4 – Z-Tree partitioning for odd-sized grids .. 61

Figure 4.5 – Z-Tree partitioning for grids with high aspect ratios.................................... 61

Figure 4.6 – Possible 2-D grid with irregular outer boundaries 62

Figure 4.7 – Z-Tree trim operation ... 62

Figure 4.8 – Sequence diagram for two processes executing spatially decomposed 3-D

MOC kernel in parallel .. 63

Figure 4.9 – Greedy algorithm for angular partitioning ... 65

Figure 4.10 – Partitioning of rays generated from S8 quadrature and 1 cm
3
 ray tracing

module ... 66

Figure 4.11 – Potential load balancing issue with rays ... 67

Figure 4.12 – Partitioning of Long rays with OpenMP dynamic scheduler 68

Figure 4.13 – 3-D MOC parallel decomposition scheme ... 69

Figure 4.14 – 3-D MOC kernel parallel algorithm ... 69

Figure 5.1 – Model cluster architecture .. 71

Figure 5.2 – Model node architecture ... 71

Figure 5.3 – Socket architecture of AMD Opteron™ 6238 on Sunspear 83

Figure 5.4 – Pseudo-code for estimating instrumentation overhead 84

Figure 5.5 – Saavedra-Barrera benchmark results .. 86

Figure 5.6 – Measured component relative execution times .. 95

Figure 5.7 – Calculated component relative execution times ... 95

Figure 5.8 – Sensitivity of peak performance to α1 and tf ... 98

Figure 5.9 – Sensitivity of performance to α1 and tf for single-level cache 98

Figure 5.10 – Sensitivity of performance to α1 and tf for two-level cache 98

Figure 5.11 – Sensitivity of performance to α1 and tf for three-level cache 98

x

Figure 5.12 – Performance as a function of L1 and L2 cache latencies 100

Figure 6.1 – Output of OMB point-to-point latency test .. 105

Figure 6.2 – Output of OMB point-to-point bandwidth test ... 106

Figure 6.3 – Output of OMB all reduce test ... 106

Figure 6.4 – Curve fit for c1(Np) ... 108

Figure 6.5 – Curve fit for c2(Np) ... 108

Figure 6.6 – OpenMP run-time library overhead for various constructs involving

synchronization ... 110

Figure 6.7 – OpenMP run-time library overhead for various scheduling algorithms 110

Figure 6.8 – Comparison of predicted and measured weak scaling efficiency for spatial

decomposition ... 114

Figure 6.9 – Weak scaling efficiency for spatial decomposition with different reference

cases .. 114

Figure 6.10 – Sensitivity of the spatial decomposition overhead to network hardware

characteristics .. 115

Figure 6.11 – Estimated execution times for spatial strong scaling 116

Figure 6.12 – Sensitivity of angle decomposition overhead to network hardware

characteristics for Cray MPI_Allreduce algorithm 117

Figure 6.13 – Sensitivity of angle decomposition overhead to network hardware

characteristics for Rabenseifner’s MPI_Allreduce algorithm 117

Figure 6.14 – Sensitivity of angle decomposition overhead to network hardware

characteristics for binary tree MPI_Allreduce algorithm 117

Figure 6.15 – Sensitivity of angle decomposition overhead to problem size and number of

domains for Cray MPI_Allreduce algorithm .. 118

Figure 6.16 – Sensitivity of angle decomposition overhead to problem size and number of

domains for Rabenseifner’s MPI_Allreduce algorithm 118

Figure 6.17 – Sensitivity of angle decomposition overhead to problem size and number of

domains for binary tree MPI_Allreduce algorithm 118

Figure 6.18 – Sensitivity of ray decomposition overhead to OpenMP library overhead 119

Figure 6.19 – Estimated angle-ray strong scaling efficiency for a pin cell 121

Figure 6.20 – Estimated space-angle strong scaling for a PWR 1/4 core (1 thread) 121

xi

Figure 6.21 – Estimated space-angle strong scaling for a PWR 1/4 core (2 threads) 121

Figure 6.22 – Estimated space-angle strong scaling for a PWR 1/4 core (4 threads) 121

Figure 6.23 – Estimated space-angle strong scaling for a PWR 1/4 core (8 threads) 121

Figure 6.24 – Estimated space-angle strong scaling for a PWR 1/4 core (16 threads) ... 121

Figure 6.25 – Estimated strong scaling efficiency for PWR 1/4 core 122

Figure 7.1 – Solution algorithm with CMFD.. 130

Figure 7.2 – Convergence properties of SDD-CMFD .. 131

Figure 7.3 – Convergence properties of SDD-CMFD for c=0.99 and one coarse cell per

spatial subdomain .. 134

Figure 7.4 – Convergence properties of SDD-CMFD for c=0.99 and coarse cell optical

thickness of 0.1 .. 135

Figure 7.5 – Comparison of convergence properties of SDD-CMFD with DP0 and P1

updates of the boundary angular flux .. 136

Figure 8.1 – Takeda benchmark problem 1 geometry .. 139

Figure 8.2 – Computed keff of Takeda benchmark for various discretizations 140

Figure 8.3 – Strong scaling parallel efficiency for Takeda problem on Titan 142

Figure 8.4 – Strong scaling speedup for Takeda problem on Titan 142

Figure 8.5 – Takeda problem run times with 3-D MOC for various parallel

decompositions on Titan ... 143

Figure 8.6 – Solution time breakdown with CMFD for Takeda benchmark (1 spatial

domain).. 145

Figure 8.7 – Solution time breakdown with CMFD for Takeda benchmark (8 spatial

domains) .. 145

Figure 8.8 – Solution time breakdown with CMFD for Takeda benchmark (64 spatial

domains) .. 145

Figure 8.9 – Solution time breakdown with CMFD for Takeda benchmark (125 spatial

domains) .. 145

Figure 8.10 – Solution time breakdown with CMFD for Takeda benchmark (1000 spatial

domains) .. 146

Figure 8.11 – C5G7 pin cell geometry.. 146

Figure 8.12 – C5G7 assembly descriptions .. 147

xii

Figure 8.13 – C5G7 3-D core description ... 147

Figure 8.14 – C5G7 extended benchmark core description for rodded configurations .. 148

Figure 8.15 – C5G7 extended benchmark unrodded configuration 148

Figure 8.16 – C5G7 extended benchmark rodded A configuration 149

Figure 8.17 – C5G7 extended benchmark rodded B configuration 149

Figure 8.18 – Upper reflector assembly with control rod ... 149

Figure 8.19 – Spatial decomposition weak scaling for C5G7 .. 157

Figure 8.20 – Axial description of realistic PWR assembly (not to scale) 159

Figure 8.21 – Realistic PWR assembly radial geometry .. 160

xiii

LIST OF TABLES

Table

Table 1.1 – Estimated computational requirements for a deterministic whole-core

transport calculation .. 2

Table 2.1 – S8 quadrature errors of spherical harmonic moments 38

Table 2.2 – S8 modular quadrature errors for preferred polar angle 39

Table 2.3 – Comparison of modular rays requirements for different algorithms 40

Table 3.1 – Performance gain from table evaluation of the exponential function 52

Table 3.2 – Components of 3-D MOC kernel... 55

Table 5.1 – Model architecture hardware performance properties 72

Table 5.2 – Number of FLOPs and Loads for serial 3-D MOC kernel 76

Table 5.3 – List of measured hardware events ... 84

Table 5.4 – Methods used to obtain values of performance model hardware coefficients

for Sunspear... 85

Table 5.5 – Performance model hardware values for Sunspear.. 87

Table 5.6 – Test problem size parameters .. 87

Table 5.7 – Comparison of measured and estimated FLOP counts for 3-D MOC kernel 89

Table 5.8 – Comparison of measured and estimated Load counts for 3-D MOC kernel . 90

Table 5.9 – Comparison of measured and estimated Load counts with cbuild = 10.5 91

Table 5.10 – Comparison of measured and computed execution times with no

optimizations ... 93

Table 5.11 – Comparison of measured and computed execution times with optimizations

 ... 93

Table 5.12 – 3-D MOC kernel performance in serial on Sunspear 96

Table 6.1 – Performance model hardware values for Titan .. 109

Table 6.2 – Comparison of measured and predicted parallel efficiency......................... 112

xiv

Table 8.1 – Takeda problem 1 discretizations .. 139

Table 8.2 – Comparison of reference average keff for Takeda benchmark model 1 141

Table 8.3 – Comparison of region average fluxes for Takeda benchmark model 1 case 1

 ... 141

Table 8.4 – Comparison of region average fluxes for Takeda benchmark model 1 case 2

 ... 141

Table 8.5 – Effectiveness of CMFD with spatial decomposition 144

Table 8.6 – Scaling of calculation component times for Takeda benchmark 144

Table 8.7 – Eigenvalue comparison for C5G7 3-D benchmark with S8 quadrature and

0.05 cm ray spacing ... 151

Table 8.8 – Eigenvalue comparison for C5G7 3-D benchmarks with S16 quadrature and

0.03 cm ray spacing ... 151

Table 8.9 – Eigenvalue comparison for C5G7 3-D benchmarks with C16-G4 quadrature

and 0.05 cm ray spacing .. 151

Table 8.10 – Computational Cost for C5G7 3-D benchmarks with 2-D/1-D and 3-D MOC

(CPU Hours) .. 151

Table 8.11 – C5G7 3-D benchmark participants’ angular quadratures [69]................... 152

Table 8.12 – C5G7 3-D benchmark pin power comparison ... 153

Table 8.13 – C5G7 pin power comparison for unrodded configuration 154

Table 8.14 – C5G7 pin power comparison for rodded A configuration 155

Table 8.15 – C5G7 pin power comparison for rodded B configuration 156

Table 8.16 – Realistic PWR problem size parameters .. 161

Table 8.17 – Comparison of realistic PWR problem .. 161

xv

ABSTRACT

The focus of this thesis is on the development of a highly scalable parallel algorithm for

solving the 3-D method of characteristics (MOC) form of the Boltzmann neutron

transport equation. The derivation of the 3-D MOC method is presented first, along with

the details of the discretization techniques, that utilize the concept of modular ray tracing.

The implementation of these equations is then described, and then the approach to

parallelizing the algorithm is discussed. Results are shown for a range of benchmark

problems typically solved by 3-D neutron transport codes.

 The algorithm is parallelized in space, angle, and by characteristic rays, which is

specific to the MOC solution method. Once the parallel algorithm is established, a

performance model for the particular implementation is derived. This model contains

detailed expressions for the number of floating point operations and execution time as a

function of the problem size and fundamental computer hardware properties, such as the

time per flop and cache access latency.

 The procedure for determining the hardware coefficients required by the

performance model is then presented and validated using experimental results. The

performance model is shown to agree well with experiment for both types of execution,

and the model is therefore used for subsequent analyses that explore the algorithm's

sensitivities to the computer and network hardware characteristics. The model is also

analyzed to assess the scaling of the algorithm for a quarter core PWR.

 The optimization of the convergence of the parallel 3-D MOC algorithm through

the use of the coarse mesh finite difference (CMFD) method is then developed. The

CMFD accelerated parallel 3-D MOC algorithm is then used to compute solutions to

several numerical benchmarks, that show good agreement with the reference results.

Finally, the research performed in this thesis and its conclusions are summarized, and

areas of future research are suggested.

1

Chapter 1

INTRODUCTION

The field of nuclear reactor physics has matured considerably since it began in the 1940's,

and the use of computer simulations of reactor core neutronics behavior was adopted very

early on [1]. Reactor physicists have been reasonably successful in predicting the

behavior of a reactor for a wide range of both steady-state and transient conditions.

Historically, the methods used for reactor simulation have largely been determined by the

computational resources available at the time. A historical survey of the literature shows

an evolution from the four and six factor formulas to two-group and few-group neutron

diffusion theory for practical LWR core calculations, and today, two-group neutron

diffusion theory continues to be the workhorse for practical LWR core calculations. A

principal focus of much of the research over the years was to improve methods for

generating homogenized few-group cross sections for the core calculation. It has only

been recently with the availability of petascale computing that LWR researchers have

focused considerable efforts on performing whole-core LWR calculations using higher

order transport methods [2], [3], [4], [5], [6], [7], [8], [9], [10].

 High performance computing technology and the availability of petascale

machines have made it possible to perform full core transport calculations in a reasonable

amount of time. A simple estimate is shown below of the computational requirements for

a practical LWR whole-core transport solution. This estimate assumes typical

discretizations of the space, energy, and angular dependent neutron flux and solution

times per unknown currently seen in routine assembly cross section calculations.

2

Table 1.1 – Estimated computational requirements for a deterministic whole-core transport
calculation

Number of Neutron Energy Groups 50

Number of Discrete Angles 128

Number of Spatial regions 1,140,528,096

Number of Unknowns (Angular Flux) 7,299,379,814,400

Average MFLOPS to Solve each Unknown 4

Estimated Memory Requirements

(for only Angular Flux)
53.11 TB

Estimated Run time (for 1 petflop machine) 8 hrs

 The principal economic motivation for improved reactor core calculations has

been to increase reactor power density and operational flexibility without compromising

reactor safety. Higher fidelity core calculations make it possible to relax the conservatism

in safety margins and provide the tools for better understanding the full physics of current

operational constraints. In fact, this has been the mission of a recent significant DOE

research program, the Consortium for the Advanced Simulation of Light Water Reactors

(CASL) [10], which has focused on advancing the modeling and simulation of LWR

technology. The work described in this thesis was supported through this program.

1.1 Fundamental Challenges of High Fidelity Light Water

Reactor Simulations
Perhaps the first challenge in high fidelity LWR simulations is accurately representing

the geometric complexity of many of the reactor components. Some of these are shown

for a typical PWR in Figure 1.1, taken from a recent paper [11] describing these issues in

detail. To be noted in this figure are such components as the upper plenum region of a

fuel rod, spacer grids, the bottom and top nozzle of the assembly, and the core shroud or

baffle and the barrel. Traditionally, these components have not been explicitly modeled in

reactor core calculation, and instead were simply homogenized with the fuel, cladding,

water and other materials into the few group assembly cross sections. One of the

principal innovations of the next generation of methods is to explicitly represent each of

these components and materials during the core calculation.

3

Figure 1.1 – LWR geometry

Additionally there is significant complexity in modeling some fuel rods. Some pellets,

known as integrated fuel burnable absorbers (IFBA™) are coated with a very thin layer

(< 10 microns) of ZrB2, which is a strong neutron absorber and must be modeled

explicitly.

 Once the geometry is faithfully represented, the additional challenges of modeling

a real reactor typically involve the inclusion of other physics which include: fuel

depletion, thermal hydraulics and mechanics, heat transfer, and energy deposition from

prompt fission gamma rays just to name a few. The focus of the work in this thesis is to

advance the application of a 3-D transport method that is faithful to the physical

geometry by making better use of modern computer architectures.

1.2 Summary of State of the Art 3-D Transport Methods
Several 3-D neutron transport methods have been developed over the years for

performing the core calculation. This section provides a brief survey of the current state

of the art methods as context for the work that is proposed for this thesis. The steady-

state, 3-D Boltzmann neutron transport equation to describe the neutron flux in a reactor

is given as:

4

     
 

   

    ,,,,,

,,,
4

,,,,,

0

4

0

0

4

0

 

 











EddErEEr

EddErEr
k

E

ErErEr

s

f

eff

t




















Eq. (1.1)

where the standard notation, r


, 


, E , is used for the space, angle, and energy variables,

respectively.  ,  represent the angular neutron flux, and cross sections, respectively.

For the cross sections the subscript indicates the reaction type, where t denotes total, s

denotes scattering, and f denotes fission.  is the normalized fission spectrum, and keff is

the effective neutron multiplication factor, or eigenvalue, of the system.

 Traditionally transport methods can be divided into two relatively broad

categories: stochastic and deterministic; as illustrated in Figure 1.2.

Figure 1.2 – Taxonomy of methods for solving the Boltzmann neutron transport equation

 In the following sections, a brief overview is given for each method. This

overview highlights the key approximations that are used in each of the methods and

discusses their relative strengths and weaknesses. The chapter then ends with a summary

of key points for why the thesis research on the 3-D Method of Characteristics (MOC) is

a significant contribution to research on high fidelity transport calculations for full-core

LWR applications.

5

1.2.1 Monte Carlo
The primary stochastic method is referred to as the Monte Carlo method. This method

simulates individual particle transport by generating random numbers and sampling

probability distributions for particle interactions that depend on the physics being

modeled. Monte Carlo is one of the simplest and most reliable methods of describing

neutron transport, since it can simulate the complicated physics of neutron and material

interactions in arbitrary geometries with relatively little approximation. Another major

advantage of this method is the detailed treatment of the energy variable through the

random sampling of the continuous energy cross section data. However, there are several

reasons why the method has been limited in its application to practical LWR reactor

analysis.

 The first principal reason is that a stochastic process always includes a statistical

error in whatever quantity is being calculated. Most often the reactor analyst is interested

in the power distribution inside a reactor. Depending on the desired spatial fidelity of this

field quantity, the number of particles that must be tallied in each spatial mesh region to

sufficiently reduce the statistical error in the tally may require the simulation of an

enormous number of particles, which consequently increases the computational time [8].

A second related issue is the convergence of Monte Carlo methods for practical reactor

problems. Unless some special steps are taken, the fission source may require an

impractical number of histories to converge for some large problems, due to statistical

noise and a high dominance ratio [12]. A third issue for using Monte Carlo methods for

practical LWR simulation methods is the difficulty in modeling detailed thermal-fluid

feedback for temperature and density. The feedback is a function of the neutron and

power distribution, and since the neutron cross sections are a function of the temperature

and density, this results in a set of non-linear coupled equations. Typically, some form of

approximate method is necessary to treat thermal-fluid feedback with Monte Carlo

methods. However, recent research has been successful in explicitly modeling the

temperature effects on the cross section within the Monte Carlo code. Such “on-the-fly”

temperature feedback may provide a breakthrough to help overcome this issue for power

reactor simulation. Finally, should the aforementioned issues all be resolved for the

steady-state reactor problem, they must then be extended to the time-dependent reactor in

6

order to be useful for practical LWR safety analysis, which is yet another significant

challenge.

 During the past several years, Monte Carlo researchers have developed several

innovative solutions addressing several of the issues identified [9], [12], [13]. In fact,

many now consider Monte Carlo methods to be a viable method for practical reactor

analysis, and full core calculations have been demonstrated with several existing codes

[14]. However, several issues must be resolved before Monte Carlo becomes widely

accepted for practical LWR analysis. Consequently, continued investigation into

deterministic methods for full core 3-D transport is well warranted and remains an

important part of the research portfolio for CASL.

1.2.2 Discrete Ordinates
One of the oldest deterministic transport methods that was developed was the discrete

ordinates or Sn method [15]. All deterministic methods are based on the discretization of

each of the independent solution variables and the discrete ordinates refers to the

discretization of the angular dependence of the neutron flux. The starting point in the

derivation of the Sn method is to discretize the neutron energy into G energy groups by

applying the multi-group approximation to Eq. (1.1). This results in the multi-group

transport equation for a group, g, which can then be written as:

     

        .,,,
4

,,

1

4

0
,

1

4

0
,

,

 






 



G

g

gggs

G

g

ggf

eff

g

ggtg

drrdrr
k

rrr














 Eq. (1.2)

It should also be noted that the multi-group approximation may be used by the Monte

Carlo method, but it is not preferred over continuous energy treatments. However, all of

the deterministic methods described in this section begin with the multi-group

approximation shown in Eq. (1.2), since continuous energy treatment is not practical.

 The main approximation that leads to a discrete ordinates method is to choose a

set of discrete angles or directions of flight. The accuracy of this approximation is

determined largely by the quadrature used to compute the integrals over 


. The "n" in Sn

indicates the order of the polynomial or function that may be integrated exactly with a

7

given quadrature. The quadrature approximation is shown in Eq. (1.3), and is applied to

the angular variable in Eq. (1.2). This leads to the discrete ordinates form of the multi-

group transport equation given in Eq. (1.4).

   ,
1

4




M

m

mm fwdf



 Eq. (1.3)

     

       ,
4 1 1

,,,

1 1

,,

,,,,,,

 
 



 

 

























G

g

M

m

mgmmggsm

G

g

M

m

mgmgf

eff

g

mggtmgmzmymx

rrwrwr
k

rrr
zyx












 Eq. (1.4)

where m indicates the discrete ordinate.

 For the last fifty years, the Sn method has been continuously developed with a

variety of spatial discretization techniques, that include the full range of finite difference

and finite element approximations. However, the finite difference approximation appears

to be more commonly used; and when making use of this approximation an additional set

of "auxiliary" equations must be developed to relate surface averaged angular flux

quantities to volume averaged angular flux quantities. In general, the finite difference

method is limited in its ability to model arbitrary geometries. Either a different

discretized form of the equation must be derived using a specific approximation of the

spatial derivative or approximations to the physical geometry must be made. Two of the

discrete ordinates codes which have been adapted to massively parallel computing and

been applied successfully to full core reactor analysis are the ORNL and ANL codes,

Denovo [6] and UNÌC [7], respectively.

 Denovo employs a first order finite difference approximation with a native mesh

representation in a structured Cartesian grid. This imposes some limitations for reactor

geometries that include cylindrical fuel pins. For performing its transport sweep, Denovo

employs the well-established parallel KBA wave front algorithm [16] for spatial

decomposition, which has shown some limitations in scalability for massive numbers of

processors. A technique for parallelism in energy has also been recently implemented

into the code which has been shown to scale quite well on the Cray XT5 machine Jaguar

8

[17]. Because of its scalability using space-angle-energy decomposition, the Denovo code

has had several successes with large scale applications. However, Denovo has required

prohibitive computational resources in order to resolve circular fuel pin boundaries,

which are important for several of the relevant LWR problems. Therefore issues remain

about the viability of Denovo’s implementation of the Cartesian geometry based discrete

ordinates method for widespread practical reactor analysis.

 UNÌC on the other hand uses a finite element approximation and solves the even-

parity form of the transport equation, which is second order in space; with a native mesh

representation composed of arbitrary structured tetrahedrons and hexahedrons. This mesh

representation is more suitable for representing the physical problem geometry. The

solution algorithm in UNÌC poses the problem as a 1-group fixed source transport

problem and represents this linear system with a large sparse matrix for each angle. This

system is solved using the Conjugate Gradient method with preconditioning from the

PETSc software library [18]. Because the PETSc solvers have been well designed and

developed to perform on leadership class computers, the scaling of UNÌC on the IBM

Blue Gene/P machines Intrepid [19], and JUGENE [20] and Cray XT5 machine Jaguar

[17] is quite excellent, achieving >90% scalability up to ~130,000 cores. It is also worth

noting that the Sn solver in UNÌC was a finalist for the Gordon Bell Prize in 2009 [21].

Presently, only space and angle are decomposed, and UNÌC does not employ energy

decomposition. Because of this and other issues, considerable work remains in

demonstrating the viability of UNÌC for practical full core LWR applications.

1.2.3 Spherical Harmonics
Spherical harmonics, or PN, methods differ from Sn methods by making a different

angular approximation. Instead of considering discrete directions of flight, the terms of

Eq. (1.2) that are functions of 


 are expanded into moments of the spherical harmonic

functions. This is shown below for the multi-group angular flux:

9

     .
4

12
,

0

,, 


 





n

n

nm

mng

m

ng rY
n

r





 Eq. (1.5)

With the spherical harmonics expansion, the series must be truncated, which introduces

the PN approximation. The same spatial discretization techniques used in the Sn method

are also applicable to the PN method. In practical implementations the order of PN may be

varied and for extremely accurate results something like P23 may be needed for reactor

problems [22]. The PN method has never been widely used in the reactor physics

community, primarily because the form of the PN equations is more complicated

compared to other methods. It also cannot treat material discontinuities or void regions

well in certain situations, both of which are required for reactor analysis. Furthermore,

the higher angular moments of the flux do not have a straightforward physical

interpretation.

 Nonetheless the UNÌC code [7] has an implementation of this method for 3-D

whole core analysis. The implementation of the PN solver in UNÌC is similar to the Sn

solver, where a sparse linear system is built and solved iteratively with an efficient

implementation of a conjugate gradient method [18]. Unfortunately, the performance of

the PN solver has not been studied systematically in the same way as the Sn solver, nor

has its computational performance been analyzed in detail. This makes it somewhat

harder to quantitatively assess the viability of the PN transport method for practical LWR

analysis. However, because the PN equations have issues treating material discontinuities

and voids, and do not always have a straightforward physical interpretation, it is likely

that this method will remain to have limited use.

1.2.4 Collision Probability Method
The collision probability, CP, method [23] differs fundamentally from the deterministic

methods described thus far, since it is based on discretizing an integral form, rather than

a differential form, of the Boltzmann transport equation. To obtain the integral form of

the transport equation, Eq. (1.2) is integrated over all angle and space. Additionally, from

this integration, only the isotropic scattering can be represented explicitly thus leading to:

10

 
 

      .
4

,0,

1

,

,

  














 







R

gggs

G

g

gf

eff

g
rrr

g rdrrr
krr

e
r

gt 









 Eq. (1.6)

 The collision probability method then recasts Eq. (1.6) into terms of the collision

probabilities Pij between the two discrete volumes Vi and Vj. These probabilities must

then be determined numerically prior to the iterative solution scheme.

.
1 ,,,,

,,,0,

1

,,

,,, 


























J

j jgtiigt

jgjggs

G

g

jgf

eff

g

jigig
V

k
P





Eq. (1.7)

 The method has been used successfully in analyzing 2-D assembly-sized

problems [24], [25], [26] to generate few group cross sections for lower order full core

calculations. The advantages of this method are that it gives very accurate results and can

easily treat completely arbitrary geometries. The eventual drawback of the method, which

has seen a decline in popularity in the reactor physics community, is that the coefficient

matrix for the transmission probabilities is fully dense and is the size of the square of the

number of discrete spatial regions. Although the theory for extending this method to 3-D

is very straightforward, there has not been much research into the method for 3-D

applications, most likely because of the inherent computational costs. However, interface

current techniques have been developed that allow one to decouple these collision

probability matrices for different subdomains [24], [28]. Although, the interface current

techniques require some approximations be introduced for the angular order of the

currents, the CP method still has potential for 3-D whole core analysis but would require

innovative methods for accurately treating interface currents. CP also suffers from

limitations in representing the scattering source, since the integral equation is limited to

isotropic scattering. Research would be required to develop innovative methods to treat

anisotropic scattering within the framework of CP methods, since anisotropic scattering

can be important for practical LWR applications.

11

1.2.5 Method of Characteristics
The method of characteristics [29], MOC, is perhaps the newest of the transport solution

techniques discussed so far. It was not first used in a production tool until 1980 [30].

Over the last several years it has been implemented in most of the popular lattice physics

codes [2], [3], [27] and it has become the most popular transport method for routine 2-D

assembly level analysis to generate cross sections for practical full core LWR

simulations.

 The MOC solution is a general mathematical technique for solving partial

differential equations. For the transport equation, a coordinate transformation is applied

to Eq. (1.2) to yield a first order ordinary differential equation for the solution along the

“characteristic direction”.

       ,,,,, 000,0 Esrqsrsrsr
ds

d
ggt

g






 Eq. (1.8)

where,

       

    .,,,,

,,,
4

,,

0

4

0
00

0

4

0
000

 

 









EddEsrEEsr

EddEsrEsr
k

E
Esrq

s

f

eff
















 Eq. (1.9)

 This equation can then be integrated analytically along the characteristic direction

for a homogenous region, provided some assumption is made regarding the shape of the

source within the region. This leads to an equation for the propagation or transmission of

the angular flux through a domain, which can then be integrated over some length to

provide an expression for the average angular flux along the characteristic in the given

region. These equations are shown below:

    ,exp1exp ,,,,

,,

,

,,,,,,,,,, mkigit

git

gi

mkigit

in

kmgi

out

kmgi s
q

s 


 Eq. (1.10)

12

.
,,

,

,,,,

,,,,,,

,,,

git

gi

kmigit

out

kmgi

in

kmgi

kmgi

q

s 








 Eq. (1.11)

 Consequently, the problem must be discretized in the characteristic space, which

means discrete directions of flight must be chosen. For a given direction, several

characteristic lines or rays must be tracked through a discretized spatial domain. One

notable difference of this method, compared to the CP method, is that in most

implementations a linear system is never formed and instead a transport sweep is

performed. An advantage of MOC is that it also readily handles any arbitrary geometry,

provided one knows how to intersect a series of lines with surfaces of the geometry. The

MOC method is typically thought to be superior to the CP method because it does not

have the same restriction of assuming isotropic scattering. In fact extending the MOC

source to higher orders in space or angle is relatively straightforward, which is also an

advantage of the Sn method. Finally, the MOC method enjoys the same advantages of

deterministic methods compared to Monte Carlo methods.

 While MOC is the preferred 2-D method for reactor analysis and considerable

research has been devoted to developing efficient 2-D kernels, the 3-D MOC method is

generally viewed as the most computationally expensive of the 3-D transport methods.

This is because when adding the third dimension, the number of rays that must be tracked

and the number of discrete spatial regions required to accurately model a problem

increase the computational requirements of the 2-D problem by a factor on the order of

1000. Nonetheless there has been notable research into the 3-D MOC method [7], [31],

[32], [33] with some efforts focusing on parallelism [7], [34].

 The non-parallel research [31], [32], [33] helped to demonstrate the efficacy of

the modular ray tracing concept. The definition and implementation of this, used in the

research here, is discussed in detail in Chapter 2. In the parallel algorithm research done

in the DRAGON [34] code, the approach taken was to focus only on parallelism by angle

and by ray. This work showed modest parallelism up to O(100) processors, which were

reasonably large machines for their time. In the UNÌC [7] code a similar approach was

taken at first, but eventually abandoned because of its inability to scale on petaflop

machines. The new approach used in the UNÌC code was to make use of parallelism in

13

space and angle by forming a blocked linear system and then solving this using a

hierarchy of GMRES solvers in PETSc. However, unlike the other transport methods

implemented in UNÌC, the parallel performance of the MOC solver was observed to be

relatively poor due primarily to issues of load imbalance, and further research was

suggested.

1.3 State of the Art Approximate 3-D Transport Methods
In addition to 3-D transport methods, there are three other classes of methods that are

relevant to the discussion of full core LWR analysis. The first class of approximate

methods are based on the diffusion approximation which has been the work horse for full

core analysis for nearly a half-century. The next is the simplified PN method which is

similar to the PN method described previously, and the last class of methods are

commonly referred to as the 2-D/1-D method, fusion method, or sometimes synthesis

method. In this document the method is referred to as 2-D/1-D. This section discusses the

key approximations made that characterize each of these methods and their relative

strengths and weaknesses compared to 3-D transport.

1.3.1 Diffusion
In diffusion based methods the key approximation is to eliminate the angular dependence

of the neutron flux. The diffusion equation, given in Eq. (1.12), can be derived from the

multi-group transport equation, Eq. (1.2), by first computing the zero-th and first angular

moments of Eq. (1.2). Next approximations are introduced to the second order terms to

provide closure. This yields the P1 equations. For diffusion methods an additional

approximation is introduced. In the diffusion approximation, the anisotropic scattering is

assumed to be only within-group and not group to group. However, it should be noted

that for some problems the diffusion equation is mathematically consistent with the P1

approximation of Eq. (1.2).

14

        

      .
1

,,0

,





































G

g

ggf

eff

g

ggs

ggtgg

rr
k

r

rrrrD










 Eq. (1.12)

 From Eq. (1.12), one may note that the primary approximation introduced affects

the leakage term. Another heuristic derivation of the diffusion equation involves

introducing Fick's Law:

     .rrDrJ ggg


 Eq. (1.13)

 Consequently, because the diffusion approximation simplifies the leakage term it

break downs in regions or problems with strong gradients in the flux, but otherwise the

method is extremely computationally efficient compared to transport because it does treat

the angular dependence of the neutron flux explicitly. The diffusion method can be

viewed as the lowest order approximation that is acceptable for solving the Boltzmann

equation and is commonly viewed as the classical method for reactor analysis. It is

relevant to the larger discussion of whole core LWR analysis because any 3-D transport

method should be at least as accurate as 3-D diffusion, so in that sense it provides the

upper bound for inaccuracy in the solution. Finally, a large body of work exists which

shows how the diffusion equation can be used as an efficient low order operator to

accelerate the convergence of a transport method, and since 3-D transport methods are

the most computationally expensive, this form of acceleration becomes more important.

1.3.2 Simplified PN
The Simplified PN (SPN) approximation [35] is a leading order asymptotic limit of the

transport equation. One way in which the SPN equations can derived from the PN

equations is by starting with the 1-D PN equations and replacing the 1-D diffusion

operator with the 3-D diffusion operator. This is equivalent to replacing the first order

derivatives of the odd moments of the angular flux with divergence operators, and the

first order derivatives of the even moments with gradient operators. The SP3 equations

are given below:

15

          

        ,2 ,20

,00,0,0

rqrrr

rrrrrD

ggst

gstgg








 Eq. (1.14)

          

           ,2
5

2
 ,2,00

,22,2,2

rqrrrr

rrrrrD

gggst

gstgg









 Eq. (1.15)

where the diffusion coefficients D0 and D2 are those derived from the 1-D P3 equations

and the scalar flux is computed from the 0th and 2nd order angular moments of the flux:

     .2 ,2,0 rrr ggg


 Eq. (1.16)

 The main advantage of the SPN method is that the structure and implementation of

the equations is very similar to the diffusion equation, thus if one has an existing

diffusion solver, it can be easily modified to be able to solve the SPN equations.

Furthermore, the SPN approximation can be considerably more accurate than the

diffusion approximation for a wider range of problems, and has been implemented

successfully in some core simulators [36], [37].

1.3.3 2-D/1-D
Perhaps the most recent advance in approximations of 3-D transport is the 2-D/1-D

method [38], [39], [40]. The principal motivation for this method is that generally there is

more heterogeneity in the LWR geometry in the radial (2-D) plane than in the axial (1-D)

direction. This suggests that a lower order method could be used to solve the axial

problem compared to the radial problem, and a “transverse leakage” could be used to

couple the two solutions.

 This method starts with the multi-group transport equation and introduces an

approximation to the derivative in the z-direction.

16

         

        ,,,,
4

,,,,

1

4

0
,

1

4

0
,

,

 






 

















G

g

gggs

G

g

ggf

eff

g

ggtggygx

drrdrr
k

rrrF
z

r
y

r
x














 Eq. (1.17)

where  


,rFg is some reasonable approximation to the axial derivative such as:

     .,
4

, 
















 
r

z
r

z

D

z
rF

z
gzg

g

g 


 Eq. (1.18)

 In previous work the function F has been treated with a variety of approximations

including the an Sn approximation, the SPN approximation and the diffusion

approximation. Even with the lowest order approximation (diffusion), shown in Eq.

(1.18), the 2-D/1-D method has been shown to preserve the 2-D transport equation and

the 1-D (in z) and 3-D diffusion equation [40]. The advantage of the 2-D/1-D method is

that it assumes the solution is weakly varying in the z-direction allowing for coarser

discretizations in z and only having to discretize several 2-D domains. Again, for most

LWR reactor designs the heterogeneity of the geometry is largely in the x-y plane and the

geometry is fairly uniform in z, thus making the approximation of the 2-D/1-D method

likely a good approximation for these problems. However, the accuracy of the method

will suffer when transport effects are observed in the z-direction, and usually this

corresponds to partially inserted control rods.

1.4 Summary
Of the methods surveyed in this section the Monte Carlo, the Sn, and the MOC methods

have received the most attention throughout the research community for consideration in

3-D full core LWR analysis. Parallel algorithms for the Sn method appear to be the most

mature in terms of being able to scale well on petascale machines. However, the Monte

Carlo method is not far behind Sn in its ability to map onto massively parallel

architectures [41]. Both of these methods are still under active research in order to

address the remaining issues noted previously. However, it is questionable whether an

acceptable solution will present itself for the ability of the Sn method to deal with

17

complex geometries (e.g. curvilinear surfaces) and maintain the current parallel

performance. The issues remaining for the Monte Carlo method are more about

improving techniques for capturing the physics of a reactor accurately, namely the

efficient computation of state vectors for high fidelity spatial discretizations with minimal

statistical error, modeling of thermal-fluid feedback, and the treatment of time

dependence. Conventional wisdom suggests that pursuing development of PN and CP

methods for full core 3-D LWR analysis may not be worthwhile because of the inherent

drawbacks of the methods themselves.

 This leaves 3-D MOC as an area of research that may still have potential for

practical LWR applications. As described in the previous section, past efforts have not

been very successful in developing highly scalable parallel 3-D MOC algorithms.

Therefore, the principal challenge and focus of this thesis research is the development of

a highly scalable parallel algorithm for solving the 3-D neutron transport equation by the

method of characteristics for practical LWR applications.

 The rest of this thesis proceeds by first presenting the detailed derivation of the

MOC solution of the 3-D Boltzmann transport equation in Chapter 2, along with the

details for the discretization and iteration scheme to obtain a numerical solution. Chapter

3 describes the actual implementation of the 3-D MOC kernel used in this work, along

with some important optimizations. Chapter 4 presents the details of how the kernel

described in Chapter 3 is parallelized. Chapter 5 introduces a performance model to

analyze and predict the performance of the 3-D MOC solution algorithm. The validation

of this model is also presented in Chapter 5. The focus of Chapter 6 is the detailed

analysis of the parallel 3-D MOC kernel’s performance on a few architectures. Chapter 7

then discusses how the convergence of the algorithm may be improved by extending well

known diffusion-based acceleration techniques. Chapter 8 presents the results and

performance of the parallel 3-D MOC algorithm for a select number of numerical

benchmark problems with comparisons to 2-D/1-D results. Finally, the conclusions of

this work are given in Chapter 9.

