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Chapter 1. 

 
Introduction 

 
 
1.1. Background and motivation 
The Intergovernmental Panel on Climate Change (IPCC) concludes that global 

regional increases in hot extremes and heat waves are ‘very likely’ [1] and are 

anticipated to result in the increase in the intensity, frequency and duration of 

heat waves [1]. Recent climatological studies that incorporate numerous climate 

models have shown that heat events which, on average, now occur only once 

every 20 years will, by the end of the century, occur about every other year across 

much of the United States (U.S.)[2] These changes will come with significant 

implications to human health and require swift responses to prepare and respond 

to the changing climate.  

 
1.2. Heat, human health, and heat-related vulnerability 
In the U.S., the largest proportion of weather-related deaths is attributed to heat 

[3, 4]. Research has shown that short-term increases in mortality occur during 

periods of high heat [5, 6], and several biological explanations for these increases 

exist, predominately related to the concept of thermoregulation, the ability to 

manage one’s individual temperature. When an individual is exposed to extreme 

heat, the body responds by reallocating blood flow from the vital organs in the 

central portion of the body to below the skin’s surface, believed to be a 

mechanism to cool the overall system. When a person is unable to 

thermoregulate effectively, due to aging, medication use, chronic health 

conditions such as diabetes, or other impairments, the body reallocates too much 

blood from the vital organs, which results in increased stress on the heart and 

lungs [7] which can contribute to fatal health events.  

 

The association between heat and mortality has been well researched, indicating 

that vulnerable populations, such as young children and the elderly, are at 

particular risk of hospitalization or death during heat events. The most notable 
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events where population health was affected by short term increases in 

temperature include the 1995 Chicago heat wave, where nearly 500 excess deaths 

were attributed to extreme heat [8], and the 2003 European heat wave that was 

responsible for, conservatively estimated, 35,000 excess deaths [9]. Extensive 

epidemiologic investigation of these particular heat events have provided insight 

into determining individual and community-level characteristics that are 

associated with risk of death when exposed to extreme heat.  

 
The term ‘vulnerability’ is used in public health to reflect an individual’s or 

population’s adverse response to an environmental hazard. Similarly, the US 

National Research Council (NRC) defines vulnerability as it pertains to climate 

change as “the capacity to be harmed” via the magnitude of changes, underlying 

factors that contribute to sensitivity, and the ability to avoid, prepare for, and 

response to impacts at various levels [10]. As epidemiologic research suggests 

that heat-related mortality is dependent on the severity of the heat event and the 

health status of the affected population at [11-16], the general increasing trends of 

disease morbidity in the US population suggests that even more individuals may 

be considered specifically at risk when exposed to extreme heat. A recent report 

from the Center for Medicare and Medicaid Services, which is the administration 

responsible for health care for nearly all US residents over the age of 65, stated 

that the prevalence of multiple chronic conditions, including cardiovascular 

disease, among individuals over the age of 65 is steadily increasing[17]. Trends of 

increasing disease prevalence do not bode well for the future when considering 

evidence that the associations of morbidity and adverse heat-related outcomes, 

including death, are elevated among those suffering chronic health conditions.  

 
The epidemiologic literature identifies both individual and community-level 

characteristics that increase one’s vulnerability to heat. People’s ability to 

respond to exposure to heat can be inhibited, depending on their health status. 

Pre-existing health conditions such as cardiovascular-, respiratory-, renal-, 

neurological-diseases, as well as diabetes and mental health conditions 

contribute to heat vulnerability [15, 18-20]. Individuals 65 and older are the most 
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vulnerable to heat, possibly as a result of their reduced ability to thermoregulate 

[21] and an increased likelihood of impaired renal failure[22]. Additionally, as 

individuals age, the risk of having chronic diseases increases, along with the 

likelihood that medication, such as anticholinergics, will inhibit the body’s ability 

to initiate a thermoregulatory response [23]. Socioeconomic and demographic 

factors such as older age[24, 25] , minorities [8, 24, 26], low-income, high school 

educated or less [19, 24, 27-29], being unmarried [20, 21], and social factors such 

as living alone, having access to transportation [18, 30] have been associated with 

increased risk of death during extreme heat events. Further, housing 

characteristic like central air conditioning [28] are protective characteristics for 

individuals exposed to extreme heat or heatwaves [19]. Recently, the role of area 

level green space has garnered attention in assessing the heat-health relationship 

under the hypothesis that increased green space is protective from extreme heat 

as it reduces ambient air temperatures [31]. Green space characterizations range 

from measurements of area level vegetation [32] to calculation of percent 

impervious surface [33] to having access to green space [34].  

 

Urban Heat Island 

Local climate is directly impacted by the physical structure and land cover 

composition of a city [35] and is often characterized by the concept of the urban 

heat island (UHI). Higher observed ambient temperatures in urban areas 

compared to the surrounding suburban and rural areas define the UHI effect 

[36]. Much of a cityscape is comprised of impervious surfaces such as concrete, 

brick, asphalt, which retain ambient heat, and thus contribute to the increase in 

the air temperature. Additionally, increased air temperatures result from heat 

that is emitted from buildings and vehicles, increased overall consumption of 

energy per capita, and lack of green space or vegetation [37, 38]. There is a much 

larger risk of annual extreme heat events occurring in the sprawling cities 

compared to most compact metropolitan areas [39] 

 

Although numerous individual and community-level characteristics could be 

used to evaluate a person’s vulnerability to heat, as presented in the literature 
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review above, populations who are most consistently identified as being at risk to 

adverse health events when exposed to extreme heat are the elderly, people with 

lower socioeconomic status, and urban populations. These characteristics can be 

useful markers of vulnerability, but are still fairly general, making it difficult to 

develop targeted intervention and response plans for extreme heat exposure. 

 
Much of what is known about heat-related morbidity and mortality stems from 

retrospective analyses in which the data were extracted from death certificates, 

archived temperature data, census, and other broad population-based surveys 

(e.g., Behavioral Risk Factor Surveillance System, American Housing Survey). 

Analyses using these data sources must often limit the spatial and temporal 

resolutions to the coarsest spatial scale across variables, resulting in estimates 

reflecting the impacts of heat on populations of thousands to millions (e.g., 

county-level). Risk estimates of heat-related mortality should reflect temperature 

variability within cities and as well as consider individual-level factors that 

contribute to vulnerability.  

 

Ultimately, the challenge in determining the populations who will most likely fare 

worse in the face of extreme heat is rooted in the complex interactions between 

human health, behavior and the built environment. The current state of research 

does not establish clear links or provide specific intervention points, but there is 

room to begin the process of identifying where and how efforts to reduce 

vulnerability can be most effective. 

 
1.3. Adaptation 

Adaptation to the changing climate will be necessary because, due to the 

substantial emissions of climate change-accelerating greenhouse gases in 

previous years, the increasing global temperatures will continue to climb even 

under the most protective of climate change mitigation scenarios [40]. The US 

National Climate Assessment (NCA) is developing suggested strategies and 

approaches to for local governments to plan for future heat events or increase 

adaptation to heat events. The NRC’s America’s Climate Choices: Adapting to the 
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Impacts of Climate Change (2010) defines adaptation as the ‘adjustment in 

natural and human systems to a new or changing environment that exploits 

beneficial opportunities or moderates negative effects” [10]. As regions, states 

and municipalities are faced with responding to and preparing for the impacts of 

a changing climate on human health, research that can contribute to decision-

making policy and development for climate change adaptation at a scale relevant 

to specific populations and communities is needed. Some public health literature 

discusses or focuses on the theoretical [41, 42] and analytical [43] implications of 

a changing climate on human health. Although such investigations have 

contributed to the overall discussion on the impacts of climate change on human 

health, there is a move towards utilizing public health research as a way to inform 

lasting adaptation measures.  

 

One way to characterize climate change adaptation is to describe it as either short 

or long term. Short-term measures of heat adaptation could include the 

implementation of cooling centers, extreme heat warnings, water distribution 

stations or education programs [44]. While such interventions and programs can 

reduce the impacts of extreme heat in our most vulnerable populations, they 

provide temporary protection. Longer-term adaptation strategies, which would 

provide lasting protection and potentially numerous co-benefits [45] would 

require more extensive interventions, such as tree planting [46], removing 

impervious surface [47], installing green or white roofs [48], and residential 

weatherization efforts such as increased wall and window insulation, and weather 

stripping [49]. 

 

Where there is vulnerability to a specific exposure such as extreme heat, there is 

an opportunity to develop and implement methods and interventions that are 

specifically designed to reduce the vulnerability. Public health and adaptation 

research can inform each other in response to what is expected to be a continually 

changing climate. 
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1.4. Research objective and hypothesis 
There is an urgent need to refine and evaluate methodologies for accurately 

identifying populations most vulnerable to heat, as 2012 was the hottest year on 

record worldwide (http://www.nasa.gov/topics/earth/features/2012-

temps.html) and there is scientific consensus that global temperatures will 

continue to increase [50].  Such methodologies will be critical in the development 

and implementation of climate adaptation efforts. The objectives of this research 

are to address gaps in the methodologies and applications commonly used to 

evaluate the impacts of climate change-related exposures- using excessive heat 

events as a case example – on populations believed to be most likely to 

experience morbidity or mortality. Within this broad topic, this dissertation 

addresses three aims: 

 
1).  The development an innovative methodology that ‘downscales’ 

epidemiologic effect estimates of the relationship between extreme heat 

and mortality at the census tract level; 

 
2).  Examination of whether the creation of a heat vulnerability index, 

comprised of fine-scale demographic, environmental, health and 

socoioeconomic variables, provides an explicit and consistent pattern of 

heat-related vulnerability; 

 
3). Evaluation of the ability of a fine-scale heat vulnerability index to reliably 

predict the association of extreme heat and mortality. 

 
These aims are investigated by employing epidemiologic methodologies, 

statistical modeling and analyses, and remote sensing and geographic 

information system (GIS) applications within a framework that accommodates 

translating the results to support the development of programs and policies 

specific to climate change adaptation.

http://www.nasa.gov/topics/earth/features/2012-temps.html
http://www.nasa.gov/topics/earth/features/2012-temps.html
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Chapter 2. 
 
 

Calculating and displaying downscaled estimates of heat-related 
cardiorespiratory mortality in 20 U.S. cities at the census tract level  

 
 
2.1 ABSTRACT 
 

BACKGROUND:  The expectation that the intensity, frequency and duration of extreme 

heat events will increase in coming years as a result of climate change establishes an 

urgency to prepare for such events. Municipalities developing climate adaptation and 

preparedness plans seek to identify populations vulnerable to health effects during 

extreme heat. Although health outcome data is often available in geographic units 

containing large numbers of people (e.g., counties), research on heat-health associations 

that contributes to decision-making and policy development at a scale relevant to 

specific local populations is needed.  

 

OBJECTIVES: This paper demonstrates a method for 1) downscaling U.S. county-level 

effect estimates of the odds of cardiorespiratory death during extreme heat to reflect the 

census tract level proportions of populations known to be vulnerable to heat, and 2) 

displaying the odds of cardiorespiratory death related to extreme heat exposure for 20 

large U.S. cities at the census tract scale.  

 

METHODS: Time-stratified case crossover analysis was conducted for 20 U.S. cities to 

investigate the association between extreme heat (days > 95th percentile of month- and 

location-specific daily apparent temperature in May-September) and cardiorespiratory 

deaths from 1990 – 2006 among specific demographic subgroups defined by age, race 

and gender, as recorded on death certificates. Then, demographic data from the 2010 

U.S. census was used to ‘downscale’ these estimates by computing, for each census tract, 
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a  weighted average of the county-level, sub-group specific odds ratios of 

cardiorespiratory death associated with heat. Weights were assigned according to census 

tract-specific population characteristics. The weighted odds ratios were then mapped 

using a geographic information system. Five cities that represent each of five climate 

zones in the U.S. are presented in detail to evaluate model results and spatial patterns. 

 

RESULTS: Extreme heat was significantly associated with cardiorespiratory mortality 

most frequently among: white males under the age of 65; and white males, white 

females and nonwhite females over the age of 75. Distinct patterns of elevated risk of 

heat-related cardiorespiratory death were not seen across subpopulations, although heat 

was positively associated with mortality in most cities. Nonwhite males and females over 

the age of 65 in Chicago observed the highest risk of cardiorespiratory death associated 

with heat, with odds ratios ranging between 1.29 and 1.38 (p-value <0.0001).  

 

CONCLUSION: Downscaled estimates of the associations between extreme heat and 

cardiorespiratory mortality displayed spatial heterogeneity across the 20 study cities. 

Fine-scale analyses of heat-related mortality can inform programs to target the 

populations most likely to experience deleterious effects during hot weather.  
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2.2 Keywords 

downscaling, case-crossover, vulnerability, extreme heat 
 
2.3 Abbreviations and definitions 

 
EH95  Indicator variable for extreme heat, defined as apparent 

temperature for lag days 0,1 above the month-specific 
average of apparent temperature at lag days 0,1. 

 
 

MSA   Metropolitan Statistical Area 
  

 
MortalityCVDRESP Deaths due to cardiorespiratory disease 
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2.4 Introduction and background 
 
The association between weather and mortality has been documented in many 

epidemiological studies [1-7]. Different methodological and computational approaches 

for characterizing the typically non-linear J- or U-shaped relation between daily 

temperature and mortality have been employed [7-9]. Despite these differences, 

consensus that daily mortality often increases after short-term exposure to high ambient 

temperatures [10-12] directs attention to the need for public health interventions to 

reduce this risk. 

 

The expectation that the intensity, frequency and duration of extreme heat events will 

increase in coming years as a result of climate change establishes an urgency to prepare 

for such events [13]. The United States (U.S.) National Climate Assessment reports that 

early actions – those that result from preparedness and planning - will likely have the 

largest impact in protecting human health[14]. Cities across the U.S. have adopted 

efforts to prepare for and respond to extreme heat through a variety of mechanisms 

including preparedness planning, heat wave health warning systems, education and 

outreach, and establishing cooling centers. However, these efforts have been moderately 

successful in terms of behavioral changes among populations considered most 

vulnerable to extreme heat. In many cases, members of vulnerable populations 

misperceive appropriate behavioral responses and often underestimate their own risk 

[15, 16]. As local governments continue to be called upon to implement or strengthen 

heat-related programs, targeted assessments can inform decision makers on how to 

prepare for and respond during extreme heat events [17, 18]. 

 

Quantifying the number of deaths due directly to heat exposure is a challenge for 

epidemiologic studies because of inconsistent definitions of heat-specific death [19, 20], 

and likely underreporting [21, 22]. Individuals with preexisting health conditions - such 

as cardiovascular and respiratory disease - are considered susceptible to extreme heat as 

the heart and lungs can experience increased stress as blood is pumped away from vital 

organs during thermoregulation [21]. Deaths due to cardiovascular and respiratory 

disease increase during periods of high temperatures, defined as both heat waves and 
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extreme heat events [10, 12, 19, 23-25].  In addition to preexisting health conditions, key 

individual-level markers of vulnerability to extreme heat include older age, minority 

race/ethnicity, lower educational attainment, and being female [4, 5, 26, 27]. Further, 

spatial heterogeneity of extreme heat effects suggests that place-based assessments are 

appropriate, rather than assuming a one-size-fits-all approach [3, 4, 7, 8, 28-32]. 

