
 
 

MicroRNA in Diabetic and TGFbeta-Related Renal Glomerulopathy 

by 

Yi-Chun Lai 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of  

Doctor of Philosophy 
(Cellular and Molecular Biology) 

in The University of Michigan 
2013 

 
 
 
 
 
 
Doctoral Committee: 
 
     Assistant Professor Markus Bitzer, Chair 
     Professor Frank C. Brosius III 
     Professor Christin Carter-Su 
     Professor Ram K. Menon 
     Associate Professor Robert C. Thompson 
 
 
 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

© Yi-Chun Lai 
2013 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Acknowledgments 

 

First of all, I would like to show my greatest appreciation to my thesis advisor, Dr. Markus 

Bitzer, for his guidance and teaching. When I first met Markus in 2008, after a small 

discussion about his research, I immediately grew the enthusiasm to work with him and 

follow him. From clinical research to basic science, I enjoyed brainstorming with Markus, 

and under his leadership, I am capable of being intellectually independent. I am deeply 

grateful for Markus’s patience to help me grow and I am also indebted to him for giving me 

this opportunity to pursue my PhD degree. 

I am also thankful for the valuable feedback from my thesis committee members, Dr. Frank 

Brosius, Dr. Christin Carter-Su, Dr. Ram Menon, and Dr. Robert Thompson. With their 

insightful suggestion and assistance, I am able to advance my thesis work and make a good 

progress. I especially thank Dr. Frank Brosius and Dr. Robert Thompson for their support and 

help regarding fellowship application. In addition, I would like to thank Dr. Jessica Schwartz 

for recruiting me in the Cell and Molecular Biology program, and Cathy Mitchell for helping 

me with all kinds of presentation arrangement and financial support. 

It has been a wonderful experience to work with my lab members, Jinghui Luo and 

Christopher O’Connor. I thank Jinghui for her technical support and experience sharing. I 

particularly give my deepest gratitude to Christopher O’Connor for all the experiments he has 

performed for me as well as the help to continue the research whenever I was not available. 



iii 

Furthermore, I thank all the collaborators to our lab. Dr. David Turner and Huanqing Zhang 

have helped us with numerous microRNA experiments, and I thank for their generous sharing. 

I especially would like to acknowledge Dr. Matthias Kretzler’s lab. I owe all my 

bioinformatics skills to them. I thank Celine Berthier, Felix Eichinger, Claudiu Komorowsky, 

Sebastian Martini, and Viji Nair for their system biology instruction. I also thank Ann 

Randolph to process the sample, and Courtenay Vining for any experiment support. 

Furthermore, I show my most gratefulness to Dr. Matthias Kretzler and Dr. Wenjun Ju for 

their insight, advice, and direction. 

Other collaborators outside University of Michigan include Dr. Iddo Ben-Dov and Dr. 

Thomas Tuschl in The Rockefeller University. I am thankful for their assistance in terms of 

microRNA biology and bioinformatics. I also thank Robert G. Nelson in NIDDK, National 

Institutes of Health for his support in studying diabetic nephropathy of PIMA Indians. Finally, 

I would like to thank Dr. Stuart Orkin in Dana Farber Cancer Institute, Boston, for providing 

microRNA21 knockout mice. 

Ultimately, I am deeply indebted to my parents for their unconditional love and endless care. 

5 years ago, when I changed over my career path to United States, I totally appreciated their 

unselfishness and understanding. Moreover, I would like to recognize my two older brothers. 

Being medical professors and great physicians in National Taiwan University Hospital, they 

are always my heroes whom I look up to. I also would like to thank my previous mentor in 

National Taiwan University Children Hospital, Dr. Mei-Hwan Wu. Without her 

encouragement and endorsement, I would not have come to United States to fulfill my 

academic enthusiasm.  

In the end, many thanks to my dearest husband for his heart to love me as the way I am, for 

his understanding to deal with my long working hour, for his gentleness to support any aspect 

I need, and for his patience to equip me with kindness and compassion. 



iv 

TABLE OF CONTENTS 

 

Acknowledgements               ii 

List of Figures                vi 

List of Tables                 viii 

Abstract                  ix 

Chapter 

I. Introduction               1 

Figures                18 

References               25 

II. MicroRNA-21 ameliorates TGF-beta mediated glomerular injury   31 

Abstract                31 

Introduction               33 

Result                35 

Discussion               45 

Methods and materials             50 

Tables and figures              57 

References               74 

III. Loss of miR-21 promotes mesangial cell proliferation and leads to increased 

mesangial expansion in diabetic mice         79 

Abstract                79 



v 

Introduction               81 

Result                83 

Discussion               86 

Methods and materials            91 

Tables and figures              95 

References               103 

IV. Linking disease-associated miRNA and disease-associated mRNA identifies 

miRNA-mRNA interaction           106 

Abstract                106 

Introduction              108 

Result                111 

Discussion               116 

Methods and materials            121 

Tables and figures              125 

References               135 

V. Conclusions and future directions           139 

Conclusions              139 

Future directions             149 

Figures                155 

References               156 

  



vi 

List of Figures 
 
Figure 
 
1.1 – Overview of kidney, nephron and glomerulus structure       18 
1.2 – Contextual determinants of TGFβ action         19 
1.3 – Cell-specific response to TGFβ and the mechanism leading to glomerulopathy  20 
1.4 – microRNA biogenesis and mRNA silencing mechanism       21 
1.5 – miRNA function in signaling mediation and modulation      22 
1.6 – Regulation of miRNA transcription and maturation by TGFβ/Smad Signaling  23 
1.7 – Regulatory mechanisms of miRNAs in diabetic nephropathy     24 
 
2.1 – miRNA expression profiling in the mouse kidney using RNA sequencing and qrt-PCR 
                  58 
2.2 – Glomerular miR-21 levels in American Indian patients with normo-albuminuria, 
micro-albuminuria and macro-albuminuria           61 
2.3 – miR-21 and TGFβ1 expression levels in kidneys of TGFβ1 transgenic mice  62 
2.4 – Kidney histology and structure in miR-21 wild type and knockout C57BI/6J mouse at 
12 weeks old                 63 
2.5 – Examination of proteinuria in TGFβ1 transgenic/miR-21 wild type and knockout mice 
                  64 
2.6 – TGFβ1 levels in TGFβ1 transgenic/miR-21 wild type and knockout mice   65 
2.7 – Examination of kidney histology in TGFβ1 transgenic/miR-21 wild type and knockout 
mice                  66 
2.8 – Podocyte number in glomeruli of TGFβ1 transgenic/miR-21 wild type and knockout 
mice                  68 
2.9 – Apoptotic events in glomeruli of TG/miR-21 WT and KO mice and in miR-21 mimic or 
antisense oligonucleotide-transfected immortalized mouse podocytes     69 
2.10 – Examination of candidate miR-21 target gene expression in mouse podocytes and 
glomeruli of TGFβ1 transgenic/miR-21 wild type and knockout mice     70 
2.11 – Proposed function of miR-21 as a feed-forward loop in TGFβ signaling in glomerular 
injury                  73 
 
3.1 – Examination of blood sugar in streptozotocin-treated miR-21 wild type, heterozygous 
and knockout mice at 0, 2, 6, 12, 20 weeks after streptozotocin treatment    95 
3.2 – Examination of proteinuria in streptozotocin-treated miR-21 wild type, heterozygous 
and knockout mice at 0, 4, 8, 12, 16, 20 weeks after streptozotocin treatment   96 
3.3 – Examination of kidney histology by Periodic-acid Schiff staining in streptozotocin 
-treated miR-21 wild type, heterozygous and knockout mice      97 
3.4 – Examination of cell migration in miR-21 wild type and knockout primary mesangial 
cell                  98 
3.5 – Examination of cell proliferation/viability in miR-21 wild type and knockout primary 
mesangial cell                99 
3.6 – Examination of cell cycle distribution in miR-21 wild type and knockout primary 
mesangial cell at 20 hours after 10% FBS supplement        100 



vii 

3.7 – Examination of potential regulatory genes of miR-21 in glomeruli of streptozotocin- 
treated miR-21 wild type and knockout mice          101 
3.8 – Examination of the protein level of PTEN in miR-21 mimic-transfected human 
embryonic kidney cells and DBA/2J mice          102 
 
4.1 – Cytoscape illustration of correlation between ACR-correlated miRNAs and genes in the 
same American Indian cohort             130 
4.2 – Cytoscape illustration of the target prediction between ACR-correlated miRNAs and 
ACR-correlated genes               131 
4.3 – Examination of miR-200a level in different cell lines        132 
4.4 – Examination of the predicted target between miR-200a and selected ACR-correlated 
genes                  133 
4.5 – Examination of direct target between EXOC7 and miR-200a      134 
  



viii 

List of Tables 
 
Table 
 
2.1 – Characteristics of American Indian testing and validating cohort     57 
2.2A – Correlation between miRNA and ACR in testing cohort       59 
2.2B – Correlation between miRNA and ACR in validating cohort     60 
 
4.1 – Characteristics of American Indian cohort          125 
4.2 – The top 10 ACR-correlated miRNAs           126 
4.3 – Correlation between genes and ACR-correlated miRNAs       127 
4.4 – Target prediction between ACR-correlated genes and ACR-correlated miRNAs  128 
4.5 – Correlation between ACR-correlated miRNAs and their target-predicted 
ACR-correlated genes              129 



ix 
 

ABSTRACT 

 

MicroRNAs in Diabetic and TGF-beta-Related Renal Glomerular Injury 

by 

Jennifer Yi-Chun Lai 

 

Chair: Markus Bitzer 

 

Chronic kidney disease (CKD) decreases quality of life, increases mortality, and has 

limited treatment options. Glomerular injury is an early stage of diabetic nephropathy 

(DN), which is a leading cause of CKD, and is characterized by mesangial cell 

proliferation and hypertrophy, loss of podocytes, and increased extracellular matrix 

(ECM) deposition. Critical aspects of these cellular events are mediated by activation 

of the Transforming Growth Factor-beta (TGFβ) signaling cascade. MicroRNAs 

(miRNAs) regulate gene expression in a post-transcriptional level and have been 

implicated as important regulatory elements in the TGFβ signaling cascade. To 

determine the role of miRNAs in DN, we examined miRNA expression in 

micro-dissected glomeruli from kidney biopsies of patients with clinically early DN 

and correlated the expression levels with clinical manifestations. 
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We determined that miR-21 exhibits high expression in renal glomeruli and 

significant correlation with urine albumin-to-creatinine-ratio (ACR) of patients. 

miR-21 is a known regulator of TGFβ signaling and its level is positively associated 

with severity of renal phenotype in TGFβ transgenic mice. We further found that loss 

of miR-21 in TGFβ transgenic mice resulted in accelerated podocyte apoptosis and 

glomerulosclerosis. A similar phenotype was detected in streptozotocin-induced 

diabetic mice. In cultured glomerular cells, loss or inhibition of miR-21 led to 

increased apoptosis of podocytes and increased proliferation of primary mesangial 

cells. Further studies showed that miR-21 represses multiple pro-apoptotic pathways, 

including TGFβ/Smad7, P53, and PDCD4, cell cycle-related genes such as Cdk6 and 

Cdc25a, and ECM-related genes. These results suggest that miR-21 ameliorates 

glomerular injury through repression of multiple injury-mediating signaling pathways.  

 

To further elucidate a miRNA-mediated network mediating DN progression, we 

examined mRNA expression in the same glomerular samples. We identified 

ACR-associated genes that are predicted targets of ACR-associated miRNAs and 

experimentally validated the sequence-dependent repression of candidate target genes 

of miR-200a. This led to the discovery of EXOC7 as a sequence-dependent target of 
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miR-200a. 

   

In summary, correlating miRNA expression with specific clinical outcomes identified 

novel mechanisms regulating DN, including a protective role for miR-21 in 

glomerular injury. Furthermore, the approach, which links disease-associated 

miRNAs and mRNAs by target prediction, appears to facilitate identification of 

context-relevant miRNA-mRNA interactions. 
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Chapter I 

Introduction 

 

Chronic kidney disease (CKD) is the pathological change that develops after renal 

injury, such as high blood sugar (hyperglycemia), oxidative stress, or 

immune-mediated damage. CKD can lead to end-stage renal disease (ESRD) 

requiring dialysis support or kidney transplantation. It also results in high morbidity 

and mortality, partially due to an increased cardiovascular event rate, and thereby 

imposes a heavy burden on medical economics1. The increasing prevalence of CKD 

during the past 20 years highlights the public health importance of this disease2. 

According to the 2011 United States Renal Data System (USRDS), Taiwan, Japan, 

and United States are the three countries having the highest prevalence rate of ESRD 

worldwide3. In the United States, the incidence rate of ESRD in 2011 was about 1.3% 

among the Medicare population, but accounted for 8.1% of Medicare costs. Despite 

the high prevalence of ESRD and excessive costs, interventions to prevent or delay 

complications and progression of CKD remain limited. Furthermore, development of 

new treatment options is hampered by our limited understanding of the molecular 
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events associated with the progression from renal injury to ESRD. Facing such a 

medical difficulty, we felt there was an urgent need to advance the knowledge. 

 

Among various renal injuries, diabetic nephropathy (DN), which is caused by 

diabetic mellitus (DM), is the leading cause of ESRD in the United States3. 

Therefore, it is essential to investigate the molecular mechanisms of DN in order to 

ameliorate the development of ESRD. 

 

Kidney structure 

The nephron is the functional unit of the kidney (Figure 1.1). It has two major 

compartments to maintain homeostasis. One is the renal glomerulus, a convolution 

of capillary loops that harbors mesangial, endothelial, and visceral glomerular 

epithelial cells (podocytes). Podocytes stand with extended pedicles on the urinary 

side of the glomerular basement membrane (GBM) of the capillary loops. The foot 

processes of podocytes are interdigiated and connected via a slit diaphragm. The 

endothelium, GBM, and the slit diaphragm and body of podocytes form the 

glomerular filtration barrier to generate primary urine. Mesangial cells are 

specialized smooth muscle cells that are located between the capillary loops, are not 

separated from endothelial cells by the GBM, and are thought to regulate renal blood 
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flow and pressure through glomerular capillaries. The other compartment is the 

tubulo-interstitium, which is composed of tubules that are lined by tubular epithelial 

cells which regulate urine composition through reabsorbing and excreting specific 

molecules from the primary urine. Injuries to the glomeruli (glomerulopathy) or 

tubule-interstitium can initiate a fibrotic response that leads to renal scaring and 

CKD. It has been proposed that glomerulopathy is an early event of DN, and 

initiates the damage in the tubulo-interstitial compartments of the kidney4,5.   

 

Diabetic Nephropathy 

DN results from longstanding DM and is associated with the activation of the 

transforming growth factor-beta (TGFβ) signaling6. The earliest pathological finding 

of DN is glomerulopathy7, characterized by mesangial expansion, podocyte 

depletion, nodular glomerulosclerosis. It clinically manifests as proteinuria followed 

by decreased glomerular filtration function8. The molecular events in glomeruli 

induced by hyperglycemia include increased TGFβ production in the glomerular 

cells leading to mesangial cell proliferation and hypertrophy, podocyte detachment 

from the basement and death, and increased extracellular matrix (ECM) deposition9. 

It has been proposed that podocyte depletion is the initiating event resulting in other 

pathological changes in glomerulopathy10,11. 
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Transforming growth factor beta (TGFβ) 

The TGFβ superfamily of ligands include Bone Morphogenetic Proteins (BMPs), 

Growth and Differentiation Factors (GDFs), Anti-müllerian Hormone (AMH), 

Activin, Nodal and TGFβs. Members of the TGFβ family are cytokines that bind to 

TGF beta type II receptor, a serine/threonine receptor kinase, which catalyzes the 

phosphorylation of the Type I receptor. Each class of ligands binds to specific type II 

receptors. In mammals, there are seven known type I receptors and five type II 

receptors. TGFβs promote cell proliferation, differentiation, regeneration, and 

apoptosis, but the effects of TGFβ are dependent on the context and organ 

system12,13. In general TGFβs maintain tissue homeostasis and regulate immunity, 

cancer, and fibrotic diseases14.  

Intracellular signaling is initiated by the binding of TGFβ to a type II receptor dimer, 

which recruits a type I receptor dimer to form a hetero-tetrameric complex with the 

ligand. This complex then phosphorylates intracellular signaling molecules. The 

receptor-phosphorylated Smad proteins (Smad2 and Smad3) are central downstream 

effectors to convey and carry out many important context-dependent TGFβ actions 

in the kidney, which are determined by the binding cofactors and the epigenetic 

status of the target gene13 (Figure 1.2). Other than the canonical TGFβ-Smad 

signaling pathway, TGFβ receptor I and II can each individually phosphorylate and 
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activate other downstream kinases that regulate diverse biological functions13.  

 

The TGFβ-Smad signaling pathway has been found to be highly activated in DN. 

Among receptor-phosphorylated Smad proteins, Smad3 mediates important aspects 

in DN progression including podocyte loss due to apoptosis, mesangial cell 

proliferation/activation, and ECM deposition in glomerulus (Figure 1.3)15,16. In 

contrast, Smad2 has an opposing role to Smad3 in renal fibrosis17. In patients with 

DN, decreased podocyte number has been attributed to podocyte loss mediated by 

TGFβ/Smad3-induced apoptosis18. In addition to podocyte loss, mesangial cell 

proliferation and activation promoting ECM deposition is also an important factor in 

the development of glomerulopathy (Figure 1.3)16,19-21.  

 

Albumin-TGFβ1 transgenic mice are characterized by overexpression of active 

TGFβ1 in hepatocytes and high plasma levels of active TGFβ1. Progressive 

glomerulosclerosis is the leading phenotype in TGFβ1 transgenic mice and there are 

mild changes in other organ systems. Therefore, these mice are an established model 

to study the function and signaling of TGFβ in kidney injury22,23. The finding of 

podocyte apoptosis as an early event in TGFβ1 transgenic mice supports the 

hypothesis that TGFβ-induced podocyte apoptosis leads to glomerulopathy11. 
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However, despite the deleterious effects of increased TGFβ activity, TGFβ regulates 

essential homeostatic processes and inhibition of TGFβ ligands or inhibition of the 

ligand binding to its receptors causes pathologic changes24,25. Moreover, although 

Smad3 knockout (KO) mice, have attenuated fibrosis after renal injury26,27, they 

develop mucosal abscesses and have a strongly reduced lifespan28. Therefore, it is 

critical to identify specific downstream signaling mediators in the TGFβ signaling 

cascade that can serve as potential therapeutic targets. 

 

MicroRNAs (miRNAs) 

MiRNAs are small non-coding RNAs that regulate gene expression at 

post-transcriptional level29. They were discovered in 1993 from C. elegans studies30 

and were found to be broadly conserved among different species31. MiRNAs are 

transcribed by RNA polymerase II to form approximately 70 nucleotide long 

pri-miRNAs with a hair-pin loop and stem structure32,33 (Figure 1.4). Pri-miRNAs 

are cleaved by Drosha complex to form pre-miRNA33 and then exported to 

cytoplasm to be further processed by Dicer to form 22 to 24 nucleotides 

double-strand miRNAs (ds-miRNAs)34. Integrating with RNA-induced silencing 

complex (RISC), the ds-miRNAs become mature single-strand miRNAs (ss-RNAs) 

and bind to complementary sequences in 3’ untranslated region (3’UTR) of the 
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target messenger RNAs (mRNAs) causing translational repression or mRNA 

degradation35,36 (Figure 1.4). 

  

Experimental results support functional redundancy between miRNAs and also 

between miRNAs and genes37. In addition to acting as classical binary off-switch 

regulators of genes, miRNAs may also act as neutral regulators to repress protein 

output without compromising biological function35. Some miRNAs are found to be 

critical in maintaining normal cell physiology and loss of the miRNA can result in 

lethality and/or severe functional defect in miRNA KO mice38. miRNAs are often 

integrated into positive and negative feedback loops in signaling pathways and have 

been implicated as modulators of stress responses in many physiologic and 

pathologic processes39. For instance, the transcription factor, P53, binds to the 

promoter region of miRNA34a (miR-34a) and promotes its gene expression. 

