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ABSTRACT 

 

Assessing the Causes and Severity of Gulf of Mexico Hypoxia Using Geostatistical 
and Mechanistic Modeling 

 
By 

 
Daniel R. Obenour 

 
 

Co-Chairs: Anna M. Michalak and Donald Scavia 
 

 

Hypoxia, typically defined by dissolved oxygen levels below 2 mg L-1, is an 

environmental problem common to many coastal systems.  One particularly severe 

example of hypoxia is the large ‘dead zone’ that forms nearly every summer on the 

Louisiana-Texas shelf of the northern Gulf of Mexico.  While there is considerable 

agreement about the primary causes of hypoxia, there remains substantial uncertainty 

regarding its spatial and temporal variability, such that it is difficult to predict how hypoxia 

will respond to management actions and other environmental changes.  This research 

focuses on improving our understanding of Gulf hypoxia through three types of 

quantitative modeling.  First, a geostatistical regression is developed to empirically model 

how water column stratification (a primary driver of hypoxia) affects bottom water 

dissolved oxygen (BWDO) concentrations, and to also infer the importance of other 

primary drivers, such as nutrient loading.  Second, a geostatistical spatial estimation model 

is developed to simulate BWDO and hypoxic layer thickness across the Gulf shelf, 

providing estimates of hypoxic zone area and volume for a 27-year study period.  Third, a 

mechanistic model, driven by nutrient loading, flow, and weather conditions is developed 

to predict hypoxic severity, as determined from the geostatistical model.  As with all 
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environmental models, the models developed in this dissertation are approximations of 

reality, tuned to limited observational and experimental information, such that they contain 

significant uncertainty.  Because of this, all models are developed within statistical 

frameworks that quantify uncertainty and allow results to be presented as ranges of likely 

values.  Overall, this works suggests there has been considerable variability in the mid-

summer hypoxic extent over the last few decades, and this variability is explained, in large 

part, by both nutrient loading and oceanographic conditions (i.e., stratification).  Relatively 

parsimonious models that account for these two main drivers explain at least 70% of the 

year-to-year variability in hypoxic area and mean BWDO.  Also, this work indicates that 

over the past few decades, the Gulf has not become increasingly susceptible to hypoxia 

formation (independent of the biophysical drivers considered), at least in terms of hypoxic 

area and mean BWDO. 
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CHAPTER 1:  Introduction 

 

Coastal and estuarine ecosystems provide numerous benefits to society, often serving 

simultaneously as commercial fisheries, wildlife habitats, and public recreation areas.  

However, it is widely understood that these beneficial uses can be degraded as a result of 

human activities (Lotze et al. 2006).  An increasingly common cause of degradation is 

eutrophication, which is defined as an increase in the supply of organic matter to an 

ecosystem (Nixon 1995).  These increases in organic matter supply are often the result of 

over-fertilization due to anthropogenic nutrient inputs, leading to the excessive production 

of phytoplankton and higher trophic-level organisms.  In addition to causing poor water 

clarity and harmful algal blooms, a common consequence of severe eutrophication is the 

development of zones of low dissolved oxygen (hypoxic zones) where ecosystems and 

fisheries can be severely damaged (Diaz and Rosenberg 1995, Rabalais et al. 2010).  

Because of their deleterious effect on aquatic life, these hypoxic zones are often referred to 

as ‘dead zones’ (Rabalais and Turner 2001, Rabalais et al. 2002c).   

Over the last 28 years, a large hypoxic zone has been documented nearly every 

summer on the Louisiana-Texas Shelf of the northern Gulf of Mexico (Rabalais et al. 

2002c, Rabalais et al. 2007).  It is the largest human-caused coastal hypoxic zone in the 

western hemisphere and the second largest worldwide, after the Baltic Sea (Rabalais et al. 

2010).  This hypoxic zone is caused, at least in part, by nutrient pollution, primarily related 

to agriculture within the Mississippi River basin (EPA 2007, Goolsby et al. 2001, Rabalais 

et al. 2007).  Upon reaching the Louisiana-Texas shelf, these nutrients promote excessive 

phytoplankton production and a resulting accumulation of organic material within the 

system.  Hypoxia occurs when the rate of oxygen depletion caused by bacterial 

decomposition of this organic material exceeds the rate of reaeration from above (Rabalais 

et al. 2002c).  While Gulf surface waters are not generally susceptible to hypoxia because 

they are well aerated from the atmosphere, bottom waters are more susceptible due to 
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density stratification of the water column, which inhibits vertical mixing (Wiseman et al. 

1997).  Density stratification is caused by temperature and salinity differences related to 

river (freshwater) discharges and summer surface heating.   

Gulf hypoxia has received considerable attention from scientists and the public 

because of concerns regarding its ecological and potential economic consequences (Justic 

et al. 2007, Rabalais and Turner 2001, Rabalais et al. 2002b).   In response to these 

concerns, a task force of stakeholders and governmental agencies has developed plans to 

reduce its average size (EPA 2001, 2008).  A primary task force goal is to reduce the 

hypoxic zone’s mid-summer areal extent to 5000 km2 (or less) as a five-year running 

average.  This is considerably less than the current size of the hypoxic zone, which has 

averaged well over 10,000 km2 for the last two decades (LUMCON 2012, Rabalais et al. 

2007). 

Despite substantial advances in hypoxia research over the last few decades, 

considerable uncertainties remain, confounding management of this environmental 

problem.  For example, scientific debate still exists over the degree to which river-basin 

nutrient inputs reductions will result in less severe hypoxia (Bianchi et al. 2010, Boesch et 

al. 2009).  This is partially because hypoxic variability is also controlled by oceanographic 

conditions (primarily stratification), and disentangling the roles of nutrients and 

stratification is not straightforward, as both of these factors share the same primary driver - 

discharge from the Mississippi River basin.  As a result, there is a need for hypoxia models 

that can realistically represent both physical and biological processes (EPA 2007, Hetland 

and DiMarco 2008).  Resolving ambiguities surrounding the principal drivers of hypoxia 

could result in more informed management decisions.  And, if the models confirm that 

nutrient loading is the primary driver of hypoxia, this could help motivate nutrient loading 

reductions within the Mississippi River basin. 

There is also uncertainty surrounding the potential economic consequences of Gulf 

hypoxia (Rabalais et al. 2010).  Understanding linkages between fisheries and hypoxia is 

complicated, in part, by the limited availability of large-scale metrics of hypoxic severity.  

Traditionally, Gulf hypoxia has been measured in terms of its areal extent, but other 

measures, such as the thickness and volume of the hypoxic zone, may also be relevant.  
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Furthermore, hypoxic extent measurements from different cruises may not be directly 

comparable, if differences in sampling equipment and spatial coverage are not addressed.  

Without reliable and comprehensive hypoxic extent estimates, the linkages between 

hypoxia and its causes and consequences are surely obscured, ultimately complicating 

management of this environmental problem. 

Given these current limitations in our understanding of hypoxia in the Gulf of Mexico, 

the overall research objectives of this dissertation (1) to estimate the extent and severity of 

Gulf hypoxia (2) to improve our understanding of how anthropogenic and natural factors 

influence the temporal variability of hypoxia, and (3) to probabilistically predict the 

severity of hypoxia under different scenarios based on these factors.  I undertake these 

objectives through quantitative modeling, where geostatistical modeling is used to estimate 

hypoxic extent from dissolved oxygen sampling data, and empirical and mechanistic 

modeling are used to relate these extent estimates to biological and physical inputs 

(predictor variables).  All of the models developed here are stochastic in the sense that 

model parameters and predictions are represented probabilistically.  Stochastic modeling 

allows us to quantify the uncertainty in our predictions and present the ‘prediction’ as a 

range of likely outcomes, allowing for more informed policy and management decisions 

(Reckhow 2003, Reckhow 1994, Refsgaard et al. 2007, Smith and Heath 2001).  Ignoring 

stochasticity may cause stakeholders to view modeling results with either “naïve 

confidence or unwarranted disbelief” (Scavia et al. 1981). 

This dissertation is divided into seven chapters.  Chapter 2 presents a literature review 

for Gulf hypoxia, discussing biophysical processes relevant to hypoxia formation, and 

models that have been developed to represent those processes.  Chapter 3 provides 

background information on the quantitative modeling methods used in this dissertation.  

The remaining chapters focus on the dissertation research, as described below. 

Chapter 4 presents a geostatistical regression developed to help disentangle the roles of 

stratification and nutrient loading in determining hypoxic severity.  This is the first study to 

quantitatively model individual BWDO measurements using the intensity of stratification, 

as determined from measured salinity and temperature profile data.  Thus, the influence of 

stratification is determined directly, by how it explains the spatial variability in BWDO, 
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rather than by comparing the temporal variability in BWDO to river discharge (a surrogate 

for stratification intensity, but one that is highly correlated with nutrient loading).  As such, 

it provides a unique approach for understanding the degree to which stratification affects 

the severity of hypoxia, both spatially and temporally.  The remaining temporal variability 

(not accounted for by stratification), is then be compared to other factors, such as seasonal 

nutrient loading. 

Chapter 5 presents a geostatistical model for estimating hypoxic extent (both area and 

volume) using dissolved oxygen data from 27 years of mid-summer monitoring cruises.  

Extent estimates are determined probabilistically using a simulation (i.e., ‘conditional 

realization’) approach.  In the case of hypoxic volume, a two-step simulation process is 

required, where BWDO is first simulated, and then hypoxic fraction (hypoxic thickness 

divided by total water column depth) is simulated over those locations where simulated 

BWDO is below the hypoxic threshold (2 mg L-1).  This is the first time such an approach 

has been used to estimate the volumetric extent of an environmental impairment; and it 

allows for the first rigorous estimates of Gulf hypoxic volume and thickness.  In addition, 

this work addresses variations in cruise sampling equipment and spatial coverage that 

might otherwise bias the results in certain years. 

Chapter 6 presents a mechanistic model developed to probabilistically predict hypoxia 

based on relevant biophysical processes.  The model is parsimonious in terms of its 

resolution and the number of processes considered, but it is sufficiently detailed to allow 

for quantitative comparisons between modeled and field-measured biophysical rates.  In 

addition, the model formulation is informed by numerous previous Gulf studies, including 

the geostatistical regression work described in Chapter 4.  Spatially, the model is used to 

predict mean BWDO and hypoxic area (as determined by the geostatistical model, Chapter 

5) on the west and east Louisiana-Texas shelf, divided at the Atchafalaya River outfall 

location.  The shelf division allows for a richer model, as the two shelf sections sometimes 

have very different mean BWDO concentrations.  The model is used to explore how the 

two shelf sections respond to variations in nutrient loading and physical oceanographic 

conditions.  In particular, the model is used to explore how the different shelf sections will 

respond to nutrient loading reductions, and to analyze long-term trends in the Gulf’s 
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susceptibility to hypoxia formation (independent of seasonal nutrient loading).  Because of 

the model’s parsimonious formulation, it can be calibrated within a Bayesian statistical 

framework, so that model parameters and predictions can be reported probabilistically.   

Finally, Chapter 7 summarizes conclusions and future directions.  Both the 

methodological and scientific contributions of the research are highlighted.  In addition, 

logical next steps, building on this dissertation research, are presented.  This discussion 

includes a proposed methodology to further integrate the geostatistical and mechanistic 

modeling results.  
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CHAPTER 2:  Gulf Hypoxia Literature Review 

 

This section provides a review of Gulf hypoxia literature that is foundational to the 

dissertation research presented in the following chapters.  Section 2.1 covers the primary 

biological and physical processes that lead to hypoxia formation.  Section 2.2 explains how 

the intensity of hypoxia has been measured, over time, through various monitoring and 

mapping programs.  Finally, Section 2.3 focuses on the wide range of mechanistic and 

empirical models that have been developed to quantify how various anthropogenic and 

natural factors affect the severity of hypoxia, and to predict the severity of hypoxia in the 

future.  In general, these models use the biophysical factors described in Section 2.1 to 

explain the measures of hypoxic severity described in Section 2.2. 

2.1  Biological and physical controls on hypoxia formation 

A wide array of biological and physical processes is known to influence hypoxia 

formation in the northern Gulf of Mexico.  These processes are described in numerous 

meta-studies, including an Integrated Assessment report by Rabalais et al. (Rabalais et al. 

1999), an assessment update report by the EPA Science Advisory Board (EPA 2007), and 

an extensive review paper by Dagg et al. (Dagg et al. 2007) .    The following discussion is 

based largely on these sources, but is supplemented by other pertinent literature.  A cartoon 

illustrating the process of hypoxia formation is provided in Figure 2-1. 

2.1.1 Gulf eutrophication 

Dissolved oxygen depletion is ultimately linked to the accumulation of organic matter 

within a system (i.e., eutrophication) through aerobic bacterial decomposition, which 

consumes oxygen and produces carbon dioxide, as represented below, using sugar as an 

example organic matter compound (Chapra 1997):   

 

C6H12O6 + 6O2 → 6CO2 + 6H2O       eq 2-1 
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Figure 2-1:  Illustration of key processes leading to hypoxia formation (EPA) 

 

There are three plausible sources of organic matter for the Gulf shelf.  The first two 

sources are externally (allochthonously) derived, including organic matter produced 

terrestrially within the Mississippi River basin and organic matter related to coastal 

wetland loss.  The third source of organic matter is in-situ (autochthonous) production.  

While there is considerable uncertainty surrounding each of these sources, there are 

multiple lines of evidence suggesting the third source (in-situ production) is the largest and 

most influential with respect to hypoxia.  First, externally derived organic matter is more 

refractory than organic matter developed in-situ, and thus more likely to be buried rather 

than bacterially decomposed.  For example, a bacterial decomposition study of Mississippi 

River water demonstrated that only 34% of riverine dissolved organic carbon (DOC) was 

lost over a 1.7 year period (Hernes and Benner 2003).  Second, even if a portion of riverine 

organic matter is decomposed on the shelf, the magnitude this organic matter is unlikely to 

account for more than 1% of total shelf decomposition (Dagg et al. 2007).  In addition 
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DOC decomposition would likely occur in the surface layer, as dissolved materials are not 

subject to settling.  Although some studies suggest that wetland-derived organic matter 

could be a more important source (Dagg et al. 2007), the general consensus is that it is not 

a primary contributor to hypoxia because of its refractory nature, and because wetland loss 

was severe prior to the period of hypoxic intensification (i.e., the 1970s) (EPA 2007).  In 

contrast, in-situ organic matter production is controlled largely by nutrient availability, and 

nutrient loading from the Mississippi River basin has increased concomitantly with 

increasing hypoxic severity (Rabalais et al. 2002c).  Finally, the dominance of in-situ 

nutrient-driven organic matter production is consistent with studies of other coastal and 

estuarine studies (NRC 2000).   

In-situ organic matter production is directly related to phytoplankton production, as 

phytoplankton is foundational to the aquatic food web.  Phytoplankton production is 

controlled by a variety of biophysical factors, of which nutrient limitation is often most 

important (NRC 2000).  Key nutrients are represented in the following equation for 

phytoplankton (C106H263O110N16P) production (Chapra 1997): 

                 

106CO2 + 16NO3
- + HPO4

2- + 122H2O + 18H+ + light → C106H263O110N16P + 138O2 

                  …eq 2-2      

 

From this equation, the molar ratio for the three primary nutrients can be obtained as 

106:16:1 (C:N:P), which is commonly referred to as the Redfield Ratio (Redfield et al. 

1963), and the equivalent mass ratio is 40:7.2:1.  Because carbon is generally available in 

ample quantities (as carbon dioxide), nitrogen and phosphorus most commonly limit 

phytoplankton production.  In addition, silicon (Si) can be a limiting nutrient for diatoms (a 

particular, but common type of phytoplankton), and the molecular ratio of Si:N in 

phytoplankton is 15:16 (Brzezinski 1985).   

The molar N:P ratio of Mississippi River water has changed over the decades, and is 

now around 20:1 (Turner et al. 2006).  While a straightforward comparison with the 

Redfield Ratio suggests phosphorus limitation, this is not necessarily the case, because 

while phosphorus is efficiently recycled within the system, nitrogen is more susceptible to 
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loss through denitrification (Rabalais et al. 2002a).  A meta-analysis of freshwater and 

marine systems suggests that an N:P ratio of 50:1 or greater is more indicative of strict 

phosphorus limitation and that systems with ratios of 20:1 to 50:1 may be limited by either 

nutrient (Guildford and Hecky 2000).  This is generally supported by Gulf nutrient 

limitation experiments showing evidence of nitrogen, phosphorus, or silicon limitation (or 

co-limitation) at different times and locations (EPA 2007, Rabalais et al. 2002a).  

Nonetheless, numerous modeling studies have demonstrated that nitrogen is the most 

effective predictor of Gulf hypoxia (Greene et al. 2009, Obenour et al. 2012b, Scavia and 

Donnelly 2007, Turner et al. 2006), suggesting that, overall, it may be the most important 

limiting nutrient, and thus the most suitable nutrient to target for management control. 

Nutrients cycle between organic and inorganic forms at rates determined by 

environmental conditions.  In the Gulf of Mexico, there is much uncertainty surrounding 

nitrogen cycling  processes such as ammonification (decomposition), nitrification, 

denitrification, fixation, dissimilatory nitrate reduction to ammonium (DNRA), and 

anammox (Dagg et al. 2007, Lin et al. 2011) (Table 2-1).  Ammonification and 

nitrification consume dissolved oxygen directly, while recycling nitrogen to a bio-available 

form (NO3
- or NH3), potentially leading to additional organic matter production.  

Denitrification and anammox provide a biochemical pathway for nitrogen to leave the 

system as N2 gas.  While N2 gas can also be assimilated through ‘fixation’, only certain 

microorganisms (e.g., cyanobacteria) possess this capability, and it is not expected to be a 

major source of nitrogen to the system.  DNRA provides a potential alternative pathway to 

denitrification and anammox, returning NO3
-  to NH3.  It should be noted that 

denitrification and anammox (as well as DNRA) are all anaerobic processes, such that 

nitrogen removal typically only occurs under anoxic conditions, often in the sediment. 

Nutrient recycling is relevant to hypoxia in two important ways.  First, nutrient 

recycling within the surface layer allows a greater portion of nutrients (and associated 

oxygen demands) to be transported across the shelf, rather than settling near the river 

outfalls (Dagg et al. 2007).  Second, nutrient recycling may increase the net oxygen 

demand fluxed to the lower layer (Dagg et al. 2007).  However, for this to happen, 

decomposition would need to occur in the lower layer, followed by transport of 
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bioavailable nutrients back into the upper layer, allowing for additional upper layer 

production.  While vertical diffusion or upwelling could potentially accomplish this 

upward transport, there is currently little information on the degree to which such 

processes are likely to be important in the northern Gulf.  Recycling that occurs solely 

within the bottom would not result in a net increase in oxygen demand, because the 

additional respiration would be offset by additional bottom-layer photosynthetic oxygen 

production.  

 

Table 2-1:  Common water column nitrogen cycling processes with dissolved oxygen 
impacts (Dagg et al. 2007, Madigan et al. 2009) 

Process Starting N species Ending N species O2 effect 

Assimilation NO3
- or NH3 organic N + 

Fixation N2 organic N + 

Ammonification organic N NH3 -  

Nitification NH3 NO3
- - 

Denitrification NO3
- N2 none 

Anammox NO2
- + NH3 N2 none 

DNRA NO3
- NH3 none 

 

Light availability may also affect phytoplankton production, as solar energy is required 

for phytoplankton growth.  As a result, phytoplankton production is lower near the 

Mississippi River outfall where plume turbidity inhibits light penetration (Dagg et al. 

2007).  Turbidity declines rapidly with distance from the river outfall, as suspended 

sediments settle out of surface waters, allowing phytoplankton production to increase.  As 

such, light limitation should alter the location of phytoplankton production but have little 

effect on the magnitude of production.  

2.1.2 Hydrodynamic transport and stratification 

Coastal current patterns affect transport of freshwater and nutrients delivered to the 

Gulf by the Mississippi River and its distributary, the Atchafalaya River.  Throughout 

much of the year, the dominant flow pattern is westward, and the strongest westward 
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currents typically occur in the spring, along the inner shelf, due to prevailing easterly 

winds and the buoyancy flux of the river discharge (Walker et al. 2005, Zavala-Hidalgo et 

al. 2003, Zhang et al. 2012). Based on previous analyses, this spring coastal current 

transports over 110,000 m3 s-1 of river and shelf water westward on average (Zavala-

Hidalgo et al. 2003); and at times the transport can exceed 140,000 m3 s-1 (Walker et al. 

2005).  Because the average river discharge is only about 30,000 m3 s-1, the majority of this 

transport is ocean water.  During spring months, typical surface velocities are over 0.2 m s-

1 westward, suggesting that Mississippi River discharge can be transported 450 km to the 

Texas border in about 20 days (Zavala-Hidalgo et al. 2003).  However, a clockwise gyre 

often forms directly west of the delta, which can increase travel time (Walker et al. 2005, 

Zhang et al. 2012).  Westward transport is often interrupted in summer by a reversal in 

wind patterns, causing currents on the shelf to stall or to become eastward (Walker et al. 

2005, Zavala-Hidalgo et al. 2003, Zhang et al. 2012).   

Wind driven current patterns also affect the fraction of river discharge (and nutrients) 

delivered to the shelf.  During periods of easterly winds, it is reported that over 75% of the 

Mississippi River discharge is transported westward over the shelf (Walker et al. 2005).  

Conversely, little Mississippi River discharge enters the shelf when wind conditions 

reverse, and stable isotope studies suggest Atchafalaya River discharge constitutes the 

majority of freshwater on the shelf by mid-summer (Strauss et al. 2012).   

Water column stratification occurs due to vertical differences in temperature and 

salinity that affect the density profile of the water column.  Surface waters are relatively 

fresh and warm due to river discharge and thermal heating, while bottom waters are 

relatively cool and salty, as they are more typical of ocean water.  Typically, the water 

column is effectively divided into two density layers at a location of maximum density 

gradient known as the pycnocline.  However, there are occasionally two pycnoclines that 

divide the water column into three distinct layers (Wiseman et al. 1997).  Water column 

stratification is important because it inhibits mixing, so that while surface layers remain 

aerated from the atmosphere, bottom layers are more likely to become oxygen depleted.  

Studies suggest that intense wind mixing (e.g., due to tropical storms) can quickly break 
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down stratification and reaerate bottom waters, though the water column will quickly re-

stratify in the summer (Walker et al. 2005, Wiseman et al. 1997).     

2.1.3  Seasonal timing of hypoxia 

The hypoxic zone is generally most expansive in summer due to the seasonal cycles of 

phytoplankton production and water column stratification, which are the two primary 

factors leading to DO depletion (EPA 2007, Obenour et al. 2012b, Wiseman et al. 1997).  

Both factors are related to the outflow from the Mississippi River basin, which typically 

peaks in March-May.  Nutrient loads, coupled with ample sunlight, stimulate 

phytoplankton production in offshore waters, and much of the resulting organic matter 

eventually settles along the Louisiana-Texas shelf, where it is available for bacterial 

decomposition.  At the same time, freshwater outflows from the Basin and surface heating 

promote strong water column stratification.  Hypoxic conditions typically persist (with 

brief interruptions due to storm fronts) until fall, when cooler weather and stronger winds 

break down the stratification of the water column. 

2.2  Documenting hypoxia in the Northern Gulf of Mexico 

2.2.1 Hypoxic severity prior to 1985 

Regular, comprehensive monitoring of the Louisiana-Texas shelf did not begin until 

the mid-1980s.  Our knowledge of hypoxia prior to this time is largely based on sediment 

core studies that have been summarized in review papers and synthesis reports (EPA 2007, 

Rabalais et al. 2002b, Rabalais et al. 2007).  These studies focus on the prevalence of 

bacterial and algal pigments (which are more prevalent and better preserved in sediment 

corresponding to periods of increased production and hypoxia) and the relative abundance 

of hypoxia-sensitive versus insensitive benthic foraminifera species.  Overall, the sediment 

cores indicate that dissolved oxygen levels may have been in decline since around 1900, 

with the greatest declines occurring after 1950.  The timing of these declines correspond 

well with the suspected anthropogenic drivers of hypoxia, including Mississippi River 

basin land drainage, beginning around 1900, and synthetic fertilizer use, beginning around 

1950 (Rabalais et al. 2002b).    
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2.2.2 Monitoring Campaigns 

Much of the hypoxia monitoring on the Louisiana-Texas shelf has been performed by 

the Louisiana Universities Marine Consortium (LUMCON), beginning around 1985.  This 

monitoring includes intensive mid-summer ‘shelfwide’ cruise to document hypoxic 

conditions on the shelf, and to collect other water quality measurements related to hypoxia 

(LUMCON 2012, Rabalais et al. 2007).  From these cruises, the hypoxic zone extent has 

been operationally defined as the area where bottom-waters have dissolved oxygen 

concentrations of less than 2 mg/L.  Figure 2-2 shows locations commonly sampled during 

the shelf-wide cruises.  Additional stations are often sampled further west depending upon 

the spatial disposition of the hypoxic zone and available ship time.  As shown, sampling is 

typically performed along north-south transects, which are identified alphabetically (AA-

K). In general, samples are collected at 5-15 kilometer intervals along these north-south 

transects.  The transect spacing in the east-to-west direction ranges from about 20-40 

kilometers. 