 

Despite the complex relationship between ambient environmental conditions and 

health, sufficient understanding of the association between heat exposure and mortality 

exists [33] to use this knowledge to inform public health interventions. However, multi-

city temperature-health studies often calculate effect estimates that are not easily 

translatable for targeted interventions or preparedness planning for extremely hot 

weather, as they lack specific estimates for vulnerable populations in particular 

locations. Further, to our knowledge, no analyses have visually captured the intra-urban 

spatial heterogeneity of the calculated health burden of extreme heat, although proxy 

measures of heat vulnerability have been mapped [34-37].  

 

We propose a method for displaying the spatial heterogeneity of the odds of death 

associated with extreme heat among vulnerable populations living in 20 large U.S. 

Cities. We calculate the relative risk of cardiorespiratory deaths associated with extreme 

heat exposure among twelve demographic subpopulations within these cities defined by 

age, race and gender. Using demographic data from the 2010 U.S. Census, we calculate a 

weighted, or ‘downscaled’, odds ratio of heat-related cardiorespiratory death according 

to tract-specific subpopulation characteristics. We then present a chloropleth map of the 

downscaled odds ratios to display spatial patterns of vulnerability to extreme heat. 

 

2.5 Methods 

 
2.5.1. Mortality data and city selection 

Daily mortality records were obtained from the National Center for Health Statistics for 

the years 1990 – 2006 for 20 largest U.S. cities, as identified by the 2000 US Census 

(http://www.census.gov/statab/ccdb/cit1020r.txt). Individual-level data extracted from 

these records included primary cause of death; decedent’s county of residence; date of 

http://www.census.gov/statab/ccdb/cit1020r.txt
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death; age; race; gender and education. A city was defined to include all urban counties 

comprising its Metropolitan Statistical Area (MSA). County-specific daily deaths with 

primary causes being cardiovascular (International Classification of Diseases 9th 

revision (ICD9): 390 – 429; International Classification of Diseases 10th revision 

(ICD10)) ICD10: I01 – I59) or respiratory (ICD 9: 460 – 519; ICD10: J00 – J99) 

diseases were aggregated to create county-specific daily deaths due to cardiorespiratory 

causes for use in this analysis. Individuals who were determined to have both lived and 

died in the same county were included in this analysis. We further created categories for 

the individual characteristics recorded on death certificates that were previously shown 

to be associated with vulnerability to heat: white race and non-white race; less than 65 

years of age, between 65 and 75 years of age, and older than 75 years of age; and male 

and female. 

 

2.5.2. Demographic data 

City-specific census tract level demographic data was collected from the 2010 US Census 

(www.census.gov).  The variables of interest for this analysis were the tract-level 

proportions of subpopulations in the same age groups and race and gender categories 

defined for the individual-level mortality data, as above. We calculated the census tract-

specific proportions of the twelve combinations of age, race, and gender. By applying the 

most recent tract-specific demographic proportions, the downscaled estimates will 

reflect the current populations’ risk related to extreme heat. 

 

2.5.3. Weather data 

Hourly weather and dew point data from airport weather stations nearest to the 20 

study cities were obtained from the National Climatic Data Center (NCDC). A two-day 

moving average of mean daily apparent temperature (AT °C), a composite of 

temperature and dewpoint [6], was calculated for each city (Equation (EQ) 1), for 

summer months (May – September, 1990 - 2006). These represent the average of mean 

apparent temperatures occurring on the date of death and the previous day (Lag01) 

during the time period of interest for this research. Lag01 has been shown to best 

capture the effect of heat on mortality in a short time frame [1].  

 

http://www.census.gov/
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EQ 1.       AT = -2.653 + (0.994 x ambient temperature)  + (0.0153 x dew point 

temperature) 

 

Extreme heat (EH0195) was defined as being a day during the study period that exceeded 

the two-day mean apparent temperature for lag01 (AT01), based on month-and city-

specific 95th percentiles. An indicator variable was constructed with a value of 1 on days 

that exceeded the month-specific 95th AT01, and zero otherwise. We examined 

temperature exposure during summer months (1 May – 30 September), as the impacts 

of extreme heat are most likely to occur during this time period.  

 

2.5.4. Study design and analysis 

Descriptive statistics on the mortality, demographic and weather data were calculated. 

To evaluate the association between extreme temperature and cardiorespiratory deaths 

in the study cities, a time stratified case-crossover analysis was used. The case-crossover 

approach, similar to a matched-case control study where the cases serve as their own 

controls, estimates acute, transient effects that result shortly after an exposure [38] and 

is commonly employed to study extreme heat exposure and cause-specific mortality 

[39]. The study design controls for known and unknown time-invariant confounders, as 

well as minimizes the effects of time trend and seasonality. Control days were selected 

on the same day of the week in the same calendar month as cases. [40]. A conditional 

logistic regression model is fit for case-crossover studies, allowing calculation of the 

odds ratio of cardiorespiratory death on summer days when extreme heat occurred 

versus more moderate temperature days and its corresponding 95% confidence interval 

(CI). 

 

One of our key goals was to evaluate whether the associations between heat and 

mortality differed according to age, race and gender.  We evaluated whether those 

individual-level characteristics were effect modifiers of the extreme heat and mortality 

relationship by using interaction terms between the demographic indicator variables 

and the indicator variable for extreme heat in the case crossover model [41]. Crude 

models (Model 1) provided a baseline, descriptive estimate of the association between 

extreme heat and all cardiorespiratory mortality for the 20 cities. 
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Model (1). 

logit(mortalityCVDRESP) = β1EH0195 

 

To estimate the effect of extreme heat on specific subpopulations, we included higher 

order interaction terms for the effect of extreme heat by age, race and gender, thus 

accounting for the differential effects of exposure to extreme heat previously observed in 

such subpopulations [27, 42]. The final model (Model 2) used to estimate the 

subpopulation-specific odds of cardiorespiratory death associated with extreme heat 

was:  

 

Model (2). 

logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  Race) + β3(EH0195  Gender) + 

β4(EH0195  Age65-75)  + β5(EH0195  Age≥75) + β6(EH0195 Race Gender) + 

β7(EH0195  Race Age65-75) + β8(EH0195  Race Age≥75) + β9(EH0195  Gender Age65-75) + 

β8(EH0195  Gender Age≥75) 

 

Because we were interested in three demographic variables with three categories for age, 

and two for race and gender, Model 2 yielded twelve subpopulation-specific odds ratios 

and their corresponding 95% CI’s.  

 

2.5.5. Downscaling and mapping estimates 

The proportions of the twelve subpopulations within each census tract were calculated 

for the 20 cities. The twelve subpopulation-specific odds ratios and their respective 

census tract proportions were multiplied and then added to yield an overall weighted 

odds ratio for the census tract. The idea was that if extreme heat were associated with 

higher excess mortality in specific sub-populations than in others, a census tract with a 

large proportion of people in those vulnerable sub-populations would have a higher 

weighted heat-mortality odds ratio than a census tract in which proportionally fewer of 

those more vulnerable people resided. This method was applied for all census tracts in 

each of the 20 cities. Next, the downscaled census tract-level odds ratios were mapped 

to display the spatial variation of the odds of cardiorespiratory death associated with 

exposure to extreme heat. Five cities representative of distinct US climate zones [43] are 
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presented and discussed in detail. Because no specific measure of spatial heterogeneity 

could be calculated in this analysis, descriptive statistics of the weighted odds ratios for 

each of the 20 study cities are presented and discussed.  

 

All analyses were carried out using SAS Version 9.3, R and ArcGIS 10.  

 
2.6 Results.  
 
Table 2.1 shows descriptive statistics of the study cities, including the number of 

cardiorespiratory deaths observed. The distribution of the age, race and gender 

characteristics that are the focus of this study were mostly consistent across decedents 

in the study cities. In general, there was an equal distribution of male and female cases, 

while the majority of cases in every city were characterized as white. Table 2.2 shows 

that the month-specific means of daily cardiorespiratory deaths for each city during the 

study period were relatively stable. Month-specific apparent temperatures for lag 01 

followed expected increasing patterns during the summer months, decreasing around 

September.  

 

Census tract level subpopulation descriptive statistics are shown in Table 2.3. Table 2.3 

illustrates that over half the total population in each city was below the age of 65, with 

the percentage of people in the age 65 – 75, and 75 and older groups ranging from less 

than 1% to about 7% of the population. A slightly larger proportion of white females 

were found in the older age categories, which is expected as women live longer than 

men. More white women lived in most cities than women of other races.  
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Table 2.1. Descriptive statistics for cardiorespiratory mortality in 20 large U.S. cities, 1990 - 2006 
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Table 2.2. Month-specific descriptive statistics of cardiorespiratory deaths and apparent temperature (Lag01),  
by study city (1990 – 2006) 
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Table 2.3. Mean proportion of 2010 census tract-specific subpopulation for 20 U.S. cities 
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Odds ratios and 95% CI’s for the 20 cities’ subpopulations are presented in Figures 2.1 

a-s. Odds ratios are interpreted as a measure of the association between the exposure to 

extreme heat and cardiorespiratory death, specifically the odds of cardiorespiratory 

death on a day defined as being extremely hot, versus a more moderate temperature 

day, in a particular subpopulation. The 95% confidence intervals are a measure of 

precision of the estimate, with the narrower CI around the OR being the more precise 

estimate, and where CIs containing an OR = 1 are not statistically significant, and thus 

consistent with the possibility of no association.  

 

Significant positive associations between extreme heat and daily mortality were most 

frequently observed in the following subpopulations: white males under the age of 65, 

and white males, white females and nonwhite females over the age of 75. Nine of the 

twelve subpopulations in Chicago observed statistically significant increased odds of 

death associated with extreme heat. Nonwhite males and females over the age of 65 had 

significantly higher odds of cardiorespiratory death compared to their white male and 

female counterparts under the age of 65” (Nonwhite males 65-75: 1.38 (1.21, 1.56); 

(Nonwhite males > 75: 1.30 (1.16, 1.45); Nonwhite females 65-75: 1.32 (1.15, 1.51); 

(Nonwhite females > 75: 1.29 (1.18, 1.41)). Most cities showed increased odds of death 

associated with heat across subpopulations, although distinct patterns were not 

apparent. Conversely, point estimates for the association of heat and mortality in 

Columbus, OH; Indianapolis, IN; Jacksonville, FL and Memphis, TN were protective, 

but significantly so only among white males over 75 in Memphis and nonwhite males 

under 65 in Milwaukee. Associations between cardiorespiratory mortality and extreme 

heat among young white females were never statistically significant. Complete city-

specific model results are shown in Appendix A. 
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Figures 2.1.a-s. Subpopulation odds ratios (OR’s) and 95% confidence intervals (CI’s) for cardiorespiratory mortality associated 
with extreme heat (>95th percentile in month) for the 20 study cities, from a case-crossover analysis, May-September, 1990-
2006.     
 
Figure 2.1.a.           Figure 2.1.b.      
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Austin, TX;     and extreme heat  (>95th percentile in month) for Baltimore, MD; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.c.           Figure 2.1.d.     
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Boston, MA     and extreme heat  (>95th percentile in month) for Chicago, IL; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.e.          Figure 2.1.f.     
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Columbus, OH     and extreme heat  (>95th percentile in month) for Dallas, TX; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.g.          Figure 2.1.h .    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Detroit, MI     and extreme heat  (>95th percentile in month) for Houston, TX; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.i.          Figure 2.1.j.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  

   and extreme heat  (>95th percentile in month) for Indianapolis, IN;   and extreme heat  (>95th percentile in month) for Jacksonville,        
May – September, 1990 – 2006        FL; May – September, 1990 - 2006 
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Figure 2.1.k.          Figure 2.1.l.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Los Angeles, CA;   and extreme heat  (>95th percentile in month) for Memphis, TN; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.m.          Figure 2.1.n.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Milwaukee, WI;    and extreme heat  (>95th percentile in month) for  
  May – September, 1990 – 2006        New York City, NY; May – September, 1990 - 2006          
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Figure 2.1.o.          Figure 2.1.p.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for Philadelphia, PA;   and extreme heat  (>95th percentile in month) for Phoenix, AZ; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.q.          Figure 2.1.r.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for San Antonio, TX;   and extreme heat  (>95th percentile in month) for San Diego, CA; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Figure 2.1.s.          Figure 2.1.t.    
  Subpopulation ORs, 95% CIs for cardiorespiratory mortality     Subpopulation ORs, 95% CIs for cardiorespiratory mortality  
  and extreme heat  (>95th percentile in month) for San Francisco, CA;   and extreme heat  (>95th percentile in month) for San Jose, CA; 
  May – September, 1990 - 2006                May – September, 1990 - 2006 
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Based on the climate zone designations presented in Figure 2.2, we selected five cities 

(Milwaukee, WI, Chicago, IL, Baltimore, MD, San Francisco, CA and Houston, TX) that 

represented each climate zone to present maps displaying the downscaled, census-tract 

specific odds ratios for the association of extreme heat and cardiorespiratory mortality. 

Cooling and heating degree days are a descriptive way to relate each day’s temperature 

to the energy demand necessary to either heat or cool a building. This characterization 

has been utilized in previous heat-health studies to categorize cities and their prevailing 

climates [43].  

 
Figure 2.2. U.S. climate zones, determined by cooling and heating degree days, and 
locations of the 20 study cities within each zone 

 
 
The study cities and their respective weighted odds ratios descriptive statistics are 

presented by climate zone in Table 2.4.  
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Table 2.4. Descriptive statistics of estimated census tract level weighted odds ratios for 
heat related mortality for 20 U.S. cities, by climate zone.   

 
 

Variation in the mean weighted odds ratio was observed for cities in climate zones 2, 4 

and 5. In climate zone 2, Boston Detroit and New York have similar means that reflect 

an increased risk of heat-related cardiorespiratory death, but Columbus and 

Indianapolis have similarly decreased risks of heat-related cardiorespiratory death. In 

climate zones 4 and 5, respectively, San Jose and San Antonio had much larger weighted 

odds ratios than the other cities in their climate zone. However, despite these 

differences, the only city that observed a relatively high standard deviation – which 

would indicate very distinct spatial heterogeneity – was Milwaukee.  

 

Table 2.5 presents the subpopulation-specific odds ratios and their corresponding 

confidence intervals for Milwaukee, Chicago, Baltimore, San Francisco and Houston. 