18

Chapter 2

FUNDAMENTALS OF THE METHOD OF

CHARACTERISTICS

This chapter provides a detailed derivation of the discretized MOC equations and

introduces several of the concepts and algorithms conventionally used in MOC solvers.

First, a detailed derivation is provided, which highlights important approximations at

each step. Next, the algorithm for the iterative solution of these equations is described.

Then, the techniques required to discretize a problem that are common to any multi-

dimensional MOC transport solver are described. The descriptions primarily focus on

2-D solvers at first, and then the concepts are extended to the case of a 3-D solver to

highlight the additional challenges that must be addressed. Finally, detailed examples,

again given in the context of 2-D, in which the MOC transport sweep can be performed,

are presented and contrasted to highlight their relative merits. This establishes the basis

for a 3-D MOC serial algorithm that can then be parallelized.

2.1 Method of Characteristics Solution of the Boltzmann

Transport Equation in 3-D
The derivation of the MOC solution to the Boltzmann neutron transport equation starts

with the steady-state continuous form of the equation given in Eq. (2.1) below.

19

     
 

   

    .,,,,

,,,
4

,,,,,

0

4

0

0

4

0

 

 











EddErEEr

EddErEr
k

E

ErErEr

s

f

eff

t




















Eq. (2.1)

Eq. (2.1) is the same as Eq. (1.1) from the previous chapter. Next the variable q is

introduced to simplify the right hand side.

   
   

    ,,,,,

,,,
4

,
,,

0

4

0

0

4

0

 

 









EddErEEr

EddErEr
k

Er
Erq

s

f

eff

















 Eq. (2.2)

yielding

       .,,,,,,, ErqErErEr t 


 Eq. (2.3)

2.1.1 Transformation to the Characteristic Direction
Now, the method of characteristics is applied, in which the spatial and angle variables of

the partial differential equation, Eq. (2.3), are transformed into the characteristic

direction using the following identities.

 
 
 

.

0

0

0

0

z

Y

x

szsz

sysy

sxsx

srr










 Eq. (2.4)

This leads to the characteristic form of Eq. (2.3) shown in Eq. (2.5).

       ,,,,,,,, 0000 EsrqEsrEsrEsr
ds

d
t 





 Eq. (2.5)

where

20

       

    .,,,,

,,,
4

,
,,

0

4

0
00

0

4

0
00

0

0

 

 












EddEsrEEsr

EddEsrEsr
k

Esr
Esrq

s

f

eff

















Eq. (2.6)

Eq. (2.5) can then be solved analytically using the following integrating factor:

  ,,exp
0

0 




  

s

t sdEsr


which leads to:

     

    .,exp,,

,exp,,,,

0
00

0
000

 








 






 



s s

s
t

s

t

sdsdEsrEsrq

sdEsrErEsr






 Eq. (2.7)

Eq. (2.7) is the solution of the characteristics form of the continuous Boltzmann transport

equation. Next, this equation is discretized so that it may be solved numerically. Some

reasonable approximations are introduced to accomplish this, and also so that the

integrals of Eq. (2.7) may be evaluated more easily.

2.1.2 The Multi-group Approximation
The first approximation to be introduced, which is common for almost all deterministic

methods, is the multi-group approximation. This discretizes the energy variable by

defining discrete neutron energy groups. The multi-group cross sections are determined

exactly by Eq. (2.8). However,  Er ,,


 is generally not known a priori, therefore the

approximation of Eq. (2.9) is introduced. The multi-group cross sections are then defined

as shown in Eq. (2.10) using a weighting factor  Er ,


 in energy. This weighting factor

should typically be representative of the neutron energy spectrum of the system, which

cannot be known exactly for all potential problems a priori. As long as the energy

distribution of the neutron flux in the system to be simulated is reasonably consistent with

the weighting spectrum used to collapse the continuous energy cross section, the multi-

21

group approximation is accurate since it preserves the reaction rates within each energy

group.

 
   

 
,

,,

,,,

1

1

,













g

g

g

g

E

E

E

E
x

gx

dEEr

dEErEr

r 







 Eq. (2.8)

     ,,,,, 


rfErEr Eq. (2.9)

 
   

 
,

,

,,

1

1

,













g

g

g

g

E

E

E

E
x

gx

dEEr

dEErEr

r 




 Eq. (2.10)

    .,
1





g

g

E

E
g dEErr


 Eq. (2.11)

 Eq. (2.11) does not use the weighting factor since the fission spectrum is not

strictly a cross section. In Eq. (2.10), the subscript x is to indicate a reaction type.

Applying the multi-group approximation to Eq. (2.7) leads to the steady-state multi-group

MOC solution of Boltzmann neutron transport equation shown in Eq. (2.10), where the

subscript g, is introduced to denote the neutron energy group index.

     

    .exp,

exp,,

0
0,0

0
0,00

 








 






 



s s

s
gtg

s

gtgg

sdsdsrsrq

sdsrrsr






 Eq. (2.12)

2.1.3 The Discrete Ordinates Approximation
The next approximation that is introduced after the multi-group approximation is the

discrete ordinates approximation for the angular variable. This is essentially a quadrature

approximation, which for a given function of angle is written as:

22

   .
1

4




M

m

mm fwdf



 Eq. (2.13)

Applying this approximation to Eq. (2.12) and Eq. (2.6) leads to:

     

    ,exp

exp

0
0,0,

0
0,0,0,

 








 






 



s s

s
mgtmmg

s

mgtmgmmg

sdsdsrsrq

sdsrrsr






 Eq. (2.14)

where

 
 

   

   .,

4

1 1

0,0,

1 1

0,0,

0

0,





 



 










G

g

M

m

mmgmmmggsm

G

g

M

m

mmgmmgf

eff

mg

mmg

srsrw

srwsr
k

sr
srq















 Eq. (2.15)

 So long as the error introduced by Eq. (2.13) is minimal, the discrete ordinates

approximation is valid. This approximation has been used for decades by the Sn and

MOC methods, and in practice it is observed to be quite accurate if a sufficient number of

angles are used.

2.1.4 Constant Material Properties in a Discrete Region
To discretize the spatial domain, the problem is divided into arbitrarily shaped discrete

regions. Within each region it is assumed that the material properties are constant with

respect to the spatial variable. This spatial discretization, as illustrated by Figure 2.1,

essentially leads to a spatial discretization scheme that is first order accurate.

23

Figure 2.1 – Spatial discretization with constant properties

 From these definitions and the constant material property, Eq. (2.14) and Eq.

(2.15) are reduced to the following for each characteristic ray passing through each

discrete region denoted by the subscripts k and i, respectively.

       ,expexp
,,

0
,,,,,,,,,,,,,,,,  

kmis

kmigitmgikmigit

in

kmgi

out

kmgi sdsssqs Eq. (2.16)

   

   

.0

4
,,

1 1

,,,,

1 1

,,,,

,

,,

kmi
G

g

M

m

mgimmggism

G

g

M

m

mgimgif

eff

gi

mgi

ss

sw

sw
k

sq









 

 



 











 Eq. (2.17)

 In Eq. (2.16) the short hand notation,    0,,,0,,,,,  sr kmgimgi

in

kmgi 


 and

   kmikmgimkmimgi

out

kmgi sssr ,,,,,,,0,,,,,  


, is used. For adjacent regions i and i+1 the

identity, in

kmgi

out

kmgi ,,,1,,,  , is also true.

2.1.5 Flat Source Region Approximation
Next the source, qi,g,m(s), is assumed to be constant within each discrete spatial region.

This is commonly referred to as the flat source approximation. It is the lowest order

approximation for the spatial dependence of the source and is accurate in the fine limit of

the spatial mesh. Other approximations, such as linear and quadratic have been

developed, but for the work here only the flat source is considered. With the flat source

24

approximation, the remaining integral over s' can be evaluated analytically, which leads

to Eq. (2.18) and Eq. (2.19):

    ,exp1exp ,,,,

,,

,,

,,,,,,,,,, kmigit

git

mgi

kmigit

in

kmgi

out

kmgi s
q

s 


 Eq. (2.18)

  .
4 1 1

,,,,

1 1

,,,,

,

,,  
 



 

 
G

g

M

m

mgimmggism

G

g

M

m

mgimgif

eff

gi

mgi ww
k

q 


 
 Eq. (2.19)

 Eq. (2.19) introduces a new term, the region average angular flux, mgi ,, . This is

computed from the segment-average angular flux which is defined as:

 
.~

,,

,,

,,,,

,,,,,,

0

0
,,

,,,
,,

,,

git

mgi

kmigit

out

kmgi

in

kmgi

s

s

mgi

kmgi

q

ssd

sds

kmi

kmi
















 
 Eq. (2.20)

 The region average angular flux is then computed from the segment-average

angular fluxes as shown in Eq. (2.21), where kmA , denotes the cross sectional area of the

characteristic ray as illustrated in Figure 2.1.

.

~

,,,

,,,,,,

,,









ik

kmkmi

ik

kmkmikmgi

mgi
As

As





 Eq. (2.21)

 Eq. (2.18) and Eq. (2.20) are the fundamental discretized MOC equations that

must be evaluated to obtain a solution of the angular flux for a given source q.

2.1.6 Isotropic Scattering Approximation
The final approximation is to assume that the source is isotropic. Again this is the

simplest approximation, and higher order angular sources have been derived, but for the

work here only the isotropic source is considered. In general, the level of anisotropy of

the source is represented by expanding the source as a function of Legendre polynomials.

For an isotropic source, Eq. (2.19) reduces to the following form.

25

,
4

1

4 1

,,,0

1

,,,

,

, 






 
G

g

giggis

G

g

gigif

eff

gi

gi
k

q 






 Eq. (2.22)

where the scalar flux, gi , is computed as:

  .
1

,,
4

,, 



M

m

mgimgigi w 



 Eq. (2.23)

2.1.7 Iteration Scheme
 In general the quantities of interest for reactor analysis such as reaction rates are

determined from the scalar flux and not the angular flux, therefore the scalar flux is

typically the primary solution variable updated by a transport kernel. Since any 3-D MOC

kernel will make use of the above equations in some form, the kernel can be based on the

concept of a 1-group fixed source problem which makes it possible to abstract the kernel

into the following functional form:

         ,,, ,11, n

g

nin

g

n

g

nin

g qf


 
 Eq. (2.24)

 .
4

1 1

,,,0,,

1

,





  n

giggisgiext

n

ig Qq 


 Eq. (2.25)

 In Eq. (2.24),
 nin

g

,


 is a vector of the discrete incoming angular flux boundary

conditions in all space and angle for a single group, g.
 n

gq


 is a vector of the 1-group

source computed as shown in Eq. (2.25) for all regions and  n

g


 is a vector of the scalar

fluxes for all regions. By alternately evaluating the function of Eq. (2.24) and updating

the source defined by Eq. (2.25), it is possible to first define an inner iteration scheme to

solve the 1-group fixed source problem for a given external source Qext,i,g. In these

equations n is the inner iteration index and the algorithm for solving the 1-group fixed

source problem is shown in Figure 2.2.

26

Figure 2.2 – Iterative algorithm for the MOC solution of 1-group fixed source problem

 For the algorithm of Figure 2.2, steps 2 through 5 perform the function evaluation

shown in Eq. (2.24). In the 1-group fixed source problem, the external source, Qext,i,g, is

assumed to be known which is essentially the source from fission and in-scatter, or

scattering from group g' to group g, and it is a function of the scalar flux as shown in

Eq. (2.26).

.
1

,,,0

1

,,,

,

,, 







 
G

gg
g

giggis

G

g

gigif

eff

gi

giext
k

Q 


Eq. (2.26)

 In Eq. (2.26), 1/keff is the eigenvalue of the system and must also be determined as

a part of the solution. This is traditionally calculated using the power method, which is an

iterative algorithm for finding the largest eigenvalue of a system that follows naturally

from the source iteration scheme described thus far. Briefly, the general form of the

eigenvalue value problem in reactor physics can be written in operator notation as:

,
1




FT
effk

 Eq. (2.27)

where F represents the fission and T represents the streaming, absorption, and scattering

of neutrons. Applying the power method to solve Eq. (2.27) results in the following

iterative scheme:

1. Guess initial source.

2. Compute outgoing angular fluxes by evaluating Eq. (2.18) for

all segments

3. Compute segment-average angular flux by evaluating Eq. (2.20)

for all segments.

4. Compute region-wise angular flux by evaluating Eq. (2.21) for

all regions

5. Compute scalar flux by evaluating Eq. (2.23) for all regions

6. Update 1-group source by evaluating Eq. (2.25) for all regions

7. Check for convergence, if not converged return to step 2.

27

 
 

  ,
111 





 FT

effk

  Eq. (2.28)

 

 

 
 

.
1

1

1

1

1

















F

F

eff

eff

k

k



 
Eq. (2.29)

 This iterative scheme used in the second level of iteration for the eigenvalue,

which is referred to as the outer iteration. For the outer iteration, denoted by the index  ,

the total fission source is computed as shown in Eq. (2.30) and Eq. (2.26) is rewritten as

shown in Eq. (2.31).

 
 

  ,
1

1

,,,



G

g

gigif

eff

i
k





  Eq. (2.30)

     .
1

,

,,,0,

,

,, 




G

gg
g

n

giggisigi

n

giextQ  
Eq. (2.31)

The equation to update the eigenvalue based on the power method is shown in Eq. (2.32),

where Vi is the region volume.

 

 

 

.

1

1 1

1

,,,

1



 



 










I

i

ii

I

i

G

g

gigifi

eff

V

V

k










 Eq. (2.32)

 The overall iterative procedure for solving the eigenvalue problem is shown in

Figure 2.3 and is sometimes referred to as source iteration. In the source iteration

technique described in this section, there is an inner iteration for the converging self-

scattering and an outer iteration for the eigenvalue which is equivalent to the power

iteration.

28

Figure 2.3 – Iterative algorithm for the MOC solution of steady-state eigenvalue problem

 This iteration scheme has the advantage of reducing memory usage, by allowing

the transport method to only allocate data for a single group, with the exception of the

boundary condition. In the loop over groups in Figure 2.3 the in-scatter source of Eq.

(2.26) is also updated in a Gauss-Seidel fashion. This helps to improve convergence for

reactor problems since most LWRs are thermal reactors and the physics of the slowing

down source involves primarily the down-scatter of neutrons.

2.2 Discretization of the Characteristics
In Section 2.1 several kinds of discretizations were introduced for the different variables

of the phase space. The discretization techniques for energy (the multi-group

approximation) and space will not be discussed in this section since they are not specific

to the MOC method, rather those discretizations are assumed and the focus will be on the

specific discretization techniques required by the MOC method.

 In the method of characteristics, the fundamental way that the problem is

discretized is to choose a set of rays that traverse the problem domain to represent the

flight paths (characteristic tracks) of the neutrons. This is illustrated in Figure 2.4 below.

The end goal is to determine the segment lengths from each ray that pass through each

discrete region, which are then used as the variable si,m,k in the evaluation of Eq. (2.18),

Eq. (2.20), and Eq. (2.21). In general, one may choose any set of rays so long as the

intersection between the ray and the spatial region boundaries can be determined. At this

point there are several design choices possible for the algorithm that performs the ray

tracing.

1. Guess initial keff and scalar flux.

2. Compute total fission source by evaluating Eq. (2.30) for all

regions

3. Loop over all groups

a. Compute 1-group source by evaluating Eq. (2.25) for all

regions.

b. Solve 1-group fixed source problem with algorithm in

Figure 2.2

4. Update keff by evaluating Eq. (2.32) for all regions

5. Check for convergence, if not converged return to step 2.

29

Figure 2.4 – Characteristic rays intersecting a set of discrete spatial regions

 The first consideration is whether or not to store the ray tracing data (e.g. the

segment lengths and mapping of ray segment index to region index). This information

could be computed on the fly as a ray is swept during the transport sweep, or it can be

stored. The criterion that is used to make this choice is to minimize computational time,

and the tradeoff is essentially increased memory storage versus repetitive computation.

The choice that is almost invariably made for any MOC implementation is to compute the

ray tracing information once and then to store it. This has the benefit of decoupling the

sweep algorithm from the ray trace algorithm, which allows each to be further optimized

and developed essentially independently of the other. Another benefit of storing the ray

tracing data is that during a normal calculation one may perform on the order of 1000

sweeps, and each sweep may involve iterating over tens or hundreds of millions of rays,

so even the slightest overhead from the repeated computation of the ray tracing data will

substantially increase the total computation time. However, the memory requirements for

storage can become prohibitive, so other design choices for the algorithm must be made

to address this issue. Despite the memory requirements for storing the ray tracing data,

this is the approach used in this work.

 The next consideration is the choice of rays, specifically, which directions of

flight should be considered. Since the discrete ordinates approximation described in

Section 2.1.3 is used, it logically follows that these should be used for the directions of

flight for the rays. In order to obtain accurate solutions, the discrete directions of flight

should be obtained from a quadrature that minimizes the error of the quadrature

approximation for the integration of functions of angle. There are a myriad other

30

considerations that go into developing a good quadrature, but this will not be discussed in

great detail. The usual terms in the transport equation that are functions of angle and are

integrated over angle are the angular flux and scattering cross section.

 Once the directions of flight are chosen, it is then necessary to set up rays for a

given angle. Ideally, one would want a few rays from each angle to intersect every spatial

region in the problem, but at the very least a single ray should intersect each region. One

of the most common design choices here is to choose equally-spaced rays. The advantage

of this choice is that it minimizes the need to store ray-dependent quantities such as the

cross sectional area. Instead of storing the discrete cross sectional area of each

characteristic ray in a problem, this quantity can simply be stored once for all rays or for

all rays of a given angle. However, a potential disadvantage of uniform rays is one may

place extra rays in regions that do not necessarily require them. This is illustrated in

Figure 2.5 below.

Figure 2.5 – Equally spaced and non-equally spaced characteristic rays

Since the segment volumes in a given region represent a numerical integration of the

region volume, which will have some error, the segment lengths within a given region are

renormalized so that they integrate the region volume exactly. This is shown in Figure 2.6

and Eq. (2.33).

.
,,,

,,,,






ik

kmkmi

i

kmikmi
As

V
ss



Eq. (2.33)

Uniform Rays Non-uniform Rays

31

Figure 2.6 – Numerical integration of a region volume by ray segments

2.2.1 Modular Ray Tracing
In the design of the ray tracing algorithm, it is possible to take advantage of the fact that

reactors generally have a high degree of regularity in their geometry. Considerable

computational savings are possible by modeling only a small subdomain of the reactor

that exhibits a unique geometry, and then constructing a ray tracing algorithm for the

entire domain by replicating this information for the entire core. The technique for this

has several names but is referred to as modular ray tracing here and is illustrated in

Figure 2.7 below which has three ray tracing modules denoted as the black squares. The

modular rays, depicted as blue lines, are defined only within the ray tracing module and

connect at the ray tracing module boundaries. The long ray is shown by the red line and

extends through the entire problem domain and consists of a particular sequence of

modular rays.

Figure 2.7 – Modular ray tracing concept in 2-D

 It should be noted that the use of modular ray tracing introduces new

requirements on the choice of the angles and also creates other subtle issues. The first

requirement for modular ray tracing is that one be able to overlay a structured grid on

their problem geometry. For the light water reactor problem this is a Cartesian grid, and

k

1k

1k

2k

2k

modular ray

module

boundary

long ray

32

ideally will isolate the different unique geometries of the subdomains. The next

requirement is that for rays with a given angle there must be an equal integer number of

intersections of rays on opposing surfaces of a ray tracing module. This second

requirement is basically satisfied by choosing to have equally spaced rays within a given

angle. The computational advantages of modular ray tracing can be considerable. If

modular ray tracing is not used, then it can increase the storage requirements of the ray

tracing data by a factor up to as much as O(10
7
) for a problem using pin modular or

quarter pin modular ray tracing that is approximately as large as a full core PWR. Should

quarter assembly modular ray tracing be used, then the savings in memory requirements

could be as much as O(10
5
) for a full core PWR.

 The modular ray tracing technique has been previously used for 3-D MOC [32],

[33], although a second, innovative technique for producing modular rays has been

developed as a part of this work. The two algorithms basically differ in how the polar

angle is determined. The result of this is that the first method is required to store twice as

much ray tracing data when dealing with reflective boundary conditions. The new

method also produces a finer ray spacings and consequently more rays, which can

improve the accuracy of the solution but also increases computational work.

 Once a modular geometric structure has been defined, the modular rays are

determined by specifying a desired set of directions and ray spacing. In the work here a

cuboid structure is used for the modular geometry with dimensions Px, Py, and Pz. The

3-D modular ray parameters of spacing Δr and Δz, azimuthal angle, α, and polar angle, θ,

are determined from the inputs of a desired azimuthal angle, α0, desired polar angle, θ0,

and desired ray spacing Δ0. The first step in generating 3-D modular rays begins the same

as it would for 2-D modular rays by only considering the x- and y- directions. The

azimuthal angle, α, and radial ray spacing, Δr, are determined in this step from the

following equations. For clarity, these terms are also illustrated in Figure 2.8.

33

  ,sin 0

0











 x

x

P
N (a)

Eq. (2.34)

  ,cos 0

0











 

y

y

P
N (b)

,arctan















yx

xy

NP

NP
 (a)

Eq. (2.35)

 .sin 
x

x

r
N

P
 (b)

Figure 2.8 – Modular ray tracing parameters

 In the first method, each 2-D line in Figure 2.8 is actually a plane in z- xy


. This

is illustrated in the part of Figure 2.9 above the black arrow. These planes are lined up in

the order they are traversed along the direction xy


, which is indicated by the red

numbers in the same part of Figure 2.9. For example when the polar plane labeled "1"

intersects the right edge, the next plane to be traversed is the one labeled "2" starting at

the left edge, and so on until "10" returns to "1". Once the sequence of polar planes are

ordered, it gives a new 2-D domain, which is the part of Figure 2.9 below the black

Px

Py

α

1

1

.

.

.

. . .

Ny

Nx

Δr

34

arrow. In this new 2-D domain the polar angle θ and axial ray spacing Δz are determined

using Eq. (2.34) and Eq. (2.35) from above, where Pz is substituted for Py and Pl is

substituted for Px.

Figure 2.9 – Polar plane used to determine polar angle

 A subtlety now arises in that one prefers not to have the modular rays intersect at

the corners of the 2-D ray tracing modules. To avoid this, a shift parameter p is

introduced, which determines how far from the corner the first ray is drawn. This is

illustrated in Figure 2.10.

1

2

3

4

5

6

7

8

9

10

x

y
xy



. . .

z

xy


1 2 3 4 5 10

θ

Pz (Py)

Pl (Px)

1

.

.

.

Nz (Ny)

. . . Nl (Nx)1

35

Figure 2.10 – Effect of shift parameter

 Now, there is a further subtlety. The different directions will have slightly

different shift parameters, so the problem that one encounters is when reflecting off a

surface that changes the azimuthal direction the points of intersection for the rays with

those two directions on that surface do not exactly line up. Therefore, one must store the

forward and backward directions separately. Because each line does represent a forward

and backward direction, one would hope to only be able to store directions over half the

octants of the unit sphere rather, than all of them. This problem is illustrated in

Figure 2.11.

z

xy


1 2 3 4 5

p0
z

xy


1 2 3 4 5

p

36

Figure 2.11 – Illustration of misaligned modular rays for reflecting directions

 The new method developed for generating a set of modular rays as a part of this

work avoids this problem by only considering the shortest polar plane. Noting that the

rest of the polar planes for a given azimuthal direction have a length that is an integer

multiple of the shortest plane means that the points of intersection along the x-z and y-z

surfaces are the same for all polar planes and the forward and backward direction, so the

ray tracing data of the four octants of the unit sphere in  0 must be stored. The

method by which the polar angle is determined here is illustrated in the following figures.

Figure 2.12 – Second way of determining the polar angle

 Another subtlety in this method must also be noted. If the desired ray spacing is

given preference instead of the desired polar angle, then the modular polar angle will be

shifted substantially from the desired polar angle. This is due to the fact that the length of

the polar plane is of the order of the desired ray spacing. This is illustrated in the Figure

y

z

Direction 1
y

z

Reflection of Direction 1

x

y

xy


z

xy
θ

Pz (Py)

Pl (Px)

1

.

.

.

Nz (Ny)

Nl (Nx)

Pl (Px)

37

2.13 below, where if the azimuthal angle is, 4  ; then polar angles in the range

24   are essentially geometrically impossible if
rz  is desired.

 This can introduce considerable problems with the angular quadrature as

illustrated in Figure 2.14. Because robust methods of recomputing the quadrature weights

have yet to be developed, and because the algorithm tends to cluster directions, it is

currently not possible to obtain a good angular quadrature that is modular and has a

spacing ratio near one using this method. The modular quadrature error is shown in Table

2.1 for the S8 level-symmetric quadrature by comparing the analytic values of the

moments of the unit sphere before and after the angular quadrature is modularized.

Figure 2.13 – Geometric limitation in the choice polar angle

Figure 2.14 – Angular quadrature defined over an octant before and after modularization

α

Px

Py

x

y

xy


dy/2

Pl

dx/2

Δr/2

θ

Pl

Pz

y

dz/2

dl/2

Δz/2

xy


22

22
cossin 

























dydx
P

dydx
l

rr 

 

4

cos

1

sin

1

2

min,

22













rl

r
l

P

P

rzl
z Pdl

dl



cos

  35.0 if soarccos

 andLet

 







ff

xfxf
r

z

Defined Quadrature (S8) Modularized Quadrature

38

Table 2.1 – S8 quadrature errors of spherical harmonic moments

Moment
Defined Quadrature

Rel. Error (%)

Modularized Quadrature

Rel. Error (%)




41
4




d 0.0 0.0

34
4

2 





dx
 0.0 34.0

34
4

2 





dy
 0.0 34.0

34
4

2 





dz
 0.0 68.1

54
4

4 





dx
 0.0 48.4

54
4

4 





dy
 0.0 48.4

54
4

4 





dz
 0.0 89.1

154
4

22 





dyx
 0.0 61.6

154
4

22 





dzx
 0.0 36.6

154
4

22 





dzy
 0.0 36.6

74
4

6 





dx
 0.0 54.5

74
4

6 





dy
 0.0 54.5

74
4

6 





dz
 0.0 35.5

354
4

24 





dyx
 0.0 74.2

354
4

24 





dzx
 0.0 7.6

354
4

42 





dyx
 0.0 74.2

354
4

42 





dzx
 0.0 73.1

354
4

24 





dzy
 0.0 7.6

354
4

42 





dzy
 0.0 73.1

1054
4

222 





dzyx
 0.0 14.4

 To address this issue, the way in which the polar angle is determined is modified

so that an iteration is performed that adjusts the axial ray spacing Δz, typically reducing it,

until the modular polar angle, θ, is found that most closely agrees with the desired polar

angle, θ0. This process can cause the number of rays for different directions to vary

39

considerably, but insures that the modularized angular quadrature is accurate. In Table

2.2, the improvement in the angular quadrature using this method is compared to the

same quantities shown in Table 2.1 previously.

Table 2.2 – S8 modular quadrature errors for preferred polar angle

Moment Modularized Quadrature Rel. Error (%)




41
4




d 0.0

34
4

2 





dx
 0.0

34
4

2 





dy
 0.0

34
4

2 





dz
 0.0

54
4

4 





dx
 0.0

54
4

4 





dy
 0.0

54
4

4 





dz
 0.0

154
4

22 





dyx
 0.0

154
4

22 





dzx
 0.0

154
4

22 





dzy
 0.0

74
4

6 





dx
 0.8

74
4

6 





dy
 0.8

74
4

6 





dz
 0.0

354
4

24 





dyx
 0.3

354
4

24 





dzx
 4.4

354
4

42 





dyx
 0.3

354
4

42 





dzx
 4.4

354
4

24 





dzy
 4.4

354
4

42 





dzy
 4.4

1054
4

222 





dzyx
 0.0

40

 Again the drawback of doing this method is that a larger number of rays are

required. A comparison of the total number of rays that must be stored and traced is given

in Table 2.3 for the S8 quadrature and a desired spacing of 0.05 cm.

Table 2.3 – Comparison of modular rays requirements for different algorithms1

Angle
Number of Modular Rays for

Algorithm 1 (Previous Research)

Number of Modular Rays for

Algorithm 2 (This Research)

1 900 936

2 1038 1722

3 1038 1722

4 1050 1916

5 1134 1944

6 1050 1916

7 917 1571

8 1044 4122

9 1044 4266

10 917 1850

Total
1
 81056 87860

 From the data in this table it can be concluded that it would be more

computationally efficient to use the algorithm 1 method because the total number of rays

is less. Note that algorithm two is only storing half the rays, so the number that must be

swept is actually double meaning that algorithm 2 produces a set of rays that requires

roughly 2x the FLOPS to perform a sweep compared algorithm 1.

 If modular ray tracing is used, then there is a second step in the setup to determine

the long ray information for the entire problem domain. This information essentially

makes it possible to connect the modular rays in order to traverse through the entire

domain. Once the ray tracing is completed, the MOC transport sweeps can be performed.

As noted at the beginning of this section, the method used to perform a sweep depends to

some extent on how the ray tracing is performed. The next section describes a few

methods in which the MOC transport sweep can be performed.

1
 Algorithm 1 stores rays for the whole unit sphere and Algorithm 2 stores rays for just half the unit sphere,

so the number of rays for each angle is multiplied by 8 and 4, respectively.

41

2.3 Overview of MOC Sweep Algorithms
This section presents an overview of a few of the MOC sweeping algorithms that have

been successfully implemented. The description is focused on 2-D for ease of illustration.

However, there is little that changes between a 2-D sweep and a 3-D sweep because in

the MOC transport sweep, the fundamental serial operation is sweeping along all the

segments in a long ray and evaluating Eq. (2.18) and Eq. (2.20). It is important to note

that some implementations have been developed that formulate and solve a linear system

for MOC [7], but these implementations have not received widespread application. The

descriptions of the algorithms here are therefore limited to types of sweeps, rather than

ways of solving a linear system. Because a linear system is not formed, the solution of the

MOC transport method by sweeping presents a fundamentally different computational

kernel than most other applications in scientific computing.

 In the implementation of any sweeping algorithm, one of the first choices is the

order in which the long rays are to be swept. Several techniques have been developed for

performing a 2-D sweep; a few are explained here to highlight the important features

characteristic of an efficient sweep algorithm. It is not practical to include descriptions of

all approaches currently in use, since they are too numerous and some have not been

documented. Nonetheless, the description here will highlight features that are common to

all efficient sweep algorithms.

 The first sweeping algorithm described is the very basic one, in which one

assumes simply that there is some arbitrary set of rays that can be swept in an arbitrary

manner. This is illustrated by Figure 2.15.

Figure 2.15 – Agnostic sweep algorithm

42

 Because the ordering of rays in the sweep is arbitrary, it is most likely that this

sweep is probably not optimal. The memory requirements for an arbitrary sweep are

typically large because the boundary condition would need to be stored for the end of

each ray, and the ray tracing data would be stored separately for the forward and

backward direction. If modular ray tracing was not used, then an exact specular reflective

boundary conditions cannot be treated, and some approximation will be required at the

boundary which could affect the solution accuracy. Furthermore, it is difficult to

conclude anything about the efficiency of the convergence of this type of sweep, since

some rays could be swept and then rays that might update those boundary conditions will

not be swept until sometime later. Additionally, it is expected that an arbitrary sweep

algorithm will not have good cache coherency. A long ray may have its ray tracing data

loaded into cache while it is swept for one direction, and then replaced by data for rays in

another direction. At some later time, the data for long ray would have to be reloaded

(albeit in the reverse order) in order to sweep in the reverse direction. Obviously, from

the cache efficiency standpoint, a more efficient sweep method would be to sweep both

forward and backward directions of a ray while the data resides in cache.

 The oldest sweep algorithm is the cyclic method [30], which provides a method of

sweeping the rays that is basically motivated by two fundamental observations about the

problem. The first condition is that the problem has reflective boundary conditions. The

second condition is that the ray tracing data is built modularly. A reflective boundary

condition is typical of single assembly 2-D calculations, whereas full core calculations

have at least some vacuum boundary conditions. Given these two conditions, the first

obvious way to improve the efficiency of the ray sweeping is to sweep over a cycle or

loop of rays. The benefits of sweeping a loop, rather than from one surface to another, is

a reduction in memory requirements for storing the angular flux boundary condition,

since it is computed on the fly at each surface. This will improve convergence because

the angular flux boundary condition is updated in a Gauss-Seidel like fashion. The figure

below illustrates how a cyclic ray is swept.

43

Figure 2.16 – Cyclic ray sweep algorithm

 A potential disadvantage to this kind of sweeping is poor cache coherency. This is

because each ray represents two directions of flight, so its ray tracing data is simply

reversed for the forward and backward direction. If the cyclic rays are traced first for the

forward direction and then, for the backward direction, the ray tracing data is essentially

loaded into and out of the cache twice, which can diminish the performance and increase

the time to perform a sweep by nearly a factor of two [42].

 This leads to the second idea of how to sweep rays, which probably seems more

obvious to the procedural programmer, and that is to loop over the angles and then within

each angle loop over all the long rays. The advantage of this kind of sweep is that it

becomes easier to order all the associated data structures to have good cache coherency.

If modular ray tracing is being performed, then the construction of the long ray can be

done once and swept for both the forward and backward direction (e.g. a bi-directional

sweep), further improving performance through better cache coherency. The figure below

illustrates how the rays can be swept sequentially.

44

Mono-Directional

Bi-Directional

Figure 2.17 – Sequential sweep algorithm

 The disadvantages for this kind of sweep ordering are basically the opposite of the

advantages of the cyclic sweep. Namely, there is increased memory storage when there

are reflective or periodic boundary conditions, and the convergence of the angular flux

boundary condition will be more like Gauss-Jacobi than Gauss-Seidel.

 Thus, the two approaches for sweeping the rays, either cyclically or a

sequentially, have opposing advantages and disadvantages, and the most efficient

algorithm would be an optimal compromise of the two methods. This type of algorithm is

illustrated below.

Figure 2.18 – Bi-directional surface-cyclic sweep algorithm

 The surface-cyclic sweep algorithm is better able to allow for cache coherency

than the cyclic algorithm, most notably because the total track length will be smaller and

123456

7

8

9

1

2

35911

13

15

17

7

4

6

81012141618

Forward

Backward

1

2

3

4

5

6

Forward

Backward

45

thus more likely to fit within the lowest level of cache. This has the benefits of the

sequential bi-directional sweep, and if there are reflective boundary conditions, then it

also has the benefit of having to store fewer elements of the angular flux boundary

condition. Also, since these elements will only be stored for one surface of the domain, it

therefore has similar advantages as the full cyclic sweep.

 Of the various sweep algorithms discussed here, the sequential bi-directional

sweep is chosen as the basis for the optimizations and kernel implementation described in

the next chapter and Chapter 4, which describes the parallelization method. The reason

for choosing this algorithm is not readily apparent from the discussion in this chapter, but

the relative merits of the sequential bi-directional sweep should become clear in the

following chapters.

46

Chapter 3

3-D MOC KERNEL IMPLEMENTATION

This chapter describes how the equations derived in Chapter 2 are implemented within a

programming model. The goal of this chapter is to establish the basis for a serial 3-D

MOC kernel that can then be parallelized. Details are also given about some up-front

optimizations that have been used previously in 2-D MOC kernels and leveraged in the

3-D MOC kernel. The first section of this chapter shows how the equations of Section 2.1

can be manipulated algebraically to minimize the number of floating point operations

(FLOPs). Section 3.2 describes how the exponential function that must be evaluated can

be pre-tabulated, to further improve the computational performance of the kernel. Finally,

the detailed step-by-step procedure of the 3-D MOC kernel is presented.

3.1 Algebraic Optimization of Discretized MOC Equations
For the actual implementation of a MOC kernel there is some algebraic optimization that

may be done to reduce the number of floating point operations. The approach described

here is well known in the research community, and is shown here in detail so that there is

no ambiguity about the order of operations in the kernel. The technique is based on the

idea of using algebra to eliminate terms from some equations which essentially removes

operation in inner loops to the outer loops. This approach makes several assumptions

about the data available and the approximations used to derive the discrete equations;

these are consistent with the derivation of Section 2.1. The derivation begins by repeating

the relevant discretized equations from Section 2.1 solved by the MOC kernel:

47

    kmigit

git

mgi

kmigit

in

kmgi

out

kmgi s
q

s ,,,,

,,

,,

,,,,,,,,,, exp1exp 


 Eq. (2.18)

Eq. (2.18) – MOC transmission equation

git

mgi

kmigit

out

kmgi

in

kmgi

kmgi

q

s ,,

,,

,,,,

,,,,,,

,,,
~










 Eq. (2.20)

Eq. (2.20) – Equation for segment average angular flux






k

kmkmi

k

kmkmikmgi

mgi
As

As

,,,

,,,,,,

,,

~





 Eq. (2.21)

Eq. (2.21) – Equation for region average angular flux


k

mgimgi w ,,, 
Eq. (2.23)

Eq. (2.23) – Equation for region average scalar flux

 Traditionally, for reactor applications it is sufficient for the MOC kernel to just

update the scalar flux in all regions. Since this is ultimately the quantity of interest to be

updated for the solution, the following steps will optimize the calculation for the scalar

flux. It is noted that the evaluation of the transmission equation represents the operation

performed in the inner most loop.