 

 
Figure 2-2:  Common sampling locations for LUMCON summer shelf-wide cruises 

 

Other types of hypoxia monitoring performed by LUMCON include ‘transect 

sampling’ and ‘moored sampling’ (LUMCON 2012).  These types of monitoring have less 

spatial coverage, but are performed with greater frequency.  The transect sampling 

typically occurs monthly or bi-monthly at roughly 16 stations (transects C and F) and has 

been conducted fairly regularly since 1990.  There are also two moored sampling stations 
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(near the middles of the B and C transects) that provide virtually continuous measurements 

of water quality and current information.  Moored sampling has been conducted since 

1989, but sometimes at only one station.  Also, the moored sampling equipment is 

occasionally fowled or taken down for maintenance, so some periods of time are missing 

from the record. 

In addition to the LUMCON cruises, additional surveys are performed annually by the 

Southeast Area Monitoring and Assessment Program (SEAMAP) and Texas A&M 

University (TAMU).  The SEAMAP cruises, conducted since 2001, are part of a Hypoxia 

Watch program developed by NOAA and other federal agencies (LUMCON 2012).  These 

cruises cover an extensive area along the Gulf coast, ranging from east of the Mississippi 

River delta to the US/Mexico border.  Because of their large extent, they take around one 

month to complete, generally from mid-June to mid-July.  Compared to the LUMCON 

shelf-wide surveys, the SEAMAP sampling is coarser and is limited to depths of greater 

than 10 meters.  TAMU began extensive monitoring of hypoxia in 2004 (TAMU 2011).  

Like the SEAMAP cruises, the TAMU cruises generally cover a large area but at coarser 

spatial resolution than the LUMCON shelf-wide cruises.  The university also maintains a 

moored sampling station (since 2009) located near the G transect at about the 15-meter 

isobath.   

All institutions use Conductivity, Temperature, Depth (CTD, a.k.a. ‘rosette’) sampling 

instruments to measure water quality parameters at each sampling location.  Despite the 

name, CTDs almost always includes a dissolved oxygen probe.  The CTD is typically 

lowered up and down throughout the water column at each station in order to provide a 

vertical profile of water quality measurements.  However, due to concerns about damaging 

the instrument, the CTD is generally stopped about one meter above the seafloor.  Because 

of this limitation, LUMCON also uses a smaller, more durable ‘handheld’ DO probe, 

which is lowered until it reaches the very bottom of the water column.  The dissolved 

oxygen sensors on both of these devices are regularly calibrated using Winkler titrations, 

e.g. Rabalais et al. (Rabalais et al. 1996).   
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2.2.3 Mapping hypoxia 

The intensity of Gulf hypoxia has been traditionally assessed in terms of its areal 

extent.  From the inception of shelfwide cruise monitoring (1985) to present, hypoxic area 

has ranged from negligible in 1988 to 22,000 km2 in 2002 (Rabalais et al. 2007).  The 

reported hypoxic area values are determined by interpolating and hand-contouring between 

bottom-water dissolved oxygen (BWDO) concentrations measured at cruise sampling 

locations.  In addition, published maps are often developed by kriging using the Surfer® 

geographical software package. (Rabalais et al. 1999, Rabalais et al. 2007).  Kriging is a 

form of optimal interpolation described in greater detail in Chapter 3.  Figure 2-3 shows 

the kriged hypoxic area for July 2002, which is reported to be the largest hypoxic area on 

record (LUMCON 2012). 

Hypoxia Watch (SEAMAP) and Texas A&M use similar methods for mapping 

dissolved oxygen concentrations from their cruise data.  Hypoxia Watch performs 

interpolation though kriging using the ArcGIS® geographical software package (NOAA 

2011a).  Texas A&M performs interpolation using ‘objective analysis’ (also referred to as 

‘Gauss-Markov smoothing’) which is generally equivalent to kriging (Cressie 1990, 

DiMarco 2011, Emery and Thomson 2001).  However, unlike LUMCON, Hypoxia Watch 

and Texas A&M have yet to publish hypoxic area estimates.  

 

 
Figure 2-3:  Areal extent of hypoxia determined by LUMCON for July 2002 (LUMCON 
2012) 
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2.3  Modeling hypoxia in the Northern Gulf of Mexico 

This section discusses different models that have been developed to study hypoxia in 

the northern Gulf.  The models are divided into two primary categories: mechanistic 

models (Section 2.3.1) and empirical models (Section 2.3.2).  While this distinction is 

somewhat subjective, the classification is based primarily on how the models are shown to 

be valid.  The validity of mechanistic models is derived primarily from the adequate 

representation of biophysical processes, while the validity of empirical models is derived 

primarily from the ability to be fit to observed data.  Of course, there is some overlap, as 

mechanistic models should still be capable of representing observed data and empirical 

models should be informed by known biophysical processes.  Finally, Section 2.3.3 

provides a comparison of simple versus complex models, in terms of their scientific and 

management utility.   

2.3.1 Mechanistic models 

Over the last two decades, a wide array of water quality models has been developed to 

simulate dissolved oxygen levels in the northern Gulf (see Table 2-2 for a comparison of 

mechanistic hypoxia models).  In a review paper, Scavia et al. (2004) describe three of the 

earlier mechanistic Gulf hypoxia models.  The simplest of these is a steady-state one-

dimensional model, hereafter referred to as the “Scavia model,” that simulates sub-

pycnocline dissolved oxygen concentrations in the longshore dimension (Scavia et al. 

2003).  It is based on the classic ‘Streeter-Phelps’ model, commonly used to determine the 

DO profile of a river downstream of wastewater discharge location (Chapra 1997).  The 

Scavia model treats the Mississippi and Atchafalaya River outlets as the two loading 

locations, where river May-June nitrogen loads are converted directly to oxygen demands 

based on stoichiometric ratios.  The modeled DO results can be used to directly determine 

the length of the hypoxic zone, and based on an empirical relationship between hypoxic 

area and length (using LUMCON mapping products described in Section 2.2.3), results can 

be converted to hypoxic area (Scavia et al. 2003).  The Scavia model includes a westward 

advection term that is often used for model calibration (Scavia et al. 2003, Scavia and 
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Donnelly 2007).  If the term is held to a constant value, then the model explains 45% of the 

interannual variability in hypoxic area.  If the term is allowed to vary, then model 

performance improves.  However, the variability of this parameter is generally attributed to 

unresolved oceanographic conditions, and is thus treated stochastically for forecasting 

purposes (Scavia et al. 2003).  Because this biophysical formulation is somewhat abstract, 

parameter values can only be loosely compared to true biophysical rates, and the model 

could arguably also be classified as empirical, as discussed in Section 2.3.2.   

In more recent studies, the Scavia model has been modified to explore particular 

scientific questions.  Scavia and Donnelly (2007) used the model to explore inter-decadal 

trends in hypoxia formation, through hindcasting backward in time based on historical 

nutrient loads; and to study whether nitrogen or phosphorus is the primary control on the 

size of the hypoxic zone.  Based on this work, it was possible to comment on the efficacy 

of various nutrient control strategies.  Also, Donner and Scavia (2007) used the model to 

explore how precipitation over the Mississippi River basin controls hypoxic variability.   

Finally, Liu et al. (2010) used the model to explore the legacy effect of nutrient build-up in 

the Gulf, suggesting that there have been two stepwise increases in the Gulf’s sensitivity to 

nutrients since 1985. 

A second early model, developed by Justić et al. (1996, 1997), simulates dissolved 

oxygen at a moored sampling location on the eastern Louisiana shelf (middle of the C 

transect, Figure 2-2).  Overall, the ‘Justić’ model is more complex than the Scavia model 

because it is dynamic and because it simulates more detailed biophysical processes, both 

above and below the pycnocline.  It includes oxygen fluxes between the different layers 

and the atmosphere, and biomass production and decomposition.  Using observed oxygen 

concentrations and calculated oxygen fluxes, it was possible to infer the rate of net 

productivity in the surface layer and respiration in the bottom layer.  The net productivity 

could then be related to nutrient loading, effectively linking hypoxia to nutrient loading 

(Justic et al. 1997).  The original model was calibrated for data from 1985-1992, and 

verified for data from 1993.  Model verification was performed in a qualitative fashion by 

comparing plots of observed and simulated values.  In more recent studies, the Justić 

model has been used to examine inter-decadal trends in hypoxia formation through 
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hindcasting (Justic et al. 2001, 2002), and results suggest that hypoxia intensified in the 

1970s due to increased nutrient loading, consistent with Scavia and Donnelly (2007).  

Hypothetical modeling scenarios suggest that reducing nitrate plus nitrite (NO2-3) loads 

will substantially reduce hypoxia, but that increases in river flow (possibly due to climate 

change) could increase the intensity of hypoxia. 

Arguably, the most complex of the early models is a steady-state, three-dimensional 

model that simulates nitrogen and phosphorus cycling, algal growth and decay, and oxygen 

dynamics.  This model, developed by Bierman et al. (1994), uses the Water Analysis 

Simulation Program (WASP) eutrophication module, and hydrodynamics were estimated 

primarily from field observations and best professional judgment.  Model results suggest 

that primary production largely controls oxygen dynamics on the shelf, though benthic 

oxygen demands were also significant.  In addition, the model stresses the importance of 

underwater light attenuation as a control on primary production.  For this reason, primary 

production may be a substantial source (as well as a sink) of BWDO on the shallower 

western shelf, where light attenuation is less severe.  A limitation of this model is that it 

was only executed for a steady state scenario corresponding to July 1990.  The model was 

calibrated in a qualitative fashion by comparing plots of observed and simulated values. 

Recent years have seen the development of models with increasing hydrodynamic 

complexity.  Wang and Justić (2009) have developed a detailed hydrodynamic model using 

the Finite Volume Coastal Ocean Model (FVCOM) for the Louisiana-Texas shelf.  The 

model includes over 10,000 segments and runs at a sub-minute time step, making it 

computationally intensive.  So far, results have only been published for the summer of 

2002.  The model was verified by comparing plots of simulated and observed data, and by 

using statistical measures of model/data agreement. While the model was forced with 

several climatological factors, wind velocity and freshwater discharge were found to be the 

dominant mechanisms controlling circulation and water column stratification in the study 

area.  Future publications will include a coupling of FVCOM with a modified version of 

WASP, so that biochemical processes (and hypoxia) are also simulated (D. Justić, personal 

communication, 2013). 
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Hetland and DiMarco (2008) have also developed a detailed hydrodynamic model for 

the Louisiana-Texas shelf, using the Regional Ocean Modeling System (ROMS).  Initial 

modeling results, using simple representations of oxygen demand, suggest water column 

respiration is the most important driver of hypoxia on the eastern shelf, while benthic 

respiration appears to be most important on the western shelf.  In addition, results suggest 

that there is little cross-shelf transport of hypoxic bottom waters, such that hypoxia 

formation is primarily controlled by vertical water column processes, as also indicated by 

Bierman et al. (1994).  The ROMS model was more recently expanded by Fennel et al. 

(2011) to included more detailed biochemical processes, such as nutrient cycling and 

phytoplankton growth.  Simulations were performed over a fifteen-year period (1990-

2004), and model results were verified by comparing plots of simulated and observed data, 

along with statistical measures of model/data agreement (skill metrics).  Modeling results 

suggest the importance of phytoplankton loss mechanisms (e.g., grazing and sinking) for 

controlling the accumulation of organic matter within the system.  Subsequent publications 

using this model have explored phosphorus limitation (which may shift the timing and 

location of phytoplankton production) and benthic oxygen demands (which were found to 

be an important driver of hypoxia) on the Gulf shelf (Fennel et al. 2013, Laurent et al. 

2012). 

Overall, mechanistic models have been useful for testing hypotheses about how the 

Gulf coastal system functions, and for providing insights into which biophysical processes 

are most influential with regards to hypoxia formation.  These models generally suggest 

that seasonal nutrient loads, benthic oxygen demands, and oceanographic conditions all 

likely contribute to hypoxia formation on the Gulf shelf, but the relative importance of 

these factors appears to vary among models.  A primary challenge, when comparing such 

models, is to evaluate the degree to which each model is realistically parameterized.  

Model calibration and validation exercises can help to justify a model’s parameterization; 

and advances in the spatial, temporal, and process resolution of models have allowed for 

more thorough model-data comparisons.  However, given the large number of parameters 

common to most mechanistic models, there may be multiple parameterizations that 

produce equally satisfactory model-data comparisons, but that may have different scientific 
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and management implications (Beven 2006).  Without rigorous methods to account for 

parameter uncertainty (and covariance among parameters), it is difficult to ascertain the 

level of confidence that should be assigned to the conclusions of mechanistic modeling 

studies.  Parameter uncertainty has been rigorously assessed for the Scavia model using 

Bayesian methods (Liu et al. 2010), but because the model only includes nutrient loads as 

input, it has limited capacity to provide insight into other biophysical processes relevant to 

hypoxia formation.   More complex mechanistic models have not rigorously accounted for 

parameter uncertainty (likely because it is computationally infeasible to do so).  Instead, 

these studies have focused on model sensitivity to individual parameters, such as sediment 

and water column oxygen demands (Fennel et al. 2011, Hetland and DiMarco 2008).  

However, this type of analysis is less about quantifying uncertainty, and more about 

inferring the ‘correct’ value of a given parameter or parameters, under the arguably 

tenuous assumption that all other model parameters are realistically prescribed. 

2.3.2 Empirical models 

In addition to the mechanistic models described above, a number of empirical models 

have also been developed to assess hypoxia in the Gulf of Mexico.  Turner et al. (2005, 

2006, 2008, 2012) use linear regression models to analyze how nutrient loading affects the 

size of the hypoxic zone.  These studies demonstrate that a large portion of the temporal 

variability in hypoxic area can be explained by the spring NO2-3 load. In addition, these 

studies suggests the system is becoming increasingly susceptible to hypoxia over time, 

with a given NO2-3 load now producing a larger hypoxic area than it would have in 

previous decades.  This increase in hypoxic susceptibility appears to have been interrupted 

by climatological events, but even so, the trend with time is substantial (r2=0.69).  It is 

further suggested that changes in hypoxic susceptibility may have occurred as sudden 

shifts (‘change points’ in time) due to positive feedbacks that result in alternate states of 

ecosystem functioning (Turner et al. 2008, 2012). 

The Scavia model, described previously as a mechanistic model, could arguably also 

be classified as an empirical model.  Although this model includes some biophysical 

processes that can be loosely compared to field-measured rates, the scope of mechanisms 
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considered in this model is limited.  Thus, the model is validated more in terms of its 

predictive ability, and less in terms of its representation of biophysical processes.  Overall, 

the Scavia model was found to explain 45% of the variability in the hypoxic area when 

using May-June total nitrogen (TN) load to drive oxygen demand (Scavia et al. 2003).   

Uncertainty quantification has always been a focus of this model.  In earlier versions, 

uncertainty was represented by a single model parameter with a distribution determined 

through model calibration; and forecasts were made by sampling from this parameter’s 

distribution using a Monte Carlo approach (Scavia et al. 2003, Scavia and Donnelly 2007).  

In later versions of the model, a Bayesian approach allowed uncertainty to be represented 

within multiple stochastic model parameters (Evans and Scavia 2011, Liu et al. 2010). 

Greene et al. (2009) developed a series of linear regression models that test the 

predictive potential of a large suite of river load, flow, and concentration variables.  May 

NO2-3 load was found to explain 42% of the variability in hypoxia, more than any other 

single variable.  However, a multiple linear regression model, using flow and nutrient 

concentration variables, along with a change point in hypoxic susceptibility, was found to 

be more effective than regressions using nutrient load alone.  Forrest et al. (2011) 

conducted a similar linear regression study, but added wind speed data to the mix of 

potential variables.  East-west wind velocity (from 15 June – 15 July) was found to be an 

effective predictor of hypoxia when used in multiple linear regressions.  The importance of 

wind was also confirmed by Feng et al. (2012), who included westerly wind duration as an 

additional covariate in Gulf hypoxia regression models. 

The empirical models share several common characteristics (Table 2-3).   First, all 

models include some form of spring river flow or nitrogen load (typically May or May-

June).  Because flow and nitrogen load are correlated, they perform similarly in empirical 

models (Bianchi et al. 2010), though loads tend to perform somewhat better (Forrest et al. 

2011, Greene et al. 2009).  Regardless of which performs better, the correlation between 

these variables means that the relative influence of freshwater flows (which promote 

stratification) and nutrient loads (which promote organic matter production) cannot be 

completely disentangled based on these empirical models alone.  This ambiguity can 
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confound hypoxia mitigation, because while nutrient loading can be reduced by watershed 

management practices, flows are largely outside the realm of human control. 

In addition, most empirical models omit one or more ‘outlier’ years that are not well-

represented by the model formulation and selected input variables.  These outlier years 

sometimes include storm years (e.g., 2003), drought years (e.g., 1988), and years with 

unusually strong westerly winds (e.g., 2009).  Removal of these types of outliers may be 

appropriate given the assumptions and objectives of particular models.  However, this 

culling reduces the size and variability of the calibration dataset, and limits the range of 

conditions over which the model can be used to make predictions. 

The empirical models also tend to include ‘change points’ that delineate periods with 

different susceptibilities to hypoxia (‘alternate states’).  There is some disagreement among 

models as to exactly when these changes occurred, but all models include at least one 

change point sometime in the early 1990s.  Changes in system susceptibility were also 

indicated in an empirical study by Stow et al. (2005) that examined the degree of 

stratification required for hypoxia to form.  However, to perform this type of long-term 

analysis, it is important to ensure that the monitoring practices used to develop the 

calibration dataset have remained consistent across the period of interest.  Chapter 5 

discusses how changes in monitoring practices have affected the temporal trends in the 

hypoxic area estimates used to calibrate these models. 

In summary, the empirical models are largely predictive tools, allowing hypoxia to be 

forecasted (or hindcasted) based on its principle drivers, with a historical emphasis on the 

nutrient loading driver.  Because of their computational efficiency, these models can be 

readily applied over long (multi-decade) time periods to assess long-term trends in hypoxic 

severity, and to identify potential changes in the system’s susceptibility to hypoxia.  

However, there are several different empirical Gulf hypoxia models, each suggesting 

somewhat different predictor variables (Table 2-3).  These differences arise, at least in part, 

from inconsistencies regarding what candidate predictor variables are considered, the 

criteria for determining outlier years, and the criteria for determining system change points. 
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2.3.3 Simple versus complex models 

Gulf water quality models benefit scientists and natural resources managers by 

synthesizing knowledge about the various anthropogenic and environmental causes of 

hypoxia, and by predicting how the severity of hypoxia will respond as anthropogenic and 

environmental factors change over time (Justic et al. 2007).  Existing Gulf models vary 

greatly in their complexity, and the more complex models generally have finer spatial 

resolution and represent a wider range of biophysical processes.  The mechanistic models 

tend to be more complex, while the empirical models tend to be simpler.  As discussed 

below, there are both advantages and disadvantages to increasing model complexity.  The 

modeling performed in this dissertation research is not particularly complex (under this 

definition) but it includes sufficient spatial, temporal, and biophysical detail, to address 

relevant scientific and management questions.  

Historically, there has been considerable debate over the appropriate level of 

complexity to include within environmental models, and both simple and complex models 

have their proponents (Canham et al. 2003).  Proponents of simple models argue that they 

are most advantageous for exploring high-level questions and for making predictions and 

comparisons regarding future ecosystem states (Pace 2003).  Simple models tend to avoid 

over-parameterization issues that can confound more complex models (Reckhow and 

Chapra 1999), and simple models are more transparent, so that they can be readily 

communicated to other scientists, as well as to policy makers and the public.  However, 

complex models are generally more capable of capturing the spatial and temporal 

heterogeneity of a system, allowing more detailed model output and richer comparisons 

with field data (if available).  Perhaps most importantly, complex models are argued to be 

less likely to inadvertently ignore mechanisms relevant to the scientific and management 

questions being investigated (DeAngelis and Mooij 2003). 

Because models are used for different purposes, different levels of complexity may be 

appropriate for different applications.  For this reason, Justic et al. (2007) argue that both 

simple and complex models have important roles in the science and management of Gulf 

hypoxia.  Complex, three-dimensional models are useful for exploring the detailed 
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biological and physical processes related to dissolved oxygen dynamics, and for 

identifying the primary processes controlling hypoxia formation.  Complex models can 

also be useful for predicting how the system will respond to future conditions, though their 

intensive data and computational requirements may somewhat limit their efficacy as a 

forecasting tool.  On the other hand, simpler, more computationally efficient models are 

capable of being run over longer time periods, and are more readily used in hindcasting 

and forecasting applications.  The computational efficiency of simpler models also allows 

them to be calibrated within statistical frameworks, so that uncertainty can be rigorously 

quantified – a primary goal of this dissertation research. 
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Table 2-2:  Summary of published mechanistic models for Gulf of Mexico hypoxia 

Model  
publication 
dates 

Temporal 
character 

Modeling 
period 

Hindcasting 
period* 

Spatial 
dimensions Segments Hydrodynamic 

model Biochemical model 

Bierman et al. 
(1994) static 1990 - 3 21 3-D, determined 

by observations 
nutrients/ production/ 

respiration/ oxygen (WASP) 

Justic et al.  
(1996,97, 
2001,02) 

dynamic 1985-2000 1955-1984 1 2 wind-driven 
vertical mixing 

production/ respiration/ 
oxygen 

Scavia et al. 
(2003,07) 
Liu et al. (2010) 
 

static 1985-2008 1955-1984 1 continuous constant westward 
advection oxygen demand/ oxygen 

Hetland et al. 
(2007)   
Fennel et al. 
(2011,13) 
 

dynamic 1990-2004 - 3 10000+ 3-D, multiple 
forcings (ROMS) 

nutrients/ production/ 
respiration/ oxygen 

Justic et al. 
(2009) dynamic 2002 - 3 10000+ 3-D, multiple 

forcings (FVCOM) 
nutrients/ production/ 

respiration/ oxygen (WASP) 

*this period includes years when little or no calibration/verification data are available. 
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Table 2-3:  Summary of published empirical models for Gulf of Mexico hypoxia 

Model (latest 
publication) 

Characteristics of optimum model from each study 

Nutrients* Flows* Change points Winds R2 Modeling period Years omitted 

Greene et al. (2009) [NO2-3(5+6)],[TP(2)] Q(5) 93-94 - 81% 1985-2007 - 

Liu et al. (2010) TN(5+6) - 91-92,97-98 - n.r. 1985-2008 98,03 

Forrest et al. (2011) [NO2-3(5)] Q(5) 93-94 e-w velocity 73% 1985-2009 88 

Turner et al. (2012) NO2-3(5) - 89-90,99-00 - n.r. 1979-2011 97,03,05,08-11 

Feng et al. (2012) NO2-3(5+6) - 92-93 w duration 69% 1985-2010 03,05 
*parenthetical values represent month, unbracketed nutrients represent loads, bracketed nutrients represent concentrations 
 n.r. = not reported, 
e/w = easterly/westerly winds 
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CHAPTER 3:  Methods Background 

 

This section provides a brief introduction to the two methodological approaches 

highlighted in this dissertation research: geostatistical and Bayesian modeling.  Although 

other methods are also used (as described in later chapters), these are the methods most 

unique to this research, and are thus deserving of the additional exposition provided here.  

Section 3.1, describes the geostatistical modeling approach, which is applied in Chapters 4 

and 5, and Section 3.2 describes the Bayesian modeling approach, which is applied in 

Chapter 6.  The basic methodologies presented here are expanded considerably in in these 

following chapters.   

3.1  Geostatistics modeling background 

The majority of the work described in Chapters 4 and 5 uses methods from the field of 

geostatistics.  While geostatistics is based largely on mathematical and statistical theory, it 

was originally developed by practitioners in the applied sciences, including mining, 

forestry, and agriculture (Gelfand et al. 2010).  Perhaps because of its diverse and applied 

background, the use of geostatistics has grown rapidly since its introduction some 50 years 

ago.  In statistical circles, geostatistics is considered to be a particular case of the larger 

field of ‘spatial statistics’ (Gelfand et al. 2010).  Geostatistics focuses on the modeling of 

continuous spatial variation, often assuming a Gaussian error process that allows for 

uncertainty quantification and the use of efficient likelihood-based variable selection and 

model parameterization techniques (Zimmerman 2010, Zimmerman and Stein 2010).   

According to Chiles and Delfiner (1999), the goal of geostatistics is to provide a 

quantitative description of data that vary through space (or time and space).  The primary 

advantage of geostatistics, when compared to simpler statistical methodologies that assume 

independent and identically distributed (i.i.d.) data, is that the spatial correlation among the 

data is accounted for explicitly.  Thus, geostatistics is applicable to the common situation 
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where observations from nearby locations tend to be more similar than observations from 

locations that are further apart (all other known factors being equal).  Also, with its 

probabilistic framework, geostatistics is well-suited to describe the substantial uncertainty 

associated with systems that are characterized by spatial heterogeneity and limited 

observational data.  Because many environmental variables, including dissolved oxygen in 

the Gulf of Mexico, have these characteristics, geostatistics is a natural choice for the study 

of these systems. 

The effectiveness of geostatistics for studying environmental systems has been 

documented in numerous previous studies.  For example, Goovaerts (2000) used 

geostatistical methods to interpolate rainfall intensities across space using elevation as a 

covariate.  Erickson et al. (2005) developed a geostatistical model to interpolate snow 

depths across an alpine basin using multiple statistically-selected covariates (e.g., wind 

sheltering and solar radiation) that provided insight on the primary factors controlling 

snow accumulation.  Mueller et al. (2010) used a geostatistical regression model to infer 

factors (covariates) influencing the temporal variability of forest CO2 fluxes.  Murphy et al. 