We observed large odds ratios for white males, and nonwhite males and females 

between 65 and 75 years old in Milwaukee; however, these odds ratios were 

accompanied by large confidence intervals. 
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Table 2.5.  Subpopulation-specific odds ratios and 95% confidence intervals for 
associations between extreme heat and cardiorespiratory mortality in cities 
representative of 5 U.S. climate zones 

 
 
 
Nonwhite males between 65 and 75 in Chicago experienced a 38% excess of 

cardiorespiratory death during an extreme heat event (95% CI: (1.21, 1.56) compared to 

a more moderate temperature day, an excess substantially higher than that observed for 

their white, male counterparts under the age of 65 OR 1.13 95%CI (1.04, 1.23). Similarly, 

nonwhite females older than 75 in Milwaukee, Chicago, Baltimore and San Francisco 

experienced significantly higher odds of cardiorespiratory death associated with 

extreme heat, with point estimates for the OR’s of 1.18, 1.29, 1.25, and 1.31, respectively 

in these cities. In more temperate climate zones, zones 4 and 5, we observed a larger 

effect of extreme heat in subpopulations between 65 and 75, but patterns differed 

depending on race and gender. In San Francisco, large effects were observed among 

nonwhite males and females, although confidence intervals were wide. Houston’s 

population of nonwhite males and females also experienced higher heat associations 

than their white counterparts, but these associations were not statistically significant 

nor as large as those observed in cities characterized as having temperate climate zones.  

 

Maps for Milwaukee, Chicago, Baltimore, San Francisco and Houston (Figures 2.3.a-e) 

display the census tract-level downscaled odds ratios for the association between 

extreme heat and cardiorespiratory disease. 
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Figure 2.3.a.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Milwaukee, WI 

 
 
The spatial distribution of the odds of cardiorespiratory death due to extreme heat 

exposure is uniform across the Milwaukee-designated MSA. A clear pattern of 

increasing heat-mortality associations is observed when moving west from the central 

portion of the city (located along Lake Michigan) to the surrounding areas. Odds ratios 

suggesting adverse effects (1.03 – 1.06) are distributed in the western three-quarters of 

the Milwaukee study area, never within the Milwaukee city boundary.
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Figure 2.3.b.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Chicago, IL 

 
Figure 2.3.b presents mapped odds ratios of census tracts in the Chicago study area. 

Census tracts where the highest odds ratios were estimated are sprinkled through the 

study area. Large census tracts in the west, southwest, and central portions of the study 

area show high (1.10 – 1.15) odds of cardiorespiratory death linked to heat. Notably, 

neighboring census tracts within the city boundary, as well as in the southeastern 

portion of the study area, indicate contrasting effects of the risk of death associated with 

heat. Within the city boundary, the highest odds ratios are concentrated together in the 

southernmost portion. Lowest odds ratios were observed in the southeastern study area.  
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 Figure 2.3.c.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Baltimore, MD 

 
 
The highest weighted odds ratios in Baltimore, MD were observed in the areas 

surrounding the Baltimore city boundary. The spatial pattern observed was similar to 

that of Milwaukee, where the lowest odds of cardiorespiratory death associated with 

extreme heat exposure were observed in the central portion of the metropolitan area, 

with increasing odds of death observed as you move away from the city center. As shown 

in Figure 2.3.c, a distinct corridor of lower odds extended from the city boundary 

northeastward. The range of weighted odds ratios was comparable to those observed in 

climatologically similar Chicago and San Francisco. 
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 Figure 2.3.d.  Subpopulation weighted odds ratios of the association between extreme 

heat and cardiorespiratory-cause death in census tracts across San Francisco, CA 

 
 
Figure 2.3.d of San Francisco’s mapped weighted odds ratios shows a clear pattern with 

increasing odds observed in the north central portion of the study area, extending to the 

southeast along the coast. Overall, the map presents what appear to be mostly low odds 

ratios, with spatially extensive census tracts assuming lower values. However, the scale 

of the map indicates that the magnitude of effect in the north central and eastern coastal 

areas was quite high in comparison to the lower estimates that appear to dominate the 

spatial extent of the map. 
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 Figure 2.3.e.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Houston, TX 

 

 
 
In Figure 2.3.e we observed, compared to the other four cities, a less consistent pattern of the weighted odds ratios across 

the Houston study area. Although the central portion of Houston seemed to have the smallest magnitude associations 
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between extreme heat and cardiorespiratory death, the outermost northwest, northeast 

and southeast areas also had lower odds ratios. Dense pockets of census tracts in the 

south and extending slightly north within the Houston city boundary had the highest 

weighted odds ratios.  

 
2.7 Discussion 
 
The goal of this analysis was to demonstrate a method for downscaling, to the census 

tract level, effect estimates of the association between extreme heat and 

cardiorespiratory death among vulnerable populations, and to map the results for 

evaluation of spatial patterns. To our knowledge, this is the first attempt to estimate the 

effect of extreme heat at a neighborhood level, accounting for the spatial distribution of 

population characteristics at that spatial scale that contribute to heat vulnerability for 

20 large US cities.  

 

This approach and the resultant information is valuable because many administrative 

records of mortality only provide information about the decedents’ residence locations 

at a larger geographic scale, such as the county, and decision-makers and health 

departments may wish to apply preventive interventions at a smaller spatial scale. The 

U.S. Centers for Disease Control and Prevention (CDC) Climate-Ready States and Cities 

Initiative specifically calls for, as part of a framework for preparedness, approaches that 

address “projecting the disease burden where a health department, as best as possible, 

estimates or quantifies the additional burden of health outcomes due to climate change 

to support prioritization and decision-making”. [CDC, 44]. Maps are increasingly being 

used to communicate empirical risk to heat exposure [35, 36, 45]. By identifying spatial 

patterns that elucidate heat-related vulnerability, this method moves in the direction of 

combining data on adverse health outcomes with projected ambient temperature or 

environmental characteristics to better communicate the risks associated with extreme 

heat exposure.  

 

2.7.1. Spatial heterogeneity 

Spatial heterogeneity has been documented in many studies that investigate the effect of 

extreme heat on human health in US populations. Most of these studies consider the 
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regional differences across study sites and populations [3, 4, 7, 8, 28-32] and utilize 

meta-analyses to evaluate modification of heat-health associations by city characteristics 

(e.g., prevalence of central air conditioning) that vary within and between cities [29]. 

While such analyses can inform us about potential reasons for heterogeneity of the heat 

effect between cities, the results are commonly derived from county-level effect 

estimates. In Philadelphia County, Pennsylvania, a multi-stage analysis concluded that 

the heat-related mortality distribution associated with high apparent temperatures was 

not random, but instead was elevated in select ZIP code tabulation areas characterized 

with low socioeconomic status, high surface temperature and elderly populations [45].  

 

However, rarely are such within-city variations in estimates of the heat effect 

considered, in part because of limitations in the spatial resolution of health data. We 

considered neighborhood level spatial extents designated as census tracts, which 

represent permanent statistical subdivisions of a metropolitan area that contain 

between 2,500 and 8,000 inhabitants 

(http://www.census.gov/geo/www/cen_tract.html).  Spatial patterns of the risk of 

death associated with extreme heat exposure were city-specific, with no distinct pattern 

observed for cities in the same climate zone (results shown in Appendix A). Chicago, 

where we observed the most subpopulations experiencing significantly elevated risks of 

death associated with extreme heat, displayed the highest risks outside western border 

of the city boundary and in small pockets within the southern portion of the city. The 

results reflect what was observed during the extensively documented 1995 Chicago 

heatwave that claimed over 700 excess deaths [19]. Elderly and socially isolated 

individuals were considered most vulnerable during that heatwave. While the analysis 

presented here does not account for social isolation, older individuals, particularly in 

nonwhite populations, were observed to have significantly higher odds of death during 

extreme heat, suggesting that areas dominated by these subpopulations could benefit 

from targeted programs to reduce risk during extreme heat.  

 

Previous research has shown a negligible heat effect in southern US cities, where 

average ambient temperatures are high. In the southern cities presented here, we 

observed comparably negligible heat risks, but the mapped downscaled odds ratios 

http://www.census.gov/geo/www/cen_tract.html
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illustrated differential spatial patterns of risk, elucidating city neighborhoods where the 

effect of heat could be more prominent.  Inconsistent spatial risk patterns were observed 

in cities sharing the same climate zone designation, indicating that place-based risk of 

death due to extreme heat was not explained entirely by climate similarities. 

  

2.7.2. Vulnerable subpopulations 

Specific demographic subgroups, particularly elderly and minority populations [28, 42], 

are known to be experience higher heat-related mortality. Additionally, individual-level 

characteristics such as education and pre-existing health conditions and community-

level characteristics (e.g., high population density, low median income, little green 

space) confer vulnerability to extreme heat. Because urban neighborhood demographic 

composition is spatially dynamic, one would expect that fine-scale characterization of 

the response to extreme heat would be reflected across a cityscape. Individual- and 

neighborhood-level age, race and gender characteristics were included in this analysis as 

they were available at the individual level for all 20 study cities. As more of the US 

population is expected to live in large metropolitan areas, in addition to a growing aging 

population, the age, race, and gender-specific subpopulations presented here capture a 

significant portion of populations most vulnerable to extreme heat. Analyses that 

consider additional individual level characteristics of vulnerability, such as education 

and health status, would further inform knowledge about city-specific spatial 

distributions of heat-related risk of death. 

 

2.7.3. Downscaling effect estimates 

The time-stratified case-crossover study design permitted the use of higher order 

interactions in this analysis. The model is flexible, accommodating the complex 

association between variables that are known to contribute differentially to the heat-

health association. Statistically, the three-way interaction terms are a form of 

standardizing the data so that we could calculate weighted averages of the 

subpopulation specific odds ratios. Not all subpopulations observed statistically 

significant odds ratios. In an effort to demonstrate a method for downscaling effect 

estimates to reflect census tract-level population composition, non-significant effect 

estimates were included in the calculation of city-specific downscaled odds ratios, which 
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made use only of the point estimates and not the confidence intervals. Future 

applications of this method could evaluate the precision of the effect estimates and 

incorporate those into the calculation of city-specific weighted odds ratios.  

 

2.7.4. Extreme heat 

Models of the extreme heat-mortality relationship can be complex, with the definition of 

extreme heat exposure dependent on the structure of the temperature effect. However, it 

is well-established that the heat effect increases significantly at higher temperatures [7] 

and that apparent temperature on the day prior to and the day of death (AT01) captures 

the acute effect of heat [46]. By defining extreme heat exposure as being above the 

month-specific 95th percentile of AT01, our model accounted for deaths that occurred in 

earlier and later summer months that might otherwise be excluded an analyses where 

extreme heat exposure is defined as above a specified percentile of AT01 across all 

summer months. Recent analyses have indicated that early summer heat events are 

often the most deadly [47]. With increasing global average temperatures observed in the 

last two decades, month-specific exceedances of AT01 appropriately capture the effect of 

the increasing trend of temperature. 

 

2.7.5. Limitations 

Chloropleth maps that display continuous values, such as the downscaled odds ratios 

presented here, assume a smoothly varying surface. Because subpopulation 

demographic information was derived from aggregate census tract measures, we can 

only, in effect, display semi-discontinuous measures of the heat-health association. By 

mapping the data based on their natural breaks, we could roughly evaluate the spatial 

clusters of weighted odds ratios amongst census tracts. Despite the somewhat crude 

approach to presenting the fine-scale spatial relationships, chloropleth maps are 

reportedly the map types that are both preferred and more accurately used by 

epidemiologists than other visualization approaches [48].  

 

Concentrations of air pollutant and ozone were not included in this analysis. Although 

air pollution does modify the risk of heat-related mortality among vulnerable 

populations, ambient concentrations at geographic scales consistent with the study 
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design were not available in the 20 study cities. Ozone’s contribution to mortality during 

heat events is neither well-understood [11] nor spatially consistent [49] and, thus, was 

not deemed appropriate for inclusion in this analysis [50].  

 

2.7.6. Adaptation planning for heat related vulnerability 

The method presented here could allow a practitioner to visually present the public 

health burden of extreme heat on vulnerable populations in a manner that can be 

utilized to develop targeted public health initiatives. The US National Climate 

Assessment defines adaptation as “changes made to better respond to new conditions 

thereby reducing harm or taking advantage or opportunity” [51]. In financially strapped 

cities across the US, sweeping adaptation measures are neither likely nor prudent 

approaches to prepare for adverse health outcomes resulting from a changing climate. 

By identifying specific locations within an urban area where the impact of temperature 

could be greatest in terms of human health, local decision-makers and planners can 

focus and implement limited resources where their impact will be greatest. 

 

2.8 Conclusion 
 
Heat-related mortality is preventable, and targeted interventions can be more effective 

when officials and community leaders are armed with the knowledge of where specific 

vulnerable populations are located. Maps, increasingly used to communicate empirical 

characterizations of public health risks, can provide visual displays of fine-scale 

estimates of the risk of death associated with extreme heat. Downscaled estimates of the 

effect of extreme heat on cardiorespiratory mortality displayed spatial heterogeneity 

across the 20 study cities.  While the tract-specific odds ratios are only estimates of how 

heat may affect mortality differentially according to population vulnerability, they are 

based on epidemiologic effect estimates from location-specific data.  Evaluation of how 

these estimates correspond with odds ratios computed using health outcome data that 

identifies the residential location is needed, and we plan to conduct such a validation 

study using Detroit-based data as a next step. Overall, we feel these analyses contribute 

to place-based assessments of heat-related mortality among vulnerable subpopulations, 
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and have the potential to inform targeted climate adaptation plans and public health 

interventions. 
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Chapter 3. 
 
 

Fine-scale heat vulnerability mapping for Detroit, Michigan, USA 
 
 
3.1  Abstract 
 
BACKGROUND: Heat-related deaths are preventable and maps showing areas where people 

may be more vulnerable to heat have received attention as potential planning tools for states 

and municipalities in preparing for heat events. Assessments of heat vulnerability are often 

done by combining data on various components of vulnerability (e.g., demographic, 

socioeconomic and health characteristics of the population, natural and built environmental 

conditions) into a composite index that can be assigned to a geographic unit (e.g., 

neighborhood) and visually displayed for research and application. Thus, it is crucial to 

evaluate the commonly used methodology and provide guidance on how to interpret such 

composite heat vulnerability indices.  

 

OBJECTIVE: The goal of this analysis was to create a fine-scale composite heat vulnerability 

index for Detroit, Michigan, USA and critically evaluate the process, focusing particularly on 

the behavior of the index when differing combinations of variables are used in its construction. 

 

METHODS: Fine-scale land cover classification, ZIP-code level disease prevalence data, and 

census variables were used in a principal component analysis (PCA) to create 21 heat 

vulnerability indices (HVIs) for census block groups in Detroit, Michigan. Spearman 

correlations were used to evaluate similarities across HVIs. Geographic information systems 

(GIS) were used to map and assess spatial patterns of vulnerability. Block groups that most 

frequently were identified as having a top 5% HVI score were mapped. 
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RESULTS: HVIs for the 913 census block groups showed general patterns of vulnerability, 

which differed depending on the combinations of input variables used in the PCA. Spatial 

patterns of vulnerability were not explicitly consistent across HVIs. However, among the 5% of 

block groups identified as having the highest HVI scores, the downtown areas of Detroit were 

ranked as most vulnerable across multiple HVIs. Spatial patterns of vulnerability were 

dependent on the combination of input variables including in the PCA. 