Subsequently, the upregulation of miR-34a promotes P53-mediated apoptosis and 

tumor suppression40. Being part of the feed-forward regulation loop, miR-34a targets 

SIRT1 to upregulate P53 activity and reinforces signaling functionality41. There are 

also miRNAs imposing a negative feedback mechanism on a signaling pathway in 

order to resolve the signaling activity42 (Figure 1.5).  
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Relationship between TGFβ and miRNA 

Recently, TGFβ/Smad proteins were found to participate in miRNA biogenesis and 

regulation43,44. Specifically, the TGFβ downstream effectors, Smad2/3 proteins, bind 

to the promoter region of miRNAs to increase miRNAs expression at a 

transcriptional level or bind to the stem region of pre-miRNAs to facilitate Drosha 

cleavage process to increase mature miRNA expression at a post-transcriptional 

level45,46(Figure 1.6). Pre-miRNAs, such as miR-21 and miR-23a, have been found 

to have a consensus binding sequence in the stem region for Smad2/3 proteins and 

are regulated by TGFβ45.  

 

MiRNAs are potential oncogenes and also play an important role in heart disease47,48. 

Since TGFβ mediates DN and regulates biogenesis of miRNAs, miRNAs might be 

potential therapeutic targets in the treatment of DN. A few studies have explored the 

role of miRNAs in DN. To date, several miRNAs have been implicated in the 

development of DN49,50. For example, miR-192 is induced by TGFβ and targets the 

E-box promoter repressor, ZEB1/2, to increase E-box-related collagen production in 

mesangial cells49. miR-200 family members, regulated by E-box promoters, are also 

embedded in the ZEB1/2 regulatory network and might play a role in the 

pathogenesis of DN51 (Figure 1.7). Furthermore, miR-377 expression is increased in 
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a high glucose environment in renal cell culture and in mouse model of DN, 

enhances fibronectin production and promotes ECM deposition52. However, those 

current studies focused on in vitro experiments or animal models. It remains unclear 

whether these findings are relevant for human DN. 

 

Evidence is emerging that miRNAs modulate signaling cascades and thereby 

regulate physiologic processes as well as stress response. This raises tremendous 

interest in supplementing or blocking specific miRNA as a clinical intervention. 

Chemically modified oligonucleotide inhibitors have been shown to successfully 

deliver blockage of miRNA in specific tissue organs53. Inhibitors (antagomirs) of 

miR-122 which blocks Hepatitis C virus replication (HCV), can be successfully 

delivered into chimpanzees decreasing Hepatitis C viral load in serum54,55. miR-122 

antagomir is currently in phase 2 clinical trials to target HCV. 

 

Controversy among different studies of miRNAs 

miR-21 is one of the first miRNAs to be linked to cancer biology56. miR-21 is 

associated with a variety of cancers and has an anti-apoptotic effect57,58, and thereby 

is oncogenic59. In addition, miR-21 has also been associated with heart disease48,60 

and kidney disease61,62. In animal models, inhibition of miR-21 was found to 
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attenuate tubulo-interstitial fibrosis in unilateral ureteral obstruction (UUO)61 and 

unilateral ischemia-reperfusion injury62.  

 

Because miR-21 is an anti-apoptotic factor, miR-21 might play a role in diabetic 

glomerulopathy, which is characterized by podocyte apoptosis. Furthermore, TGFβ 

signaling activity is known to induce podocyte apoptosis and regulates miR-21 

biogenesis. However, previous studies about miR-21 focused on the 

tubulointerstitium of kidney61,62.  

 

As kidney is composed of different cell types and most miRNAs are multifaceted as 

well as cell-type-specific, results across different studies and strategies are often not 

consistent49,50,63. For example, Krupa et al. found that loss of miR-192 associates 

with increased fibrosis in kidney biopsies of human DN and loss of miR-192 

promotes fibrogenesis in renal tubular cells50. However, Kato et al. proposed that 

miR-192 promotes fibrogenesis through enhancing TGFβ-induced collagen1a2 

expression in mesangial cells49. Controversy still exists among different miRNA 

studies related to DN and therapeutic development is actively ongoing. For that 

reason, we were prompted to investigate whether miRNA plays a role specifically in 

diabetic glomerulopathy (DG). 
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MiRNA and mRNA interaction 

MiRNAs repress gene expression by binding to mRNA transcripts thereby 

regulating their expression levels and the relationship between miRNA and mRNA 

expression has been broadly studied64. Several algorithms have been developed to 

predict the targeting between miRNAs and mRNA 3’UTR. One such algorithm is 

TargetScan, which is based on matching seed sequences and affinity and 

conservation across species of miRNA:mRNA binding sites64-66. MiRanda, 

calculates the thermodynamic energy of complimentary binding and dynamic 

alignment between miRNAs and mRNA67,68. However, the false prediction rate of 

those algorithms remains high and the number of experimentally verified targets is 

still low69. For example, human miR-21 has 164 predicted targets in Targetscan64-66, 

but only has 42 validated target genes according to miRecord70, a resource of 

experimentally verified miR-target interaction. The other 122 predicted targets were 

either not the sequence-dependent targets of miR-21 or have not been 

experimentally verified.  

  

As a result, many studies have developed new approaches to explore 

miRNA-mRNA interaction that involves more than sequence binding prediction. For 

example, MAGIA integrates the correlation between miRNA and mRNA expression 
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data from the same subjects with pre-existing prediction algorithms71. Other tools 

apply new regression models72,73 or Bayesian inference74 to facilitate the search for 

target genes. However, it is still questionable whether these approaches improve the 

preciseness of identifying target genes or effectively determine the regulatory role of 

miRNA in disease progression. 

 

Therefore, while studying the role of miRNA in human DG, we proposed a new 

approach to investigate miRNA-mRNA interaction based on the association between 

miRNA or mRNA levels and clinical manifestation of specific diseases. 

 

Objectives and aims  

American Indians of the Gila River Indian Community in Arizona are an ethnic 

group that exhibits high rates of type 2 diabetes mellitus and DN75. Previous studies 

have shown an association between inheritability and DN susceptibility in this 

cohort76. This research project, which aims at investigating whether miRNA plays a 

role specifically in DG, examined glomerular miRNA expression in those American 

Indian patients with early diabetic nephropathy in order to (1) determine the 

association between miRNA and human DG, and (2) identify miRNA that may 

modify disease progression. Using animal models including Albumin-TGFβ1 
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transgenic mice, mice with streptozotocin (STZ)-induced beta cell dysfunction and 

DN, and miRNA KO mice23,38, we further examined the role and the regulatory 

mechanisms of miR-21 in TGFβ-related renal glomerulopathy. At last, we proposed 

a new approach to effectively identify miRNA targets based on their association 

with clinical manifestations of specific diseases.  

 

We address the aims and hypothesis in the following three chapters 

Chapter II: MicroRNA-21 ameliorates transforming growth factor-beta-mediated 

glomerular injury 

In this chapter, we determined the association between miRNAs and diabetic clinical 

manifestations, such as the urine albumin-to-creatinine ratio (ACR) and glomerular 

filtration rate (GFR). We profiled miRNA expression in renal glomeruli from kidney 

biopsies of American Indian diabetic patients by quantitative real-time PCR 

(qrt-PCR). We determined that several kidney-related miRNAs exhibited relatively 

high expression in renal glomeruli compared to other miRNAs and had a significant 

correlation with ACR. Among ACR-associated miRNAs, miR-21 had the highest 

expression in renal glomeruli.  

In Albumin-TGFβ1 transgenic mice levels of expression of miR-21 and TGFβ1 are 

positively associated with severity of kidney damage based on histology scores77. 
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Consistent with the previous studies43,62, our data suggested that the higher level of 

TGFβ increases miR-21 in animals with greater renal damage. Apoptosis is a 

process in which cells are eliminated by a specific program78. Since TGFβ induces 

podocyte apoptosis16 and miR-21 has been proposed as an anti-apoptotic factor in 

cancer and ovarian granulosa cells57,58, we further hypothesize that miR-21 acts as a 

negative regulator to limit TGFβ-induced podocyte apoptosis. 

We obtained ubiquitous miR-21 KO mice, which were generated by Cre-Lox 

recombination to remove the sequence of pri-miR21 from the genome79. In order to 

test the hypothesis that miR-21 protects against TGFβ-related glomerulopathy, we 

introduced progressive glomerulopathy into genetically mir21-deficient mice by 

crossing TGFβ1 transgenic (TG) mice with miR-21 KO mice to generate TG/miR-21 

WT and TG/miR-21 KO offspring mice.  

The renal phenotype of TG/miR-21 WT and TG/miR-21 KO littermates showed that 

loss of miR-21 resulted in increased podocyte apoptosis and loss, and progressive 

glomerulopathy. We further examined apoptosis in cultured mouse podocytes 

expressing miR-21 mimics or anti-miR-21 oligonucleotides (inhibitors). We found 

that depletion of miR-21 increased podocyte apoptosis. 

TGFβ induces apoptosis through Smad7 and phosphorylation of Smad316. In 

addition, P53 and programmed cell death 4 (PDCD4) are tumor suppressor proteins, 
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which induce apoptosis80,81. P53 is indirectly suppressed by miR-2180 and PDCD4 is 

targeted by miR-21 in cancer cells81. Other important proteins involved in 

glomerulosclerosis are members of the metalloproteinase (MMP) family and the 

MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP). TIMP inhibits MMP to 

breakdown ECM, and therefore TIMP promotes fibrosis in glomeruli82,83.  

In order to investigate miR-21 regulatory mechanisms in TGFβ-related 

glomerulopathy, we examined the expression levels of the apoptosis-related genes 

and ECM-related genes in TG/miR-21 WT and KO mice and mouse podocytes. We 

found that the mRNA levels of TGFβ receptor 2 (Tgfbr2), TGFβ induced (Tgfbi), 

Smad7, tissue inhibitor of metalloproteinase 3 (Timp3), collagen4a1 (Col4a1), and 

p53 (Tp53) were increased in glomeruli of TG/miR-21 KO mice, the protein levels 

of Pdcd4 as well as phosphorylation of Smad3 were increased in miR-21 

inhibitors-transfected mouse podocytes. We further determined that Smad7 is a 

sequence-dependent target of miR-21. 

 

Chapter III: Loss of miR-21 promotes mesangial cell proliferation and leads to 

increased mesangial expansion in diabetic mice 

In order to test the protective role of miR-21 in glomerulopathy to a greater extent, 

we examined the role of miR-21 in STZ-induced diabetic mice84. We injected STZ 
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into miR-21 WT and KO mice to induce beta-cell dysfunction and thereby 

hyperglycemia and diabetic glomerulopathy. Our results indicated that loss of 

miR-21 in STZ-induced diabetic mice results in more proteinuria and mesangial 

expansion. 

We further found that loss of miR-21 promotes baseline proliferation and cell cycle 

progression of mouse primary mesangial cells (PMC). Cell cycle represents a series 

of events leading from replication of the genetic material to cell division. It 

consisted of G0/G1, S, G2, and M phases and is facilitated by cyclin and 

cyclin-dependent kinases (CDK) complex, 85. Cyclin-dependent kinase 6 (Cdk6) is a 

member of cyclin-dependent protein kinase family, which facilitates cell cycle 

progression86. Cell division cycle 25A (Cdc25a) is a member of phosphatase family 

that is required for cell cycle progression87. Both of them have been proposed as the 

sequence-dependent target of miR-21 in cancer cells81,88. For that reason, we 

performed qrt-PCR to demonstrate that the expression of Cdk6 and Cdc25a was 

increased in the glomeruli of STZ-treated miR-21 KO mice versus STZ-treated 

miR-21 WT mice. Therefore, we suggest that loss of miR-21 facilitates 

TGFβ-induced proliferation of mesangial cells by regulating cell cycle-related 

genes. 
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Chapter IV: Linking disease-associated miRNA and disease-associated mRNA 

identifies miRNA-mRNA interaction 

In this chapter, miRNA and mRNA were profiled in the renal glomeruli from kidney 

biopsies of the patients with early DN. The levels of expression of both miRNA and 

mRNA were correlated with ACR of patients with early DN. Linking 

ACR-correlated miRNA and ACR-correlated mRNA by two prediction algorithms 

and data from Photoactivatable Ribonucleoside Enhanced Crosslinking and 

Immunoprecipitation (PAR-CLIP) RNA sequencing89, we identified potential targets 

of miR-200a. 

We further verified the potential targets of miR-200a experimentally. In human 

embryonic kidney (HEK) cells expressing miR-200a mimics, miR-200a repressed 

the expression of RALGPS2, SUPT6H, and EXOC7. We further confirmed that 

EXOC7 is a sequence-dependent target of miR200a by a luciferase assay. We 

concluded that miRNAs and their downstream regulatory genes are associated with 

diseases. Together with the previous findings about miR-21, we propose that some 

miRNAs increase with disease progression as an attempt to limit disease-associated 

gene upregulation and some miRNAs increase with disease progression to further 

repress gene downregulation in disease process. This new concept might provide an 

alternative approach to identify miR-mRNA interactions. 
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Figure 1.1. Overview of kidney, nephron and glomerulus structure. (Adapted 
from “Kidney health library” by UNC kidney center and “Proteinuria in diabetic 
kidney disease: A mechanistic viewpoint” by J.A. Jefferson et al, 2008, KI, 74, P.25. 
Copyright 2001 by Nature Publishing Group. Used with permission). 
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Figure 1.2. Contextual determinants of TGFβ action. (Adapted from “TGFβ 
signaling in context” by Joan Massagué, 2012, Nature Reviews 13, P.616. Copyright 
2012 by Macmillan Publishers Limited. Used with permission).  
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Figure 1.3. Cell-specific response to TGFβ and the mechanism leading to 
glomerulopathy. (Adapted from “TGF-beta signaling in renal disease” by E.P. 
Bottinger, and M. Bitzer, 2002, J Am Soc Nephrol 13, P.2604. Copyright 2002 by 
American Society of Nephrology. Used with permission).  
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Figure 1.4. microRNA biogenesis and mRNA silencing mechanism. (Adapted 
from “Regulation of MicroRNA Biogenesis: A miRiad of mechanisms” by B.N. 
Davis, and A. Hata, 2009, Cell Comm Signal 7, P.18. Copyright 2009 by BioMed 
Central. Used with permission).  
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Figure 1.5. miRNA function in signaling mediation and modulation. (Adapted 
from “MicroRNAs in stress signaling and human disease” by J.T. Mendell, and E.N. 
Olson, 2012, Cell 148, P.1172. Copyright 2012 by Elsevier. Used with permission). 
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Figure 1.6. Regulation of miRNA transcription and maturation by TGFβ/Smad 
Signaling. (Adapted from “Smad-mediated regulation of microRNA biosynthesis” 
by M.T. Blahna, and A. Hata, 2012, FEBS Letters 586, P.1906. Copyright 2012 by 
Elsevier. Used with permission). 
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Figure 1.7. Regulatory mechanisms of miRNAs in diabetic nephropathy. 
(Adapted from “MicroRNAs and Their Role in Progressive Kidney Diseases” by M. 
Kato, L. Arce, and R. Natarajan, 2009, Clin J Am Soc Nephrol 4 P.1255. Copyright 
2009 by American Society of Nephrology. Used with permission). 
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Chapter II 

MicroRNA-21 Ameliorates TGF-beta Mediated Glomerular Injury 

 

Abstract 

Glomerulopathy is a hallmark of diabetic nephropathy (DN), the leading cause of 

end-stage renal disease (ESRD) in the US. Glomerulopathy is associated with 

imbalance of signaling cascades regulated by transforming growth factor-beta (TGFβ), 

contributing to loss of podocytes and albuminuria. MicroRNAs (miRNAs) regulate 

cellular functions through modulation of signaling cascades via feed-forward loops.  

To identify miRNAs that regulate initiation and development of human DN, we 

associated miRNA expression with albuminuria in micro-dissected glomeruli of 26 

American Indian patients exhibiting clinically early stages of DN. Twenty out of 377 

miRNAs exhibited significant correlation with urine albumin-to-creatinine ratio (ACR) 

(R>0.6; P<0.0001); of those, miR-21 was highly abundant and also exhibited 

significant correlation with ACR in a second cohort (n=22). miR-21 is regulated by 

TGFβ1, which is increased in glomeruli of patients with DN. miR-21-deficient TGFβ1 

transgenic mice exhibit increased proteinuria and glomerular extracellular matrix 
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(ECM) deposition, and decreased number of podocytes. MiR-21-deficiency was 

accompanied by increased TGFβ/Smad-signaling activity and expression of p53, 

Smad7, Pdcd4 and Timp3. 

We conclude that miR-21 functions as a feed-forward loop ameliorating glomerular 

injury through inhibition of TGFβ-induced podocyte loss and ECM deposition, 

consistent with its role in cancer. 

  



33 
 

Introduction 

DN is a common and devastating microvascular complication in patients with 

diabetes and the leading cause of renal failure in patients requiring dialysis1. 

Although understanding of the underlying mechanisms has progressed significantly 

and interventions have been implemented, diabetic patients with kidney disease 

continue to have a much higher risk of death than diabetic patients with normal renal 

function2, suggesting the need for new drug targets.  

MiRNAs are ~22 nucleotide RNAs that guide RISC to 3’UTR of target mRNAs and 

thereby repress expression of protein-coding genes. miRNAs can regulate large 

numbers of target genes and are often integrated in positive and negative feedback 

loops and have been implicated as modulators of stress responses in many 

physiologic and pathologic processes3.  

In animal models, several miRNAs have been identified that mediate initiation and 

development of DN by altering the expression of TGFβ signaling components4. 

TGFβ is a key factor in the initiation and progression of DN by promoting 

extracellular matrix deposition and loss of podocytes5. TGFβ also regulates 

expression of miRNAs on a transcriptional and post-transcritpional level6. 

Significantly less is known about the role of miRNAs in human DN, but available 

data support that the current knowledge about miRNAs in murine models of DN is 
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also relevant in patients with DN7. 

Here we report our findings from the analysis of miRNA expression in 

micro-dissected glomeruli of kidney biopsies from patients with DN and its 

associations with proteinuria, a clinically relevant parameter of kidney damage and 

prognostic marker of DN progression. Furthermore, we provide experimental 

evidence that miR-21 protects against TGFβ-mediated renal injury by preventing 

podocyte apoptosis via inhibition of pro-apoptotic members of the TGFβ signaling 

cascade. This finding is contrary to the reported pro-fibrotic role of miR-21 in 

models of tubulo-interstitial kidney injury, but it is in line with its well-established 

oncogenic and anti-apoptotic capacity in cancer. 
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Results 

General characteristics of study cohorts 

Study subjects were divided into two cohorts for testing and validation. Both cohorts 

included more female subjects. Urine was collected over 24 hours and urine albumin 

to creatinine ratio (ACR) was measured. Participants in our cohorts exhibited a 

broad range of ACR (μg/mg), while the mean glomerular filtration rate (GFR, 

iothalamate clearance) was above 90 ml/min/1.73m2 for both cohorts (Table 2.1). 

There was no statistical difference in age, gender distribution, ACR, or GFR at time 

of biopsy between the cohorts. 

 

MiRNA expression profiles generated by RNA sequencing and quantitative 

reanl time PCR (qrt-PCR) exhibit a high correlation   

The amount of total RNA isolated from micro-dissected glomeruli is limited (usually 

ranging from 20 to 200ng per sample). The Taqman-based miRNA array (Applied 

Biosystems) is suitable for these small amounts of total RNA when using 

pre-amplification. We did not detect significant differences in miRNA expression 

with or without pre-amplification using human kidney biopsy tissues. As different 

miRNA profiling methods have been shown to exhibit variable correlations8,9, we 

compared the Taqman-qrt-PCR-based array method with RNA sequencing using the 
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same RNA pool from whole kidneys of a 3 month- old C57BI/6J mouse. We found 

that miRNA sequence reads from RNA sequencing correlated with miRNA cycle 

time generated from qrt-PCR-based miR array (R=0.7, Figure 2.1). For example, 

miR-21 showed very high expression using both RNA sequencing and qrt-PCR array. 