(2010) used geostatistical methods, incorporating biophysical model output, to estimate 

water quality indicators throughout Chesapeake Bay.  Zhou et al. (2013) used geostatistical 

methods to interpolate dissolved oxygen concentrations and assess the extent of the 

hypoxic zone in Lake Erie.   

3.1.1 The univariate geostatistical model 

A univariate geostatistical model is implemented by  representing a response variable 

(z, eq 3-1) in terms of a deterministic component and two stochastic components (Gneiting 

and Guttorp 2010, Zimmerman and Stein 2010).  (Here, ‘univariate’ implies a model with 

a single response variable, as opposed to a ‘multivariate’ model with multiple response 

variables.)  The deterministic component, Xβ, is the portion of z that can be expressed in 

terms of known covariates, a.k.a. predictor variables.  In literature, the deterministic 

component is sometimes referred to as the ‘drift in the mean’ or sometimes simply as the 

‘mean function’.  The deterministic component represents a ‘mean’ in the sense that it is 

the central value around which stochastic model components are distributed.  When the 
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deterministic component is represented using Xβ, it is implied that the mean function is a 

linear model (typically empirical) with covariate matrix X and regression coefficient vector 

β, as in a multiple linear regression.  While non-linear mean functions can also be used, 

linear functions are much more common because their implementation is computationally 

efficient.  In the simplest case, without covariates, Xβ reduces to the mean of the data (X is 

reduced to a vector of ones and β becomes a scalar equal to the mean).   

 

 𝐳 = 𝐗𝛃 +  𝛈 +  𝛆         eq 3-1 

 

The two stochastic components, η and ε, represent the portion of z not accounted for by 

the deterministic component (a.k.a. the ‘residuals’).  Here, η represents spatially correlated 

stochasticity and ϵ represents uncorrelated stochasticity.  The inclusion of η is essentially 

what differentiates a geostatistical model from simpler statistical models. 

The different model components can be illustrated graphically for an example dataset 

in one-dimensional space (Figure 3-1).  Here, Xβ is a simple linear trend with space, and 

the stochastic portions of the model fluctuate around this trend.  In this case, the magnitude 

of the spatially correlated stochasticity (η) is similar to that of the uncorrelated 

stochasticity (ε).   

 

   
Figure 3-1:  Example dataset modeled as a spatial tend (Xβ) in red, plus spatially correlates 
stochasticity (η) in green, plus uncorrelated stochasticity (ε) in purple 
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3.1.2 Modeling spatially correlated stochasticity 

The stochastic portion of a model may or may not include spatial correlation.  If the 

residuals from the deterministic component are i.i.d., then no spatial correlation exists 

(η=0), and if in addition the variance of ε is constant in space, the geostatistical model 

reduces to a regular linear regression model.  However, most environmental phenomena do 

exhibit some spatially correlated stochasticity because the deterministic component can 

rarely account for all of the spatial patterns in the data.   

Spatial correlation can be explored through a ‘variogram’, which shows how the 

variance of the stochasticity (i.e., the residuals of the deterministic component) increases as 

the separation distance (h) between locations increases.  The variogram is developed by 

determining the semivariance (γ, eq 3-2) between observation locations, where ri and rj are 

the stochastic values (residuals) at locations i and j. 

 

 γij = (ri – rj)2/2         eq 3-2 

 

A ‘raw’ variogram is a plot of semivariances (γij) versus separation distances (hij) for 

all possible pairs of residuals (Figure 3-2).  (This example variogram is based on the 

geostatistical model for dissolved oxygen, with units of mg L-1, as described in Chapter 5.)  

The blue line in Figure 3-2 is an experimental variogram, created by calculating the 

average semivariance, γ(hij), for different ranges (bins) of separation distance.  Finally, the 

red line represents a theoretical variogram function that was fit to this stochasticity.  

Although multiple types of variogram functions are available (Chiles and Delfiner 1999, 

Zimmerman and Stein 2010), an ‘exponential’ variogram  with ‘nugget’ effect (eq 3-3) is 

used in Figure 3-2  because it conforms well to the experimental variogram. 

 

𝛾�ℎ𝑖,𝑗� =  �
0,

𝜎𝜀2 + 𝜎𝜂2 �1 − exp �− ℎ𝑖,𝑗
𝑙ℎ
�� ,     

ℎ𝑖,𝑗 = 0 

ℎ𝑖,𝑗 > 0
   eq 3-3 
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In eq 3, ση
2 and σε

2 are parameters representing the spatially correlated and uncorrelated 

portions of the variance of the stochasticity, respectively.  Thus, the variance is zero at a 

separation distance of zero.  At separation distances approaching zero, the variance 

between locations is σε
2, commonly referred to as the ‘nugget’, representing micro-

variability and/or measurement error.  As separation distances increase to infinity, the 

variance increases to the ‘total sill’ (σε
2 + ση

2), where ση
2 is commonly referred to as the 

‘partial sill’.  The term lh is a range parameter related to how quickly the variance increases 

with increasing separation distance.  For an exponential variogram function (eq 3-3), the 

variance reaches 95% of its maximum value at a separation distance of approximately 3lh, 

commonly referred to as the ‘effective range,’ beyond which the data are nearly 

uncorrelated.  

 

 
Figure 3-2:  Example raw (gray), experimental (blue), and theoretical (red) variograms 

 

When stochasticity can be characterized as second-order stationary, then a covariance 

function can be defined (Chiles and Delfiner 1999, Gneiting and Guttorp 2010).   A 

variogram that approaches an asymptote as h approaches infinity, as in Figure 3-2, implies 

the system is second-order stationary.  Here, the covariance function is simply the total sill 

(𝛾(ℎ)ℎ→∞) minus the variogram function: 

σϵ
2 

ση
2 γ (

m
g2  L

-2
) 3lh 
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𝑄�ℎ𝑖,𝑗� =  𝛾(ℎ)ℎ→∞ − 𝛾�ℎ𝑖,𝑗�       eq 3-4 

 

Based on this relationship, the exponential variogram function can be converted to an 

exponential covariance function: 

 

𝑄�ℎ𝑖,𝑗� =  �
𝜎𝜂2 + 𝜎𝜀2,

𝜎𝜂2exp �− ℎ𝑖,𝑗
𝑙ℎ
� ,

    
ℎ𝑖,𝑗 = 0

ℎ𝑖,𝑗 > 0
      eq 3-5 

   
where all parameters (σε

2, ση
2, and lh) are the same as those defined in eq 3-3.  Note that the 

covariance function is often referred to as a ‘model’, but ‘function’ is used here in order to 

distinguish it from the overall geostatistical model (eq 3-1). 

In this research, a variogram analysis was performed to examine the spatial structure of 

the system and to select an appropriate variogram/covariance function (in this case, an 

exponential function with nugget was selected).  The variogram/covariance function was 

then parameterized using a likelihood-based method, as described in Section 4.2.3.  As 

such, it was not necessary to visually fit the variogram/covariance parameters.  However, 

the suitability of the likelihood-based parameterization was confirmed by comparing the 

resulting variogram/covariance function to the experimental variogram. 

3.1.3 Geostatistical interpolation 

The field of geostatistics was originally developed for the purposes of spatial 

interpolation, and this section discuses that aspect of geostatistical modeling.  The earliest 

version of geostatistical interpolation was developed in the 1950s by South African mining 

engineer, D.G. Krige, from whom the term ‘kriging’ was derived.  The original goal of 

kriging was to estimate the quantity of ore within a given area using statistically robust 

methods.  The methodology was significantly advanced and promoted by French geologist 

and mathematician, Georges Mathéron, in the 1960s (Chiles and Delfiner 1999).  In 

addition, an essentially equivalent methodology termed ‘objective analysis’ (or ‘Gauss-

Markov smoothing’), was simultaneously developed by Soviet meteorologist L.S. Gandin 
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(Cressie 1990, Emery and Thomson 2001).  Over the last several decades, these methods 

have been applied to a wide array of environmental variables, including dissolved oxygen 

concentrations in the northern Gulf of Mexico, as discussed in Section 2.2.3. 

Kriging is used to predict the value of a response variable at unobserved locations 

across space.  For a univariate geostatistical model (eq 3-1) the predicted response (𝑧̃) is 

determined from the vector of observed values (z), and a vector of geostatistical weights 

(λ) corresponding to these observations: 

 

𝑧̃  =  λTz           eq 3-6 

  

The vector of weights (λ) is determined based on a system of equations described in detail 

in Chapter 5.  Note that eq 3-6 applies when the mean or trend (i.e., the deterministic 

component) is estimated as part of the geostatistical model, as in this study.  A different 

equation (not shown) applies if the mean or trend is pre-specified, as in the case of ‘simple 

kriging.’  Generally, the factors that influence the weights are: 

 

1.  The spatial covariance between the prediction location and observation 

locations, as determined by the covariance function (eq 3-5), such that 

observations that are closer (more strongly correlated) to the prediction location 

will receive more weight. 

2. The spatial covariance among observation locations, as determined by the 

covariance function, such that clustered (i.e., non-independent) observations 

will receive less weight. 

3. The covariate information (X) for the prediction and observation locations, such 

that observation locations with covariate values more similar to the covariate 

values of the prediction location will receive more weight.  (The use of 

covariate information for geostatistical interpolation is commonly referred to as 

‘universal kriging.’  If no covariates are included in the model (mean only), 

then the interpolation is referred to as ‘ordinary kriging’ (Chiles and Delfiner 

1999).) 
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Comparisons studies have demonstrated that geostatistical interpolation methods 

typically outperform simpler interpolation methods, such as inverse distance weighting 

(IDW) and Thiessen polygons (Goovaerts 2000, Murphy et al. 2010).  This is not 

surprising, given that simpler methods apply a more subjective weighting system, while 

geostatistical methods determine weights through modeling the covariance structure of the 

data.   Furthermore, simpler methods do not generally discount the weights of clustered 

observations (that provide somewhat redundant information, see item #2 in list above).  

The discounting of clustered data is also important when attempting to make statistical 

inferences about how various factors (represented by covariates) affect the response 

variable; and this type of statistical inference is a primary objective of Chapter 4. 

Geostatisical interpolation is also advantageous because it allows for the determination 

of prediction uncertainty, most commonly assuming a Gaussian error process.  Chapter 5 

will make use of this feature of geostatistical modeling when determining confidence 

intervals for hypoxic extent estimates.  This is accomplished through a simulation-based 

approach (i.e., ‘conditional realizations’) that essentially samples from the uncertainty in 

the interpolation results. 

3.2  Bayesian modeling background 

A common challenge in mechanistic environmental modeling is to determine the 

parameters that characterize the rates of various biological and physical processes (Beck 

and Straten 1983, Reckhow and Chapra 1999).  Historically, these parameters have been 

determined either a priori based on literature review and best professional judgment, or 

through calibration of the model to observed conditions.  While the latter approach may be 

preferable, it is often unrealistic when a large number of biophysical processes must be 

parameterized based on limited observational data.  Reliance on a priori parameter 

estimation can also be problematic, however, as the range of parameter values found in 

literature is often quite wide, e.g., EPA (1985).  Furthermore, as discussed in Section 2.3.1, 

there may be multiple model parameterizations that perform similarly in model calibration 

and validation, but which may have different scientific and management implications. 
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Bayesian inference helps to address the challenge of parameter estimation in two 

important ways.  First, it provides a means of parameter estimation that systematically 

combines a priori information with information derived from model calibration (i.e., from 

the calibration dataset).   Second, it provides a probabilistic framework for model 

parameterization, so that the resulting parameter estimates can be represented as a 

combined joint distribution that accounts for the covariance among parameters, from which 

probabilistic model predictions can then be made.  Bayesian inference is sometimes 

referred to as Bayesian learning, because it represents how our initial understanding of a 

system is updated after considering the available observational data (Lunn et al. 2013). 

The potential benefits of applying Bayesian inference to water quality models have 

been recognized for decades (Beck and Straten 1983).  However, only recently have 

computational methods and hardware improved sufficiently to make the implementation of 

Bayesian methods attractive for water quality modeling (Reckhow and Chapra 1999).  

Even now, Bayesian methods are typically only applied to relatively simple water quality 

models, such as the one-dimensional steady-state Gulf hypoxia model originally developed 

by Scavia et al. (Liu et al. 2010, Scavia et al. 2003).  Other examples of mechanistic water 

quality models developed in a Bayesian context include river dissolved oxygen models 

(Dilks et al. 1992, Liu et al. 2008), a bacterial decay model (Gronewold et al. 2009), and 

eutrophication models (Arhonditsis et al. 2007, Malve et al. 2007, Ramin et al. 2011). 

Bayesian inference of model parameters (θ) from observational data (y) can be 

represented as follows (Hoff 2009): 

 

𝑝(𝜽|𝒚) =  𝑝(𝒚|𝜽)𝑝(𝜽)
∫ 𝑝(𝒚|𝜽)𝑝(𝜽)𝑑𝜽 
𝚯

        eq 3-7 

 

where p(θ) is the prior distribution for the parameters, as determined from a priori 

information; p(y|θ) is the probability of y, conditional on the model parameters; and p(θ|y) 

is the posterior distribution of the parameters, conditional on the observational data (note 

that this is a joint posterior distribution and that there may be correlation among model 

parameters).  The denominator of eq 3-7 is a normalizing constant, determined by 
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integrating over parameter space, Θ.  However, it is usually not necessary to calculate this 

constant directly, and so eq 3-7 can be simplified as follows: 

 

𝑝(𝜽|𝒚) ∝  𝑝(𝒚|𝜽)𝑝(𝜽)        eq 3-8 

 

Further, p(y|θ) is equivalent to the likelihood of the parameters given the observational 

data .  And thus, eq 3-8 can be more intuitively written, with all parts expressed in terms of  

θ, as (Lunn et al. 2013): 

 

𝑝(𝜽|𝒚)    ∝       𝐿(𝜽;𝒚) 𝑝(𝜽)       eq 3-9 

       posterior ∝  likelihood × prior 

 

Once the joint posterior distribution of the parameters is known, making posterior 

model predictions, 𝑝(𝑦�|𝒚),  is relatively straightforward: 

 

𝑝(𝑦�|𝒚) = ∫ 𝑝(𝑦�|𝜽)𝑝(𝜽|𝒚)𝑑𝜽 
𝚯         eq 3-10 

 

However, in all but the simplest cases, it is not possible to determine the properties of 

the posterior parameter distribution analytically. Instead, Markov Chain Monte Carlo 

(MCMC) sampling methods are commonly used to explore the posterior distribution (Lunn 

et al. 2013), though other types of sampling algorithms also exist.   MCMC methods are 

iterative approaches where samples of model parameters are drawn from ‘transition 

distributions’ that are iteratively refined until the samples converge to the joint posterior 

parameter distribution (i.e., the ‘stationary distribution’).  The steps leading to convergence 

are commonly referred to as the ‘burn-in’ and are discarded.  Once the MCMC process has 

converged, the following samples can be used to characterize the posterior distribution 

(Lunn et al. 2013). 

Multiple MCMC sampling algorithms are available, and the effectiveness of these 

algorithms depends largely on the model structure.  In this research, MCMC sampling is 

implemented using the WinBUGS program, which automatically determines the most 
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effective sampling algorithm (Lunn et al. 2000, Lunn et al. 2013).  BUGS stands for 

Bayesian inference Using Gibbs Sampling, where Gibbs sampling is one of the most 

commonly used MCMC algorithms (Gelfand and Smith 1990).  However, WinBUGS will 

make use of other types of sampling algorithms (e.g., Metropolis-within-Gibbs) when 

Gibbs sampling is infeasible. 

Finally, it should be noted that geostatistical modeling and Bayesian modeling are not 

mutually exclusive realms.  In fact, Bayesian methods are becoming increasingly common 

in spatial modeling (see Gelfand et al. (2010) and references therein).   However, in this 

research, geostatistical modeling is performed using a non-Bayesian approach largely for 

reasons of computational efficiency.  The Bayesian approach is more feasible for the 

mechanistic model described in Chapter 6, because the mechanistic model operates on a 

much smaller calibration dataset, so that MCMC can be performed relatively quickly.  

Moreover, the mechanistic model is nonlinear and uses a priori information, such that the 

Bayesian approach is highly advantageous, if not absolutely necessary. 
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CHAPTER 4:  Geostatistical Regression 

 

Stratification and nutrient loading are two primary factors leading to hypoxia in coastal 

systems.  However, where these factors are temporally correlated, it can be difficult to 

isolate and quantify their individual impacts.  This study provides a novel solution to this 

problem by determining the effect of stratification based on its spatial relationship with 

bottom-water dissolved oxygen (BWDO) concentration using a geostatistical regression.  

The text of this chapter is reproduced in part with permission from Obenour et al. (2012b), 

Copyright 2012 American Chemical Society. 

4.1  Introduction 

The relationship between nutrient loading and the interannual (i.e. year-to-year) 

variability of the mid-summer Gulf hypoxic area has been explored through a range of 

computational models.  Scavia et al. (2003) use a one-dimensional, simple mechanistic 

model that explains 45% of the interannual variability as a function of the May-June 

nitrogen load.  These results are generally consistent with the statistical regressions of 

Bianchi et al. (2010) who find that the May-June nitrogen load explains 47% of the 

variability, and of Greene et al. (2009) who find that the May NO2-3 load explains 42% of 

this variability.  In addition, studies by Turner et al. (2006, 2008) and others (Greene et al. 

2009, Liu et al. 2010) have shown that model performance is improved by also accounting 

for the long-term cumulative effects of nutrient loading. 

It is widely understood, however, that water column stratification also affects the 

temporal variability of hypoxia.  Stratification, which inhibits the re-oxygenation of bottom 

waters, can be particularly strong in the northern Gulf due to warmer surface waters 

significantly freshened by discharges from the Mississippi and Atchafalaya Rivers 

overlying denser waters derived from the deep shelf.  Wiseman et al. (1997), while 

acknowledging the importance of nutrient loading, determined that the majority of the 
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interannual variability in the hypoxic area (for a nine-year period) could be explained using 

the mean river flow from the preceding eleven months.  Using a more expansive dataset, 

Bianchi et al. (2010) demonstrate that 41% of the interannual variability in hypoxic area 

can be explained in terms of the May-June river flow.   

The fact that both nutrients and flow can explain a large portion of the variability in 

hypoxic extent is not surprising.  Bianchi et al. (2010) report that these variables are highly 

correlated, with May-June flow accounting for 95% of the variability in May-June nitrogen 

load.  Therefore, use of either of these variables masks the mechanistic effect of the other, 

leaving room for debate regarding whether eutrophication (via nutrient loading) or 

stratification (via freshwater flow) is the primary control on the interannual variability of 

hypoxia.  Accordingly, Hetland and DiMarco (2008) suggest that it will be necessary to 

separate the physical and biological causes of hypoxia to develop models with greater 

predictive capability; and a recent scientific assessment (EPA 2007) stresses the need to 

include physical factors within hypoxia models.  Moreover, a recent study by Murphy et al. 

(2011) demonstrates the importance of both nutrients and stratification for predicting 

hypoxia in the Chesapeake Bay.  This need likely extends to other systems, as Diaz and 

Rosenberg (2008) report that there are over 400 coastal hypoxic zones around the world, 

and that they are controlled by both biological and physical factors (generally 

eutrophication and stratification, respectively). Because stratification is primarily a natural 

phenomenon, while nutrient loading is often an anthropogenic watershed pollution issue, 

the ability to distinguish between these factors is critical for managing these complex 

systems.   

In this study, the effect of stratification on the variability of hypoxia is determined 

through geostatistical regression (GR) (Mueller et al. 2010, Zimmerman and Stein 2010).  

In the model, stratification is represented by metrics derived from salinity and temperature 

profiles, with regression coefficients determined based on how stratification explains the 

spatial variability in BWDO.  While a portion of the interannual variability in BWDO is 

also explained by the stratification effect, the remaining portion must be explained by other 

factors, such as Mississippi River nutrient inputs.  The methodology is evaluated using ten 

recent years of mid-summer cruise data (1998-2007).  As such, this study generally focuses 
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on the interannual variability of the system within its current state; and it does not focus on 

long-term trends in the system. 

4.2  Materials and methods 

4.2.1  Data description  

We use data from mid-summer hypoxia monitoring cruises conducted between 1998 

and 2007 along the Louisiana-Texas shelf.  These cruises are performed by the Louisiana 

Universities Marine Consortium (LUMCON), and the data were retrieved from the 

National Ocean Data Center (Rabalais 2011).  To help ensure a consistent spatial envelope 

for this study, only locations sampled during at least nine of the ten years were included in 

the analysis (Figure 2-2), resulting in 61-64 monitoring locations for each year.  Sampling 

locations were geo-referenced using the UTM Zone15 projection, and water depths were 

determined from a 3-arc-second digital elevation model (DEM) obtained from NOAA 

(NOAA 2011b).  We use the dissolved oxygen, salinity, and temperature profile data 

collected at these locations.  Typically, data were collected by two different instruments at 

each monitoring site: a Hydrolab and a Sea-Bird profiler (Rabalais et al. 1996).  Based on a 

comparison with the DEM, the Hydrolab and Sea-Bird typically reached to within zero and 

one meters of the sea floor, respectively, with minor variability.  For this study, the BWDO 

values were taken from whichever instrument reached the greatest recorded depth 

(typically the Hydrolab).   To determine salinity and temperature profiles, Sea-Bird data, 

which have better vertical resolution, were chosen preferentially over Hydrolab data; and 

when the Hydrolab reached a greater depth, we appended these additional measurements to 

the Sea-Bird profile.   

The stratification intensity at each sampling location was quantified using metrics 

derived from the salinity and temperature profiles.  Because sampling intervals in the raw 

profile data were not uniform, the profiles were first resampled by linear interpolation to 

0.2-meter resolution.   The difference (ΔS) between the 25th and 100th percentiles of 

salinity (Slo and Shi, respectively) was calculated for each location, and then the maximum 

salinity gradient (Sg) over a 0.4-meter vertical interval, within the region of ΔS, was 

determined.  The thickness (m) of the subhalocline (Hs), defined as the region below Sg, 
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was also calculated.  Figure 4-1 provides an illustration of these metrics.  Use of the 25th 

and 100th percentiles for defining Slo and Shi was not arbitrary; a range of percentile values 

was considered, and the values that optimized the GR (based on BIC score, described 

subsequently in Section 4.2.4) were selected.  For temperature profiles, an identical 

analysis was performed, and the 0th and 75th percentiles were found to be optimal for 

defining Tlo, Thi, and ΔT.  The maximum temperature gradient and sub-thermocline 

thickness, Tg and Ht, respectively, were also calculated.  Because temperature tends to 

decrease with depth, while salinity increases, the 25th percentile of salinity and the 75th 

percentile of temperature both generally correspond to the 25th percentile of depth, 

suggesting that near-surface stratification conditions are less important for predicting 

BWDO. 

 

 
Figure 4-1:  Example salinity profile with stratification metrics  

 

The Mississippi and Atchafalaya River outfalls (Figure 2-2) provide the vast majority 

of fresh water and nutrients to the shelf.  The Atchafalaya River is important because 

approximately 30% of the Mississippi River flow (and load) enters the Atchafalaya River 

near Simmesport, Louisiana (Scavia et al. 2003).  Monthly flow and loading data were 
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retrieved from USGS (2010), and we used the sum of the two river inputs.  The USGS uses 

both an Adjusted Maximum Likelihood Estimator (AMLE) and a composite (COMP) 

method to estimate loads (Greene et al. 2009).  We used AMLE data because they 

generally performed better in the modeling analyses.  However, the two datasets are highly 

correlated, and the choice does not greatly affect the results. 

4.2.2  Model formulation  

Our geostatistical modeling approach takes into account the spatial correlation of the 

dependent variable (i.e. BWDO), which improves estimates of the model parameters 

relative to a regression based on the assumption of independent and identically-distributed 

residuals, and allows for a more realistic assessment of model uncertainty (Zimmerman 

and Stein 2010).  The effectiveness of GR methods for modeling environmental 

phenomena has been demonstrated in studies of rainfall (Goovaerts 2000), snow depth 

(Erickson et al. 2005), water quality (Murphy et al. 2010), and biospheric CO2 exchange 

(Mueller et al. 2010).  With the exception of the last example, these works focused 

primarily on spatial interpolation, and less on inference of causal factors.  As such, this 

work adds to the limited number of studies demonstrating how geostatistical modeling can 

be useful for confirming and quantifying causal relationships within environmental 

systems. 

As described in Section 3.1.1 (eq 3-1), a geostatistical model represents a dependent 

variable in terms of its deterministic and stochastic components (𝐳 = 𝐗𝛃 +  𝛈 +  𝛆).  In 

this study, the dependent variable, z, is an n×1 vector of BWDO measurements taken at 

different locations and times.   

The deterministic component, Xβ, is the portion of z that can be expressed as a 

function of predictor variables and annual constants (i.e. intercepts).  The k×1 vector β 

includes the parameters of the deterministic component, which can be divided into annual 

intercepts (βa) and regression coefficients (βp) (eq 4-1).  Correspondingly, the n×k matrix 

X includes the annual classifiers (Xa) and predictor variables (Xp) for each observation.  