 

CONCLUSIONS: Overall inconsistent spatial patterns suggest that the HVI is sensitive to the 

input variables and must be interpreted with caution. Such maps can serve as preliminary 

screening tools for identifying potential spatial pockets of heat vulnerability, but local 

knowledge about environmental characteristics, population vulnerabilities and intervention 

points, and validation of the different HVIs with health outcome data that can choose the most 

predictive indices are important next steps to optimize the impact of targeted intervention.  
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3.2  Keywords 

 Heat vulnerability index, principal component analysis, vulnerability 

 

3.3  Abbreviations 

 

ACS:  American Community Survey 

 

CMS:  Center for Medicare and Medicaid Services 

 

GIS:  Geographic information system 

  

HVI:  Heat vulnerability index 

 

NLCD:  National Land Cover Database 

 

PCA:  Principal component analysis 
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3.4.  Background 

 
As regions, states and municipalities are faced with responding to and preparing for the impact 

of a changing climate on human health, research that contributes to decision-making and 

policy development for climate change adaptation at a scale relevant to communities is needed. 

Such decisions and policies rely heavily on vulnerability assessments, many of which hinge on 

public health research. The United States (U.S.) National Research Council (NRC) defines 

vulnerability to climate change as “the capacity to be harmed” via the magnitude of changes, 

underlying factors that contribute to sensitivity (e.g., social, cultural, economic, geographic, 

ecologic) and the ability to avoid, prepare for and respond to impacts at various levels [1].  

Numerous studies have demonstrated the adverse impact of weather on human health. Heat, in 

particular, was responsible for more weather-related deaths in the U.S. from 2002 to 2011, on 

average, than floods, tornadoes, hurricanes, earthquakes and lightning [2, 3].  Research 

suggests that heat-related morbidity and mortality, and vulnerability to extreme heat, are 

dependent on characteristics of the heat event, and the health status and geography of the 

affected population [2, 4-10]. 

 

The relationship between heat and health has been extensively studied and documented in 

environmental epidemiological literature. Studies consistently show that individual and 

community-level characteristics influence one’s vulnerability to heat. Whether individuals have 

a pre-existing health condition such as cardiovascular disease, respiratory disease, diabetes, 

cerebrovascular disease, renal disorder, nervous disorder and/or mental health condition can 

enhance risk [8, 11-13]. Demographic and socioeconomic characteristics (e.g., older populations 

[12, 14-16]; minority populations [8, 17]; low-income [12]; those who are high school educated 

or less [16, 17]; the unmarried [15, 18]), as well as social factors (e.g., living alone, having 

limited access to transportation [19]), have been associated with increased risk of death during 

heat events. Housing characteristics, including central air conditioning in the home [20], can 

protect individuals from heat.  

 

Moving beyond individual-level characteristics, research suggests that community-level 

variables can reliably predict risk to heat-related health effects. The area of residence is among 

these variables. People living in urban versus rural or suburban areas are more at risk for heat-
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related mortality [21], in part due to the urban heat island (UHI) effect. The UHI effect occurs 

when higher ambient temperatures are observed in urban areas, compared to surrounding 

suburban and rural areas [22, 23] and is also characterized by increased nighttime ambient 

temperatures resulting from the slow release of energy retained by impervious materials [24]. 

The effect is due to a confluence of urban characteristics including a higher percentage of 

impervious, heat-absorptive surfaces; less vegetation (or green space); waste heat from 

buildings and vehicles; and overall more energy consumption per capita [25, 26] that alter the 

surface energy balance [23]. Plants and proximity to water may reduce heat exposure in 

microclimates within urban areas, however, even when an UHI exists. Urban vegetation, 

including tree canopy cover, can reduce ambient temperatures via increased shading and 

evapotranspiration [27], indirectly reduce greenhouse gas emissions [28] and may also play a 

role in protecting against heat-related mortality [29]. Measures of distance to large bodies of 

water (e.g., rivers, lakes), in cities like Detroit and Chicago, provide improved estimates of the 

intra-urban heat island by accounting for reduced temperature from nearby water sources [30-

32]. The various contextual characteristics that contribute to changes or increases in the UHI 

can make it challenging to identify one or two characteristics that could serve as intervention 

points. However, recent research found that urban poor populations and surface UHI 

measurements were significant indicators of risk during extreme heat events [33] highlighting 

that there is much to be explored about individual level and community level characteristics of 

heat-related vulnerability. 

 

Heat-related deaths are preventable [34, 35] and local governments are being called upon to 

implement or strengthen programs and systems that identify and respond to heat-related risks 

in a changing climate [36]. Vulnerability maps have received attention as potential planning 

tools for states and municipalities in preparing for heat events. Reid and colleagues [37] created 

a composite heat vulnerability index comprised of individual- and community-level 

characteristics representing factors that contribute to heat vulnerability. The index was 

calculated at the census tract level (approximately 4,000 inhabitants) in large cities and 

mapped to illustrate variability across the U.S. Using data at the census tract spatial scale can 

mask intra-urban variation of factors contributing to vulnerability, including vegetation, 

population distribution, and disease prevalence.  
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Composite indices, such as the Reid at al index, are products that combine multidimensional 

data and create scores that reflect the relative relationships in the data. Indices are useful in 

identifying spatial patterns of relative vulnerability. For instance, the Carstairs [38] and 

Townsend [39] indices were among the first used to measure and identify areas of relative 

deprivation in the United Kindgom. Indicators on social class, car ownership, male 

unemployment, overcrowding (Carstairs), and home ownership (Townsend) comprise the 

indices. The British Department for Communities and Local Government has been creating a 

similar deprivation index since 1999 to rank small areas across the country [40]. Cutter and 

colleagues created the Social Vulnerability Index (SoVI) which included myriad of variables 

reflecting comunity-level demographics, socioeconomic status, population structure, and the 

built environment to identify social vulnerability to environmental hazards for counties across 

the U.S. [41]. The results demonstrated spatial patterns of vulnerability in eastern cities, the 

Mississippi delta, and southern Texas. The SoVI captures the social components that contribute 

to vulnerability to heat, and has provided a framework for considering social components that 

may contribute to heat vulnerability.  

 

Much of what is known about heat-related vulnerability stems from retrospective analyses in 

which data were extracted from death certificates and hospital admissions records, archived 

temperature data, census and other broad population-based surveys (e.g., the Behavioral Risk 

Factor Surveillance Survey (BRFSS) http://www.cdc.gov/brfss/; American Housing Survey 

(AHS) http://www.census.gov/housing/ahs/). Analyses using these data sources must often 

limit the spatial and temporal resolutions to the coarsest spatial scale across variables, resulting 

in estimates reflecting the impacts of heat on populations of thousands to millions; for 

example, at the county level.  

 

A vulnerability index can be created using varying levels of spatial-scale information on 

demographic and environmental characteristics. Population characteristics on human health 

status are one variable clearly linked to vulnerability, as is local vegetation and green space. 

However, health data is difficult to acquire, making it challenging to adequately account for 

population vulnerability to heat in the absence of information on the underlying health status 

of a population, especially at finer spatial scales. Green space, a commonly used indicator 

assumed to reduce heat vulnerability, has been calculated from satellite imagery, vegetation 

http://www.cdc.gov/brfss/
http://www.census.gov/housing/ahs/
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indices, and measures of impervious surface [42]. City-specific indices of heat vulnerability that 

incorporate finer-scale (census block group, 600 – 3,000d inhabitants) environmental, 

demographic and health information can communicate the spatial distribution of heat 

vulnerability and have the potential to aid municipal heat-health prevention and planning.  

 

A composite index can be calculated, interpreted and applied at the creator and/or user’s 

discretion, typically for detailed, place-specific applications. Because the construction and 

interpretation of composite indices can vary, in the interest of communicating spatial 

vulnerability for both research and application it is critical to evaluate the commonly used 

methodology and provide guidance on how to interpret composite heat vulnerability indices.  

 

3.5  Objectives 

In this paper, we assess whether the creation of a heat vulnerability index (HVI), comprised of 

fine-scale demographic, environmental, health and socioeconomic variables, depicts explicit 

spatial patterns of heat-related vulnerability in Detroit, Michigan, USA. We further evaluate if 

the spatial patterns hold when different environmental (e.g., green space) and health data are 

used in the creation of the index, to investigate how robust the PCA method is in determining 

heat vulnerability within a metropolitan area.  

 

3.6 Methods  

 
3.6.1. Study location  

The City of Detroit and neighboring southeast Michigan cities have been planning for heat 

events since 2007 under the Office of Homeland Security’s all-hazard plan. The plan is led by 

the local health department and includes input from a heat committee comprised of citywide 

partners. Heat preparedness programs in place include an established network of cooling 

centers, outreach and education via community-based organizations, utility assistance 

programs, and a community emergency response team [43]. Although Southeastern Michigan 

is a northern U.S. area known for harsh winters, the area does experience periods of prolonged 

heat. The demographic and socioeconomic profiles of the resident population reflect known 

heat vulnerabilities. Detroit represents a city in the beginning stages of incorporating 

adaptation programming and planning, and has expressed interest in calculating a heat 
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vulnerability index.  Thus, using data from this area is useful to illustrate a methodology and 

may also have practical application.  Two cities, Highland Park and Hamtramck, are located 

within the boundary of Detroit, and these cities were included in the present analysis to 

maintain continuity across the city. 

 

3.6.2. Heat Vulnerability Index (HVI) Data 

Population health status 

Because of the dearth of reliable population disease prevalence statistics at spatial scales finer 

than the state or county, we decided to use hospital admissions data as a proxy for ZIP-code 

level disease prevalence among older persons in Detroit. Hospital admissions were acquired 

from the Center for Medicare and Medicaid Services (CMS) for Detroit, Michigan. Hospital 

admissions from 2006 were used in this analysis to maintain temporal consistency with the 

other data. Medicare covers nearly 98% of all individuals over the age of 65, providing 

comprehensive health data on the elderly population [44]. The University of Michigan 

Institutional Review Board approved use of these data. ZIP codes in which patients lived were 

extracted from the admissions records. Census block groups were assigned a ZIP code where at 

least 90% of the block group was contained within the 2006 ZCTA boundaries 

(http://mcdc.missouri.edu/websas/geocorr12.html.  

 

International Classification of Disease codes, version 9 (ICD-9), were used to define specific 

causes of admissions if they were listed as the primary admission cause on the Medicare billing 

record, as follows: All-cause (all admissions), cardiovascular (390 – 429); diabetes (250); renal 

(580 – 589); respiratory (480 – 492, 494 – 496; that is, all respiratory diseases except asthma, 

493).  

 

Vegetation, green space, and water proximity 

Land cover data was derived from three sources. The first source was an aerial photograph of 

the metropolitan Detroit area. The 2005 one-meter resolution aerial photograph was acquired 

from the 2005 Southeast Michigan Council of Governments (SEMCOG) Imagery product 

(http://www.semcog.org/Aerials_2005_Imagery_Project.aspx). Land cover classifications 

included proportion of impervious surface, bare earth, open space, trees, and water. To create 

vegetation variables consistent with increased hypothesized vulnerability to heat, we calculated 

http://mcdc.missouri.edu/websas/geocorr12.html
http://www.semcog.org/Aerials_2005_Imagery_Project.aspx
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“non vegetation” as [1 – Σ(open space + trees + water)] within a block group. As many cities are 

adapting tree planting programs as a strategy for increasing green space, we wanted to include 

a measure of vegetation that was only tree-specific. A second vegetation variable was 

constructed from the aerial photograph-derived land cover classification, “non-trees”, and was 

calculated as [1 – (proportion of trees)]. The second source is the 2006 National Land Cover 

Database (NLCD) impervious surface layer. The 30-meter resolution product has been used in 

heat-health studies to characterize land cover that is not vegetation. In this analysis, the 

impervious surface layer served to represent the common non-green space characterization. 

Impervious surface was extracted and recorded as a proportion across a block group. 

(http://www.mrlc.gov/nlcd06_leg.php).  Lastly, we used the 30-meter 2001 NLCD tree canopy 

layer to calculate the proportion of a block group that is covered by tree canopy. The 2001 

dataset is the only publicly-available tree canopy assessment for the City of Detroit [45]. 

 

Distance to water was calculated as a straight-line distance from the Detroit River (ESRI, 10.41) 

to the centroid of each census block group. The measurements were scaled to have a value 

between 0 and 1, so that 1 indicated the furthest distance from the river, with further distances 

hypothesized to confer higher vulnerability to heat exposure. 

 

Demographic variables 

Demographic variables were extracted from the American Community Survey (ACS) 5-year 

estimates for 2006 – 2010 for the block groups in Detroit, Michigan (www.census.gov/acs). 

Variables (again defined so that higher values would be related to the hypothesized greater heat 

vulnerability) included proportions of the following groups of individuals living in a census 

block group: over the age of 65; living alone; individuals over the age of 65 and living alone; 

with less than a high school education; living at or below the poverty level; and minority status. 

Minority status was based on the U.S. EPA Office of Environmental Justice’s definition of 

minority that includes Hispanics, Asian-Americans and Pacific Islanders, African Americans, 

and American Indians and Alaskan Natives (http://www.epa.gov/region2/ej/guidelines.htm). 

We calculated the proportion of the population who met the EPA definition of minority status 

for each census block group as [1 – Σ( proportion all white, non-Hispanic population)]. 

 

 

http://www.mrlc.gov/nlcd06_leg.php
http://www.census.gov/acs
http://www.epa.gov/region2/ej/guidelines.htm
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3.6.3. Calculation and mapping of heat vulnerability index 

One of our goals was to utilize principal component analysis (PCA), a method that has been 

used in other heat vulnerability index projects, to apply to a finer spatial scale data for Detroit, 

and assess how robust the index rankings were to inclusion of different variables. The purpose 

of conducting a PCA is for data reduction, allowing one to identify underlying factors in a 

dataset that explain most of the variation within the dataset; in this case, variation in heat 

vulnerability. Specifically, we were interested in how various measures of green space (or, 

conversely lack of green space) and health status contributed to differences in the index. In 

total, 21 indices were produced with variation on the health and non-vegetation variables, with 

all other variables included in the index remaining constant. Using the methodology 

established in Reid, et al [37], we created the 21 indices from the pre-specified variable 

combinations. Based on previous literature, we calculated the variables in a form for which a 

higher value would be related to higher hypothesized vulnerability (e.g., higher elderly 

population, higher non-green space, etc.), so the interpretation would be consistent. 