In view of the low RNA content in renal glomeruli and good correlation of miRNA 

profiling between RNA sequencing and qrt-PCR array, we proceeded to apply 

qrt-PCR-based miRNA array with amplification to profile miRNA in the renal 

glomeruli of our cohorts as described10.  

  

Correlation of miRNA expression with ACR   

To identify miRNA relevant for glomerular injury, we associated miRNA expression 

levels with clinical-relevant phenotypes, such as ACR or GFR in our American 

Indian cohorts. Highly significant correlations with ACR were detected for 20 

miRNAs. Among those, miR-21 has the lowest CT value (highest relative abundance 

in the glomeruli) and a statistically very high correlation with ACR in cohort 1 

(testing cohort) (R=0.8, Table 2.2A). Because validation in the same sample was not 

feasible due to a limited amount of RNA, we further validated these findings in 

cohort 2 (validating cohort). miR-21 maintained the high expression in renal 

glomeruli as well as the significant correlation with ACR (R=0.51, Table 2.2B). 
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However, there was no significant correlation between miRNA and GFR (P-value > 

0.05 for all miRNA). Patients with normo- versus micro-albuminuria did not have 

differences in miR-21 levels, whereas patients with macro-albuminuria exhibited 

significantly increased miR-21 in glomeruli (Figure 2.2). 

 

Increased TGFβ gene expression in human DN   

Glomerular mRNA expression profiles of living donors and the American Indian 

subjects with DN have been recently reported11. In this data set, TGFβ1 mRNA 

expression (TGFB1) was higher in glomeruli of subjects with DN compared with 

living donor (fold change=1.22, FDR<0.0001), consistent with previous findings in 

other cohorts12.  

 

miR-21 and TGFβ levels correlate with kidney damage severity in TGFβ1 

transgenic mice 

As miR-21 has been shown to be regulated by TGFβ1, transgenic overexpression of 

TGFβ1 causes proteinuria and progressive glomerulosclerosis13,14, and miR-21 

levels are highly correlated with proteinuria in humans, we examined miR-21 

expression in TGFβ1 transgenic mice. We found that miR-21 expression in kidneys 

of TGFβ1 transgenic mice increased progressively with the severity of kidney 
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damage based on histological scores as described15 (Figure 2.3A). Furthermore, 

TGFβ1 mRNA levels also positively correlated with the severity of kidney damage 

(Figure 2.3B). Therefore, we chose TGFβ1 transgenic mice to further examine the 

function of miR-21 in glomerular injury. 

 

TGFβ1 transgenic/miR-21 KO mice develop increased proteinuria, extracellular 

matrix deposition, and diffuse glomerulosclerosis 

In order to investigate the function of miR-21 in TGFβ-related glomerular injury, we 

obtained miR-21 KO mice. These mice showed no evidence of structural 

abnormalities in the kidney compared to miR-21 WT mice (Figure 2.4). We crossed 

miR-21 KO with TGFβ1 transgenic mice to generate TGFβ1 transgenic (TG)/miR-21 

WT and TG/miR-21 KO littermates in the C57BI/6J background and examined the 

kidney function and structure of those littermates at 4 weeks of age. Qualitative and 

quantitative analysis of urine samples showed increased proteinuria in TG/miR-21 

WT mice as expected, but nearly 50% of TG/miR-21 KO mice developed strongly 

increased albuminuria compared to TG/miR-21 WT mice (Figure 2.5). Plasma 

TGFβ1 concentration (Figure 2.6A) and glomerular TGFβ1 mRNA levels ( Figure 

2.6B) were not different between of TG/miR-21 WT and KO mice. 

Histologically, glomeruli of TG/miR-21 KO mice exhibited increased deposition of 
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Periodic Acid-Schiff (PAS)-positive material (Figure 2.7A) as well as picrosirius red 

staining intensity (Figure 2.7A&B). Consistent with these results, in glomeruli, 

collagen III protein (Figure 2.7A), and collagen III, IV and VI mRNA expression 

were increased (Figure 2.7C). The pattern of ECM deposition in glomeruli of 

TG/miR-21 KO was nodular (Figure 2.7A). No differences were detected in the 

tubulointerstitium between TG/miR-21 WT and TG/miR-21 KO mice. The findings 

are consistent with accelerated glomerulosclerosis induced by TGFβ in the absence 

of miR-21. 

 

Loss of miR-21 is associated with decreased podocyte density in TGFβ1 

transgenic mice   

Loss of podocytes causes glomerulosclerosis16 and has been detected in TGFβ1 

transgenic mice17. To examine whether accelerated glomerulosclerosis in 

TG/miR-21 KO mice is associated with decreased podocyte density, we determined 

podocyte number per glomerular tuft in TG/miR-21 WT and KO mice.  

We applied podocyte-specific nuclear protein, WT1, to identify podocytes in 

glomeruli. Using DAPI nucleic acid and WT1 immunofluorescent staining, we 

found that TG/miR-21 KO mice have a similar number of total cells and 

WT1-positive cells per glomerular tuft compared to their TG/miR-21 WT littermates 
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at 2 weeks of age (Figure 2.8A). At 4 weeks of age, we detected a decreased number 

of total cells and WT1-positive nuclei per glomerular tuft in TG/miR-21-KO mice 

compared to the WT littermates (Figure 2.8B). The data suggested that the decreased 

number of total cells and WT1-positive cells in TG/miR-21 KO mice is due to loss 

of podocytes from 2 weeks old to 4 weeks old. 

 

Loss of miR-21 promotes glomerular cell apoptosis 

miR-21 is an anti-apoptotic factor in cancer and other cells18,19. Podocyte apoptosis 

has been demonstrated to be the initiating event leading to glomerulosclerosis20. 

Therefore, we examined apoptotic events prior to depletion of podocytes in 

glomeruli of 2 weeks old TG/miR-21 WT and KO mice by determining activation 

and cleavage of caspase 321,22. As predicted we detected cleaved caspase 3 by 

immunohistochemistry in both TG/miR-21 WT and KO mice. Furthermore, 

significantly more positive cells were seen in glomeruli of TG/miR-21 KO mice 

(Figure 2.9A). 

To determine specifically whether miR-21 regulates podocyte death, we examined 

podocyte apoptosis in cultured murine podocytes after transfection with antisense 

miR-21 or scramble oligonucleotides. Apoptosis was identified by annexin V-FITC 

and propidium iodide (PI) double-labeling using flow cytometry after serum 
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withdrawal. We found that podocytes transfected with antisense miR-21 

oligonucleotides have significantly more apoptotic cells than podocytes transfected 

with scramble oligonucleotides (Figure 2.9B). Furthermore, when apoptosis was 

assessed by measuring loss of mitochondrial membrane potential, at 24 hours after 

TGFβ1 treatment, podocytes transfected with miR-21 mimic or antisense 

oligonucleotides exhibited decreased and increased apoptosis, respectively, 

compared to cells transfected with scramble oligonucleotides (Figure 2.9C). These 

findings suggested that increased podocyte apoptosis underlies the accelerated 

glomerulosclerosis in TGFβ1 transgenic mice deficient for miR-21. 

 

Loss of miR-21 leads to increased expression of pro-apoptotic proteins 

TGFβ is known to induce apoptosis through Smad7 and phosphorylation of Smad323. 

P53 (Trp53) and programmed cell death 4 (Pdcd4) are tumor suppressor proteins, 

which induce apoptosis24,25. Trp53 was indirectly suppressed by miR-2124 and Pdcd4 

was targeted by miR-21 in cancer cells25. Cross referencing proteins in pro-apoptotic 

pathways with miR-21 predicted targets using TargetScan prediction algorithm 6.126, 

we found that TGFβ receptor 2 (Tgfbr2), TGFβ induced (Tgfbi), Smad7, which are 

members of the TGFβ-signaling cascade and mediators of TGFβ-induced apoptosis26, 

and Pdcd4 are predicted targets of miR-21 (Figure 2.10A).  



42 
 

To determine whether miR-21 regulates TGFβ-signaling activity in podocytes, we 

first examined Smad signaling activity in murine podocytes exposed to TGFβ and 

transfected with antisense miR-21 oligonucleotides. Smad3 phosphorylation was 

increased 4 and 24 hours after exposure to TGFβ1 and the phosphorylation of Smad3 

was even higher when miR-21 was suppressed (Figure 2.10B). Levels of Pdcd4 was 

downregulated by TGFβ1 (Figure 2.10C). However, levels of Pdcd4 were increased 

in cells when miR-21 was suppressed. In vivo, Tgfbr2, Tgfbi, Smad7, and Trp53 

mRNAs expression were increased in glomeruli of TG/miR-21 KO mice compared 

to TG/miR-21 WT mice (Figure 2.10D). miR-21 has been reported to target the 

3’UTRs of Pdcd425 and Tgfbr227. 

In podocytes, Smad7 is shown to be induced by TGFβ and induces apoptosis28. 

While inhibition of miR-21 had no effect on Smad7 levels in unchallenged 

podocytes, inhibition of miR-21 led to increased mRNA levels of Smad7 after 24 

hours exposure to TGFβ1 (Figure 2.10E). In a luciferase assay, we co-transfected 

Smad7 3’UTR luciferase construct and miR-21 mimic or antisense miR-21 

oligonucleotides into 293T human embryonic kidney cells. We found the luciferase 

activity of Smad7 3’UTR decreased by miR-21 overexpression and increased by 

miR-21 inhibition in cells (Figure 2.10F). We confirmed that Smad7 is a direct target 

of miR-21 as previously reported29. These results suggest that the anti-apoptotic 
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capacity of miR-21 is at least in part mediated by inhibition of multiple 

pro-apoptotic signals, including Smad7, Trp53, Pdcd4, and TGFβ/Smad3 signaling 

via Tgfbr2. 

 

miR-21 regulates glomerular ECM deposition   

Increased ECM deposition is another hallmark of TGFβ-related glomerulopathy and 

contributes to development and progression of glomerulosclerosis. ECM deposition 

is enhanced by increased collagen production or decreased breakdown of 

extracellular collagen by metalloproteinases (MMPs). Tissue inhibitors of 

metalloproteinase (TIMP) diminish the degradative capacity of extracellular MMPs. 

We found collagen4a1 (Col4a1) as well as Timp3 mRNA was increased in glomeruli 

of TG/miR-21 KO mice versus TG/miR-21 WT mice (Figure 2.7C & 2.10D). Both 

mRNAs are predicted targets of miR-21 (Figure 2.10A). To demonstrate the 

specificity of the increased mRNA levels of the listed miR-21 predicted targets in 

our mice, we showed that Ras homolog gene family member B (RhoB), another 

predicted target genes of miR-21, which have also been implicated in TGFβ 

signaling30, remained unchanged in TG/miR-21 KO mice versus TG/miR-21 WT 

mice (Figure 2.10D). Furthermore, we also found that Timp3 mRNA levels were 

increased in cultured mouse podocytes transfected with antisense miR-21 
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oligonucleotides (Figure 2.10E), and Timp3 mRNA has been experimentally 

confirmed as a miR-21 target in glioma cells31.  
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Discussion 

In this study, we determined the expression of glomerular miR-21 and miR-221 

exhibiting significant correlation with ACR in a total of 48 patients with early to 

intermediate histopathologic alterations of DN secondary to type 2 diabetes 

mellitus11. Few studies have explored miRNA expression in patients with DN. Krupa 

et al. have identified miRNAs that differentially expressed in kidney tissues of 22 

patients with progressive and non-progressive DN as well as with different disease 

stages7. Because of the different designs from our study including pooled 

formalin-fixed material from whole kidney biopsies, which constitutes mainly 

tubulo-interstitium, significant lower eGFR, and using miR-16 as the reference 

miRNA for normalization, the results from Krupa et al. and ours are not comparable. 

Another study has shown that urinary miR-21 levels were higher in adolescent Hong 

Kong Chinese with albuminuria than that without albuminuria32. We also detected 

increased miR-21 levels in adolescent patients with FSGS compared to controls or 

minimal change disease (personal communication Robert P. Woroniecki and Markus 

Bitzer, unpublished results; ASN 2008, abstract [TH-P0349]). miR-21 is important 

also because it has been identified as a widely expressed and consistently elevated 

miRNA in human cancer and it is a candidate target for intervention because 

inhibition of miR-21 limits tumor growth33. In animal models of kidney injury, 
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miR-21 expression is consistently increased. However, its function remains 

controversial as it has been shown to promote or protect from tubulo-interstitial34,35 

as well as glomerular36,37 damage in different model systems.  

miR-21 is of special interest because in murine models of tubulo-interstitial kidney35 

and lung disease38, miR-21 promotes fibrosis through multiple mechanisms 

including regulation of TGFβ signaling. But the function of miR-21 is complex. In 

the heart, miR-21 has been reported to contribute to myocardial disease39, 

ameliorates development of heart failure after cardiac ischemia40, but is not essential 

for cardiac remodeling41. We have recently shown that inhibition of miR-21 in a 

murine model of myelodysplastic syndrome leads to stimulation of hematopoiesis 

and improvement of phenotype29. Furthermore, miR-21 exhibits oncogenic activity 

through inhibition of apoptosis in most solid cancers and is explored as a therapeutic 

target33. Podocytopenia is an important cause of glomerulosclerosis16 and is a robust 

predictor of disease progression in DN5. Podocyte apoptosis has been detected in 

various animal models of glomerular injury including DN42 and TGFβ1 transgenic 

mice17, and can be induced by TGFβ in cultured podocytes17. Our finding that loss 

of miR-21 results in increased podocyte loss is consistent with anti-apoptotic 

function of miR-21 in cancer, thereby promoting cancer progression24. Albuminuria 

is strongly associated with podocyte damage and miR-21 is strongly correlated with 
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ACR. Therefore, promoting podocyte survival is an important and possibly the most 

prominent function of miR-21 in glomerular injury.  

We determined that miR-21 represses multiple signals that have been shown to 

promote apoptosis in podocytes, including TGFβ/Smad3 signaling17, Smad728 and 

Trp5343. Furthermore, Pdcd4 has been shown to be a pro-apoptotic molecule 

involved in TGFβ1-induced apoptosis in human hepatocellular carcinoma cells. 

Increased Smad3 phosphorylation is likely mediated by de-repression of Tgfbr2, a 

previously reported target of miR-2127. While miR-21 binds the 3’UTR thereby 

repressing expression of Smad738 and Pdcd424, miR-21 inhibits Trp53 expression 

indirectly via targeting Trp53-binding proteins24. Tgfbi induces apoptosis in cancer 

cells44 and it is a predicted target of miR-21, however, it has not been studied in 

podocytes. The increased detection of pro-apoptotic signals in TGmiR-21 KO mice 

is not mediated through TGFβ1 per se, because plasma and intra-renal TGFβ1 levels 

were not different between genotypes (Figure 2.6). Thus, miR-21 mediates its 

function through a large set of target genes.  

The diverse function of miR-21 depends on organ systems and injuries and it is also 

likely to be secondary to the differential expression of target genes. TGFβ activates 

multiple signaling cascades, exhibits cell-type and context-specific functions, and is 

integrated in a complex regulatory network with feed-forward and feedback loops23. 
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Furthermore, maintaining a tight homeostasis of TGFβ-signaling is essential for 

proper function of cells and organ system, underscored by the fact that abundant 

TGFβ1 leads to organ fibrosis45 whereas TGFβ1-deficiency leads to excessive 

inflammatory responses46. Similar to miR-21, miR-192 and miR-200a have been 

implicated in feedback regulation of TGF-beta signaling in DN4.  

The high abundance of miR-21 in human glomeruli and mouse kidneys (Figure 2.1 

& Table 2.2) suggests its high biological activity, because miRNAs are in 

stoichiometric competition with other miRNAs on RISC-loading and they target 

equivalent amounts of mRNA47. Therefore, it is somewhat surprising that 

miR-21-deficient mice do not exhibit developmental or anatomic abnormalities and 

are fertile48 (Figure 2.4). This is consistent with the concept that few target genes are 

repressed by miR-21 under normal cellular conditions but the repression is enhanced 

under cellular stress49.  

In addition to its anti-apoptotic effect, miR-21 regulates ECM deposition. Collagen 

4a1 is a direct target of miR-2150 and was increased in glomeruli of TG.miR-21 KO 

mice. TIMPs inhibit the capacity of MMPs to degrade extracellular collagens and 

thus promote ECM accumulation. We had shown inverse correlation of Timp3 and 

miR-21 expression in human tissues51 and others confirmed repression of Timp3 

expression by miR-21 via direct targeting of the Timp3 3’UTR31. In our study, we 
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showed increased ECM deposition and Timp3 expression in glomeruli of 

TG/miR-21 KO mice. These findings suggest that inhibition of ECM deposition by 

miR-21 contributes to protection against glomerulopathy.  

In summary, our findings support a feed-forward loop in the TGFβ/Smad signaling 

cascade, in which miR-21 represses multiple TGFβ target genes thereby preventing 

TGFβ-induced podocyte apoptosis and ECM deposition in glomeruli (Figure 2.11). 

Our findings further support a context-dependent function and interaction between 

TGFβ-signaling and miR-21. 

  



50 
 

Methods and Materials 

Study subjects. Kidney biopsy samples were collected from 111 Southwestern 

American Indians enrolled in a randomized, placebo-controlled, clinical trial to test 

the renoprotective efficacy of losartan in early type 2 diabetic kidney disease 

(ClinicalTrials.gov No. NCT00340678) as described52. In brief, subjects were 

treated with either losartan or placebo for a median of 5.9 years and a percutaneous 

kidney biopsy was obtained at the end of the treatment period. Kidney biopsy 

specimens were placed into RNAlater® and stored in -20ºC until glomeruli were 

micro-dissected from biopsy cores as described53. Tissue specimens from 48 

subjects were included in this study. 

Urinary albumin and creatinine as well as iothalamate concentrations for GFR 

determination were measured as described52 and values of the examination closest to 

the kidney biopsy were used in the present analyses. This study was approved by the 

Review Board of the National Institute of Diabetes and Digestive and Kidney 

Diseases. Each participant gave informed consent. 

  

miRNA expression analysis. miRNA profiling was obtained using TaqMan miRNA 

assays (Applied Biosystems) as described54. In brief, small RNA fraction (<200 nt) 

was isolated from micro-dissected glomeruli using RNeasy® and MinElute® 
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Cleanup kits (Qiagen) and reverse transcribed using TaqMan Megaplex RT primers 

(Applied Biosystems). Human glomerular small RNA was amplified by Megaplex 

PreAmp primers (Applied Biosystems). TaqMan array human and rodent miRNA ‘A’ 

cards (Applied Biosystems) were used to obtain miRNA profiles according to the 

manufacturer’s protocol. miRNA expression values, threshold cycle (CT), were 

normalized by U6 small nuclear RNA (snRNA), and RNU44 and RNU48 small 

nucleolar RNA (snoRNA). Delta cycle time (ΔCT) was calculated by subtracting 

miRNAs’ CT from geometric mean of snRNA’s and snoRNA’s CT. Expression level 

in arbitrary units were calculated from 2 to the power of delta cycle time (2ΔΔCT). 

The same protocol was used to determine miRNA expression in kidneys of C57Bl/6j 

mice for comparison with RNA-sequencing method as described below. 

 

RNA sequencing. Total RNA was isolated from kidneys of 3 months old, male 

C57Bl/6j wildtype mice (Jackson lab) using TRIzol® (Invitrogen) as described55 

and 1 µg of total RNA was used for isolation of the small RNA fraction ranging 

from 18 to 40nt size by denaturing polyacrylamide gel electrophoresis. Library 

preparation and sequencing was performed in the Genomics Core Facility of Albert 

Einstein College of Medicine using Illumina’s Genome Analyzer III. The protocol 

was described as (http://wasp.einstein.yu.edu/index.php/Protocol:RNA_seq). 

http://wasp.einstein.yu.edu/index.php/Protocol:RNA_seq
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Sequence reads (approximately 8x106 per sample) were aligned to the Genome 

Reference Consortium Mouse and miRNAs were annotated using a published 

automated bioinformatics pipeline56. 