 First is the definition of an intermediate quantity taken to be the angular flux

difference across a segment.

.,,,,,,,,,

out

kmgi

in

kmgi

d

kmgi   Eq. (3.1)

This implies the following:

.,,,,,,,,,

d

kmgi

in

kmgi

out

kmgi   Eq. (3.2)

Now inserting Eq. (2.18) into Eq. (3.1) so it can be rewritten in terms of
in

kmgi ,,, gives:

48

    
















 kmigit

git

mgi

kmigit

in

kmgi

in

kmgi

d

kmgi s
q

s ,,,,

,,

,,

,,,,,,,,,,,,, exp1exp

     kmigit

git

mgi

kmigit

in

kmgi

d

kmgi s
q

s ,,,,

,,

,,

,,,,,,,,,, exp1exp1 


 

  .exp1 ,,,,

,,

,,

,,,,,, kmigit

git

mgiin

kmgi

d

kmgi s
q

















  Eq. (3.3)

 Eq. (3.2) and Eq. (3.3) then replace Eq. (2.18) and have removed at least 1 FLOP

from the inner-most loop. Another useful definition is to define a "reduced" fixed source

for the region given as:

., ,,,

,,

,

, mgigi

git

gi

gi qq
q

q 


 Eq. (3.4)

 It is noted here that by dropping the angle index, an isotropic source has also been

assumed, so this will not apply to MOC kernels that explicitly treat sources that are

higher order in angle or space. Substituting Eq. (3.4) into Eq. (3.3) allows
giq ,
 to be pre-

computed removing a division operation from the inner-most loop and also removing the

angle dependence of the term. Rewriting Eq. (3.3) with Eq. (3.4) gives:

    .exp1 ,,,,,,,,,,, kmigitgi

in

kmgi

d

kmgi sq   Eq. (3.5)

 Next, the focus is turned to Eq. (2.20) and Eq. (2.21). Substituting Eq. (3.1) and

Eq. (3.4) into Eq. (2.20) gives:

.~
,

,,,,

,,,

,,, gi

kmigit

d

kmgi

kmgi q
s







 Eq. (3.6)

Substituting the above into Eq. (2.21) and rearranging leads to:

49

,
,,,

,,,,

,,,,

,,,

,,



 

















k

kmkmi

k

kmkmigi

kmigit

d

kmgi

mgi
As

Asq
s


































k

kmkmi

k

kmkmigi

k

kmkmi

k

kmkmi

kmigit

d

kmgi

mgi
As

Asq

As

As
s

,,,

,,,,

,,,

,,,

,,,,

,,,

,,











 













k

kmkmi

k

kmkmi

gi

k

kmkmigit

k

km

d

kmgi

mgi
As

As

q
As

A

,,,

,,,

,

,,,,,

,,,,

,,










 
.,

,,,,,

,,,,

,, gi

k

kmkmigit

k

km

d

kmgi

mgi q
As

A













 Eq. (3.7)

The next operation is based on two observations about the ray tracing. In the case of

modular ray tracing, and in general when there is a uniform ray spacing, the segment

cross sectional area will only be a function of angle, and therefore:

.,kmm AA   Eq. (3.8)

Additionally, the ray segments must be adjusted to preserve region volumes, so the

following should always be true:

.,,,
k

kmkmii AsV 
Eq. (3.9)

Substituting the above into Eq. (3.7) then gives:

.,

,,

,,,

,, gi

giti

k

d

kmgim

mgi q
V

A








 Eq. (3.10)

Finally, inserting Eq. (3.10) into Eq. (2.23) gives:

50

.,

,,

,,,

, 
 





m

mgi

giti

m k

d

kmgimm

gi wq
V

Aw 

 Eq. (3.11)

The figure below outlines the procedure in which the sweep can now be performed more

efficiently. For notational convenience, the following expressions are also defined:

,ˆ
,,,,, 

k

d

kmgimgi 
Eq. (3.12)

,ˆˆ
,,, 

m

mgimmgi Aw 
Eq. (3.13)

  .4
ˆ

,

,,

,

, gi

giti

gi

gi q
V




 


 Eq. (3.14)

Figure 3.1 – Iterative sequence for optimized equations

 By rewriting the equations this way the overall number of FLOPs required to

evaluate the MOC equations is reduced by approximately 70%.

For group g:

1. Evaluate Eq. (3.4) for all regions

2. Loop over all angles

a. Loop over all long rays in angle m

i. Loop over all segments in long ray

1. Evaluate Eq. (3.5) in forward direction

2. Accumulate
d

kmgi ,,, into temporary for

Eq. (3.12) for forward direction.

3. Evaluate Eq. (3.5) in backward direction

4. Accumulate
d

kmgi ,,, into temporary for

Eq. (3.12) for backward direction.

ii. Accumulate
mgimm Aw ,,̂ into temporary for Eq. (3.13)

3. Evaluate Eq. (3.14) for all regions

51

3.2 Tabulated Linear Interpolation of the Exponential

Function
Another well-known optimization of MOC kernels is to tabulate the exponential function

or more specifically, 1-exp(x), since this is the term that appears in Eq. (3.5). In previous

work [43], the tabulation error and speedup from using the table with various forms of

interpolation were investigated. This work is replicated here and similar results are

obtained. For the evaluation of the exponential function, the table with linear

interpolation is used, since this should be the most efficient type of table evaluation as

suggested in [43]. In the characteristics equation the argument for the exponential

function is kmigit s ,,,, . The total cross section and segment length will always be

positive, so the argument to the exponential function will always be less than or equal to

zero. The value of the exponential function for negative real numbers is shown next:

Figure 3.2 – Range of values of exponential function in characteristics problem

 In this figure it is noted that the value of the exponential function changes very

little in magnitude (< 1.e-4) beyond -10.0. Therefore, the range of interpolation is chosen

to be  0,10x . The interpolation error can also be predetermined as a function of the

number of intervals in the table. Generally, as small a table as possible is best so that it

can remain completely in the L1 cache, which has the fastest memory access times. The

error introduced from the linear interpolation table lookup was evaluated numerically and

-15 -10 -5 0
10

-8

10
-6

10
-4

10
-2

10
0

x

ex
p(

x)

52

bounded by theory; these errors are shown in Figure 3.3, which is consistent with the

results of [43].

Figure 3.3 – Error of linear interpolation of exponential function

 The performance gain of the table evaluation over evaluation of the intrinsic

function is shown in Table 3.1. This performance gain can be attributed to trading

floating point operations with memory accesses. As long as the table is capable of

residing in fast memory, the number of processor clock cycles for a memory access is of

the same order as that required to perform a FLOP, and therefore a performance

improvement will be achieved. This was verified using the measurement system

described in Chapter 5, with the GNU 4.6.3 Fortran compiler and -Ofast optimizations.

The test consisted of 300 random accesses to the table and was averaged over 100,000

samples and by using the table the number of FLOPs was reduced by roughly an order of

magnitude, while a 76% reduction in time was observed.

Table 3.1 – Performance gain from table evaluation of the exponential function

 Intrinsic Exponential

Function

Table look up with Linear

Interpolation (1000 intervals)

Time 1.42 s 0.334 s

FLOPS 1.051e9 2.414e8

1.0E-13

1.0E-11

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07R
el

at
iv

e E
rr

or
 fo

r E
xp

on
en

tia
l

Fu
nc

tio
n

E
va

lu
at

io
n

Number of intervals between -10 and 0

Theoretical Error

Measured Numerical Error

53

3.3 Anatomy of the 3-D MOC Kernel
In this section, the detailed algorithm for the serial 3-D MOC kernel is described. This

serial algorithm is the basis for the extension to a parallel algorithm in Chapter 4 and the

performance analysis of Chapter 5 and Chapter 6. Functionally, the kernel performs the

operation shown by Eq. (3.15). This is to serve as the transport sweep at the heart of the

overall eigenvalue iteration, as shown in Figure 3.4, which is valid for any transport

method. The procedure by which the MOC kernel performs the transport sweep is shown

in Figure 3.5.

         .,, 11 


g

in

g

out

gg qf  
 Eq. (3.15)

Figure 3.4 – Basic algorithm for source iteration

While not converged

1. Compute total fission source

2. Loop from group 1 to G

a. Compute fission source for group g

b. Add in-scatter source to fission source

c. Add within-group scattering to source

d. Evaluate Eq. (3.4)

e. Evaluate Eq. (3.15)

3. Update keff

4. Check if solution is converged

54

Figure 3.5 – 3-D MOC kernel serial algorithm

 The first step in this algorithm is to use the modular ray data to determine the

spatial region index, segment length, and total cross section sequentially by segment for a

single long ray from one end of the ray to the other. This data is stored into local 1-D

arrays. Next, the segment length and cross section are used to evaluate the exponential

function for all segments along the ray. Then a loop is performed over all the segments

on the long ray, and the MOC equations, Eq. (3.3) and Eq. (3.12) are evaluated. Once all

the long rays have been swept within a given angle, the sums accumulated in each region

for Eq. (3.12) are scaled and accumulated based on Eq. (3.13). The final step is to

evaluate Eq. (3.14) for all regions once the loop over all angles is completed. This is

essentially steps 2 and 3 in Figure 3.1. Each of the steps of Figure 3.5 can be thought of

as a different operational component, or microkernel, of the overall 3-D MOC kernel.

These components are given the following monikers as shown in Table 3.2 for use in

discussion and equations in subsequent chapters.

1. Loop over all angles

a. Loop over all long rays in angle

i. Order the modular ray data for a complete long ray

ii. Evaluate the exponential function for all segments

in the long ray

iii. Load incoming boundary conditions for each end of

ray

iv. Loop over all segments in the long ray

1. Evaluate Eq. (3.5) in forward direction

2. Accumulate
d

kmgi ,,, into temporary for

Eq. (3.12) for forward direction.

3. Evaluate Eq. (3.5) in backward direction

4. Accumulate
d

kmgi ,,, into temporary for

Eq. (3.12) for backward direction.

v. Store outgoing boundary conditions for each end of

ray

b. Accumulate
mgimm Aw ,,̂ into temporary for Eq. (3.13)

c. Update all incoming boundary conditions

2. Evaluate Eq. (3.14) for all regions

55

Table 3.2 – Components of 3-D MOC kernel

Algorithm Step Name of micro-kernel Description

i build Order the modular ray data sequentially to construct

data for a single long ray

ii exp Evaluate exponential functions for kmigit s ,,,,

values of each segment in long ray.

iii and v BC Load and store long ray boundary conditions in

global memory

iv MOC Evaluate MOC equations Eq. (3.5) and Eq. (3.12)

b scal Scale region-wise flux sums by angular weight using

Eq. (3.13)

c BCUp Update all incoming boundary conditions

2 flux Compute the scalar flux using Eq. (3.14)

56

Chapter 4

PARALLEL ALGORITHM FOR SOLVING 3-D

METHOD OF CHARACTERISTICS

In this chapter the parallelization is described for the 3-D MOC kernel shown in Figure

3.5 from the previous chapter. The general approach is to perform domain decomposition

on each of the variables of the phase space in the transport equation. Additionally, some

parallelism is implemented, which is specific to the discretization required for the MOC

solution of the transport equation. Before the approach to the parallel decomposition is

described in detail, some basic concepts of parallel computing are introduced. Finally an

overall summary of the parallel algorithm is given.

4.1 Basics of Parallel Computing
The primary models of architecture in parallel computing are shared and distributed

memory. In the shared memory model, it is assumed that all parallel processes have

access to the same memory. The most common implementation of this model in scientific

computing is OpenMP [44] and generally the term thread is used to refer to the different

parallel processes, although there are other implementations that are also commonly used.

In the distributed memory model each parallel process is assumed to have its own

memory separate from other processes, and if different processes require the data from

another process, it is communicated via message passing over a network. The most

common implementation of the distributed memory model is MPI [45], although there

are other implementations of this model as well, such as co-array Fortran. There is also a

third model called the hybrid model, which is a combination of distributed and shared

57

memory models, where a small set of processors may have shared memory and be

connected to other distributed sets of processors.

 Most of the high end parallel computers today use the distributed memory model

or a hybrid model, and it appears that the hybrid model will continue to be characteristic

of high performance computing architectures through exascale computing, although the

shared memory environments on distributed processes may undergo significant

architectural changes [46].

 Other concepts of parallel computing that are important to understand are those of

partitioning and load balancing. Partitioning is the algorithm by which a domain is

decomposed. In a decomposed problem, the load balance refers to the amount of work

given to each process. Generally in parallel algorithms there are synchronization points,

and if some processors have a disproportionate amount of work, then this can cause other

processors to wait for those with more work, creating a bottleneck. Therefore, achieving a

good load balance helps to maximize the performance of almost any parallel algorithm.

The load balance is determined by the partitioning algorithm, so in parallel algorithms the

partitioning of the domain is often a critical component to achieving good performance.

4.2 Decomposition of the Spatial Domain
 The spatial decomposition is employed using a distributed memory model. This is

necessary to alleviate the memory burden required by full core problems [7]. The basic

idea behind the spatial decomposition is to divide the full core problem into enough

spatial domains such that each domain is of a size that is manageable for a single process.

In order to implement spatial domain decomposition, the principal issue is the overhead

in communicating the boundary condition information across the spatial subdomain

boundaries. This is evident in Eq. (2.18) and illustrated in Figure 4.1 for a 2-D domain.

58

Figure 4.1 – 2-D sweep with domain decomposition

 Unless approximations are introduced, the characteristic rays must be directly

connected across these boundaries, in order to transfer the interface angular fluxes.

Furthermore, because the incoming boundary condition must be stored on all surfaces

shared between parallel subdomains the bi-directional sequential sweep algorithm

illustrated in Figure 2.18 would be the preferred sweep algorithm in a given spatial

subdomain. Another detail of this decomposition is the order by which the subdomains

may be traversed during a single iteration. In the work here, the subdomains are allowed

to perform their local sweeps simultaneously with all other subdomains. This is

essentially equivalent in concept to a block Jacobi type iteration scheme. The KBA wave

front algorithm [16] could also be used instead, which would have better convergence

properties, but the block Jacobi scheme was chosen to be studied first since it will

maximize parallelism. By allowing the subdomains to solve their local problems

simultaneously, it fundamentally changes the iteration scheme, and therefore the rate of

convergence when compared to the serial iteration. Interior subdomains will not have the

same boundary condition as the serial problem until it has been communicated through

all other subdomains between the interior subdomain and the problem boundary. This is

also illustrated by Figure 4.1.

 When choosing the optimal spatial decomposition, it is important to consider the

advantages provided by modular ray tracing, which imposes a virtual structured grid,

in

kmgi

out

kmgi ,,,,,,  

59

which is Cartesian in the case of LWRs. A direct connection of rays at the interfaces of

this structured grid is also guaranteed, so there are no further approximations that are

introduced. This was realized in previous work [47] on the parallelization of 2-D MOC

solvers for full core problems where the modular geometry grid for the modular ray

tracing was used as the basis for the spatial decomposition. Furthermore, the spatial mesh

description within each modular geometry, or element of the grid, is relatively

unrestricted and there is no significant limitation as to the complexity of the geometry

that may be modeled. By choosing a decomposition centered on modular geometry,

different locations in the grid are likely to have the same geometric description, and

therefore each domain is likely to have the same amount of work, which facilitates load

balance. Second, algorithms for partitioning a structured Cartesian modular grid are

simpler to develop and implement. For these reasons the modular grid is ideal for use in

decomposing the problem.

 There are other considerations for the spatial decomposition that should help to

achieve the best possible load balancing and minimization of communication time. For

example, it is important for each partitioned subdomain to have a near optimal surface to

volume ratio, since the amount of work is proportional to the volume, and the amount of

communication is proportional to the subdomain surface area. Spatial subdomains are

also restricted to only having one neighboring subdomain on each face, which minimizes

the number of messages that must be used to communicate the boundary conditions.

 A partitioning algorithm was developed based on the Morton, or Z-order, space

filling curve [48]. Several types of space-filling curves exist, and the Morton curve was

chosen primarily because of the simplicity with which it could be implemented. The

Morton curve is pictured below in Figure 4.2 for 2-D and 3-D. Space filling curves

usually have the advantage of being naturally hierarchical, and thus they can be easily

represented by a tree data structure and recursive algorithms. They also insure that at any

level within the hierarchy, the numbering will be continuous within each subdomain. To

accomplish the partitioning, a tree data structure similar to a k-d tree or partially filled

oct-tree was implemented and for the purposes of discussion it will be referred to as a

Z-tree.

60

Figure 4.2 – Morton (Z-order) curve of the 2nd order in 2-D (left) and 3-D (right)2

 The Z-Tree essentially determines a global indexing for the modular geometry

mesh such that two domains that are geometrically close also have index values that are

relatively close numerically. Furthermore, the indexing within a subdomain will be

continuous. The other thing to note about the space filling curves is they are typically

only defined in Cartesian space on grids with dimensions of 2
n
.

 Since the generic reactor problem is not likely to have this kind of grid, equations

for these curves should not be used directly, since it will create a non-contiguous

numbering. The Z-tree generates the indexing by taking grid dimensions in x-, y-, and z-

dimensions and dividing this grid in half along each direction, e.g. binary spatial

partitioning. If a grid dimension is odd then the extra grid node is placed to the "right". A

particular dimension (e.g. x, y, or z) of the grid is only split under certain conditions as

well. If the aspect ratio compared to the smallest dimension for any direction is greater

than or equal to two, then only those directions will be divided, thus leading to domains

that have a near optimal surface area to volume ratio. If the grid is a cube of dimension 2
n

then the indexing is equivalent to that of the Morton curve. The figures below illustrate

how some simple domains are subdivided by this partitioning algorithm.

2
 Image from Wikipedia article on Z-order curve

1 2

43

5 6

87

13 14

1615

9 10

1211

61

Figure 4.3 – Basic Z-Tree indexing and partitioning

Figure 4.4 – Z-Tree partitioning for odd-sized grids

Figure 4.5 – Z-Tree partitioning for grids with high aspect ratios

 For the reactor problem, the Z-Tree must also be able to handle grids with

irregular outer boundaries, as depicted in Figure 4.6. This is achieved by first determining

the indexing for the full rectangle (or cuboid in 3-D) and then performing a "trim"

operation to remove a selected range of i, j, k grid coordinates and renumber the

remaining grid points. This operation is illustrated in Figure 4.7.

62

Figure 4.6 – Possible 2-D grid with irregular outer boundaries

Figure 4.7 – Z-Tree trim operation

 Once the grid has been converted to a Z-tree and indexed, it is a relatively

straightforward to partition. Currently, the partitioning is only performed at each level of

the tree to ensure that nearly equal size domains and good surface area to volume ratios

are achieved. This is also done so that the partitioning ensures that there is only one

neighbor per face on the subdomain. It should be noted that this is not the only way to

partition the grid, and that this approach is chosen out of simplicity. Other approaches are

possible and could include using different space filling curves, or requiring that the

number of parallel domains be an integer factor of the total grid volume. The subdomain

volumes could then be sized from the remaining prime factors of the overall grid volume

after division by the number of parallel domains.

1 2 3 4 5 6 7

Trim (2:2,1:1:,1:1)

63

 The communication of the boundary conditions is implemented using MPI_Isend

and MPI_Irecv, which are non-blocking point-to-point communication operations.

Individual messages are sent for all rays on a given face for a given angle and energy

group. Both send and receive are initiated as soon as the sweep for a given angle has been

completed. Because the communication is non-blocking the process will continue

sweeping the other angles until there is no other work it can do. As will be shown in later

chapters, this provides for better scaling, since most of the communication overhead can

be hidden. An illustration of the timeline for execution of two processors with different

subdomains sharing a boundary is shown in Figure 4.8.

Figure 4.8 – Sequence diagram for two processes executing spatially decomposed
3-D MOC kernel in parallel

 It should also be noted that other communication routines are required in the

computation of the eigenvalue and convergence criteria. Specifically, a reduce operation

is required in the eigenvalue calculation to compute sums or integrals over space. This is

presently implemented with an MPI_Allreduce and is not considered in the parallel

performance of the MOC kernel.

64

4.3 Decomposition of the Angular Domain
 The angular decomposition is naturally parallel, since each direction can be swept

independently. The only coupling of the solution in angle occurs within the scattering

source, which requires integration over angle, and reflective boundary conditions. The

angular decomposition is implemented using a distributed memory model, since this will

help to alleviate the additional memory burden of storing the angular flux boundary

condition incurred through the spatial decomposition.

 There are generally two types of communication required of the 3-D MOC kernel

for the angular decomposition. The first is a reduction operation for the computation of

the scalar flux defined by Eq. (2.23). This operation is presently implemented using

MPI_Allreduce, which requires the communication of a vector of the size of the number

of discrete spatial regions in the subdomain. This operation is a collective operation and

is almost always blocking. Therefore, it generally incurs more overhead, especially in the

case of poor load balancing, and is known to have limited scalability. However, this

should not pose a significant problem given that the expected number of angular domains

is generally less than 50.

 The problem posed for the partitioning of the angular domain is similar to that of

the general partitioning problem within computer science. To partition the angular

domain, first a weight is assigned to each discrete angle. This weight, which should be

representative of the amount of work associated with this angle, is taken to be the ratio of

the number of modular rays for the angle to the sum of the modular rays over all angles.

Once the weights for all angles are determined, the angles are assigned to the various

subdomains. The process by which the angles are assigned to each angular subdomain is

based on a "greedy" algorithm, whereby the subdomain whose angles have the smallest

sum of weights gets the angle with the largest weight from the set of angles still to be

assigned to a subdomain. This process is also illustrated in Figure 4.9.

65

Figure 4.9 – Greedy algorithm for angular partitioning

 The other type of communication overhead that may be needed for the angular

decomposition is to communicate the boundary condition on a surface, specifically for

the case of reflective boundary conditions. The greedy algorithm used to partition the

angles does not guarantee that angles that will reflect into one another on a given surface

are assigned to the same process. Thus, after the angles are assigned, one must check if

there is a reflective boundary on the spatial domain. If a reflective boundary exists and

the reflected angle is not on the same process as its complementary angle, then the

boundary conditions will need to be communicated on this surface. The model for this

communication is identical to that required by the spatial decomposition described in the

previous section (4.2). Figure 4.10 shows the partitioning of the angular domain for the S8

quadrature using 1 cm
3
 ray tracing modules. The quadrature has 10 directions per octant

and only half the unit sphere is stored, so there is a total of 40 discrete directions.

66

 The figure shows the minimum relative work and maximum relative work on all

domains for the given partition. It also shows the load imbalance for the partitioning and

the partitioning efficiency computed as shown by Eq. (4.1) and Eq. (4.2), respectively;

where W


 is a vector of length Nd and describes the distribution of work over the number

of domains, Nd.

 
 

,
max

min
1Imbalance Load

W

W




 Eq. (4.1)

 
.

max
EfficiencyPartition

1
W

WNd 




 Eq. (4.2)

Figure 4.10 – Partitioning of rays generated from S8 quadrature and 1 cm3 ray tracing module

4.4 Decomposition of the Characteristics Domain
 The ray decomposition involves parallelizing the loop over the long rays and the

principal parallel challenge is dealing with the potential load imbalance issues since some

rays are very long and others are very short, as illustrated in Figure 4.11.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

0 10 20 30 40

D
e

ri
ve

d
 H

e
u

ri
st

ic
s

Fr
ac

ti
o

n
 o

f
To

ta
l

W
o

rk
 (

%
)

Number of Domains

Minimum Maximum

Load Imbalance Partitioning Efficiency

67

Figure 4.11 – Potential load balancing issue with rays

 The ray decomposition is implemented using a shared memory model (e.g.

OpenMP). For this decomposition, the main overhead comes from having to evaluate Eq.

(3.12), which is now being executed by multiple threads. The approach implemented is to

have each thread compute the partial sums, and after all long rays in all angles have been

swept, a reduction operation is performed to sum the values accumulated on each thread

to the master. For the reduction operation, a vector that is the length of the number of

spatial regions, essentially storing mgi ,,̂ on the right hand side of Eq. (3.13), is allocated

to two dimensions with the outer dimension being the number of threads. This is

essentially making the variable private to each thread, although it is shared, and avoids

the need to use a critical section to avoid race conditions when evaluating Eq. (3.12)

inside the parallelized loop. Consequently, the reduction over threads is moved outside

the loop over angles and is performed prior to the reduction operation required by the

angular decomposition.

 A few additional details are related to implementation, rather than the equations

that must be solved, that can be responsible for some overhead in the parallelization. The

first is the overhead for creating and destroying threads when entering and exiting the

threaded region of the MOC kernel. In this implementation the parallel region is defined

over the whole MOC kernel to minimize the overhead for creating and destroying

threads. However in doing so, this creates an issue in having to create synchronization

points or single thread constructs outside of the parallelized loop. A barrier or

synchronization point is required prior to updating the boundary condition (step c of

Figure 3.5). This, along with the reduction operations for rays and angle and computation

of the scalar flux, also only need to be performed by one thread.

 The potential load balance issues are minimized by using the dynamic scheduling

feature of OpenMP to distribute the rays dynamically among the threads. Although the

Relatively short ray

Relatively long ray

68

rays could be distributed statically onto each thread by using the number of segments in

each ray as a weight, the former was chosen for ease of implementation. Figure 4.12

shows the load balancing of OpenMP’s dynamic scheduler for a 2-D MOC assembly

sized problem.

Figure 4.12 – Partitioning of Long rays with OpenMP dynamic scheduler

4.5 Summary
Figure 4.13 illustrates the method in which the whole problem is decomposed by space,

angle, and ray. The problem could also be decomposed in energy, although that was not

studied in this work. The serial 3-D MOC kernel described in Figure 3.5 is updated for

the parallel 3-D MOC kernel with space, angle, ray decomposition and shown in Figure

4.14.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

0 5 10 15 20

D
e

ri
ve

d
 H

e
u

ri
st

ic
s

Fr
ac

ti
o

n
 o

f
To

ta
l

W
o

rk

Number of Threads

Minimum Maximum

Load Imbalance Partitioning Efficiency

69

Figure 4.13 – 3-D MOC parallel decomposition scheme

Figure 4.14 – 3-D MOC kernel parallel algorithm

Angular decomposition

Spatial

decomposition

angle 1 angle 2

Thread 1

Thread 2
Ray Decomposition

1. Loop over all angles in angle subdomain

a. Loop over all long rays in angle in parallel with

threads

i. Order the modular ray data for a complete long ray

ii. Evaluate the exponential function for all segments

in the long ray

iii. Load incoming boundary conditions for each end of

ray

iv. Loop over all segments in the long ray

1. Evaluate Eq. (3.5) in forward direction

2. Accumulate
d

kmgi ,,, into temporary for Eq. (3.12) for

forward direction.

3. Evaluate Eq. (3.5) in backward direction

4. Accumulate
d

kmgi ,,, into temporary for Eq. (3.12) for

backward direction.

v. Store outgoing boundary conditions for each end of

ray

b. Accumulate
mgimm Aw ,,̂ into temporary for Eq. (3.13)

c. Wait for all threads to finish loop over long rays

d. Send outgoing boundary conditions to neighbor subdomains

in space

2. Add partial sums of Eq. (3.13) from all threads

3. Add partial sums of Eq. (3.13) from all angular domains

4. Evaluate Eq. (3.14) for all regions

5. Wait for all incoming boundary conditions from neighbor

subdomains in space

70

Chapter 5

PERFORMANCE BOUNDS MODEL DEVELOPMENT

AND VALIDATION

The focus of this chapter is to detail the development of a theoretical model to predict the

performance and execution time of the 3-D MOC kernel, given some basic information

about problem size and hardware characteristics. This chapter first describes a conceptual

model for the target computer architecture. The general equations to predict the execution

time and computational performance are then developed based on this model. The 3-D

MOC kernel implementation is then examined in detail, to provide upper and lower

bounds on expected operation counts, which provide the coefficients in the performance

model. The last section of the chapter focuses on the experimental validation of the

performance model and theoretical upper and lower bounds of the kernel’s operation

counts.

5.1 Architecture of High Performance Compute Clusters
The target architecture assumed for this analysis is based on the common characteristics

of compute clusters for high performance computing. In general, the term cluster refers to

several compute nodes that are connected together via a network. This is illustrated by

Figure 5.1.

71

Figure 5.1 – Model cluster architecture

 Frequently, clusters consist of commodity parts; for example: the CPU,

motherboard, RAM and network. On a given node, the architecture may vary

significantly, and may continue to evolve through exascale computing as discussed in

Section 4.1. The model architecture for the node assumes only that there is some number

of symmetric multi-processors (SMPs) on a node and that they share global memory. A

cache memory hierarchy is also assumed on each processor. The node architecture is

illustrated in Figure 5.2.

Figure 5.2 – Model node architecture

 This model architecture assumes nothing about how the different nodes are

physically connected or the underlying hardware used to connect them. Furthermore, the

model architecture does not specify certain details of the node architecture, such as the

number of floating point units or processors, number of levels of cache or how processors

might share these resources. In Table 5.1 the hardware properties that are relevant to the

performance model of Section 5.2 are defined.

Node 0 Node 1 Node n… Node N…

Network

Node n

Main Memory (Shared)

…L1 Cache

L2 Cache

Lκ Cache

L1 Cache

L2 Cache

Lκ Cache

L1 Cache

L2 Cache

Lκ Cache

RegistersCPU

…… …

PNP1P0

72

Table 5.1 – Model architecture hardware performance properties

Symbol Name Example Units Meaning

C Clock Speed cycles/s Number of processor clock cycles per unit time

tf time per FLOP
cycles/FLOP

Number of processor clock cycles required to

execute a floating point instruction

αj Cache Latency
ns/access

Time required to load data onto the processor for

the j
th
 level of cache

lj Cache Line

Size
bytes

Largest amount of memory that can be loaded

into cache at once for the j
th
 level of cache

αmem Memory

Latency
cycles/access

Time required to load data onto the processor

from main memory

αnetwork Network

Latency
μs

Time required to transmit a single packet from

one node to another

βnetwork Inverse

Network

Bandwidth

s/MB

The inverse of the largest message size that may

be transmitted in a single packet over the

network.

5.2 Basic Equations of a Performance Model
For the performance of an algorithm in scientific computing the conventional metric is

the number of floating point operations (FLOPs) per unit time; typically this is expressed

in units of millions of floating point operations per second or MFLOPS
3
. The basic

equations presented here come from [49]. Eq. (5.1) is the equation that will be used for

performance.

.
T

F
P  Eq. (5.1)

 Here F is the total number of FLOPs executed and T is the execution time. It is

also often valuable to compare measured performance against the hardware’s theoretical

peak performance to obtain a fraction of the theoretical peak. The theoretical peak

performance is defined in terms of the hardware properties of Table 5.1 as:

.fpeak tCP  Eq. (5.2)

 In Eq. (5.1) F and T are naturally going to be functions of the problem size. These

functions are derived in terms of the problem size factors for the 3-D MOC kernel

detailed in Section 5.3. In general, F is a measure of the number of a given operation, and

3
 FLOPs, with a "s", denotes plural of FLOP (floating point operation) while FLOPS, with a "S", denotes

FLOPs per second.

73

therefore is solely a function of the algorithm. However, the function for execution time

is also a function of the hardware properties. A latency-based model for the execution

time is shown in Eq. (5.3) where the memory access times to each level of the memory

hierarchy are treated explicitly.

    .
1

1

11 



 MMLFtT mem

j

jjjF  




 Eq. (5.3)

 In this equation, α is the memory access time or cache latency, M is the number of

cache misses at a given level of cache, and κ is the number of levels of cache on the

machine. L is the number of load operations; where a load operation consists of moving a

piece of data, such as a word or byte, from memory to a register on the processor. A

cache miss occurs when a processor attempts to load some data from a given cache level

and the data is not present in that cache level,. Therefore the processor must retrieve this

data from a higher level of cache or main memory resulting in a cache miss.

 As mentioned previously, F is a function of the algorithm. The other terms in Eq.

(5.3) that are not strictly a function of the hardware are L and M. L is similar to F in that

it is solely a function of the algorithm. However, the number of cache misses, M is

somewhat more complicated since, it is strongly influenced by both the algorithm and the

hardware and typically cannot be known exactly. Therefore, the performance of the 3-D

MOC kernel will be bounded using reasonable assumptions to provide upper and lower

bounds for the cache misses. The focus of the next section is to analyze the algorithm

implemented for the 3-D MOC kernel described in Chapter 3. The objective is to

determine F, L, and the upper and lower bounds for M; all in terms of parameters that

describe the problem size for the 3-D MOC kernel.

5.3 Performance Bounds of 3-D MOC Kernel
As noted in Section 3.3, the 3-D MOC kernel is quite complex compared to other

conventional kernels in scientific computing (e.g. matrix-matrix multiplication).

Therefore, it is advantageous to think of the 3-D MOC kernel as a collection of micro-

kernels. These micro-kernels are listed in Table 3.2. The following section proceeds with

this taxonomy and develops the detailed expressions for F and L for each component

74

micro-kernel as a function of the problem size. Then Section 5.3.2 lists the assumptions

used to bound M and develops the expressions for these upper and lower bounds.

Sections 5.3.1 and 5.3.2 only consider serial execution, so in Section 5.3.3 the list of

components and expressions for F, L, and M are extended for the parallel model; adding

terms for the number of parallel domains for each decomposition discussed in Chapter 4.

5.3.1 Component-Based Description of Kernel
From the list of micro-kernels in the Table 3.2, the execution time for a single transport

sweep of the 3-D MOC kernel is expanded as:

.exp fluxBCUpscalBCMOCbuildsweep TTTTTTTT  Eq. (5.4)

Similarly, for the expression for the number of FLOPs is expanded as:

.exp fluxBCUpscalBCMOCbuildsweep FFFFFFFF  Eq. (5.5)

 The FLOP count for each component can be determined by examining equations

Eq. (3.3), Eq. (3.12), Eq. (3.13), and Eq. (3.14). In the build component the segment

lengths are multiplied with the total neutron cross section. This operation is performed

exactly once for every discrete segment in the problem, so Fbuild = nseg. Next in the exp

component, a linear interpolation of tabulated values is performed. To compute the table

index and then perform the linear interpolation requires 3 FLOPs. The exponential is then

evaluated for every discrete segment in the problem exactly once, and therefore Fexp =

nseg3 . In the MOC component Eq. (3.3) and Eq. (3.12) are evaluated, and since the

exponential term has already been evaluated, the number of FLOPs to evaluate Eq. (3.3)

for each segment is 3 and for Eq. (3.12) it is just one FLOP. In Figure 3.5 these equations

are evaluated twice for each segment, for the forward and backward direction along the

characteristic ray, and therefore nseg8MOCF .

 The BC and BCUp components only move data in memory and do not perform

any FLOPs, so FBC = 0 and FBCUp = 0. Eq. (3.13) scales the partial sums of Eq. (3.12)

with the angular weights, which requires 2 FLOPs for each discrete spatial region and for

all discrete angles. Because nangoct,4nang  nangoct.nreg8 scalF Finally,

75

evaluating the scalar flux as shown by Eq. (3.14) requires 4 FLOPs for each region, and

therefore nreg4fluxF .

 To evaluate each component of Eq. (5.4) the number of loads in each component

must be known as required by Eq. (5.3). Lbuild is discussed last, as it will become evident

that the memory access patterns here are difficult to generalize for all problems. Starting

with Lexp, the evaluation of the table first requires that the table index be determined,

which requires 2 loads. The segment optical thickness must then be determined which

requires accessing two coefficients in the exponential table and a location to store the

evaluated exponential. Again, the table is evaluated once for all segments, so

Lexp nseg6 .

 For LBC, the boundary condition for each end of each ray are copied from the

global data structures to local arrays and then back. Each copy requires 2 loads, so

nlongray8BCL . The boundary condition update, LBCUp, requires copying the outgoing

boundary conditions to the incoming boundary conditions for each end of each long ray,

therefore nlongray4BCUpL .

 In the solution of the MOC equations, to evaluate a single direction requires

loading the global region index, the incoming and outgoing angular flux, region source,

the evaluated exponential term, and performing the partial sum of Eq. (3.12). This results

in 6 loads, so when evaluating both directions, which is done for all segments,

nseg12MOCL . When scaling the angular flux for each angle, it requires two loads for

each region, and one load up front for the weight, so

nangoct4nangoctnreg8 scalL . Next, for the computation of the scalar flux by

Eq. (3.14), the region-wise source, volume, and total cross section must be loaded along

with the scalar flux. In the implementation of this equation the same memory locations

are used to store gi , and gi ,̂ , so a fifth load is not needed. Therefore, nreg4fluxL .

 In order to quantify Lbuild, it is necessary to locate the starting surface and module

of the ray. There is then a loop over the modular rays within this long ray, and inside of

this loop there is another loop over segments in the modular ray. Ultimately, a loop is

performed over each segment in the problem. However, it is not possible to know a priori

76

how many loads and stores are required in order to move through the modular ray data.

The number of loads in this part is strongly dependent on the modularity of the problem,

e.g. the number of modular rays per long ray and the number of segments per modular

ray. Consequently, the best estimate of the number of loads is going to be a problem

dependent constant, cbuild, multiplied by the number of segments. In other words, it is

postulated that the number of loads in the build component is proportional to the number

of segments. It may also be observed that at as a minimum the region index, the total

cross section, the segment length, and the optical thickness are loaded for each segment.