 

First, Spearman correlations at the census block group level were run for all variables that 

would be used in calculating the indices. We then performed a PCA on the correlation matrix 

using varimax rotation (varimax does not allow the factors to be correlated) to create 

independent factors. The number of factors retained were determined via a visual examination 

of the scree plot [46] and using Kaiser criteria where eigenvalues > 1 [47]. Although variance 

explained by the factors can be included in determining the number of factors retained, we 

refrained from deciding on a cutoff point, as we assumed most users of the PCA method for 

creating an HVI would follow the suggestions of the statistical software (i.e., eigenvalues > 1). 

Factor scores were calculated and normalized to have a mean of 0 and a standard deviation of 1, 

and then divided into six categories based on standard deviations. Factor scores were summed 

across factors for each census block group and mapped. Spatial patterns were visually assessed 

and reported. SAS version 9.3 (Cary, NC) and ESRI 10.1 (Redlands, CA) were used for the 

statistical analysis and spatial mapping. 

 

3.6.4. Vulnerability index comparisons 

Since no standard method for comparing HVIs exists, we evaluated how the indices changed as 

a result of differing input variables in four ways. First, we conducted Spearman rank 
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correlations of each HVI compilation using the calculated HVI scores for the census block 

groups. We hypothesized that the indices where the non-green variable came from different 

sources (e.g,, aerial photograph, NLCD) would have low correlations. Second, we visually 

assessed the spatial patterns of the mapped HVI scores. We hypothesized that the spatial 

patterns of vulnerability would remain consistent regardless of differing health and/or non-

green measures used in the index calculation. Third, to explore correlation and spatial patterns, 

we selected four of the most distinctly different HVIs and compared the number of factors 

retained in the PCA and the variance explained by those factors, and identified ways to 

characterize the factors. We hypothesized that the computed factors in each index would be 

comprised of the same variables, would explain the same amount of variance, and could be 

characterized the same way. Lastly, to evaluate whether specific block groups were consistently 

scored with higher vulnerability index values, we identified which block groups across the 21 

HVIs were in the top 5% of the index scores. The frequency of ranking in the top 5% was 

summed and mapped to identify block groups that ranked highly on all index calculations. We 

hypothesized that the same block groups would consistently be identified in the top 5% for the 

HVIs calculated with differing non-vegetation variables (e.g., aerial photograph-derived, 

impervious surface, tree canopy). 

 

3.6.5. Vulnerability index value comparisons with downscaled effect estimates 

The previous chapter of this dissertation presented a method to downscale county-level effect 

estimates of the association between extreme heat and cardiorespiratory-cause deaths to the 

census tract level. By identifying vulnerable populations defined by their age, race, and gender 

as provided on death certificates and using census tract-level demographic information, I 

computed city-specific weighted odds ratios. The weighted odds ratios were mapped and 

presented at the tract level. To evaluate the performance of the downscaling methodology 

presented in Chapter 2 and the fine-scale HVIs presented in this chapter, Spearman 

correlations were used to test the association between the Detroit specific tract-level 

downscaled weighted odds ratio of the odds of cardiorespiratory death and the four HVIs 

presented here. We hypothesized that there would be a positive association between the index 

values for all of the HVIs and the tract-level weighted odds ratios.  
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3.7 Results 

 
In the City of Detroit, 918 census block groups were present; 5 did not have a population 

reported in the census and were therefore were not included in the HVI calculation. The sample 

size for computing the indices was thus 913. For the disease prevalence, Medicare data were 

available at ZIP code level (n = 31). Descriptive statistics for the variables used in computing 

HVIs are found in Table 3.1. On average, 91% of the residents of Detroit block groups were 

members of minority populations, and 35% were living at or below the poverty level. Smaller 

proportions of the Detroit population were of older ages, lived alone, and had less than a high 

school education. Mean values of land cover in the block groups differed by data source. The 

aerial photograph-derived ‘non-trees’ was comparable to the 2006 NLCD impervious surface 

measurement, with the mean non-tree and impervious surface coverage being 67% and 60%, 

respectively. The 2001 NLCD tree canopy data showed an average of 95% of non-trees in the 

City of Detroit. For the 31 zip codes for which health status information was available, hospital 

admissions rates (our proxy for prevalence among people over 65) were highest for all-cause 

diseases, followed by cardiovascular, respiratory, renal diseases, and diabetes.  
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Table 3.1. Descriptive statistics for variables used in computing census block group level 
(n=913) heat vulnerability indices (HVIs) for Detroit, MI, USA.  
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Table 3.2 presents a matrix of the variable combinations used to create the 21 indices. Spearman correlations among 

variables used in the PCA analyses are shown in Table 3. 3. We observed significant and moderate correlations between 

most of the variables, most notably between non-vegetation variables from the aerial photograph, NLCD impervious 

surface and tree canopy sources. We observed significant correlations between demographic variables, but the magnitudes 

of the correlations were relatively low, except for populations over 65 and over 65 and living alone (0.62). 

 

Table 3.2. Matrix of variables available used for heat vulnerability index (HVI) creation for Detroit, MI, USA, by 
combination 
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Table 3.3. Spearman correlations between scored heat vulnerability index (HVI) values, by census block group (n = 913) 

across HVIs referenced in Table 2.2 matrix, for Detroit, MI, USA. 
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PCAs were run for all 21 combinations of variables displayed in Table 2.2. The HVI value 

assigned to each block group was calculated by summing standardized factor scores. The 

scale of the index is dependent on the number of factors retained from the PCA (based on 

the Kaiser criterion and scree plots). For instance, a PCA result that retained three factors 

would have a potential scale of 3 – 18, whereas an index with four retained factors would 

have a potential scale of 4 - 24. Standardized factor scores were then computed and 

mapped (Appendix B) for the 913 census block groups in Detroit. Because of the large 

number of block groups, visual discernment of differences between the computed indices 

among the 21 maps was difficult.  

 

However, the Spearman correlations calculated between each HVI (Tables 3.4.a-c) 

allowed us to identify which indices were statistically similar to each other without 

initially relying on visual interpretation. Correlations over 0.80 were considered ‘high’, 

suggesting similarities between the HVI values calculated for the 913 Detroit census block 

groups. Conversely, we considered correlations below 0.40 to be ‘low’, suggesting 

differences between HVI values calculated for the 913 Detroit census block groups. Table 

3.4.a shows that about half of the HVIs computed using aerial photograph-based land 

cover classifications were highly correlated, suggesting that these HVIs were relatively 

similar. Table 3.4.b. shows both high and low correlations between the HVIs computed 

using NLCD impervious surface and the HVIs computed with the aerial photograph-based 

non-vegetation. HVI_3N and HVI_Det_6 had the lowest correlation across all HVIs; they 

both included respiratory disease as the health variable, but differed in non-vegetation in 

that HVI_3N included percent impervious surface and HVI_Det_6 included the 

proportion of aerial photograph-derived non-tree classification. HVI_3N also had the 

most ‘low’ correlations of all the 21 HVIs, as well as no ‘high’ correlations. Additionally, in 

Table 3.4.c., HVI_2TC, calculated using the NLCD tree canopy land cover classifications, 

had ‘low’ correlations with both HVI_Det_6 and HVI_3N.  
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Tables 3.4(a-c). Spearman correlations between all heat vulnerability indices (HVIs) calculated using aerial-based land 

cover classifications, the National Land Cover Dataset (NLCD) 2006 percent impervious surface, and the 2001 NLCD tree 

canopy coverage for Detroit, MI, USA. 

 

Table 3.4.a. Spearman correlations between heat vulnerability indices (HVIs) calculated using aerial-based land cover 
classifications, Detroit, MI, USA.  
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Table 3.4.b. Spearman correlations between heat vulnerability indices (HVIs) calculated 
using NLCD (2006) impervious layer, Detroit, MI USA  
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Table 3.4.c. Spearman correlations between heat vulnerability indices (HVIs) calculated 
using NLCD (2001) tree canopy layer, Detroit, MI, USA. 

 
 

Based on the Spearman correlation and mapped spatial analysis, in Table 3.5 we provide a 

detailed comparison of the PCA results for the four most distinct HVIs. Although 

HVI_Det_8 did not have remarkably high or low correlations with the other HVIs, we 

include it in the comparison because it includes the proxy of renal disease prevalence in 

the population, which is increasingly being identified as a strong predictor for 

vulnerability during heat events [48]. Except for HVI_3N, which had four factors, the 

other selected indices had three factors retained from the PCA. The percent variance 

explained when three or four factors are retained is included to illustrate how the 

inclusion (or exclusion) of an additional factor can affect how much of the dataset’s 
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variance is explained by the factors. The main difference between HVI_3N and the other 

HVIs in Table 3.5 is that the non-vegetation measure is based on the NLCD calculation of 

percent impervious. The only other PCA that retained four factors was for HVI_1N where 

all-cause disease prevalence was the health data variable (results not shown). In three of 

the four HVIs presented in Table 3.5, the first factor, which explains most of the variation 

in the dataset, is comprised of the elderly and those who live alone. Except for 

HVI_Det_8, the first factor in the other 20 HVIs was elderly/isolation which generally 

accounted for somewhere between 24 and 26% of the variance of the dataset (results not 

shown). Second and third factors did not remain consistent across the HVIs. Health 

variables and location (e.g., distance to water) were grouped to the same factor and were 

interchangeably included with socioeconomic variables and minority status. Non-

vegetation variables also did not follow a factor-loading pattern. Overall, the factors 

explained between 60 and 73 percent of the variance in the data.  

 

Table 3.5. Comparison of principal component analysis (PCA) results for four selected 
heat vulnerability indices (HVIs) for Detroit, MI, USA. 
 

 
 

3.7.1. Spatial patterns of vulnerability 

Figures 3.1. (a-d) are the heat vulnerability maps for the four HVIs listed in Table 3.5. 

Index values are displayed as quintiles so that patterns of vulnerability are more easily 

discernible amongst the four maps. Data sources and factor loadings are also presented in 

each figure. The top 5% census block groups for each HVI map are displayed with cross 

hatch patterns. Maps for all the 21 vulnerability indices are available in Appendix B. 

 



 70 

Spatial patterns of vulnerability were not consistent across the four mapped HVIs. In 

Figure 3.1a, the mapped heat vulnerability index for HVI_Det_6, the west-northwest 

portions of the city were assigned high vulnerability index values, with pockets of high 

vulnerability observed in southwest Detroit and in some portions of central Detroit. The 

least vulnerable areas were identified in the west and east-northeast areas of the City.  

Block groups in the top 5% of the index were primarily located in the northwestern 

portion of the City, with a few also identified on the east side. The pattern of heat 

vulnerability was much different for the maps of HVI_Det_8 (Figure 3.1.b) and HVI_3N 

(Figure 3.1.c), where high vulnerability index values, as well as the top 5% of the index 

values, were located mostly in central, or downtown, Detroit. Figures 3.1.b and 3.1.c 

indicate that the highest vulnerability is generally located along the riverfront, which 

contrasts with the pattern seen with HVI 6 in Figure 3.1.a. Further, in Figure 3.1.d we see 

another specific vulnerability pattern that has the block groups assigned the highest 

vulnerability values located along the riverfront, but distributed mostly towards the 

northeastern portion of the city. Despite the variability in the spatial patterns of the 

indices presented here, one can conclude that across three of the four figures and indices 

(HVI 8, 3N and 2TC) there is a pattern of highest vulnerability in the central portions of 

the city, near the riverfront. An additional consistency observed in these analysis is that 

two small block groups in the southwestern-most region of the City were identified among 

those with the highest vulnerability. Block groups in the cities of Highland Park and 

Hamtramck were consistently ranked as highly vulnerable to heat.  
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Figure 3.1.a. Heat vulnerability index (HVI) map for census block groups (n = 913) in Detroit, MI, USA. The HVI 
incorporates respiratory disease prevalence and aerial photograph-derived calculations of non-trees (referenced in Table 
3.2 matrix). 
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Figure 3.1.b. Heat vulnerability map for census block groups (n = 913) in Detroit, MI. Incorporates renal disease prevalence 
and aerial photograph-derived calculations of non-trees (referenced in Table 3.2 matrix). 
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Figure 3.1.c. Heat vulnerability map for census block groups (n = 913) in Detroit, MI. Incorporates respiratory disease 
prevalence and NLCD-derived calculations of impervious surface (referenced in Table 3.2 matrix). 
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Figure 3.1.d. Heat vulnerability map for census block groups (n = 913) in Detroit, MI. Incorporates cardiovascular disease 
prevalence and NLCD-derived calculations of non-tree canopy (referenced in Table 3.2 matrix).  
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Figures 3.2.s-c display maps of the Detroit, MI census block groups that were most 

frequently identified in the top 5% of all heat vulnerability indices (referenced in Table 3.2 

matrix). These are grouped by land cover source type with aerial photograph, NLCD 

impervious or tree canopy; respectively, labeled in Figures 3.2.a, 3.2.b, 3.2.c. Visual 

comparison across the three maps indicates consistency in block groups with the highest 

vulnerability measures. In general, the most vulnerable block groups are located in the 

downtown, or central area near the Detroit River, and to the slight east and west of the 

downtown. Only a few block groups in the peripheral parts of the City were assigned high 

vulnerability scores. These are found in the northern and southwestern areas.  

 

 



 76 

Figure 3.2.a. Top 5% Detroit, MI census block groups identified in heat vulnerability indices calculated with aerial 
photograph-based land cover classifications
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Figure 3.2.b. Top 5% Detroit, MI census block groups identified in heat vulnerability indices calculated with 2006 NLCD 
impervious surface layer 
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Figure 3.2.c. Top 5% Detroit, MI census block groups identified in heat vulnerability indices calculated with 2001 NLCD 
tree canopy layer
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Table 3.6. Spearman correlation (p-value) between census tract-level weighted odds ratios 
of cardiorespiratory death and HVI 6, 8, 3N and 2TC values for Detroit, MI. 

 
 

The block group-level HVI values were significantly correlated with the weighted odds 

ratios of cardiorespiratory death, as presented in Table 3.6. The correlations were 

relatively low, however, across all four HVIs. Notably, we observed a negative correlation 

between HVI 3N values and the tract-level weighted odds ratios of cardiorespiratory 

death, which was contrary to our hypothesis that the HVI values would be positively 

associated with the downscaled effect estimates.  

 

3.8 Discussion  

The goals of these analyses were 1) to evaluate whether a HVI developed using finer scale 

data than used previously would show spatial patterns of heat vulnerability within the 

City of Detroit, Michigan, 2) to illustrate the sensitivity of PCA to different variable 

combinations in fine-scale heat vulnerability mapping and 3) to evaluate the correlation 

between downscaled effect estimates of heat-related cardiorespiratory death and HVI 

values. While certain areas of Detroit were consistently ranked as vulnerable across 

multiple HVIs, we saw widely differing spatial patterns throughout the study area 

depending on the combinations of input variables used in the PCAs. Further, PCAs for the 

HVI combinations produced factors that were neither easy to categorize nor had variables 

load reliably onto specific factors. The only predictable factor was factor 1, comprised of 

elderly/isolation variables, for 20 of the 21 PCA results. The anomaly was in HVI_Det_8 

where factor 1 was comprised of variables for location, green space and health.  