 

Qrt-PCR. For expression analysis of specific transcripts, mRNA and 

miRNA-specific stem-loop primers and TaqMan probe sets (Applied Biosystem) 

were used according to manufacturer’s protocols, on an ABI 7900HT real-time PCR 

system as described54. 

 

Mouse models. miR-21 knockout mice (miR-21-KO) were generated from 

disruption of the miR-21 sequence as described48, and crossed with albumin-TGFβ1 

transgenic mice (TGFb-TG)45. Experiments were conducted in male littermates in 

C57Bl/6j background. These procedures were in accordance with the policies of the 

University of Michigan Institutional Animal Care and Use Committee. 

  

Tissue staining. Periodic acid Schiff and picrosirius red staining was performed on 

formalin-fixed paraffin-embedded mouse kidney sections as described28. For 

picrosirius red staining, percent glomerular area exceeding a minimum HSI (hue, 

saturation, intensity) threshold were determined from images of at least 50 glomeruli 
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per sample at 20x magnification using MetaMorph® image analysis software. WT1 

staining was performed as described28.  

 

Glomerular podocyte density. Podocyte density was determined for at least 30 

glomeruli of each sample using nuclear (DAPI-staining) and podocyte 

(WT1-staining) counts normalized to glomerular volume calculated using 

glomerular tuft area measurements and the Weibel equation as described57.  

 

Urine protein and creatinine measurement. Spot urine samples were collected 

non-invasively from mice. Urine creatinine concentrations were determined by 

QuantiChromTM Creatinine Assay Kit (BioAssay Systems). Urine protein was 

qualitatively assessed by Coomassie blue staining of SDS-PAGE gel loaded with 

equal amounts of urine and quantitatively by Bio-Rad protein assay (Bio-Rad).  

 

Isolation of mouse glomeruli. Isolation of glomeruli from TG/miR-21 WT and KO 

mice using beads and sieving method was performed as described achieving >90% 

purity58 .  

 

Cell culture. Conditionally immortalized murine podocytes were cultured as 
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described28. 

 

miRNA transfection. miR-21 oligonucleotide mimic (Ambion) or inhibitor (Exiqon) 

were applied with Lipofectamine® RNAiMAX Reagent (Invitrogen) to transfect 

podocytes at least 10 days after thermoshift. Using fluorescence-labeled scrambled 

oligo’s we detected about 40 to 50% of cells with positive fluorescence signals. 

 

Immunoblot assay. Total and phosphorylated proteins were detected by Western 

blotting using the following primary antibodies: phospho-smad3 (Rockland, 

600-401-919), total smad2/3 (cell signaling, #3102) and GAPDH (Sigma, G8795). 

IRDye® secondary antibodies and Odyssey infrared imaging system (LI-COR 

Biosciences) were used for quantification. 

  

Apoptosis assays. In vivo apoptosis was detected by immunohistochemistry with 

cleaved-caspase-3 antibody (Cell Signaling, Asp175) on FFPE tissue sections and 

manual counting of positive cells. For quantification of apoptosis of cultured cells, 

annexin-V/propidium iodide positive cells (determined by flow cytometry, 

Invitrogen assay kit) and cells negative for mitochondrial membrane potential 

(DePsipher assay, R&D system; fluorescent plate reader) were assayed as 
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described17. 

  

Luciferase reporter assays. The Smad7 3’UTR was amplified by PCR using 

genomic DNA from mouse embryonic fibroblasts; sequence of the sense primer 

AATAACTAGTTCGGTCGTGTGGTGGGGAGAAGA; antisense primer 

GATAAGCTTGCGCAAAGTGCATCTTTTCTTTATTCT. The amplified PCR 

product was cloned into pMIR-REPORT™ miRNA Expression Reporter Vector 

(Ambion/Invitrogen) between SpeI and HindIII sites downstream of the luciferase 

coding sequence. The 3’UTR construct, renilla luciferase plasmid, and miR-21 

mimic or anti-sense oligonucleotides were co-transfected into 293T human kidney 

embryonic cells using lipofectamine LTX and plus reagents (Invitrogen). Luciferase 

activity was measured 48 hours after transfection in luciferase assay plate reader. 

 

Statistical analysis. Participants in the kidney biopsy protocol were placed at 

random into either cohort one (training cohort) or two (validation cohort). General 

characteristics, including age and GFR, were compared between cohorts using t-tests, 

while two-group proportion test was used for gender distribution. Wilcoxon rank 

sum test was used for comparison of the non-normally distributed ACR values 

between Pima cohorts. Correlation analysis and significance was determined by 
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Pearson correlation using an R script. T-tests were used to compare sirius red 

intensity, cell numbers, mRNA and protein levels between miR-21-WT and -KO 

mice. 
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Table 2.1. Characteristics of American Indian testing and validating cohort 

  Testing cohort Validating cohort P-value 

No. of subject 26 22  

Age: Mean (SD) 43(9.1) 46(11.3) 0.3974 

Gender: % of female 81% 82% 0.9292 

ACR: Mean (SD) 498(1492) 194(518) 0.2466 

GFR: Mean (SD) 159(58) 137(38) 0.1436 

ACR: urine albumin-to-creatinine ratio (μg/mg). GFR: glomerular filtration rate (ml/min/1.73m2)  

SD: standard deviation. 

  



58 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. miRNA expression profiling in the mouse kidney using RNA 
sequencing and qrt-PCR. Expression levels of miRNAs determined by RNA 
sequencing and qrt-PCR were significantly correlated (R=0.7, P < 0.0001, No. of 
miRNAs included: 287; miRNA with 0 counts in RNA sequencing or undetermined 
cycle time (CT) in qrt-PCR were excluded). RNA sequencing read counts were 
transformed to natural logarithmic value. miR-21 (white circle) was highly 
expressed according to both assays. 
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Table 2.2A. Correlation between miRNA and ACR in testing cohort 

miRNA P value Correlation with ACR Expression level 

hsa-miR-21 <0.00001 0.80 high 

hsa-miR-150 <0.00001 0.74 high 

hsa-miR-192 <0.00001 0.70 high 

hsa-miR-221 <0.00001 0.67 high 

hsa-miR-532-3p <0.00001 0.64 high 

hsa-miR-135a <0.00001 0.81 medium 

hsa-miR-429 <0.00001 0.79 medium 

hsa-miR-660 <0.00001 0.77 medium 

hsa-miR-142-3p <0.00001 0.77 medium 

hsa-miR-200a <0.00001 0.76 medium 

hsa-miR-218 <0.00001 0.74 medium 

hsa-miR-455-5p <0.00001 0.71 medium 

hsa-miR-450a <0.00001 0.66 medium 

hsa-miR-181a <0.00001 0.65 medium 

hsa-miR-642 <0.00001 0.89 low 

hsa-miR-32 <0.00001 0.85 low 

hsa-miR-511 <0.00001 0.77 low 

hsa-miR-187 <0.00001 0.74 low 

hsa-miR-452 <0.00001 0.69 low 

hsa-miR-501-5p <0.00001 0.65 low 
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Table 2.2B. Correlation between miRNA and ACR in validating cohort 

miRNA  P value  Correlation with ACR Expression level 

hsa-miR-132  <0.00001 0.64 high 

hsa-miR-454  <0.00001 0.59 high 

hsa-miR-337-5p  <0.00001 0.58 high 

hsa-miR-21  0.01 0.51 high 

hsa-miR-191  0.03 0.47 high 

hsa-miR-221  0.03 0.46 high 

hsa-miR-186  0.03 0.46 high 

hsa-miR-140-5p  0.03 0.46 high 

hsa-miR-125a-5p  0.03 0.46 high 

hsa-miR-212  <0.00001 0.96 medium 

hsa-miR-224  <0.00001 0.94 medium 

hsa-miR-133b  <0.00001 0.58 medium 

hsa-miR-18a  0.02 0.51 medium 

hsa-miR-140-3p  0.03 0.46 medium 

hsa-miR-148b  0.03 0.46 medium 

hsa-miR-133a  0.04 0.43 medium 

hsa-miR-299-5p  <0.00001 0.83 low 

hsa-miR-34c  0.02 0.48 low 
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Figure 2.2. Glomerular miR-21 levels in American Indian patients with 
normo-albuminuria, micro-albuminuria and macro-albuminuria. miR-21 levels 
determined by qrt-PCR were similar in patients with normo- (N=19) and 
micro-albuminuria (N=22) (P=0.8). However, miR-21 levels increased significantly 
in patients with macro-albuminuria (N=7) (*P = 0.01 versus micro-albuminuria). 
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Figure 2.3. miR-21 and TGFβ1 expression levels in kidneys of TGFβ1 
transgenic mice. Qrt-PCR showed (A) miR-21 levels increased with kidney damage 
severity inferred from histology score. Levels were significantly higher in TG severe 
phenotype (TG/severe) (N=8) and mild phenotype (TG/mild) (N=6) compared to 
wild type (WT) (N=5) (P < 0.001 in #TG/severe versus TG/mild and *TG/mild 
versus WT). (B) TGFβ1 levels also increased with kidney damage severity. Levels 
were significantly higher in TG/severe (N=3) compared to WT (N=3) (*P = 0.01). 
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Figure 2.4. Kidney histology and structure in miR-21 WT and KO C57BI/6J 
mouse at 12 weeks old. (A) Periodic acid Schiff (PAS) staining of 
tubulointerstitium or glomerulus showed normal kidney structure in miR-21 WT and 
KO littermates. (B) Sirius red staining of tubulointerstitium or glomerulus showed 
no staining difference between miR-21 WT and KO littermates. (C) Transmission 
electron microscopy (TEM) showed normal podocyte morphology and slit 
diaphragm in miR-21 WT and KO littermates. (D) Histogram and statistical analysis 
of sirius red staining intensity showed no difference in tubulointerstitium or 
glomerulus between miR-21 WT (N=4) and KO (N=5) littermates (P = 0.8 in 
tubulointerstitium; P = 0.68 in glomerulus). 
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Figure 2.5. Examination of proteinuria in TG/miR-21 WT and KO mice. (A) 
Urine protein to creatinine ratio showed that TG/miR-21 KO mice (N=19) had 
increased proteinuria with more variability than TG/miR-21 WT mice (N=12) at 4 
weeks of age. (B) Coomassie blue stain of urine showed that TG/miR-21 KO mice 
(N=6) had more severe proteinuria than TG/miR-21 WT mice (N=7; normalized by 
loading 2μg creatinine equivalents of urine for each sample). 
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Figure 2.6. TGFβ1 levels in TG/miR-21 WT and KO mice. (A) Plasma TGFβ1 
levels were not different between TG/miR-21 WT (N=11) and KO (N=17) mice (P = 
0.053). (B) Qrt-PCR showed that glomerular TGFβ1 mRNA levels were not 
different between TG/miR-21 WT (N=11) and KO (N=17) mice (P = 0.6).  
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Figure 2.7. Examination of kidney histology in TG/miR-21 WT and KO mice. 
(A) PAS staining showed increased deposition of PAS material and decreased 
cellularity in glomeruli of TG/miR-21 KO compared to TG/miR-21 WT mice, but no 
difference in the tubulointerstitial area. Picrosirius red staining of glomerulus 
showed increased signal intensity and development of nodular pattern in glomeruli 
of TG/miR-21 KO compared to TG/miR-21 WT mice, again with no difference in 
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the tubulointerstitial area. Consistent with increased ECM deposition detected by 
picrosirius red staining, immunohistochemistry staining showed increased collagen 
III deposition in the glomerulus of TG/miR-21 KO. (B) Histogram and statistical 
analysis of picrosirius red staining intensity showed significantly higher staining 
intensity in glomeruli of TG/miR-21 KO (N=7) versus WT mice (N=9) (*P < 0.01). 
In the tubulointerstitium, staining intensity between TG/miR-21 WT and KO mice 
was not significantly difference (P = 0.08). (C) Qrt-PCR showed higher expression 
of collagen1a1, collagen4a1, collagen6a1 mRNA levels in glomeruli of TG/miR-21 
KO mice (N=3) compared to WT mice (N=4) (*P < 0.05). 
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Figure 2.8. Podocyte number in glomeruli of TG/miR-21 WT and KO mice. (A) 
The immunofluorescent staining did not reveal difference in the number of cells 
(DAPI-positive) and podocytes (DAPI- and WT1-positive) per glomerular tuft in 
TG/miR-21 WT (N=3) versus KO mice (N=5) at 2 weeks of age. (B) The number of 
total cells (*P < 0.05) and podocytes (*P < 0.01) per glomerular tuft were 
significantly decreased in TG/miR-21-KO mice (N=4) versus TG/miR-21-WT mice 
(N=5) at 4 weeks of age. DAPI (blue), WT1 (red), podocytes (pink in merge). The 
number of cells per glomerular tuft was normalized by the number of DAPI-positive 
cells in TG/miR-21 WT mice at 4 weeks old. 
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Figure 2.9. Apoptotic events in glomeruli of TG/miR-21 WT and KO mice and 
in miR-21 mimic or antisense oligonucleotide-transfected immortalized mouse 
podocytes. (A) Cleaved caspase-3 staining showed a higher number of positively 
stained cells per 100 glomerular section of TG/miR-21 KO mice (N=7) compared to 
the WT mice (N=3) at 2 weeks old. (B) Annexin V-FITC and propidium iodide (PI) 
double labeling in flow cytometry showed that mouse podocytes transfected with 
antisense miR-21 oligonucleotide (miR-21 inhibitor) exhibited increased number of 
apoptotic cells than the scramble transfection (21% v.s. 6.9%) (C) Staining of 
mitochondrial membrane potential in mouse podocytes transfected with miR-21 
mimic or inhibitor and treated with TGFß1 (10 ng/ml) for 24 hours indicated that 
inhibition of miR-21 results in loss of mitochondrial membrane potential consistent 
with increased apoptosis, whereas overexpression of miR-21 results in decreased 
apoptosis compared to the scramble transfection. In vitro experiments were 
performed as triplicates (*P < 0.05). 
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Figure 2.10. Examination of candidate miR-21 target gene expression in mouse 
podocytes and glomeruli of TG/miR-21 WT and KO mice. (A) Predicted target 
sites of miR-21 in 3’UTRs of Tgfbr2, Tgfbi, Smad7, Pdcd4, Timp3, and Col4a1 
(www.targetscan.org). (B) Protein measurement showed increased level of 
phospho-Smad3 in miR-21 inhibitor transfected podocytes compared to the 
scramble transfection at 4 and 24 hours after TGFß1 (10ng/ml) treatment (*P < 0.05; 
N=3,). (C) PDCD4 protein level was decreased in podocytes at 24 hours after 
TGFß1 treatment compared to no treatment (*P < 0.05; N=4). PDCD4 was increased 
in miR-21 inhibitor transfected podocytes compared to scramble transfection with or 
without TGFß1 treatment (*P < 0.05; N=3 to 4). 
  

http://www.targetscan.org/
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Figure 2.10. Examination of candidate miR-21 target gene expression in mouse 
podocytes and glomeruli of TG/miR-21 WT and KO mice. (D) TG/miR-21-KO 
mice (N=3) exhibit higher glomerular mRNA expression of Tgfbr2, Tgfbi, Smad7, 
Tp53, and Timp3 compared to TG/miR-21-WT mice (N=4) assayed by qrt-PCR (*P 
< 0.05). The level of RhoB, also a predicted target of miR-21, did not differ between 
TG/miR-21-WT and KO mice (P = 0.9). (E) At 24 hours of TGFß1 treatment, Smad7 
and Timp3 were increased in miR-21 inhibitor-transfected podocytes. Timp3 was 
also increased in miR-21 inhibitor-transfected podocytes without TGFß1 treatment 
(*P < 0.05, N=6). (F) Luciferase assay of 293T human embryonic kidney cells 
co-transfected with Smad7 3’UTR luciferase construct and miR-21 mimic or 
inhibitor showed decreased luciferase activity after miR-21 overexpression (*P < 
0.01, N=3) and increased luciferase activity after miR-21 inhibition (**P < 0.001, 
N=3). 
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Figure 2.11. Proposed function of miR-21 as a feed-forward loop in TGFβ 
signaling in glomerular injury. The role of Pdcd4 (dashed line) in TGFβ-induced 
renal cell survival and death has not been explored yet. Trp53 is indirectly regulated 
by miR-21 (dot line).  

 

 

 

 

 

 

 

 

 

 



74 
 

Reference 

1. US Renal Data System. USRDS 2012 Annual Data Report. in Atlas of 
Chronic Kidney Disease and End-Stage Renal Disease in the United States, 
Vol. 1 (National Institutes of Health, National Institute of Diabetes and 
Digestive and Kidney Diseases, Bethesda, MD, 2012). 

2. Afkarian, M., et al. Kidney disease and increased mortality risk in type 2 
diabetes. J Am Soc Nephrol 24, 302-308 (2013). 

3. Mendell, J.T. & Olson, E.N. MicroRNAs in stress signaling and human 
disease. Cell 148, 1172-1187 (2012). 

4. Kato, M. & Natarajan, R. MicroRNA circuits in transforming growth 
factor-beta actions and diabetic nephropathy. Semin Nephrol 32, 253-260 
(2012). 

5. Pagtalunan, M.E., et al. Podocyte loss and progressive glomerular injury in 
type II diabetes. J Clin Invest 99, 342-348 (1997). 

6. Davis, B.N., Hilyard, A.C., Lagna, G. & Hata, A. SMAD proteins control 
DROSHA-mediated microRNA maturation. Nature 454, 56-61 (2008). 

7. Krupa, A., et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic 
nephropathy. J Am Soc Nephrol 21, 438-447 (2010). 

8. Git, A., et al. Systematic comparison of microarray profiling, real-time PCR, 
and next-generation sequencing technologies for measuring differential 
microRNA expression. RNA 16, 991-1006 (2010). 

9. Willenbrock, H., et al. Quantitative miRNA expression analysis: comparing 
microarrays with next-generation sequencing. RNA 15, 2028-2034 (2009). 

10. Bitzer, M., Ju, W., Jing, X. & Zavadil, J. Quantitative analysis of miRNA 
expression in epithelial cells and tissues. Methods Mol. Biol. 820, 55-70 
(2012). 

11. Hodgin, J.B., et al. Identification of Cross-Species Shared Transcriptional 
Networks of Diabetic Nephropathy in Human and Mouse Glomeruli. 
Diabetes (2012). 

12. Border, W.A. & Noble, N.A. TGF-beta in kidney fibrosis: a target for gene 
therapy. Kidney Int 51, 1388-1396 (1997). 

13. Kopp, J.B., et al. Transgenic mice with increased plasma levels of TGF-beta 
1 develop progressive renal disease. Laboratory Investigation 74, 991-1003 
(1996). 

14. Sanderson, N., et al. Hepatic expression of mature transforming growth 
factor beta 1 in transgenic mice results in multiple tissue lesions. 
Proceedings of the National Academy of Sciences of the United States of 



75 
 

America 92, 2572-2576 (1995). 
15. Ju, W., et al. Renal gene and protein expression signatures for prediction of 

kidney disease progression. American Journal of Pathology 174, 2073-2085 
(2009). 

16. Wharram, B.L., et al. Podocyte depletion causes glomerulosclerosis: 
diphtheria toxin-induced podocyte depletion in rats expressing human 
diphtheria toxin receptor transgene. J Am Soc Nephrol 16, 2941-2952 (2005). 

17. Wu, D.T., Bitzer, M., Ju, W., Mundel, P. & Bottinger, E.P. TGF-beta 
concentration specifies differential signaling profiles of growth 
arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol 16, 
3211-3221 (2005). 

18. Chan, J.A., Krichevsky, A.M. & Kosik, K.S. MicroRNA-21 is an 
antiapoptotic factor in human glioblastoma cells. Cancer Research 65, 
6029-6033 (2005). 

19. Carletti, M.Z., Fiedler, S.D. & Christenson, L.K. MicroRNA 21 blocks 
apoptosis in mouse periovulatory granulosa cells. Biology of Reproduction 
83, 286-295 (2010). 

20. Kim, Y.H., et al. Podocyte depletion and glomerulosclerosis have a direct 
relationship in the PAN-treated rat. Kidney International 60, 957-968 (2001). 