The annual classifiers are binary values that bin samples by year.  Each predictor variable 

is normalized to a mean of zero and variance of one over the ten-year period.   
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𝐗𝛃 = �𝐗𝑎𝐗𝑝� �
𝛃𝑎
𝛃𝑝
�        eq 4-1 

 

A portion of the variability in BWDO is accounted for through stratification metrics 

(which are included as predictor variables).  The regression coefficients for these metrics 

are fit to the spatial variability in BWDO, based on the assumption that sites which are 

strongly stratified will have lower BWDO due to lower rates of re-oxygenation.  They are 

not fit to the interannual variability in BWDO because this could confound the role of 

stratification with nutrient loading, as they are temporally related, both being dependent on 

river flow.  This approach does not, however, preclude stratification from explaining a 

portion of the interannual variability.  As the average intensity of stratification varies from 

year to year, the predicted impact of stratification on BWDO varies proportionally, as a 

function of the regression coefficients.  This is reasonable because years of intense 

stratification would be expected to have less re-oxygenation and thus lower BWDO.  The 

remaining interannual variability is accounted for primarily through the annual intercepts, 

discussed further in Section 4.2.6.  

The stochastic components, η amd ε, were found to be well represented by the 

commonly used exponential covariance model with a nugget effect, as described in Section 

3.1.1 (eq 3-5).  However, spatial correlation is expected to be stronger in the east-west 

direction than in the north-south direction due to along-shore currents (Zavala-Hidalgo et 

al. 2003).  To account for this phenomenon, hi,j is scaled by an anisotropy ratio, α, which is 

the ratio of east-west to north-south correlation ranges.    

4.2.3 Parameter estimation  

Restricted Maximum Likelihood (REML) (Patterson and Thompson 1971) is used to 

estimate the covariance model parameters and the anisotropy ratio.  This method is 

recommended for models with strong spatial correlation and/or a large numbers of 

predictor variables (Zimmerman 2010), and it has been applied in previous geostatistical 

studies (Kitanidis and Shen 1996, Mueller et al. 2010).  The parameters are optimized by 
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minimizing Lr (eq 4) with respect to σε
2, ση

2, r and α, which define Q (an n×n covariance 

matrix with elements determined from eq 3-5).  Because the covariance between the 

stochastic components of the observations collected in different years is assumed to be 

zero, Q becomes block diagonal.   

 

𝐿𝑟 = ln(det[𝐐]) + ln(det[𝐗𝑇𝐐−1𝐗]) + 𝐳𝑇𝐐−1(𝟏 − 𝐗(𝐗𝑇𝐐−1𝐗)−1𝐗𝑇𝐐−1)𝐳 eq 4-2 

 

Once Q is optimized, the deterministic model parameters are calculated in a 

straightforward manner:  

 

𝛃� = (𝐗𝑇𝐐−1𝐗)−1𝐗𝑇𝐐−1𝐳        eq 4-3 

 

Thus, a complete set of model parameters is uniquely defined, and the covariance of 

the model parameters is: 

 

 Vβ = (XTQ-1X)-1        eq 4-4 

 

4.2.4 Variable selection  

The GR can be formulated for any subset of the available predictor variables.  

Candidate variables include the salinity stratification metrics (ln[ΔS], Shi, Sg, and Hs) and 

temperature stratification metrics (ln[ΔT], Tlo, Tg, and Ht).  Note that Slo and Thi were 

omitted to avoid issues of colinearity; and the salinity and temperature differences are log-

transformed to account for an apparent non-linearity in their relationships with BWDO.  

Variables for water column depth, UTM easting, and UTM northing (D, E, N) were also 

included, along with their squares (D2, E2, N2) to allow for potential spatial and 

bathymetric trends.  Overall, there are fourteen candidate predictor variables, yielding over 

16,000 combinations of one to fourteen variables to be considered.  The challenge is to 

determine an optimal combination of predictor variables that best describes the 

phenomenon of interest, without resulting in over-parameterization of the model (Mueller 
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et al. 2010).  In general, this is achieved by including only those variables that have a 

sufficiently high degree of explanatory ability, as defined by a statistical criterion.  In this 

study, the Bayesian Information Criterion (BIC) (Schwarz 1978) is used, where models 

with different sets of predictor variables (Xs) are compared based on their BIC scores: 

 

 BICs = -2 ln(Ls) + ks ln(n)         eq 4-5 

 

In eq 4-5, the first term is twice the negative log likelihood function (L) of the 

estimated model.  This term represents the goodness-of-fit of the model, with lower 

numbers indicating a better fit.  The second term is a penalty term which addresses the loss 

in degrees of freedom that occurs as more predictor variables are added to the model.  If 

the spatially correlated model residuals are assumed to follow a Gaussian distribution, then 

the likelihood of the model can be determined as: 

 





 −−−= − )βXyQ)βXy

Q
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T
jjnjjjL ˆ(ˆ(

2
1exp

||π)2(
1)ˆ,( 1

2/12/    eq 4-6 

 

Eq 4-3 can be substituted into eq 4-6, and eq 4-6 can then be substituted into eq 4-5.  

After simplifying and removing the constant term, the equation for the BIC score becomes 

(Mueller et al. 2010): 

 

𝐵𝐼𝐶𝑠 = ln(det[𝐐]) + 𝐳𝑇𝐐−1 (1 − 𝐗𝑠(𝐗𝑠𝑇𝐐−1𝐗𝑠)−1𝐗𝑠𝑇𝐐−1)𝐳+ 𝑘𝑠 ln (𝑛) eq 4-7 

 

The preceding is a ‘geostatistical’ version of the BIC.  Note that if there is no 

correlation among residuals (i.e., η is zero), then the covariance matrix, Q, can be 

simplified to σr
2I, where I is an nxn identity matrix.  Here, σr

2 is the variance of the 

residuals, which is equal to yT(I-X(XTX)-1XT)y/n.  In this case, eq 4-7 can be simplified to 

the more common form: 

 

𝐵𝐼𝐶 = 𝑛 ln(𝜎𝑟2) +  𝑘𝑗  ln (𝑛)       eq 4-8 
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The BIC score quantifies the explanatory power of a model relative to its complexity, 

with the lowest score indicating the model with optimal balance.  The GR model should be 

optimized in terms of both its covariance parameters (Section 4.2.3) and its selection of 

predictor variables.  Because the covariance parameters of the stochastic component 

depend on the selected predictor variables and vice versa, an iterative approach is used.  

4.2.5 Annual mean values  

The interannual variability of mid-summer hypoxic intensity can be assessed by 

comparing the mean BWDO concentrations between years.  Annual mean BWDO values 

were determined using geostatistical kriging of the mean (Wackernagel 2003), which 

assigns lower weights to observations from clustered sampling locations.  The mean 

BWDO for year i is calculated as: 

 

𝐵𝑊𝐷𝑂���������𝑖 =  𝛌𝑖𝑇𝐳𝒊         eq 4-9 

 

with weights, λi, corresponding to observations, zi.  The weights are determined from 

the system of linear equations presented in eq 4-10, where Qi is the ni×ni covariance matrix 

for the observations from year i, with elements determined from eq 3-5.  The scalar, νi, is a 

Lagrange multiplier, its square root being the standard error of the estimated mean value.  

  

�𝛌𝒊ν𝐢
�  = �

𝐐𝑖 𝟏𝑛𝑖𝑥1
𝟏𝑛𝑖𝑥1
𝑇 0 �

−1

�𝟎𝑛𝑖𝑥1
1

�       eq 4-10 

 

The annual mean impacts of the predictor variables (on BWDO) are also determined 

geostatistically.  For a given year i, the mean impact of each predictor variable is 

calculated by applying the vector of location-specific weights, λi, to the vector of location-

specific impacts, xi,jβj, where j refers to the jth predictor variable. 
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4.2.6 Model for the annual intercepts  

Linear regression models were developed to explore potential relationships between the 

annual intercepts and nutrient and flow data.  The response variable is the set of ten annual 

intercepts, 𝛃�𝑎, determined from the GR.  Candidate predictor variables include the April, 

May, and June monthly loads and concentrations for NO2-3, total kjeldahl nitrogen (TKN), 

and total phosphorus (TP), as well as monthly flows (Q).  These concentrations are flow-

weighted averages, calculated by dividing monthly load by monthly flow.  To account for 

potential changes in the system’s susceptibility to hypoxia, a linear trend across years is 

also included as a candidate variable. 

Because of the large number of candidate variables (p=22), many of which are 

correlated, and relatively small sample size (n=10), the ‘elastic-net’ method (Zou and 

Hastie 2005) was used to identify important predictor variables.  This method constrains 

the magnitude of the model parameters (and shrinks some parameters to zero, thereby 

eliminating them) to prevent problems commonly associated with the over-fitting of 

models (Faraway 2005).   This method is a compromise between ‘ridge regression’ and the 

‘Lasso’ method (Tibshirani 1996).   Ridge regression improves the predictive capacity of 

the model through parameter shrinkage (by limiting the parameter sum of squares, βTβ), 

but does not eliminate any predictor variables from the model entirely (Faraway 2005).  

The Lasso method performs both parameter shrinkage and variable selection (by limiting 

the parameter sum of absolute values ||β||).  Elastic net produces results similar to Lasso, 

but is more tolerant of the inclusion of multiple correlated predictor variables (Zou and 

Hastie 2005).  Because concentrations and loads from different months are likely 

correlated, this method was found to be most appropriate. 

The elastic-net method was implemented using the ‘glmnet’ package for the R 

statistical computing program (Friedman et al. 2010).  The degree to which model 

parameters are constrained is optimized through a leave-one-out cross validation routine 

included in this package.  We used the elastic-net as an exploratory tool and to select one 

or more primary variables from which to create a more parsimonious regression model.  

An alpha value, α, supplied by the user determines whether the results are more similar to 
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ridge regression or Lasso.  A value of zero indicates a ridge regression model, whereas a 

value of one indicates a Lasso model.  In this application, an alpha of 0.5 is used, 

indicating no particular preference for ridge regression or Lasso (i.e., an elastic-net model). 

4.2.7 Hypoxic area model and nutrient reduction scenarios 

 The information developed above can be used to predict how the intensity of mid-

summer hypoxia will respond (within the system’s current state) to changes in nutrient 

loading.  However, while this study focuses on BWDO concentration, policy goals have 

centered on the areal extent of hypoxia (EPA 2001, 2008).  Thus, a regression model for 

mid-summer hypoxic area (LUMCON 2012, Rabalais et al. 2007) using the annual mean 

stratification effects (Section 4.2.5) and one or more nutrient variables (Section 4.2.6) is 

developed.  Using this model, the effects of hypothetical nutrient reduction scenarios are 

explored. 

The goal of the Intergovernmental Task Force Action Plan (EPA 2001, 2008) is to 

reduce the five-year running average of hypoxic area to less than 5,000 km2.  Thus, 

modeling results are developed for all possible consecutive five-year periods across the 

ten-year study period.  The consecutive five-year period which requires the greatest 

nutrient reduction to achieve the Action Plan goal is defined as the ‘critical’ period. 

Because of the non-negativity constraint on hypoxic area (any predictions of negative 

hypoxic area are treated as zero), probabilistic results are best determined through Monte 

Carlo simulation (eq 4-11) (Rencher 1998).  Here, ỹsim is a 5×1 vector of simulated 

hypoxic areas for a given five-year period, ỹ is the predicted (i.e. mean) response, u is a 

vector of independent samples from a standard normal distribution, and 𝐂(𝚺�) is the upper-

triangular matrix obtained by Cholesky decomposition of the covariance matrix for the 

predictions (eq 4-12).  In eq 10, W is the matrix of predictor variables used to develop the 

regression (corresponding to the observed conditions), 𝐖�  is a matrix of predictors with 

reduced nutrient levels, σr
2 is the variance of the model residuals, and I is the identity 

matrix. 

 

𝐲�𝐬𝐢𝐦 = 𝐲� + 𝐂(𝚺�)T𝐮        eq 4-11 
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𝚺� = �𝐖� (𝐖T𝐖)−𝟏𝐖� T + 𝐈�𝜎𝑟2       eq 4-12 

 

For each nutrient reduction scenario, 10,000 simulations of ỹsim were generated in 

accordance with eq 4-11, using different random draws of the vector u.  Any simulations 

of negative hypoxic area were replaced with a value of zero, and the mean of each ỹsim was 

then determined, resulting in 10,000 simulations of five-year average hypoxic area.   

Summary statistics for each nutrient reduction scenario were then calculated based on this 

ensemble of results. 

4.3 Results and discussion 

4.3.1 Model parameters   

The deterministic component of the GR (eq 2) was optimized in terms of the regression 

coefficients and annual intercepts.  The regression coefficients (𝛃�𝑝) indicate how BWDO 

is related to the various predictor variables; all parameters are significantly different from 

zero (p<0.05, Table 4-1).  Because the predictor variables were normalized, the 

magnitudes of the parameter values demonstrate their relative impacts on BWDO.  The 

regression coefficients for northing (N) and depth (D) suggest that BWDO concentrations 

tend to be lower at locations that are shallower and farther north (i.e. closer to shore).  This 

is likely because the near-shore waters mix less with the more oxygenated and less 

eutrophic deep-shelf waters.  As expected, the regression coefficients for the stratification 

metrics all indicate BWDO tends to be lower in areas of intense water column 

stratification.  Annual intercepts (𝛃�𝑎) ranged from 1.66 to 3.50 mg L-1, and are discussed 

further in Section 3.2.  For the ten-year study period, the deterministic component of the 

model (𝐗𝛃�) explains 52% of the variability in BWDO across space and time.  For 

individual years, the deterministic component of the model explains from 27% to 61% of 

the spatial variability in BWDO.   

The remaining spatial variability may be due largely to the effects of varying coastal 

current patterns that can influence transport of fresh water, nutrients, and organic matter.  
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The stochastic portion of the model, which accounts for this remaining variability, has 

substantial spatial correlation, consistent with current patterns acting across large spatial 

scales.  The parameters σε
2 and ση

2 (often referred to as the nugget and the partial sill in 

geostatistics literature) were determined to be 0.53 and 1.29 mg2L-2, respectively.  The 

range parameter, r, was determined to be 30.5 km along the east-west direction, which 

means that the effective range of spatial correlation is 91.5 km in that direction.  The 

anisotropy ratio was determined to be 1.56, which means that the effective range of spatial 

correlation in the north-south direction is 58.7 km.  These effective ranges are considerably 

longer than the typical spacing between sampling locations (Figure 2-2).  Overall, these 

results verify that there is substantial spatial correlation in the stochastic portion of the 

model. 

 

Table 4-1: Regression coefficients �𝛽̂𝑝� with standard errors �𝜎𝛽�� for GRa. 

Variable 𝜷�𝒑 𝝈𝜷�  

northing, N -0.77 0.11 

depth, D 0.83 0.12 

salinity diff., ln(ΔS) -0.43 0.11 

max. salinity, Shi -0.45 0.10 

salinity gradient,  Sg -0.21 0.07 

 temp. diff. ln(ΔT) -0.62 0.13 

min. temp. Tlo 0.69 0.15 
aunits are mg L-1. 

 

4.3.2 Test of linearity  

The geostatistical regression (GR) model assumes that BWDO concentrations can be 

modeled using linear relationships with the examined predictor variables (or 

transformations of the predictor variables, e.g. ln[ΔS]).  Figure 4-2 provides a visual test of 

this assumption by plotting the BWDO residuals versus each of the selected predictor 

variables.  These residuals are referred to as ‘e*’ because while a normal residual is 
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calculated by subtracting the observed value from the deterministic portion of the model (e 

= Xβ - y), these residuals are calculated by also removing the effect of the variable of 

interest (e = Xβ - xjβj - y).  In this way, the relationship between the variable of interest, xj, 
and BWDO is clearly illustrated, with the slope of the trend line approximately equal to the 

regression coefficient, βj.  In general, these plots suggest that the assumption of linearity 

between the predictor variables and BWDO is reasonable. 

 
Figure 4-2: BWDO residuals (e*) versus normalized predictor variables (Note: e* = Xβ - 
xjβj  - y where xj is the variable represented on the horizontal axis of each graph.) 

 

4.3.3   Site-specific model results 

Model predictions, based on the deterministic component (eq 4-1) can be compared 

with observed values at each sampling location (Figure 4-3).  The deterministic model 

component appears to capture much of the spatial variability in BWDO concentration.  For 

example, it captures the above-average BWDO concentrations on the western shelf in 1998 

and 2000. 
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Figure 4-3: Observed and model-predicted BWDO concentrations for ten-year study 
period.  Predicted values are from deterministic component of GR model (eq 4-2). 
 

4.3.4   Analysis of interannual variability  

The results of the GR can be summarized on an annually-averaged basis to analyze the 

interannual variability of the factors affecting mean BWDO concentration.  Figure 4-4 

illustrates how mean BWDO is affected by northing and bathymetry; salinity stratification 

(ln(ΔS), Shi, and Sg); temperature stratification (ln(ΔT) and Tlo); and annual intercepts.  The 

combination of these effects can be used to exactly predict the estimated mean BWDO (eq 
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4-9).  For illustrative purposes, however, each factor is presented as a BWDO depletion, 

calculated by determining each effect relative to its year of minimum impact; for example, 

temperature stratification was least severe in 2006 and most severe in 2004.  For each 

factor, the standard deviation of the ten annual impacts is calculated, providing a metric for 

assessing the degree to which each factor contributes to the interannual variability of 

BWDO, with higher standard deviations indicating greater contributions.   From the figure, 

it is clear that stratification has a substantial impact on the interannual variability in 

BWDO depletion, and the standard deviation of the net stratification effect (salinity plus 

temperature) is 0.51 mg L-1 BWDO.  The standard deviation of the northing/bathymetry 

effect is only 0.05 mg L-1 BWDO, which is expected because there is little interannual 

variation in the sampling locations used in this study.  The greatest portion of the 

interannual variability is accounted for through the annual intercepts, with a standard 

deviation of 0.71 mg L-1 BWDO. While these intercepts do not have intrinsic explanatory 

value, they can be modeled in terms of other factors, such as nutrient inputs. 

 

 
Figure 4-4: BWDO depletions attributed to different factors from GR model; each factor 
presented relative to its year of minimum impact. 
 

The annual intercepts (𝛃�𝑎) were first related to candidate predictor variables through 

development of an elastic-net model (Section 4.2.6).  The resulting model (eq 4-13) 

includes six selected variables.  Here, variables enclosed in brackets represent nutrient 
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concentrations, while un-bracketed variables represent loads, and subscripts represent 

months.  Because variables were normalized, the regression coefficients indicate their 

relative importance.   

 

𝛽̂𝑎 =  2.36 − 0.348 ∗ �𝑁𝑂𝑀𝑎𝑦� −  0.138 ∗ 𝑁𝑂2−3,𝑀𝑎𝑦 −  0.107 ∗ 𝑌𝑒𝑎𝑟…   

  − 0.073 ∗ �𝑁𝑂𝐽𝑢𝑛 � −  0.062 ∗ 𝑇𝐾𝑁𝐴𝑝𝑟 −  0.027 ∗ 𝑁𝑂𝐴𝑝𝑟  eq 4-13 

 

The elastic-net model indicates May NO2-3 concentration has the largest impact, 

followed by May NO2-3 load, which is discussed more below.  The trend with time (Year) 

also has a relatively large effect, suggesting that hypoxia is becoming more intense 

irrespective of seasonal nutrient inputs and stratification.  This is consistent with previous 

studies indicating increasing hypoxia irrespective of seasonal nutrient loading (Greene et 

al. 2009, Liu et al. 2010, Turner et al. 2006, 2008) or stratification (Stow et al. 2005), but 

this is the first study to suggest this trend while considering both factors in combination.   

June NO2-3 concentration and April TKN and NO2-3 loads are also included, but appear to 

have relatively small effects.  The selection of TKN only for the month of April is 

consistent with this more refractory nitrogen fraction requiring additional time to become 

biologically available.  The elastic-net model did not select any of the variables for TP or 

flow, suggesting that these factors are less important for predicting mid-summer hypoxia.  

Overall, the elastic-net model explains 85% of the variability in the annual intercepts.  

Figure 4-5 graphically illustrates how the various factors in eq 4-13 affect the annual 

intercepts.  

We also developed a simple linear regression (SLR) for the annual intercepts, using 

May NO2-3 concentration alone (eq 12).   The NO2-3 concentrations were normalized so 

that the model coefficients are comparable to those in eq 11.  This model explains 76% of 

the variability in the annual intercepts, indicating that its performance is similar to the 

elastic-net model, despite its relative simplicity.   

 

β�a =  2.36 − 0.620 ∗ �𝑁𝑂2−3,𝑀𝑎𝑦�     eq 4-14  
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Figure 4-5: Annual intercept reductions attributed to different predictor variables from 
elastic-net model.  Each factor presented relative to its year of minimum impact. 

 

The use of May (or May-June) nitrate data to predict hypoxia has precedent in multiple 

previous studies (Bianchi et al. 2010, Greene et al. 2009, Liu et al. 2010, Scavia et al. 

2003, Turner et al. 2006, 2008), and is reasonable given the known processes of 

phytoplankton growth and bacterial decomposition that link nitrogen inputs to BWDO 

depletion over time(Rabalais et al. 2007, Wiseman et al. 1997).  However, while previous 

studies generally indicate that load is the best single nutrient predictor of hypoxia, this 

study indicates concentration (Greene et al. (2009) also consider models using flow and 

concentration, but the confounding correlation between flow and load was not addressed.)  

To explore this distinction further, Figure 4-6 illustrates how May NO2-3 loads and 

concentrations correlate with mean BWDO (eq 7) and the annual intercepts.  As shown, 

mean BWDO is somewhat correlated with NO2-3 load (Figure 4-6.a), and as expected, the 

strength of this correlation (r2=0.41, p=0.045) is similar to that of previous studies relating 

nitrogen loads to hypoxic area.(Bianchi et al. 2010, Greene et al. 2009, Liu et al. 2010, 

Scavia et al. 2003, Turner et al. 2006, 2008)  The correlation between the annual intercepts 

and May NO2-3 concentrations (Figure 4-6.d), corresponding to the SLR (eq 12), is much 

stronger (r2=0.76, p=0.001).  This improvement can be attributed to the fact that here we 

use nutrients to predict only the variability in hypoxia that remains after accounting for 

stratification (i.e. the annual intercepts), rather than the total variability in hypoxia (i.e. 

mean BWDO or hypoxic area).  If we do not remove stratification effects, nutrient load is a 
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better predictor of hypoxia than concentration (Figure 4-6.a versus 4-6.b).  This is as 

expected given load is correlated with flow, and higher flow tends to increase stratification, 

making load partially reflective of both stratification and nutrient concentration. 

 

 
Figure 4-6: Annual mean BWDO (top) and annual intercept from GR (bottom) versus May 
NO(2-3) loads (left) and concentrations (right), with 95% confidence intervals. 
 

While these results suggest that nutrient concentration is the best predictor of hypoxia 

(after accounting for stratification), nutrient load may also be of some predictive 

importance.  The elastic-net model (eq 4-13) did include multiple nutrient loading terms, 

though they generally had less impact than the concentration terms.  Similarly, Figure 4-

6.c indicates that there is some correlation between the annual intercepts and May NO2-3 

load, though markedly less than with concentration.  
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From a mechanistic perspective, nutrient load is an intuitive predictor of hypoxia based 

on the assumption that it is proportional to the primary production and oxygen demand that 

develops within the system.  However, the importance of concentration (as suggested by 

this study) indicates that the amount of oxygen demand generated on the shelf is also 

affected by the degree to which that load is diluted by flow.  The exact reasons for this are 

not readily apparent and could benefit from further research.  However, loads are highly 

correlated with flows, and high flows can intensify coastal current velocities (Wang and 

Justic 2009), thus reducing the time available to produce and settle organic matter within 

the study area.  Also, because biochemical process rates are typically concentration 

dependent, dilution can reduce the rates of oxygen demand formation and nutrient 

recycling. 

The approach outlined in this study made it possible to isolate the effects of 

stratification through GR, and then determine the effects of nutrients based on the 

interannual variability in BWDO that remained.  Overall, the results suggest that both river 

nutrient concentration and stratification play large and comparable roles in explaining the 

interannual variability of hypoxia in the northern Gulf of Mexico.  The standard deviation 

of the net stratification effect is 0.51 mg L-1 BWDO, while the standard deviation of the 

May NO2-3 effect (from the SLR) is 0.62 mg L-1 BWDO, indicating nutrients may play a 

slightly larger role.  When the annual intercepts predicted by the SLR are used in 

combination with the net stratification and northing/bathymetry effects, the overall model 

explains a large majority (82%) of the interannual variability in mean BWDO.   

Because of its explanatory power, this approach provides a more precise way to 

evaluate the response of Gulf hypoxia to changes in Mississippi River nutrients.  Scavia et 

al. (2003) note that when hypoxia is modeled using nutrient loads alone, the interannual 

variability in oceanographic conditions can mask the effects of changes in nutrient loading, 

at least in the short term.  This can confound management of the system by obscuring the 

effect of watershed management practices aimed at curtailing nutrient inputs.  However, by 

using the approach outlined here, we separate the effects of stratification from the effects 

of nutrients, allowing for a more detailed assessment of how each is impacting hypoxia 

over time.  Although the intensity of stratification can be difficult to predict in advance 
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because it varies over short time scales due to wind forcing (Wang and Justic 2009), it can 

likely be approximated using river flow and climate data.  For example, the May river flow 

alone explains 27% of the variability in the net stratification effect determined by this 

study.  The stratification effect can also be determined following each mid-summer 

monitoring cruise using the measured salinity and temperature profiles, as was done here. 