Therefore, it is expected that cbuild > nseg4 .

 The number of FLOPs and loads for each component are summarized in Table

5.2. The ratio of the FLOPs to loads is also shown, which can be used as a metric for the

computational intensity of the algorithm. The computational intensity is a good indicator

of the maximum achievable performance of the algorithm, which is independent of any

computer architecture.

Table 5.2 – Number of FLOPs and Loads for serial 3-D MOC kernel

Component FLOPs Loads

Computational

Intensity

(FLOPs/Loads)

build nseg nsegbuildc buildc1

exp nseg3 nseg6 0.5

MOC nseg8 nseg12 0.75

BC 0 nlongray8 0

BCUp 0 nlongray4 0

scal nangoctnreg8 
nangoct4

nangoctnreg8




 ~1.0

flux nreg4 nreg4 1.0

Sweep

(Total)
nreg4

nregnangoct8

nseg12







 

nangoct4

nreg4

nregnangoct8

nlongray12

nseg18









 buildc

 5.0~..0.0  IC

77

5.3.2 Cache Miss Bounds
In bounding the cache misses for the MOC kernel, several guiding assumptions are

required. First, the conflict misses and capacity misses are ignored, and therefore cache

misses refers only to compulsory misses. This assumption is basically equivalent to

assuming an infinite cache capacity and fully associative caches.

 For each component the lower bound assumes that there are no cache misses.

While this will never be observed in practice, except for perhaps trivially small problems,

it nonetheless provides a useful assumption for the lower bound. Assuming the lower

bound of cache misses is 0 greatly simplifies Eq. (5.3), and subsequently provides the

absolute lower bound for the execution time, which will become solely a function of the

computational intensity shown in Table 5.2. The analysis in Chapter 6 and Section 5.4.6

of this chapter make use of this assumption to provide insight about the overall efficiency

expected from MOC kernels regardless of the computer architecture, which is valuable

when comparing the MOC method to other transport methods.

 For the upper bound on cache misses, the basic assumption made is that all the

data operands needed for computation within a given component reside entirely in global

memory and not in any level of the cache. Again, this is an assumption that will typically

not be true in practice, since many of the components reuse the same data operands.

However, this is still a useful assumption to make because it provides a true upper bound

in assuming the slowest memory access time for all memory accesses.

 For each component in the kernel the lower and upper bounds of the cache misses

for the j
th

 level of cache are computed using Eq. (5.6) and Eq. (5.7), respectively:

,0, jlowerM Eq. (5.6)

.,

j

jupper
l

L
M  Eq. (5.7)

78

5.3.3 Parallel Overhead
This section focuses on the additional operations that are added to the 3-D MOC kernel

because of the parallel decompositions discussed in Chapter 4. In an efficient spatial

decomposition, volume-dependent quantities such as nseg and nreg are evenly divided

over the domains, so long as the modular domains are equivalent. However, the number

of long rays reduces linearly with the reduction in surface area of the subdomain.

Consequently, the execution times of each component are reduced by roughly the same

factor. However, if there is a poor load balance, then execution time becomes a function

of the max of the problem size values over all spatial domains.

 For the overhead of the spatial decomposition, the time to update the boundary

condition, TBCUp, will be reduced by a factor of (pspace)
2/3

, which is related to the reduction

in surface area to volume when a cuboid region is subdivided. It will also include an

additional factor for the time to communicate the boundary conditions via the spatial

decomposition communication scheme. This communication scheme uses point-to-point

communication. In general, the model for the execution time of point-to-point

communication is given as a function of the message size, N, and the latency and inverse

of the bandwidth of the network used to perform the communication. The equation for

the time to perform point-to-point communication is shown in Eq. (5.8):

.NT networknetworkcomm   Eq. (5.8)

 As noted in Figure 4.8, the communication of the boundary conditions occurs

with multiple messages. A message is sent for each face and each angle, so the message

size will be a function of the number of long rays of a given angle intersecting a given

face which may be written as:

 .,nlongray ifaceiangN space  Eq. (5.9)

 Typically, the message sizes for different angles and faces will vary considerably,

so it is difficult to develop a priori an exact expression for Eq. (5.9). However, it is trivial

to determine this information at run time for a given problem.

79

 Also, one may note that in Figure 4.8 the communication is non-blocking,

meaning it is overlapped with useful work, and that the last message sent will have the

least amount of work remaining to hide the communication time. This leads to the

following modification of Eq. (5.4) to Eq. (5.10) to account for the execution time with

spatial decomposition. In Eq. (5.10) pspace is the number of decomposed spatial domains

being executed in parallel, and Tspace replaces TBCUp to account for the time to update the

boundary condition. Because the overhead of the spatial decomposition is only the

communication of data and no additional FLOPs are required compared to serial

execution, Eq. (5.5) is not modified except to account for the number of processors used

for the spatial decomposition and to remove FBCUp since this is zero.

,,max
exp

















 space

space

flux

space

scalBCMOCbuild

sweep T
p

T

p

TTTTT
T Eq. (5.10)

,
exp

space

fluxscalBCMOCbuild

sweep
p

FFFFFF
F


 Eq. (5.11)

 
 

.nface
32

space

BCUp

spacenetworknetworkspace
p

T
NT   Eq. (5.12)

 For the angular decomposition, only those parameters of problem size directly

related to angle are reduced. This includes nseg and nlongray, but not nreg. The overhead

from the angular decomposition, as noted in Chapter 4, is an all reduce operation. Since

this is operation is implemented using MPI_Allreduce its execution time may vary with

MPI library. Nonetheless, for those algorithms found in the open literature [50], [51] the

time to perform this operation is reported as either one of Eq. (5.13) or Eq. (5.14),

depending on the message size. Since the message size for this operation in the 3-D MOC

kernel is nreg, the algorithm for large message sizes is assumed. This operation also

requires additional FLOPs, which are also performed in parallel, represented by γ which

is the computation cost per unit memory.

80

  ,logsmall,All_reduce NNpT networknetwork   Eq. (5.13)

 .2
1

log2large,All_reduce NN
p

p
pT networknetwork 


  Eq. (5.14)

 In the angular decomposition the message size is equal the number of regions on a

spatial subdomain. Eq. (5.10) is then modified as follows to account for the angular

decomposition, pang, which represents the number of processors used for the angular

domain. Once again, Eq. (5.5) for the FLOPs of the MOC kernel is not modified except

to account for the number of processes used in the angle decomposition since the

additional FLOPs of the reduction operation are included in Eq. (5.14).

,,max
exp

















 spaceang

space

flux

angspace

scalBCMOCbuild

sweep TT
p

T

pp

TTTTT
T Eq. (5.15)

,
exp

space

flux

angspace

scalBCMOCbuild

sweep
p

F

pp

FFFFF
F 


 Eq. (5.16)

  .
nreg

2
1

log2ang

space

network

ang

ang

networkang
pp

p
pT 


  Eq. (5.17)

 Finally, for the ray decomposition only the loop over long rays is parallelized and

the added overhead is another reduction operation in order to reduce the partial sums

across threads onto the master thread. The overhead for the reduction over threads adds

nregrayp FLOPS per sweep. The evaluation of the execution time, Tray, is also based

on Eq. (5.3), and the additional number of loads, Lray, for this component is

nreg2  rayp . Furthermore, the OpenMP routines called at run time have some

overhead. These routines are typically compiler or machine dependent, and their

overhead is represented by introducing a new term, TOMP, defined in Eq. (5.20), where the

subscript refers to the OpenMP directive or construct, and "chunk" refers the chunk size

81

used for the scheduling directive. One may note that, in general, this equation should be

consistent with the implementation, and there are multiple ways to implement the

OpenMP parallelism; particularly with respect to the choice of loop scheduling and

thread synchronization, which can have huge affects on performance. Furthermore, it is

likely the case that little is known about the supplied OpenMP run time library,

consequently the various factors in Eq. (5.20) should be determined experimentally for a

given platform and library. Thus, after introducing the ray parallelism into Eq. (5.15) and

Eq. (5.16) the final form of the performance model becomes:

  ,,max

exp
























spaceang

space

rayflux

rayOMP

angspace

scal

rayangspace

BCMOCbuild

sweep

TT
p

TT
pT

pp

T

ppp

TTTT
T

 Eq. (5.18)

,
exp

space

rayflux

angspace

scal

rayangspace

BCMOCbuild

sweep
p

FF

pp

F

ppp

FFFF
F





 Eq. (5.19)

        

 .
chunk

nlongray

nangoct42

raySCHEDULE

ray

raySINGLErayBARRIERrayPARALLELrayOMP

pT
p

pTpTpTpT

















 Eq. (5.20)

 Eq. (5.18) and Eq. (5.19) provide a theoretical basis for predicting the

performance of the parallel 3-D MOC kernel described in Figure 4.14. However, before

this model can be used with any confidence, it should be validated against measurement

to ensure that the kernel description and implementation are consistent with the models

and operation counts described in this section and Section 5.2.

5.4 Experimental Evaluation of Performance Model
The source code was instrumented and profiled in order to evaluate the performance

model developed thus far in this chapter. Instrumenting refers to the process of modifying

the source code to take a measurement, and profiling refers to the process of collecting

82

time integrated quantities from typical executions of the code. As with any experimental

measurement, there are several best practices when designing a good experiment and

collecting accurate measurement data. Some important considerations include

understanding the effects of instrumentation and the test environment. When a section of

code is instrumented, it affects how the compiler converts the source code into executable

code. This can have a considerable impact on the effectiveness of the compiler

optimizations. Furthermore, the instrumentation code that must be added to collect the

measurement data requires the use of resources in the computer, and therefore the

instrumentation incurs its own overhead during execution. If the test machine being used

to run the instrumented executable is a shared resource, then machine load is also an

important factor that must be considered in analyzing measurement results. The

measurement of some quantities is also far easier than others, as will become apparent

later in the section. Measuring the number of FLOPs can be done with no uncertainty, but

measuring L1 cache accesses and cache misses can have considerable uncertainty

because of compiler optimizations and the overhead introduced by the measurement

itself. In summary, to properly understand measurement data, it is essential to understand

the above effects.

 The remainder of this section presents the system used to collect performance

data, the techniques by which the hardware coefficients listed in Table 5.1 are

determined, and a description of the test problems used to collect performance data. The

results from the performance experiments are then analyzed to show that the models of

Section 5.3 provide reasonable accuracy in predicting the performance of the 3-D MOC

algorithm.

5.4.1 Measurement system
The test machine for the performance model evaluation was sunspear.engin.umich.edu, a

Linux workstation running Ubuntu 12.0.4. Sunspear’s architecture includes a 4 socket

motherboard, each having an AMD Opteron
™

 6238. The AMD Opteron
™

 6238 processor

has 12 cores and 6 floating point units. The architecture of a single socket on the

Sunspear is illustrated in Figure 5.3.

83

Figure 5.3 – Socket architecture of AMD Opteron™ 6238 on Sunspear

 The measurements were obtained with only other minimal OS processes running

concurrently, and therefore the machine had no abnormal or varying loads. For the base

components of the kernel represented in Eq. (5.4) and Eq. (5.5) the measurements were

performed using a single core.

 In all cases, the executables were generated with the GNU 4.6.3 compiler with

OpenMP and the OpenMPI 1.6 implementation of MPI. Some experiments were run

without optimization using the -O0 compiler flag, and others were run with optimizations

using the -Ofast compiler flag. The results indicate which compilation was used to

generate them. More advanced optimizations were avoided that take advantage of

advanced machine specific instruction sets, such as Streaming SIMD Extensions (SSE) or

Advanced Vector Extensions (AVX). Additionally, when measuring the components of

base 3-D MOC kernel, a separate executable was generated for measuring each

component so as to restrict the instrumentation to only the component of interest and

thereby minimize the instrumentation overhead. In the measurements obtained, the data

analysis includes an adjustment for the overhead from instrumentation, which was

estimated using the code illustrated by Figure 5.4.

84

Figure 5.4 – Pseudo-code for estimating instrumentation overhead

 The measurements were obtained using the Performance Application

Programming Interface (PAPI) library v4.4.0.0 [52]. In addition to other features, the

PAPI interface provides subroutine interfaces in Fortran for timing a section of code with

nanosecond precision, and also for counting certain hardware events. The PAPI library

interfaces with a machine’s OS kernel to read data from processor hardware counters.

Many modern processors include a dedicated set of registers on the chip for counting

specified events within the hardware. The PAPI library provides several preset hardware

events from which a developer can choose to count. They are each given a standardized

name by the PAPI library. The hardware events that were measured in this study are

listed in Table 5.3, which has the PAPI preset event name and description.

Table 5.3 – List of measured hardware events

PAPI Library Preset Event Name Description

PAPI_FP_OPS Counts floating point operations

PAPI_L1_DCA Counts L1 data cache accesses

PAPI_L1_DCM Counts L1 data cache misses

PAPI_L2_DCM Counts L2 data cache misses

 It should be noted that the test machine has three levels of cache, although it is not

possible with the PAPI library to measure cache misses at this level. This somewhat

n=0

DO WHILE (elapsed_time < one_second)

 n=n+1

 tstart=tic()

 DO i=1,10000

 CALL BEGIN_MEASUREMENT()

 CALL END_MEASUREMENT()

 ENDDO

 tstop=toc()

 elapsed_time=tstop-tstart

ENDDO

!Average measurements over n*10000 samples

85

complicates the following analysis, but it appears from the results that there is only a

minimal contribution to execution time from the L3 cache misses.

5.4.2 Determining Hardware Coefficients
The hardware coefficients listed in Table 5.1 must be determined to evaluate the

execution time model of Eq. (5.3). Table 5.4 below shows the methods by which each of

these values was determined for Sunspear. In general, these procedures may be repeated

on almost any platform to obtain the necessary values required by the performance model

presented in the previous sections. Much of the data can be obtained from the machine or

vendor documentation. However, cache access latencies are typically not reported, and

therefore micro-benchmarks were used as an alternative to determine these values as well

as a few others. It is also important to note that some of these values, especially the cache

access latencies, may encompass a range of values. This is due to the inherent difficulties

in measuring such quantities, and also due to limitations in the performance model which

does not necessarily account for all of the hardware on the computer involved in the

given operation.

Table 5.4 – Methods used to obtain values of performance model hardware coefficients for Sunspear

Symbol Name Method used to obtain value

C Clock Speed Machine/vendor documentation

tf time per FLOP Computed from machine/vendor documentation with

some assumptions

αj Cache Latency Deduced from the Saavedra-Barrera micro-benchmark

lj Cache Line Size Machine/vendor documentation

αmem Memory Latency Deduced from the Saavedra-Barrera micro-benchmark

αnetwork Network Latency OMB MPI Tests from NERSC Trinity Benchmarks

βnetwork Inverse Network

Bandwidth

OMB MPI Tests from NERSC Trinity Benchmarks

 The clock speed of AMD Opteron
™

 6238 is reported as 2.6GHz and the cache

line size of the machine is 64 bytes for all three levels of cache. The floating point unit

has two 128-bit floating point multiply accumulators (FMACs). and therefore it can

complete four 64-bit floating point operations in each cycle. However, since this test does

not use advanced instruction sets like SSE or AVX it is more likely that each FMAC can

only execute 2 floating point operations per cycle. Typically it is very difficult to achieve

the peak FLOPs/cycle during execution unless some detailed information about the

86

specific compiler and target processor is known. Therefore, tf is given a range of values to

account for the uncertainty of how efficiently the compiler may be able to convert source

code to the processor’s instruction set.

 The cache access latencies are determined using the Saavedra-Barrera micro-

benchmark [53]. The basic purpose of this benchmark is to measure how long it takes to

loop through an array using different strides, and then to repeat this process for arrays of

different sizes. The resulting output of this benchmark when run on Sunspear is shown in

Figure 5.5.

Figure 5.5 – Saavedra-Barrera benchmark results

 It is apparent in these results that there are several plateaus that correspond to the

different access times to the different levels of cache. In some cases there is a range,

which can result from varying loads on the hardware or be attributed to hardware

components at work that are not assumed to be present in the model. One other important

observation about Figure 5.5 is the 4096 B case shows sub-cycle performance. This is not

physically possible but is observed due to insufficient precision in the timing

measurements of the benchmark. The first plateau is ~1 cycle, which corresponds to the

L1 cache as this is the access latency observed for most of the unit stride cases. The next

plateau is ~8-10 cycles and corresponds with the L2 cache. Beyond this the plateaus are

0.1

1

10

100

1000

4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

3
3

5
5

4
4

3
2

6
7

1
0

8
8

6
4

R
e

ad
+

W
ri

te
 T

im
e

 [
C

yc
le

s]

Stride [Bytes]

4096

8192

16 KB

32 KB

64 KB

128 KB

256 KB

512 KB

1 MB

2 MB

4 MB

8 MB

16 MB

32 MB

64 MB

128 MB

256 MB

87

more difficult to discern, but the L3 cache access time is likely between ~20-110 cycles.

The access time to main memory should be the highest plateau, and for the array sizes

that were tested this upper asymptote was not reached. The largest arrays had their peak

access times between ~300-500 cycles, so memory access time is at least 300 cycles, but

the upper range is not known exactly. The final list of hardware values for Sunspear are

shown in Table 5.5.

Table 5.5 – Performance model hardware values for Sunspear

Symbol Name Value

C Clock Speed 2.6 GHz

tf time per FLOP 0.25-1 FLOPs/cycles

α1 L1 Cache Latency ~1 cycle

α2 L2 Cache Latency ~8-10 cycles

α3 L3 Cache Latency ~20-110 cycles

l1 L1 Cache Line Size 64 bytes

l2 L2 Cache Line Size 64 bytes

l3 L3 Cache Line Size 64 bytes

αmem Memory Latency 300-500 cycles

αnetwork Network Latency

βnetwork Inverse Network

Bandwidth

5.4.3 Test Problem Description
Four test problems were constructed in order to gather performance measurements. The

test problems included a basic case, and then three other cases that refine a specific

component of the mesh, e.g. spatial mesh, rays, and angles. The basic model consists of a

4x4x4 array of 1 cm
3
 ray tracing modules. Each ray tracing module has 360 flat source

regions. The S8 quadrature was used with 0.05 cm ray spacing. The fine ray case used a

0.01 cm ray spacing. The fine angle case used the S10 quadrature, and the fine space case

had 1440 flat source regions per module. Each run averaged measurements of 105

sweeps. The problem size parameters for each test case are given in Table 5.6.

Table 5.6 – Test problem size parameters

Parameter Default Fine Angle Fine Ray Fine Space

nreg 23,040 23,040 23,040 92,160

nangoct 10 15 10 10

nlongray 1,405,760 2,159,680 3,948,288 1,405,760

nseg 50,329,088 77,776,384 142,061,056 69,005,824

88

5.4.4 Validation of FLOP and Load Counts
The executable code was run in serial for the validation of the kernel FLOP and load

counts. The code was compiled using optimizations because it was observed that the

number of loads that were measured varied by several orders of magnitude; with the non-

optimized code having more loads. This was investigated for several simple statements in

the source code. For example, in a statement such as a=b+c, the measurement system

with optimized code would count two loads and one store, while the non-optimized code

would measure three loads and three stores. It was also observed that one of the primary

optimizations performed by the compiler is minimizing load and store operations.

Therefore, the optimized code was used to more consistently measure the loads based on

how they were counted to produce the values in Table 5.2.

 The comparison of measured FLOP and load counts averaged per sweep from the

four test cases are given in Table 5.7 and Table 5.8, respectively; with the estimated

theoretical values based on the expressions in Table 5.2 and the problem size values of

Table 5.6. In general, the measured results in these tables must be adjusted for overhead

and the adjustment calculation is shown by Eq. (5.21), where Nraw is the raw counts,

Nsample is the number of measurement samples per sweep, and Cover is the overhead per

sample for the given metric:

.oversamplerawadjusted CNNN  Eq. (5.21)

 The measurement system incurs no overhead in measuring FLOPs (Cover,FLOP = 0),

so the adjustment of the measured values does not change when counting FLOPs. As can

be seen from the data, the expressions for the FLOP counts developed in Section 5.3 and

summarized in Table 5.2 are exact for each component. In terms of the overall number of

FLOPs per sweep there is a slight difference between measurement and estimated values.

This is due to the fact that the component description of Eq. (5.5) does not account for all

FLOPs in the actual routine. However, those FLOPs being ignored are negligible. Thus,

the analytic expressions for FLOP counts as a function of problem size appear to be

validated with measurement.

89

Table 5.7 – Comparison of measured and estimated FLOP counts for 3-D MOC kernel

Operation Case Measured Estimated Rel. Difference

build

Default 50,329,088 50,329,088 0.00%

Fine Angle 77,776,384 77,776,384 0.00%

Fine Rays 142,061,056 142,061,056 0.00%

Fine Space 69,005,824 69,005,824 0.00%

exp

Default 150,987,264 150,987,264 0.00%

Fine Angle 233,329,152 233,329,152 0.00%

Fine Rays 426,183,168 426,183,168 0.00%

Fine Space 207,017,472 207,017,472 0.00%

BC

Default 0 0 0.00%

Fine Angle 0 0 0.00%

Fine Rays 0 0 0.00%

Fine Space 0 0 0.00%

MOC

Default 402,632,704 402,632,704 0.00%

Fine Angle 622,211,072 622,211,072 0.00%

Fine Rays 1,136,488,448 1,136,488,448 0.00%

Fine Space 552,046,592 552,046,592 0.00%

scal

Default 1,843,200 1,843,200 0.00%

Fine Angle 2,764,800 2,764,800 0.00%

Fine Rays 1,843,200 1,843,200 0.00%

Fine Space 7,372,800 7,372,800 0.00%

BCUp

Default 0 0 0.00%

Fine Angle 0 0 0.00%

Fine Rays 0 0 0.00%

Fine Space 0 0 0.00%

flux

Default 92,160 92,160 0.00%

Fine Angle 92,160 92,160 0.00%

Fine Rays 92,160 92,160 0.00%

Fine Space 368,640 368,640 0.00%

sweep

Default 605,907,578 605,907,456 2e-4%

Fine Angle 936,196,790 936,196,608 2e-4%

Fine Rays 1,706,691,194 1,706,691,072 7e-5%

Fine Space 835,903,610 835,903,488 1e-4%

 Table 5.8 summarizes the load counts for each component. Previously, the

coefficient cbuild for determining the number of loads in the build component could not be

determined exactly for the general case. For that reason, these values are back-calculated

from the measurements obtained for each case, and the average of the cases is 10.46 with

a standard deviation between cases of 1.07 loads. These values would indicate that

assuming that the number of loads is proportional to the number of segments is a

reasonable assumption, provided the modularity of the problem is constant. A value of

10.5 is used as the assumed value for cbuild for the test problems, which falls in the

90

expected range since it is larger than the theoretical lower bound of 3. The load counts for

the build component and the integral counts of the kernel are given in Table 5.9.

Table 5.8 – Comparison of measured and estimated Load counts for 3-D MOC kernel

Operation Case Measured Estimated Rel. Difference

build

Default 528,904,622 nsegbuildc ---

Fine Angle 817,008,179 nsegbuildc ---

Fine Rays 1,666,736,866 nsegbuildc ---

Fine Space 628,680,880 nsegbuildc ---

exp

Default 322,573,693 30,197,4528 -6.39%

Fine Angle 489,187,877 466,658,304 -4.61%

Fine Rays 924,320,105 852,366,336 -7.78%

Fine Space 429,281,428 414,034,944 -3.55%

BC

Default 46,801,877 11,246,080 -75.97%

Fine Angle 107,663,972 17,277,440 -83.95%

Fine Rays 233,480,800 31,586,304 -86.47%

Fine Space 36,340,420 11,246,080 -69.05%

MOC

Default 631,671,872 603,949,056 -4.39%

Fine Angle 984,663,869 933,316,608 -5.21%

Fine Rays 1,823,083,997 1,704,732,672 -6.49%

Fine Space 862,377,147 828,069,888 -3.98%

scal

Default 2,124,028 1,843,200 -13.22%

Fine Angle 3,403,315 2,764,800 -18.76%

Fine Rays 2,014,059 1,843,200 -8.48%

Fine Space 8,445,750 1,843,200 -78.18%

BCUp

Default 6,290,129 5,623,040 -10.62%

Fine Angle 9,633,163 8,638,720 -10.32%

Fine Rays 17,195,244 15,793,152 -8.15%

Fine Space 6,390,347 5,623,040 -12.01%

flux

Default 95,547 92,160 -3.54%

Fine Angle 97,549 92,160 -5.52%

Fine Rays 97,309 92,160 -5.29%

Fine Space 384,086 368,640 -4.02%

 There appears to be a general trend of under-predicting the number of loads for

the load counts of the other components listed in Table 5.8. Because this is a systematic

trend, the cause of this may be due to the way the overhead of the measurement is

estimated. The predicted loads agree within 10% of the measurement for the exp, MOC,

ray, and flux components. The difference of measurement and estimated load counts for

BCUp and scal is notably higher, with the fine space case of the scal component having

an extremely large difference. It is unclear why this one case has such a large difference,

91

but it may be that the load of the machine was abnormal for that measurement. The BC

component is consistently and significantly under-predicted. It is very likely that the

method for estimating the overhead is not valid for this component. Since the component

represents such a small set of operations (4 loads per measurement), the relative overhead

is much larger than the number of operations that are expected to be measured. Therefore,

it was concluded that the resolution of the measurement system is not fine enough to

accurately obtain measurements for BC component.

 Table 5.9 shows the measured load counts for the build component and the whole

kernel, along with the sum of each component. The sum of the measurements for each

component agrees well with the sum of the estimated loads for each component.

However, there is a definite bias in the sum of the measurements of each component

compared to the integral measurement of the 3-D MOC kernel. Similar to the case with

the FLOP counts, this is likely due to not capturing all the load operations of the kernel in

the component model of Eq. (5.4). In the case of the load counts, the differences are

notably higher than they are for the FLOP counts, though the data suggests that

approximately 5%-10% of the loads that occur within the kernel are not captured with the

component model. Some of this difference may also be due to the manner in which the

compiler optimizes the instrumented code.

Table 5.9 – Comparison of measured and estimated Load counts with cbuild = 10.5

Operation Case Measured Estimated Rel. Difference

build

Default 528,904,622 528,455,424 -0.08%

Fine Angle 817,008,179 816,652,032 -0.04%

Fine Rays 1,666,736,866 1,491,641,088 -10.51%

Fine Space 628,680,880 724,561,152 +15.25%

sweep

Default 1,703,277,947 1,453,206,528 -14.68%

Fine Angle 2,629,365,246 2,245,423,104 -14.60%

Fine Rays 4,921,813,948 4,098,100,992 -16.74%

Fine Space 2,204,301,869 1,985,839,104 -9.91%

Sum of

components

Default 1,538,461,768 1,453,206,528 -5.54%

Fine Angle 2,411,657,923 2,245,423,104 -6.89%

Fine Rays 4,548,577,055 4,098,100,992 -12.19%

Fine Space 1,954,089,078 1,985,839,104 +0.70%

 In summary, the measurement system confirms the methodology of estimating the

FLOP count. The estimated load counts have some non-trivial differences, and it is

92

considerably more difficult in this case to obtain accurate measurements of the number of

loads. Most of these differences can be attributed to not being able to accurately estimate

the measurement overhead for all components. However, in the subsequently analyses the

component model is only used to obtain the integral number of loads for the entire kernel,

and the differences in the estimated and measured integral load counts is roughly 10%.

Thus, while the differences between the model and measurement may be quite large for

some components (80%), the differences for the kernel are considerably smaller. This

difference in the integral loads will be treated as an uncertainty in the number of loads,

since the root cause is an uncertainty in the measurement overhead. Fortunately, this

uncertainty is bounded by the upper and lower cache miss values, and so this 5%-10%

difference in the integral counts should be acceptable for providing an upper and lower

performance bound of the 3-D MOC kernel.

5.4.5 Validation of Execution Time in Serial
Having established some level of consistency between the measurements and expected

counts for at least loads and FLOPs, the focus can now move to the prediction of

execution time and performance. First, the measured execution time is compared to the

execution time computed from Eq. (5.3) using the measured values of FLOPs, loads, and

cache misses, and the hardware values of Table 5.5. Because the L3 cache misses could

not be measured directly, their values were estimated as 10% of the number of L2 misses.

Assuming no L3 misses changes the relative difference between the measured and

computed execution time by roughly 0.5%, so the effect of L3 misses on the overall

differences is minimal.

 The measured average sweep time and computed sweep time for non-optimized

and optimized executables are compared in Table 5.10 and Table 5.11, respectively. The

differences in the measured and calculated execution time is just over 10% for the non-

optimized case. This can be attributed to one of two things: the accuracy of the hardware

values of Table 5.5, or the fact that an assumption was made as to the number of L3

misses, since this value could not be measured. Since the assumption about the L3 misses

has minimal effect, the majority of the difference can be attributed to uncertainties in L1

93

cache access time and to the time to execute a FLOP. The L2 access time also plays a

role, but it is less important.

 In the optimized case, the agreement is slightly better and is within 10%. The

predicted execution time for the fine ray case is actually higher than the measured time,

suggesting that some additional performance gain is achieved through optimizations by

decreasing the apparent time for some hardware event (either a FLOP or cache access),

which is not unusual. Since the use case for performance will be the optimized

executable, this analysis suggests that the model should be able to predict the execution

time to within 8%, of the actual time. This is reasonably accurate for the prediction of the

execution time, and suggests that the methodologies used to obtain the model hardware

values for the evaluation of Eq. (5.3) are acceptable, although could be slightly improved.

Table 5.10 – Comparison of measured and computed execution times with no optimizations

Case
Measured

Execution Time

Computed

Execution Time
Rel. Difference

Default 7.1835 6.2129 -13.51%

Fine Angle 11.0630 9.5784 -13.42%

Fine Ray 20.5691 18.1020 -11.99%

Fine Space 9.7376 8.4605 -13.11%

Table 5.11 – Comparison of measured and computed execution times with optimizations

Case
Measured

Execution Time

Computed

Execution Time
Rel. Difference

Default 1.2991 1.2029 -7.41%

Fine Angle 2.0150 1.8663 -7.38%

Fine Ray 3.8637 4.0357 +4.45%

Fine Space 1.7228 1.6902 -1.89%

 The relative contribution to total measured and calculated execution time of the

various components for the non-optimized executable are shown in Figure 5.6 and Figure

5.7, respectively. Somewhat surprisingly, the component that builds the long ray data is

one of the most expensive parts of the kernel, which suggests that this area should be

addressed in order to improve the performance of this kernel in the future. This is also

likely true of most other MOC kernels, whether they are 2-D or 1-D.

 As for the agreement between the measured relative execution times and the

predicted execution times, the largest difference in the predicted percentage occurs for

the build component, with a magnitude of 7%. This is primarily due to inaccuracy in

94

some of the ratios of the average values for the model hardware data. These ratios for the

model values (e.g. timer per FLOP to time per L1 access) would need to be adjusted in

order to achieve better agreement between the model and measured relative execution

times. The components based on the number of regions have the smallest contribution,

which is consistent with the observation that this value is several orders of magnitude less

than the number of segments or number of long rays. The other observation is that the

ratios between the different components do not change significantly between the different

cases; this suggests that the ratio of segments to long rays does not vary much between

these cases.

95

Figure 5.6 – Measured component
relative execution times

Figure 5.7 – Calculated component
relative execution times

57%

15%

5%

23%

0% 0% 0%

Default

Build

Exp

BC

MOC

Scale

BC Update

Flux

50%

17%

6%

27%

0% 0% 0%

Default

Build

Exp

BC

MOC

Scale

BC Update

Flux

57%

15%

5%

23%

0% 0% 0%

Fine Angle

Build

Exp

BC

MOC

Scale

BC Update

Flux

51%

16%

6%

27%

0% 0% 0%

Fine Angle

Build

Exp

BC

MOC

Scale

BC Update

Flux

58%
14%

5%

23%

0% 0% 0%

Fine Rays

Build

Exp

BC

MOC

Scale

BC Update

Flux

52%

16%

6%

26%

0% 0% 0%

Fine Rays

Build

Exp

BC

MOC

Scale

BC Update

Flux

57%

15%

3%

25%

0% 0% 0%

Fine Space

Build

Exp

BC

MOC

Scale

BC Update

Flux

50%

17%

5%

28%

0% 0% 0%

Fine Space

Build

Exp

BC

MOC

Scale

BC Update

Flux

96

5.4.6 Baseline Performance in Serial
Table 5.12 shows the measured performance for the kernel and estimated upper and

lower bounds. The measured performance is within the estimated bounds, therefore the

performance model and estimated upper and lower bounds are assumed to be valid for

predicting the performance of the kernel as a function of the problem size and machine

hardware characteristics.

Table 5.12 – 3-D MOC kernel performance in serial on Sunspear

Case
Measured

(MFLOPS)

Lower Bound

(MFLOPS)

Upper Bound

(MFLOPS)

Realized Fraction of

Upper Bound

Default 466.4 0.467 897.0 52.0%

Fine Angle 464.6 0.469 897.0 51.8%

Fine Rays 441.7 0.468 896.2 49.3%

Fine Space 485.2 0.166 904.1 53.7%

 Because only about 50% of the theoretical upper bound is realized, this suggests

that some improvements may be possible to further reduce cache misses. The theoretical

peak performance of one core on Sunspear is 10.4 GFLOPS, which means that the initial

performance of the kernel is getting roughly 4.5% of this peak.

 The upper bound on the kernel performance neglects all cache misses and only

counts L1 accesses. The upper bounds in Table 5.12 used execution times based on 1

FLOP/cycle and 1 load/cycle; the ~900 MFLOPS predicted as the upper bound on

performance is approximately 9% of the processor’s theoretical peak. If Eq. (5.3) is

simplified to only include the time for stores, then it can reduced to:

.1 1
















F

L

t
FtT

f

f


 Eq. (5.22)

 Eq. (5.22) provides some insight into the maximum possible performance

expected from the MOC kernel. For the 9% of peak performance estimated for the MOC

kernel the α1/tf factor is 1.0. To achieve at least half of the peak performance, an

algorithm would need an L/F ratio of 1.0. From data in Table 5.2, it is estimated that the

L/F ratio for the kernel is at least 2.0. With this value, the maximum fraction of the peak

performance achievable would only be 33%. In actuality the L/F of the problems tested is

97

probably closer to 9.0, implying that the observed computational intensity of the kernel is

quite low at ~0.10. This also suggests some possible improvement to the kernel through

reducing the L/F ratio. Through further analysis of Eq. (5.22), it can be deduced that an

architecture that gives better performance would mean that the machine balance, α1/tf,

would need to be less than 1.0. Unfortunately, for the assumed target architecture, this is

never the case, and does not appear to be the case for any near term architectures.

5.5 Sensitivity of Serial Performance to Hardware

Characteristics
In this section the performance model of Eq. (5.4) and Eq. (5.5) is examined for a range

of hardware values for the memory access latencies and FLOP execution times. For this

analysis, the assumed problem size is the default test case described in Section 5.4.3.

Other simplifying assumptions are used based on the measurement results of Section 5.4.

Instead of using the theoretical upper and lower bounds of the cache misses, the cache

misses at each level are based on those observed for the default test case. In this case, M1

was approximately 8.43% of the number of loads, and M2 was 0.07% the number of

loads. For the analysis M1 is assumed to be 8.5% of the number of loads and for other

levels of cache Mj = 0.01Mj-1 for j > 1 is assumed; αmem is assumed to be 1000 ns.

 The first sensitivity examined is the model’s sensitivity to tf and α1 and levels of

cache, κ. The predicted performance for each case is shown as a contour plot in Figure

5.8 through Figure 5.11 for the different values of κ. The cache latencies for levels of

cache are assumed where the access latency for each level αj = 10αj-1 for j > 1.

98

Figure 5.8 – Sensitivity of peak performance to
α1 and tf

Figure 5.9 – Sensitivity of performance to α1 and
tf for single-level cache

Figure 5.10 – Sensitivity of performance to α1
and tf for two-level cache

Figure 5.11 – Sensitivity of performance to α1
and tf for three-level cache

 The data in Figure 5.8 is consistent with the theoretical upper bound (zero cache

misses) of performance for the 3-D MOC kernel. Several lines are overlaid on the

contours to show when the performance becomes more sensitive to a particular hardware

property. The region above the magenta line describes an architecture in which the time

per flop is at least 4x faster than the time for a memory access. In this region it is

observed that the performance is more sensitive to the average memory access time, and

the performance of the kernel will be limited by this hardware characteristic. The other

9000 5000

2000

1000

500

300

200

100

9000 5000

2000

1000

500

300

200

100

Titan   Sunspear

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Peak Performance (MFLOPS)

100

200

300

500

1000

2000

50009000

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

1000

2000

3000

4000

5000

6000

7000

8000

9000

4.275

4.27

4.26

4.24

4.2

4.275

4.27

4.26

4.24

4.2

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =1

4.2

4.24

4.26

4.27

4.275

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

4.2

4.21

4.22

4.23

4.24

4.25

4.26

4.27

400

350 300

250 200

150

100

50

400

350 300

250 200

150

100

50

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =2

50

100

150

200250

300350

400

10
-2

10
0

10
-2

10
-1

10
0

10
1

Performance


1
/t

f
=4


1
/t

f
=1

50

100

150

200

250

300

350

400

9000
5000

2000

1000

500

300

200

100

9000
5000

2000

1000

500

300

200

100

Titan   Sunspear

Average Time per FLOP (ns)

L
1
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS) =3

100

200

300

500

1000

2000

5000
9000

10
-2

10
0

10
-2

10
-1

10
0

10
1 Performance


1
/t

f
=4


1
/t

f
=1

1000

2000

3000

4000

5000

6000

7000

8000

9000

99

line (blue) in Figure 5.8 describes when the time per flop and L1 cache access time are

equivalent. The region below this line is indicative of an architecture in which the cache

access time is faster than the time per flop, which is generally not the type of architecture

that is manufactured. However, for an architecture of this type the performance would be

dictated by the time per flop. The region between the two lines is fairly indicative of most

commodity architectures, and in this region the performance is generally more sensitive

to cache access time compared to the time per flop. The magenta and cyan regions denote

where the hardware characteristics of test machines used in this chapter and Chapter 6

were measured.