21. Erhardt, P. & Cooper, G.M. Activation of the CPP32 apoptotic protease by 
distinct signaling pathways with differential sensitivity to Bcl-xL. Journal of 
Biological Chemistry 271, 17601-17604 (1996). 

22. Nicholson, D.W., et al. Identification and inhibition of the ICE/CED-3 
protease necessary for mammalian apoptosis. Nature 376, 37-43 (1995). 

23. Bottinger, E.P. & Bitzer, M. TGF-beta signaling in renal disease. J Am Soc 
Nephrol 13, 2600-2610 (2002). 

24. Papagiannakopoulos, T., Shapiro, A. & Kosik, K.S. MicroRNA-21 targets a 
network of key tumor-suppressive pathways in glioblastoma cells. Cancer 
Res 68, 8164-8172 (2008). 

25. Frankel, L.B., et al. Programmed cell death 4 (PDCD4) is an important 
functional target of the microRNA miR-21 in breast cancer cells. J Biol 
Chem 283, 1026-1033 (2008). 

26. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often 
flanked by adenosines, indicates that thousands of human genes are 
microRNA targets. Cell 120, 15-20 (2005). 

27. Yu, Y., et al. MicroRNA-21 induces stemness by downregulating 
transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer 
cells. Carcinogenesis 33, 68-76 (2012). 



76 
 

28. Schiffer, M., et al. Apoptosis in podocytes induced by TGF-beta and Smad7. 
J Clin Invest 108, 807-816 (2001). 

29. Bhagat, T.D., et al. miR-21 mediates hematopoietic suppression in MDS by 
activating TGF-beta signaling. Blood (2013). 

30. Engel, M.E., Datta, P.K. & Moses, H.L. RhoB is stabilized by transforming 
growth factor beta and antagonizes transcriptional activation. J Biol Chem 
273, 9921-9926 (1998). 

31. Gabriely, G., et al. MicroRNA 21 promotes glioma invasion by targeting 
matrix metalloproteinase regulators. Molecular and Cellular Biology 28, 
5369-5380 (2008). 

32. Kong, A.P., et al. Associations between microRNA (miR-21, 126, 155 and 
221), albuminuria and heavy metals in Hong Kong Chinese adolescents. 
Clinica Chimica Acta 413, 1053-1057 (2012). 

33. Pan, X., Wang, Z.X. & Wang, R. MicroRNA-21: a novel therapeutic target in 
human cancer. Cancer Biol Ther 10, 1224-1232 (2010). 

34. Xu, X., et al. Delayed ischemic preconditioning contributes to renal 
protection by upregulation of miR-21. Kidney Int 82, 1167-1175 (2012). 

35. Chau, B.N., et al. MicroRNA-21 promotes fibrosis of the kidney by silencing 
metabolic pathways. Sci Transl Med 4, 121ra118 (2012). 

36. Dey, N., et al. MicroRNA-21 orchestrates high glucose-induced signals to 
TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 
286, 25586-25603 (2011). 

37. Zhang, Z., et al. MicroRNA-21 protects from mesangial cell proliferation 
induced by diabetic nephropathy in db/db mice. FEBS Lett 583, 2009-2014 
(2009). 

38. Liu, G., et al. miR-21 mediates fibrogenic activation of pulmonary 
fibroblasts and lung fibrosis. J Exp Med 207, 1589-1597 (2010). 

39. Thum, T., et al. MicroRNA-21 contributes to myocardial disease by 
stimulating MAP kinase signalling in fibroblasts. Nature 456, 980-984 
(2008). 

40. Sayed, D., et al. MicroRNA-21 is a downstream effector of AKT that 
mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 
285, 20281-20290 (2010). 

41. Patrick, D.M., et al. Stress-dependent cardiac remodeling occurs in the 
absence of microRNA-21 in mice. J Clin Invest 120, 3912-3916 (2010). 

42. Susztak, K., Raff, A.C., Schiffer, M. & Bottinger, E.P. Glucose-induced 
reactive oxygen species cause apoptosis of podocytes and podocyte depletion 
at the onset of diabetic nephropathy. Diabetes 55, 225-233 (2006). 



77 
 

43. Niranjan, T., et al. The Notch pathway in podocytes plays a role in the 
development of glomerular disease. Nature medicine 14, 290-298 (2008). 

44. Zamilpa, R., et al. C-terminal fragment of transforming growth factor 
beta-induced protein (TGFBIp) is required for apoptosis in human 
osteosarcoma cells. Matrix Biol 28, 347-353 (2009). 

45. Sanderson, N., et al. Hepatic expression of mature transforming growth 
factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl 
Acad Sci U S A 92, 2572-2576 (1995). 

46. Kulkarni, A.B., et al. Transforming growth factor beta 1 null mutation in 
mice causes excessive inflammatory response and early death. Proceedings 
of the National Academy of Sciences of the United States of America 90, 
770-774 (1993). 

47. Mukherji, S., et al. MicroRNAs can generate thresholds in target gene 
expression. Nature Genetics 43, 854-859 (2011). 

48. Lu, T.X., et al. MicroRNA-21 limits in vivo immune response-mediated 
activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the 
severity of delayed-type hypersensitivity. J Immunol 187, 3362-3373 (2011). 

49. Androsavich, J.R., Chau, B.N., Bhat, B., Linsley, P.S. & Walter, N.G. 
Disease-linked microRNA-21 exhibits drastically reduced mRNA binding 
and silencing activity in healthy mouse liver. RNA 18, 1510-1526 (2012). 

50. Mase, Y., et al. MiR-21 is Enriched in the RNA-Induced Silencing Complex 
and Targets COL4A1 in Human Granulosa Cell Lines. Reprod Sci 19, 
1030-1040 (2012). 

51. Zavadil, J. & Bitzer, M. MicroRNAs in epithelial cell plasticity and 
carcinogenesis. in Human Epithelial Tumor Cell Plasticity:Implications for 
Cancer Progression and Metastasis (ed. Higgins, P.J.) (2008). 

52. Weil EJ, et al. Effect of losartan on prevention and progression of early 
diabetic nephropathy in American Indians with type 2 diabetes. Diabetes in 
press(2013). 

53. Cohen, C.D., Frach, K., Schlondorff, D. & Kretzler, M. Quantitative gene 
expression analysis in renal biopsies: a novel protocol for a high-throughput 
multicenter application. Kidney International 61, 133-140 (2002). 

54. Bitzer, M., Ju, W., Jing, X. & Zavadil, J. Quantitative analysis of miRNA 
expression in epithelial cells and tissues. Methods Mol Biol 820, 55-70 
(2012). 

55. Bitzer, M., et al. A mechanism of suppression of TGF-beta/SMAD signaling 
by NF-kappa B/RelA. Genes & development 14, 187-197 (2000). 

56. Farazi, T.A., et al. Bioinformatic analysis of barcoded cDNA libraries for 



78 
 

small RNA profiling by next-generation sequencing. Methods 58, 171-187 
(2012). 

57. Fukuda, A., et al. Angiotensin II-dependent persistent podocyte loss from 
destabilized glomeruli causes progression of end stage kidney disease. 
Kidney International 81, 40-55 (2012). 

58. Takemoto, M., et al. A new method for large scale isolation of kidney 
glomeruli from mice. Am J Pathol 161, 799-805 (2002). 

 

 



79 
 

Chapter III 

Loss of miR-21 promotes mesangial cell proliferation and leads to increased 

mesangial expansion in diabetic mice 

 

Abstract 

DN is the leading cause of ESRD and imposes heavy burden on the medical economy. 

Mesangial expansion is an early finding in DN, and is associated with mesangial cell 

proliferation as well as hypertrophy. We have previously identified miR-21 to be 

increased in micro-dissected glomeruli of patients with early to intermediate 

pathologic changes of DN. In addition, we had shown that loss of miR-21 is 

associated with acceleration of glomerulopathy in Albumin-TGFß transgenic mcie. To 

test the hypothesis that miR-21 inhibits the development of mesangial expansion and 

DN, we examined glomerular pathology in streptozotocin (STZ)-induced 

hyperglycemic, miR-21 KO mice. 

STZ (50mg/kg) was injected intraperitoneally (IP) into 10 weeks old miR-21 wildtype 

(WT), heterozygous (HET), and knockout (KO) mice in pure DBA background for 5 

days. Proteinuria was assessed every 4 weeks for 20 weeks after STZ treatment. 
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Kidney histology and mRNA expression were examined at 20 weeks after STZ 

treatment. For in vitro studies, primary mesangial cells (PMC) were isolated from 

miR-21 WT and KO mice. Cell proliferation and cell cycle distribution were studied 

in miR-21WT and KO PMCs.  

STZ-treated miR-21 KO mice developed more albuminuria and glomerular 

mesangial expansion compared to the WT or HET littermates. miR-21 KO PMC 

showed faster proliferation and more cells accumulating at the synthesis (S) phase of 

the cell cycle than miR-21 WT PMC. The mRNA expression of cell cycle regulators, 

cyclin-dependent kinase 6 (Cdk6) and cell division cycle 25A (Cdc25a), were 

increased in the renal glomeruli of STZ-treated miR-21 KO mice versus STZ-treated 

miR-21 WT mice.  

Our results suggested that miR-21 targets Cdk6 and Cdc25a to protect against 

mesangial expansion in DN. Therefore, we propose that miR-21 limits DN by 

inhibiting cell cycle progression in mesangial cells. 
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Introduction 

DN is the renal injury caused by hyperglycemia. Clinically, it manifests as 

proteinuria and loss of kidney function. Histologically, it is characterized by 

mesangial expansion, glomerulosclerosis and tubulointerstitial fibrosis1. DN is the 

leading cause of ESRD in the United States and increases cardiovascular events as 

well as mortality2. Therefore, several different diabetic murine models have been 

developed to mimic human DN to explore mechanisms for DN and develop new 

therapies3. Nevertheless, to date, none of these diabetic murine models recapitulate 

all the microvascular and macrovascular injury observed in human DN3. 

STZ-induced DN in mice is a well-established diabetic murine model. It is 

characterized by mesangial expansion, nodular sclerosis, and arteriolar hyalinosis3. 

However, different susceptibilities to DN were noted in different inbred mouse 

strains. For instance, C57BL/6 mice are relatively resistant to diabetic kidney injury, 

while DBA mice develop mesangial expansion and mesangial sclerosis, which 

represent early human DN3,4. 

In previous chapters, we determined the role and regulatory mechanisms of miR-21 

in progressive glomerulopathy in TGFβ transgenic mice. We noticed that miR-21 

inhibits apoptosis in podocytes exposed to TGFβ. However, because miR-21 has 

been linked to fibroblast activation in heart disease5 and epithelial mesenchymal 
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transition (EMT) in rat tubular cells6, the latter findings suggest that the interaction 

of miR-21 with TGFβ signaling may be context-dependent and/or cell-specific. 

Therefore, the function of miR-21 in DN needs to be further validated.  

Therefore, we used STZ-induced glomerulopathy in DBA mice to test our 

hypothesis that miR-21 has a protective role in mesangial expansion and DN. We 

also determined the function of miR-21 in primary mesangial cells from miR-21 WT 

and KO mice to study the impact of loss of miR-21 in vitro.  
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Result 

STZ-treated miR-21 WT and KO DBA mice developed hyperglycemia 

In order to investigate the function of miR-21 in DN, we injected STZ into miR-21 

WT, HET and KO DBA mice to selectively induce pancreatice beta-cell dysfunction 

and associated hyperglycemia. All miR-21 WT, HET and KO mice developed 

hyperglycemia with blood glucose levels up to 400 mg/dl at 2 weeks and 600 mg/dl 

at 20 weeks after STZ treatment (Figure 3.1). No difference in blood glucose levels 

was detected between genotypes.  

  

STZ-treated miR-21 KO mice developed more proteinuria 

Before treatment with STZ, miR-21 KO mice showed no evidence of structural 

abnormalities in the kidney compared to miR-21-WT mice (Figure 2.4). Since 

proteinuria is an indicator of glomerular damage, we measured urine 

albumin-to-creatinine ratio (ACR) in STZ-treated miR-21 WT and KO mice. After 4 

weeks of STZ treatment, miR-21 WT, HET and KO mice developed albuminuria 

(Figure 3.2). At 8, 12, 16, and 20 weeks after STZ treatment, miR-21 KO and HET 

mice had significantly higher ACR than the STZ-treated WT littermates, with 

highest levels in miR-21 KO mice.   
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STZ-treated miR-21 KO mice had increased mesangial expansion and 

extracellular matrix deposition 

To determine the extent of glomerular damage of STZ-treated miR-21 WT, HET and 

KO mice, we quantified the area of mesangial expansion by Periodic acid-Schiff 

(PAS) staining at 20 weeks after STZ treatment. STZ-treated miR-21 KO mice 

showed increased PAS-positive material deposited in glomeruli compared to 

STZ-treated miR-21 WT mice (Figure 3.3A). Using quantitative image analysis, the 

calculated mesangial index (%) was significantly higher in STZ-treated miR-21 KO 

mice than in STZ-treated WT and HET littermates (Figure 3.3B).  

 

Loss of miR-21 promotes PMC proliferation 

To examine the function of miR-21 specifically in mesangial cells, we isolated PMC 

from miR-21 WT and KO mice. In scratch-wound assay, PMC from miR-21 KO 

mice showed more rapid wound closure than WT PMCs. This could be due to either 

increased migration speed or proliferation rate (Figure 3.4). In a colorimetric assay 

of cell proliferation (MTT assay), we found that PMC from miR-21 KO mice had a 

higher number of cells than PMC from miR-21 WT mice after 24 hours (Figure 3.5). 

Based on these findings as well as the findings from other previous studies that 

miR-21 regulates cell cycle7,8, we studied the cell cycle distribution of PMC from 
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miR-21 WT and KO mice at 20 hours after 10% fetal bovine serum stimulation. The 

cell cycle study indicated that PMC from miR-21 KO mice had a higher percentage 

of cells accumulating in synthesis phase (S phase) compared to PMC from miR-21 

WT mice (Figure 3.6). These results suggest that miR-21 contributes to growth 

arrest in PMC and loss of miR-21 promotes mesangial cell proliferation. 

 

Loss of miR-21 increases the expression of Cdk6 and Cdc25a 

Cdk6 is a member of cyclin-dependent protein kinase family, which facilitates cell 

cycle progression9. Cdc25a is a member of phosphatase family that is required for 

cell cycle progression10. Both of them have been proposed as the 

sequence-dependent target of miR-21 in cancer cells8,11. For that reason, we have 

performed qrt-PCR to examine the expression of Cdk6 and Cdc25a in STZ-treated 

miR-21 WT and KO mice. Our result showed that the mRNA expression of Cdk6 

and Cdc25a was increased in the glomeruli of STZ-treated miR-21 KO mice 

compared to STZ-treated miR-21 WT mice (Figure 3.7). Therefore, we proposed 

that loss of miR-21 aggravates the glomerular injury in diabetic mice by 

upregulating Cdk6 and Cdc25a in mesangial cells to promote cell proliferation.  
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Discussion 

In this chapter, we investigated whether miR-21 has a protective role in DN by 

examining kidney function and histology in diabetic miR-21 null mice. We used 

STZ-induced hyperglycemic mice a model for type I diabetes, to examine the role of 

miR-21 in DN. Our results revealed that loss of miR-21 induces more severe 

proteinuria and mesangial expansion in diabetic mice. This evidence supports the 

previous finding that loss of miR-21 exasperates glomerular damage. Additionally, 

we noticed that loss of miR-21 promotes mesangial cell proliferation by regulating 

cell cycle progression. 

STZ-induced diabetes is an established mouse model for examining the pathogenesis 

of human DN, especially in the DBA/2J mouse strain4. In STZ-treated DBA/2J mice, 

hyperglycemia starts to manifest within 2 weeks of STZ treatment and serum 

glucose levels rise to 500 to 600 mg/dl after 20 weeks STZ treatment4,12. ACR in 

non-treated DBA/2J mice is around 20 to 30 μg/mg and albuminuria develops within 

5 weeks of STZ treatment4. Consistent with previously published findings3,4,12, the 

STZ-treated miR-21 WT and KO mice had typical hyperglycemia manifestation 

(Figure 3.1) and ACR levels gradually increased after 4 weeks of STZ treatment. 

Treated miR-21 WT mice had typical albuminuria level (400 to 500 mg/dl) 

compared to the treated DBA/2J mice in other people’s experience4 and the treated 

miR-21 KO mice had almost 3 to 4 times more albuminuria compared to their 
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control WT littermates.  

In terms of kidney histopathological change, at as early as 5 weeks after STZ 

treatment, glomerular hypertrophy is the typical feature in STZ-treated DBA mice12. 

When disease progresses, mesangial expansion becomes the major pathological 

feature similar to what we have found in treated-miR-21 WT and KO mice at 20 

weeks after STZ treatment. Furthermore, mesangial sclerosis developed in treated 

miR-21 KO mice (Figure 3.3). Other features of DN including arteriolar hyalinosis 

or nodular glomerulosclerosis seldom develop in STZ-treated DBA/2J mice12 and 

there is no current diabetic murine model that recapitulates all of the clinical features 

of human DN3. In addition, despite being more susceptible to DN, STZ-treated 

DBA/2J mice only develop mesangial expansion and sclerosis, which represent the 

early stage of DG. Therefore, STZ-treated miR-21 KO mouse is a suitable model to 

test the protective role of miR-21 in glomerulopathy. 

miR-21 is of special interest because in murine models of renal interstitial fibrosis13 

and lung disease14, miR-21 promotes fibrosis through multiple mechanisms 

including regulation of TGFβ signaling. On the other hand, in both TGFβ1 

transgenic and diabetic mice, miR-21 protects against glomerulopathy. This diverse 

function of miR-21 may depend on different organ systems and injuries. It is also 

likely to be secondary to the differential expression of target genes in different cells. 
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For example, tumor suppressor PTEN was shown to be target gene of miR-21 in 

mesangial cells15 and cancer cells16. However, in our culture system, while 

overexpressing miR-21 in 293T human embryonic kidney cells, we did not observe 

repression of miR-21 on PTEN (Figure 3.8A). We also did not detect the difference 

in the protein expression of PTEN in miR-21 WT, HET, and KO DBA/2J mice 

(Figure 3.8B).  

The cell cycle, consisting of G0, G1, S, G2, and M phases, represents a series of 

events leading cells from replication to cell division. The check-point of each phase 

transition is tightly regulated by cyclin and cyclin-dependent kinases (CDK)17,18. 

Dysregulation of these proteins can promote cancer formation19 as well as contribute 

to the pathogenesis of DG17. In vitro, TGFβ has been shown to induce CDK 

inhibitors, block cell cycle progression, and result in PMC hypertrophy20-22. In our 

PMC culture system, we noticed that loss of miR-21 promoted PMC proliferation. 

Consistent with our findings, Wang et al. also found that miR-21 targets Cdc25a and 

inhibits G1 to S transition in colon cancer cells8. In addition, miR-21 is reported to 

upregulate CDK inhibitor, P21, by targeting its transcriptional inhibitor, Nf1b 

(Nuclear factor 1 B-type)23. Our results using a cell proliferation assay and assessing 

the cell cycle support that loss of miR-21 upregulates cell cycle-related proteins to 

prompt cell cycle progression.  
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Cdk6 is a member of the cyclin-dependent protein kinase family. This kinase first 

appears in mid-G1 phase, together with Cdk4, is important for cell cycle G1 phase 

progression and G1 to S transition9. Cdc25a is a member of phosphatase family that 

dephosphorylates and activates CDK–cyclin complexes, such as CDK2–cyclin E at 

the G1–S transition and CDK1–cyclin B at the entry into mitosis10. Interestingly, 

Cdk6 and Cdc25a mRNA has been shown to be a sequence-dependent target of 

miR-21 in cancer cells8,11. Our in vivo results also showed that Cdk6 and Cdc25a 

mRNA level were increased in glomeruli of STZ-treated KO mice. This supports the 

hypothesis that loss of miR-21 promotes mesangial cell proliferation from 

upregulating Cdk6 and Cdc25a. 