While May NO2-3 concentration and load were not well correlated over the period of 

this study (r2=0.14); longer-term trends in nitrate concentration and load have been shown 

to be parallel (Goolsby and Battaglin 2001).  Thus, if the existing Action Plan is successful 

at reducing NO2-3 load, it will likely also be successful in reducing concentration.  So, 

while we think that concentration should receive more attention in future studies and in 

evaluating year-to-year changes in hypoxic severity, we do not think this emphasis on 

concentration is in discordance with the long-term Action Plan goal of reducing nutrient 

loads. 

4.3.5   Nutrient reduction scenarios  

Stratification metrics and river nutrient concentrations were also used to develop a 

regression model for hypoxic area (y, km2), as described in Section 4.2.7.  In the model (eq 

4-15), S is the aggregated BWDO depletion due to salinity and temperature stratification 

(as illustrated in Figure 4-4); and [NO2-3,May] is the May NO2-3 concentration.  Both of the 

variables were normalized so that the regression coefficients indicate their relative 

importance.  Overall, the model explains 79% of the variability in observed hypoxic area.   

 

y = 15300 + 3800*S + 5500*[NO2-3,May]    eq 4-15 

 

We used the model to estimate the average hypoxic area for different nutrient reduction 

scenarios, along with associated uncertainty determined through Monte Carlo simulation 

(eq 4-11); and to estimate the percent nutrient reduction required to consistently (over the 

ten-year study period) reduce the five-year running average of hypoxic area to less than 

5,000 km2 in accordance with Action Plan goals (EPA 2001, 2008).  Figure 4 illustrates 

how nutrient reductions will affect the five-year running average of hypoxic area for the 
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critical period (1998-2002 is the critical period because it requires the greatest nutrient 

reduction to achieve the Action Plan goal).  The model suggests that a 42% reduction in 

May NO2-3 concentration is required, with a 90% confidence interval of 29-62% reduction.  

The non-negativity constraint (Section 4.2.7) had only a minor impact, resulting in a 

recommended nutrient reduction of 42% instead of 41%.  These results support multiple 

previous modeling studies suggesting nutrient reductions of around 40-45% (Greene et al. 

2009, Scavia et al. 2003, Scavia and Donnelly 2007), but are somewhat lower than the 

71% reduction recommended by Liu et al (2010).  

Note that these predictions assume the linear relationships in eq 4-15 remain valid 

outside of the range of observed conditions.  If the effects of stratification become less 

severe under scenarios of reduced nutrient inputs, this would make the estimated loading 

reductions somewhat conservative.  It should also be noted that this study used recent data 

(1998-2007), so the results generally reflect the system at its current state.  If the system 

becomes more or less susceptible to hypoxia over time, as a result of long-term trends in 

nutrient loading, climate change, or other factors, then the reductions required to meet the 

Action Plan goal would also change.   

 

 
Figure 4-7: Predicted average hypoxic area for the critical five-year period (1998-2002) 
under different levels of nutrient reduction, with 90% confidence intervals. 
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CHAPTER 5:  Geostatistical Spatial Estimation 

 

Robust estimates of hypoxic extent (both area and volume) are important for assessing 

the impacts of low dissolved oxygen on aquatic ecosystems at large spatial scales.  Such 

estimates are also important for calibrating models linking hypoxia to causal factors, such 

as nutrient loading and stratification, and for informing management decisions.  In this 

study, we develop a rigorous geostatistical modeling framework to estimate the hypoxic 

extent in the northern Gulf of Mexico from data collected during midsummer, quasi-

synoptic monitoring cruises (1985-2011).  Instead of a traditional interpolation-based 

approach, we use a simulation-based approach that yields more robust extent estimates and 

quantified uncertainty.  The modeling framework also makes use of covariate information 

(i.e., trend variables such as depth and spatial position), to reduce estimation uncertainty.  

Furthermore, adjustments are made to account for observational bias resulting from the use 

of different sampling instruments in different years.  The text of this chapter is reproduced 

in part from unpublished work (in review): 

 

Obenour, D. R., D. Scavia, N. N. Rabalais, R.E. Turner, and A. M. Michalak.  A 

retrospective analysis of mid-summer hypoxic area and volume in the northern Gulf of 

Mexico, 1985-2011. 

 

5.1  Introduction 

The hypoxic extent, operationally defined as the region (area or volume) where DO 

concentrations are below 2 mg L-1, is often assessed using data from ‘shelfwide’ sampling 

cruises.  The cruises are considered ‘quasi-synoptic’ because changes in weather 

conditions (e.g., tropical storms) preceding or during the cruises can disrupt typical 

seasonal patterns in hypoxia.  Cruises to document the occurrence of hypoxia, as well as 
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related physical and biological parameters, have been performed by the Louisiana 

Universities Marine Consortium (LUMCON) beginning in 1985 (Rabalais et al. 2002c). 

The estimated bottom-water hypoxic area (LUMCON 2012) has been determined by 

interpolating between sampling locations and  hand-contouring parallel to isobaths over a 

calibrated (planimeter) grid.  These estimates have been used in multiple modeling studies 

linking hypoxia to nutrient loads from the Mississippi River basin and other environmental 

factors (Forrest et al. 2011, Greene et al. 2009, Scavia et al. 2003, Turner et al. 2006) and 

for setting policy goals to reduce the severity of hypoxia (EPA 2001, 2008).  However, 

these estimates are generally conservative in that the most inshore, most offshore, and most 

western extents of hypoxia are not always captured because of logistical constraints 

(Rabalais et al. 1999, Rabalais et al. 2007).  Also, these estimates do not quantify the 

uncertainty inherent in making estimates from limited observations (Chiles and Delfiner 

1999, Zhou et al. 2013).  Quantified uncertainties are useful for assessing the adequacy of 

existing sampling programs and for improving models that link hypoxic extent to 

environmental causes and effects.    

Hypoxic area estimates only partially characterize the hypoxic extent.  The thickness 

and volume of hypoxia are also important, as they relate to how hypoxia affects pelagic 

organisms (Kimmel et al. 2009, Zhang et al. 2009).  In addition, hypoxic volume, rather 

than area, should be more closely related to the total oxygen deficit of the system, 

potentially making it a more useful metric for biogeochemical modeling studies (Rabalais 

et al. 2010).  While hypoxic volume measurements are available for other systems, such as 

Chesapeake Bay (Murphy et al. 2010, Zhou et al. (submitted manuscript)), estimates for 

the Gulf have only been available for a subset of years, using an un-published 

methodology (Rabalais et al. 2010). 

The primary goal of this study is to improve our knowledge of the Gulf’s hypoxic 

extent over the 27-year study period (1985-2011) by systematically estimating midsummer 

hypoxic area and volume.  These are the first Gulf hypoxic extent estimates to include 

‘instrument bias adjustments’ that account for the use of different sampling instruments, 

capable of being lowered to within different proximities of the sea floor, in different years 

(Turner et al. 2012).  Our approach also uses trends between DO, hypoxic fraction, depth, 



62 

 

and spatial position to account for consistent, large-scale spatial patterns in DO, thereby 

improving the explanatory power of the model (Zhou et al. 2013).  Our extent estimates are 

developed using a Monte Carlo-type simulation approach, rather than traditional 

interpolation, allowing for uncertainty quantification (i.e., confidence intervals) (Chiles 

and Delfiner 1999, Zhou et al. 2013).  These confidence intervals reflect the spatial 

stochasticity of the system, uncertainties in trends among variables, and uncertainties in 

instrument bias adjustments.  Hypoxic volume is estimated using a novel two-step 

approach where DO is simulated first, and hypoxic fraction (i.e., the fraction of the water 

column that is hypoxic) is simulated second using DO as a trend variable.   

5.2. Materials and methods 

5.2.1 Data and study boundaries 

We use DO data from LUMCON mid-summer sampling cruises conducted between 

1985 and 2011.  Data for 1998-2008 are retrieved from the National Ocean Data Center, 

while data for other years are obtained directly from LUMCON (Rabalais 2011).  

Sampling locations are geo-referenced using the Universal Transverse Mercator (UTM) 

Zone 15 projection, and bathymetry is determined from a 3-arc-second digital elevation 

model obtained from the National Oceanic and Atmospheric Administration (NOAA 

2011b).   

During cruises, DO is sampled using one or two types of instruments (Figure 5-1): a 

rosette-mounted DO probe and a handheld DO probe, with the latter capable of being 

lowered closer to the sea floor (Obenour et al. 2012b, Turner et al. 2012).  (Hereafter, we 

refer to these instruments as the “rosette sampler” and “handheld sampler”.) While 

instrument technology has changed over time, all instruments were calibrated against 

Winkler titrations, and post-cruise corrections were made as necessary. For sampling 

events where both instruments are used, data are combined into synthesized profiles 

(Obenour et al. 2012b).  (Here, a ‘sampling event’ refers to the depth profile of data 

collected at a specific latitude/longitude and time.)   

We extract bottom water dissolved oxygen (BWDO) and minimum dissolved oxygen 

(MinDO) concentrations from the DO profiles.  BWDO and MinDO concentrations greater 



63 

 

than 7 mg L-1 (less than 1% of total samples), are treated as 7 mg L-1, because higher 

concentrations are outliers representing super-saturation conditions that are not of interest 

in this study.  For sampling events where hypoxia was present, we also extract the fraction 

of the water column that is within the hypoxic bottom layer (hereafter, bottom water 

hypoxic fraction, or BWHF) and, where other hypoxic layers are present, the total hypoxic 

fraction (THF) of all hypoxic layers.  Bottom and upper layers of hypoxia are observed at 

49% and 12% of sampling events, respectively.  Here, we focus on the models for BWDO 

and BWHF because bottom layer results are most comparable to previous studies 

(LUMCON 2012, Rabalais et al. 2007).  Example BWDO and BWHF values from an 

observed DO profile are illustrated in Figure 5-2.  The models for MinDO and THF are 

formulated in the same way and yield comparable results, but for brevity are relegated to 

the Appendix.  

 

 
Figure 5-1:  Number of locations sampled during the annual midsummer shelfwide cruises 
using handheld and rosette instruments 

 

Geostatistical modeling is performed on a 5 km × 5 km grid of estimation points 

(Figure 5-3), covering 342.5-837.5 km UTM easting and 3122.5-3292.5 km UTM 
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northing, reflecting the general extent of sampling.  The estimation grid is limited to depths 

between 3 and 80 m, which are typical of the Louisiana-Texas shelf region where hypoxia 

occurs.  Observed values of BWDO and BWHF for the entire study are presented in 

Figures 5-4 and 5-5, respectively. 

 

 
Figure 5-2:  Example dissolved oxygen profile with calculated BWDO and BWHF 
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Figure 5-3:  Study area bathymetry, sampling, and estimation locations 
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Figure 5-4:  Maps of observed BWDO concentrations, 1985-2011 
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Figure 5-5:  Maps of observed BWHF, 1985-2011 
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5.2.2 Model formulation 

Geostatistical methods provide an effective means to model data that exhibit spatial 

correlation (Chiles and Delfiner 1999, Zimmerman and Stein 2010).  The efficacy of these 

methods has been demonstrated in previous environmental analyses of rainfall, snow 

depth, soil phosphorus, and water quality indicators (Erickson et al. 2005, Goovaerts 2000, 

Murphy et al. 2010, Qian 1997, Zhou et al. 2013).  Many of these studies have focused on 

mapping through spatial interpolation, and comparison studies have demonstrated that 

geostatistical interpolation outperforms simpler interpolation methods, such as inverse 

distance weighting (Goovaerts 2000, Murphy et al. 2010). 

As described in Section 3.1.1 (eq 3-1), a geostatistical model represents a dependent 

variable in terms of its deterministic and stochastic components (𝐳 = 𝐗𝛃 +  𝛈 +  𝛆).  This 

formulation is similar to linear regression, but includes an additional term, η, representing 

spatially correlated stochasticity, in addition to the more commonly modeled uncorrelated 

stochasticity, ε.  As in linear regression, Xβ is the portion of z that can be expressed as a 

deterministic function of categorical and/or trend variables (X) and their corresponding 

regression coefficients (β).  If the X term includes only cruise-specific categorical variables 

(vectors of zeros and ones that bin the data by cruise), then the model can essentially be 

used to perform ordinary kriging (OK).  If X also includes trend variables, then it can be 

used to perform universal kriging (UK) (Chiles and Delfiner 1999). 

In this study, the stochastic components (η and ε) were found to be well represented by 

the commonly used exponential covariance function with a nugget effect as defined in eq 

3-5.  As in Section 4.2.2, anisotropy was accounted for by scaling hi,j using parameter α, 

which represents the ratio of east-west to north-south correlation ranges.  Covariance 

function parameters are estimated using REML and deterministic component parameters 

are estimated using generalized least squares, as described in Section 4.2.3. 

Geostatistical models are developed for BWDO and BWHF to determine bottom layer 

hypoxic area and volume, respectively.  The model for BWDO uses all observations, while 

the model for BWHF uses only observations from locations where the BWDO 

concentration was hypoxic.  Both models use the UK formulation to take advantage of 
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potential relationships between the response variables and available trend variables (Zhou 

et al. 2013). 

The deterministic components of the model include two types of trends.  First, 

‘constant trends’ represent relationships between response and trend variables using 

regression coefficients that are the same for all cruises.  For the BWDO model, potential 

constant trends include linear and quadratic trends with depth (Depth and Depth2), easting 

(Easting and Easting2), and northing (Northing and Northing2).  Based on a preliminary 

examination of model residuals, we noted that the overall trend between depth and BWDO 

does not continue for depths greater than 40 meters, and so depths of greater than 40 

meters were treated as 40 meters in the final BWDO model development.  This approach is 

justified because model residuals are evenly distributed across all depths when depths 

greater than 40 m are modified as described here (see Figure 5-10).  For BWHF, potential 

constant trends include linear and quadratic trends with easting, northing, and BWDO.   

Second, ‘cruise-specific trends’ (with cruise-specific regression coefficients for 

Easting) represent relationships that are specific to individual cruises.  The inclusion of 

these trends was motivated by previous studies (Rabalais et al. 2007, Turner et al. 2012) 

indicating that the east-west distribution of hypoxia is influenced by alongshore current 

velocity, which can vary inter-annually in response to prevailing winds.  When selected, 

these cruise-specific trends effectively modify the constant trend.     

To prevent over-parameterization of the model, we use only trend variables selected 

through a geostatistical adaptation of BIC, as described in Section 4.2.4.  Because of the 

large number of variables considered in this study, an initial optimal model is first selected 

among those formed from constant trend variables only. Cruise-specific trend variables are 

then individually tested relative to that model, and only cruise-specific trends that improve 

the BIC score are included in the final model. 

As in Section 4.2.1, the deterministic portion of the model also includes categorical 

variables that bin the data by cruise.  These variables reflect the fact that the mean BWDO 

varies from cruise to cruise.  In UK, the categorical variables essentially allow for different 

‘intercepts’ (as in linear regression), that shift the trend up or down to best fit the 
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observations from each cruise.  In OK, these categorical variables simply allow for a 

different mean for each cruise. 

The covariance model, selected deterministic variables, and categorical variables are 

used to determine a set of geostatistical weights, 𝜦, that are applied to observations when 

performing geostatistical interpolation and simulation.  For each cruise, y, a unique set of 

weights, 𝜦𝑦, are determined by solving a system of linear equations: 

 

 �
𝐐𝑜𝑜 𝐗𝑜
𝐗𝑜𝑇 𝟎 � �

𝜦𝑦
−𝐆𝑦

� = �
𝐐𝑜𝑒,𝑦

𝐗𝑒𝑇
�       eq 5-1 

 

where Qoo is an n×n covariance matrix for the n observation locations (all cruises), with 

elements determined from eq 3-5.  Because we assume no correlation among stochasticity 

from different cruises, inter-cruise covariances are assigned a value of zero.  Similarly, 

Qoe,y is an n×m covariance matrix of n observation locations and m estimation locations, 

and the rows of Qoe,y that correspond to observations from cruises other than cruise y are 

assigned a value of zero.  The matrix Xo is n×p and includes the p deterministic variables 

(trend and categorical) for the observation locations, and the matrix Xe (m×p) includes the 

same variables for the estimation locations.  The trend variables are normalized to a mean 

of zero and variance of one.  Note that terms with a ‘y’ subscript are cruise-specific. 

In eq 5-1, 𝜦𝑦 is an n×m matrix of cruise-specific weights that reflect both the spatial 

correlation structure and the deterministic trends.  Also, Gy is a p×m matrix of Lagrange 

multipliers that can be used with 𝜦𝑦 to determine location-specific estimation 

uncertainties.  Using the weights, along with the observations 𝐳𝑜 (an n×1 vector), one can 

develop estimates of the response variable across the estimation grid: 

 

 𝐳𝑒,𝑦
0 = 𝜦𝑦𝑇𝐳𝑜         eq 5-2  

 

where 𝐳𝑒,𝑦
0  is an m×1 vector of interpolated BWDO or BWHF values for cruise y.  Eq 5-2 

is equivalent to eq 3-6 solved for a vector of estimation locations. 
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Although we use a UK model formulation, hypoxic area and volume are not 

determined by kriging (i.e., spatial interpolation), but instead by developing conditional 

realizations (CRs), which are essentially “spatially consistent Monte Carlo simulations” 

(Chiles and Delfiner 1999).  While both kriging and CRs provide equivalent information 

for individual estimation locations, CRs are necessary to estimate spatially aggregated 

quantities (e.g., area and volume) probabilistically. A CR is performed by first creating an 

‘unconditional realization’ and then ‘conditioning’ it to the observed data and deterministic 

trends (Chiles and Delfiner 1999).  Unconditional realizations (eq 5-3) include simulated 

values at the estimation locations (𝐳𝑒,𝑦
u ) as well as at the observation locations (𝐳𝑜,𝑦

u ):   

 

 �
𝐳𝑒,𝑦
u

𝐳𝑜,𝑦
u � = 𝐂��

𝐐𝑒𝑒 𝐐𝑜𝑒,𝑦
𝑇

𝐐𝑜𝑒,𝒚 𝐐𝑜𝑜
��

𝑇

𝐮      eq 5-3 

 

Note that the vector 𝐳𝑜,𝑦
u  includes simulated values corresponding to the observations 

from all cruises, but only observations from cruise y have their stochasticity correlated 

with that of the estimation locations.  Here, Qee is the m×m covariance matrix between 

estimation locations, and u is an (m+n)×1 vector of random independent samples from the 

standard normal distribution.  The operator C( ) returns the triangular matrix resulting from 

Cholesky decomposition of the subject matrix. 

The unconditional realizations are then conditioned to the observed data and 

deterministic trends through:  

 

 𝐳e,y
c = 𝜦𝑦𝑇�𝐳𝑜 − 𝐳𝑜,𝑦

u � + 𝐳𝑒,𝑦
u        eq 5-4  

 

where 𝐳𝑜 is the n×1 vector of observed values, and  𝐳𝑒,𝑦
c  is the resulting cruise-specific CR, 

an m×1 vector of values corresponding to the estimation locations. 

The CRs are performed in two steps.  First, BWDO concentration is simulated across 

the entire estimation grid.  Then, BWHF is simulated over those locations where the 

simulated BWDO is below the hypoxic threshold.  At hypoxic estimation locations, the 
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simulated BWDO values are used as a trend variable in the BWHF model.  Simulated 

values are limited to within realistic ranges (determined to be 0-7 mg L-1 for BWDO and 

0.001-0.8 for BWHF, based on a review of the observed data).  However, these constraints 

did not have a large effect on results, because the vast majority of simulated values fell 

within these ranges.  Without these constraints, the estimated hypoxic volume would be 

6% smaller, on average, as a result of (unrealistic) negative hypoxic thicknesses. 

The two-step simulation process is repeated 1,000 times for each cruise, resulting in 

1,000 realizations of both BWDO and BWHF.  For each realization of BWDO, the 

hypoxic area is calculated as the number of estimation locations simulated to be hypoxic 

multiplied by the grid cell area (25 km2); and for each realization of BWHF, the hypoxic 

volume is calculated as the vector of simulated BWHF values multiplied by the 

corresponding vector of water column depths, all multiplied by the grid cell area.  From 

this ensemble of results, we determine the mean and 95% confidence intervals for the 

hypoxic area and volume for each cruise.   

5.2.3 Instrument adjustment 

Adjustments were made to address biases that arise from the use of different sampling 

instruments.  In particular, for cruises when only the rosette sampler was used (Figure 5-1), 

one would expect the hypoxic extent to be underestimated because the rosette sampler does 

not reach as close to the sea floor as the handheld sampler.  We quantified this bias by 

comparing data from sampling events where both instruments were used.  For these cases, 

BWDO and BWHF were calculated for both the synthesized profile (both instruments) and 

the rosette-only profile.  Probabilistic relationships were then developed between the 

synthesized results and the rosette-only results.  When performing the conditional 

realizations (Section 5.2.2), rosette-only observations were adjusted by sampling from 

these relationships.  The process of developing these relationships is described in the 

following paragraphs. 

Using data from sampling events where both the rosette and handheld samplers were 

deployed, we developed relationships between the hypoxic conditions (BWDO and 

hypoxic thickness) derived from the synthesized data (both instruments) and the hypoxic 
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conditions derived from rosette-only data.  Figure 5-6 presents BWDO values derived from 

the synthesized data (SBO) versus BWDO values from the rosette-only data (RBO).  We 

divided the data into two different categories (blue and red, Figure 5-6), where the blue 

data meet the following criterion:  
 

 𝑆𝐵𝑂 − 𝑅𝐵𝑂 > 2𝜎𝜀           eq 5-5 
 

where σε
 is the standard deviation of the stochasticity that is not spatially correlated (i.e. 

microvariability), as described in the primary text.  For the blue data, the relationship 

between SBO and RBO can be represented approximately using a simple linear regression 

with normally distributed residuals (𝜖):   
 

 𝑆̂𝐵𝑂,𝑏𝑙𝑢𝑒 = 0.973𝑅𝐵𝑂,𝑏𝑙𝑢𝑒 + 𝜖          eq 5-6 
 

The remaining (red) data can be modeled as a uniform distribution between zero and 

the threshold criterion used in eq 5-5: 
 

 𝑆̂𝐵𝑂,𝑟𝑒𝑑 ~ U(0, [𝑅𝐵𝑂,𝑏𝑙𝑢𝑒 − 2𝜎𝜀])          eq 5-7 
 

Using these relationships, we can simulate values of SBO for rosette-only sampling 

events.  (Each conditional realization is assigned a unique set of simulated values.)  For 

RBO less than 2σε mg L-1, eq 5-6 always applies.  For RBO greater than 2σε mg L-1, eq 5-6 is 

applied at an 88.9% probability and eq 5-7 at an 11.1% probability.  These percentages 

reflect the actual partitioning of the data as presented in Figure 5-6.  From a physical 

perspective, application of eq 5-7 represents situations where there is a thin, high-density, 

bottom layer that is not reached by the rosette.  Conversely, the application of eq 5-6 

implies that the rosette did reach the bottom-most layer of water.  When performing 

simulations, we do not sample from the error term (𝜖) in eq 5-6, as this variability is 

expected to be primarily reflective of the microvariability already accounted for within the 

covariance model.   
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For hypoxic thickness, the relationship between the synthesized and rosette-only data is 

somewhat simpler (Figure 5-7).  Here, the relationship between synthesized thickness (STh) 

and rosette thickness (RTh) can be approximately modeled using a simple linear regression 

with normally distributed residuals (the units of the equation are meters): 
 

 𝑆̂𝑇ℎ = 𝑅𝑇ℎ + 0.82 + 𝜖     where …  𝜖 ~ N(0,0.36)   eq 5-8 
 

When performing simulations, we do sample from the error term (𝜖) of eq 5-8, as this 

error is expected to be primarily reflective of the variability in the maximum rosette 

sampling depth, rather than the natural variability in the thickness of the hypoxic layer.  

For observations that are not hypoxic based on the rosette measured BWDO, but become 

hypoxic when performing the instrument adjustment for BWDO (RBO > 2 mg L-1 and 𝑆̂𝐵𝑂< 

2 mg L-1), we multiply 𝑆̂𝑇ℎ (which is 0.82 + ϵ in this case) by a sample from a standard 

uniform distribution because it is unclear what portion of the offset is hypoxic.  Although 

more realistic, this additional step has a negligible impact on results. 

In 1991 a larger bias adjustment is required for the first 38 sampling events because the 

ship’s fathometer was not functioning correctly, causing the rosette sampler to be lowered 

1.5 meters less than it would have been otherwise (N.N. Rabalais, cruise records).  For 

these observations, the probabilistic relationships between synthesized and rosette-only 

results are again determined based on sampling events where both instruments were 

functioning properly (as described above) but with the bottom 1.5 m of the rosette-only 

profiles removed.  Here, eqs 5-9, 5-10 and 5-11 are analogous to eqs 5-6, 5-7, and 5-8, 

respectively.  For R1.5,BO greater than 2σε mg L-1, eq 5-9 is applied at an 67.5% probability 

and eq 5-10 at an 32.5% probability.   
 