 In Figure 5.9 the performance does not really change with either hardware

property, and instead is limited by the 1 μs access time to retrieve data form main

memory. Figure 5.10 shows the performance sensitivity for an architecture with a two

level cache. Here the performance is still severely limited by the access time to main

memory compared to the peak performance of Figure 5.8. However, there is some

sensitivity to the time per flop and the cache access latency. The sensitivities for the two

level cache basically behave in a similar manner as peak performance case, although the

magnitude of these sensitivities is reduced considerably.

 With the three level cache architecture shown in Figure 5.11, the performance

sensitivity to the hardware properties is very similar to that observed in Figure 5.8.

However, for a given (tf,α1) pair, the predicted performance in Figure 5.11 is

approximately half of Figure 5.8, which is consistent with Table 5.12. This would

indicate that, assuming the cache misses are reduced by a factor of 100 at each level and

the memory access times are increased by only a factor of 10, then this becomes a very

good architecture for achieving behavior similar to the peak performance of the

algorithm. Although it is not shown, the case of an architecture with a four level cache

was also investigated and it was observed to have almost exactly the same performance

as the architecture with three cache levels.

 The performance sensitivities are also examined for the L1 and L2 cache access

times. In this study the time per flop and main memory access times are assumed to be

constant at 0.2 ns and 1 μs, respectively. A contour plot of the performance as a function

of these two hardware properties is shown in Figure 5.12. Again, the test machine

100

hardware characteristics are highlighted by magenta and cyan boxes that are labeled with

the machine names. In this figure, the region below the magenta dashed line can be

ignored. This region would indicate where the L2 cache access time is faster than the L1

cache access time. The blue line divides the plot into two regions. The region above the

line denotes where the performance is limited by the L2 cache access time, and

conversely below this line is where the performance is limited by the L1 cache access

time. The sensitivity of the performance with respect to the L1 cache access time is 5x

higher than the L2 access time.

Figure 5.12 – Performance as a function of L1 and L2 cache latencies

5.6 Summary
This chapter presents a conceptual model of the target architecture and the basic

equations for a latency based performance model. Expressions for the FLOP and load

counts for the 3-D MOC kernel were developed in terms of key problem size parameters.

The performance model was validated for a specific machine whose architecture fits

within the conceptual model, and using four small problems with representative meshing.

This required methods for determining the performance model hardware coefficients for

the test machine. The measurement system was used to validate the expressions for FLOP

1200

850

650

500

400

300

200

100

50

1200

850

650

500

400

300

200

100

50

 Titan
Sunspear 

L1 Cache access Latency (ns)

L
2
 C

a
c
h
e
 a

c
c
e
s
s
 L

a
te

n
c
y
 (

n
s
)

Performance (MFLOPS)

50

100

200

300

400

500

650

850

1200

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

Performance


2
/

1
=1


2
/

1
=5

100

200

300

400

500

600

700

800

900

1000

1100

1200

101

and load counts, and then to validate the execution time model. The FLOP counts are

exact, while the load counts and execution time may have uncertainties of up to 10%. The

baseline performance of the serial kernel was then given, and the measured performance

was shown in comparison to the model performance bounds. This provides a solid

foundation for the next chapter in which the performance model analysis of the parallel

3-D MOC kernel is described. Finally, a parametric study of the performance as a

function of the hardware properties is presented to indicate the types of architectures that

are likely to get the best performance, and which properties have the greatest influence on

performance.

102

Chapter 6

PERFORMANCE ANALYSIS OF THE PARALLEL 3-D

MOC KERNEL

In this chapter the performance model developed in Chapter 5 is applied to the parallel

execution of the MOC kernel. First, the parallel efficiency and speedup are defined with

respect to two types of scaling metrics. The methods are then described for determining

the model hardware coefficients for the network latency and bandwidth required by the

parallel execution time models. In order to show that the performance model developed

in Chapter 5 is still valid when extended to the parallel domain, a section is included on

the experimental validation of the performance model. The performance model is then

analyzed, given a range of input parameters, to show the sensitivity of the algorithm to

the hardware coefficients. A parametric study is also presented to show the efficacy of

the various decomposition strategies and the preferred optimum decomposition for a

given problem. Finally, the results and conclusions of these analyses are summarized.

6.1 Parallel Performance Metrics
In the previous chapter the performance of the 3D MOC kernel for serial execution was

quantified with respect to the processor’s theoretical peak performance. In parallel

computing, other metrics are typically used to quantify and describe the performance of

an algorithm. Of primary importance is how well the algorithm scales, or how well it

performs as more processors are added to a calculation. For a parallel algorithm there are

two notions of scaling: strong scaling and weak scaling. Strong scaling refers to how the

solution time varies when the input problem size is fixed and the number of processors is

varied. For strong scaling, two metrics are often used to quantify the performance;

103

namely the speedup and efficiency. The speedup, S, is defined by Eq. (6.1) and the

efficiency, Estrong, is defined by Eq. (6.2); where T is the time, Psize is the problem size,

and Np is the number of processors. Strong scaling is indicative of how finely grained an

algorithm may be executed in parallel, and how much overhead exists for the parallelism

relative to the actual computation.

   
 

,
,

1,
,

psize

size
psize

NPT

PT
NPS  Eq. (6.1)

   
 

 
.

,

,

1,
,

p

psize

psizep

size

psizestrong
N

NPS

NPTN

PT
NPE 


 Eq. (6.2)

 For the weak scaling of an algorithm the work per process is fixed and the number

of processors is varied. The weak scaling indicates whether the parallel overhead varies

faster or slower than the amount of work as the problem size increases, and is relevant in

determining the overall size of a problem that can be solved efficiently. The primary

metric for weak scaling is the parallel efficiency, given below in Eq. (6.3), which has a

slightly different definition than Eq. (6.2).

   
 

.
,

1,
,

ppsize

size
psizeweak

NNPT

PT
NPE


 Eq. (6.3)

 In the following analyses of Section 6.3 and 6.4 the expression for T in the above

equations is the Tsweep of Eq. (5.18) derived in Chapter 5.

6.2 Experimental Evaluation of Parallel Performance Model
For the experimental validation of the performance model in parallel, the specific

components related to the parallelism, Tray, Tang, Tspace, are individually measured and

compared to the model. In validating these components, the test problem used in the

default case described in Chapter 5 is again used. The measurement system used to

collect data is the same as that described in Section 5.4.1. However, the machine used to

run the performance tests is different than the one used in Chapter 5. For these

104

performance tests Titan [54] is used, which is a Cray XK7 having a single AMD

Opteron
™

 6274 processor and 32GB of RAM on each compute node. The AMD

Opteron
™

 6274 is a 16-core processor of the same class as the one in Sunspear, but the

clock speed is 2.2GHz. The node architecture on Titan is similar to the illustration in

Figure 5.3, but there are 8 core-pairs instead of 6. Titan has 18,688 physical compute

nodes, which are connected using Cray’s Gemini
™

 interconnect.

6.2.1 Determining Network Model Hardware Coefficients
The cache latencies and time per flop are determined using the same methodology as in

Chapter 5. The hardware coefficients for the network needed to evaluate Eq. (5.8) and

Eq. (5.13) or Eq. (5.14), are determined using another suite of micro benchmarks. The

OSU micro-benchmarks for MPI (OMB MPI tests) [55], are used for this purpose. The

OMB MPI tests evaluate multiple communication patterns on a network to measure the

network latencies and bandwidth. Three of the benchmark suite's tests were executed: the

latency test, the bandwidth test, and the all reduce test.

 The latency test characterizes the time required for a message to travel from

point-to-point. The benchmark measures the time required for a message to be sent from

one processor to another and then back, and then reports the average time for a one way

communication. This is done for various message sizes, and the resulting output should

fit Eq. (5.8), provided that αnetwork and βnetwork are known. The test is also performed with

a message size of 0, and this is the case used to determine αnetwork. This benchmark was

used to measure the point-to-point communication time between the physical nodes, the

two NUMA nodes on a single physical node, and two core pairs within a NUMA node.

This is because it will not necessarily be known which processors will be using which

communication layer at run time, since it could potentially be any of the three. The

maximum message size measured was 32 MB. The benchmark output for Titan is shown

in Figure 6.1 and includes the average of three runs.

105

Figure 6.1 – Output of OMB point-to-point latency test

 There are error bars for the standard deviation, but they are so small that they are

not visible in Figure 6.1. The maximum relative standard deviation observed was 3.98%,

with the between node communication having the highest standard deviation. The

measured latency was 1.57 μs between physical nodes, 0.53 μs between NUMA nodes,

and 0.28 μs between cores in a core pair.

 The bandwidth test determines the network’s bandwidth, which measures the data

throughput for a given time window using multiple message sizes. The number of

concurrent messages is fixed, so as the message size is increased, the measured

bandwidth should become asymptotic as the network hardware becomes saturated. Again,

this benchmark was used to measure the bandwidth of the three communication layers,

and the results reported are the average of three trials. A maximum message size of 32

MB was also used in this test. The results of this benchmark are shown in Figure 6.2. In

this figure the measured bandwidth appears to go asymptotic in the range of 5000 MB/s

and 6400 MB/s. However, the NUMA node bandwidth exceeds this by nearly a factor of

two for a limited range of message sizes before decreasing to the indicated range.

0.10

1.00

10.00

100.00

1000.00

10000.00

1 16 256 4096 65536 1048576 16777216

P
o

in
t-

to
-P

o
in

t
C

o
m

m
.

Ti
m

e
 (
μ

s)

Message Size (Bytes)

Between Physical Nodes

Between Numa Nodes

Between core pairs

(α=1.60 [μs],β=1/5700 [s/MB]) Model

106

Figure 6.2 – Output of OMB point-to-point bandwidth test

 The all reduce micro benchmark measures the time to perform an all reduce

operation for various message sizes and reports the average of all processors involved in

the operation. This benchmark was executed for message sizes up to 32 MB and used

processor counts of 1 through 8, and then powers of two afterward up to 512 processors.

The results of the benchmark are shown in Figure 6.3.

Figure 6.3 – Output of OMB all reduce test

1.00

10.00

100.00

1000.00

10000.00

1 16 256 4096 65536 1048576 16777216

B
an

d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

Between Physical Nodes

Between NUMA Nodes

Between core pairs

6400 MB/s

5000 MB/s

1

10

100

1000

10000

100000

1000000

1 4 16 64 256

A
ll

R
e

d
u

ce
 O

p
e

ra
ti

o
n

 T
im

e
 (
μ

s)

Number of Processors (Np)

4 B 8 B 16 B 32 B 64 B 128 B
256 B 512 B 1 KB 2 KB 4 KB 8 KB
16 KB 32 KB 64 KB 128 KB 256 KB 512 KB
1 MB 2 MB 4 MB 8 MB 16 MB 32 MB

107

 As noted in [50] an MPI library may include multiple algorithms, and in order to

achieve optimal performance, different algorithms will be chosen based on the message

size and number of processors. Furthermore, multiple algorithms may be used for

different parts of the communication in the all reduce operation. Thus, unless the exact

implementation of the all reduce operation is known, it is difficult to rely on a algorithm

specific model, such as those given in Eq. (5.13) or Eq. (5.14). Nonetheless, these models

may be generalized into a semi-empirical formula, and the remaining coefficients may be

determined through analysis of the data in Figure 6.3. The execution time for the all

reduce operation may be generalized from of Eq. (5.13) and Eq. (5.14) and expressed in

the form shown in Eq. (6.4). Here c1 and c2 are the general coefficients, which are

functions of the number of processors, that may be fit to an implementation of all reduce

when the algorithm used is not known. The rest of the terms in Eq. (6.4) have the same

meaning as in Eq. (5.13) and Eq. (5.14), although   has a slightly different meaning.

This is illustrated by comparing Eq. (5.14) to Eq. (6.4) and noting that βnetwork and  have

different coefficients in Eq. (5.14). However, since it is difficult to measure  directly,

this term is allowed to be adjusted by a constant factor to fit the semi-empirical model of

Eq. (6.4), hence the use of the   notation. In Eq. (6.4), the functions for the coefficients

c1 and c2 are likely to be non-linear.

       ., 21 NNcNcNNT networkpnetworkppallreduce   Eq. (6.4)

 First, the coefficient of the latency, c1, is determined. This can be done using the

benchmark output for the cases with the smallest message size and varying processor

counts, since the execution time of these cases will be latency dominated. Figure 6.4

shows this data along with two different expressions for c1. The measured data clearly

has a non-linear trend when plotted on the log2(Np) scale, which is contrary to the latency

coefficients proposed by Eq. (5.13) and Eq. (5.14). It is however remarkably well fit by

the expression pN .

 It is less straightforward to determine the remaining coefficients c2 and   , since

it is not possible to separate the   network term from c2 using the data collected from

108

the benchmark. Therefore, the approach used is to assume that the   network term is

an unknown constant, and then to determine an expression for c2 to the measured data by

scaling this expression until the measured data is reasonably well fit. This still requires

the correct functional dependence for c2, even though it is allowed to be scaled. Once c2

is known,   can be determined from the unknown constant and βnetwork can be

determined as previously described.

 In order to determine c2, it is necessary to use a case with a sufficiently large

message so the influence of the latency on the operation time can be minimized. Then the

operation time may be divided by the message size, which leaves the term of interest.

These values are then plotted as a function of the number of processors. The 32 MB

message size case is shown in Figure 6.5, along with some possible expressions for c2.

The (Np-1)/Np curve fits the trend in the measurement data fairly well. Selecting

  network to be 0.011 μs/B bounds the data and minimizes the error for large

processor counts, but the value of 0.0095 μs/B fits the data better for lower processor

counts. The difference here is likely related to the different hardware involved with

communication on the node and between the nodes. This supported by the observation

that the measured data seems to have a jump right at 16, which is the number of cores on

a node.

Figure 6.4 – Curve fit for c1(Np)

Figure 6.5 – Curve fit for c2(Np)

 From the analysis of these benchmarks, the final hardware values selected for

Titan in order to evaluate the performance models are given in Table 6.1, and the model

0

5

10

15

20

25

30

35

1 4 16 64 256

A
ll

R
ed

uc
e

O
pe

ra
tio

n
T

im
e (

μs
)

Number of Processors (Np)

OMB Measurement (N=4B)

c1=log2(Np)

c1=SQRT(Np)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

1 4 16 64 256

c 2
(N

p)
*(
β

+γ
')

Number of Processors (Np)

OMB Measurement (N=32MB)

(Np-1)/Np, (β+γ')=0.009

(Np-1)/Np, (β+γ')=0.011

SQRT(log2(Np)), (β+γ')=0.0045

109

used to evaluate the all reduce operation is given in Eq. (6.5), which applies when Np is a

power of 2.

Table 6.1 – Performance model hardware values for Titan

Symbol Name Value

C Clock Speed 2.2 GHz

tf time per FLOP 0.25-1 FLOPs/cycles

α1 L1 Cache Latency ~1 cycle

α2 L2 Cache Latency ~8-10 cycles

α3 L3 Cache Latency ~20-110 cycles

l1 L1 Cache Line Size 64 bytes

l2 L2 Cache Line Size 64 bytes

l3 L3 Cache Line Size 64 bytes

αmem Memory Latency 300-500 cycles

αnetwork Network Latency ~0.25-1.6 μs

βnetwork Inverse Network Bandwidth ~1.49e-4 - 1.91 e-4 μs/B

  Computation cost ber byte ~0.009309 - 0.010851 μs/B

    .
1

, N
N

N
NNNT network

p

p

networkppallreduce  


 Eq. (6.5)

6.2.2 Determining OpenMP Run-time Library Overhead
The final set of unknown expressions that must be determined to evaluate the parallel

performance model involve the ray decomposition from Eq. (5.20). These terms account

for the overhead of the OpenMP run-time library routines, and in general these are not

known exactly. The general approach is to determine the parameters for a specific library

and architecture, and assume they are reasonably valid for a wider range of compilers and

architectures. To determine the overhead of the OpenMP routines used in the MOC

kernel, another set of micro-benchmarks are analyzed on the test machine. The EPCC

OpenMP Microbenchmark v2.0 suite [56] developed at the University of Edinburgh is

used to evaluate the overhead of the OpenMP library for the barrier, single, and

parallel constructs, and the various scheduling strategies of the do construct. The basic

methodology of these benchmarks is described in detail in [57] and essentially involves

the execution of a block of code with and without the OpenMP constructs. The results

obtained on Titan are shown in Figure 6.6 and Figure 6.7 below.

110

Figure 6.6 – OpenMP run-time library overhead for various constructs involving synchronization

Figure 6.7 – OpenMP run-time library overhead for various scheduling algorithms

 It is apparent in Figure 6.6 that all the constructs’ overheads grow at a rate larger

than O(nt), where nt is the number of threads, so there will be definite issues in scaling

the ray decomposition to large thread counts. The overhead for the single construct is

comparable to the barrier; this is because the single construct has an implied barrier

on exit. In Figure 6.7, the dynamic scheduling algorithm used by the kernel has the

highest overhead per loop iteration of the scheduling methods provided by the OpenMP

run time library. The overhead for the dynamic scheduling also grows at a rate larger than

O(nt). Linear regressions were performed to fit the data with 2
nd

 order polynomials,

which could then be used in the performance model. These equations are also shown in

the figures.

y = 2.14E-02x2 + 2.82E+00x

R² = 9.96E-01

y = 2.00E-02x2 + 1.27E+00x
R² = 9.89E-01

0

10

20

30

40

50

60

1 2 4 8 16

O
ve

rh
e

ad
 (
μ

s)

Number of Threads

PARALLEL

BARRIER

SINGLE

PARALLEL
Curve Fit
BARRIER
Curve Fit

y = -7.63E-04x2 + 1.97E-01x
R² = 9.52E-01

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 4 8 16

Ss
ch

e
d

u
le

 O
ve

rh
e

ad
 p

e
r

It
e

ra
te

 (μ
s)

Number of Threads

STATIC DYNAMIC

GUIDED DYNAMIC Curve Fit

111

6.2.3 Validation of Parallel Performance Model
In this section the parallel efficiency predicted by the performance model is compared to

the measured parallel efficiency for the default case test problem. The performance

model for the strong scaling efficiency is evaluated against each of the ray

decomposition, angle decomposition, and spatial decomposition separately. For the angle

and ray decomposition 2, 4, 8, and 16 processors are used. The Titan nodes only have 16

cores, which is the reason for limiting this study to this processor count. The angular

decomposition does not have good partitioning beyond 20. Furthermore the semi-

empirical model for which coefficients were determined in the previous section was only

evaluated for powers of two. In general, execution time models for the all reduce

operation vary noticeably when non-power of two numbers of processors are used.

Therefore, using this set of numbers of processors ensures a more straightforward

comparison to the performance model. The spatial decomposition uses 8 and 64

processors for the strong scaling because this creates equal-sized subdomains that

maintain the same surface area to volume ratio. The spatial decomposition also includes

an additional component for the weak scaling.

 Table 6.2 below shows the measured parallel efficiency for the strong scaling of

the various decompositions and processor counts compared to the parallel efficiency

predicted by the performance model.

 Before assessing the comparison of measurement to the performance model, it is

essential to point out that, where possible, the decompositions were mapped to the node

architecture in two distinct ways. This was done to highlight the effect of a unique

architectural feature of the AMD Opteron
™

 6200 series processors noted previously in

Section 5.4.2; namely that the chip has two integer cores that share a floating point

arithmetic unit (FPU). The reasoning behind this processor design feature is that one core

will be performing data fetches while the other will be using the FPU, this is a suitable

assumption for data servers. However, for numerically intensive scientific software, this

does affect performance. This effect becomes apparent by comparing the columns in the

table labeled "by FPU" and "by core". The "by FPU" column are results measured when

112

only one process per core pair, or one core process per FPU is used. The columns labeled

"by-core" refer to measurements taken when both cores sharing a FPU are used.

Table 6.2 – Comparison of measured and predicted parallel efficiency

Np
Ray Decomposition Angle Decomposition Space Decomposition

by FPU by core Model by FPU by core Model by FPU by core Model

2 104.9% 53.5% 99.40% 101.8% 80.00% 99.03% N/A N/A N/A

4 100.5% 67.04% 97.89% 98.18% 78.88% 97.15% N/A N/A N/A

8 87.49% 67.33% 94.22% 96.05% 71.03% 93.60% 98.91% 76.32% 99.52%

16 N/A 62.17% 86.78% 89.30% 63.85% 87.22% N/A N/A N/A

64 N/A N/A N/A N/A N/A N/A 93.14% 71.66% 98.69%

 Comparing these two columns of Table 6.2 it is apparent that overloading the

FPU reduces the parallel efficiency for any parallel decomposition of the kernel by 20%

to 50%. This raises questions about the most meaningful choice for the reference

calculation to measure the efficiency of the parallel decomposition for this kind of

processor.

 To illustrate this point, one may note that the efficiency for the ray decomposition

when using both integer cores sharing the FPU are ~50%-60%. However, if the reference

case is taken to be the execution time of two threads sharing the FPU then the efficiencies

of the cases of 4, 8, and 16 threads all increase by roughly a factor of 2 or more, and the

parallel efficiency can be considered quite good. The important conclusion for the

purposes here is that the performance model does not consider the effect of this

architectural feature, so comparing the performance model to the "by FPU" column is

more consistent.

 From the comparison to the "by FPU" results it is clear that the model for the

angular decomposition matches the measurement very well, having no differences in

predicted efficiency larger than 3%. This indicates that the model correctly characterizes

the overhead contributing to the execution time as the time to execute the call to

MPI_Allreduce, and that the other components of the kernel are decreased linearly by

the reciprocal of the number of angular domains.

113

 For the ray decomposition, the model under-predicts the observed parallel

efficiency slightly for low processor counts when the measurement shows the efficiency

to be super-linear. This super-linear scaling is likely due to better cache utilization from

introducing more cache with the other processors. The other observed differences

between the model and the measurement can be attributed to subtleties in the hardware

not captured by the latency-based performance model. For the 8 threads case in the "by

FPU" column, 4 threads exist on each NUMA node, and the memory access times

between NUMA nodes to the same shared memory is probably longer than memory

access times to the memory shared by threads on the same NUMA node. Consequently,

the performance model’s ability to predict the parallel efficiency for the ray

decomposition is acceptable. It lacks some important terms to capture the effects of

subtleties of the hardware, but so long as careful attention is given to these details, the

model agrees within 5% of the measured result.

 The spatial decomposition also agrees reasonably well with the performance

model for the strong scaling efficiency, but there are only two points for comparison in

this test problem. The model over-predicts the efficiency compared to the measured

result, which suggests that the effect the model is not accounting for that causes

additional degradation in the parallel efficiency is related to having the MPI library deal

with multiple outstanding messages simultaneously. The weak scaling results, shown in

Figure 6.8 differ slightly from the model’s prediction by a small constant factor for the

"by FPU" measurement, indicating a systemic issue, probably with a hardware

coefficient. Otherwise, the model is accurate in predicting the parallel performance to

within about 7% of measurement. Figure 6.9 shows the "by core" results using two

references, one a single core, and the other a single NUMA node. These results show the

same trend for the weak scaling as the "by FPU" measurement. This again illustrates the

issue of overloading the FPU and choosing a meaningful reference calculation from

which to measure the efficiency.

114

Figure 6.8 – Comparison of predicted and
measured weak scaling efficiency for spatial

decomposition

Figure 6.9 – Weak scaling efficiency for spatial
decomposition with different reference cases

 In conclusion, the performance model is shown to agree within 7% of the

measured results for predicting the parallel efficiency for each implementation of the

parallel decomposition. This is in spite of the observation that the model is shown to be

deficient for capturing a subtle, yet key, architectural feature of the processors on the test

machine: sharing an FPU between two cores. However, provided the measurement is

made consistently with the assumption of the model, in which each processor has its own

FPU, this is a non-issue. The model can also easily account for the shared FPU by using a

different reference measurement, namely the time for the core pair to execute the kernel.

It could be debated whether this is a more meaningful reference, but it provides a more

consistent reference for the performance model and makes it possible to obtain better

agreement between the model and measurement.

6.3 Parallel Performance Model Sensitivity
In this section the performance model is evaluated for a range of hypothetical hardware

characteristics and OpenMP run time library overhead. The purpose of this analysis is to

quantify the effect of the hardware or supplied OpenMP or MPI libraries on the

algorithms performance, and to identify regimes in which more optimal performance may

be achieved. Much like the model validation in the previous section, the model is

analyzed separately for each type of decomposition.

 First, the effect of the network latency and bandwidth on the spatial

decomposition overhead is examined, specifically the Tspace term of Eq. (5.12). In Figure

6.10 this function is plotted against the bandwidth and latency of the network hardware.

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

1 8 64 512 4096 32768

E
w

ea
k

Number of Processors

by FPU (1x1x1) by FPU (2x2x2)

Model (1x1x1) Model (2x2x2)

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

1 8 64 512 4096 32768

E
w

ea
k

Number of Processors
1x1x1 (single core ref.) 2x2x2 (single core ref.)

2x2x2 (NUMA node ref.) 1x1x1 (NUMA node ref.)

115

The measured range of latency and bandwidth for the test machine, Titan, is highlighted

by the magenta rectangle.

 As the bandwidth limits to large numbers and the latency limits to 0, Tspace

asymptotically approaches the reduced TBCUp time. The contours of Figure 6.10 show that

Tspace approaches this asymptote rather quickly. Furthermore, very little reduction in the

overhead is obtained once the bandwidth exceeds 10 MB/s and the latency is less than 10

μs. This suggests that efforts to improve the performance of the network architecture

would have little benefit in reducing the overhead of the spatial decomposition, and that

the performance of the network hardware on Titan is already near optimal for this

algorithm.

Figure 6.10 – Sensitivity of the spatial decomposition overhead to network hardware characteristics

 In Figure 6.11, the competing factors of the "max" function of Eq. (5.18) are

plotted along with the time to perform a sweep for a problem as a function of the number

of spatial domains. This figure is therefore representative of the spatial strong scaling.

The problem assumed in generating the data in this figure consists of a block of cubic pin

cells that is 64x64x64, which represents roughly a 3x3 block of assemblies at roughly

1/5th their full height. Two main observations can be made about Figure 6.11. The first is

that the time to do the spatial communication is always greater than the time to do any

1
0.750.5

0.3
0.25

1
0.750.5

0.3
0.250.25

0.3

0.5 0.75
1

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)



 Titan

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial Decomp. Overhead (ms)


network

 = 10 s

1/
network

 = 10 MB/s

116

remaining useful work when only one angular domain and one thread are assumed. The

second observation is that Tsweep is still very close to ideal, even though the spatial

decomposition overhead is the dominant term. This is because the overhead is still

approximately an order of magnitude lower than the sweep time at the highest possible

decomposition.

Figure 6.11 – Estimated execution times for spatial strong scaling

 Next, for the angular decomposition, the sensitivity of the overhead is evaluated

against the network hardware characteristics, and the problem size and number of

domains. These sensitivities are examined for the three MPI_Allreduce algorithms given

by Eq. (5.13), Eq. (5.14), and the semi-empirical model of Eq. (6.5) for the Cray MPI

library on Titan. The sensitivities to the network hardware are shown in Figure 6.12

through Figure 6.14, and the measured network hardware latency and bandwidth are

indicated by a magenta box in each figure. The Cray library and Rabensiefner’s

MPI_Allreduce algorithm clearly outperform the binary tree algorithm. The overhead is

observed to be largely a function of the network bandwidth and, the magnitude of the

overhead is about 1000x times higher for the angular decomposition compared to the

spatial decomposition. Additionally, any increase in bandwidth above 100 MB/s provides

little benefit to reducing the angle decomposition overhead.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

10
2

10
4

Number of Spatial Domains

T
im

e
 (

s
)

T
ideal

T
sweep

(T
flux

+T
ray

)/p
space

 + T
ang

T
space

117

Figure 6.12 – Sensitivity of angle decomposition
overhead to network hardware characteristics

for Cray MPI_Allreduce algorithm

Figure 6.13 – Sensitivity of angle decomposition
overhead to network hardware characteristics
for Rabenseifner’s MPI_Allreduce algorithm

Figure 6.14 – Sensitivity of angle decomposition overhead to network hardware characteristics for
binary tree MPI_Allreduce algorithm

 In Figure 6.15 through Figure 6.17, the sensitivity of the angular decomposition

overhead is shown as a function of the number of flat source regions in the domain and

the number of angular domains. For this analysis the basic discretization of the default

case test used to validate the performance model is assumed, and the number of flat

source regions and angular domains is increased by a factors of 2 up to 16. Once again,

the binary tree algorithm is clearly outperformed by the other two algorithms. Overall,

1.000
0.500

0.100

0.030

0.020

0.016

1.000
0.500

0.100

0.030

0.020

0.0160.016

0.020

0.030

0.100

0.500
1.000



 Titan

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)

Angle Decomposition Overhead (s) for

Cray MPI_Allreduce algorithm
(=11 ns,p

ang
=16)

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.1

1

1.000

0.500

0.100

0.030

0.020

0.016

1.000

0.500

0.100

0.030

0.020

0.0160.016

0.020

0.030

0.100

0.500

1.000



 Titan

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)

Angle Decomposition Overhead (s) for

Rabenseifner's MPI_Allreduce algorithm
(=11 ns,p

ang
=16)

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.1

1

2.000
1.000

0.500

0.250

0.100

2.000
1.000

0.500

0.250

0.1000.100

0.250

0.500

1.000
2.000



 Titan

Network Latency (s)

B
a
n
d
w

id
th

 (
M

B
/s

)

Angle Decomposition Overhead (s) for

Binary Tree MPI_Allreduce algorithm
(=11 ns,p

ang
=16)

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

0.1

1

118

the angular decomposition overhead is fairly insensitive to the number of flat source

regions once that number exceeds ~500,000. For the Cray and Rabenseifner all reduce

algorithms, the overhead increases monotonically at a rate of approximately

  
angleangle ppO 1 . In Figure 6.17, the curves have a staircase feature, which is due to

the ceiling function in Eq. (5.13).

Figure 6.15 – Sensitivity of angle decomposition
overhead to problem size and number of

domains for Cray MPI_Allreduce algorithm

Figure 6.16 – Sensitivity of angle decomposition
overhead to problem size and number of

domains for Rabenseifner’s MPI_Allreduce
algorithm

Figure 6.17 – Sensitivity of angle decomposition overhead to problem size and number of domains
for binary tree MPI_Allreduce algorithm

1.50

1.25

1.00

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0.50

0.250.25

0.50

0.75

1.00

1.25

1.50

Number of Angular Domains

N
u
m

b
e
r

o
f

F
la

t
S

o
u
rc

e
 R

e
g
io

n
s

Angle Decomposition Overhead (s)

for Cray MPI_Allreduce algorithm (=11 ns)

2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

x 10
6

0

0.25

0.5

0.75

1

1.25

1.5

1.50

1.25

1.00

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0.50

0.250.25

0.50

0.75

1.00

1.25

1.50

Number of Angular Domains

N
u
m

b
e
r

o
f

F
la

t
S

o
u
rc

e
 R

e
g
io

n
s

Angle Decomposition Overhead (s)

for Rabenseifner's MPI_Allreduce algorithm (=11 ns)

2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

x 10
6

0

0.25

0.5

0.75

1

1.25

1.5

8.0

6.0

4.0

2.0

1.0

8.0

6.0

4.0

2.0

1.01.0

2.0

4.0

6.0

8.0

Number of Angular Domains

N
u
m

b
e
r

o
f

F
la

t
S

o
u
rc

e
 R

e
g
io

n
s

Angle Decomposition Overhead (s)

for Binary Tree MPI_Allreduce algorithm (=11 ns)

2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

x 10
6

0

1

2

4

6

8

119

 The primary overhead for the ray decomposition comes from the OpenMP run

time library. The parallel performance will not be especially sensitive to the serial

hardware coefficients, such as tf or αj, but rather the ratio of these values to the run time

library overhead. Therefore, the sensitivity of the ray decomposition overhead is

evaluated as a function of the overhead values of the different functions used from the

OpenMP run time library. Figure 6.18 shows the predicted strong scaling of the default

case test problem, along with ideal scaling and the values of Tray as the different OpenMP

overheads limit to zero.

Figure 6.18 – Sensitivity of ray decomposition overhead to OpenMP library overhead

 The sensitivity to the scheduling overhead is fairly small, which seems

counterintuitive since the coefficient of this term in Eq. (5.20) is proportional to

nlongray, which is typically quite large even for small problems. The scheduling

overhead is small because the chunk size may be chosen to minimize the coefficient of

TSCHEDULE, thus minimizing its overhead. If optimization of the chunk size is performed,

as it is represented by the model, then the ray scaling becomes relatively insensitive to the

OpenMP scheduling overhead. Consequently, it is apparent in Figure 6.18, that the ray

decomposition overhead is much more sensitive to the overhead of the barriers and

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Number of Threads

T
im

e
 (

s
)

T
ideal

T
sweep

T
ray

T
ray

(Lim T
SCHEDULE

  0)

T
ray

(Lim T
BARRIER

  0)

120

single construct. This indicates a potential future improvement to the parallel 3-D MOC

kernel.

6.4 Decomposition Strategy for Optimizing Parallel

Performance
The focus of this section is to understand the impact of changes to the parallel

decomposition on the overall parallel efficiency of the kernel, and specifically to provide

answers to the questions: If one has n processors, is there an optimal decomposition, and

if so, what is it? For this study the basic hardware characteristics of Titan are used, and

the assumed problem for the analysis is an idealized quarter core PWR that uses pin

modular ray tracing and a pin-wise discretization that is consistent with the default case

performance test problem studied in this chapter and Chapter 5.

 First, in Figure 6.19, the strong scaling efficiency is shown for a single pin cell

based on angle and ray decomposition. This plot shows that there is very little work for a

problem of this size before the overhead of the various decompositions begins to

dominate. The figure also shows that the ray decomposition scales with better efficiency

than the angular decomposition, and perhaps only 4 to 8 processors can be used to

efficiently parallelize the smallest spatial subdomain. The other observation of note for

Figure 6.19 is that the rate at which the parallel efficiency decreases for the number of

angles increases with the number of threads.

 Figure 6.20 through Figure 6.24 show the predicted strong scaling efficiency for a

quarter core PWR sized problem using pin modular ray tracing. With only one thread, the

model predicts excellent scaling (>90%) out to O(10
5
) processors. By comparison, the

change in strong scaling efficiency is relatively insensitive to the number of angular

domains, meaning that for a single thread, the angular domain could be decomposed by a

factor of almost 16 without a significant loss in efficiency.

121

Figure 6.19 – Estimated angle-ray strong scaling
efficiency for a pin cell

Figure 6.20 – Estimated space-angle strong
scaling for a PWR 1/4 core (1 thread)

Figure 6.21 – Estimated space-angle strong
scaling for a PWR 1/4 core (2 threads)

Figure 6.22 – Estimated space-angle strong
scaling for a PWR 1/4 core (4 threads)

Figure 6.23 – Estimated space-angle strong
scaling for a PWR 1/4 core (8 threads)

Figure 6.24 – Estimated space-angle strong
scaling for a PWR 1/4 core (16 threads)

Number of Threads

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Spatial Domain size = "Pin Cell"

5 10 15

2

4

6

8

10

12

14

16

0

20

40

60

80

100

Number of Spatial Domains

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Number of threads = 1

10
0

10
5

2

4

6

8

10

12

14

16

80

85

90

95

100

Number of Spatial Domains

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Number of threads = 2

10
0

10
5

2

4

6

8

10

12

14

16

0

20

40

60

80

100

Number of Spatial Domains

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Number of threads = 4

10
0

10
5

2

4

6

8

10

12

14

16

0

20

40

60

80

100

Number of Spatial Domains

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Number of threads = 8

10
0

10
5

2

4

6

8

10

12

14

16

0

20

40

60

80

100

Number of Spatial Domains

N
u
m

b
e
r

o
f

A
n
g
u
la

r
D

o
m

a
in

s

Parallel Efficiency (%)

Number of threads = 16

10
0

10
5

2

4

6

8

10

12

14

16

0

20

40

60

80

100

122

 As the number of threads is increased, the strong scaling efficiency becomes

noticeably worse. This is consistent with observations made from Figure 6.19, at which

point the single pin cell problem becomes over decomposed. And as noted in Figure 6.19,

the parallel efficiency degrades more rapidly for the angular decomposition when more

threads are used. A similar effect is seen for the number of spatial domains. That is to be

expected, since the amount of work in a given domain is decreased significantly by the

number of threads. Figure 6.25 shows the aggregate data of Figure 6.20 through Figure

6.24 as a function of the number of processors. In Figure 6.25 it is observed that the

model predicts that parallel efficiencies greater than 90% can be achieved out to nearly

30 million processors, using only space and angle decomposition. However, it is highly

unlikely this performance could be observed in practice because the model assumes the

hardware and run time system will scale to this many cores. The construction of

computers having O(10
6
) processors still has yet to be demonstrated, and the current node

architecture is likely to change drastically in the next generation of leadership class

architectures.