 

A limited number of other studies have constructed HVIs for urban areas. The census 

tract-level national HVI presented by Reid et al [37] elucidated heat vulnerability across 

the US, and within some urban areas, yet relied on relatively coarse scale environmental 

and health data. Finer scale indices, such as those done for Chicago [49] and Phoenix 
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[29], demonstrated finer variation in intra-urban heat vulnerability. While all these 

analyses used similar data, the resulting factors were sometimes quite different. For 

example, in Phoenix, the factors that comprised the index were first: socioeconomic 

vulnerability; second: elderly/isolation; third: non-vegetated areas. In Chicago, the factors 

could not be easily grouped, but generally separated as first: economic status and age; 

second: lower education, Hispanic ethnicity and ‘other’ races; third: the built environment 

and vegetation; and fourth: Black population and land surface temperature.  

 

Although the Chicago and Phoenix analyses included heat-related mortality to evaluate 

the performance of their respective indices, neither included health data in the index 

creation. In the absence of finer-scale measures of disease prevalence, the ZIP-code level 

prevalence estimates used in this study enabled us to estimate disease prevalence 

heterogeneity across the Detroit study area that would not be captured if we had used 

estimates from the Behavioral Risk Factor Surveillance System (BRFSS). BRFSS estimates 

were used in the Reid, et al [37] HVI, and were calculated by downscaling state-level 

diabetes prevalence to county-level estimates. In using the 31 ZIP-code specific disease 

prevalence measures presented here, we could better characterize the health status of the 

Detroit population most vulnerable to heat. To our knowledge, this is the first application 

of Medicare hospitalization data as a proxy for population disease prevalence for heat-

related vulnerability. Medicare data has been used extensively to document chronic 

disease in the Medicare population [50]. Although this data source only includes 

individuals over the age of 65, most heat-related morbidity and mortality occurs among 

people over the age of 65. Further, with the number of older individuals in the U.S. 

expected to double in the next 25 years [51] coinciding with expected increasing ambient 

temperatures, there is reason to anticipate adverse heat-health outcomes for people over 

the age of 65. 

 

Neighborhood variations in temperature and land cover have been identified in urban 

areas [27, 30, 52]. The role of green space in the heat-health literature is not well 

established, but is increasingly being considered as protective for vulnerable populations. 

In the previously mentioned vulnerability index calculations, characterization of the green 

space, or lack of green space, is from one source, the NLCD, which is limited to identifying 
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land cover over 30 meters. We utilized three very different sources for land cover 

classifications. The aerial photograph-derived land cover classifications allowed for a 

more accurate representation of vegetation, and consequently the microclimates, across 

the study area [27]. The NLCD impervious surface layer was used as a proxy for non-green 

space and the NLCD tree canopy layer was used to indicate tree coverage. We 

hypothesized that the inclusion of the finer-scale estimate of green space would not 

impact the spatial patterns of vulnerability due to the eventual aggregation up to the block 

group level of the land cover measures. Indeed, we observed moderate to high 

correlations between aerial- and impervious-based HVIs. Tree canopy-based indices were 

not as consistently correlated with the other two index types.  The mean block group tree 

canopy coverage in Detroit, from the NLCD, was 5%, considerably lower than the aerial 

photograph-based tree coverage of about 33%. While the two are not easily comparable 

because they have different health variables in their indices, a distinct and opposite 

pattern of vulnerability was seen in HVI_6 and HVI_2TC. This may indicate that the 

contribution of non green variables influences the spatial distribution of vulnerability in 

the mapped index. 

 

The indices presented here did not identify measures of poverty, education or minority 

status to be stand-alone indicators of heat vulnerability; these variables were 

interchangeably coupled throughout the indices. Poverty has been shown to be a primary 

contributor to social vulnerability [41]. The poverty status of a neighborhood may reflect 

the limited resources that could be directed towards adaptive measures. Yet, other 

indicators of socioeconomic status, such as education level, contribute to heat 

vulnerability but were not identified as primary indicators of vulnerability in these 

analyses. In this study, 91% of the Detroit population was identified as minorities. Little 

variation in this characteristic may explain why minority status was not identified as a 

primary factor in the HVIs. 

 

3.8.1. Index interpretation, application and future directions 

A challenge, once an HVI has been created, is interpreting the product and determining 

how to use the information. In the HVIs produced for Detroit, spatial distribution of 

vulnerability was variable depending on index composition. Most notably, two indices 
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computed using the same measure of non-vegetation (HVI_Det_6, HVI_Det_8), but 

differing health conditions, respiratory- and renal-disease, displayed nearly opposite 

patterns of high vulnerability. In determining areas of vulnerability based on these two 

maps, practitioners are faced with evaluating whether one product is ‘better’ than 

another. 

 

Assessing whether the indices are identify the most vulnerable areas of an area requires 

some measure of performance for the PCA/vulnerability method. In our analysis, perhaps 

the most robust comparison for the HVIs was the maps indicating the top 5% most 

vulnerable census block groups across vegetation-specific HVIs. We observed consistent 

patterns of block groups identified as being vulnerable across aerial-, impervious surface, 

and tree canopy-based indices. These results could be interpreted as suggesting that 

different ways of characterizing land cover may have little influence on the identification 

of vulnerable areas when computing HVIs. Yet, such an interpretation should be avoided 

as it fails to consider, for instance, how the pattern may change if one holds everything 

constant except disease-specific prevalence.  

 

Sensitivity to changes in the HVI based on the number and combination of input variables 

used for its construction are crucial in evaluating the final product. Sensitivity analyses of 

the SoVI [41], similar to the ones we conducted here, informed the authors’ confidence in 

the performance of the index. Composite indices of comparable environmental hazards 

considered larger geographic extents than what we presented here. The total amount of 

variation explained by the retained factors for such analyses was larger, usually around 

80% [29, 49], than what we observed here. Our study was limited to the geographic extent 

of a city, whereas most city-specific vulnerability indices are based on larger areas such as 

counties. Statistically speaking, larger datasets will have more power to explain the 

variance within observations, which is why we would expect to see both smaller variance 

explained for our analyses, as well as more sensitivity in the index. 

 

A validation study of how the various indices presented here predict higher heat-specific 

morbidity and mortality for the most vulnerable block groups could be used to evaluate 

the performance of the index. In a larger validation analysis of a heat vulnerability index, 
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Reid et al [37] concluded that areas with high index values generally reflected the overall 

health vulnerability of that population [53]. We would expect that the contribution of 

finer scale environmental and health data to the indices created here would provide 

adequate predictive power for the HVI to identify areas specific heat vulnerability. 

 

Studies have found that respiratory hospitalization rates increased during heat events in 

California [7, 54], New York [55-57], and in US counties with cool average summer 

temperatures [58], indicating that respiratory conditions are exacerbated during heat 

events and identify a population vulnerable to heat exposure. Additionally, renal disease, 

which is related to fluid imbalance, is a more recently studied morbidity associated with 

increased ambient temperatures [48]. In the HVIs presented here where both respiratory 

and renal disease are included, we do not see consistent or similar vulnerability patterns, 

though the respiratory and renal variables load on higher factors indicating they account 

for more variance in the data. The inclusion of respiratory and renal disease prevalence in 

identifying spatial distributions of vulnerability may be important for emergency response 

and planning purposes. Because the spatial patterns were not clearly discernible in our 

analysis, a validation analysis of the heat vulnerability indices with respiratory- and renal-

cause morbidity or mortality would further inform the performance of the index in 

identifying heat vulnerability. 

 

Limitations 

Prevalence of air conditioning was not included in these analyses due to the lack of fine-

scale information of air conditioning for the Detroit study area. Air conditioning has been 

identified as a protective characteristic during heat events [20]. Having data on air 

conditioning prevalence, however, even at a finer scale, has its limitations since simply 

having air conditioning does not ensure that residents use the amenity, particularly in 

economically deprived areas where energy costs deter use [43]. 

 

3.9  Conclusion 

 
We identified and evaluated patterns and inconsistencies that occurred among fine-scale 

HVIs when created using differing measures of non-vegetation and health status in the for 
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the City of Detroit using the commonly employed PCA method. Overall, inconsistent 

spatial patterns suggest that the HVI was sensitive to the input variables and must be 

interpreted with caution. In producing 21 indices and identifying the census block groups 

that were most frequently assigned a high vulnerability index value, we were able to 

identify a consistent pattern of vulnerability in downtown Detroit. However, despite the 

numerous HVI iterations, we conclude that the maps would better serve at identifying 

spatial pockets of vulnerability in conjunction with local knowledge and validation with 

health outcomes.  
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Chapter 4. 
 
 

Evaluating the performance of heat vulnerability indices using fine-scale 
estimates of heat-related mortality in Detroit, MI USA 

 
 
4.1. Abstract 
 
BACKGROUND: Expected increases in extreme heat pose a risk to human health, 

particularly to populations vulnerable to heat who live in urban areas. The spatial 

distribution of heat-related vulnerability has been of particular interest to researchers 

and policy-makers alike, as understanding this can aid targeting of interventions.   

 
OBJECTIVES: We aimed to provide a better understanding of the spatial dimension of 

heat-related vulnerability by evaluating correlations of two heat vulnerability indices 

(HVIs) with excess heat-related mortality at the census block group scale using 

geocoded mortality data for the city of Detroit, Michigan. 

 
METHODS: We used a case-crossover study design to evaluate the association between 

geocoded cardiorespiratory mortality in Detroit, MI USA (May – September, 2000 – 

2009) and extreme heat days (defined as days when the mean apparent temperature 

averaged from that day ant the day prior were above the month-specific 95th percentile 

of apparent temperature). To assess whether residents of block groups having higher 

HVIs were at greater risk from heat-related mortality, we included interaction terms 

between extreme heat and an indicator for whether the census block group was greater 

than or at or below the median, quartile and 95th percentile scores for two different 

HVIs. A case-only sensitivity analysis and a comparison of the HVI values at the census 

tract level to the proportion of those who died on an extreme heat day were also 

conducted. 
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RESULTS: The association between extreme heat days and cardiorespiratory mortality 

was not significantly modified by the decedents’ census block-specific HVI values. The 

two HVIs used in this analysis produced similar results, with neither reliably indicating 

a better performance in predicting heat-related mortality, at either the block group or 

Census tract scale. Census block group measurements of community-level variables 

were not predictive of cardiorespiratory mortality at the block group scale.   

 

CONCLUSIONS: The HVIs presented in this analysis did not demonstrate a strong 

ability to identify whether Detroit residents living in census block groups assigned high 

values of heat-related vulnerability had higher odds of cardiorespiratory death during 

extreme heat. Future analyses should consider comparing different modeling 

approaches for evaluating the predictive power of HVIs. The spatial distribution of heat-

related vulnerability may rely heavily on the explicitly specific distributions both 

individual and community level characteristics that may be lost when aggregated.  

 

4.2. Keywords 
 Heat vulnerability, heat vulnerability index, evaluation, adaptation 
 
4.3. Abbreviations 
  

HVI  Heat vulnerability index 
 
 MDCH Michigan Department of Community Health 
  
 NCDC  National Climatic Data Center 
 
 PCA  Principal component analysis  
 
 UHI  Urban heat island 
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4.4. Introduction and background 
 

The role of very high, or extreme, temperatures on human mortality has been well 

researched [1]. Urban areas are considered important for the study of the heat-health 

association in part due to the urban heat island (UHI) effect, where higher observed 

ambient temperatures occur in urban areas compared to surrounding suburban and 

rural areas, but also due to population characteristics, such as old age, socioeconomic 

status, and environmental characteristics like green space, that have been shown to 

contribute to heat-related vulnerability [2-6]. The non-uniform distribution of these 

characteristics [7, 8] poses a unique opportunity to potentially identify pockets of heat-

related vulnerability within urban areas. However, the knowledge gained from such 

studies of the heat-health relationship is limited in scope and evaluation. 

 
The heat vulnerability indices (HVIs) presented in Chapter 3 are iterations of the 

recently-developed applied method for grouping environmental, demographic, 

socioeconomic and human health variables that can then be used to calculate a proxy for 

heat-related vulnerability [8-10]. Components comprising an HVI differ, depending on 

the variables included in its construction, typically selected because they are believed to 

contribute to heat-related vulnerability. One interpretation is that it represents locations 

across a spatial extent where populations most vulnerable to heat reside. Further, an 

HVI allows evaluation of the distribution of heat-related vulnerability by considering the 

assigned index values relative to surrounding index values. Theoretically, the HVI would 

be able to predict, within a geographic extent, where heat-related morbidity or mortality 

would be greater among the population on days with extreme or high heat. Such 

information could aid in preparing for and responding to impending increases in 

ambient temperature, and provide a quantitative approach for selective intervention or 

targeted adaptation measures. While the HVI is a relatively recent application of the 

understanding of the heat-health relationship, understanding of how accurate the HVI is 

in its performance on identifying where heat-related vulnerability occurs is limited. At 

the date of this writing, three evaluations of HVI performance in identifying specific 

locations of acute heat-related morbidity and mortality have been published [8, 10, 11]. 

Despite their different index constituents, the three studies reported moderate- to 
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strong predictive capabilities for heat related mortality, suggesting that those HVIs may 

be of use in guiding preventive interventions during hot weather. 

 

As heat vulnerability research continues to be relevant and critical to the field of public 

health and disease prevention, the application of knowledge gained from robust 

epidemiologic, climatological, and social science research findings that inform the 

development of climate adaptation plans will experience increasing scrutiny. Therefore, 

contribution to the understanding of how fine-scale or city-specific applications of heat 

vulnerability research, such as the predictive capacity of HVIs in identifying where those 

vulnerable during heat events live, is crucial. The HVIs presented in Chapter 3 are 

specific to Detroit, Michigan, a U.S. city that has been studied for its heat-health 

response particularly due to its unique geographic location and its distinctly segregated 

– in terms of race and socioeconomic status – population [2, 12, 13]. In the analysis 

presented here, we used numerous methods to evaluate whether within-city areas that 

were ranked higher by two heat vulnerability indices, created from fine-scale, 

community-level aggregated demographic, environmental, and health characteristics, 

had higher associations between cardiorespiratory-cause death and extreme heat in 

Detroit, MI.  