 𝑆̂𝐵𝑂,𝑏𝑙𝑢𝑒 = −0.163 + 0.967𝑅1.5,𝐵𝑂,𝑏𝑙𝑢𝑒 + 𝜖        eq 5-9 

 𝑆̂𝐵𝑂,𝑟𝑒𝑑 ~ U(0, (𝑅1.5,𝐵𝑂,𝑏𝑙𝑢𝑒 − 2𝜎𝜀))         eq 5-10 

 𝑆̂𝑇ℎ = 𝑅1.5,𝑇ℎ + 2.3 + 𝜖      where …  𝜖 ~ N(0,0.39)  eq 5-11 
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Figure 5-6: BWDO from synthesized data (SBO) vs. BWDO from rosette instrument only 
(RBO) 

 
Figure 5-7: Hypoxic thickness from synthesized data (STh) vs. hypoxic thickness from 
rosette instrument (RTh)  
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5.3 Results 

5.3.1 Model parameters   

The BWDO and BWHF models include several parameters that characterize the 

deterministic and stochastic model components.   Regression coefficients for the BIC-

selected trend variables, explaining a portion of the spatial variability in observed BWDO 

and BWHF, are provided in Table 5-1.  The standard errors of these coefficients are low 

(i.e., p<0.05), suggesting these trends are statistically significant. The coefficients for the 

cruise-specific categorical variables, accounting for year-to-year variability in the 

responses, are included in Table 5-2.  Overall, the deterministic model components explain 

28% and 32% of the total (spatial plus inter-annual) variability in BWDO and BWHF, 

respectively, while the stochastic components of the models explains the remainder of the 

spatial variability.  If trend variables are omitted (i.e., the OK formulation), then the 

deterministic components only account for inter-annual variability, and only 12% and 11% 

of the total variability in BWDO and BWHF is explained, respectively.   

The BWDO model includes trends with easting, northing, and depth.  The trend 

between BWDO and easting is quadratic with a minimum at 794 km UTM easting, 

between the Mississippi and Atchafalaya river outfalls, which is reasonable given that 

these rivers provide the freshwater flows and nutrients that are important for hypoxia 

formation.  In 1998, the only year for which a cruise-specific east-west trend with BWDO 

is selected, the minimum is shifted to 1111 km easting, outside of the study area, indicating 

that BWDO concentrations decrease monotonically with easting within the study area.  

The unique spatial distribution in 1998 has been noted previously, and is generally 

attributed to unusually persistent eastward currents (Rabalais et al. 2007).  A similar 

BWDO pattern has been noted for 2009 (Turner et al. 2012) but it was not sufficiently 

strong to result in a cruise-specific trend in this analysis.  The trend between BWDO and 

northing is linear, and suggests that BWDO concentrations are higher to the south.  The 

trend between BWDO and bathymetry (depth) is quadratic with a minimum at 22 m.   

 



77 

 

Table 5-1:  Regression coefficients (𝛽̂𝑝) with standard errors (𝜎𝛽� ) for normalized trend 
variables selected in the BWDO and BWHF models 

Variable 
BWDO     
(mg L-1) 

 

BWHF 
(-) 

𝛽̂ 𝜎𝛽�  
 

𝛽̂ 𝜎𝛽�  
Easting -0.62 0.09 

 
0.018 0.007 

Easting2 0.25 0.07 
 

-0.020 0.006 
Northing -0.36 0.09 

 
n.s. 

Depth -2.31 0.18 
 

n.a. 
Depth2 2.45 0.17 

 
n.a. 

BWDO n.a. 
 

-0.065 0.005 
c.s.E 1998 -1.35 0.45 

 
n.s. 

c.s.E=cruise specific trend for Easting,  
n.s.=not selected,  
n.a.=not available 

 

Table 5-2:  Coefficients (a.k.a. annual intercepts, 𝛽̂𝑎) for categorical variables in the 
BWDO and BWHF models 

  BWDO BWHF     BWDO BWHF 
year (mg L-1) (-)   year (mg L-1) (-) 
1985 2.43 0.19 

 
1998 2.71 0.18 

1986 2.71 0.18 
 

1999 1.82 0.31 
1987 3.13 0.16 

 
2000 4.19 0.24 

1988 5.40 0.10 
 

2001 2.13 0.22 
1989 3.30 0.11 

 
2002 1.97 0.19 

1990 2.84 0.16 
 

2003 3.63 0.15 
1991 2.71 0.15 

 
2004 2.22 0.32 

1992 2.76 0.14 
 

2005 2.99 0.23 
1993 1.91 0.20 

 
2006 2.51 0.22 

1994 2.30 0.21 
 

2007 2.01 0.29 
1995 1.94 0.18 

 
2008 1.84 0.26 

1996 1.65 0.21 
 

2009 3.82 0.30 
1997 2.03 0.19 

 
2010 2.10 0.27 

        2011 2.39 0.20 
 

The linear and quadratic trends with depth, easting, and northing can be aggregated, 

and the overall trend in BWDO can be illustrated graphically (Figure 5-8).  The overall 

trend should realistically represent the spatial pattern in BWDO, and this is evaluated by 
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comparing the trend to a hypoxic frequency map developed by LUMCON (2012) (Figure 

5-9).  As shown, there is remarkable agreement between these maps, with the areas of low 

BWDO in Figure 5-8 generally coinciding with the areas of high hypoxic frequency in 

Figure 5-9. 

Because BWHF was modeled as a function of BWDO, it effectively inherits the trends 

from the BWDO model.  The trend with BWDO is linear and suggests that the BWHF is 

larger where BWDO concentrations are lower.  The model for BWHF also includes a 

quadratic trend with easting, suggesting a maximum at 701 km, about 30 km east of the 

Atchafalaya outfall location (though the overall trend in BWHF is also affected by the 

trends in BWDO).  No cruise-specific east-west trends were selected for the BWHF model.   

The models also include covariance parameters that characterize their stochastic 

components.  For BWDO, σε
2 and ση

2, commonly referred to as the nugget and partial sill, 

were 0.39 and 2.33 (mg2 L-2), respectively.  Since σε
2 is smaller than ση

2, the majority of 

the stochasticity in the model is spatially correlated.  The approximate range of spatial 

correlation (3r, per eq 3-5) is 94 km in the east-west direction and 53 km in the north-south 

direction.  The greater correlation distance in the east-west direction was expected due to 

the dominant east-west current pattern (Wiseman and Kelly 1994, Zavala-Hidalgo et al. 

2003).  For BWHF, the spatial correlation of the stochasticity is somewhat weaker with σε
2 

and ση
2 similar in magnitude, having values of 0.009 and 0.011 (unit-less), respectively.  

Also, the correlation range was 63 km in all directions (anisotropy was negligible).  

Overall, spatially correlated stochasticity accounts for the greatest portion of the variability 

in both BWDO and BWHF.  As discussed in Section 4.3.1, the spatial correlation of the 

stochasticity is consistent with the effects of varying coastal current patterns, influencing 

the distribution of hypoxia over the spatial scales described above.  In general, the 

correlation ranges are considerably longer than the typical distances between sampling 

locations (Figure 5-3), especially on the eastern shelf, suggesting the sampling network is 

adequate for resolving the spatially correlated stochasticity of the system. 
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Figure 5-8: Covariate maps and resulting deterministic trend (for an average year) 
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Figure 5-9:  Frequency of hypoxia, 1985-2008, station locations as black dots (LUMCON 
2012) 
 

5.3.2 Tests of linearity 

In Figures 5-10 and 5-11, the residuals (stochastic portion) of the UK models for 

BWDO and hypoxic fraction, respectively, are plotted versus each of the trend variables 

used in these models.  Because the residuals are generally evenly distributed around zero 

throughout the ranges of the trend variables, the linear model formulation appears 

reasonable.  Note that the models do include nonlinear transformations of the trend 

variables (i.e. depth-squared) but they are incorporated within a linear modeling 

framework. 
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Figure 5-10: BWDO residuals (stochastic portion of UK model) vs. covariates 
 
 

 
Figure 5-11: BWHF residuals (stochastic portion of UK model) vs. covariates 
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5.3.3 Hypoxic extent 

Using CR, we determined the mean and 95% confidence intervals for hypoxic area and 

volume of each cruise (Figure 5-12).  The largest estimated hypoxic area was for 1996, but 

it was not significantly different from 1991, 1993, 1995, 1997, 1999, 2001, 2002, 2007, or 

2008 (p>0.05), given the uncertainty in the area estimates.  The largest hypoxic volume 

estimate was for 2008, but it was not significantly different from 1993, 1996, 1999, 2004, 

or 2007 (p>0.05).  Both hypoxic area and volume were lowest in 1988, a drought year 

(Rabalais et al. 2007).  

Two sets of hypoxic area estimates, determined by LUMCON, are also included in 

Figure 5-12 for comparison.  The first set are the original LUMCON estimates, determined 

by hand contouring, as described above.  The second set are revised estimates developed as 

part of this study; also by hand contouring, but using the updated BWDO values for this 

study (which are superior because they reflect post-cruise DO calibrations).  In most cases, 

the original LUMCON estimates (Figure 5-12, open squares) overlap the revised estimates 

(solid squares), and the majority of the LUMCON estimates fall within the 95% 

confidence intervals determined by this study.  However, for the first third of the study 

period (1985-1993), the new estimates are consistently higher than the LUMCON 

estimates. 

LUMCON did not make an estimate for 1989, because only a portion of the shelf was 

sampled that year.  Our method does allow for extent estimates for 1989, and the wide 

confidence intervals (Figure 5-12) reflect the relatively large uncertainties.  Even though 

data for 1989 were limited, the overall spatial trends (based on the data from all years) help 

to constrain the variability in the CRs to within realistic ranges, across the study area.  We 

note that the 1989 estimate presented here is consistent with previous estimates developed 

from nutrient loading models (Scavia and Donnelly 2007, Turner et al. 2005).  

There was considerable interannual variability in the spatial distribution of hypoxia and 

in the thickness of the hypoxic bottom layer (Figure 5-13 through 5-15).  Years with 

similar hypoxic areas may have very different average hypoxic thicknesses and thus 
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volumes.  For example, 2002 and 2008 have similar hypoxic areas, but they are very 

different in terms of hypoxic thickness, such that 2008 has approximately twice the 

hypoxic volume of 2002 (Table 5-3).    The results indicate that the average bottom layer 

hypoxic thickness for the 27-year study period was 3.9 m, with the thickest average layers 

of approximately 6.2 and 6.3 m occurring in 2008 and 2009, respectively.  Over the 27-

year study period, hypoxic volume is correlated with area (r2=0.77).  Interestingly, hypoxic 

area and thickness are also somewhat positively correlated over most years (r2=0.37, not 

including 1998 and 2009, which were subject to unusually strong eastward currents 

(Rabalais et al. 2007, Turner et al. 2012)), such that volume increases exponentially 

relative to area.  Additional maps, showing example CRs, are included in Figure 5-16 

 

 
Figure 5-12:  Bottom layer hypoxic extent estimates with 95% confidence intervals by 
year; estimates prior to making adjustments for instrument bias as triangles; previous 
LUMCON area estimates as open squares; revised LUMCON area estimates as solid 
squares.   
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Figure 5-13:  Maps showing modeled probability of hypoxia, 1985-2011 
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Figure 5-14:  Maps showing modeled median BWDO concentration, 1985-2011 
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Figure 5-15:  Maps showing modeled median BW hypoxic thickness, 1985-2011 
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Figure 5-16:  Maps showing example conditional realizations for BWDO (top) and 
hypoxic thickness (bottom), 2001-2011 
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Table 5-3:  Tabulated hypoxic area and volume estimates, 1985-2011 

Year 
Area (1000 km2) 

 
Volume (km3) 

mean median 
2.5 
perc 

97.5 
perc   mean median 2.5 perc 

97.5 
perc 

1985 14.3 14.4 10.6 18.0 
 

53.6 52.2 32.8 83.4 
1986 12.7 12.5 9.4 17.0 

 
39.0 37.5 24.3 61.7 

1987 9.8 9.6 6.8 14.3 
 

24.2 22.5 12.1 46.7 
1988 0.7 0.6 0.2 1.7 

 
1.3 0.8 0.0 5.3 

1989 10.4 9.7 4.7 20.6 
 

28.4 24.0 10.2 69.6 
1990 15.0 14.6 10.5 21.6 

 
59.3 57.2 37.1 94.7 

1991 17.9 17.6 13.4 23.9 
 

70.0 67.4 44.3 112.9 
1992 11.6 11.3 8.7 16.1 

 
33.7 32.5 22.0 54.2 

1993 22.7 22.4 18.6 28.7 
 

99.5 97.0 71.2 139.2 
1994 16.6 16.4 12.9 21.4 

 
73.8 72.4 51.2 103.9 

1995 21.3 20.9 17.0 27.2 
 

66.3 64.1 44.0 105.0 
1996 23.2 22.9 18.5 29.6 

 
92.9 89.5 64.3 139.0 

1997 18.2 17.9 14.7 22.9 
 

54.8 52.1 36.8 88.2 
1998 11.1 11.0 9.2 13.2 

 
54.9 53.6 38.5 74.8 

1999 21.2 21.0 16.8 27.1 
 

111.3 108.9 77.2 158.6 
2000 3.8 3.7 2.7 5.2 

 
15.0 14.4 8.5 24.2 

2001 20.1 19.9 16.8 24.5 
 

73.0 71.6 52.2 101.9 
2002 21.7 21.6 18.5 25.7 

 
67.6 65.6 48.3 94.3 

2003 5.5 5.5 4.1 7.3 
 

11.3 11.0 6.1 18.5 
2004 15.7 15.4 12.5 20.0 

 
83.6 80.0 54.2 131.6 

2005 10.2 10.2 8.1 13.1 
 

30.7 29.4 19.7 47.9 
2006 15.6 15.5 12.5 19.9 

 
62.6 60.9 42.9 90.9 

2007 20.6 20.6 17.0 25.1 
 

107.0 104.9 75.1 153.4 
2008 22.3 22.3 18.8 26.2 

 
137.5 135.2 101.3 185.5 

2009 7.1 7.0 5.7 8.5 
 

44.3 43.6 32.5 61.3 
2010 15.6 15.5 12.1 19.4 

 
65.6 63.9 42.8 102.1 

2011 17.1 17.1 14.4 19.9   62.6 61.5 47.0 83.1 
average 14.9 14.7 11.7 19.2   60.1 58.3 40.6 90.1 

 

The hypoxic extent can be determined using a variety of different interpolation and 

simulation-based methods.  Figure 5-17 compares the preferred area estimates (Table 5-3) 

to areas inferred from less-optimal methods.  This comparison includes interpolation 

(‘kriged’) estimates, which are consistently lower than the results determined from other 

methods, as discussed further in the next section. 
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This comparison (Figure 5-17) also includes estimates developed using CRs from an 

OK formulation (without trend variables).  The ‘OK’ estimates have average confidence 

intervals more than twice as wide as those from UK; and the OK hypoxic area and volume 

estimates are 53% and 121% greater than the UK estimates, respectively.  OK tends to 

over-estimate the extent of hypoxia outside of the sampling cruise envelope, because 

unlike UK, OK does not use trend variables to represent large-scale spatial patterns in DO 

and hypoxic fraction.  These trends (e.g., Figure 5-8) generally indicate that conditions 

become less hypoxic as one moves away from the most intensively sampled areas of the 

shelf.   

 

 
Figure 5-17: Hypoxic area estimates developed using different geostatistical methods 
(solid blue diamonds represent preferred estimates) 
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5.4. Discussion 

The geostatistical modeling results can be used to assess temporal trends in hypoxic 

zone size for the 27-year study period.  Hypoxic volume increased by an average of 2.3% 

per year as a linear trend with time (1.4 km3 yr-1, percent increase determined by dividing 

by the 27-year mean hypoxic extent), but this trend was not significant (p=0.12).  Hypoxic 

area increased at a lesser rate of 0.9% per year (140 km2 yr-1) and was also not significant 

(p=0.42).  However, the relatively large increase in volume relative to area reflects a 

significant increasing trend in hypoxic layer thickness (1.8% per year, 0.069 m yr-1, 

p=0.05).  Note that trend significance is affected by the uncertainty in the geostatistical 

estimates; trend significance is determined using a Monte Carlo approach where temporal 

trend coefficients are developed for each of the 1000 sets of CRs, and an overall 

probability distribution is developed by sampling from the uncertainty in these trend 

coefficients (note p-values are based on a two-sided test).  Without accounting for 

uncertainty, the volume, area, and thickness trends would have p-values of 0.09, 0.38, and 

0.01, respectively. 

The new hypoxic area estimates can be compared to the previous hypoxic area 

estimates (LUMCON 2012, Rabalais et al. 2007).  For the 27-year study period, the 

previous area estimates increased at a highly significant rate of 2.6% per year (360 km2 yr-

1, p=0.01), substantially greater than the 0.9% rate for the new estimates.  This 

dissimilarity is due primarily to differences in estimates for the earlier years of the study 

period.  For 1985-1987, the new estimates are consistently higher than the previous 

estimates primarily because the geostatistical methodology accounts for the possibility of 

hypoxia occurring outside the envelopes of the cruises, which were relatively small in 

these years.  For 1990, 1991, and 1993, the new estimates are also higher because of the 

instrument bias adjustments developed in this study.  For 1985-1993 (except 1989, for 

which there is no previous estimate), the mean geostatistically-determined hypoxic area is 

39% (3650 km2) greater than that of the previous estimates.   

For 1994-2011, the new area estimates are in general agreement with the previous area 

estimates.  Over this time period, the two sets of estimates are highly correlated (r2=0.88), 
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the means of the two datasets are of negligible difference, and only three of the previous 

estimates (1996, 2003, and 2010) fall outside the 95% confidence intervals of the new 

estimates (Figure 5-12).  This suggests that when the biasing issues noted above are 

avoided, there is approximate agreement between the geostatistical and hand-contouring 

estimates. 

The new extent estimates have implications for our understanding of how hypoxia is 

changing over long temporal scales.  Multiple studies using nutrient loads to predict the 

previous hypoxic area estimates have suggested the Gulf is becoming increasingly 

susceptible to hypoxia, based on increasing hypoxic area relative to nutrient loading 

(Forrest et al. 2011, Greene et al. 2009, Liu et al. 2010, Turner et al. 2008).  (Nutrient 

loading increased greatly in the 1970s but remained relatively stable throughout the study 

period (Goolsby and Battaglin 2001, Scavia and Donnelly 2007).)  Increases in hypoxic 

susceptibility have also been suggested in other studies of the Gulf and other coastal 

systems (Conley et al. 2009, Kemp et al. 2009, Stow et al. 2005). The new hypoxic area 

estimates, however, exhibit relatively little increase over time, especially when compared 

to the previous estimates, potentially suggesting less system change during the study 

period than previously thought.  But, the new hypoxic thickness and volume estimates do 

increase to a greater degree, potentially suggesting a more vertically-oriented increase in 

hypoxic extent.  Future studies could focus on re-calibrating existing nutrient-loading 

models to these new hypoxic extent estimates to develop a refined understanding of how 

Gulf hypoxia may be changing over time. 

Uncertainties in the new hypoxic extent estimates, represented by the 95% confidence 

intervals (Figure 5-12), reflect the limited spatial scope and resolution of shelfwide cruise 

sampling.  Uncertainties are generally greatest in the earlier years when cruises were 

smaller and did not always use instruments that reached the sea floor.  From 1985-1993, 

the mean relative standard error for hypoxic area was 23%, but it decreased to 11% for 

1994-2011.  Uncertainties also appear to be larger in years with relatively severe hypoxia 

(i.e., lower average BWDO and larger hypoxic area), likely because more of the estimation 

grid is subject to the possibility of hypoxia (in years with higher average BWDO, most of 

the estimation grid is determined to be well above the hypoxic threshold, such that 
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simulated values rarely fall below the hypoxic threshold).  In the future, the modeling 

framework presented here could be used to evaluate different sampling designs based on 

how well they constrain estimate uncertainty.  The modeling approach could also be used 

to compare hypoxic extent results and associated uncertainties using hypoxic threshold 

choices other than 2 mg L-1. 

Regardless of the precision of the estimates, it is important to remember that they 

represent conditions at only one point in time (i.e., during the shelfwide cruises), and that 

hypoxic extent can vary substantially throughout the summer due to changes in organic 

matter production, wind-driven mixing events, and fluctuating current patterns (Hetland 

and DiMarco 2008, Wang and Justic 2009, Wiseman et al. 1997).  As a result, these 

estimates do not necessarily reflect hypoxic conditions over the entire summer (though 

back-to-back cruises have demonstrated fairly consistent hypoxic areas under stable 

weather conditions (Rabalais et al. 1999)).  More detailed monitoring and biophysical 

modeling are needed to better understand the short- and long-term dynamics of hypoxia 

formation, and to mechanistically interpret the temporal variability in the extent estimates 

presented here.   

The primary feature of the geostatistical approach, when compared to more traditional, 

interpolation-based approaches, is the use of simulations (i.e., CRs) (Zhou et al. 2013).  

The most obvious benefit is the ability to quantify the uncertainty in extent estimates.  A 

second benefit is that CRs provide more realistic extent estimates than can be derived from 

kriging (or Gauss-Markov smoothing (Emery and Thomson 2001)) alone.   In this study, 

hypoxic area estimates derived from kriged maps (Figure 5-17) were substantially lower 

than both our CR estimates and the LUMCON estimates.  This is because the kriged maps 

tend to characterize large portions of the estimation grid as slightly above the hypoxic 

threshold.  However, due to the stochasticity of the system, these locations still have some 

probability of being hypoxic.  The CR approach, which samples from the uncertainty in the 

system, accounts for this possibility, and thus results in larger hypoxic area estimates.   

This is consistent with Chiles and Delfiner (1999), who argue that CR, rather than kriging, 

is the more appropriate approach for determining spatially aggregated quantities.  A third 

advantage of the CR approach is that it provides a framework for performing instrument 
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bias adjustments probabilistically, such that adjustment uncertainty is propagated to the 

hypoxic extent estimates.  Finally, CR was fundamental to probabilistically determining 

hypoxic volume (in addition to area).  The two-step CR approach, developed here, can be 

compared to other volume estimation methods, such as multi-layer kriging (Murphy et al. 

2010) and three-dimensional CR (Zhou et al. (submitted manuscript)), which have been 

applied in Chesapeake Bay.  A benefit of our approach is that it allows uncertainty 

quantification of hypoxic volume within a relatively simple (two-dimensional) 

geostatistical framework. 

This study also demonstrates the benefits of including trend variables within the 

geostatistical model (i.e., the UK formulation) because the deterministic trends help reduce 

model uncertainty and result in more realistic extent estimates (Figure 5-17).  The 

advantages of UK have been demonstrated previously for Lake Erie and Chesapeake Bay 

hypoxia (Murphy et al. 2010, Zhou et al. 2013), but are perhaps even more salient for an 

open system such as the Gulf shelf.  When trends in DO are not modeled, it has been 

necessary to limit the estimation grid around the bounds of the sampling cruise (NOAA 

2012, Rabalais et al. 1999), such that the size of the cruise can potentially bias the inferred 

hypoxic area.  By including trend variables that explain the large-scale spatial patterns in 

BWDO and BWHF, it is possible to develop realistic CRs of DO across the entire study 

area, so the same estimation grid can be used for all cruises.   

Finally, the results confirm that hypoxic area on the Louisiana-Texas shelf greatly 

exceeds the Hypoxia Task Force goal of 5000 km2 as a five-year running average (EPA 

2001, 2008).  The most recent five-year period from our study, 2007-2011, has a mean 

hypoxic area of 16,600 km2 with a 95% confidence range of 15,100-18,000 km2.  Clearly, 

additional management measures are required if the hypoxic extent is to be reduced to 

comply with the Task Force goal. 
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CHAPTER 6:  Mechanistic Model 

 

A mechanistic model is developed to predict mid-summer bottom water dissolved 

oxygen (BWDO) concentration and hypoxic area on the Louisiana-Texas shelf of the 

northern Gulf of Mexico (1985-2011).  Because of its parsimonious formulation, the model 

possesses many of the benefits of simpler, more empirical models, in that it is 

computationally efficient and can rigorously account for uncertainty through Bayesian 

inference.  At the same time, it incorporates enough biophysical realism that its 

parameterization can be informed by field-measured biological and physical rates.   The 

model is used to explore how freshwater flows, nutrient loads, and winds affect hypoxia on 

western and eastern sections of the shelf, delineated by the Atchafalaya River outfall.  The 

text of this chapter is reproduced in part from unpublished work (in review): 

 

Obenour, D. R., A. M. Michalak, and D. Scavia.  Probabilistic prediction of dissolved 

oxygen on the east and west Louisiana-Texas shelf. 

 

6.1  Introduction 

Quantitative modeling plays an important role in the management of Gulf hypoxia by 

synthesizing knowledge about the causes of hypoxia, and by predicting how the severity of 

hypoxia is affected by changing nutrient loads and other environmental factors (Justic et al. 

2007, Scavia et al. 2004).  Most existing Gulf hypoxia models can either be categorized as 

‘simple’ in that they are more empirical and have little (or no) spatial detail (Greene et al. 

2009, Turner et al. 2012), or ‘complex’ in that they are more mechanistic and provide 

richer spatial information (Bierman et al. 1994, Fennel et al. 2011).  The purpose of this 

study is to develop and validate a model of intermediate complexity that is parsimoniously 

mechanistic and spatially two-dimensional (though at low resolution).  The resulting model 
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possesses many of the benefits of simpler models, in that it can rigorously account for 

uncertainty, is computationally efficient, and can be readily applied to forecasting 

scenarios relevant to water quality management.  At the same time, it incorporates enough 

biophysical realism that its parameterization can be informed by field-measured biological 

and physical rates.   