Figure 6.25 – Estimated strong scaling efficiency for PWR 1/4 core

 Also in Figure 6.25, the rate of decrease in parallel efficiency is faster for space-

ray decomposition than it is for space-angle decomposition. Therefore, in order to

maximize the parallel efficiency it is essential to maximize the spatial decomposition. If

more processors are available, then it is recommended to use the angular decomposition

to add a factor of 2 to 8 more domains. However, if the spatial domain is not maximized,

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

10

20

30

40

50

60

70

80

90

100

Number of Processors

P
a
ra

lle
l
E

ff
ic

ie
n
c
y
 (

%
)

1 thread

2 threads

4 threads

8 threads

16 threads

123

perhaps because of poor load balancing or an insufficient number of processors for the

next level of spatial decomposition, then it is better to add more processors through ray

decomposition rather than angle decomposition. This analysis assumed perfect load

balancing in the decomposition. In practice, this is not always possible, and using

decompositions with a poor load balance will negatively affect the parallel efficiency

much more than the estimate in this parametric study.

6.5 Summary
This chapter presented several new key insights about the parallelism of the 3-D MOC

algorithm. First, new metrics for the parallel performance were introduced and defined.

Then the execution time models derived in Chapter 5 were validated against

measurements for the parallel execution. This required the use of several new micro-

benchmarks for MPI and OpenMP to measure the network hardware’s latency and

bandwidth, as well as run time library overheads. It was found that having an accurate

execution time model for MPI_Allreduce is essential to accurately predicting the angular

decomposition overhead. The comparison of the parallel performance model to

measurement showed that the model agreed quite well with measurement, with an

absolute difference of less than 7%, in the prediction of the parallel efficiency. The other

conclusion from this comparison was that special attention must be paid to the hardware

used to obtain the measurement, and that when cores are added, the model assumes that

this includes an additional floating point unit. In other words, the model assumes perfect

scaling in the hardware. This may not always be the case with the hardware. However,

the differences can be overcome if a more consistent reference measurement is used to

account for the model’s assumptions with respect to the hardware.

 After establishing confidence in the parallel performance model, sensitivities to

several factors in the model were examined through parametric studies. The overhead for

the spatial and angular decomposition were examined separately with respect to the

network’s latency and bandwidth. Both types of decomposition were shown to be

relatively insensitive to the network latency, provided the network bandwidth was at least

100 MB/s. Additionally, further increasing the network bandwidth beyond 100 MB/s or

reducing the network latency below 0.1 ms would give little improvement in

124

performance. Since many modern high performance compute clusters already have

networks with a higher bandwidth and lower latency, it may be concluded that these

types of decompositions will continue to perform well on future network architectures.

 The performance of the angular decomposition was also evaluated against the

problem size and number of domains for various algorithms for MPI_Allreduce. This

was shown to have a significant effect and that the preferred all reduce algorithms are

those that are more optimal for large message sizes. While the current implementation of

the parallel 3-D MOC kernel performs an all reduce, this may not strictly be required.

 The overhead for the spatial decomposition was also evaluated against the number

of domains, and it was shown that when other decompositions are not used, the overhead

for the spatial decomposition is always greater than the amount of time it takes to do any

remaining useful work. This is because the spatial decomposition is limited by the time

required to copy the data to global memory. Also, the amount of data to be copied

decreases at the rate at which the subdomain surface area is decreased, rather than by the

subdomain’s volume; that decreases faster for cuboids.

 The ray decomposition overhead was shown to be limited mostly by the overhead

of the synchronization of the threads which suggests a possible future area of

improvement to the current implementation. This is assuming that the chunk size has

been optimized to minimize the overhead of the OpenMP scheduling algorithm for the

parallelized loop over long rays.

 Finally, the parallel performance model for the strong scaling efficiency was

evaluated for various decompositions, assuming problem size of the order of a quarter

core PWR. The parallel performance model estimates that up to 30 million processors can

be used while still maintaining efficiency greater than 90%, provided the hardware and

run-time system scale. This analysis also showed that the best way to decompose a

problem is to perform spatial decomposition to the point where the subdomain size is

approximately a 2x2x2 or 4x4x4 block of pin cells. Then the number of ray or angle

domains on each spatial subdomain can be increased by a factor of 8 and still have

parallel efficiencies near 90%. Since the performance model assumes ideal load

balancing for each decomposition, future work might focus on examining cases in which

there is not an ideal load balance for some decomposition.

125

Chapter 7

ALGORITHM CONVERGENCE OPTIMIZATION WITH

CMFD ACCELERATION

The primary focus of the thesis thus far has been on the optimization of the parallel

performance of the 3-D MOC transport sweep. To some extent the optimal performance

was achieved at the expense of the rate of convergence of the iterative solution scheme.

This is illustrated by considering a problem that is purely absorbing with a known source.

For such a problem, the transport sweep with one spatial domain would converge in one

iteration, but for decomposed spatial domains, it would require more than one iteration.

Therefore, this chapter focuses on further optimization of the algorithm by accelerating

the convergence of the iterative scheme and reducing the overall number transport

sweeps that must be performed to achieve a converged solution.

7.1 Convergence Acceleration
Considerable research has been performed on methods to accelerate iterative convergence

of neutron transport problems [58], [59], [60], [61], [62]. In this section, the basic

underlying concept of an acceleration technique is developed. The basic approach to

acceleration has been to use what are known as synthetic acceleration techniques. The

essential idea of synthetic acceleration can be summarized as follows. Suppose a problem

has the following form:

126

  ,S


 FM Eq. (7.1)

where M-F is difficult to invert directly, but M is relatively easy to invert. Then an

iterative scheme that should work well would be:

    ., 111 FMAMA   S


  Eq. (7.2)

The rate of convergence of this iterative scheme will depend on the spectral radius of A.

If A has a "large" spectral radius (less than, but close to unity) and is slow to converge,

then it is possible to accelerate convergence using a new low-order operator L. First, one

can show that the exact solution, 


, may be obtained from two consecutive iterates by

subtracting the term (M-F)
 1


 from both sides of Eq. (7.1) and substituting Eq. (7.2)

on the right hand side giving:

         .11 

   FFM Eq. (7.3)

Next, if one substitutes the low-order operator L for M-F in Eq. (7.3), where L is close to

M-F and easily invertible, then one may use the new iterative scheme:

    ,121 S


   MA Eq. (7.4)

        .212111   

 FL Eq. (7.5)

 Since L is close to M-F the iterate
 1


 of Eq. (7.5) should be close to the

converged solution, 


, of Eq. (7.1). Eq. (7.5) is also assumed to be cheaper to evaluate

than Eq. (7.4) and the operator L-1F should have better convergence properties than A.

Very early on it was noted that diffusion-based operators were good low-order operators

for synthetic acceleration of the transport equation [63], and significant research has gone

into developing diffusion synthetic acceleration (DSA) techniques [58].

 However, it should be noted in the above description of synthetic acceleration,

Eq. (7.1) represents a fixed source problem and a linear update. Because the steady-state

127

problem of interest for a reactor is an eigenvalue problem, a non-linear acceleration

technique would be more appropriate. One such method, the coarse mesh finite difference

(CMFD) method, has been used with pronounced success for reactor analysis for the last

several decades. CMFD was developed independently of many of the other diffusion

synthetic acceleration schemes, but in recent work [64] it was shown that CMFD is

algebraically equivalent to non-linear coarse mesh DSA. Therefore, CMFD was the

logical choice for an acceleration technique in the research here and the derivation of this

method is discussed in the following section.

7.2 Coarse Mesh Finite Difference
The coarse mesh finite difference method (CMFD) was originally developed as a

technique for the nodal diffusion based methods used in reactor analysis [61]. However,

its fundamental concept applies equally as well to transport methods, and has been shown

to be very effective at accelerating 2-D MOC transport methods where it has been used

extensively.

 In CMFD, the lower order acceleration equation is based on the multi-group

diffusion equation shown in Eq. (7.6). The discretized form of this equation is used to

define the node balance and is shown in Eq. (7.7) where the subscript s is used to denote

a surface of a node and j is a node index. Aj,s is the area of surface s of node j, and Vj is

the node volume. The over-bar notation is also added to indicate a node-averaged

quantity. Node average quantities are defined in Eq. (7.10) and Eq. (7.11).

        

      ,
1

,,0

,





































G

g

ggf

eff

g

ggs

ggtgg

rr
k

r

rrrrD










 Eq. (7.6)

.
1

,,,,,0,,,,,,




























 





G

g

gjgjf

eff

g

ggjsjjgjgjtsj

s

net

sgj
k

VVAJ 


 Eq. (7.7)

 In classic diffusion theory, the net current that is derived is based on Fick’s Law

with a finite difference approximation in space, and is shown in Eq. (7.8), where hj,s is the

128

distance between node j and its neighboring node on surface s. CMFD introduces a

correction coefficient, sgjD ,,
ˆ , so that the expression for the net current is given by

Eq. (7.9).

 
 

,
2~

,
~

,,,,

,,,

,,,,,,,

,

,,

sgjgjsj

sgjgj

sgjsgjgjsgj

diffnet

sgj
DDh

DD
DDJ


  Eq. (7.8)

   .ˆ~
,,,,,,,,,,,, sgjgjsgjsgjgjsgj

net

sgj DDJ   Eq. (7.9)

 CMFD also introduces the coarse mesh, or node, concept on which the diffusion

equation is solved. This requires the development of restriction and prolongation transfer

operators for the solution between the fine mesh defined by the MOC flat source region

mesh, and the CMFD coarse mesh. The restriction operator, also known as

homogenization, which reduces the fine mesh solution onto the course mesh and is shown

in Eq. (7.10) and Eq. (7.11) for the cross sections and scalar flux, respectively. The

prolongation operator is used to transfer the coarse mesh solution onto the fine mesh for

the scalar flux and boundary condition are given by Eq. (7.12) and Eq. (7.13),

respectively.

,
,

,,,

,,













ji

igi

ji

igigix

gjx
V

V





 Eq. (7.10)

,
,

,

,










ji

gi

ji

igi

gj

V





 Eq. (7.11)

129

,
21

,

1

,21

,

1

, ji
l

gj

l

gjl

gi

l

gi 









 Eq. (7.12)

.,
21,

,,

1,

,,21,

,,,

1,

,,, jisk
J

J
lin

sgj

lin

sgjlin

kmgi

lin

kmgi 




  Eq. (7.13)

 The correction factor,
sgjD ,,

ˆ , introduced in Eq. (7.9) is then computed as shown

by Eq. (7.14), where the fine mesh transport method computes the neutron net current

along the surfaces of the coarse mesh. Consequently this correction factor along with

cross section homogenization creates equivalence between the solution of the fine mesh

MOC equations and the coarse mesh diffusion equations. The homogenization process in

general preserves all the node volume integrated quantities based on the fine mesh

solution, and specifically the node average reaction rates. The correction factor of Eq.

(7.9) and Eq. (7.14) allows the low order system to also preserve the node surface

integrated quantities of the fine mesh solution, and specifically the average leakage.

Because of this equivalence, the multiplication factor, keff, of the CMFD linear system is

the same as that of the fine mesh transport method computed from source iteration when

sgjD ,,
ˆ is converged.

 
 

.

~
ˆ

,,,

,,,,,,,

,,

sgjgj

sgjgjsgj

net

sgj

sgj

DJ
D








 Eq. (7.14)

 The iterative solution algorithm with CMFD then becomes:

130

Figure 7.1 – Solution algorithm with CMFD

7.2.1 Spatial Domain Decomposed Coarse Mesh Finite Difference
Recently other work has been done to extend the CMFD theory to the application of

spatially decomposed transport problems [65] that can be solved in parallel. In that work,

additional update equations for the parallel subdomain interface angular fluxes were

derived and the convergence properties of the system were examined using a Fourier

analysis of a model problem. Numerical results were produced in 1-D for a discrete

ordinates transport method that agreed with the convergence rate predicted by the Fourier

analysis.

 The spatially domain decomposed CMFD (SDD-CMFD) method was

implemented in the work here to accelerate the parallel 3-D MOC kernel described in

Chapter 4. In the original work the equation to update the interface angular fluxes

between parallel domains is derived from P1 theory and is given by Eq. (7.15). This

essentially replaces Eq. (7.13), although in [65] the authors note that other sensible

update equations, such as Eq. (7.13), may be appropriate.

While not converged

1. Perform Transport Sweep (step 2 Figure 3.4):

         


g

in

gtransport

in

gg f  ,, ,21,21 

2. Compute node averaged values for CMFD coefficients: Eq.

(7.10), Eq. (7.11), and Eq. (7.14)

     gixgisgjgjxgj fD ,,

21

,hom,,,,

21

, ,ˆ,,    

3. Solve CMFD balance equation, Eq. (7.7) and Eq. (7.9), for node

averaged scalar flux

    sgjgjxgjCMFDgj Df ,,,,

21

,

1

,
ˆ,,   

4. Update fine mesh solution: Eq. (7.12) and Eq. (7.13)

         2111,1 ,,   


ggpro

in

gg f 

5. Update fission source and keff

6. Check if solution is converged

131

   
     

     
.,

3

3
21,

,,

21

,,

1,

,,

1

,,21,

,,

1,

,,, jisk
Jn

Jn
net

sgjsmsgj

net

sgjsmsgjin

kmg

in

kmgi 





































 Eq. (7.15)

 The convergence behavior predicted by Fourier analysis for the SDD-CMFD

method using Eq. (7.15) is reproduced from [65] and shown in Figure 7.2 as a function of

the scattering ratio and optical thickness.

Figure 7.2 – Convergence properties of SDD-CMFD

7.3 SDD-CMFD Convergence with Parallel 3-D MOC
In this section, the implementation of the SDD-CMFD is evaluated for multi-dimensional

problems and two update equations by comparing the spectral radius of several cases to

that predicted by theory. First, simple infinite homogeneous media cases are decomposed

along one dimension to reproduce the convergence behavior from previous work. Then

these cases are extended to decompose the problem in two dimensions and then all three

dimensions. The convergence of these other cases are then compared to the convergence

predicted by Fourier analysis and the results are discussed.

7.3.1 Solution of SDD-CMFD Equations
The SDD-CMFD equations in 3-D form a seven-stripe sparse linear system. This linear

system is solved using the well known generalized minimum residual (GMRES) [66]

Krylov method. The PETSc scientific software library [18] is used to provide the parallel

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Coarse Cell Optical Thickness (hp)

S
p
e
c
tr

a
l
R

a
d
iu

s
 (


)

c=0.99 | Experiment

c=0.80 | Experiment

c=0.99 | Fourier Analysis

c=0.80 | Fourier Analysis

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Sweep Region Optical Thickness (hs)

S
p
e
c
tr

a
l
R

a
d
iu

s
 (


)

Coarse Cell Optical Thickness = 0.1(hs)

c=0.99 | Experiment

c=0.80 | Experiment

c=0.99 | Fourier Analysis

c=0.80 | Fourier Analysis

132

GMRES solver and a block ILU(0) preconditioner, since this library is already well

optimized and has been shown to scale well on large parallel systems [21].

 In this work the full space-energy system of equations is formed and solved

simultaneously. Furthermore, the SDD-CMFD equations are used to compute the

eigenvalue of the reactor system, since it will be equivalent to the eigenvalue of the

computed by the algorithm of Figure 2.3 at convergence. The solution algorithm for the

eigenvalue problem using the SDD-CMFD equations is essentially the power method and

shown in Figure 7.1. However, because the full space-energy linear system is formed in

this implementation, the convergence for the power method is further improved using

Weilandt acceleration [67], or eigenvalue deflation.

 The inclusion of SDD-CMFD acceleration technique into the overall algorithm

for solving the reactor criticality problem introduces a great deal of complexity into

quantifying the computational performance. Since the SDD-CMFD equations are less

computationally expensive to evaluate and because PETSc is used to provide the solver

for the SDD-CMFD equations, it is assumed that the time spent in this part of the

calculation will be less than the time spent in the transport sweep that is the main focus of

this research. Thus, a detailed performance model for the SDD-CMFD method and

accelerated solution algorithm was not developed, and instead left for future work.

7.3.2 Model Problem Description
The original work [65] examined the convergence properties of SDD-CMFD as a

function of several parameters, including the coarse cell optical thickness, the spatial

subdomain optical thickness, the scattering ratio, the number of coarse cells per spatial

subdomain and the number of fine cells per coarse cell. In this analysis, only two

parameters are evaluated: the spatial subdomain optical thickness for a fixed coarse cell

optical thickness and fixed number of fine cells per coarse cell, and the coarse cell optical

thickness for a fixed number of coarse cells per spatial subdomain and fixed number of

fine cells per coarse cell. Both cases use 1-group cross sections with a fixed scattering

ratio, c, of 0.99, since higher scattering ratios are generally more limiting to the

convergence of CMFD. The update equations for the boundary angular flux that are

133

examined are Eq. (7.15), which is a P1 update, and Eq. (7.13) which is a double-P0 (DP0)

update.

 The model problem uses a fixed multiplication factor of 1.0, and during the

iterations the spatial distribution of the fission and scattering source and spatial and

angular boundary conditions are allowed to vary. The initial guess of the scalar flux and

boundary angular flux is chosen to be random.

 The spectral radius is determined by computing the error norm, ε, of Eq. (7.16) at

each iteration. The spectral radius, ρ, is then related to this quantity as shown by

Eq. (7.17).

          ,
2

2

1,,
2

2

1    
inin  Eq. (7.16)

    .0    Eq. (7.17)

 A linear regression of the natural logarithm of this error norm as a function of the

iteration number (Eq. (7.18)) is performed for a subset of the iterations for which the

convergence behavior is smooth. The slope of the error norm can then be used to

determine the spectral radius, as shown by Eq. (7.20). This is consistent with the methods

used in the original work [55] for estimating the spectral radius by experiment.

      ,expln 1001   aaaa   Eq. (7.18)

   ,exp 0

0 a Eq. (7.19)

 .exp 1a Eq. (7.20)

7.3.3 Results and Discussion
Figure 7.3 and Figure 7.4 show the comparison of the spectral radius predicted by the

Fourier analysis from [65] and the experimentally computed spectral radii for the various

update equations and spatial dimensionality. The 3-D MOC kernel is used in all cases to

134

produce the results from which the spectral radius is calculated. For the data points

denoted as "1-D" in the legend, the problem is only discretized in 1-D, similarly for the

"2-D" and "3-D" data points. In this way, the solution is able to behave as if the problem

were 1-D or 2-D even though a 3-D transport method is being used.

 Figure 7.3 shows the spectral radius as a function of the coarse cell optical

thickness. The spatial subdomain consists of a single coarse cell, and the coarse cells

have two fine mesh regions in 1-D. For 2-D, the number of fine cells per coarse cell is

four; essentially replicating the 1-D discretization in the second spatial dimension.

Similarly, for the 3-D case it is eight fine cells per coarse cell.

Figure 7.3 – Convergence properties of SDD-CMFD for c=0.99 and
one coarse cell per spatial subdomain

 It is observed that the 1-D results agree reasonably well with the Fourier Analysis,

thus supporting the results of the previous work. In examining the effect of the spatial

dimensionality it is observed that the spectral radius increases with increasing

dimensionality. It is hypothesized that the reason the spectral radius increases with the

spatial dimensionality is because the incoming angular flux on orthogonal surfaces of the

spatial subdomain boundaries will always be coupled. This is due to the characteristic

rays that are very close to the corners of the spatial subdomain boundaries. The optical

thicknesses along these trajectories will always be less than in the 1-D case, where the

optical thickness is based on the distance between opposing faces on the subdomain. It is

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.1 1.0

Sp
ec

tr
al

 R
ad

iu
s

(ρ
)

Coarse Cell Optical Thickness

Fourier Analysis (1-D)

3-D MOC P1 (1-D)

3-D MOC DP0 (1-D)

3-D MOC P1 (2-D)

3-D MOC DP0 (2-D)

3-D MOC P1 (3-D)

3-D MOC DP0 (3-D)

135

expected that this effect will reduce the rate of convergence. From the results in Figure

7.3 it would appear that this effect is more severe for smaller spectral radii. However, the

absolute change in the magnitude of the spectral radius is approximately 0.1 between 1-D

and 3-D, with an optical thickness of 1.0, or roughly 25% increase in the spectral radius

from 1-D to 3-D. This suggests the SDD-CMFD method, while less effective in higher

spatial dimensions, is still fairly effective at accelerating the convergence even in 3-D.

The DP0 update and P1 update also agree well in 1-D and 2-D, but for some data points

the agreement in 3-D is not as good. The possible reason for this is discussed later in this

section.

 Figure 7.4 shows the variation of the spectral radius as a function of the spatial

subdomain's, or sweep region's, optical thickness for a fixed coarse cell optical thickness

of 0.1. The spatial domain optical thickness is varied by changing the number of coarse

cells in the spatial subdomain. The number of fine cells per coarse cell vary in the same

fashion in Figure 7.4 as they did for the results shown in Figure 7.3.

Figure 7.4 – Convergence properties of SDD-CMFD for c=0.99 and
coarse cell optical thickness of 0.1

 In Figure 7.4 the trend of the numerical data follows the general trend of the

spectral radius predicted by the Fourier analysis, although there are some notable

differences. The experimentally determined spectral radii are observed to decrease at a

faster rate than that predicted by the Fourier analysis with an increasing spatial

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.1 1.0

Sp
ec

tr
al

 R
ad

iu
s

(ρ
)

Spatial SubdomainOptical Thickness

Fourier Analysis (1-D)

3-D MOC P1 (1-D)

3-D MOC DP0 (1-D)

3-D MOC P1 (2-D)

3-D MOC DP0 (2-D)

3-D MOC P1 (3-D)

3-D MOC DP0 (3-D)

136

subdomain optical thickness. The next notable difference is the spectral radius predicted

for the 2-D case with the sweep region optical thickness equal to 1.0. In the 2-D case the

spectral radius increases dramatically, rather than continuing to decrease. This is also

assumed to be an effect of boundary conditions being coupled on orthogonal faces and

from the neutron trajectories with smaller mean free paths that pass near the corners of

the spatial subdomains. The data for the 3-D case with this optical thickness was not

calculated because of initialization times that exceeded several hours. However, it is

assumed the 3-D case would have been similar to the 2-D case. Finally, in comparing the

experimentally determined spectral radii, the same trend of an increasing spectral radius

with increasing spatial dimensionality is again observed.

 The final result to be discussed further highlights the differences between the DP0

and P1 updates of the incoming angular flux boundary conditions. The previous figures

showed reasonable agreement for either update method in most cases. However, in Figure

7.5 below, the full error history for the 2-D case with a spatial subdomain optical

thickness of 1.0 with the P1 and DP0 update is shown to have a markedly different

behavior after a certain number of iterations.

Figure 7.5 – Comparison of convergence properties of SDD-CMFD with
DP0 and P1 updates of the boundary angular flux

 In Figure 7.5 it is observed that the error history when using the DP0 update

becomes oscillatory and converges at a much slower rate after about 10 iterations. It is

very likely that this occurs because another error mode in the problem becomes dominant

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50

L
n(

ε)

Iteration Number

P1

DP0

137

after some number of iterations. Because the DP0 updates the boundary angular flux

isotropocally, it is hypothesized that this dominant error mode must be an error mode that

is related to the linear variation of the solution in angle. However, this effect is also

observed in the 1-D numerical results, and so it may be a result of inconsistencies in the

numerical iteration technique actually being 3-D instead of truly 1-D. To verify whether

the source of the DP0 convergence behavior is because of an error mode that is linearly

dependent in angle or inconsistencies in the numerical experiment, a Fourier analysis

using the DP0 update equation will be performed in future work.

7.4 Summary
This chapter introduced the basic idea behind synthetic acceleration techniques. It then

presented recent work on the application of one such synthetic acceleration technique,

CMFD, to problems that are decomposed in space. In this previous work [65], the

convergence properties of this method, SDD-CMFD, were predicted for model problems

in 1-D by Fourier analysis and verified numerically with a 1-D method. The work of this

chapter added to these experimental results by using a 3-D transport method on a similar

model problem that was first designed to have a strictly 1-D solution. The numerical

estimates of the spectral radius for the "1-D" problem agreed reasonably well with the

previous results suggesting that the numerical experimentation method is sound.

Numerical estimates of the convergence behavior of SDD-CMFD were then generated

for 2-D and 3-D model problems, and looked at an alternative update equation that was

based on a DP0 approximation to the boundary angular flux, rather than a P1

approximation. In these new results it was observed that the SDD-CMFD method was not

as effective for multi-dimensional problems compared to 1-D, but showed a considerable

improvement on the rate of convergence. Additionally, the DP0 update was observed to

produce convergence behavior similar to the P1 update of the boundary angular fluxes in

some cases. However, in others it was observed to be less efficient at accelerating the

convergence.

138

Chapter 8

SOLUTIONS TO NUMERICAL BENCHMARKS

In this chapter the parallel performance of the 3-D MOC kernel is assessed using several

numerical benchmarks. The purpose of doing this is not only to evaluate the accuracy and

efficiency of the parallel 3-D MOC method, but also to examine the sensitivity of the

accuracy and execution times to the level of discretization. In previous work [32], [33],

the 3-D MOC method was used to compute solutions to one of the Takeda benchmarks

[68]. This will be the first benchmark discussed in this chapter. The other benchmarks

analyzed include the C5G7 benchmarks [69], [70] for a heterogeneous reactor model and

a single PWR assembly based on one of the CASL AMA Benchmarks [71], that includes

a more realistic PWR geometry.

8.1 Takeda Benchmark: Model 1
The Takeda Benchmark suite [68] is a set of 3-D transport benchmarks that include

several simplified reactor core models for the purposes assessing 3-D transport codes for

reactor applications. Only the first model is examined here, since it is intended to be

representative of a small LWR core.

8.1.1 Model Description and Calculation Details
The model includes two cases for a rodded and unrodded condition. The benchmark

specification includes four types of materials with two-group cross sections. The core

model geometry is shown in Figure 8.1. In discretizing this model, modular ray tracing

for a 1cm x 1cm x 1cm domain is used for all computed results reported. The

convergence criteria used for all the calculations was
610keff and

610flux , where

139

the eigenvalue residual, εkeff, and the flux residual, εflux, are given by Eq. (8.1) and Eq.

(8.2) respectively. All calculations were performed on Titan [54].

    ,1 
effeffkeff kk Eq. (8.1)

    .
2

1 

 flux Eq. (8.2)

Figure 8.1 – Takeda benchmark problem 1 geometry

 In calculating solutions to this benchmark, several discretizations were used to

demonstrate mesh convergence and to show that the computed solution approaches the

benchmark reference. The calculations were performed using several different parallel

decompositions, and with and without SDD-CMFD (referred to as CMFD in the

remainder of the chapter) for convergence acceleration. The different discretizations of

the different phase spaces of the solution that were used are shown in Table 8.1.

Table 8.1 – Takeda problem 1 discretizations

Discretization

Level
Flat Source Region Size Angular Quadrature

Max Ray

Spacing

Coarse 1 cm x 1 cm x 1 cm S4 Level Symmetric 0.1 cm

Medium 0.5 cm x 0.5 cm x 0.5 cm S8 Level Symmetric 0.05 cm

Fine 0.25 cm x 0.25 cm x 0.25 cm S16 Level Symmetric 0.01 cm

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

15 cm

25 cm

5 cm

5 cm

15 cm

x

y

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

25 cm

5 cm

15 cm

x (y=0)

z

25 cm

Reflector Core
Void (Case 1) or

Control Rod (Case 2)

140

 For the medium discretization level (e.g. 0.5 cm sized flat source region, S8

angular quadrature, and 0.05 cm ray spacing), the time to convergence for various

parallel decompositions is also examined. In these calculations a basic source iteration is

used instead, and the CMFD acceleration is not performed. This is to highlight the effect

of the spatial decomposition on the rate of convergence. Finally, using this same

discretization and a varying number of spatial domains, the effectiveness of the CMFD is

examined.

8.1.2 Results and Discussion
Figure 8.2 shows the computed eigenvalues for the different discretizations, compared to

the benchmark reference. In these figures it is observed that the eigenvalue change is

relatively small with variations to the angular quadrature order and ray spacing, once the

flat source region mesh is refined to (0.5 cm)
3
. This suggests that this mesh is sufficient

for fully resolving the region-wise flat source. It is also observed that increasing the

angular order has the next largest effect on keff. There is a more noticeable improvement

in the solution going from S8 to S16 than from S4 to S8. The ray spacing seems to have the

smallest effect, which is likely due to the problem having little spatial heterogeneity, so

even coarse ray discretizations numerically integrate the spatial mesh regions well. Using

(0.5 cm)
3
 flat source regions with the S8 quadrature and 0.05 cm ray spacing for the

discretization give a solution that is reasonably accurate.

Figure 8.2 – Computed keff of Takeda benchmark for various discretizations

0.9750

0.9755

0.9760

0.9765

0.9770

0.9775

0.9780

0.9785

0.9790

0.9795

2 4 6 8 10 12 14 16 18 20

Ef
fe

ct
iv

e
M

u
lt

ip
lic

at
io

n
 F

ac
to

r
(k

ef
f)

Angular Quadrature Order

Δray=0.1,FS=0.25
Δray=0.05,FS=0.25
Δray=0.01,FS=0.25
Δray=0.1,FS=0.5
Δray=0.05,FS=0.5
Δray=0.01,FS=0.5
Δray=0.1,FS=1.0
Δray=0.05,FS=1.0
Δray=0.01,FS=1.0
Reference
Reference Uncertainty

141

 The effective multiplication factors for each benchmark case with the

aforementioned discretization are shown in Table 8.2, along with the averages of the

original benchmark participants’ results and the reference eigenvalue. The region average

fluxes for case 1 (unrodded) and case 2 (rodded) are shown in Table 8.3 and Table 8.4,

respectively.

Table 8.2 – Comparison of reference average keff for Takeda benchmark model 1

Method Case 1 keff Case 2 keff Case 1 Δkeff (pcm) Case 2 Δkeff (pcm)

Reference
0.9780

(±0.0006)

0.9624

(±0.0006)
--- ---

PN 0.9778 0.9625 -20 10

S4 0.9766 0.9630 -140 60

S8 0.9766 0.9622 -140 -20

MPACT(3-D MOC) 0.97763 0.96253 -37 -13

Table 8.3 – Comparison of region average fluxes for Takeda benchmark model 1 case 1

Method
Core Reflector Void

Avg. Rel. Diff. Avg. Rel. Diff. Avg. Rel. Diff.

Reference 1 4.7509E-03 0.10% 5.9251E-04 0.21% 1.4500E-03 0.47%

2 8.6998E-04 0.12% 9.1404E-04 0.23% 9.7406E-04 0.63%

Monte Carlo 1 4.7835E-03 0.69% 5.9722E-04 0.79% 1.4529E-03 0.20%

2 8.7841E-04 0.97% 9.2036E-04 0.69% 9.7684E-04 0.29%

PN 1 4.7472E-03 -0.08% 5.9439E-04 0.32% 1.4096E-03 -2.79%

2 8.6452E-04 -0.63% 9.2059E-04 0.72% 9.0113E-04 -7.49%

Sn 1 4.7650E-03 0.30% 5.9361E-04 0.19% 1.4453E-03 -0.32%

2 8.7162E-04 0.19% 9.1520E-04 0.13% 9.6997E-04 -0.42%

MPACT

(3-D MOC)

1 4.7445E-03 -0.13% 5.9552E-04 0.51% 1.4568E-03 0.47%

2 8.7239E-04 0.28% 8.8513E-04 -3.16% 9.5427E-04 -2.03%

Table 8.4 – Comparison of region average fluxes for Takeda benchmark model 1 case 2

Method
Core Reflector CR

Avg. Rel. Diff. Avg. Rel. Diff. Avg. Rel. Diff.

Reference 1 4.9125E-03 0.10% 5.9109E-04 0.21% 1.2247E-03 0.48%

2 8.6921E-04 0.13% 8.7897E-04 0.23% 2.4604E-04 0.72%

Monte Carlo 1 4.9006E-03 -0.24% 5.8989E-04 -0.20% 1.2264E-03 0.14%

2 8.6814E-04 -0.12% 8.8012E-04 0.13% 2.4615E-04 0.04%

PN 1 4.8581E-03 -1.11% 5.8854E-04 -0.43% 1.1996E-03 -2.05%

2 8.6003E-04 -1.06% 8.8412E-04 0.59% 2.4257E-04 -1.41%

Sn 1 4.8968E-03 -0.32% 5.8980E-04 -0.22% 1.2218E-03 -0.24%

2 8.6751E-04 -0.20% 8.8074E-04 0.20% 2.4538E-04 -0.27%

MPACT

(3-D MOC)

1 4.8785E-03 -0.69% 5.9171E-04 0.11% 1.2285E-03 0.31%

2 8.6820E-04 -0.12% 8.5024E-04 -3.27% 2.5147E-04 2.21%

142

 The eigenvalues compare within the statistical uncertainty of the reference and

except for the group 2 fluxes in the reflector and void or core regions, the agreement of

the region average fluxes with reference is comparable to the averages of the other

participants. The cause of flux differences was not investigated rigorously, but is thought

to be related to the discretization. Therefore, from these results it can be concluded that

the methodology of the parallel 3-D MOC kernel is correct.

 Figure 8.3 and Figure 8.4 show the parallel efficiency and speedup as defined by

Eq. (6.1) and Eq. (6.2), respectively, for various decompositions measured against a

reference calculation using a full NUMA node. For this problem, effective strong scaling

(parallel efficiency > 80%) is achieved for up to 2048 processors using 64 spatial

domains, 8 angular domains and 4 threads; only two other cases were run with processor

counts larger than 2048. The first was with 4000 processors that used 125 spatial

domains, 8 angular domains and 4 threads and had a parallel efficiency of 77%. The other

case used 15625 cores to fully decompose the spatial domain and the parallel efficiency

of this decomposition was 61%. The performance of the worst case, with 256 processors

and 50% parallel efficiency used 1 spatial domain, 16 angular domains and 16 threads

and is corroborated by the analysis of the performance model in Section 6.4. The average

time for a transport sweep and the total solution time are also shown in Figure 8.5, where

the "ideal" time is execution time on one processor divided by the n processors.

Figure 8.3 – Strong scaling parallel efficiency for
Takeda problem on Titan

Figure 8.4 – Strong scaling speedup for Takeda
problem on Titan

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 8 64 512 4096

P
ar

al
le

l
Ef

fi
ci

e
n

cy

Number of Processors

1.00

10.00

100.00

1000.00

10000.00

100000.00

1 8 64 512 4096

Sp
e

e
d

u
p

Number of Processors

Observed Ideal

143

Figure 8.5 – Takeda problem run times with 3-D MOC for various parallel decompositions on Titan

 The number of iterations and overall run time to converge for various

decompositions with and without CMFD are shown in Table 8.5. From this data it is

observed that the number of iterations to converge is far less sensitive to the spatial

decomposition when CMFD is used. The factor by which the iterations are reduced

ranges between 13 and 18 for this problem. The overall speedup achieved with CMFD

does not scale exactly with the reduction in the number of iterations. This is to be

expected, since CMFD introduces some computational overhead. To a point, the effective

speedup increases with an increasing number of spatial domains. The effective speedup

likely varies because the factor by which the number of iterations is reduced is changing.

Additionally, this speedup is affected by the parallel efficiency of the CMFD linear

solver, which is likely more important than the reason noted above. With 1000 spatial

domains, the domain sizes vary between 2x2x2 and 3x3x3 blocks of CMFD nodes. The

decrease in effective speedup from 125 domains to 1000 domains is most likely because

the subdomain sizes are not balanced, and because subdomains are too small to solve the

CMFD linear system efficiently in parallel. This highlights the importance of having a

good parallel linear solver for CMFD.

0.001

0.01

0.1

1

10

100

1000

10000

100000

1 4 16 64 256 1024 4096 16384

Ti
m

e
(s

)

Number of Processors

Average Sweep Time Total Time

Ideal Avg. Sweep Time Ideal Total Time

144

Table 8.5 – Effectiveness of CMFD with spatial decomposition

Number of

Spatial Domains

No CMFD With CMFD Effective

Speedup No. of Iters. Run Time (s) No. of Iters. Run Time (s)

1 107 101224.00 8 10025 10.10

8 109 18759.70 7 1762 10.65

64 121 2985.12 7 240.21 12.43

125 124 1150.74 7 93.06 12.37

1000 146 303.15 11 39.86 7.61

 The breakdown of the calculation time for MOC and the different components of

the SDD-CMFD calculation is shown in Figure 8.7 through Figure 8.10. It is apparent in

these figures that the MOC time dominates in all cases. However, the fraction of time

spent in the CMFD portion of the calculation increases with the increasing number of

spatial domains. This suggests that the scaling of the GMRES solver in PETSc does not

perform as well as the 3-D MOC kernel. Therefore, fully decomposing a problem in

space may not be optimal when using CMFD, especially if the spatial subdomain is a

single CMFD node. The other interesting observation from the data in these figures is

that the time to update the MOC solution takes almost as much or more time than it does

to solve the CMFD equations. Although, the update component of the CMFD takes less

time than the solve when the problem becomes over-decomposed.