 

4.5. Methods 
 
4.5.1. Heat vulnerability index 

Two heat vulnerability indices were assessed in this study. Both indices, which are 

previously reported in Chapter 3 of this dissertation, contained the following variables 

calculated as the proportion per census block group: population over the age of 65; 

population living alone; population over the age of 65 and living alone; population 

characterized as having minority status – which is defined by the US EPA Office of 

Environmental Justice as being Hispanic, Asian-American and Pacific Islander, African 

American, and American Indians and Alaskan Natives 

(http://www.epa.gov/region2/ej/guidelines.htm); population with less than a high 

school education; and population living below the poverty line. The indices also 

included ZIP code-level estimates of respiratory disease prevalence, calculated from 

http://www.epa.gov/region2/ej/guidelines.htm


 93 

2006 hospital admissions data obtained from Centers for Medicare and Medicaid 

Services. The indices differed in their measurement for non-green space. HVI 6 (Table 

3.1., Chapter 3) characterized non green space from a 1-meter aerial photograph image 

(SEMCOG, 2006) as being the proportion of a census block group that was not 

identified as containing trees. HVI 3N characterized non green space as 1 – the percent 

impervious surface as provided by the impervious surface layer from the 2006 National 

Land Cover Database (NLCD). The two measures of non-green space were relatively 

similar, with the aerial photograph-derived non-trees, on average, covering 67% of the 

Detroit census block groups, and the NLCD percent impervious, on average, covering 

60% of the census block groups in Detroit. Despite the similarities in the data used to 

calculate the HVIs, the HVI-specific principal component analysis (PCA) produced 

principal components comprised of different combinations of variables, as well as maps 

with distinct spatial patterns. For these reasons, we chose to further investigate and 

compare the HVI 6 and HVI 3N with respect to heat-related mortality in Detroit.  

 
4.5.2. Mortality data 

Daily, geocoded mortality data were obtained from the Michigan Department of 

Community Health (MDCH) for the years 2000 – 2009. Institutional Review Boards for 

the University of Michigan and the MDCH approved this study (UM IRB: 

HUM00067448). Daily deaths with primary causes being cardiovascular (International 

Classification of Diseases 10th revision (ICD10): I01 – I59) or respiratory (ICD10: J00 – 

J99) diseases were aggregated to create cardiorespiratory causes. Decedent information 

on age, race and gender were available and extracted from the death certificates. We 

limited the analysis dataset to May through September months over the 10 year time 

period because our primary interest was in extreme heat occurring during the warm 

season. 

 
The City of Detroit, contained within Wayne County, was the study area of interest for 

this analysis. Death records were geocoded by the Michigan Center for Geographic 

Information (CGI) (www.michigan.gov/cgi), and had a 98% match rate. Death records 

that we were unable to geocode were removed from this analysis. The total number of 

geocoded deaths within the city boundary of Detroit was 14,103 for the May through 

http://www.michigan.gov/cgi
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September months of the study period. Each death was assigned a census block group 

identifier using the spatial join function available in ArcGIS ArcMap 10.0.   

 
4.5.3. Weather data 

Hourly mean temperature and daily dew point data from two weather stations near the 

Detroit city boundary were obtained from the National Climatic Data Center (NCDC). 

Apparent temperature (AT °C) (EQ.1), a measure similar to a heat index that 

incorporates dew point and reflects the temperatures felt by individuals [14] was 

calculated from these data. 

 

EQ 1.       AT = -2.653 + (0.994 x ambient temperature)  + (0.0153 x dew point 

temperature) 

 
Because exposure to heat does not immediately impact human health, we calculated the 

AT to include the mean apparent temperature occurring on the date of death and the 

day prior, or lag01. Studies have indicated that two day moving averages of mean 

apparent temperature of lag01 (AT01) adequately captures the acute effect of heat [15]. 

To account for deaths that occurred earlier in the summer seasons, we defined extreme 

heat as being above the month-specific 95th percentile of AT01 for the years 2000 – 

2009.  

 
4.5.4. Case crossover modeling and statistical analysis 

The time stratified case crossover design was used to estimate the association between 

extreme heat and cardiorespiratory death in the Detroit, MI population. The case 

crossover analysis is, essentially, a matched case control design that allowed us to 

control for time-invariant characteristics, match on geographic identifiers, as well as 

incorporate interaction terms for the census block-group specific HVI values. To 

evaluate whether certain higher scores of vulnerability were better at predicting 

cardiorespiratory death, we looked at the association when treating HVI as a continuous 

variable and as indicator variables for the median, quartiles and the top 5%.  

 
The models used to evaluate HVIs 6 and 3N were: 
 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVI)  
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logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIMedian)  
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIQuartile)  
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVI95th percentile)  
 
To consider the contribution of the variables used in the calculation of the HVIs, we also 

looked at whether block group-specific proportions of individual variables (e.g., 

proportion of people over 65 living alone) modified the effect of extreme heat on 

cardiorespiratory mortality. The models used to calculate the association between 

extreme heat and cardiorespiratory death, and effect modification by the block group 

variables were: 

 

logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIOver 65) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVILiving alone) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIOver 65, Living Alone) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVILess HS education) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIMinority status) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIBelow Poverty level) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVIImpervious surface) 
logit(mortalityCVDRESP) = β1EH0195 + β2(EH0195  *  HVINon trees) 
 
We hypothesized that the fine-scale vulnerability indices would be moderately predictive 

of heat-related cardiorespiratory mortality in Detroit MI for the 2000 – 2009 study 

period. Due to the sensitivity of the indices to the variables included in their creation, as 

shown in Chapter 3, we did not expect either index being evaluated to be significantly 

better at predicting heat-related cardiorespiratory death. 

 

4.5.5. Sensitivity analysis 

One limitation of heat vulnerability analyses relates to the lack of publicly available fine-

geographic scale health, demographic and environmental data. To determine whether 

the associations found in the case-crossover analysis presented here, which were 

computed with the block group-level HVIs, remained when using a tract-level HVI, we 

recalculated the block group level HVIs at the tract-level. Following the same logic 

tested in the case-crossover analysis, one would expect to observe a positive association 

between higher HVI values and a higher number of deaths on an extreme heat day if the 

heat vulnerability index is a valid proxy for the risk of adverse health outcomes when 
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high ambient temperatures are observed. Rather than creating controls for the analysis, 

we conducted a logistic regression on those individuals who died on an extreme heat day 

(EH0195 ) and the tract-level HVI values [16]. Extreme heat days were defined as days 

where the AT01 was above the month-specific 95th percentile during the May – 

September 2000 – 2009 study period. Case-only analyses have been used to evaluate 

individual-level effect modifiers of temperature and mortality in a Detroit, MI 

population [16]. By evaluating only those individuals who died on days when extreme 

heat occurred, we were still able to assess the performance of the HVIs in their ability to 

predict areas of high vulnerability to heat, or, where deaths would be expected to occur. 

We estimated the relative odds of cardiorespiratory death on an extreme heat day using 

a logistic regression model that tested whether a one unit increase in a tract-specific 

HVI (HVI 6 and HVI 3N) predicted cardiorespiratory deaths that occurred on extreme 

heat days. An example of the model follows: 

logit(mortalityCVDRESP | EH0195) = β1HVI6 
 

Because individual-level characteristics such as age and race have been shown to modify 

the heat-mortality association, we included them as potential modifiers in the sensitivity 

analysis. 

 

In an additional analysis, Spearman correlations were computed to evaluate the 

association between the tract-level HVIs and the proportion of individuals, or cases, who 

died on an extreme heat day compared to the entire population of individuals who died 

of cardiorespiratory-related causes on any days during the May – September, 2000 – 

2009 study period. We expected that increased HVI values would be associated with an 

increased proportion of cardiorespiratory deaths that occurred on extreme heat days.  

 

4.6. Results 
 
Population-specific characteristics are presented in Table 1. Compared to the Detroit 

population studied in Chapter 1, which was for the time period 1990 – 2006, we saw a 

higher fraction of people at the extremes of the age range, with individuals who are very 

old (over the age of 75) making up 49% of the decedents and those who are young below 



 97 

65 years), 32.9%. Additionally, we observed a much larger proportion of nonwhite 

individuals (79.1%). Gender distributions were about equal in both studies.  

 

Table 4.1. Summary statistics of cardiorespiratory cause deaths and apparent 
temperature, Detroit MI, US (2000 – 2009).  

 
 
The results from the case crossover model that incorporated the various HVI 

measurements are presented in Table 4.2. We observed a statistically significant overall 

effect of extreme heat (AT01) and cardiorespiratory mortality in the Detroit study 

population where the odds of cardiorespiratory mortality on an extreme heat day were 

1.11 the odds of cardiorespiratory mortality on a non-extreme heat day. In assessing the 

predictive power of the HVI, with the HVI values treated as continuous, we observed no 

association of cardiorespiratory mortality risk with increased HVI values for both HVIs 

6 and 3N, with odds ratios of 0.99 (95% confidence: 0.95, 1.04) and 0.97 (95% 

confidence: 0.93, 1.01), respectively. 
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Table 4.2. Results for the case-crossover analysis between extreme heat and cardiorespiratory-cause deaths in Detroit, MI 
May – September, 2000 – 2009, including HVI 6 and 3N values as effect modifiers.  

 
 
 

In treating the HVI values according to their quartile ranks, with the lower 25th percentile serving as the reference 

category, we observed in both HVIs 6 and 3N no associations between the HVI values and cardiorespiratory mortality. 

HVI 6 values in the 75th percentile had a 1.15 increased odds of cardiorespiratory mortality (95% CI: 1.00, 1.33) when 

compared to the lowest quartile, but was marginally statistically significant.
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Similarly, HVI 3N values in the 25th percentile were positively associated with 1.23 

increased odds of cardiorespiratory mortality compared to those in the lowest quartile 

but were also marginally statistically significant. HVI3N values above the median 

observed a positive association (odds ratio=1.13), was statistically insignificant. When 

assessing the HVI’s performance with only the top 5% of HVI values, we observed no 

associations for both HVIs 6 and 3N between the block group assigned HVI values and 

the odds of cardiorespiratory mortality. 

 
Overall, the associations between the HVI values and the risk of cardiorespiratory 

mortality were consistently insignificant. Analyses that compared quartiles of HVI 

values for both HVI 6 and 3N indicated an increase in cardiorespiratory death risk, 

whereas the analyses where HVI was treated as a continuous predictor or when using 

the index values in the top 5% produced odds ratios suggesting a decrease in heat-

related cardiorespiratory death risk. There is no clear pattern on the risk of 

cardiorespiratory death and living in a census block group with a high HVI value. The 

odds ratios for these analyses are not very stable and are accompanied by large 

confidence intervals. 

 

To investigate the community-level characteristics used in the HVI creation, we 

evaluated those characteristics’ ability to predict heat-related cardiorespiratory 

mortality in this study population. Table 4.3 presents the distribution of the community-

level characteristics for the block groups in Detroit, MI. There was not an even 

distribution of the characteristics. Minority populations, on average, comprised nearly 

all of the study census block groups. Individuals over the age of 65 were not a large 

proportion of the population, but in some block groups they did account for half of the 

population. Additionally, while the average percent of people living below the poverty 

level was 35%, at least one block group was identified as having almost 90% of the 

population living below the poverty level. Lack of tree coverage and the distribution of 

impervious surface, both characteristics that can contribute to an increase in ambient 

temperatures, were comparable and some block groups were characterized as 

completely non-vegetated. 
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Table 4.3. Distribution of the proportion of block group population characteristics used 
in the creation of heat vulnerability indices (HVIs) 6 and 3N. 

 
 
 
The associations between the continuous predictors of community-level characteristics 

and the risk of heat-related deaths are shown in Table 4.4. We observed no associations 

between any community-level characteristics and the risk of heat-related 

cardiorespiratory-cause death. Although it was not statistically significant, the block 

group-level measure of minority status was the only community-level characteristic that 

indicated a positive relationship with cardiorespiratory-cause death and extreme heat.  
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Table 4.4.  Case-crossover model results of the association between extreme heat and cardiorespiratory-cause deaths in 
Detroit, MI May – September, 2000 – 2009, as modified by community-level characteristics used to construct HVIs 6 and 
3N. 
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Table 4.5 Relative odds (95% CI) of cardiorespiratory death occurring on an extreme 
heat day per one unit increase in HVI  6 and 3N values, among people living in census 
tracts (n = 308), including individual-level characteristic, Detroit MI, May-September 
2000 – 2009. 

 
 
The sensitivity analysis provided additional insight to the performance of the HVI 

pertaining to cardiorespiratory-cause death. We did not observe an association between 

tract-level HVI values treated as continuous variables and the odds of death on an 

extreme heat day (Table 4.5). Individual-level age and race characteristics were not 

statistically significant effect modifiers of the probability of cardiorespiratory death 

occurring on an extreme heat day and the tract-level values for HVIs 6 and 3N (Table 

4.7). These results cannot be compared to the block group-level HVI analyses, as we did 

not assess the relationship between cardiorespiratory-cause death, HVI values and 

whether age or race modified the effect of that association.  

 

We did observe significant negative correlations between the tract-level HVI values (also 

treated continuously) and the proportion of all summertime cardiorespiratory deaths 

occurring on extreme heat days in a census tract (Table 4.6). The correlations suggested 

that an increase in the HVI value was associated with a decrease in the proportion of 

cardiorespiratory deaths that occurred on extreme heat days. 

 
Table 4.6. Spearman correlations (p-value) of tract-level heat vulnerability indices (n = 
308) and the proportion of summertime cardiorespiratory deaths that occurred on an 
extreme heat day*, Detroit, MI, May-September 2000 – 2009.  
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4.7. Discussion 
 
Evaluating the indices 

The aim of this analysis was to evaluate previously constructed heat vulnerability indices 

using fine-scale mortality data for the 2000 – 2009 Detroit, MI population. We used 

three different analytic methods to evaluate the hypothesis that HVIs would reliably 

predict the risk of heat-related cardiorespiratory mortality among the Detroit 

population at the census block group and tract levels. The results of the time stratified 

case crossover analysis indicate that neither HVI 6 nor 3N are able to reliably predict the 

risk of heat-related cardiorespiratory mortality among the Detroit population at the 

block group level. These results are contrary to our hypotheses that the indices would be 

able to moderately detect fine-scale heat-related risk. In treating the block group level 

HVIs as quartiles and as indicators for the highest HVI values, we did not observe an 

association between heat-related cardiorespiratory death and the block groups assigned 

the most vulnerable HVI values. The block group level HVIs were consistently unable to 

precisely identify block groups where heat-related cardiorespiratory deaths occurred. 

The block group level measures of community characteristics shown in previous 

research to be associated with extreme heat [1, 17] were not predictive of 

cardiorespiratory mortality at the block group. When we considered the heat 

vulnerability index values at the census tract level and assessed their relationship with 

the relative risk of cardiorespiratory death on extreme heat days, we did not observe any 

association. The association, however, between the proportion of cardiorespiratory 

deaths that occurred on extreme heat days and tract-level HVI values was statistically 

significant, but in the opposite direction of our hypothesis.  