Despite previous findings that TGFβ or hyperglycemia induces CDK inhibitors to 

cause cell cycle arrest and mesangial cell hypertrophy24,25, a biphasic growth 

response of mesangial cells to TGFβ has been described17. It is possible that before 

the hypertrophic stage, an increase of Cdk6 or Cdc25a caused by loss of miR-21 

facilitates an initial proliferation stage of mesangial cells leading to mesangial 

expansion. In support of this, Zhang et al. have shown that overexpression of 

miR-21 inhibits mesangial cell proliferation in diabetic db/db mice26. 

In summary, the findings in our diabetic mouse model provide additional evidence 

that miR-21 has a protective role in TGFβ-related glomerulopathy including DG. 
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miR-21 targets different regulatory mechanisms in different glomerular cells, which 

reiterates the cell-specific and multi-facet nature of miRNA. Our study suggests an 

unconventional and unrecognized role of miR-21 in different compartments of 

kidney. 

  



91 
 

Methods and Materials 

Mouse model.  miR-21-KO C57BL/6J mice were generated from disruption of the 

miR-21 sequence as described27. miR-21 WT and KO DBA/2J mice were obtained 

by backcrossing the C57BL/6J mice colony onto the DBA background strain for 6 or 

more generations. STZ, dissolved in sodium citrate buffer, was IP injected into 10 

weeks old miR-21 WT and KO DBA/2J mice in a dose of 50mg/kg as previously 

described28. These procedures were in accordance with the policies of the University 

of Michigan Institutional Animal Care and Use Committee. 

 

Blood glucose measurement. Adequate amount of blood was obtained from tail 

vein of mice. Blood glucose was measured by using Accu-Chek Comfort Curve 

Diabetic Test Strips before STZ treatment and at 2 weeks, 6 weeks, 12 weeks, and 

20 weeks after STZ treatment. 

 

Urine albumin and creatinine measurement. Spot mouse urine was collected 

non-invasively from mice 1-2 days before STZ treatment and at 4 weeks, 8 weeks, 

12 weeks, 16 weeks and 20 weeks after STZ treatment. Urine albumin was 

measured by Albuwell M kit (Exocell Inc) and urine creatinine was measured by the 

Creatinine Companion Kit (Exocell Inc).  
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Tissue staining and analysis. Mouse kidneys were harvested, fixed in 4% 

paraformaldehyde overnight, and paraffin-embedded. The kidney sections were cut 

in 3μm thickness, deparaffinized with xylene, and dehydrated in water through 

graded ethanol. For PAS staining, the kidney section was incubated in 0.5% periodic 

acid solution for 10 minutes, Schiff reagent for 15 minutes, and then was 

counterstained with Weigert’s hematoxylin for 30 seconds. After the staining, the 

kidney sections were rehydrated in water through graded alcohol, cleaned, and 

mounted with Permount. 

 

Mesangial Index. In order to establish what percent of glomerular area is occupied 

by mesangial matrix, we took a sufficient number of images at 40x magnification to 

ensure a minimum of 25 glomeruli per animal were represented.  The mesangial 

index quantification was described as before29. In brief, ImageJ was used to set a 

minimum HSI (hue, saturation, intensity) threshold according to PAS-positive 

material which if exceeded would count as mesangial matrix.  The software was 

further used to calculate the total area and percent area exceeding threshold of each 

mesangial tuft. 
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Cell culture. Primary mouse mesangial cells were isolated from glomeruli of 6 to 8 

weeks old miR-21 WT and KO mice as described before30,31. In brief, mouse 

kidneys were harvested. Cortex was removed from medulla, cut into 1mm cube, and 

past through a series of cell strainers from 200μm, 100μm to 70μm. At last, 

glomeruli were collected on the 70μm cell strainer and digested in collagenase A 

solution (1mg/ml) for 30 minutes. The digested glomeruli were then cultured in 

collagen type I-coated 6cm dish for 3 to 5 days. Once the mesangial cell clusters 

were formed, they were subcultured and kept propagating. The experiments were 

performed in PMC between 5 to 15 passages. The cells were cultured in RPMI 1640 

medium supplemented with 20% fetal bovine serum (FBS), 1% 

penicillin/streptomycin, and 1% insulin-transferrin-selenium (Invitrogen) and were 

incubated in 37°C, 5% CO2 incubator. 

  

Proliferation assay. PMC were trypsinized and cell number was counted using 

trypan blue exclusion method including trypan blue solution 0.4% (invitrogen) and 

haemocytometer per manufacturer’s protocol. The miR-21 WT and KO PMC were 

grown in a 96 well plate at the same cell number for 5 repeats. After 24 hours of cell 

growth in 10% FBS, cell proliferation was examined by MTT (Tetrazolium dye) cell 

proliferation assay kit per manufacturer’s protocol (Cayman Chemical Company). 
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Cell cycle distribution measurement. PMC were serum-starved (0.2%) for 24 

hours and shifted to 10% FBS with or without TGFβ treatment (10ng/ml). After 

another 20 hours, the cells were harvested and fixed in 70% ethanol. Cell cycle 

distribution was determined by staining the cells with propidium iodide and 

examining the staining intensity in flow cytometry as described32.  

 

Statistical analysis 

Proteinuria, mesangial index and picro-sirius staining intensity were compared 

between miR-21 WT and KO mice using t-test. The cell proliferation and cell cycle 

distribution were also compared using t-test.  
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Figure 3.1. Examination of blood sugar in STZ-treated miR-21 WT, HET and 
KO mice at 0, 2, 6, 12, 20 weeks after STZ treatment. There is no blood glucose 
level difference among different genotypes (N=7 for each genotype). 
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Figure 3.2. Examination of proteinuria in STZ-treated miR-21 WT, HET and 
KO mice at 0, 4, 8, 12, 16, 20 weeks after STZ treatment. (N=5 to 8 in each 
genotype; *P < 0.05 compared to miR-21 WT mice) 
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Figure 3.3. Examination of kidney histology by PAS staining in STZ-treated 
miR-21 WT, HET and KO mice. (A) PAS staining showed increased deposition of 
PAS in glomeruli of STZ-treated miR-21 KO compared to treated miR-21 WT mice. 
(B) Histogram and statistical analysis of mesangial index (%) calculating from PAS 
staining showed significantly higher mesangial expansion in glomeruli of 
STZ-treated miR-21 KO (N=5) versus treated miR-21 HET or WT mice (N=5 for 
both HET and WT group; *P < 0.05, #P < 0.01). 
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Figure 3.4. Examination of cell migration in miR-21 WT and KO PMC. The 
scratch-wound assay showed that miR-21KO PMC had significantly higher ability 
to migrate and close the wound (*P<0.01, N=3). 
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Figure 3.5. Examination of cell proliferation/viability in miR-21 WT and KO 
PMC. The MTT cell proliferation assay indicated that miR-21 KO PMC had 
significant higher MTT absorbance or more cells than miR-21 WT PMC after 24 
hours of cell growth (*P<0.01, N=3). 
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Figure 3.6. Examination of cell cycle distribution in miR-21 WT and KO PMC 
at 20 hours after 10% FBS supplement. In flow cytometry, the propidium iodide 
staining showed that miR-21 KO PMC had significantly more cells in S phase than 
miR-21 WT PMC (*P < 0.05). 
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Figure 3.7. Examination of potential regulatory genes of miR-21 in in glomeruli 
of STZ-treated miR-21 WT and KO mice. The qrt-PCR result showed that there 
was an increased expression of Cdk6 and Cdc25a in glomeruli of STZ-treated 
miR-21 KO mice versus STZ-treated miR-21 WT mice (*P < 0.05). 
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Figure 3.8. Examination of the protein level of PTEN in miR-21 
mimic-transfected human embryonic kidney (HEK) cells and DBA/2J mice. (A) 
The western blot showed that the protein level of PDCD4 was decreased by miR-21 
overexpression in HEK cells. However, there was no difference in the protein level 
of PTEN between miR-21mimic- and scramble-transfected HEK cells. (B) The 
western blot showed that there was no difference in the protein level of PTEN and 
phosphorylated-PTEN in the cortex of miR-21 WT, HET, and KO DBA/2J mice. 
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Chapter IV 

Linking disease-associated miRNA and disease-associated mRNA identifies 

miRNA-mRNA interaction 

 

Abstract 

miRNAs regulate gene expression on a post-transcriptional level by binding to the 

primary transcript of target genes, thereby repressing translation into protein and 

facilitating degradation. Because experimental identification of target genes remains 

challenging, different computational algorithms have been developed to predict 

miRNA-mRNA interactions. Unfortunately, overlap between different algorithms 

and prediction accuracy for specific cell types and disease contexts are poor. 

Therefore, we developed a new algorithm to identify miRNA-mRNA interaction 

based on associations of expression with disease clinical manifestation. 

To test this algorithm, we used miRNA and mRNA expression data obtained from 

the same micro-dissected glomeruli of kidney biopsies of American Indian patients 

with DN (testing and validating cohorts, total n=48). The miRNA and mRNA 

expression levels were correlated independently with patients’ urine albumin to 
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creatinine ratio (ACR). ACR-associated miRNAs and mRNAs were integrated with 

two computational prediction algorithms and experimental results from 

Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation 

(PAR-CLIP) RNA sequencing. We determined that among 10 miRNAs, which were 

highly correlated with ACR (P < 0.0001, R > 0.6), 6 showed high expression in renal 

glomeruli and are broadly conserved. 245 transcripts of protein-coding genes were 

correlated with ACR (P < 0.0001, R > 0.4 or < -0.4). Among them, 25 transcripts had 

been found to be candidate targets for at least one of the ACR-associated 6 miRNAs 

by two prediction algorithms and PAR-CLIP RNA sequencing. We further determined 

that overexpression of miR-200a repressed RALGPS2, SUPT6H and EXOC7 mRNA 

levels and that the 3’UTR of EXOC7 is a sequence-dependent target of miR-200a. 

We propose that integrating phenotype-associated miRNA and mRNA expression with 

experimental and computational target identification methods facilitates 

miRNA-mRNA interactions discovery. 
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Introduction 

Mature miRNAs, with RNA-induced silencing complex (RISC), bind to 

complementary sequences of mRNA 3’UTR to repress the mRNA expression at a 

post-transcriptional level1,2. The exact repression mechanism, though explored, is still 

unclear but it is involved in mRNA deadenylation, decapping and translational 

ribosomal inhibition3,4. Lately, miRNAs have also been shown to bind to mRNA 

5’UTR and coding region to repress the mRNA expression5-8. miRNA are critical in 

maintaining normal cell physiology and regulating disease pathogenesis9,10. The 

expression of miR-17-92 cluster targets hundreds of genes and is strongly associated 

with oncogenic activity11. On the other hand, depletion of miR-17-92 in mice is 

postnatal lethal and leads to cardiac and lung defects12. Therefore, a significant 

number of studies have investigated the interaction and targeting between miRNAs 

and mRNAs. To date, several algorithms are available to predict the targeting between 

miRNAs and mRNAs, such as TargetScan13-15, which is based on the matched seed 

sequences and conservative binding sites. MiRNAanda 16,17, which applies dynamic 

programming alignment and thermodynamic calculation for complimentary binding 

between miRNAs and mRNAs, is another commonly used application. However, the 

false prediction rate for those prediction algorithms remains high18 and the number of 

experimentally-verified targets is still low. For example, human miR-21 has only 42 
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validated target genes according to miRNAecord19, a resource of 

experimentally-verified miRNA-target interaction, but it has 164 predicted targets in 

Targetscan 13-15. 

For that reason, many studies developed new approaches to explore miRNA-mRNA 

interaction more than just sequence binding prediction. That includes MAGIA20, 

which integrates miRNA-mRNA correlation from the expression data with 

pre-existing prediction algorithms. The other tools apply new regression models21,22 

or Bayesian inference23 to facilitate target genes searching. Nevertheless, it is still 

unclear whether these approaches improve the preciseness to identify target genes or 

determine the regulatory role of miRNA-mRNA interaction in disease progression. 

Therefore, we developed an alternative approach to investigate miRNA-mRNA 

interaction based on their associations with disease clinical manifestation. 

We previously had identified miRNAs that exhibit high correlation with ACR, a 

disease relevant outcome. We noticed that current knowledge about potential 

functions of these miRNAs remains very limited and the number of potential target 

genes predicted by computational algorithms is very large. To facilitate identification 

of mechanisms regulated by ACR-associated miRNAs, we developed an in-silico 

approach to link disease-associated miRNAs and disease-associated genes together, 

based on the correlation with disease clinical manifestation, to uncover 
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disease-relevant target genes. With this approach, we identify miRNAs target genes as 

well as the regulatory role of miRNA-mRNA interaction in disease progression. 
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Result 

miRNAs correlate with proteinuria in human diabetic nephropathy 

To identify miRNAs relevant for glomerular injury, we profiled the miRNA 

expression from renal glomeruli of kidney biopsies of 48 American Indian DN 

patients. To identify miRNAs with potential mechanistic relevance, we associated 

glomerular miRNA expression levels with clinical relevant manifestations, such as 

urine ACR or GFR in our cohorts. The participants exhibited a broad range of 

proteinuria (quantified as ACR in μg/mg), while the mean GFR (iothalamate 

clearance) was above 90 ml/min/1.73m2 (Table 4.1). Highly significant and positive 

correlations with ACR were detected for 49 miRNAs out of 377 (P < 0.0001, R > 0.4). 

Interestingly, none of the tested miRNAs exhibited significant negative correlation 

with ACR. Moreover, we did not notice significant correlation between miRNAs and 

GFR (P-value > 0.05 for all miRNAs). We listed the top 10 miRNAs, which had the 

most positive correlation with ACR (Table 4.2). Because highly abundant miRNAs 

are in general thought to be more likely to mediate significant target gene repression, 

we ranked the miRNAs by their relative expression level in renal glomeruli and 

identified the broadly-conserved miRNAs24,25. We chose 6 miRNAs, miR-21, 

miR-135a, miR-200a, miR-218, miR-429, and miR-142-3p that are both 

highly-expressed in renal glomeruli and broadly-conserved cross species to identify 
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miRNA-mediated mechanisms of DN.  

 

Most miRNA-correlated genes are not predicted targets of miRNAs 

To identify candidate miRNA-mRNA interaction, the mRNA from the same renal 

glomeruli of kidney biopsies of the same American Indian cohorts was profiled. The 

correlation analysis was performed between the 6 miRNAs and genes on the array. 

Table 4.3 listed the top 10 genes that had the most negative correlation (R ranges from 

-0.48 to -0.67) with each 6 miRNAs. Figure 4.1 illustrated the correlated connection 

between miRNAs and genes. Among 44 top 10 miRNA-correlated genes, only 

ANTXR2 and IFNAR1 (4.5%) are predicted as sequence-dependent targets of 

miRNA218 and miRNA200a based on targetscan13-15, respectively. If we expand the 

number up to the top 50 most miRNA-correlated genes, 7 out of 194 correlated genes 

are targetscan predicted targets (3.6%), and among the top 100 most 

miRNA-correlated genes, 19 out of 349 correlated genes are targetscan predicted 

targets of the corresponding miRNA (5.4%). 

 

ACR-correlated genes are ACR-correlated miRNAs’ predicted targets 

To test our hypothesis that miRNA expression is driven by disease status to negatively 

feedback the change of disease-associated genes. We correlated mRNA expression 
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with disease clinical manifestation, ACR. The result showed that 245 mRNAs 

significantly correlated with ACR (R > 0.4 or R < -0.4, P < 0.0001). Among those 245 

genes, 39 genes (16%) are the TargetScan-predicted targets for the previous chosen 6 

miRNAs (Table 4.4). We additionally examined whether there were RNA read 

clusters in those 39 genes 3’UTR by PAR-CLIP RNA sequencing in human 

embryonic kidney (HEK) cells26. We also applied the second prediction algorithm, 

miRNAanda16,17, to further verify the possible miRNAs’ targets. We found that 25 out 

of the 39 genes had RNA read clusters in 3’UTR and at the same are predicted as the 

corresponding miRNA’s targets in miRNAanda. Figures 4.2 illustrated the target 

predictions between the chosen 6 ACR-correlated miRNAs and ACR-correlated genes 

that both have RNA read clusters in 3’UTR and are predicted targets of the 

corresponding miRNA’s by two prediction algorithms, TargetScan and miRNAanda. 

We regarded those 25 genes as the most likely targets of the corresponding miRNAs 

and the interaction with miRNAs might play a role in disease progression. 

To further understand the relationship between those 25 genes and their predicted 

miRNAs, we examined their associations from the miRNA and mRNA expression 

data by Pearson correlation (Table 4.5). The result showed that the correlation 

between the most likely targets and their predicted miRNAs was moderate (R ranges 

from -0.17 to -0.45 and 0.05 to 0.37) and less than 50% of the correlation was 
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significant (P < 0.05). Moreover, the 25 genes did not rank high according to the most 

negative or positive correlation. 

 

miR-200a has repression effect on SUPT6H and EXOC7 

miR-200a is known to regulate epithelial-mesenchymal transition (EMT)27 and is 

implicative to protect against DN28. To verify the potential targets that were identified 

by linking ACR-correlated miRNAs and genes, we proceeded to demonstrate the 

targeting between miR-200a and its potential targets. Among miR-200a potential 

targets, we chose the top 3 most positively-correlated genes, RALGPS2, LYPD6, 

AGPS, and top 3 most negatively-correlated genes, NFASC, SUPT6H, EXOC7, to 

perform the experimental validation.  

To identify a suitable cell system to test candidate miR-200a target genes, we first 

examined the endogenous miR-200a level in different cells. Our qrt-PCR result 

showed that HEK cells had very low endogenous miR-200a compared to podocyte 

and renal proximal tubular cell lines (Figure 4.3). ZEB2 is a known target of 

miR-200a27. Consequently, we measured ZEB2, RALGPS2, LYPD6, AGPS, SUPT6H, 

EXOC7, and NFASC mRNA level by transfecting miR-200a mimic into HEK cells. 

The qrt-PCR result revealed that the miR-200a mimic-transfected HEK cells had 

significantly lower ZEB2, RALGPS2, SUPT6H and EXOC7 level compared to the 
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miR-200a scramble transfection (P < 0.01; Figure 4.4A: fold change for ZEB2, 

SUPT6H, EXOC7 were 0.23, 0.74 and 0.75, respectively. Figure 4.4B: fold change 

for RALGPS2 was 0.59). 

 

EXOC7 is a target gene of miR-200a 

To confirm direct targeting of EXOC7 by miR-200a, we co-transfected HEK cells 

with EXOC7 3’UTR luciferase construct and miR-200a mimic oligonucleotides. The 

results demonstrated decreased luciferase activity upon transfection of miR-200a 

mimic (Figure 4.5; P < 0.01), confirming direct targeting of the 3’UTR of EXOC7 by 

miR-200a, which has not been reported previously. 
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Discussion 

In this study, we identified miRNAs and mRNAs in renal glomeruli that exhibit 

significant correlation with ACR in patients with DN. We further discovered that 

many ACR-correlated genes are predicted targets of ACR-correlated miRNAs by two 

different prediction algorithms and PAR-CLIP RNA sequencing. We verified that 

EXOC7 are the sequence-dependent target of miR-200a, and RALGPS2 and SUPT6H 

are regulated by miR-200a. This approach, linking miRNAs and genes by their 

associations with disease status, provide an alternative way to identify miRNA target 

genes.  

Among the top 10 miRNAs that had the most positive correlation with ACR, 6 were 

highly-expressed in renal glomeruli and broadly conserved. Some of the significant 

miRNAs were widely studied in cancer biology. For instance, miR-135a promotes 

growth and migration of cancer cells29,30, while miR-218 limits the invasiveness of 

cancer cells31, and miR-142-3p regulates myeloid differentiation and leukemia 

development32. Nevertheless, there are miRNAs related to kidney diseases, such as 

miR-21, which plays a role in renal fibrosis33,34. Furthermore, our previous study 

showed that miR-21 protects against TGFβ-related renal glomerulopathy. In addition, 

miR-200a and miR-429, which all belong to the miR-200 family, have been shown to 

regulate EMT and prevent renal fibrosis27,28.  
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To identify the target genes of ACR-correlated miRNAs, we correlated the miRNA 

and mRNA expression from the same samples. Interestingly, we did not find many 

predicted targets from the negative correlation of mRNAs with miRNAs (Table 4.3). 