 The times for the MOC calculation, total CMFD calculation time, and solution

time are shown in Table 8.6. There is a notable increase in the CMFD solution time

between the 125 processor and 1000 processor case. It is possible that this may be

improved by developing a solver more specific to the CMFD and parallel decomposition,

but it appears from this data that the strong scaling efficiency of the CMFD solver

decreases when the spatial subdomain sizes become smaller than ~200 CMFD nodes.

Table 8.6 – Scaling of calculation component times for Takeda benchmark

Number of

Processors

Number of

Iters.
Run Time (s)

Average Time (s)

MOC CMFD

1 8 10025.00 9833.00 191.38

8 7 1762.37 1720.59 25.16

64 7 240.21 218.38 4.74

125 7 93.06 88.05 3.95

1000 11 39.86 29.89 8.36

145

Figure 8.6 – Solution time breakdown with CMFD for Takeda benchmark (1 spatial domain)

Figure 8.7 – Solution time breakdown with CMFD for Takeda benchmark (8 spatial domains)

Figure 8.8 – Solution time breakdown with CMFD for Takeda benchmark (64 spatial domains)

Figure 8.9 – Solution time breakdown with CMFD for Takeda benchmark (125 spatial domains)

MOC

98.09%
CMFD Setup

0.00%

CMFD Solve

1.61%

CMFD Update

0.29%

CMFD

2.12%

MOC

98.56%

CMFD Setup

0.01%

CMFD Solve

0.84%

CMFD Update

0.60%

CMFD

1.44%

MOC

97.88%

CMFD Setup

0.09%
CMFD Solve

0.95%

CMFD Update

1.08%

CMFD

2.12%

MOC

95.71%
CMFD Setup

0.27%
CMFD Solve

2.34%

CMFD Update

1.68%

CMFD

4.29%

146

Figure 8.10 – Solution time breakdown with CMFD for Takeda benchmark (1000 spatial domains)

8.2 C5G7 Benchmark
The C5G7 benchmarks [69], [70] were an important addition to the set of publically

available 3-D transport benchmarks because they were the first major benchmarks to

include the detailed heterogeneity of reactor geometry for a modestly large domain. The

original benchmark specified a 2-D and 3-D problem, and a second benchmark was

created as an extension of the first which included multiple control rod configurations.

The purpose of these benchmarks was to test the ability of modern deterministic transport

codes to treat explicit reactor geometries without homogenization.

8.2.1 Model Description and Calculation Details
In the work here, the original 3-D benchmark was performed, as well as all three of the

extended cases. The benchmark geometry shown in Figure 8.11 through Figure 8.13 is

for the original 3-D benchmark description.

Figure 8.11 – C5G7 pin cell geometry

MOC

78.14%

CMFD Setup

0.70%

CMFD Solve

19.57%

CMFD Update

1.59%

CMFD

21.86%

1.26 cm

1.26 cm 0.54 cm

Moderator

Fuel or Guide Tube/Fission Chamber

147

Figure 8.12 – C5G7 assembly descriptions

Figure 8.13 – C5G7 3-D core description

UO2 Assembly MOX Assembly

Guide Tube

Fission Chamber

UO2 Fuel

4.3% MOX Fuel

7.0% MOX Fuel

8.7% MOX Fuel

Moderator

UO2 Assembly MOX Assembly

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

V
a
cu

u
m

 B
.C

.

Vacuum B.C.

64.26 cm

6
4

.2
6

 c
m

21.42 cm

2
1

.4
2

 c
m

2
1

.4
2

 c
m

21.42 cm

x

y

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

64.26 cm

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

21.42 cm

1
9

2
.7

8
 cm

x (y=0)

z

148

 For the extended benchmark cases, which include control rods, the core geometry

was reduced axially as shown in Figure 8.14. The geometry description for the pin cell

(Figure 8.11) and assemblies (Figure 8.12) remain unchanged in the extended benchmark

cases. The control rod positions for the three configurations: unrodded, rodded A, and

rodded B are shown in Figure 8.15, Figure 8.16, and Figure 8.17, respectively. Figure

8.18 shows the layout of the rodded upper reflector, and in general when an assembly is

rodded the control rod material replaces the guide tube material.

Figure 8.14 – C5G7 extended benchmark core description for rodded configurations

Figure 8.15 – C5G7 extended benchmark unrodded configuration

ModeratorUO2 Assembly MOX Assembly

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

4
2

.8
4

 cm

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

21.42 cm

21.42 cm

x (y=0)

z

64.26 cm

21.42 cm

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

V
a
cu

u
m

 B
.C

.

Vacuum B.C.

64.26 cm

6
4

.2
6

 c
m

21.42 cm

2
1

.4
2

 c
m

2
1

.4
2

 c
m

21.42 cm

x

y

ModeratorUO2 Assembly MOX Assembly Rodded

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

x (y=10.71 cm)

21.42 cm

42.84 cm

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

y (x=10.71 cm)

21.42 cm

42.84 cm

149

Figure 8.16 – C5G7 extended benchmark rodded A configuration

Figure 8.17 – C5G7 extended benchmark rodded B configuration

Figure 8.18 – Upper reflector assembly with control rod

ModeratorUO2 Assembly MOX Assembly Rodded

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

42.84 cm

y (x=10.71 cm)

21.42 cm

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

21.42 cm

x (y=10.71 cm)

42.84 cm

14.28 cm

ModeratorUO2 Assembly MOX Assembly Rodded

Vacuum B.C.

V
a
cu

u
m

 B
.C

.

Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

21.42 cm

14.28 cm

x (y=10.71 cm)
14.28 cm

14.28 cm

Vacuum B.C.

V
a
cu

u
m

 B
.C

.
Reflective B.C.

R
ef

le
ct

iv
e

B
.C

.

z

42.84 cm

y (x=10.71 cm)

21.42 cm

14.28 cm

Moderator

Fission Chamber Control Rod

150

 Due to the increased problem size, a much smaller set of discretizations were

examined compared to the Takeda problem. Furthermore, it was possible to choose the

most appropriate discretizations based on previous experiences with the C5G7

benchmark using the 2-D/1-D solution scheme in previous work [69], [72]. For the

spatial discretization the pin cells were discretized in the x-y plane using eight azimuthal

sectors, five equal volume radial rings in the cylinder, and three equal volume rings in the

moderator. The axial mesh in the pin cells was 0.252 cm and the reflector region was

meshed using (0.252 cm)
3
 flat source regions. The dimensions of the modular ray tracing

unit were 1.26 cm x 1.26 cm x 3.57 cm. The angular quadratures used were S8 and S16,

which is the largest level symmetric quadrature order currently implemented. Ray

spacings of 0.05 cm and 0.03 cm were also used. The spatial decomposition that was used

for the original 3-D benchmark was 2160 domains, and the extended benchmarks used

648 spatial domains. Therefore, each process had approximately a quarter assembly sized

domain, 3.57 cm tall. For all reported results 4 angular domains and 2 threads were used,

and the convergence criteria used for Eq. (8.1) and Eq. (8.2) was 1.e-6 and 1.e-5,

respectively.

8.2.2 Results and Discussion
In addition to the 3-D MOC results, a solution from the 2-D/1-D method was also

calculated and compared to the benchmark reference. The results for 0.05 cm ray spacing

and the S8 quadrature are shown in Table 8.7, and the results for the 0.03 cm ray spacing

and S16 quadrature are shown in Table 8.8. Results are also shown in Table 8.9 using 0.05

cm and a rectangular Chebyshev-Gauss (C-G) product quadrature, with 16 azimuthal

directions and 4 polar directions per octant for the 3-D MOC and the 2-D MOC solution

of the 2-D/1-D method. The computational cost for 2-D/1-D and 3-D MOC for the

various benchmark cases are shown in Table 8.10.

151

Table 8.7 – Eigenvalue comparison for C5G7 3-D benchmark with
S8 quadrature and 0.05 cm ray spacing

Case
Reference keff

(Δkeff pcm)

3-D MOC

(Diff. Δkeff pcm)

2-D/1-D

(Diff. Δkeff pcm)

3-D Benchmark 1.183810 (±10) 1.18149 (-232) 1.18143 (-238)

Unrodded 1.14308 (±7) 1.14090 (-218) 1.13943 (-365)

Rodded A 1.12806 (±7) 1.12580 (-226) 1.12503 (-303)

Rodded B 1.07777 (±7) 1.07493 (-284) 1.07465 (-312)

Table 8.8 – Eigenvalue comparison for C5G7 3-D benchmarks with
S16 quadrature and 0.03 cm ray spacing

Case
Reference keff

(Δkeff pcm)

3-D MOC

(Diff. Δkeff pcm)

2-D/1-D

(Diff. Δkeff pcm)

3-D Benchmark 1.183810 (±10) 1.18344 (-37) 1.18208 (-173)

Unrodded 1.14308 (±7) 1.14165 (-143) 1.14004 (-304)

Rodded A 1.12806 (±7) 1.12638 (-168) 1.12568 (-238)

Rodded B 1.07777 (±7) 1.07530 (-247) 1.07546 (-231)

Table 8.9 – Eigenvalue comparison for C5G7 3-D benchmarks with
C16-G4 quadrature and 0.05 cm ray spacing

Case
Reference keff

(Δkeff pcm)

3-D MOC

(Diff. Δkeff pcm)

2-D/1-D

(Diff. Δkeff pcm)

3-D Benchmark 1.183810 (±10) 1.18250 (-131) 1.18383 (2)

Unrodded 1.14308 (±7) 1.14267 (-41) 1.14164 (-144)

Rodded A 1.12806 (±7) 1.12735 (-71) 1.12738 (-68)

Rodded B 1.07777 (±7) 1.07624 (-153) 1.07746 (-31)

Table 8.10 – Computational Cost for C5G7 3-D benchmarks with
2-D/1-D and 3-D MOC (CPU Hours)

Case 3-D MOC 2-D/1-D

3-D Benchmark 35884.80 1947.55

Unrodded 11805.12 108.55

Rodded A 10827.36 95.89

Rodded B 10085.76 108.13

 Results for the S8 quadrature are quite poor for both 3-D MOC and 2-D/1-D when

compared to the benchmark reference. However, as the quadrature order is increased, the

results improve, but it is clear that the S16 quadrature is still probably not a sufficient

discretization for the rodded cases. The Chebyshev-Gauss quadrature gives surprisingly

accurate results with the 2-D/1-D solver for the original 3-D case, but there is some

inconsistent variation of the predicted eigenvalue for the rodded configurations. While

the overall results may not be as accurate as the original benchmark participants, it is

suggested that the primary reason for the differences observed in these results is from an

152

insufficient angular quadrature. It should be noted that this observation about the above

results is consistent with the conclusions in [69], in which many of the participants used

significantly higher order quadratures to obtain accurate results. The results from [69] are

duplicated in Table 8.11 along with the angular quadrature order used by each

participant, to illustrate this point. As for the computational cost, the CPU hours required

for the 3-D MOC calculations are about a factor of 100 higher than the 2-D/1-D

calculations for the rodded case, but only 20 times higher for the original 3-D benchmark.

Table 8.11 – C5G7 3-D benchmark participants’ angular quadratures [69]

Code Δkeff (pcm) Angular Quadrature

CRONOS2-SN -658 S4

TORT-GRS -336 S16

THREEDANT 11 S8

DeCART 5

Chebyshev-Chebyshev

Product Quadrature

8 azimuthal/8 polar per octant

CRX 155

Chebyshev-Chebyshev

Product Quadrature

8 azimuthal/2 polar per octant

MCCG3D -36
S2 (1-D Gauss) for azimuthal

1 polar direction in 45°

PARTISN -19 S26 square Chebyshev-Legendre

ATTILA -33
S12 square

Chebyshev-Double Legendre

TORT-ORNL -147 S16

 In addition to the eigenvalue comparisons, summaries of the comparisons of the

pin power for each case are shown in Table 8.12 through Table 8.15. These comparisons

used the results of the S16 angular quadrature with 0.03 cm ray spacing. For the

comparison of the 3-D benchmark the 3-D MOC eigenvalue is closer, but the errors in the

pin power distribution are higher. For the extended cases the error in the solution of the

3-D MOC and 2-D/1-D are approximately the same in the unrodded case, however, once

the rods enter the fuel region the 3-D MOC solution has less error compared to the

reference than the 2-D/1-D. However, compared to the reference the 3-D MOC solution

still shows some non-trivial error. The RMS error in the pin power for the 3-D MOC

cases is about 0.5% in all cases. Based on this metric, these results place the 3-D MOC

solution in about the middle of the spread of the original benchmark participants with 6

participants reporting higher RMS values, and 6 participants with less RMS error, and 2

153

participants with about the same error. Similar trends are observed for the metrics

reported in Table 8.13 through Table 8.15. As noted earlier, the error in the 3-D MOC

solution is attributed to the angular quadrature. Furthermore, it is noted that this

quadrature does not provide the most accurate 2-D/1-D solution, therefore it is assumed

that this is not the most accurate 3-D MOC solution. Thus, these results should be treated

as preliminary and not representative of the most accurate results that are reasonably

obtainable for this problem. That being said, these results when compared to the original

benchmark participants results, are approximately in the middle, which is encouraging to

the methods' overall accuracy.

Table 8.12 – C5G7 3-D benchmark pin power comparison

Metric Axially Integrated Pin Powers

Specific Pin Power Data Reference 3-D MOC 2-D/1-D

Maximum Pin Power 2.500 2.515 2.504

Percent Error (associated 68% MC) 0.07 0.617 0.144

Distribution Percent Error Results

Maximum Error (associated 68% MC) 0.190 1.457 2.045

AVG Error 0.139 0.469 0.376

RMS Error 0.145 0.563 0.504

MRE Error 0.118 0.461 0.296

Number of Accurate Fuel Pin Powers

Number of Fuel Pins Within 68% MC N/A 178 291

Number of Fuel Pins Within 95% MC N/A 287 422

Number of Fuel Pins Within 99% MC N/A 396 558

Number of Fuel Pins Within 99.9% MC N/A 485 664

Total Number of Fuel Pins 1056 1056 1056

Average Pin Power In Each Assembly

UO2-1 Power 1.867 1.876 1.869

MOX Power 0.802 0.798 0.801

UO2-2 Power 0.529 0.528 0.530

UO2-1 Power Percent Error N/A 0.474 0.082

MOX Power Percent Error N/A -0.493 -0.175

UO2-2 Power Percent Error N/A -0.179 0.240

154

T
ab

le
 8

.1
3

–
C

5G
7

pi
n

po
w

er
 c

om
pa

ri
so

n
fo

r
un

ro
dd

ed
 c

on
fig

ur
at

io
n

O
v

er
al

l

2
-D

/1
-D

2
.4

9
0

0
.3

7
1

2
.9

3
9

0
.4

9
0

0
.6

6
2

0
.3

7
2

6
7

1
3

8

1
7

9

2
3

8

4
9

1
.7

7

2
1

2
.1

2

1
3

9
.9

9

0
.1

1
4

-0
.2

7
4

0
.4

3
3

3
-D

 M
O

C

2
.4

9
8

0
.6

5
7

1
.3

3
0

0
.4

4
9

0
.5

4
7

0
.4

3
8

8
8

1
4

6

1
7

8

2
3

8

4
9

3
.4

5

2
1

1
.7

2

1
3

9
.1

2

0
.4

5
5

-0
.4

6
2

-0
.1

9
2

R
ef

.

2
.4

8
1

0
.0

6
0

0
.1

3
3

0
.1

0
9

0
.1

1
4

0
.0

9
3

3
7

1

5
1

8

5
4

0

5
4

4

4
9

1
.2

1

2
1

2
.7

0

1
3

9
.3

9

0
.1

2
3

0
.0

9
2

0
.0

6
5

U
p

p
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.4

7
9

-2
.4

1
0

5
.9

7
3

3
.5

1
6

3
.6

7
4

0
.6

9
4

 3

8

1
2

1
6

9
5

.0
4

4
1

.1
0

2
7

.0
2

-2
.9

5
1

-4
.2

4
2

-2
.8

6
1

3
-D

 M
O

C

0
.4

9
5

0
.9

1
6

1
.7

4
4

0
.5

4
9

0
.6

6
9

0
.1

4
0

1
5

4

2
7

5

3
3

5

3
7

0

9
8

.9
5

4
3

.0
2

2
7

.9
0

1
.0

3
5

0
.2

2
1

0
.2

8
6

R
ef

.

0
.4

9
1

0
.1

3
0

0
.1

3
0

0
.2

4
5

0
.2

5
5

0
.0

4
2

3
7

1

5
1

8

5
4

0

5
4

4

9
7

.9
3

4
2

.9
2

2
7

.8
2

0
.0

5
5

0
.0

4
1

0
.0

2
9

M
id

d
le

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.8

8
8

0
.7

0
6

3
.3

2
4

0
.6

7
2

0
.8

8
1

0
.2

0
4

8
8

1
6

5

2
1

5

2
6

7

1
7

5
.2

4

7
5

.5
4

4
9

.9
0

0
.5

7
4

0
.3

9
1

0
.9

0
7

3
-D

 M
O

C

0
.8

8
7

0
.5

9
4

1
.6

7
9

0
.5

0
1

0
.6

0
2

0
.1

6
2

1
0

3

1
8

9

2
4

6

3
2

5

1
7

4
.8

8

7
4

.8
1

4
9

.3
2

0
.3

6
8

-0
.5

8
2

-0
.2

6
6

R
ef

.

0
.8

8
2

0
.1

0
0

0
.2

7
0

0
.1

8
3

0
.1

9
0

0
.0

5
5

3
7

1

5
1

8

5
4

0

5
4

4

1
7

4
.2

4

7
5

.2
5

4
9

.4
5

0
.0

7
3

0
.0

5
4

0
.0

3
8

L
o

w
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

1
.1

2
3

1
.3

3
6

3
.8

3
7

1
.2

2
1

1
.3

6
5

0
.5

0
1

 8

1
7

2
9

5
4

2
2

1
.4

9

9
5

.4
8

6
3

.0
7

1
.1

1
9

0
.9

9
8

1
.5

3
0

3
-D

 M
O

C

1
.1

1
5

0
.5

9
3

1
.7

3
0

0
.5

5
5

0
.6

8
0

0
.2

1
0

7
3

1
5

4

2
2

3

2
9

1

2
1

9
.6

2

9
3

.8
9

6
1

.9
0

0
.2

6
5

-0
.6

7
8

-0
.3

4
8

R
ef

.

1
.1

0
8

0
.0

9
0

0
.2

3
0

0
.1

6
4

0
.1

7
1

0
.0

6
2

3
7

1

5
1

8

5
4

0

5
4

4

2
1

9
.0

4

9
4

.5
3

6
2

.1
2

0
.0

8
2

0
.0

6
1

0
.0

4
3

Sp
ec

ifi
c

Pi
n

Po
w

er
 D

at
a

M
ax

im
u

m
 P

in
 P

o
w

er

P
er

ce
n

t
E

rr
o

r
(a

ss
o

ci
at

ed
 6

8
%

 M
C

)

D
is

tr
ib

ut
io

n
Pe

rc
en

t E
rr

or
 R

es
ul

ts

M
ax

.
E

rr
o
r

(a
ss

o
ci

at
ed

 6
8

%
 M

C
)

A
V

G
 E

rr
o

r

R
M

S
 E

rr
o

r

M
R

E
 E

rr
o

r

of

 A
cc

ur
at

e
Fu

el
 P

in
 P

ow
er

s

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 6

8
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

5
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
.9

%
 M

C

A
vg

. A
ss

em
bl

y
Po

w
er

U
O

2
-1

 P
o

w
er

M
O

X

 P
o

w
er

U
O

2
-2

 P
o

w
er

U
O

2
-1

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

M
O

X

 P
o

w
er

 P
er

ce
n

t
E

rr
o
r

U
O

2
-2

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

155

T
ab

le
 8

.1
4

–
C

5G
7

pi
n

po
w

er
 c

om
pa

ri
so

n
fo

r
ro

dd
ed

 A
 c

on
fig

ur
at

io
n

O
v

er
al

l

2
-D

/1
-D

2
.2

6
7

0
.5

8
0

2
.1

3
4

0
.5

0
5

0
.6

0
3

0
.4

6
4

4
5

9
8

1
4

2

1
8

7

4
6

2
.6

8

2
2

0
.8

8

1
5

1
.5

5

0
.3

2
6

0
.3

2
6

0
.1

0
5

3
-D

 M
O

C

2
.2

6
2

0
.3

7
7

1
.3

2
1

0
.3

1
8

0
.4

0
0

0
.3

1
3

1
2

3

2
1

6

2
6

6

3
2

0

4
6

2
.6

2

2
2

0
.9

9

1
5

1
.4

1

0
.3

1
2

0
.3

1
2

0
.0

0
8

R
ef

.

2
.2

5
3

0
.0

5
9

0
.1

4
9

0
.1

0
8

0
.1

1
1

0
.0

9
4

3
7

1

5
1

8

5
4

0

5
4

4

4
6

1
.1

8

2
2

1
.7

1

1
5

1
.3

9

0
.1

1
9

0
.1

1
9

0
.0

6
8

U
p

p
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.2

9
7

-2
.3

9
7

6
.0

3
3

3
.6

4
9

3
.7

6
0

0
.5

7
3

 1

3

6

1
0

5
4

.2
6

3
7

.6
2

2
7

.7
3

-3
.5

5
5

-3
.5

5
5

-2
.9

5
7

3
-D

 M
O

C

0
.3

1
0

2
.0

2
1

2
.0

2
1

0
.8

6
7

0
.9

6
4

0
.1

4
4

5
6

1
3

1

1
8

7

2
5

0

5
6

.9
8

3
9

.5
1

2
8

.4
4

1
.2

7
6

1
.2

7
6

0
.8

3
1

R
ef

.

0
.3

0
4

0
.2

0
0

0
.2

0
0

0
.2

6
0

0
.2

6
6

0
.0

3
7

3
7

1

5
1

8

5
4

0

5
4

4

5
6

.2
6

3
9

.2
3

2
8

.2
1

0
.0

4
0

0
.0

4
0

0
.0

2
9

M
id

d
le

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.8

4
5

1
.6

1
4

2
.7

4
2

0
.6

8
8

0
.8

7
6

0
.2

7
8

1
1

1

2
0

0

2
4

3

2
8

8

1
6

9
.4

7

7
8

.2
1

5
3

.6
9

1
.1

6
6

0
.2

6
1

0
.5

7
5

3
-D

 M
O

C

0
.8

3
5

0
.4

3
0

1
.3

3
8

0
.3

6
4

0
.4

5
6

0
.1

2
1

1
5

6

2
9

7

3
6

1

4
2

7

1
6

7
.9

4

7
7

.6
9

5
3

.3
8

0
.2

5
4

0
.4

0
8

-0
.0

0
8

R
ef

.

0
.8

3
2

0
.1

0
0

0
.2

4
0

0
.1

8
0

0
.1

8
6

0
.0

5
6

3
7

1

5
1

8

5
4

0

5
4

4

1
6

7
.5

1

7
8

.0
1

5
3

.3
9

0
.0

7
1

0
.0

5
6

0
.0

4
0

L
o

w
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

1
.2

0
5

0
.6

7
4

2
.7

1
2

0
.7

5
2

0
.9

2
3

0
.3

2
6

4
0

1
0

3

1
3

5

1
8

3

2
3

8
.9

6

1
0

5
.0

5

7
0

.4
9

0
.6

5
2

0
.5

5
0

0
.9

8
4

3
-D

 M
O

C

1
.2

0
0

0
.2

1
8

1
.8

8
3

0
.5

0
6

0
.6

1
4

0
.2

0
7

7
4

1
5

5

2
1

6

2
9

9

2
3

7
.7

1

1
0

3
.7

9

6
9

.5
8

0
.1

2
6

-0
.6

5
8

-0
.3

1
3

R
ef

.

1
.1

9
7

0
.0

8
0

0
.2

2
0

0
.1

5
7

0
.1

6
3

0
.0

6
6

3
7

1

5
1

8

5
4

0

5
4

4

2
3

7
.4

1

1
0

4
.4

8

6
9

.8
0

0
.0

8
7

0
.0

6
5

0
.0

4
7

Sp
ec

ifi
c

Pi
n

Po
w

er
 D

at
a

ax
im

u
m

 P
in

 P
o

w
er

P
er

ce
n

t
E

rr
o

r
(a

ss
o

ci
at

ed
 6

8
%

 M
C

)

D
is

tr
ib

ut
io

n
Pe

rc
en

t E
rr

or
 R

es
ul

ts

M
ax

.
E

rr
o
r

(a
ss

o
ci

at
ed

 6
8

%
 M

C
)

A
V

G
 E

rr
o

r

R
M

S
 E

rr
o

r

M
R

E
 E

rr
o

r

of

 A
cc

ur
at

e
Fu

el
 P

in
 P

ow
er

s

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 6

8
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

5
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
.9

%
 M

C

A
vg

. A
ss

em
bl

y
Po

w
er

U
O

2
-1

 P
o

w
er

M
O

X

 P
o

w
er

U
O

2
-2

 P
o

w
er

U
O

2
-1

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

M
O

X

 P
o

w
er

 P
er

ce
n

t
E

rr
o
r

U
O

2
-2

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

156

T
ab

le
 8

.1
5

–
C

5G
7

pi
n

po
w

er
 c

om
pa

ri
so

n
fo

r
ro

dd
ed

 B
 c

on
fig

ur
at

io
n

O
v

er
al

l

2
-D

/1
-D

1
.8

4
0

0
.2

9
2

2
.1

8
1

0
.4

4
5

0
.5

6
2

0
.4

0
5

6
2

1
2

6

1
6

9

2
2

3

3
9

6
.3

0

2
3

6
.0

7

1
8

7
.5

7

0
.2

2
0

0
.2

3
1

0
.1

2
0

3
-D

 M
O

C

1
.8

3
7

0
.1

3
1

1
.1

8
2

0
.3

2
5

0
.4

2
9

0
.2

6
7

1
0

9

2
1

4

2
8

6

3
4

5

3
9

5
.0

2

2
3

6
.2

9

1
8

8
.4

0

-0
.1

0
3

0
.1

3
8

0
.5

6
6

R
ef

.

1
.8

3
5

0
.0

8
3

0
.1

5
7

0
.1

0
5

0
.1

0
8

0
.0

9
8

3
7

1

5
1

8

5
4

0

5
4

4

3
9

5
.4

3

2
3

6
.6

2

1
8

7
.3

4

0
.1

1
2

0
.1

0
0

0
.0

7
8

U
p

p
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.2

0
9

-3
.7

2
4

5
.6

1
1

3
.6

1
7

0
.3

7
8
1

0
.4

4
9

 2

5

7

1
4

3
9

.6
9

2
8

.1
6

2
9

.9
0

-3
.4

8
4

-4
.3

0
5

-2
.5

2
3

3
-D

 M
O

C

0
.2

2
0

1
.3

9
6

3
.3

3
7

1
.6

5
7

1
.7

1
4

0
.2

0
3

 0

1

1
3

4
0

4
1

.7
3

2
9

.8
8

3
1

.3
0

1
.4

7
0

1
.5

5
9

2
.0

1
7

R
ef

.

0
.2

1
7

0
.2

4
0

0
.3

8
0

0
.2

8
5

0
.2

9
0

0
.0

3
4

3
7

1

5
1

8

5
4

0

5
4

4

4
1

.1
2

2
9

.4
2

3
0

.6
8

0
.0

3
5

0
.0

3
4

0
.0

3
2

M
id

d
le

 1
/3

 o
f

F
u

el

2
-D

/1
-D

0
.5

5
6

0
.4

2
8

2
.3

3
4

0
.5

0
7

0
.6

8
1

0
.1

4
3

1
2

6

2
4

4

3
1

5

3
7

3

1
0

6
.1

8

8
1

.7
0

6
5

.3
2

0
.3

5
9

0
.3

5
7

0
.4

5
6

3
-D

 M
O

C

0
.5

5
6

0
.3

9
4

1
.7

8
9

0
.3

7
0

0
.4

4
8
4

0
.1

0
5

1
5

0

3
0

6

3
7

7

4
3

6

1
0

6
.8

0

8
1

.4
6

6
5

.4
6

0
.2

2
6

0
.0

6
3

0
.6

7
9

R
ef

.

0
.5

5
4

0
.1

5
0

0
.2

6
0

0
.1

8
1

0
.1

8
4

0
.0

5
5

3
7

1

5
1

8

5
4

0

5
4

4

1
0

6
.5

6

8
1

.4
1

6
5

.0
2

0
.0

5
6

0
.0

5
8

0
.0

4
6

L
o

w
er

 1
/3

 o
f

F
u

el

2
-D

/1
-D

1
.2

1
7

1
.4

2
7

3
.1

2
1

0
.7

4
7

0
.9

4
3

0
.4

3
4

7
4

1
4

3

1
8

2

2
3

0

2
5

0
.4

3

1
2

6
.2

1

9
2

.3
4

1
.0

8
4

0
.3

4
1

0
.7

6
7

3
-D

 M
O

C

1
.1

9
3

-0
.5

5
9

1
.4

9
7

0
.5

3
7

0
.6

1
5

0
.3

0
3

5
6

1
2

5

1
7

3

2
2

0

2
4

6
.5

0

1
2

4
.9

5

9
1

.6
4

-0
.5

0
5

-0
.6

6
6

0
.0

0
0

R
ef

.

1
.2

0
0

0
.0

9
0

0
.2

1
0

0
.1

4
6

0
.1

5
0

0
.0

7
3

3
7

1

5
1

8

5
4

0

5
4

4

2
4

7
.7

5

1
2

5
.7

8

9
1

.6
4

0
.0

9
1

0
.0

7
3

0
.0

5
5

Sp
ec

ifi
c

Pi
n

Po
w

er
 D

at
a

M
ax

im
u

m
 P

in
 P

o
w

er

P
er

ce
n

t
E

rr
o

r
(a

ss
o

ci
at

ed
 6

8
%

 M
C

)

D
is

tr
ib

ut
io

n
Pe

rc
en

t E
rr

or
 R

es
ul

ts

M
ax

.
E

rr
o
r

(a
ss

o
ci

at
ed

 6
8

%
 M

C
)

A
V

G
 E

rr
o

r

R
M

S
 E

rr
o

r

M
R

E
 E

rr
o

r

of

 A
cc

ur
at

e
Fu

el
 P

in
 P

ow
er

s

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 6

8
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

5
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
%

 M
C

#
 o

f
F

u
el

 P
in

s
W

it
h

in
 9

9
.9

%
 M

C

A
vg

. A
ss

em
bl

y
Po

w
er

U
O

2
-1

 P
o

w
er

M
O

X

 P
o

w
er

U
O

2
-2

 P
o

w
er

U
O

2
-1

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

M
O

X

 P
o

w
er

 P
er

ce
n

t
E

rr
o
r

U
O

2
-2

 P
o

w
er

 P
er

ce
n

t
E

rr
o

r

157

 Finally, some additional runs were executed on Titan to obtain more scaling

information on the 3-D MOC kernel. These calculations did not run till convergence,

instead only a few iterations were performed to obtain timing information. The original

3-D benchmark was fully decomposed in space to run on 156,060 processors and the

unrodded extended benchmark case was fully decomposed in space to run on 46,818

processors. The subdomain sizes in each of these cases was a single pin cell so these data

points represent the weak scaling in space of the 3-D MOC kernel. Figure 8.19 shows the

parallel efficiency of the spatial decomposition weak scaling relative to a 2x2x2 pin cell

case decomposed onto all 8 cores on a single NUMA node on Titan to provide a

consistent reference. From the data in Figure 8.19 the spatial decomposition weak scaling

is observed to be excellent with greater than 95% efficiency to O(10
5
) processors.

Figure 8.19 – Spatial decomposition weak scaling for C5G7

8
46818

156060

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

P
ar

al
le

l E
ff

ic
ie

n
cy

Number of Processors

158

8.3 Realistic PWR Assembly
The problem studied in this section is adapted from the suite of CASL AMA Benchmarks

[71]. In this suite there is a specification for a single 3-D PWR assembly, this is

essentially the problem analyzed here, although some slight modification to the problem

specifications is needed to accommodate a present limitation in the 3-D geometry

modeling and modular ray tracing. This is described in more detail in the following

section. The purpose of this benchmark is to begin to estimate the computational

requirements of 3-D MOC and to evaluate the accuracy of 3-D MOC for a fairly realistic

model. In addition to the increased geometric complexity of the model compared to the

previous problems examined in this chapter, is the increased complexity of the cross

sections and material descriptions in this model. The previous problems provided

macroscopic cross sections in a few energy groups. However, in this problem the cross

sections contain 60 energy groups, and the problem specifies only the material

composition, so the macroscopic cross sections must be computed from this information

and microscopic cross section data. A key step in this process is the resonance calculation

which was performed here using the subgroup method [78]. Therefore, an additional

feature in the analysis of this problem is the dependence of the resonance calculation on

the dimensionality of the transport solution.

8.3.1 Model Description and Calculation Details
As mentioned previously, the model studied here deviates slightly from the specification

in order to accommodate a limitation of the 3-D modular ray tracing implementation.

This present limitation is that the modular ray tracing units must have a uniform height

and there is currently no way to describe an axially heterogeneous material description in

the ray tracing module. Therefore, the material boundaries of the model's geometry must

align with the ray tracing modules. This requires that only the axial description of the

original specification be modified. The modified axial description is shown in Figure

8.20. This limitation will be straightforward to eliminate in future work by allowing for

axially heterogeneous material descriptions within the ray tracing module.

159

Figure 8.20 – Axial description of realistic PWR assembly (not to scale)

 The radial description of the assembly is given in Figure 8.21. The assembly is a

standard 17x17 PWR design. It has a uniform fuel enrichment of 3.1% U-235. The

moderator contains 1300 ppm boron and the calculation is for hot zero power conditions.

The model also includes a pellet-clad gap and the inter-assembly gap. The nozzles, core

plate and reflector are each their own homogenous materials, and the grid spacers are

homogenized into the coolant. The nozzle gap regions contain the guide tube structures.

The rest of the detailed material compositions and geometry description are excluded for

brevity, for the complete information it is suggested to consult the reference [71].

Lower Reflector (9.84 cm)

Upper Reflector (9.84 cm)

Lower Core Plate (4.92 cm)

Lower Nozzle Gap (6.56 cm)

Fuel (57.4 cm)

Fuel (47.56 cm)

Lower End Grid (3.28 cm)

Bottom Nozzle (6.56 cm)

Intermediate Spacer Grid (3.28 cm)

Plenum (8.20 cm)

Upper End Grid (3.28 cm)
Plenum (3.28 cm)

Top Nozzle (6.56 cm)

Top Nozzle Gap (6.56 cm)

Upper Core Plate (4.92 cm)

160

Figure 8.21 – Realistic PWR assembly radial geometry

 Two models were developed, one for the 3-D MOC solver, and one for the

2-D/1-D solver. The cross sections are discretized into 60 neutron energy groups in both

cases. The angular discretization used for the 2-D/1-D model was the Chebyshev-Gauss

product quadrature with 16 azimuthal angles and 4 polar angles, and the S16 level

symmetric quadrature was used for the 3-D MOC calculation. The ray spacing used was

0.05 cm. The models also made use of quarter symmetry and the ray tracing module

dimensions were 10.75 cm x 10.75 cm x 1.64 cm. For the spatial discretization of the 3-D

MOC model the fuel pins contained 224 flat source regions, the guide tubes had 128 flat

source regions and the cells for the structural components and reflector had 64 flat source

regions. The 2-D/1-D model used 56, 32, and 16 flat source regions for each pin cell type

respectively. The difference is that the 3-D MOC model discretized each pin cell into

four axial levels. The total number of flat source regions, segments and long rays is given

in Table 8.16 for the 3-D MOC model. Additionally, the model was run with P0

scattering rather than transport corrected P0 scattering so that the 2-D/1-D model could

converge.

 The 3-D MOC model was run with a 261 spatial domains, 16 angular domains,

and 4 threads for each MPI process for a total of 16,704 processors. The 2-D/1-D

calculation was run with 46 spatial domains and 8 angular domains and 1 thread for each

161

MPI process for a total of 368 processors. The convergence criteria used was 1.e-5 for

εkeff and εflux.

Table 8.16 – Realistic PWR problem size parameters

Problem Size Parameter 3-D MOC Model Value 2-D/1-D Model Value

nseg 55,952,023,038 28,981,236

nlongray 2,238,077,088 407,008

nreg 3,697,984 157,496

nangoct 36 64

 Finally, as a result of the slight modification to the axial description of the model,

there is no longer a quality Monte Carlo reference solution for comparison.

Consequently, there is only a comparison between the 3-D MOC result and a 2-D/1-D

result.

8.3.2 Results and Discussion
Table 8.17 shows the computed keff for each case and the number of iterations to

converge, as well as run time.

Table 8.17 – Comparison of realistic PWR problem

 3-D MOC 2-D/1-D Difference

keff 1.17180 1.17323 143 pcm

No. of Iterations 7 18 11

Run Time 2103 s 630 s 1437 s

 The primary difference in the keff is the different angular quadratures used for the

two models. From the C5G7 results it was observed that the differences in these

quadratures could easily account for 143 pcm. The ideal comparison would be to have the

same angular quadrature for both, however, it was observed that the 2-D/1-D solver could

not converge when using the S16 quadrature. This is likely due to a bug in the

implementation of the 2-D/1-D solver. Additionally, the 3-D MOC could not successfully

perform the ray tracing using the Chebyshev-Gauss quadrature, and that is likely caused

by a different coding problem.