 

The counterintuitive results of the analyses presented here require thorough 

interpretation of the presented effect estimates and the suggested associations. For 

instance, in estimating whether the top 75% of block group index values from HVI 3N 

are associated with higher odds of cardiorespiratory death among decedents in those 

block groups, the parameter estimate of -0.11 indicates a protective effect of block 

groups that are assigned higher HVI values. The interpretation that the higher index 

values are protective of extreme heat compared to the lower index values may not 
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consider the role of the variables comprising the index. It could be the case that the -0.11 

parameter estimate explains that the first factor (e.g., explaining the most variance in 

the dataset) which was comprised of individuals who were over the age of 65, living 

alone, and people over the age of 65 living alone contributes most to the negative 

association between index value and cardiorespiratory mortality. Further, one may 

conjecture that a census block group that was assigned a high vulnerability value, from 

HVI 3N, contained a high proportion of people who could be characterized as being over 

the age of 65, living alone, and over the age of 65 and living alone. Thus, one explanation 

for the negative association could be that these individuals may experience a protective 

due to some unexplained characteristic. The census data that was used to create the 

indices may include individuals living in senior centers to be older and living alone. 

During an extreme heat event, these individuals would likely be protected as result of 

the social network provided by the center. Contrarily, if you were to then take a person 

of the same characteristics and consider them living in a block group where a high 

proportion of residents are young families, that older individual may be more likely to 

die as a result of extreme heat if the protective effect of the like population is lost, which 

would be supported by the associations observed here. This explanation, of course, is 

speculative and requires a refined analysis of the distribution of the demographics and 

social networking to evaluate its credence. 

 

Few studies have evaluated the use of the HVI in predicting heat-related morbidity and 

mortality. One study concluded that the HVI was unable to reliably distinguish between 

days of extreme heat and days of non-extreme heat and the association between general 

indicators of ZIP-code level morbidity and mortality [11]. Harlan et al [10] used binary 

logistic regression to estimate the odds of at least one heat-associated death (geocoded) 

and an HVI, similar to those presented here, to evaluate the predictive power of the 

index in Phoenix, AZ and concluded that the index including surface temperature 

measurements was associated with heat-associated death. The ability of HVIs to 

discriminate between high temperatures is especially relevant for climate adaptation 

plans that discriminately focus resources to the most vulnerable areas.  
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Studies on the temperature profiles of urban areas strongly support the need for 

considering spatial variability in assigning exposure at the individual level [18]. In this 

analysis, two temperature stations were used to characterize the heat exposure as being 

above a month-specific 95th percentile of AT01. It is common that area-level 

measurements of temperature are used to investigate the association between extreme 

heat and mortality. This study was limited as it used temperature and dew point 

measurements from two area monitors, which may have introduced exposure 

misclassification in this analysis. 

 

An important caveat that has yet to be discussed in detail is that the commonly-used 

method to construct an HVI assumes equal contribution of the variables of which it is 

comprised. The extensive heat-health literature does not support this assumption; the 

impacts of extreme heat can differ depending on population of interest, the regional 

location of the population, access to protective services and utilities (e.g., cooling 

centers, having central air conditioning). There is some evidence that suggests that 

individual-level and area-level characteristics commonly used in heat-health analyses 

may confound each other [19, 20], suggesting that future analyses should consider the 

contribution of both individual level and community level characteristics beyond simply 

including them in the creation of an HVI.  

 

As demonstrated here, the interpretability of the HVI is limited to explicit knowledge of 

the population whose vulnerability is being characterized.  Despite the incorporation of 

fine-scale data, which can be considered to provide more accurate representations of the 

population of interest, this analysis suggests that additional information is necessary to 

critically evaluate the spatial distribution of heat-related risks. In Chapter 3, we saw that 

varying distribution of vulnerability index values, where, in some cases a census block 

group assigned to the highest interval of index values is adjacent to block groups 

assigned to the lowest interval of index values.  

 

Extensive epidemiological research suggests that, depending on a myriad of 

characteristics, there are varying associations between heat and health, with particular 

differences in regards to location. These varying associations may explain why the HVIs 
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presented here are unable to capture a spatial distribution of vulnerability that is 

representative of the heat-health relationship in Detroit, MI. In the analyses presented 

here, we saw that the community-level characteristics that comprised the HVIs, were 

not significantly associated with the risk of cardiorespiratory death when exposed to 

extreme heat. While the variables that comprised the HVIs presented here may be 

appropriate and predictive in other cities, we were not able to establish a significant 

association. One possibility for this is that the limited variation of these characteristics 

across the general population of the City of Detroit may confer an inability to distinguish 

the individuals who are even more vulnerable. Further, this analysis did not include all 

heat vulnerability-related variables, such as median income [7, 21], which may serve as 

the main explanatory characteristic for heat-related cardiorespiratory mortality in 

Detroit, MI.  Lastly there is the explicit limitation in how to appropriately interpret a 

one-unity increase of heat-related vulnerability, as depicted in an HVI. Future research 

should consider the relative predictive power of individual area-level characteristics 

compared to HVI calculations in estimating adverse health responses. The HVI method 

used here, and in other HVI applications, assumes that characteristics that make a 

person vulnerable in one location are the same in all locations. The results presented 

here may be due to incorrect assumptions of the population characteristics of heat-

related vulnerability for the Detroit, MI population.  

 

Although this analysis does not provide substantial support for the use of HVIs as a 

proxy for heat-related mortality, the value of the index is not entirely lost as it can act as 

springboard to conducting place-based assessments. The development and use of 

environmental health indicators that are related to climate change is considered an 

imperative step in evaluating the relative impacts of climate change on human health. 

English, et al [22] calls for the specific development of fine-scale indicators of the 

impacts of climate change on environmental health. In many disciplines, the HVI may 

be considered a comprehensive indicator of heat-related vulnerability across a spatial 

extent. Although the HVI can provide a visual display of possible vulnerable areas in a 

city, there is no conclusive evidence that an HVI can reliably identify very specific 

locations where residents are likely to succumb to extreme heat.  
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4.8. Conclusions 
 
The analysis presented here suggests that heat vulnerability indices are not a powerful 

enough tool that can be used to identify block group level heat-related mortality in the 

Detroit MI population. Statistical associations indicating protective effects of high 

census block group-specific HVI values were not statistically significant yet were 

consistently indicating opposite effects of index values on cardiorespiratory mortality. 

Due to the increased interest in the application of HVIs as tool to inform climate change 

adaptation, it is imperative that further evaluations of the HVI and heat-related health 

outcomes are conducted, which consider the relative contribution from the factors that 

comprise the index, as well varying study locations to account for regional adaptations 

that are not captured in the HVI, and study design to determine whether results are 

robust and reliable. 
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Chapter 5. 

 
 

Conclusion 
 
 

5.1. Overview 

The overall goal of this dissertation was to implement novel approaches for identifying, 

characterizing and evaluating estimates and proxies of fine-scale heat-related 

vulnerability. Within that framework, this dissertation also aimed to incorporate 

knowledge of the complex and dynamic relationship between human health and the 

surrounding environment with a specific goal of providing research products that can be 

used to eventually inform programs and policies to protect vulnerable populations. The 

results of this dissertation provide insight into two methodologies for identifying and 

displaying population-specific heat-related vulnerability at the fine scale. Although the 

importance of considering vulnerability at fine scales seems evident, few studies have 

demonstrated methods in which fine scale estimates or measures for heat-related risks 

are presented.  

 
5.2. Chapter 1: Downscaling epidemiologic effect estimates for heat-

related mortality 
 
The majority of epidemiologic research pertaining to the relationship between extreme 

heat and mortality calculates the risk of an adverse health outcome that reflect 

populations across large geographic extents, such as the county level. While those 

estimates can be useful in characterizing the general form of the relationship between 

heat and health, they are less informative of the spatial distribution of heat-related 

vulnerability within geographic zone in which interventions could be effectively targeted 

and implemented.  
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The concept of downscaling is regularly used in climatological sciences, as one can 

extract from large-scale global climate models projections on how the climate will 

change, and, using supplemental information that characterizes the finer geographic 

area, downscale the projections. In borrowing from the climatology field, the first 

chapter of this dissertation presents a method for downscaling epidemiologic effect 

estimates to the census tract scale. To the best of my knowledge, this is the only 

documented exercise in which fine-scale epidemiologic estimates are generated based 

on population-level demographic characteristics. 

 
The results of this aim indicate that population characteristics that are known to be 

associated with increased risks of heat-related mortality can be used to downscale the 

effect estimates derived at the county level, thus distinguishing the visual patterns of 

lower versus higher heat-related mortality risk within and across study cities. The 

patterns, while not confirmed with spatial statistics, do suggest that within our 20 study 

cities the association between heat and mortality is variable, with some cities showing 

consistent patterns of vulnerability, where other cities have what appear to be random 

patterns of vulnerability. Maps showing the fine-scale estimates could serve as useful 

communication tools for public health officials working on climate and health-related 

projects.  

 
5.3. Chapter 3: Fine-scale heat vulnerability mapping 
 
Increased interest in the creation of heat vulnerability maps reflects the growing need 

for advancing methods that identify heat and health relationships at scales relevant for 

local intervention. Previously calculated indices were executed at the census tract level 

and included non-specific place-based measures of green space and population health 

status. In all of the other extant publication on heat-related vulnerability indices, only 

one computed index was presented. This implicitly suggests that the index presented is 

correct, or stable.   

  
The second dissertation chapter considers the possibility that differing measures of like 

variables (e.g., non green space measured by aerial photograph-derived land cover 

classifications and percent impervious surface) , and differing combinations of variables 
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known to be related to heat vulnerability, will yield different statistical and spatial 

results in the creation of a heat vulnerability index. The 21 indices computed in this 

chapter utilized population health data that reflects the general health of elderly 

individuals as well as fine-scale estimates for green space that were not included in 

previous heat vulnerability mapping exercises. We hypothesized that some indices 

would identify different block groups as highly vulnerable, but that certain block groups 

would be consistently allotted a high vulnerability index value. We also hypothesized 

that there would be consistent spatial patterns across the 21 indices, despite the 

differing combinations of variables used in the index creation.  

 

We observed both different statistical factor loadings and spatial patterns across the 21 

indices, and four could be considered different based on their Spearman correlations 

and the display of spatial patterns. In creating the numerous HVIs using marginally 

different variables, we conclude that HVIs at the census block group level are sensitive 

to the data from which they are being created. Moreover, no one index could be 

considered clearly ‘better’ than another. The unstable performance of the indices 

suggests that users must be cautious in the use of HVIs. Yet, there does appear to be 

value in identifying the block groups most frequently assigned a high HVI value, as these 

block groups were identified as stable when comparing indices across their ‘non green 

space’ variables. Although the indices are visually appealing and serve as 

communication conduits for audiences not familiar with the complexities of heat-relate 

vulnerability, they must be interpreted and used with caution.  

 
5.4. Chapter 4: Evaluating fine-scale estimates of heat-related 

vulnerability  

The development of heat vulnerability indices presented in Chapter 3 reflect similar 

indices that have been calculated for other major urban areas in the US. Evaluation of 

the indices’ performance in predicting differential relationships between extreme heat 

and a deleterious health outcome, such as death, is presented in Chapter 3.  

 
Considering that little to no documentation of the use or application of a heat 

vulnerability index outside of general research exists, identifying whether the index is 
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able to convincingly attribute higher vulnerability index values to block groups where 

more people die during extreme heat events is critical to establishing the added value 

that constructing an index can provide. Contrary to our modest hypothesis that higher 

index values would be associated with higher risk of heat-related death in our Detroit, 

MI population, we observed no statistically significant associations between HVI 

measures and heat-related death. When investigating the how different levels of the HVI 

could be partitioned (e.g., above the median, at the 95th percentile), point estimates of 

the associations, though statistically non-significant, were in the opposite direction as 

expected, suggesting that higher values conferred protective effects of heat. While 

identifying spatial characteristics of heat-related vulnerability can be useful in 

displaying basic relationships mapped indices may not be useful for giving insights into 

probable high-risk areas for heat-related health problems when conducted at a fine 

scale.  

 
5.5. Public health implications and future research needs 

From a public health perspective, it is imperative to identify vulnerable populations and 

target interventions that can reduce an at-risk population’s risk of morbidity or 

mortality to a particular exposure. The research presented here indicates that targeted 

interventions to reduce vulnerability may be difficult to develop solely based on 

information provided from a city-specific heat vulnerability index.  

 
A working hypothesis posits that increased population density within an urban setting 

may contribute to increased risk of heat-related morbidity and mortality [1], although 

results are not consistent across all urban areas [2]. In considering the likelihood that 

the spatial distribution of population density is not uniform, as is assumed with the 

current HVI, one possible approach to better identify the spatial patterns of heat 

vulnerability is to use dasymetric data, which can account for variations in the 

distribution of population density and, thus, possibly provide a better characterization 

of the population characteristics associated with increased risk to heat exposure. It is 

currently estimated that nearly 80% of the US population lives in urban areas. This 

number is expected to increase with burgeoning population growth. Adequate response 
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to the growing population of potentially heat vulnerable individuals must consider these 

projections and further elucidate factors that can reduce risk. 

 
The pressing need to continually update and refine methodologies to identify 

populations most vulnerable to heat requires critical evaluation of methods and data 

used to estimate the heat-health association, especially within known vulnerable 

subpopulations. Climate change adaptation programs and policies rely heavily on 

integrated assessments, many of which hinge on public health research such as that 

which is presented in this dissertation. It will be imperative that future research of the 

heat-health relationship focuses on precise methodologies that can accommodate the 

complex individual- and community-level characteristics that contribute to heat 

vulnerability.
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Appendix A. 
 
A2.1 – A2.20. City-specific, census tract-level maps of 
subpopulation-weighted odds ratios of the association 
between cardiorespiratory mortality and extreme heat  
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Figure. A2.1.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Austin, TX 
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Figure. A2.2.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Baltimore, MD 
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Figure A2.3.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Boston, MA 
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Figure. A2.4.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Chicago, IL  
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Figure. A2.5.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Columbus, OH 
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Figure. A2.6.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Dallas, TX 
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Figure. A2.7.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Detroit, MI 
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Figure. A2.8.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Houston, TX 
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Figure. A2.9.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Indianapolis, IN 
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Figure. A2.10.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Jacksonville, FL 
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Figure. A2.11.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Los Angeles, CA 
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Figure. A2.12.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Memphis, TN 
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Figure. A2.13. Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Milwaukee, WI 
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Figure. A2.14.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across New York City, NY 
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Figure. A2.15.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across Southern New York City, 
NY 
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Figure. A2.16.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Philadelphia, PA 
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Figure. A2.17.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across Phoenix, AZ 
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Figure. A2.18.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across San Antonio, TX 
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Figure. A2.19.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across San Diego, CA 



136 
 

Figure. A2.20.  Subpopulation weighted odds ratios of the association between extreme 
heat and cardiorespiratory-cause death in census tracts across San Francisco, CA 
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Figure. A2.21.  Subpopulation weighted odds ratios of the association between extreme heat and cardiorespiratory-cause 
death in census tracts across San Jose, CA 
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Appendix B. 
 

Mapped heat vulnerability indices for all 
combinations described in matrix of Table 3.2, for 
Detroit, MI USA. 
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