We further correlated genes with ACR, and unexpectedly found that many 

ACR-correlated genes (both positive and negative correlation) are the predicted 

targets of the ACR-correlated miRNAs (Table 4.4). However, we also noticed that the 

correlations between the ACR-correlated miRNAs and their target-predicted 

ACR-correlated genes are less significant (Table 4.5). As studies have observed that 

miRNAs can form negative feedback loop in the signaling pathway35,36, miRNAs 

might go up with disease progression as an attempt to limit the disease damage. Under 

this concept, for the miRNA-targeted genes that increase with disease progression 

(positive correlation with ACR), miRNAs will also increase as an attempt to repress 

the upregulation. For that reason, we observed many ACR positively-correlated genes 

are predicted targets of miRNAs (Table 4.4). However, due to the negative feedback 

cannot completely reverse the original change, we did not detect significant negative 

correlation between miRNAs and their targets from miRNAs and mRNA expression 

data (Table 4.5). 

We additionally noticed that many ACR negatively-correlated genes are also predicted 

targets of miRNAs (Table 4.4). Based on this observation, we proposed another 
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mechanism that genes decrease as a consequence of progression of disease. This 

concept suggests that miRNAs mediate additional gene repression. This positive 

enforcement regulation loop was also observed in previous studies36. Due to the 

negatively-correlated genes are directly driven by the disease itself and miRNAs 

targeting only contributes to additional repression, we did not detect very significant 

negative correlation between the ACR-correlated miRNAs and their predicted targets, 

which are negatively correlated with ACR. Importantly, we did not detect miRNAs 

that were negatively correlated with ACR. This is consistent with our hypotheses that 

miRNAs increase with disease progression to limit disease-upregulated genes or 

miRNAs increase with disease progression to further repress the 

disease-downregualted genes.  

Since miR-200a is highly correlated with ACR and together with miR-429, which also 

belongs to miR-200 sequence family, suppresses EMT to protect against renal 

fibrosis27,28, we chose miR-200a to verify the finding from linking the ACR-correlated 

miRNAs and ACR-correlated genes. Among 245 genes, which are associated with 

ACR, 10 of them are the targetscan-predicted targets of miR-200a (Table 4.4). The 

basic functions of those genes were studied. NFASC (neurofascin) is a cell adhesion 

molecule, which links extracellular matrix to the intracellular cytoskeleton, and plays 

a role in neuron growth during development37. EXOC7 (exocyst complex component 
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7) is the component of exocytosis complex and it is involved in the docking of 

exocytic vesicles with fusion sites on the plasma membrane38. EXOC7 is required for 

targeting glucose transporter 4 (Glut4) to the plasma membrane in response to 

insulin39. RALGPS2 (Guanine nucleotide exchange factor for the small GTPase 

RALA) plays a role in cytoskeleton organization40. In addition, SUPT6H (suppressor 

of Ty 6 homolog), ZNF629 and ZNF793 (zinc finger protein) regulates gene 

translation41,42. Although these genes have not been broadly studied in DN, the new 

miRNA-mRNA interactions we are proposing here bring a new prospect to DN 

disease mechanism. Exocytosis forms the basis of the delivery of secretory proteins 

and intracellular signaling, such as insulin secretion as well as the cellular response to 

inuslin43. Reduced insulin exocytosis in human pancreatic β cells is related type 2 

diabetes44 and diabetes also affects the ability of exocytosis in other cells45. 

Furthermore, Exocytosis is involved in aquaporin 2 water channel activity in renal 

collecting tubule46 and has a role in renal ischemia-reperfusion injury47. Our result, 

which showed EXOC7 being the target of miR-200a, provides additional evidence 

that miR-200a and exocytosis might play an important role in DN, and it urges 

additional studies to explore these intriguing findings.  

Despite our result that miR-200a regulates SUPT6H and EXOC7, compared to the 

well-known target of miR-200a, ZEB227, the repression effect of miR-200a on 
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EXOC7 and SUPT6H seems marginal (fold change ≈ 0.7; Figure 4.4A). Nevertheless, 

miRNAs can have tuning interactions with genes to marginally repress the protein to 

the target level1. For example, miR-375 targets myotrophin to lower its level to an 

optimal level but still remains functional for insulin secretion48. miR-8 in Drosophila 

reduces atrophin to a level to prevent neurodegeneration without compromising 

viability49.  

Our concepts that miRNAs increase with disease progression to limit gene 

upregulation or to further repress gene downregulation can effectively narrow down 

the potential miRNA targets among hundreds of candidates. Nevertheless, our method 

to link disease-associated miRNA and disease-associated mRNA needs to be 

accompanied by prediction algorithms or other supporting experiments, such as 

PAR-CLIP RNA sequencing. Therefore, to effectively identify miRNA’s 

sequence-dependent targets, we proposed creating a ranking system by using disease 

associations with miRNAs and mRNA plus prediction algorithms and the interaction 

with AGO proteins.  

In summary, we have shown linking disease-associated miRNAs and 

disease-associated mRNA by target prediction is an alternative way to identify 

miRNA-mRNA interaction. The findings that miR-200a targets EXOC7 and other 

genes open up potential disease mechanisms to be explored in the future. 
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Methods and Materials 

Study Subjects. The kidney biopsy samples had been collected from enrolled 

participants in a randomized, placebo-controlled, clinical trial (ClinicalTrials.gov No. 

NCT00340678) as the previous chapter described50. Urinary albumin and creatinine 

as well as iothalamate concentrations for GFR determination were measured as 

described51 and values of the examination closest to the kidney biopsy were used in 

the present analyses. This study was approved by the Review Board of the National 

Institute of Diabetes and Digestive and Kidney Diseases. Each participant gave 

informed consent. 

  

miRNA expression analysis. miRNA profiling was obtained using TaqMan miRNA 

assays (Applied Biosystems) as described52. In brief, small RNA fraction (<200 nt) 

was isolated from micro-dissected glomeruli using RNeasy® and MinElute® 

Cleanup kits (Qiagen) and reverse transcribed using TaqMan Megaplex RT primers 

(Applied Biosystems). Human glomerular small RNA was amplified by Megaplex 

PreAmp primers (Applied Biosystems). TaqMan array human and rodent miRNA ‘A’ 

cards (Applied Biosystems) were used to obtain miRNA profiles according to the 

manufacturer’s protocol. miRNA expression values, threshold cycle (CT), were 

normalized by U6 small nuclear RNA (snRNA), and RNU44 and RNU48 small 
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nucleolar RNA (snoRNA). Delta cycle time (ΔCT) was calculated by subtracting 

miRNAs’ CT from geometric mean of snRNA’s and snoRNA’s CT. Expression level 

in arbitrary units were calculated from 2 to the power of delta cycle time (2ΔΔCT). 

 

mRNA microarray and analysis. Total RNA was isolated from micro-dissected 

glomeruli of kidney biopsy according to a protocol, which was described before53. 

The total RNA was reverse-transcribed and linearly amplified to be applied to 

Affymetrix HG-U133A microarray. The fragmentation, hybridization, staining and 

imaging were performed by the Affymetrix Expression Analysis Technical Manual. 

The microarray analysis was described before and Robust Multichip Average (RMA) 

was used to normalize the data54. 

 

Batch correction. Our study cohort consisted of one testing cohort (N=22) and one 

validating cohort (N=26). Subjects of both cohorts tested in this study were pulled 

from the same pool of participants of the American Indian study. In order to increase 

analysis power, we combined miRNA or mRNA expression data from two cohorts to 

increase sample size (total subjects = 48). We applied ComBat55, a method of 

combining batches of gene expression microarray data, to adjust the batch effects. 
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Correlation analysis. Pearson correlation was performed in the correlation analysis. 

miRNA ΔCT was correlated with mRNA hybridization log2 transformed intensity, 

mRNA hybridization log2 transformed intensity was correlated with patient’s urine 

albumin-creatinine ratio (ACR), and arbitrary fold change of miRNAs, which was 

calculated from 2 to the power of ΔCT, was correlated with patient’s ACR. 

 

Photoactivatable Ribonucleoside Enhanced Crosslinking and 

Immunoprecipitation (PAR-CLIP). Argonaute proteins (AGO) 1-4, which are the 

component of RISC and bind to both miRNAs and mRNA, were 

immunoprecipitated to examine the binding RNA fragments. The PAR-CLIP method 

was used and described as previous26. In brief, HEK cells stably expressing 

FLAG/HA-tagged AGO1-4 were grown overnight in the medium supplemented with 

100 μM 4-thiouridine (4-SU), which is photoactivatable nucleosides. The living 

cells were irradiated with 365 nm UV light to introduce crosslinking between the 

AGO1-4 and RNA. Then, the AGO 1-4 were immunoprecipitated and the binding 

RNA with the AGO1-4 was recovered to cDNA library to be Solexa deep sequenced. 

 

miRNA transfection. miR-200a mimic oligonucleotides (Thermo Scientific 

Dhamacon miRNAIDIAN microRNA Mimics) were applied with Lipofectamine® 
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RNAiMAX Reagent (Invitrogen) to transfect HEK cells. The cell transfection was 

processed per manufacturer’s protocol. 

 

Quantitative real-time PCR. Qrt-PCR for measuring mRNA levels were conducted 

using TaqMan validated primers and probe sets (Applied Biosystem), according to 

manufacturer’s protocols, on an ABI 7900HT real-time PCR system. 

  

Luciferase reporter assays. The full length EXOC7 3’UTR was constructed with 

firefly luciferase (abm, BC, Canada). The 3’UTR vector, Renilla luciferase plasmid, 

and miR-200a mimic oligonucleotides were co-transfected into HEK cells using 

lipofectamine LTX and plus reagents (Invitrogen). Luciferase activity was measured 

48 hours after transfection in luciferase assay plate reader. 

 

Statistical analysis. The correlation analysis and significance was determined by 

Pearson correlation and R script was used. T-test was used to compare mRNA level 

and luciferase activity between miR-200a mimic and scramble transfection. 
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Table 4.1. Characteristics of American Indian cohort 

 American Indian 

No. of subject 48 

Age: Mean (SD) 44.4 (10.2) 

Gender: % of female 81% 

GFR: Mean (SD) 149.2 (50.6) 

ACR: Mean (SD) 358.7 (1151.8) 
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Table 4.2. The top 10 ACR-correlated miRNAs 

miRNA Correlation P value Relative expression*  Broadly conserved miRNA 

miR-642 0.75 <0.0001 medium no 

miR-21 0.71 <0.0001 high yes 

miR-135a 0.69 <0.0001 medium yes 

miR-32 0.69 <0.0001 low no 

miR-142-5p 0.69 <0.0001 low no 

miR-660 0.67 <0.0001 medium no 

miR-200a 0.67 <0.0001 medium yes 

miR-218 0.66 <0.0001 medium yes 

miR-429 0.62 <0.0001 medium yes 

miR-142-3p 0.62 <0.0001 high yes 

*Expression level was defined as high if cycle time value in real-time PCR <25, as medium if cycle 

time value in real-time PCR ranges from 25-30, as low if cycle time value in real-time PCR >30         

Bold font indicates miRNAs that are both highly-expressed and broadly-conserved 
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Table 4.3. Correlation between genes and ACR-correlated miRNAs* 

miRNA Correlated gene Correlation miRNA Correlated gene Correlation miRNA Correlated gene Correlation 
miR-21 PDIA5 -0.58 miR-135a IFNAR1 -0.60 miR-200a ANTXR2 -0.67 
miR-21 FAM53B -0.51 miR-135a ANTXR2 -0.60 miR-200a HYAL2 -0.65 
miR-21 ROBO4 -0.50 miR-135a GNA12 -0.59 miR-200a LMO2 -0.64 
miR-21 ASCC2 -0.50 miR-135a PTPRG -0.59 miR-200a AMMECR1L -0.64 
miR-21 STARD8 -0.50 miR-135a GCC1 -0.58 miR-200a ETS2 -0.64 
miR-21 RNF151 -0.50 miR-135a TICAM2 -0.56 miR-200a SEC14l1 -0.63 
miR-21 HTRA3 -0.50 miR-135a MAP7D1 -0.55 miR-200a IFNAR1† -0.63 
miR-21 UBE2J2 -0.49 miR-135a SFRS16 -0.54 miR-200a S1PR1 -0.62 
miR-21 S1PR1 -0.49 miR-135a PDIA5 -0.53 miR-200a ARRB1 -0.62 
miR-21 ID1 -0.49 miR-135a GOLGA3 -0.53 miR-200a GFOD1 -0.62 
miR-218 BAZ2A -0.61 miR-429 SNX11 -0.56 miR-142-3p PDIA5 -0.60 
miR-218 PLXND1 -0.61 miR-429 GNA12 -0.55 miR-142-3p RNF151 -0.55 
miR-218 ANTXR2† -0.61 miR-429 ANTXR1 -0.55 miR-142-3p SNX11 -0.53 
miR-218 TNFRSF1A -0.60 miR-429 TBCD -0.55 miR-142-3p ROBO4 -0.53 
miR-218 MINK1 -0.59 miR-429 SH3BP5 -0.54 miR-142-3p NUFIP1 -0.50 
miR-218 TICAM2 -0.59 miR-429 ANTXR2 -0.54 miR-142-3p CARHSP1 -0.50 
miR-218 OSBPL5 -0.58 miR-429 NUDT11 -0.54 miR-142-3p STARD8 -0.50 
miR-218 SETD8 -0.57 miR-429 CHFR -0.54 miR-142-3p ID1 -0.49 
miR-218 MAP7D1 -0.57 miR-429 EDG1 -0.54 miR-142-3p HTRA3 -0.48 
miR-218 TOX2 -0.57 miR-429 CYP26B1 -0.53 miR-142-3p EML1 -0.48 

The P value for correlation is all < 0.0001 

*Table only lists the top 10 genes that have the most negative correlation with miRNAs 

†Targetscan predicted target for the corresponding miRNA 
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Table 4.4. Target prediction between ACR-correlated genes and ACR-correlated miRNAs 

Gene Correlation 

with ACR 

PAR-CLIP 

3'UTR cluster 

ACR-correlated miRNA 

targeting the gene* 

miRanda-predicted 

targeting between 

gene and miRNA 

EHD1 -0.5 yes miR-21 yes 
RALGPS2 

 

0.41 

 

yes miR-21, miR-200a, miR-429 yes 
VPS37C -0.47 yes miR-135a yes 
SUPT6H -0.47 yes miR-135a, miR-200a yes 
UBOX5 -0.45 yes miR-135a yes 
NAIF1 -0.44 yes miR-135a yes 
RARA -0.43 yes miR-135a, miR-218 yes 

ENTPD1 

 

0.41 

 

yes miR-135a, miR-429 no 
STRBP 

 

0.45 

 

yes miR-135a no 
KCNN3 

 

0.45 

 

yes miR-135a, miR-218 no 
AGPS 

 

0.47 

 

yes miR-135a, miR-200a yes 
NFASC -0.59 yes miR-200a, miR-429 no 
EXOC7 -0.53 yes miR-200a yes 
ZNF793 -0.45 yes miR-200a yes 

ARHGEF18 -0.42 yes miR-200a yes 
RBM33 -0.41 yes miR-200a yes 
ZNF629 -0.41 yes miR-200a no 
LYPD6 

 

0.43 

 

yes miR-200a yes 
RIMS3 -0.53 yes miR-218, miR-429 no 
ZNFX1 -0.46 yes miR-218 no 
FLNC -0.44 no miR-218 yes 
ARL3 -0.44 yes miR-218, miR-429 yes 

SH3TC2 -0.42 no miR-218 no 
OLA1 -0.42 yes miR-218 yes 
N4BP1 -0.42 yes miR-218 no 
DPP6 -0.41 no miR-218 yes 

ABCC4 

 

0.41 

 

yes miR-218 yes 
SLC12A2 

 

0.43 

 

yes miR-218 yes 
SYPL1 

 

0.43 

 

yes miR-218, miR-142-3p yes 
L3MBTL4 

 

0.44 

 

yes miR-218 yes 
FAM5C 

 

0.44 

 

yes miR-218 yes 
EGLN3 

 

0.45 

 

yes miR-218 yes 
SYDE1 -0.51 no miR-429 yes 
PI4KB -0.44 yes miR-429 yes 
FYN -0.44 yes miR-429 yes 

FXR2 -0.43 yes miR-429 yes 
ZFYVE1 -0.42 yes miR-429, miR-142-3p no 

SP8 -0.46 yes miR-142-3p yes 
SH2B1 -0.43 no miR-142-3p yes 

* The target prediction is based on targetscan prediction algorithm. The P value for correlation between 

gene and ACR is all < 0.0001. Bold font indicates genes that have RNA cluster in 3’UTR in PAR-CLIP 

data and are predicted targets of the corresponding miRNAs in targetscan and miRanda 
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Table 4.5. Correlation between ACR-correlated miRNAs and their target-predicted 

ACR-correlated genes  

ACR-correlated 

miRNA 

Predicted 

ACR-correlated gene 

Correlation P value Correlation 

ranking* 

miR-21 EHD1 -0.31 0.03 584 

miR-21 RALGPS2 0.34 0.02 208 

miR-135a VPS37C -0.17 0.27 4249 

miR-135a SUPT6H -0.21 0.17 3097 

miR-135a UBOX5 -0.23 0.12 2494 

miR-135a NAIF1 -0.45 0.002 93 

miR-135a RARA -0.32 0.03 972 

miR-135a AGPS 0.19 0.2 2221 

miR-200a EXOC7 -0.30 0.04 2172 

miR-200a SUPT6H -0.33 0.02 1646 

miR-200a ZNF793 -0.23 0.13 3920 

miR-200a ARHGEF18 -0.23 0.12 3803 

miR-200a RBM33 -0.35 0.02 1400 

miR-200a AGPS 0.22 0.14 2042 

miR-200a LYPD6 0.12 0.44 3627 

miR-218 ARL3 -0.20 0.18 3276 

miR-218 RARA -0.30 0.04 1415 

miR-218 OLA1 -0.29 0.05 1612 

miR-218 ABCC4 0.31 0.04 934 

miR-218 SLC12A2 0.06 0.68 5420 

miR-218 SYPL1 0.26 0.09 1510 

miR-218 L3MBTL4 0.37 0.01 433 

miR-218 FAM5C 0.21 0.17 2251 

miR-218 EGLN3 0.33 0.03 725 

miR-429 PI4KB -0.33 0.02 773 

miR-429 FYN -0.30 0.04 1154 

miR-429 ARL3 -0.25 0.09 2109 

miR-429 FXR2 -0.29 0.05 1349 

miR-142-3p SP8 -0.27 0.07 910 

miR-142-3p SYPL1 0.05 0.72 4877 

*The gene was ranked by the most negative or positive correlation with the corresponding miRNA 

Bold font indicates genes that have RNA cluster in 3’UTR in PAR-CLIP data and are predicted targets 

of the corresponding miRNA in targetscan and miRanda 
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Figure 4.1. Cytoscape illustration of correlation between ACR-correlated 
miRNAs and genes in the same American Indian cohort. The 6 chosen 
ACR-correlated miRNAs are in gray round rectangle node. Top 10 genes that have the 
most negative correlation with each ACR-correlated miRNAs are in white and black 
circle node and have black straight edge connecting to the negatively-correlated 
miRNAs. Among them (N=44), only two are targetscan-predicted targets of miR-200a 
and miR-218 (black circle node and T arrow edge).  
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Figure 4.2. Cytoscape illustration of the target prediction between 
ACR-correlated miRNAs and ACR-correlated genes. ACR-correlated genes (white 
circle: negative correlation ith ACR; white diamond: positive correlation with ACR) 
are predicted targets of their connected ACR-correlated miRNAs (gray round 
rectangle) in targetscan. The targetscan-predicted targets also have RNA cluster in 
3’UTR in PAP-clip data and are predicted as the corresponding miRNA targets in the 
second prediction algorithm, miRanda. 
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Figure 4.3. Examination of miR-200a level in different cell lines. Quantitative real 
time-PCR showed relatively low endogenous miR-200a level in human embryonic 
kidney (HEK) cells compared to human podocyte cell lines and human renal proximal 
tubular cell lines (HKC8). 
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Figure 4.4. Examination of the predicted target between miR-200a and selected 
ACR-correlated genes. (A) Quantitative real time-PCR showed that miR-200a 
mimic transfection significantly suppressed ZEB2, SUPT6H and, EXOC7 mRNA 
levels in human embryonic kidney (HEK) cells (*P < 0.01, fold change for ZEB2, 
SUPT6H, EXOC7 were 0.23, 0.74 and 0.75, N=5). There is no repression effect of 
miR-200a mimic on NFACS. (B) Quantitative real time-PCR showed that miR-200a 
mimic transfection significantly suppressed RALGPS2 mRNA levels in human 
embryonic kidney (HEK) cells (*P < 0.01, fold change for RALGPS2 was 0.59, N=3). 
There is no repression effect of miR-200a mimic on LYPD6 and AGPS. 
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Figure 4.5. Examination of direct target between EXOC7 and miR-200a. 
Luciferase assay of HEK cells co-transfected with EXOC7 3’UTR luciferase 
construct and miR-200a mimic oligonucleotides showed that there was a decreased 
EXOC7 3’UTR luciferase construct activity in miR-200a overexpression (*P < 0.01, 
N=3). 
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Chapter V 

Conclusions and future directions 

 

Conclusions 

CKD is an important public health issue consuming a significant portion of medical 

resources and has limited options for effective treatment. To prevent development and 

progression of CKD, new targets for intervention need to be identified and it requires 

better understanding of the underlying mechanisms. DN accounts for more than 40% 

of new cases of ESRD in the United States1. Despite significant improvement made 

for understanding the mechanism for DN, current interventions have limited success.  