 The number of iterations to converge is significantly higher for the 2-D/1-D

solver and this is because the iteration scheme must be under-relaxed to remain stable

when solving a problem like the realistic PWR assembly. Additionally, the 2-D/1-D

162

solver is using a DP0 update for the angular flux boundary condition in the SDD-CMFD,

while the 3-D MOC is using the P1 update. It is remarkable though that the 3-D MOC

solution is able to converge in just 7 iterations. This is the same number of iterations

required to converge the Takeda problem which is drastically less complex. This is a

testament to the effectiveness of the SDD-CMFD. Finally, despite the 3-D MOC using a

factor of 45 more processors than the 2-D/1-D solution, it was still a factor of 3 slower in

run time, which again highlights the computational burden of 3-D MOC.

8.4 Summary
In this chapter three numerical benchmark problems were evaluated with the parallel 3-D

MOC kernel. The Takeda problem showed that the implementation of the 3-D MOC

method is accurate and that the mesh converged solution is within the error of the

benchmark reference. Additionally, the effectiveness of the SDD-CMFD was

demonstrated and the parallel efficiency was demonstrated for this problem.

 The C5G7 showed that the discretizations available for the 3-D MOC are not

quite sufficient to achieve a mesh converged solution, but as the discretizations were

refined the solution did approach the benchmark reference. This also provides confidence

in the accuracy of the method. However, future work is needed to obtain solutions for

more refined discretizations, particularly in angle, which will better show the accuracy

and cost of the method compared to the other benchmark participants' results. The

parallel efficiency for this problem was also observed to be greater than 90% with only

spatial decomposition out to 156,060 processors.

 Finally, a realistic PWR assembly was simulated and compared to 2-D/1-D

results. The results of this problem contained some inconsistencies that cannot yet be

resolved, thus making it difficult to draw any final conclusions. However, it was observed

that the SDD-CMFD acceleration of the 3-D MOC was still very effective, even for such

a complex problem. Furthermore, stability issues were encountered in the 2-D/1-D

simulation, that are inherent to this method, and the 3-D MOC method had no stability

issues. Also, the inconsistencies between the 3-D MOC and 2-D/1-D solutions is

attributed to the differences in the models.

163

Chapter 9

SUMMARY, CONCLUSIONS, AND

CONTINUING WORK

9.1 Summary of Work
This thesis began with the assertion that despite its computational intensity, the method of

characteristics is a viable solution method for whole core, pin resolved, 3-D transport

analysis of light water reactors. This is particularly true when compared to the other

transport methods that have received significant attention for LWR application, such as

the discrete ordinates method and the Monte Carlo method. However, each of these

methods was shown to still have some outstanding issues for LWR applications that are

currently being addressed.

 In Chapter 2 the derivation of the 3-D MOC equations was presented, with

particular attention to the important approximations that are commonly applied to 2-D

MOC. It was also shown that after the transformation to the characteristic direction, the

final form of the discrete MOC equations in 3-D are almost identical to the 2-D form.

The primary difference in 2-D and 3-D MOC is the discretization of the problem. One of

the original aspects of the research here is the extension of the modular ray tracing

concept from 2-D MOC to 3-D MOC in a way that was slightly different from previous

work and that reduces the number of angles that must be stored for 3-D MOC.

 In Chapter 3, the specific details of the implementation of the MOC equations

were presented. This chapter leveraged the considerable progress made in previous work

on 2-D MOC methods over the last several years, which helped ensure that the serial

performance of the 3-D MOC kernel is nearly as good as what is observed for 2-D MOC

kernels. The other purpose of presenting this detail is to remove any ambiguity of how

164

the equations are mapped to the programming model, which was an essential component

needed for the work done in Chapter 4, Chapter 5, and Chapter 6.

 Once a clear description of the 3-D MOC kernel was established, the methods

were presented for parallelizing the kernel in Chapter 4. The parallelization used both

shared and distributed memory models and included three types of decomposition. The

parallelization of the space and angle phase space was performed using a distributed

memory model. The communication pattern for the spatial decomposition involved using

non-blocking point-to-point communication between neighboring domains, which is

required to exchange the boundary condition between the domains. The communication

pattern for the angular decomposition involved an all reduce operation to compute the

scalar flux from partial sums accumulated on each angular domain. The remaining

decomposition for the characteristic rays used the shared memory model for very fine

grained parallelism.

 For each decomposition the methods by which the domains were partitioned was

also described in Chapter 4. For the spatial domain, the concept of modular ray tracing

was again leveraged, since it superimposes a structured Cartesian grid over the problem

domain, which simplifies the partitioning algorithm. The Z-order space filling curve was

used to define a tree data structure through which this grid is indexed and partitioned. The

use of a space filling curve helps to preserve several properties that are advantageous for

achieving good parallel performance. The angular domain was partitioned using a greedy

algorithm, since the work for each angle may vary considerably, and without a good load

balance from the partitioning it was not possible to achieve acceptable parallel

performance. The ray decomposition that was implemented with OpenMP uses a built in

library routine for dynamic scheduling, and the MPI standard was used to implement the

distributed memory parallelism.

 The next phase in the research, was the development of a performance model

capable of predicting the execution time and other performance metrics of the MOC

kernel as a function of the problem size input and computer architecture hardware

properties. The model was validated and used to predict and to analyze the performance

of the MOC kernel for a wide range of problem inputs on a wide variety of architectures

165

without having to actually execute the code. The development and application of this

model was another original aspect of the research performed as a part of this thesis.

 Chapter 5 presented the experimental validation of the performance model for

serial execution, and the experimental procedure and measurement system for collecting

the data to validate the model was described in detail. The methods used to measure the

hardware properties required to evaluate the performance model were also presented. The

experimental measured values and the computed values of the model were compared for

several metrics. The model was shown to predict the number of FLOPs exactly, and the

number of loads to within about 12% of the measured values. When the cache misses

were known, the execution time predicted by the model was shown to agree with

measurement to within 8%. This was bounded by the assumed cache misses, where the

lower bound is zero and the upper bound assumes a cache miss at every level of cache for

each load. The serial performance of the kernel was base lined between 440 and 490

MFLOPS, which was approximately 4.5% of the machine's theoretical peak performance

and 50% of the kernel's theoretical upper bound for performance.

 In Chapter 6 the performance model was applied to parallel performance and first

validated against experiments for the prediction of the parallel efficiency and speedup.

This was done separately for each type of parallel decomposition. Again, the

experimental procedure and methods were described for measuring the coefficients of the

hardware properties required by the model. The performance model was shown to predict

the parallel efficiency to within 7% (absolute difference) of the measured parallel

efficiency for all decompositions. It was noted that the model assumes a perfect scaling in

the hardware, whereas this may not always be the case. Furthermore, the machine used to

collect the performance data has only one floating point arithmetic unit for every two

cores, and this raised questions about what is the most meaningful or consistent choice to

use as a reference calculation when measuring parallel efficiency.

 Once the validation of the model was established for parallel execution, the

remainder of the Chapter 6 focused on the analysis of the sensitivity of this model to the

network hardware characteristics and OpenMP run time library routines. It was found

that the overhead for space or angle decomposition is relatively insensitive to the network

hardware properties, and that networks on today's high performance compute clusters are

166

probably already sufficiently fast to achieve the asymptotic lower bound of the overhead.

The algorithm used for the MPI_Allreduce operation was shown to have a nontrivial

impact on the angular decomposition overhead, and algorithms that are more optimal for

large message sizes were shown to have a lower overhead. When analyzing the ray

decomposition's sensitivity to the OpenMP run time library, it was found that the bottle

neck limiting parallel efficiency is the barriers for synchronization. The model was then

evaluated for various parallel decompositions in an attempt to understand the

decomposition strategies for achieving optimal parallel efficiencies. It was determined

that it was most important to optimize the spatial decomposition first, and then the

optimal angular and ray decomposition depended on how finely in space the problem was

decomposed. For typical discretizations of a pin cell, it was noted that a spatial

subdomain consisting of 2x2x2 or 4x4x4 pin cells can be efficiently parallelized with an

additional 16 processors. The strong scaling predicted by the performance model for a

quarter core sized problem was also evaluated and determined to scale to nearly 30

million processors, with a parallel efficiency of at least 90%.

 The next phase of the research was to focus on the optimization of the solution

algorithm. Based on the considerable previous research in methods for accelerating the

transport equation, the focus of the work here was on the well-established coarse mesh

finite difference (CMFD) method. Chapter 7 began with a description of the CMFD

method as a non-linear diffusion synthetic acceleration, which has been shown to perform

well for reactor problems. Other researchers have also recently extended CMFD to

problems that are decomposed in space. This method was implemented and shown to

reproduce the convergence properties of model problems in 1-D, and that the

convergence properties for 3-D transport with heterogeneous domains behaved similarly.

 Finally, in Chapter 8 the 3-D MOC kernel was used to perform several numerical

3-D transport benchmarks commonly used in the reactor physics community. Three

problems were investigated, and for the first benchmark, the Takeda benchmark, the 3-D

MOC method was shown to provide excellent accuracy and to scale well on several

thousand processers. The effectiveness of the CMFD was also shown to be very good,

reducing the number of iterations by an order of magnitude for most decompositions. It

167

was also shown that the number of iterations to converge with CMFD was relatively

insensitive to the number of spatial domains.

 The results of the next benchmark, the C5G7 heterogeneous MOX core, were not

as good as the Takeda benchmark, but still provided reasonable accuracy. The principal

issues uncovered were the need for a higher order angular quadrature to improve the

accuracy and that the product quadratures tended to perform a little better than the level

symmetric quadrature, which was consistent with the observations from the original

benchmark report. For this problem the accuracy and computational cost of the 3-D MOC

method was also compared to the 2-D/1-D solution method. It was noted that the

computational cost of the 3-D MOC was considerably higher (i.e. 20x to 200x that of the

2-D/1-D method), and the accuracy was shown to be only marginally better for consistent

discretizations. Finally, with the C5G7 problem the parallel efficiency of the 3-D MOC

kernel was demonstrated to scale to O(10
5
) processors with >95% efficiency.

 For the last benchmark problem of a realistic PWR assembly, the model had to

deviate slightly from the original benchmark specification to accommodate a modeling

deficiency in the code. This deviation only required changing the relative heights of the

different material regions. The 3-D MOC results were again compared to 2-D/1-D results

and the differences in eigenvalue were minor. The 3-D MOC case converged very

efficiently and the run time was approximately 35 minutes on 16704 processors while the

2-D/1-D case ran in 10 minutes on 368 processors.

9.2 Suggested Future Research
The work performed in this research has provided some original insights that have

contributed to the current understanding of the 3-D MOC. However, the overall

understanding and experience with 3-D MOC is still far less than that of other 3-D

transport methods, or even the 2-D MOC, for which there is an extensive research base.

Based on the research here and the observations of other researchers, there are several

areas of future research that are important to further establish the viability of the parallel

3-D MOC for practical reactor analysis.

168

9.2.1 Modular Rays and Angular Quadratures
The first area of recommended future research is related to the construction of the

modular rays. In Chapter 2 it was noted that the method used in this work could be

improved, as it was not necessarily an improvement over previous methods. It is

suggested that further research be performed to investigate more optimal methods of

determining the modular ray directions and spacing. Closely related to this is the choice

of a starting quadrature for the discrete ordinates. The results from Chapter 8 suggest that

product quadratures may be better for reactor problems, and therefore one area of future

work should be to investigate in more detail optimal quadratures for LWR applications.

Additionally, in the current work the renormalization of the weights of the discrete

ordinates has only been demonstrated for the level symmetric quadrature. More

generalized techniques for recomputing the weights that can be applied to product

quadratures should also be investigated in future work. Another alternative is to attempt

to develop new angular quadratures that are already modular.

9.2.2 Spatially Higher Order Sources
Another suggested area of future research is to investigate higher order sources. It has

been shown in previous work [73] that using a linear source in 2-D can substantially

reduce requirements for the spatial discretization. For 3-D problems, it has been shown to

provide speedup factor of about a factor of 8 [74]. It is expected that similar results can

be obtained for the implementation performed here. Additionally, it may be worthwhile

to investigate quadratic sources or sources that are only linear in the axial direction as a

more optimal way of representing the source.

9.2.3 Acceleration Techniques
Considerable work has been done within the transport community to investigate

acceleration techniques. In particular, there is the class of methods for boundary

projection acceleration [59], and also a similar class of methods, known as DPN

acceleration [75], that may better accelerate the interface angular fluxes on spatial

subdomains. Acceleration techniques that are higher order in angle, such as an angularly

169

dependent form of CMFD or coarse mesh rebalance (CMR) [76], could also be better

than traditional CMFD for accelerating the subdomain interface angular fluxes.

9.2.4 Optimizing Performance and Parallelism for Energy Groups
Further research is suggested on the overall performance and parallelism of the 3D MOC

kernel. Recently, it was shown that moving the loop over groups to be the inner-most

loop, rather than the outermost loop can provide better performance [77]. This is

consistent with the observations in Chapter 5, which showed that nearly half the kernel

time was spent building the long ray information, and considerable savings could be

achieved by inverting the looping structure for the energy groups instead of rebuilding

each long ray for each group. This could lead to a potential speedup by a factor of G,

where G, is the number of neutron energy groups. However, this would change the

convergence properties of the scattering source, which may require more iterations to

converge. If this iteration scheme is shown to still converge reasonably well with an

acceleration technique, then it could be a significant step forward in improving

performance. The result of this research would also be important for guiding the research

into parallelization over the energy domain.

9.2.5 Mapping to GPU architectures
The final area to consider for future work is modifying the kernel's on-node problem to

execute on a GPU instead of a multi-core processor. Many high performance compute

clusters are currently moving towards this type of heterogeneous architecture. This

research would be important if the 3-D MOC algorithm is going to be able to take

advantage of the near-term future architectures.

9.3 Final Remarks
The research in this thesis has extended the state of the current knowledge of 3-D MOC

and its application to reactor problems. The goal of developing a highly scalable parallel

algorithm for 3-D MOC was achieved, and many of the ideas developed and explored for

the parallelism and performance modeling can be applied in a relatively straightforward

manner to other transport methods. It is still not clear which 3-D transport method is best

170

for whole core pin resolved LWR analysis, but as research in this area continues, there is

now a well defined and quantifiable method to establish the cost, performance, and

accuracy of the 3-D MOC method, which can help establish the basis for a consistent

comparison and clarify the most important issues.

171

BIBLIOGRAPHY

[1] G. C. BILODEAU, W.R. CALDWELL, J.P. DORSEY, J.G. FAIREY, and R.S.

VARGA, “PDQ-An IBM-704 Code to Solve the Two-dimensional Few-group

Neutron Diffusion Equations,” Tech. Rep. WAPD-TM-70, Bettis Plant,

Westinghouse Electric Corporation (1957).

[2] K.S. SMITH and J.D. RHODES, “CASMO-4 Characteristics Methods for Two-

Dimensional PWR and BWR Core Calculations,” Transactions of the American

Nuclear Societcy, 83, 294 (2000).

[3] R. SANCHEZ, I. ZMIJAREVIC, M. COSTE-DELCLAUX, E. MASIELLO, S.

SANTANDREA, E. MARTINOLLI, L. VILLATE, N. SCHWARTZ, and N.

GULER, “APOLLO2 Year 2010,” Journal of Nuclear Engineering and

Technology, 42, 5, 474-499 (2010).

[4] H.G. JOO, J.Y. CHO, K.S. KIM, C.C. LEE, and S.Q. ZEE, “Methods and

Performance of a Three-Dimensional Whole-Core Transport Code DeCART,”

Proceedings of PHYSOR 2004 - ThePhysics of Fuel CYcles and Advanced Nuclear

Systems, Chicago, IL, USA, April 25-29 (2004), [CD-ROM].

[5] S.G. HONG and N.Z. CHO, “CRX: A Code for Rectangular and Hexagonal

Lattices Based on the Method of Characteristics,” Annals of Nuclear Energy, 25,

547-565 (1998).

[6] T.M. EVANS, A.S. STAFFORD, R.N. SLAYBAUGH, and K.T. CLARNO,

“Denovo: New Three-Dimensional Parallel Discrete Ordinates Code in SCALE,”

Journal of Nuclear Technology, 171, 2, 171-200 (2010).

[7] W.S. YANG, M.A. SMITH, C.H. LEE, A.B. WOLLABER, D. KAUSHIK, and

A.S. MOHAMED, “Neutronics Modeling and Simulations of SHARP for Fast

Reactor Analysis,” Journal of Nuclear Engineering and Technology, 42, 12, 520-

545 (2010).

[8] K. S. SMITH, “Monte Carlo for Practical LWR Analysis: What’s Needed to Get to

the Goal,” Transactions of the American Nuclear Society, 104, 313 (2011).

172

[9] D.J. KELLY, T.M. SUTTON, and S.C. WILSON, “MC21 Analysis of the Nuclear

Energy Agency Monte Carlo Performance Benchmark Problem,” Proceedings of

PHYSOR 2012 - Advances in Reactor Physics - Linking Research, Industry, and

Education, Knoxville, TN, USA, April 15-20 (2012), [CD-ROM].

[10] “Consortium for Advanced Simulation of Light Water Reactors (CASL),”

http://www.casl.gov/.

[11] K.S. SMITH and B. FORGET, “Challenges in the Development of High-Fidelity

LWR Core Neutronics Tools,” Proceedings of the International Conference on

Mathematics and Computational Methods Applied to Nuclear Science and

Engineering (M&C 2013), Sun Valley, ID, USA, May 5-9 (2013), [CD-ROM].

[12] M.J. LEE, H.G. JOO, D.J. LEE, K.S. SMITH, “Monte Carlo Reactor Calculation

with Substantially Reduced Number of Cycles,” Proceedings of PHYSOR 2012 -

Advances in Reactor Physics - Linking Research, Industry, and Education,

Knoxville, TN, USA, April 15-20 (2012), [CD-ROM].

[13] G. YESILYURT, W.R. MARTIN, and F.B. BROWN, “On-the-Fly Doppler

Broadening for Monte Carlo Codes,” Journal of Nuclear Science and Engineering,

171, 239-257 (2012).

[14] J.E. HOOGENBOOM, W.R. MARTIN, and B. PETROVIC, “The Monte Carlo

Benchmark Test - Aims, Specifications, and First Results,” Proceedings of the

International Conference on Mathematics and Computational Methods Applied to

Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, Brazil, May 8-12

(2011), [CD-ROM].

[15] E.E. LEWIS and W.F. MILLER, JR., Computational Methods of Neutron

Transport, Wiley-Interscience (1984).

[16] K.R. KOCH, R.S. BAKER, and R.E. ALCOUFFE, “Solution of the First-Order

Form of Three-Dimensional Discrete Ordinates Equations on a Massively Parallel

Machine,” Transactions of the American Nuclear Society, 65, 198-199 (1992).

[17] Oak Ridge Leadership Computing Facility, “Oak Ridge Leadership Computing

Facility,” (2012), http://www.olcf.ornl.gov/computing-resources/jaguar/.

[18] S. BALAY, J. BROWN, K. BUSCHELMAN, W.D. GROPP, D. KAUSHIK, M.G.

KNIPLEY, L.C. McINNES, B.F. SMITH, and H. ZHANG, “PETSc Web page,”

(2013), http://www.mcs.anl.gov/petsc/.

[19] Argonne National Laboratory, “Intrepid - Argonne Leadership Computing

Facility,” (2013), http://www.alcf.anl.gov/intrepid.

[20] Jülich Supercomputing Center, “Forschungszentrum Jülich - JUGENE”, (2012),

http://www.fz-juelich.de/jsc/jugene.

http://www.casl.gov/
http://www.olcf.ornl.gov/computing-resources/jaguar/
http://www.mcs.anl.gov/petsc/
http://www.alcf.anl.gov/intrepid
http://www.fz-juelich.de/jsc/jugene

173

[21] D. KAUSHIK, M.A. SMITH, A.B. WOLLABER, B.F. SMITH, A. SIEGEL, and

W.S. YANG, “Enabling High-Fidelity Neutron Transport Simulations on Petascale

Architectures,” Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis, Portland, OR, USA, November 14-

20 (2009).

[22] S.E. KELLER and C.R.E. DE OLIVEIRA, “Two-dimensional C5G7 MOX Fuel

Assembly Benchmark Calculations using the FEM-PN code EVENT,” Progress in

Nuclear Energy, 45, 2-4, 255-263, (2004).

[23] R.J.J. STAMMʼLER and M.J. ABBATE, Methods of Steady-State Reactor Physics

in Nuclear Design, Academic Press (1983).

[24] E.A. VILLARINO, R.J.J. STAMM'LER, A.A. FERRI, and J.J. CASAL, “HELIOS:

Angularly Dependent Collision Probabilities,” Journal of Nuclear Science and

Engineering, 112, 16-31 (1992).

[25] D.B. JONES, K.E. WATKINS, and M.L. WILLIAMS, “CPM3 Computer Code

Manual, vol 1, Theory and Numerics Manual,” Tech. Rep. EPR-CPM-001-M-001,

Revision A, Electric Power Research Institute (2000).

[26] G. MARLEAU, R. ROY, and A. HÉBERT, “DRAGON: A Collision Probability

Transport Code for Cell and Supercell Calculations,” Tech. Rep. IGE-157, Institut

de génie nucléaire, Ecole Polytechnique de Montréal (1994).

[27] Global Nuclear Fuels, “LANCR02 Lattice Physics Model Description,” Tech. Rep.

NEDO-33376 Rev. 1, Nuclear Regulatory Commission (June 2009).

[28] W.M. STACEY, Nuclear Reactor Physics, 2
nd

 Edition, Wiley-VCH (2007).

[29] J. ASKEW, “A Characteristics Formulation of the Neutron Transport Equation in

Complicated Geometries,” Tech. Rep. AEEW-R-1108, United Kingdom Atomic

Energy Authority (1972).

[30] M.J. HALSALL, “CACTUS, A Characteristics Solution to the Neutron Transport

Equations in Complicated Geometries,” Tech. Rep. AEEW-R-1291, United

Kingdom Atomic Energy Authority (1980).

[31] G.J. WU and R. ROY, “A new characteristics algorithm for 3D transport

calculations,” Annals of Nuclear Energy, 30, 1-16 (2003).

[32] J. B. TAYLOR, D. KNOTT, and A.J. BARATTA, “A Method of Characteristics

Solution to the OECD/NEA 3D Neutron Transport Benchmark Problem,”

Proceedings of the Joint International Topical Meeting on Mathematics and

Computation and Supercomputing in Nuclear Applications (M&C+SNA 2007),

Monterey, CA, USA, April 15-19 (2007), [CD-ROM].

174

[33] Z. LIU, H. WU, L. CAO, Q. CHEN, and Y. LI, “A new three-dimensional method

of characteristics for the neutron transport calculation,” Annals of Nuclear Energy,

31, 447-454 (2011).

[34] M. DAHMANI, G.J. WU, R. ROY, and J. KOCLAS, “Development and

Parallelization of the Three-Dimensional Characteristics Solver MCI of

DRAGON,” Proceedings of PHYSOR 2002, Seoul, Korea, October 7-10 (2002),

[CD-ROM].

[35] G.C. POMRANING, “Asymptotic and Variational Derivations of the Simplified PN

Equations,” Annals of Nuclear Energy, 20, 623-637 (1993).

[36] D. LEE, T. KOZLOWSKI, T. DOWNAR, C. LEE, and H.C. LEE, “Application of

SP3 Approximation to MOX Transient Analysis in PARCS,” Transactions of the

American Nuclear Society, 91, 252-256 (2004).

[37] M. TATSUMI and A. YAMAMOTO, “Advanced PWR Core Calculation Based on

Multi-group Nodal-Transport Method in Three-dimensional Pin-by-Pin Geometry,”

Journal of Nuclear Science and Technology, 40, 376-387 (2003).

[38] J.Y. CHO, H.G. JOO, K.S. KIM, and S.Q. ZEE, “Three-Dimensional

Heterogeneous Whole Core Transport Calculation Employing Planar MOC

Solutions,” Transactions of the American Nuclear Society, 87, 234-236 (2002).

[39] N.Z. CHO, G.S. LEE, and C.J. PARK, “A Fusion Technique of 2-D/1-D Methods

for Three-Dimensional Whole-Core Transport Calculations,” Proceedings of the

Korean Nuclear Society, Kwangju, Korea (May, 2002).

[40] B.W. KELLEY and E.W. LARSEN, “2D/1D Approximations to the 3D Neutron

Transport Equation. I: Theory,” Proceedings of the International Conference on

Mathematics and Computational Methods Applied to Nuclear Science and

Engineering (M&C 2013), Sun Valley, ID, USA, May 5-9 (2013), [CD-ROM].

[41] P.K. ROMANO and B. FORGET, “Parallel Fission Bank Algorithms in Monte

Carlo Criticality Calculations,” Journal of Nuclear Science and Technology, 170,

125-135 (2012).

[42] B. KOCHUNAS, T.J. DOWNAR, S. MOHAMED, and J.W. THOMAS,

“Improved Parallelization of the Modular Ray Tracing in the Method of

Characteristics Code DeCART,” Proceedings of the Joint International Topical

Meeting on Mathematics and Computation and Supercomputing in Nuclear

Applications (M&C+SNA 2007), Monterey, CA, USA, April 15-19 (2007), [CD-

ROM].

[43] A. YAMAMOTO, Y. KITAMURA, Y. YAMANE, “Computational efficiencies of

approximated exponential functions for transport calculations of the characteristics

method,” Annals of Nuclear Energy, 31, 1027-1037, (2004).

175

[44] OpenMP Architecture Review Board “OpenMP Application Program Interface

Version 3.1,” http://openmp.org/wp/openmp-specifications/, July (2011).

[45] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard

Version 2.2,” http://www.mpi-forum.org/docs/mpi-2.2/, September (2009).

[46] A. SIEGEL, “High Performance Computing and Multiphysics Methods,”

(Presentation at MeV School, Argonne National Laboratory, Argonne, IL, July 26,

2011).

[47] S. KOSAKA and E. SAJI, “Transport Theory Calculation for a Heterogeneous

Multi-Assembly Problem by Characteristics Method with Direct Neutron Path

Linking Technique,” Journal of Nuclear Science and Technology, 37, 12, 1015-

1023 (2000).

[48] M. BADER, Space-Filling Curves: An Introduction with Applications in Scientific

Computing, Springer (2013).

[49] R.W. VUDUC, Automatic Performance Tuning of Sparse Matrix Kernels, Ph.D.

thesis, University of California, Berkeley (2003).

[50] R. THAKUR, R. RABENSEIFNER, and W.D. GROPP, “Optimization of

Collective Communication Operations in MPICH,” International Journal of High

Performance Computing Applications, 19, 1, 49-66 (2005).

[51] R. RABENSEIFNER, “Optimization of Collective Reduction Operations,”

Computational Science - ICCS 2004, Springer (2004).

[52] S. BROWNE, J. DONGARRA, N. GARNER, G. HO, and P. MUCCI, “A Portable

Programming Interface for Performance Evaluation on Modern Processors,”

International Journal of High Performance Computing Applications, 14, 3, 189-

204 (2004).

[53] R.H. SAAVEEDRA-BARRERA, CPU Performance Evaluation and Execution

Time Prediction Using Narrow Spectrum Benchmarking, Ph.D. thesis, University

of California, Berkeley (1992).

[54] Oak Ridge Leadership Computing Facility, “Introducting Titan - The World's #1

Open Science Superomputer,” (2013), http://www.olcf.ornl.gov/titan/.

[55] D.K. PANDA, “OSU Micro-Benchmarks,” (2013), http://mvapich.cse.ohio-

state.edu/benchmarks/.

[56] J.M. BULL and F. REID, “OpenMP Microbenchmarks V2.0,” (2013),

http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_i

ndex.html.

http://openmp.org/wp/openmp-specifications/
http://www.mpi-forum.org/docs/mpi-2.2/
http://www.olcf.ornl.gov/titan/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html

176

[57] J.M. BULL, “Measuring Synchronisation and Scheduling Overheads in OpenMP,”

European Workshop on OpenMP (EWOMP '99), Lund, Sweden, October (1999).

[58] M.L. ADAMS and E.W. LARSEN, “Fast iterative methods for discrete-ordinates

particle transport calculations,” Progress in Nuclear Energy, 40, 1, 3-159, (2002).

[59] M.L. ADAMS and W.R. MARTIN, “Boundary Projection Acceleration: A New

Approach to Synthetic Acceleration of Transport Calculations,” Journal of Nuclear

Science and Engineering, 100, 177-189 (1988).

[60] S. SANTANDREA and R. SANCHEZ, “Acceleration techniques for the

characteristic method in unstructured meshes,” Annals of Nuclear Energy, 29, 323-

352 (2002).

[61] K.S. SMITH, “Nodal Method Storage Reduction by Nonlinear Iteration,”

Transactions of the American Nuclear Society, 44, 265 (1983).

[62] N.Z. CHO, “Fundamentals and Recent Developments of Reactor Physics

Methods,” Journal of Nuclear Engineering and Technology, 37, 1, 25-78 (2005).

[63] H.J. KOPP, “Synthetic method solution for the transport equation,” Journal of

Nuclear Science and Engineering, 17, 65 (1963).

[64] E.W. LARSEN and B.W. KELLEY, “CMFD and Coarse-Mesh DSA,”

Proceedings of PHYSOR 2012 - Advances in Reactor Physics - Linking Research,

Industry, and Education, Knoxville, TN, USA, April 15-20 (2012), [CD-ROM].

[65] B.W. KELLEY and E.W. LARSEN, “CMFD Acceleration of Spatial Domain-

Decomposed Neutron Transport Problems,” Proceedings of PHYSOR 2012 -

Advances in Reactor Physics - Linking Research, Industry, and Education,

Knoxville, TN, USA, April 15-20 (2012), [CD-ROM].

[66] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2
nd

 Edition, SIAM (2003).

[67] Y. SAAD, Numerical Methods for Large Eigenvalue Problems, Revised Edition,

SIAM (2011).

[68] T. TAKEDA and H. IKEDA, “Final Report on the 3-D Neutron Transport

Benchmarks,” Tech. Rep. NEA/NEACRP/L(1990)330, Organisation for Economic

Co-operation and Development Nuclear Energy Agency (1991).

[69] M.A. SMITH, E.E. LEWIS, and B.C. NA, “Benchmark on Deterministic Transport

Calculations Without Spatial Homogenisation - A 2-D/3-D MOX Fuel Assembly

Benchmark (C5G7 MOX Benchmark),” Tech. Rep. NEA/NSC/DOC(2003)16,

Organisation for Economic Co-operation and Development Nuclear Energy

Agency (2003).

177

[70] M.A. SMITH, E.E. LEWIS, and B.C. NA, “Benchmark on Deterministic Transport

Calculations Without Spatial Homogenisation: MOX Fuel Assembly 3-D

Extension Case,” Tech. Rep. NEA/NSC/DOC(2005)16, Organisation for Economic

Co-operation and Development Nuclear Energy Agency (2005).

[71] A.T. GODFREY, “VERA Core Physics Benchmark Progression Problem

Specifications (Rev. 2),” Tech. Rep. CASL-U-2012-0131-002, Oak Ridge National

Laboratory, http://www.casl.gov/publications.shtml (2013).

[72] J.Y. CHO and H.G. JOO, “Solution of the C5G7MOX benchmark three-

dimensional extension problems by the DeCART direct whole core calculation

code,” Progress in Nuclear Energy, 48, 456-466 (2006).

[73] R. FERRER, J.D. RHODES, and K.S. Smith, “Linear Source Approximation in

CASMO5,” Proceedings of PHYSOR 2012 - Advances in Reactor Physics - Linking

Research, Industry, and Education, Knoxville, TN, USA, April 15-20 (2012),

[CD-ROM].

[74] X.M. CHAI, K. WANG, and D. YAO, “The Linear Source Approximation in

Three-Dimensional Characteristics Method,” Proceedings of the International

Conference on Mathematics and Computational Methods Applied to Nuclear

Science and Engineering (M&C 2009), Saratoga Springs, NY, USA, May 3-7

(2009), [CD-ROM].

[75] S. SANTANDREA, “An Integral Multidomain DPN Operator as Acceleration Tool

for the Method of Characteristics in Unstructured Meshes,” Journal of Nuclear

Science and Engineering, 155, 223-235 (2007).

[76] Y.R. PARK and N.Z. CHO, “The MOC Neutron Transport Calculations

Accelerated by Coarse-Mesh Angular Dependent Rebalance,” Proceedings of the

Korean Nuclear Society, Yongpyong, Korea, October (2004).

[77] W.R. BOYD, K.S. SMITH and B. FORGET, “A Massively Parallel Method of

Characteristics Neutral Particle Transport Code for GPUs,” Proceedings of the

International Conference on Mathematics and Computational Methods Applied to

Nuclear Science and Engineering (M&C 2013), Sun Valley, ID, USA, May 5-9

(2013), [CD-ROM].

[78] Y. LIU, B. COLLINS, B. KOCHUNAS, W.R. MARTIN, K.S. KIM, and M.L.

WILLIAMS, “Resonance Self-Shielding Methodology in MPACT,” Proceedings

of the International Conference on Mathematics and Computational Methods

Applied to Nuclear Science and Engineering (M&C 2013), Sun Valley, ID, USA,

May 5-9 (2013), [CD-ROM].

http://www.casl.gov/publications.shtml

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Fundamental Challenges of High Fidelity Light Water Reactor Simulations
	1.2 Summary of State of the Art 3-D Transport Methods
	1.2.1 Monte Carlo
	1.2.2 Discrete Ordinates
	1.2.3 Spherical Harmonics
	1.2.4 Collision Probability Method
	1.2.5 Method of Characteristics

	1.3 State of the Art Approximate 3-D Transport Methods
	1.3.1 Diffusion
	1.3.2 Simplified PN
	1.3.3 2-D/1-D

	1.4 Summary

	Chapter 2 Fundamentals of the Method of Characteristics
	2.1 Method of Characteristics Solution of the Boltzmann Transport Equation in 3-D
	2.1.1 Transformation to the Characteristic Direction
	2.1.2 The Multi-group Approximation
	2.1.3 The Discrete Ordinates Approximation
	2.1.4 Constant Material Properties in a Discrete Region
	2.1.5 Flat Source Region Approximation
	2.1.6 Isotropic Scattering Approximation
	2.1.7 Iteration Scheme

	2.2 Discretization of the Characteristics
	2.2.1 Modular Ray Tracing

	2.3 Overview of MOC Sweep Algorithms

	Chapter 3 3-D MOC Kernel Implementation
	3.1 Algebraic Optimization of Discretized MOC Equations
	3.2 Tabulated Linear Interpolation of the Exponential Function
	3.3 Anatomy of the 3-D MOC Kernel

	Chapter 4 Parallel Algorithm for Solving 3-D Method of Characteristics
	4.1 Basics of Parallel Computing
	4.2 Decomposition of the Spatial Domain
	4.3 Decomposition of the Angular Domain
	4.4 Decomposition of the Characteristics Domain
	4.5 Summary

	Chapter 5 Performance Bounds Model Development and Validation
	5.1 Architecture of High Performance Compute Clusters
	5.2 Basic Equations of a Performance Model
	5.3 Performance Bounds of 3-D MOC Kernel
	5.3.1 Component-Based Description of Kernel
	5.3.2 Cache Miss Bounds
	5.3.3 Parallel Overhead

	5.4 Experimental Evaluation of Performance Model
	5.4.1 Measurement system
	5.4.2 Determining Hardware Coefficients
	5.4.3 Test Problem Description
	5.4.4 Validation of FLOP and Load Counts
	5.4.5 Validation of Execution Time in Serial
	5.4.6 Baseline Performance in Serial

	5.5 Sensitivity of Serial Performance to Hardware Characteristics
	5.6 Summary

	Chapter 6 Performance Analysis of the Parallel 3-D MOC Kernel
	6.1 Parallel Performance Metrics
	6.2 Experimental Evaluation of Parallel Performance Model
	6.2.1 Determining Network Model Hardware Coefficients
	6.2.2 Determining OpenMP Run-time Library Overhead
	6.2.3 Validation of Parallel Performance Model

	6.3 Parallel Performance Model Sensitivity
	6.4 Decomposition Strategy for Optimizing Parallel Performance
	6.5 Summary

	Chapter 7 Algorithm Convergence Optimization with CMFD Acceleration
	7.1 Convergence Acceleration
	7.2 Coarse Mesh Finite Difference
	7.2.1 Spatial Domain Decomposed Coarse Mesh Finite Difference

	7.3 SDD-CMFD Convergence with Parallel 3-D MOC
	7.3.1 Solution of SDD-CMFD Equations
	7.3.2 Model Problem Description
	7.3.3 Results and Discussion

	7.4 Summary

	Chapter 8 Solutions to Numerical Benchmarks
	8.1 Takeda Benchmark: Model 1
	8.1.1 Model Description and Calculation Details
	8.1.2 Results and Discussion

	8.2 C5G7 Benchmark
	8.2.1 Model Description and Calculation Details
	8.2.2 Results and Discussion

	8.3 Realistic PWR Assembly
	8.3.1 Model Description and Calculation Details
	8.3.2 Results and Discussion

	8.4 Summary

	Chapter 9 Summary, Conclusions, and Continuing Work
	9.1 Summary of Work
	9.2 Suggested Future Research
	9.2.1 Modular Rays and Angular Quadratures
	9.2.2 Spatially Higher Order Sources
	9.2.3 Acceleration Techniques
	9.2.4 Optimizing Performance and Parallelism for Energy Groups
	9.2.5 Mapping to GPU architectures

	9.3 Final Remarks

	Bibliography