Another difference between this study and previous Gulf modeling studies is that it 

makes use of new estimates of mean bottom water dissolved oxygen (BWDO) 

concentration and hypoxic area, as determined from a geostatistical model (Chapter 5).  

The geostatistical estimates were developed for mid-summer conditions, based on 

dissolved oxygen measurements collected by the Louisiana Universities Marine 

Consortium (LUMCON) during extensive monitoring cruises (Rabalais et al. 1999, 

Rabalais et al. 2007).  The geostatistical approach circumvents biasing issues that were 

shown to affect previous hypoxic area estimates derived from these data.  In addition, the 

geostatistical estimates include measures of uncertainty, related primarily to sampling 

coverage and types of sampling instruments used.  These uncertainties are used in the 

present study, effectively giving more weight to estimates with lower uncertainty. 

This work builds on findings from previous studies that used largely empirical models 

to identify key anthropogenic and environmental factors related to Gulf hypoxia formation.  

Many of these earlier models confirmed the relationship between mid-summer hypoxia and 

spring nutrient load (Scavia et al. 2003, Scavia and Donnelly 2007, Turner et al. 2006).  

However, other studies have shown that river flow, which is significantly correlated with 

nutrient load, is also an effective predictor of hypoxia, such that the relative roles of 

nutrients and flows cannot be completely disentangled using empirical models alone 

(Forrest et al. 2011, Wiseman et al. 1997).  Flows affect the degree of water column 

stratification, which was found to be another important predictor of hypoxia, along with 

nutrients, in a recent geostatistical modeling study (Obenour et al. 2012b).  The importance 

of both nutrients and stratification has also been demonstrated in mechanistic modeling of 

an intensely monitored location on the eastern shelf (Justic et al. 1996, 2002).  In addition, 

two recent studies have found wind metrics to be useful in improving predictors of hypoxic 

area, likely because of wind’s influence on transport and stratification (Feng et al. 2012, 
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Forrest et al. 2011).  The present study provides a means of testing these relationships over 

a 27-year study period (1985-2011) on the east and west Louisiana-Texas shelf.   

6.2 Materials and methods 

6.2.1 Dissolved oxygen and hypoxic extent 

Mid-summer mean dissolved oxygen concentration and hypoxic area are the primary 

response variables considered in this study.  Results from a geostatistical model (Chapter 

5) provide estimates of these variables, with associated uncertainties, for two sections of 

the Louisiana-Texas shelf, divided at the Atchafalaya River outfall location (Figure 6-1).  

The west shelf section extends from 342.5-672.5 km Universal Trans Mercator (UTM) 

easting, and the east shelf section extends from 672.5-837.5 km UTM easting.  The shelf 

sections represented in the model are limited to depths of 3 to 80 meters, and to UTM 

northings greater than 3122.5 km.  Overall, the study area covers the regions where mid-

summer hypoxia is most commonly observed.  The geostatistical model inputs include 

only LUMCON DO measurements, spatial coordinates, and bathymetry.  No biophysical 

processes are represented in the geostatistical model, so the results provide an independent 

dataset for calibrating mechanistic models.  The uncertainties in the geostatistical estimates 

are approximately normally distributed, and are represented as such in this study.  

6.2.2 River flow and load data 

The study uses United States Geological Survey (USGS) monthly flow and nutrient 

loading data for the Atchafalaya and Mississippi Rivers 

(http://toxics.usgs.gov/hypoxia/mississippi/nutrient_flux_yield_est.html).  Although USGS 

provides loading data based on two different estimation methods, only the Adjusted 

Maximum Likelihood Estimator (AMLE) (Runkel et al. 2004) method includes results for 

the entire period of this study, and thus only AMLE results are used here.  The flow and 

load estimates are available for each calendar month, and linear interpolation is used to 

recalculate the loads for 30-day averaging periods leading up to the starts of the annual 

shelfwide cruises.   Previous studies have generally focused on TN or NO2-3 loading data 

for modeling hypoxia (Scavia et al. 2004).  While TN loads are naturally larger in 
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magnitude than NO2-3 loads, they tend to be highly correlated and yield similar results in 

more empirical models (Forrest et al. 2011).  However, because this model is 

mechanistically derived, the magnitude of loading is important.  TN includes NO2-3, NH3, 

and organic nitrogen (ON); and while NO2-3 and NH3 are highly bioavailable, organic 

nitrogen is more recalcitrant.  Based on studies suggesting that about 60% of Mississippi 

River ON is dissolved (Goolsby and Battaglin 2001), and about 20% of dissolved ON is 

photo-chemically converted to NH3 on the shelf (Bushaw et al. 1996), 12% of river ON is 

represented as bioavailable in this study.  Thus, total ‘bioavailable’ model load is 

calculated as NO2-3 + NH3 + 0.12 × ON. 

 

 
Figure 6-1: Louisiana-Texas Shelf study area 
 

6.2.3 Coastal wind data 

The study uses coastal wind data from the National Data Buoy Center 

(http://www.ndbc.noaa.gov/).  There are two stations with fairly complete records for the 

period of interest: Sabine Pass (SRST2) and Southwest Pass (BURL1).  Data from 

Calcasieu Pass (CAPL1) and Grand Isle (GISL1) are used to augment missing data for 

Sabine Pass and Southwest Pass, respectively, after applying appropriate bias corrections 

(station locations are shown in Figure 6-1).  For brevity, we refer to the combined 

SRST2+CAPL1 dataset as the ‘west’ dataset, and the combined BURL1+GISL1 dataset as 
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the ‘east’ dataset.  Both datasets cover about 95% of the examined period, and mean 

monthly values are substituted for missing data.  Datasets are used to determine daily east-

west wind velocities that are then averaged over 30-day consecutive periods leading up to 

the starts of the annual shelfwide cruises.  In addition, weighted mean wind stresses (wind 

speed-squared) are determined for 14-day periods prior to the starts of the annual shelfwide 

cruises.  Continuous monitoring data suggest that it takes approximately two weeks for DO 

to be re-depleted following wind mixing events (Rabalais et al. 2007, Walker and Rabalais 

2006), and linearly decreasing weights (14 down to 1) are therefore assigned to wind 

stresses for each of the fourteen days preceding a cruise.  (Seven and 21-day periods were 

also tested, but did not significantly alter model performance.)  The wind stresses from the 

west and east weather stations are applied to the west and east shelf sections using inverse 

distance weighting to shelf section centroids. 

6.2.4 Model formulation 

Model segmentation is based on dividing the shelf east-west and vertically into four 

mixed reactors.  The east-west division is at 672.5 km UTM easting (as described 

previously).  The west and east shelf sections have areas of 48.5 and 14.0 Gm2, and mean 

depths of 28 and 31 m, respectively.  The shelf sections are vertically divided at the 

pycnocline into upper and lower layers.  The exact depth of the vertical division is 

unimportant, given the steady-state modeling assumption used here.   

The upper layers of the model receive flows and nitrogen loads from the Mississippi 

and Atchafalaya Rivers, partitioned between shelf sections using a transport submodel 

(described below).  Nitrogen loads are converted to organic matter and fluxed to the lower 

layer based on an effective settling velocity (vs).  Overall, the differential equation for 

nitrogen in the surface layers is as follows: 

 
𝑑𝑁
𝑑𝑡

= 𝑄𝑟𝐶𝑟𝑁 + 𝑄𝑢𝐶𝑢𝑁 − �𝑄𝑟 + 𝑄𝑢 + 𝑄𝑔�𝐶𝑁 − 𝐴𝑣𝑠𝐶𝑁    eq 6-1 

 

Here, dN/dt, is the time rate of change for nitrogen mass in the shelf section, and 

variables Qr, Qu, and Qg are flows (Gm3 d-1) entering the system from the rivers, upstream 
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model segment, and Gulf, respectively.  The variables CrN, CuN, and CN represent nitrogen 

concentrations (mg L-1) in the river, upstream model segment, and the subject model 

segment, respectively.  Note that QrCrN is the river load (LrN).  A is the area of the shelf 

section. 

The nitrogen that settles to the lower layer is generally associated with organic matter 

developed through primary production.  The differential equation for organic matter 

(represented by carbon) in the lower layers is as follows: 

 
𝑑𝐶
𝑑𝑡

= 𝐴𝑣𝑠𝑅𝐶:𝑁 𝐶𝑁 − 𝑉𝑘𝐶𝐶𝐶        eq 6-2 

 

Here, dC/dt, is the time rate of change for carbon mass in the lower shelf segment, V is 

segment volume (Gm3), kC is the first-order decay rate for organic carbon (d-1), RC:N is the 

ratio of organic carbon to nitrogen, and CC is the concentration (mg L-1) of organic carbon 

in the segment.  Note that it is assumed that there is no advective flux laterally or 

longitudinally because bottom water velocities are small relative to the temporal and 

spatial scales of this model (Rabalais et al. 1999).   

Dissolved oxygen (DO) in the lower layer is lost through bacterial decomposition of 

organic matter and regained through diffusion and mixing of dissolved oxygen from the 

surface layer. The differential equation for DO in the lower layers is as follows: 

 
𝑑𝑂
𝑑𝑡

= 𝐴𝑘𝑎(𝐶𝑂𝑆 − 𝐶𝑂) − 𝑉𝑘𝐶𝐶𝐶𝑅𝑂:𝐶𝜔 −  𝐴𝐶𝑂𝐵/𝐶𝑂𝐵    eq 6-3 

 

Here, dO/dt, is the time rate of change for oxygen mass in the shelf section, ka is the 

reaeration rate (m d-1), COS is the oxygen concentration of the overlying surface layer (mg 

L-1), RO:C is the ratio of oxygen demand to organic carbon, ω is an oxygen demand 

adjustment factor related to processes such as photosynthetic oxygen production, B is the 

benthic oxygen demand (g m-2d-1) at reference DO concentration COB (mg L-1), and CO is 

the DO concentration (mg L-1) in the lower layer.  As shown, both the reaeration and 

benthic oxygen demand terms are affected by the segment’s dissolved oxygen 
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concentration.  Reaeration increases as the gradient between surface and lower layer DO 

concentrations increase (Justic et al. 1996).  Benthic oxygen demand increases as DO 

increases, and this relationship is approximated as linear, as suggested by Lehrter et al. 

(2012). 

Equations 6-1, 6-2, and 6-3 can be solved together for CO under steady state conditions 

(dN/dt  = dC/dt = dO/dt = 0), yielding: 

 

𝐶𝑂 = 1
𝑘𝑎+𝐵/𝐶𝑂𝐵

�𝐾𝑎𝐶𝑂𝑆 −
𝑅𝑂:𝐶𝑅𝑁:𝐶𝜔[𝑄𝑟𝐶𝑟𝑁+𝑄𝑢𝐶𝑢𝑁]

([𝑄𝑟+𝑄𝑢+𝑄𝑔]/𝑣𝑠+𝐴)
�     eq 6-4 

 

Eq 6-4 is the primary mechanistic model formulation used in this study.  However, the 

flows and loads used in eq 6-4 are determined by a transport submodel; and ka is 

determined by a reaeration submodel, both described below.  Note that terms V and kC (eq 

6-3) cancel out when the system is solved for steady state conditions (eq 6-4), and water 

column DO demand is proportional to the organic matter flux from the surface layer.  Also 

note that eq 6-4 predicts the DO concentration representative of the entire lower layer, 

whereas the geostatistical estimates are for BWDO (DO at the very bottom of the water 

column).  Based on an analysis of DO profile data, the 20th percentile DO concentration 

(expected to be typical of the lower layer) is 0.5 mg L-1 higher than the BWDO 

concentration, on average, and this adjustment is included within the model (i.e., CBWDO = 

CO – 0.5).  

6.2.5 Transport submodel 

Coastal current patterns affect transport of freshwater and nutrients delivered to the 

Gulf by the Mississippi and Atchafalaya Rivers.  Throughout much of the year, the 

dominant flow pattern is westward, and the strongest westward currents typically occur in 

spring, along the inner shelf, due to prevailing easterly winds and the buoyancy flux of 

river discharge (Walker et al. 2005, Zavala-Hidalgo et al. 2003, Zhang et al. 2012).  In the 

model, transport of water and load is determined using a simple ‘flow partitioning’ 

equation: 
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𝐹𝑒 = 0.5 + 𝛽𝑒𝑊𝑒         eq 6-5 

 

Here, 𝐹𝑒 is the fraction of water and load transported to the east, 𝑊𝑒 is the mean east-

west wind velocity (westerly winds are positive, easterly winds are negative), and 𝛽𝑒 is a 

transport coefficient determined through model calibration.   To ensure that 𝐹𝑒 is 

constrained to within the range [0,1], 𝑊𝑒 is constrained to a range of [-2,2] m s-1, and 𝛽𝑒 is 

constrained to be calibrated within a range of [0,0.25].  The fraction of water and load 

transported west is simply (1 − 𝐹𝑒). 

Spring flows and loads, partitioned by spring easterly wind velocity, are used to drive 

the mechanistic model (eq 6-4).  In the spring, 80% of the Mississippi River discharge 

(flow and load) is assumed available for partitioning using eq 6-5, while the remaining 

20% of Mississippi River discharge is assumed lost to the south or east under any wind 

condition (Walker et al. 2005, Zhang et al. 2012).  Mississippi discharge partitioned to the 

east leaves the study area, while discharge partitioned to the west enters the east shelf 

section.  The discharge from the Atchafalaya River and the gulf dilution flow (Qg) are both 

also partitioned, such that the westward partition enters the west shelf section, and the 

eastward partition enters the east shelf section.  Finally, flow and load within the east shelf 

section is partitioned, such that the westward partition enters the west shelf section and the 

eastward partition exits the model.  Transport from the west shelf section back to the east 

shelf section could not be represented within a steady-state model.  However, this type of 

eastward transport is expected to be rare in spring, as river flows become entrained in the 

dominantly westward spring shelf current (Wang and Justic 2009, Zhang et al. 2012).   

6.2.6 Reaeration submodel 

Reaeration is represented using a quasi-mechanistic formulation based on flow and 

wind stress: 

 

𝑘𝑎 = 𝛽𝑘0 + 𝛽𝑘1𝜏/(𝑄𝑠/𝐴)        eq 6-6 
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Here, ka is the reaeration rate (m d-1), 𝜏 is the 14-day weighted mean wind stress for the 

shelf section (m2s-2), A is the area of the shelf section (Gm2), and 𝑄𝑠 is the summer 

freshwater flow onto the shelf section (Gm3d-1).  The model follows the logic that 

reaeration should increase due to wind stress-induced mixing, but this mixing is inhibited 

by the density of freshwater on the shelf section (represented by 𝑄𝑠/𝐴).  The terms 𝛽𝑘0  

and 𝛽𝑘1 are essentially empirical parameters determined through model calibration. 

The summer freshwater flow, 𝑄𝑠, is determined using the Atchafalaya River discharge 

partitioned between the east and west shelf sections based on the transport submodel.  

Mississippi River discharge is not included in 𝑄𝑠 because relatively little Mississippi River 

flow enters the shelf in summer due to reversal of the westward coastal current (Walker et 

al. 2005, Zhang et al. 2012).  Stable isotope studies suggest Atchafalaya River discharge 

constitutes the majority of freshwater in the surface waters of the shelf by mid-summer 

(Strauss et al. 2012). 

6.2.7 Spring versus summer conditions 

The preceding descriptions make reference to ‘spring’ and ‘summer’ flows and 

loadings.  The spring flows and loadings are expected to control the production of organic 

matter on the shelf, as represented in eq 6-4.  Here, spring flows, loads, and east-west 

winds are determined as weighted averages of 60-90 and 30-60 day periods prior to the 

starts of the shelfwide cruises, with the earlier period receiving twice the weight of the later 

period.  Because most cruises start in late July, this roughly corresponds to a period of late 

April-late June, but more heavily weighted toward the beginning of this period.  This 

period approximately coincides with previous modeling studies suggesting May or May-

June nutrient loads correlate best with hypoxic zone size (Greene et al. 2009, Scavia et al. 

2004, Turner et al. 2012).  

Summer flows are expected to be related to the intensity of stratification on the shelf at 

the time of the shelfwide cruises, and are thus incorporated into the reaeration submodel 

(eq 6-6).  Here, summer flows and east-west winds are determined as weighted averages of 

the 30-60 and 0-30 day periods prior to the starts of the shelfwide cruises, with the later 

period receiving twice the weight of the earlier period.  Because most cruises start in late 



103 

 

July, this roughly corresponds to a period of late May-late July (but more heavily weighted 

toward the end of this period).  This is reasonable because the total flow from this period 

correlates well (r2=0.8) with the intensity of stratification determined from a previous 

study by Obenour et al. (2012b). 

6.2.8 Prior information and model calibration 

The mechanistic model includes several parameters determined through calibration or 

specified as known.  The parameters listed in Table 6-1 are calibrated within the model by 

Bayesian inference, implemented using the WinBUGS program (Lunn et al. 2000) called 

from R via the R2WinBUGS software package (Gelman and Hill 2007).  The Bayesian 

model calibration approach has multiple benefits, in that it can incorporate prior 

information, rigorously account for parameter and data uncertainty, and be applied to non-

linear model formulations (e.g., eq 6-4).  Prior information for model parameters is 

represented as probability distributions, as shown in Table 6-1.  For most of these 

parameters, the priors are wide uniform distributions that are nearly non-informative (they 

are only narrow enough to prevent the calibration from occasionally reverting to unrealistic 

local minima).  However, an informative normal prior distribution is used for benthic 

oxygen demand, based on recent research by Lehrter et al. (2012), who performed an 

extensive study of shelf sediment fluxes, and determined a mean benthic oxygen flux of 

0.28 g m-2d-1 with standard error 0.06 g m-2d-1.  A less informative normal prior was used 

for ω, which represents an adjustment in water column oxygen demand related to a number 

of factors.  The prior mean (0.5 [unitless]) reflects studies suggesting that upwards of 40% 

of sub-pycnocline oxygen demands are offset by photosynthetic oxygen production 

(Lehrter et al. 2009, Rowe 2001).  Other factors that could be reflected in ω include off-

shelf losses, nutrient recycling between layers, and inaccuracies in assumptions regarding 

load utilization (fraction of load that enters the shelf, fraction that is bioavailable, etc.).  

There is no strong evidence for the importance of these other factors, but the uncertainty in 

this prior reflects their potential relevance.  Finally, a moderately informative uniform prior 

is used for rQg, the ratio of Gulf flow to mean Mississippi River flow (Qg= rQg × 

mean[QMiss]).  A previous study suggests this ratio is approximately 5-6 [unitless] under 
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easterly winds (Walker et al. 2005).  However, because river flow does not mix completely 

with Gulf flow, the effective dilution may be lower, and thus a uniform prior of [1,6] is 

used.   

Some modeling parameters can be reasonably specified as known because the 

uncertainty associated with these parameters is relatively small, and calibrating them 

would be computationally expensive while providing little additional scientific insight.  

The ratio of carbon to nitrogen, RC:N, is based on the Redfield Ratio (5.68 gC gN-1) 

(Redfield et al. 1963).  The ratio of oxygen demand to carbon, RO:C, is based on 

stoichiometric relationships for the aerobic decomposition of organic matter (3.5 g O gC-1) 

(Chapra 1997, Justic et al. 1996).  A surface layer oxygen concentration, COS, of 7.5 mg L-1 

is used based on an examination of surface layer DO data.  The reference oxygen 

concentration for benthic oxygen demand, COB, is simply the DO concentration (3 mg L-1) 

corresponding to the prior information for B (Lehrter et al. 2012).   

The model also makes use of prior information for modeling output, particularly the 

vertical (downward) organic matter flux (vsRC:NCN per eq 6-2).  Sediment trap experiments 

by Redalje et al. (1994), suggest east shelf summer carbon fluxes of 0.18-0.40 gC m-2d-1.  

Thus, east shelf carbon flux is calibrated to an ‘observed’ mean carbon flux, represented as 

a normal distribution, N(0.29,0.05) gC m-2d-1. 

Both mechanistic model uncertainty and geostatistical ‘observation’ uncertainty are 

accounted for within the Bayesian calibration framework using the following relationship: 

   

𝐶𝑔𝑒𝑜(𝑖,𝑗) ~ 𝑁 �𝐶𝑚𝑒𝑐ℎ(𝑖,𝑗),�𝜎𝑔𝑒𝑜(𝑖,𝑗)
2 + 𝜎𝑚𝑒𝑐ℎ(𝑗)

2 �     eq 6-7 

 

In eq 6-7, i and j represent the cruise year and shelf section, respectively.  Terms 𝐶𝑔𝑒𝑜(𝑖,𝑗) 

and 𝐶𝑚𝑒𝑐ℎ(𝑖,𝑗) represent the mean BWDO concentrations predicted by the geostatistical 

model and mechanistic model, respectively.  Mechanistic model (residual) uncertainties for 

the two shelf sections, 𝜎𝑚𝑒𝑐ℎ(𝑗), are parameters determined through the Bayesian 

calibration process, using an effectively uninformative prior distribution, U(0.1,3) mg L-1.  



105 

 

Geostatistical uncertainty, 𝜎𝑔𝑒𝑜(𝑖,𝑗), is specific to each year and shelf section, as determined 

by the geostatistical model. 

 

Table 6-1:  Prior information for mechanistic model parameters to be calibrated by 
Bayesian inference 

symbol description prior unit 

vs 
effective settling 
velocity U(0.01,1.0) m d-1 

ω oxygen demand 
adjustment  N(0.5,0.2) - 

rQg 
ratio of Gulf flow to 
mean Mississippi flow U(1.0,6.0) - 

B benthic oxygen 
demand N(0.28,0.06) g m-2 d-1 

βe flow partitioning  U(0,0.25) - 

βk0 
reaeration intercept 
term U(0,0.5) m d-1 

βk1 
reaeration term 
modifying τ/(Qs/A) U(0.05,0.5) - 

Note: U(lower bound, upper bound) ~ uniform distribution 
            N(mean, standard deviation) ~ normal distribution 

 

6.2.9 Predicting hypoxic area from DO 

Mean BWDO results can be converted to hypoxic area using a linear regression 

between the BWDO and hypoxic area values from the geostatistical model.  Because the 

relationships between mean BWDO and hypoxic area are nonlinear, both mean BWDO 

and mean BWDO-squared are used as predictors.  The resulting regressions for west and 

east shelf hypoxic area are as follows: 

 

𝐴𝑤 = 58230 − 18390(𝐶𝐵𝑊𝐷𝑂,𝑤) + 1460(𝐶𝐵𝑊𝐷𝑂.𝑤)2    eq 6-8 

𝐴𝑒 = 16950 − 5530(𝐶𝐵𝑊𝐷𝑂,𝑒) + 440(𝐶𝐵𝑊𝐷𝑂.𝑒)2     eq 6-9 
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These regressions explain 98.5% and 98.7% of the variability in hypoxic area on the west 

and each shelf section, respectively, as estimated using the geostatistical model (Chapter 

5). 

6.3 Results 

6.3.1 Model calibration and validation results 

Seven mechanistic model parameters are calibrated probabilistically through Bayesian 

inference.  The likely range for each parameter is represented by its posterior distribution 

(Figure 6-2).  Three of these parameters, vs, ω, and B, primarily control oxygen dynamics 

within the model.  The best estimate (i.e., mean of the posterior distribution) for effective 

settling velocity, vs, is 0.19 m d-1.  This rate corresponds to 11-17 meters of settling over 2-

3 months, suggesting a substantial flux of organic material through the pycnocline, 

consistent with the hypothesis that spring nutrient loads affect mid-summer hypoxia.  The 

best estimate for the oxygen demand adjustment parameter, ω, is 0.37, suggesting that 

factors such as photosynthesis or off-shelf losses substantially reduce the effective oxygen 

demand of fluxed organic material.  The best estimate for benthic oxygen demand, B, is 

0.33 g m-2d-1, shifted slightly higher than the prior distribution (mean of 0.28 g m-2d-1) 

determined from the extensive field study by Lehrter et al. (2012).  This is consistent with 

other field studies also documenting higher mean benthic oxygen demands (Dortch et al. 

1994, McCarthy et al. 2013, Rowe 2001).   

The parameters 𝛽𝑒 and rQg are related primarily to model hydrodynamics. The best 

estimate for the flow partitioning parameter, 𝛽𝑒, is 0.22, such that transport ranges from 

94% eastward to 94% westward under mean east-west winds ranging from 2 to -2 m s-1, 

respectively. (Note that 𝛽𝑒 was constrained by prior information to a maximum of 0.25, 

because higher values would unrealistically result in flow partitions greater than 100%).   

The best estimate for the ratio of Gulf dilution flow to mean Mississippi River flow, rQg, is 

3.8, but the posterior distribution is very similar to the prior distribution (in terms of both 

mean and variance), suggesting this parameter could not be well resolved within the 

model.  While rQg could be set to a fixed value without significantly affecting model 
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performance, allowing the parameter to vary acknowledges a source of mechanistic 

uncertainty within the model.   

The reaeration parameters, 𝛽𝑘0 and 𝛽𝑘1, are used to determine the reaeration rate, ka.  