 

TGFβ is a cytokine that mediates the progression of DN and other types of kidney 

disease. Because TGFβ is a multi-functional cytokine that also exhibits protective 

effects after renal injury including limiting the inflammatory response2, inhibition of 

TGFβ itself harbors significant complications. Thus, it is critical to identify new 

therapeutic targets other than TGFβ. 
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Recent data suggest a mechanistic involvement of miRNAs in the progression of DN 

as well as other kidney diseases3-6. To identify candidate miRNAs that may mediate 

glomerular injury in human DN, we quantitatively determined miRNA expression in 

the glomeruli of patients with DN and examined the association of miRNAs with 

relevant clinical outcomes. Our analysis uncovered that the expression of miR-21 in 

glomeruli was highly associated with the severity of glomerulopathy. miR-21 is 

known to regulate TGFβ signaling activity7,8 and has been shown to promote fibrosis 

after tubular injuries kidney3-6. However, the role of miR-21 in glomerular injury has 

not been examined and the function of miR-21 has been shown to be cell 

type-specific9. Therefore, we questioned whether miR-21 plays a different role in 

glomerular injury. We interrogated this question by examining the impact of loss of 

miR-21 on two mice models of glomerulopathy, TGFβ1 transgenic mice and 

STZ-induced diabetic mice in which the expression of miR-21 increases early 

during disease development. 

 

In TGFβ1 transgenic mice, we determined that loss of miR-21 resulted in accelerated 

glomerular injury and loss of podocytes. We also found that miR-21 inhibits 

podocyte apoptosis in vivo and in vitro. Furthermore, we showed that miR-21 

represses the activity of multiple TGFβ-regulated pro-apoptotic pathways. In 
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STZ-induced diabetic mice, miR-21 appeared to inhibit cell cycle regulators, Cdk6 

and Cdc25a, to inhibit mesangial expansion. These findings suggest that miR-21 

mediates cell type-specific functions in the kidney. 

  

Through our investigations, we suggest that miRNAs exhibit specific functions in 

glomeruli through the repression of disease relevant mRNAs. Computational 

algorithms for predicting targets of miRNAs were widely used. However, due to the 

lack of preciseness of the prediction, new methods are still needed to guide 

mechanistic studies. Therefore, we developed a novel approach integrating 

disease-associated miRNAs and mRNAs with target predictions. We determined that 

miR-200a, which has been implicated as a regulator of DN, represses the expression 

of EXOC7, RALGPS2, and SUPT6H. These newly identified target genes of 

miR-200a may constitute novel regulators of DN.  

 

This work has identified a novel role of miR-21 in glomerular injury and developed 

a new approach, which is based on the association of miRNAs and mRNAs with 

specific disease phenotypes, to identify candidate miRNA targets. These findings 

provide new directions for future research projects. Here, we elaborated on the 

conclusion from this body of work and discussed the perspectives of the possible 
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future projects aiming at determining the cell-type specific role of miR-21 and the 

regulatory role of other miRNAs in DN.  

 

miRNAs and human DN 

Significant differences in gene expression have been observed between patients with 

DN and murine models of DN10. Therefore, we determined the expression of 

miRNA in patients with DN. Interestingly, we found that the expression of several 

miRNAs, such as miR-21 and miR-200a, was positively correlated with the levels of 

proteinuria of patients with DN. Although these associations do not reveal the 

function of miRNAs in human DN, examining associations between miRNAs and 

clinical manifestations can suggest candidate mechanisms. In addition, these data 

enable us to generate new hypotheses on specific miRNAs and potentially build 

models of mechanistic interactions. 

 

miR-21 and TGFβ-related glomerulopathy 

We discovered that miR-21 is protective in glomerulopathy. In TGFβ1 transgenic 

mice, miR-21 inhibits TGFβ-induced podocyte apoptosis and protects against 

glomerulosclerosis. miR-21 targets many tumor suppressor genes and has 

anti-apoptotic effect in cancer cells11,12. The innovation of the current finding lies on 
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the ability of miR-21 to inhibit podocyte apoptosis and the protective effect of 

miR-21 in glomerular injury. 

 

miR-21 elevates with renal damage in mice with different injury models and in 

patients with transplant nephropathy6,13,14. The increase of miR-21 promotes 

interstitial fibrosis after renal ischemia reperfusion and unilateral ureteral 

obstruction in mice6,13. However, the fibrogenic role of miR-21 remains 

controversial because results across different studies have not always been 

consistent15-17. For example, the inhibition of miR-21 in the heart disease induced by 

pressure overload attenuates interstitial fibrosis in mice, while the miR-21 null mice 

do not have the improved phenotype in the same disease model.  

 

In TGFβ1 transgenic mice, a model of progressive glomerulopathy, miR-21 

increased with the severity of the renal damage. Podocyte apoptosis induces 

glomerulopathy in TGFβ1 transgenic mice and miR-21 inhibits apoptosis of cancer 

cells. For that reason, we hypothesized that miR-21 can inhibit podocyte apoptosis 

to ameliorate glomerulopathy. 

 

Our experiments in mice confirmed the hypothesis that miR-21 is protective in 
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glomerulopathy, as TGFβ1 transgenic/miR-21 null mice displayed increased 

proteinuria, glomerulosclerosis, and ECM deposition in the glomeruli. The 

determination of podocyte number and the examination of podocyte apoptosis in 

TGFβ1 transgenic/miR-21 null mice confirmed that miR-21 protects against 

glomerulopathy through the inhibition of podocyte apoptosis. The anti-apoptotic 

effect of miR-21 was also shown in the cultured mouse podocytes. miR-21 

inhibition in mouse podocytes promoted cell apoptosis while miR-21 overexpression 

attenuated TGFβ-induced podocyte apoptosis. 

 

miR-21 targets multiple pro-apoptotic pathways, including Tgfbr2, Tgfbi, Smad7 

and Tp53. miR-21 also targets ECM-related factors, such as Timp3 and Col4a1. This 

is supported by our findings that the expression of those genes was increased in the 

glomeruli of TGFβ1 transgenic/miR-21 null mice. In addition, inhibition of miR-21 

in mouse podocytes increased the level of phosphorylation of Smad3, consistent 

with activation of TGFβ/Smad signaling. The inhibition of miR-21 in mouse 

podocytes also increased the protein level of PDCD4, a pro-apoptotic factor and a 

well-known target of miR-21.  

 

The luciferase assay confirmed that Smad7 is the sequence-dependent target of 
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miR-21. Other genes including Tgfbr2, Timp3, and Col4a1 have been reported as the 

direct target of miR-2118-20. Taken together, miR-21 targets multiple genes regulated 

by TGFβ, possibly as a feedback mechanism to limit TGFβ-induced podocyte 

apoptosis and ECM deposition in glomerulopathy.   

 

miR-21 and diabetic glomerulopathy 

The concept that miR-21 inhibits the devlopment of glomerulopathy is also 

supported by the fact that loss of miR-21 increased proteinuria and podocyte loss in 

STZ-treated miR-21 KO mice versus WT mice (Figure 5.1). In addition, we have 

detected increased mesangial expansion in STZ-treated miR-21 KO mice, which can 

be secondary to increased proliferation or activation of mesangial cells. 

  

To understand the mechanism of increased mesangial expansion in diabetic miR-21 

KO mice, we isolated primary mesangial cells (PMC) from miR-21 WT and KO 

mice. The scratch-wound assay, the MTT cell proliferation assay, and the 

examination of cell cycle distribution all indicated that loss of miR-21 promotes cell 

growth of PMC. Together with previous studies, our results strongly suggest that 

miR-21 regulates cell cycle in mesangial cells21,22. The further examination did 

reveal that the expression of Cdk6 and Cdc25a, which facilitates cell cycle 
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progression23,24, was increased in the glomeruli of STZ-treated miR-21 KO mice 

versus STZ-treated miR-21 WT mice. We further hypothesize that miR-21 limits 

mesangial cell proliferation by targeting Cdk6 and Cdc25a. 

 

The hypothesis requires further experimental validation. However, it can be 

speculated that the dominant effect of miR-21 in mesangial cells is to inhibit cell 

growth, whereas in podocytes is to inhibit apoptosis. This may also explain the 

discrepancy in the results that miR-21 is deleterious in tubulointerstitial injury yet 

miR-21 is protective in glomerular injury. These findings do not support that 

overexpression of miR-21 will ameliorate DN or other kidney diseases, unless 

cell-type specific increase of miR-21 can be achieved, but rather provide evidence 

that miR-21 and other miRNAs are multi-faceted. This adds complexity in future 

clinical application of miRNAs as targets to treat kidney diseases. 

 

Disease-associated miRNAs and disease-associated miRNAs 

In chapter 4, we investigated the associations of the expression of miRNA and 

mRNA with clinical manifestations of DN. We discovered that the expression of 

miRNAs and mRNAs in the glomeruli of patients with DN was correlated with urine 

albumin-to-creatinine ratio (ACR) of patients. Using results from PAR-CLIP 
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experiments and prediction algorithms based on sequence complementarity, we were 

able to identify a candidate target interaction between ACR-correlated miRNAs and 

ACR-correlated mRNAs. Accordingly, we found EXOC7 is the sequence-dependent 

target of miR-200a and RALGPS2 and SUPT6H are repressed by miR-200a in renal 

cells.  

 

Several different prediction algorithms to search for miRNA targets are available. 

However, experimental validation of those prediction algorithms is limited. Studies 

have proposed that differentially-expressed mRNAs are targets of inversely 

differentially-expressed miRNA in disease condition versus control25,26. Here, we 

presented a novel method revealing disease-associated mRNAs are targets of 

disease-associated miRNAs. Our rationale is that miRNAs, which are part of the 

disease mechanism, increase with disease progression in order to limit the 

upregulation of mRNAs associated with disease progression. This attempt of 

miRNAs aims at limiting the change of mRNAs, which are driven by the disease, 

thus no good inverse correlation was observed between the expression of miRNAs 

and the expression of their target mRNAs from the same study subjects. 

 

Our analysis showed that miR-200a was positively correlated with ACR. One gene, 
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RALGPS2, which was also positively correlated with ACR, was repressed by 

miR-200a in human embryonic kidney (HEK) cells. This finding supports the 

hypothesis that miRNAs increase with the disease progression in order to limit the 

upregulation of mRNAs associated with the disease progression. Interestingly, our 

experiments also revealed two genes, EXOC7 and SUPT6H, which were negatively 

correlated with ACR, were also repressed by miR-200a in HEK cells. According to 

this finding, we assume that miRNAs, increase with the disease progression, serve 

another purpose to aid the downregulation of mRNAs associated with the disease 

progression. 

 

Therefore, this approach represents an alternative method to facilitate the 

identification of miRNA targets. Our computational work also uncovered several 

ACR-correlated miRNAs. Additional research into the role of those miRNAs in DN 

is still needed. Although our research did not directly reveal the role of miR-200a 

and its targets in the progression of DN, it opens up possible new regulatory 

mechanisms of miR-200a in DN. Such a result strongly supports the future 

investigation into the association of miRNAs and clinical manifestations of specific 

diseases. 
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Future Directions 

Cell-specific role of miR-21 

In the body of our work, we discovered that miR-21 inhibits podocyte apoptosis and 

limits mesangial expansion in glomerulopathy. This protective role of miR-21 is 

contrary to the finding that miR-21 promotes fibrogenesis in tubulointerstitial injury. 

This controversy adds to the complexity of therapeutic application aimed at using 

miR-21 inhibitor as a therapeutic drug in human kidney diseases. Additional 

research into the cell type-specific role and the mechanisms leading to this cell 

type-specific action of miR-21 is urgently needed. 

 

Although our initial result is intriguing, further studies need to be conducted to 

accurately define the cell type-specific role of miR-21. One standard approach to 

address this question is to challenge podocyte-specific or tubular cell-specific 

conditional miR-21 knockout (KO) mice with specific renal injury and examine the 

renal phenotype. The Podocin-Cre and Cdh16-Cre mice are mice expressing Cre 

recombinase specific to podocytes and renal tubule cells, respectively27,28. By 

crossing Podocin-Cre or Cdh16-Cre mice with miR-21 flox/flox mice29, we can 

evaluate the impact of loss of miR-21 on podocytes or tubule cells in specific renal 

injuries and explore the cell type-specific regulatory mechanisms of miR-21. If 
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miR-21 has a bi-faceted role of inhibiting podocyte apoptosis in renal glomeruli and 

promoting fibrotic change of tubular cells in tubulointerstitium6, we can interrogate 

the question whether the protective effect of miR-21 outweighs the deleterious effect 

of miR-21 in specific renal injuries. To answer this question, we now need to 

generate double podocyte-specific and tubular cell-specific conditional miR-21 KO 

mice. Challenging the double cell-specific miR-21 KO mice with glomerular and 

tubulointerstitial injury, we can more accurately evaluate the therapeutic effect of the 

inhibition of miR-21. Unfortunately, at present, mice expressing Cre recombinase 

specific to mesangial cells are not available.     

 

miR-21 as a biomarker in human kidney disease 

Our experiment showed that miR-21 increases with renal damage. This finding is 

consistent across different studies with different renal injuries and even in humans 

with different kidney diseases6,13,14. If the levels of miR-21 reflect the severity of 

renal damage, one can speculate that miR-21 serves as a biomarker of kidney 

damage and its higher level predicts the decline of renal function. This capacity of 

miR-21 would be independent of its function, but rather reflect its regulation by 

disease-promoting mechanisms, including TGFβ, TNF-alpha, and interleukins29. 
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For long, the level of albuminuria has been used as the primary predictive marker 

for the progression of DN. However, recent studies have revealed the uncoupling 

between the progression of albuminuria and the declining of renal function30-32. The 

predictive accuracy of albuminuria by itself is still unsatisfactory. Despite many new 

biomarkers described, proper validation for the predictive ability of those new 

biomarkers is lacking33. To date, research into additional biomarkers is still needed. 

  

Urine collection is easily accessible and non-invasive. The analyses of urinary 

components other than albumin and the expression of genes, which are derived from 

urinary cells, have been described to monitor disease activity33-35. Lately, miRNAs 

have also been identified in urine supernatant containing microvesicles, which are 

the membrane-enclosed structure released by renal cells36,37. Because of these 

exciting results, we have established the method to measure the expression of 

miRNAs in urine supernatant. Using this assay, we are able to quantify the levels of 

miR-21 in the urine. The hypothesis is that miR-21, increased with renal damage, 

will be released by renal cells to urine supernatant either by microvesicles or in a 

circulating form. Future experiments will correlate the levels of urinary miR-21 with 

the expression of renal miR-21. If the levels of urinary miR-21 reflect the levels of 

miR-21 in the kidney, the next logical step is to correlate the levels of urinary 
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miR-21 with the severity of renal damage, such as kidney morphometry. Ultimately, 

we will examine the predictive ability of the levels of urinary miR-21 in the decline 

of renal function and in the development of end stage renal disease. 

 

Identify regulatory mechanism of miR-21 in diabetic mice 

Our findings suggest that miR-21 limits mesangial cell proliferation by targeting 

Cdk6 and Cdc25a,. To stringently test this hypothesis, confirmation of the protein 

level of Cdk6 and Cdc25a in renal glomeruli using immunohistochemical staining or 

western blot is required. In addition, in vitro experiments need to be conducted to 

support the findings in mice. We will examine the proliferation, cell cycle 

distribution, and the expression of Cdk6 and Cdc25a in PMC expressing antisense 

miR-21 oligonucleotides to test whether miR-21 targets Cdk6 and Cdc25a to inhibit 

mesangial cell growth.   

 

miR-200a and diabetic glomerulopathy 

In chapter 4, we have shown that miR-200a correlates with ACR of patients. We also 

developed a new computational method to identify potential targets of miRNAs. By 

this method, we discovered that miR-200a targets EXOC7 and miR-200a regulates 

RALGPS2 and SUPT6H in HEK cells.  
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At present, the role of miR-200a in diabetic glomerulopathy is still unclear. Kato et 

al. proposed that miR-200a, upregulated by TGFβ, targets Zeb1/Zeb2 to promote the 

expression of collagen1a2 in mesangial cells38. However, other studies showed that 

the downregulation of miR-200a by TGFβ increases the expression of Zeb1/Zeb2 to 

induce epithelial-to-mesenchymal transition (EMT) in cancer cells39,40. To address 

this issue, we need to first determine the level of the expression of miR-200a in the 

glomeruli of diabetic mice. To further determine the role of miR-200a in diabetic 

glomerulopathy, we will generate the miR-200a null diabetic mice or inject the 

diabetic mice with antisense miR-200a oligonucleotides. If there is a regulation or a 

role of miR-200a in diabetic glomerulopathy, the expression of Exoc7, Ralgps2, and 

Supt6h will also be determined in the glomeruli of the mice. From these data, 

additional hypotheses regarding the interrelation of miR-200a and its targets in 

diabetic glomerulopathy can be generated.  

 

Identity disease-associated miRNAs 

Our analyses identified several miRNAs exhibit significant correlation with ACR. 

The functions of some of those miRNAs have been explored in cancer model 

systems, including miR-135a promoting growth and migration of cancer cells41,42, 
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miR-218 limiting the invasiveness of cancer cells43, and miR-142-3p regulating 

differentiation of myeloid cells44. For each miRNA, new hypotheses can be 

generated and validated in animal models of DN.  

 

The data of kidney morphometry of the kidney biopsies of patients with DN, which 

were used for profiling the expression of miRNAs and mRNAs, are available. 

Examining associations of miRNAs and mRNAs with kidney morphometry can 

identify miRNAs and mRNAs correlating with specific parameters. Using the 

newly-proposed method in chapter 4 for discovering targets of miRNAs, we are able 

to generate additional hypotheses about the modulations among miRNAs, mRNAs, 

and DN. Besides validating the hypotheses experimentally in tissue culture as well 

as in mouse models, we will further use Ingenuity Pathway Analysis45 to construct 

dynamic pathway networks among kidney morphometry-associated miRNAs and 

mRNAs. This approach will generate a broader view of how miRNAs modulate DN 

and possible other diseases through an intertwining regulatory complex. 
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Figure 5.1. Examination of podocyte number in glomeruli of STZ-treated 
miR-21 WT and KO mice. At 20 weeks after STZ treatment, podocyte number 
significantly decreased in STZ-treated miR-21-KO mice versus WT mice (N=5) (*P 
< 0.05; Podocyte counts were normalized by WT mice and presented as percentage) 
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