Under conditions of no wind (or infinite freshwater flow), ka is equal to 𝛽𝑘0 .  As 

freshwater flows decrease and wind stresses increase, ka increases as a function of 𝛽𝑘1 (eq 

6-6).  Based on the calibrated model, reaeration rates (by cruise) range from 0.16-0.53 and 

0.14-0.37 m d-1 for the west and east shelf sections, respectively.  Overall, mean reaeration 

rates for the west and east shelf sections are 0.23 and 0.17 m d-1, respectively, and their 

distributions are highly right-skewed.  The highest reaeration rates are for 1988, due to the 

combined effects of low freshwater flows (drought year for the Mississippi River basin) 

and high winds (tropical storm Beryl).  The mean rates from this study are higher than the 

0.1 m d-1 mean July reaeration rate from a modeling study by Justic et al. (1996) for a 

location near the center of the east shelf, where stratification would be expected to be 

particularly severe.  

The statistical modeling framework allows for examination of correlation among 

parameters.  The largest correlation is between ω and 𝛽𝑘0  (r2=0.65).   This correlation is 

expected because these parameters have similar but opposite effects on DO levels.  Other 

parameter pairings with notable correlations (r2>0.5) are vs and rQg, B and 𝛽𝑘0 , and B and 

𝛽𝑘1 .  Correlation among parameters could be avoided by setting some parameters to fixed 

values, but by allowing these correlations, uncertainty about the relative importance of 

mechanistic drivers is represented within the model. 
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Figure 6-2: Prior and posterior probability distributions for calibrated mechanistic model 
parameters (as described in Table 6-1) 
 

Overall, the model explains approximately 75% of the variability in BWDO 

concentration on each of the two shelf sections (Figure 6-3).  Through the Bayesian 

calibration process, mechanistic model residual standard deviations, 𝜎𝑚𝑒𝑐ℎ(𝑗), were 

determined to be 0.35 and 0.31 mg L-1 for the west and east shelf sections, respectively.  

To test the robustness of the model, a leave-one-out cross validation (CV) was also 

performed.  In CV, the mean BWDO for each cruise is predicted after removing that cruise 

from the calibration dataset and re-calibrating the model to the remaining data.  Thus, the 

model’s CV performance is a better measure of how well it will perform when predicting 

future conditions.  In CV mode, the model explains 72% of the variability in BWDO on 
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each of the two shelf sections (Figure 6-4).  Thus, performance is not greatly diminished 

relative to the full-model (Figure 6-3), suggesting the model is robust (i.e., not over-

parameterized).   

The 27-year mean vertical carbon fluxes determined by the model are 0.14 and 0.27 gC 

m-2d-1 for the west and east shelf sections, respectively.  The modeled east shelf carbon flux 

conforms well with prior information for east shelf carbon flux, N(0.29,0.05)  

gC m-2d-1, as described previously.   The carbon flux on the west shelf is expected to be 

lower, as it is further removed from the river outfalls, on average.  Modeled carbon fluxes 

can also be compared to measured water column respiration rates.  An extensive study by 

Murrell et al. (2013) reports lower-layer water column respiration rates averaging 0.22 gO 

m-3d-1 over the entire shelf.  Assuming a 10-m thick lower layer and an RO:C of 3.5 gO gC-

1, this is equivalent to an areal rate of 0.63 gC m-2d-1, considerably higher than the modeled 

carbon flux rates.   This may be due to lower-layer photosynthesis, resulting in higher 

measured rates of both oxygen production and respiration in the sub-pycnocline (but no net 

increase in oxygen demand).  Also, respiration rates and the relative contributions of 

surface and benthic respiration have varied substantially across different Gulf field studies 

(Dortch et al. 1994, McCarthy et al. 2013, Quinones-Rivera et al. 2007), suggesting 

uncertainty related to experimental design or analytical methods. 
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Figure 6-3: Observed (geostatistical) mean BWDO versus full-model mechanistic model 
predicted BWDO for the west and east shelf sections, with 95% prediction intervals 
 

 
 
Figure 6-4: Observed (geostatistical) mean BWDO versus CV mechanistic model 
predicted BWDO for the west and east shelf sections, with 95% prediction intervals 
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6.3.2 Model sensitivity to stratification and nutrient loading 

The model includes ‘spring’ inputs related to seasonal nutrient loading and ‘summer’ 

inputs related to stratification.  By holding one of these input sets constant (at 27-year 

mean values), while allowing the other to vary, it is possible to examine the relative roles 

of these two drivers of hypoxia.  As shown in Figure 6-5, both drivers substantially impact 

the year-to-year variability in mean BWDO.  An ‘influence metric’ for quantifying the 

impact is determined by calculating the standard deviation of the 27 predicted BWDO 

values, under the different model input conditions.  The influence metrics for nutrient 

inputs (holding summer flows and winds constant) and stratification inputs (holding spring 

flows, loads, and winds constant) are 0.24 and 0.53 mg L-1 for the west shelf, respectively; 

and 0.33 and 0.46 mg L-1 for the east shelf, respectively.  These results suggest a somewhat 

larger role for stratification in explaining year-to-year variability in BWDO.  However, 

when the uncertainty in the mechanistic model parameters is accounted for, the differences 

between the nutrient and stratification influence metrics are only significant for the west 

shelf (there is a 13% probability that the role of nutrient exceeds that of stratification on the 

east shelf).   Stratification on the west shelf appears heavily influenced by weather 

conditions resulting in minimal stratification in 1988 due to drought, and in 1998, 2000, 

and 2009, due to unusually strong westerly winds, as has been noted in previous studies 

(Rabalais et al. 2007, Turner et al. 2012).   

It should be emphasized that the ‘nutrient effects’ presented in this analysis (i.e., Figure 

6-5) are related only to how spring nutrient loads regulate the year-to-year variability in 

BWDO for the 27-year study period, not how nutrient loads may further regulate hypoxia 

under potential nutrient loading reduction (or intensification) scenarios.  In addition, long-

term changes in nutrient loading would be expected to affect benthic oxygen demands, and 

thus produce larger impacts on BWDO.  An analysis of how changing benthic oxygen 

demands could affect BWDO is included in the subsequent section on nutrient loading 

reduction scenarios. 
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Figure 6-5: Model predicted mean BWDO for the (a.) west and (b.) east shelf sections 
based on different mechanistic drivers (holding other factors at 27-year mean value).   
 

6.3.3 Temporal trends in hypoxia 

Model residuals were analyzed for signs of change in the system’s susceptibility to 

hypoxia over the 27-year study period, where a negative temporal trend in residuals would 

indicate increasing susceptibility.  Temporal trends in residuals were found to be far from 

significant on both shelf sections, and a visual examination of residuals did not indicate 

any abrupt temporal transitions (Figure 6-6).  This is perhaps not surprising, given that 

nutrient loading has remained relatively stable throughout the 27-year study period 

(Goolsby and Battaglin 2001).   Model residuals can also be compared with nutrient loads 

from the preceding year (July-June loads), as shown in Figure 6-6.  Here, the residuals are 

area-weighted averages of the two shelf sections (west shelf receives more weight).  
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However, no pattern between residuals and these loads (or multi-year averages of these 

loads) was identified.   

 

 
Figure 6-6: Area-weighted mechanistic model residuals (observed-predicted) and nutrient 
loads from preceding year 
 

6.3.4 Hypoxic area prediction and nutrient reduction scenarios 

Predicted BWDO concentrations can be converted to predicted hypoxic areas using 

equations 6-7 and 6-8.  Based on these relationships, the model explains 68% and 73% of 

year-to-year variability in hypoxic area on the west and east shelf sections, respectively.   

Aggregating the results, the model explains 70% of the variability in total hypoxic area.  

Model performance is greater for BWDO than hypoxic area because of the nonlinear 

relationship between these variables, such that model errors for years of relatively low 

BWDO are amplified when converted to hypoxic area.  

Using the model and the relationship between BWDO and hypoxic area, it is possible 

to examine how nutrient load reductions would affect the average areal extent of hypoxia 

(for the 27-year study period).  The reductions are relative to the historical bioavailable 

spring nitrogen load, averaging 133 Gg mo-1 for the study period.  An important 

consideration in this analysis is whether the nutrient loading reductions will also result in 

reductions in benthic oxygen demand.  If benthic oxygen demand remains constant, then 
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even an 80% reduction in nutrient loading (Figure 6-7.a) will still result in a mean total 

hypoxic area greater than 5000 km2.  However, if nutrient loading reductions are 

accompanied by a proportional reductions in benthic oxygen demand (Figure 6-7.b), then a 

45% (+/- 5%) reduction in nutrient loading would achieve a mean hypoxic area of 5000 

km2.  While one would expect benthic oxygen demands to decline as nutrient loading to 

the system is diminished, the degree of this decline and the time scale over which it would 

occur remain subjects for future research. 

 
Figure 6-7: 27-year mean hypoxic areas (with 95% credible intervals) for total shelf 
(brown), west shelf (blue) and east shelf (red) under (a.) spring nutrient load reductions 
alone and (b.) nutrient load reductions with proportional benthic oxygen demand 
reductions 

 

6.3.5 Comparison to linear regression modeling  

Linear regression (LR) is a modeling approach that has been used in several previous 

Gulf hypoxia studies (Forrest et al. 2011, Greene et al. 2009, Turner et al. 2012).  These 

previous modeling studies are not directly comparable to this study, as they focus on 
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somewhat different hypoxia metrics.  However, the effectiveness of LR and parsimonious 

mechanistic modeling for predicting mean BWDO on the east and west shelf sections can 

be compared here.  To enable this comparison, LRs were developed for the east and west 

shelf sections using the candidate predictor variables from this study (i.e., flow, load, 

concentration, wind velocity, and wind stress).  To help avoid over-parameterization, only 

variables selected from the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) are used; where BIC results in more parsimonious models than does AIC 

(Faraway 2005).  Models are compared in terms of percent variance explained (R2), based 

on both full-model and CV predictions.   

Results suggest the parsimonious mechanistic model, developed in this study, 

outperforms LR models, especially in CV mode (Table 6-2).   There are two primary 

reasons why this is likely to be the case.  First, plots of observed versus predicted values 

for the LRs (not shown) demonstrate a non-linear pattern in residuals, indicating the 

system is not well represented by linear combinations of the available predictor variables.  

The mechanistic model performs better in this respect (Figure 6-3), likely because its non-

linear relationships better approximate the true functioning of the system.  Second, the CV 

performance of the LRs tends to decrease when more predictor variables are included 

within the model (i.e., BIC results are better than AIC), suggesting over-parameterization 

issues.  The mechanistic model includes more predictor variables than either of the LR 

models, but the impact of these variables is regulated by the prior information and 

biophysical structure of the model.  Furthermore, in the mechanistic model, the differential 

response in BWDO for the two shelf sections is determined based on biophysical 

properties (e.g., the relative position and areal extent of each shelf section), such that the 

model can be calibrated to both shelf sections (44 geostatistical ‘observations’) without 

relying on shelf-specific calibration parameters.  Because the LR models do not benefit 

from these mechanistic relationships, it is generally necessary to fit separate regressions to 

the different shelf sections, such that each LR is based on only 27 observations.  This 

smaller sample size makes the LR model parameterizations more sensitive to exclusion of 

individual data points, which can be problematic in CV. 
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Table 6-2:  Variance explained (R2) by mechanistic and LR models, based on full model 
and CV predictions 

Model R2 CV R2 
West shelf results: 

  
Mechanistic model (all variables) 75% 72% 

West shelf LR w/AIC variables: 
LrN(Miss), We(spring), We(sum.), 
τ(east) 

66% 31% 

West shelf LR w/BIC variables: 
LrN(Miss), We(spring), We(summer) 62% 43% 

East shelf results: 
  

Mechanistic model (all variables) 76% 72% 

West shelf LR w/AIC variables: 
LrN(Miss), We(summer), τ(west), 
τ(east) 

72% 51% 

East shelf LR w/BIC variables:  
LrN(Miss), We(summer), τ(east) 

69% 54% 

 

6.4 Discussion 

Methodologically, this study demonstrates the benefits of using Bayesian inference for 

calibrating mechanistic environmental models.  First, the Bayesian approach readily 

allowed for probabilistically estimating the parameters of a non-linear model, such as was 

developed here.  Second, the approach provided a systematic means of incorporating prior 

information about biophysical rates (with associated uncertainties), as determined from 

previous studies.  Third, compared to more traditional approaches, model uncertainties 

were not constrained to follow normal (Gaussian) distributions, allowing more flexibility 

in how parameters are represented (Fig 6-2).  The benefits of the Bayesian modeling 

framework have been demonstrated in a previous hypoxia modeling study by Liu et al. 

(2010), and this study builds on that work by applying the Bayesian framework to a richer 

mechanistic model, capable of integrating a larger suite of environmental inputs.      
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In addition, this is the first Gulf hypoxia modeling study to systematically test the 

model’s predictive performance for observations not included within the calibration dataset 

(using CV).  While the mechanistic model developed here performed well in CV, linear 

regression models developed from the same input variables, performed substantially less 

well (Table 6-2).  This is noteworthy, given that none of the previous Gulf hypoxia 

regression models have been formally validated.  However, models used to make annual 

hypoxia forecasts (Liu et al. 2010, Turner et al. 2012) have received some degree of 

validation by comparing these blind annual forecasts to observed values (Evans and Scavia 

2011).  In the future, CV or other systematic validation exercises could potentially be used 

to test and lend additional credibility to such models.   

The model developed in this work provides new insights into the relative roles of 

benthic and water column oxygen demands.  In the model, benthic oxygen demand is 

represented by a constant value, such that it is not related to seasonal nutrient loading; 

whereas water column oxygen demand is directly related to the spring nitrogen load.  The 

calibrated model suggests benthic oxygen demand is approximately 0.33 g m-2d-1.  In 

comparison, net water column oxygen demands are estimated to be 0.18 g m-2d-1 and 0.34 

g m-2d-1 for the west and east shelf sections, respectively.  The relatively low water column 

oxygen demand on the western shelf section suggests the western shelf is less responsive 

to the year-to-year variability in spring nitrogen load, as also suggested by Hetland and 

DiMarco (2008).  For example, the model indicates a 50% reduction in spring nitrogen 

produces approximately 22% and 34% reductions in west and east shelf hypoxic area, 

respectively (Figure 6-7.a).  If benthic oxygen demands are also reduced, then a much 

larger reduction in hypoxic area can be expected for both shelf sections (Figure 6-7.b).  

While benthic oxygen demand would be expected to decrease under sustained nutrient 

loading reductions, this cannot be verified by the model, because Mississippi River 

nutrient loads  have remained, on average, near historically high levels throughout the 

study period (Goolsby and Battaglin 2001). 

Contrary to previous long-term modeling studies (Greene et al. 2009, Liu et al. 2010, 

Turner et al. 2008), this study does not indicate a change in the shelf’s susceptibility to 

hypoxia over the 27-year study period.  This is likely due, in part, to the use of revised 
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hypoxia metrics that increase less over the study period (Chapter 5).  (The model is not 

calibrated directly to hypoxic area, but it is calibrated to geostatistical mean BWDO 

estimates that are highly correlated with the new geostatistical area estimates, as described 

previously.)  It is noted, however, that model residuals were largely negative from 1994-

1997 on both shelf sections (Figure 6-6).   An intriguing hypothesis is that the large loads 

of 1993 and 1994 resulted in an accumulation of organic matter that persisted in following 

years as additional benthic oxygen demand.  While this hypothesis cannot be verified by 

this study alone, the unusually severe impact of the 1993 flood on Gulf water quality has 

been noted previously (Rabalais et al. 2007).  It is also noted that new estimates of hypoxic 

volume (Chapter 5) suggest a somewhat larger increase over time, and extending this 

model to predict hypoxic volume may be beneficial future research. 

Multiple previous Gulf modeling studies (Greene et al. 2009, Liu et al. 2010, Turner et 

al. 2012) have suggested nutrient loading reductions ranging from around 40-70% to 

achieve the Task Force goal of reducing hypoxic area to 5000 km2 (EPA 2008).  This study 

generally supports that range, but with the caveat that it is dependent on the degree to 

which benthic oxygen demand (i.e., oxygen demand not related to seasonal nutrient 

loading) will be diminished as a result of sustained, long-term nutrient loading reductions 

(Figure 6-7.a versus 6-7.b).  As such, this study indicates the need for further research into 

factors that control the intensity of benthic oxygen demand on the Gulf shelf.  
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CHAPTER 7:  Conclusions and Future Directions 

 

This chapter discusses the scientific and methodological contributions of the 

dissertation research, as well as new questions raised.  In addition, it highlights potential 

future extensions to this research that would further advance our understanding of Gulf 

hypoxia.  The following three sections address contributions and future directions specific 

to research performed in Chapters 4, 5, and 6; and a final section discusses overall 

contributions and future directions. 

7.1 Geostatistical Regression 

The geostatistical regression (Chapter 4) offers a new way to understand the role 

stratification plays in regulating the severity of Gulf hypoxia.  This is the first shelf-wide 

study to develop relationships between measured BWDO concentrations and water column 

profile data (i.e., salinity and temperature).  As such, it provides a relatively direct way to 

understand the relationship between BWDO and stratification, when compared to models 

that use flow and wind data to represent stratification.  Based on this work, stratification 

metrics, along with depth and northing variables, explain 27% - 61% of the spatial 

variability in BWDO for each annual cruise. 

The stratification effects were spatially aggregated in order to determine their overall 

impact on mean BWDO for each annual shelfwide cruise.  Because the impact of 

stratification is determined relatively directly, rather than as a function of river flow, this 

analysis avoids the confounding correlation between river flow and load, which has made 

it difficult to disentangle the roles of these two factors (Hetland and DiMarco 2008).  

Stratification is found to explain about half of the interannual variability in BWDO.  The 

remaining variability can then be explained in terms of other factors, of which May nitrate 

concentration is found to be most influential.  Thus, the study not only addresses the role 
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of stratification, but also nutrient loading, suggesting that both factors have similar levels 

of influence on the year-to-year variability of hypoxia. 

The geostatistical regression also informs our understanding of the time scale over 

which river flows correlate with stratification intensity.  Stratification was found to be 

highly correlated (r2>0.8) with the flow from the two preceding months (Section 6.2.7).  

This information was important to the development of the mechanistic model (Chapter 6), 

by suggesting an appropriate temporal averaging period for the river flow inputs used to 

model reaeration (which is primarily controlled by the intensity of stratification).   

Methodologically, this research demonstrates how geostatistical modeling can be used 

to improve our understanding of how an environmental system functions.  The 

geostatistical approach was found to be necessary because of the significant correlation 

among model residuals (i.e., correlated stochasticity).  Multiple linear regression, for 

example, would not be valid in this case, as the assumption of i.i.d. residuals would be 

violated, and highly correlated observations (in close proximity to each other) would 

receive undue wait in determining the model parameterization (as described in Section 

3.1).  Despite this, geostatistical modeling is not commonly used for the purposes of 

making statistical inferences about environmental systems.  Two studies, by Mueller et al. 

(2010) and Yadav et al. (2009) used a geostatistical regression models to infer factors 

influencing the temporal variability of terrestrial CO2 fluxes and gross primary 

productivity, respectively.   However, most geostatistical studies focuses on spatial 

estimation (interpolation, etc.) rather than inference, and if a deterministic component is 

included, it is primarily used to improve model estimates (as in Chapter 5).  Thus, this 

study adds to the relatively limited literature demonstrating how geostatistical models can 

be effective inferential tools.   

This study raises the question of whether Mississippi/Atchafalaya River nutrient 

concentration or load is more influential in determining the severity of Gulf hypoxia.  The 

study indicates that both May nitrate load and concentration are correlated with the 

interannual variability of hypoxia (i.e., the portion of the variability not accounted for by 

stratification), but the correlation with concentration (r2=0.76) is substantially greater than 

with load (r2=0.32).  While two other studies have also indicated that concentration (along 
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with flow), is an effective predictor of hypoxia (Forrest et al. 2011, Greene et al. 2009), 

multiple studies demonstrate that load alone is an effective predictor (Justic et al. 1997, Liu 

et al. 2010, Turner et al. 2012).  In fact, the mechanistic model (Chapter 6) generally 

indicates that load is the more important predictor of BWDO depletion.  One limitation of 

the geostatistical regression is that it only covers ten years of data.  As such, future 

research could expand the study to cover the entire period of record (currently 27 years), 

allowing for more robust inference, and more extensive comparison with the mechanistic 

model. 

The modeling approach developed in this study can be applied to other environmental 

variables as well.  In the Gulf, geostatistical regression could be used to study the spatial 

and temporal variability of nutrients and other water quality variables related to hypoxia 

formation.  A particularly intriguing future research direction would be to model benthic 

and water column oxygen demands, using data collected in recent extensive field studies of 

the Gulf shelf (Lehrter et al. 2012, Murrell et al. 2013).  Both benthic and water column 

oxygen demands are expected to be important to hypoxia formation, as indicated by the 

mechanistic model (Chapter 6) and previous modeling studies (Bierman et al. 1994, Fennel 

et al. 2013, Rowe 2001).  These oxygen demands could be modeled geostatistically (as a 

response variable) to better understand their temporal and spatial variability.  For example, 

the model could be used to test whether oxygen demands (benthic or water column) are 

higher nearer to the river outfalls, and whether they are higher following large inputs of 

river flow and nutrient load.  The oxygen demands could also be used as covariates in a 

geostatistical regression to predict BWDO.  Assuming that oxygen demands are related to 

nutrient loads, such an approach could provide new insights into how nutrient loading 

controls hypoxia formation, both spatially and temporally.  Also, if both oxygen demands 

and stratification metrics are included within a geostatistical regression for BWDO, it may 

be possible to further refine our understanding of how both factors control hypoxia 

formation. 
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7.2 Geostatistical Spatial Estimation 

The geostatistical spatial estimation model (Chapter 5), provides new estimates of 

hypoxic area and volume for the entire 27-year record of available LUMCON shelfwide 

cruise data (1985-2011).  Accurate hypoxic extent estimates are important to hypoxia 

management, as existing Action Plans call for a reduction in the areal extent of hypoxia 

(EPA 2001, 2008), and for calibrating models that predict hypoxic extent based on nutrient 

loading and other factors (DiMarco 2011, Forrest et al. 2011, Greene et al. 2009, Liu et al. 

2010, Turner et al. 2012). 

The new hypoxic area estimates compare well with previous area estimates (LUMCON 

2012, Rabalais et al. 2007) in most years.  However, in the earlier years of the study period 

(1985-1993), the new estimates are significantly higher than the previous estimates.  As 

discussed in Section 5.4, this is likely due to smaller cruises and inconsistent sampling 

equipment, combined with the limitations of the interpolation approach used to develop the 

previous estimates.  Because of this discrepancy, the new hypoxic area estimates indicate 

that there has been less of an increase in hypoxic area over time, such that the existing 

models for predicting hypoxic area may require recalibration. This should affect our 

understanding of how hypoxic area is changing over large time scales, as discussed further 

in Section 7.3. 

This research provides the first rigorous estimates of hypoxic volume for the northern 

Gulf, offering a new perspective into how the severity of hypoxia has changed from year to 

year.    For example, 2002 and 2008 both have similar hypoxic areas (they are not 

significantly different, p>0.05), but they are very different in terms of hypoxic thickness, 

such that 2008 has approximately twice the hypoxic volume of 2002.  In addition, while 

hypoxic area was not found to increase significantly over they study period (p=0.42), 

hypoxic thickness was found to be increasing over time (p=0.05).  Thus, the thickness and 

volume estimates provide new information for understanding the temporal variability of 

hypoxia, and assessing its large-scale consequences. 

This research uses many of the same geostatistical methodologies developed to 

estimate hypoxic area in Lake Erie (Zhou et al. 2013).  The modeling framework makes 



123 

 

use of covariate information (i.e., trend variables such as depth and spatial position), to 

improve estimates and reduce uncertainty.  In addition, results are determined using a 

simulation-based approach (i.e., conditional realizations), rather than an interpolation-

based approach, yielding more robust extent estimates and quantified uncertainty.  This 

research extends the previous work of Zhou et al. by developing a new methodology for 

determining hypoxic volume, based on a two-step simulation approach, where BWDO is 

first simulated, followed by simulation of BWHF at locations where simulated BWDO is 

below the hypoxic threshold.  In addition, this work provides a way to test for changes in 

the spatial pattern of hypoxia, by introducing candidate variables that allow for cruise-

specific east-west trends.  Finally, this work provides a new mechanism for performing 

BWDO measurement adjustments that account for inconsistent sampling equipment.  

These adjustments are performed as part of the simulation process, so that resulting extent 

uncertainties reflect these adjustments. 

There is considerable potential to expand this work in the future.  While hypoxic 

volume provides a unique new metric to gage the severity of hypoxia, neither area nor 

volume completely characterize the degree of dissolved oxygen depletion in the northern 

Gulf.  Future research could focus on developing other relevant dissolved oxygen metrics, 

such as the total oxygen deficit on the shelf.  Here, oxygen deficit would be defined as the 

mass of oxygen that has been depleted relative to saturation conditions.  Such metrics 

could potentially be more useful to biogeochemical modeling studies for which the 2 mg L-

1 hypoxic threshold does not have particular scientific relevance. 

The geostatistical model could also be used to help optimize hypoxia sampling network 

design.  Some sampling network evaluation, based on this dissertation research, was 

presented at a Hypoxia Coordination Workshop (Obenour et al. 2012a), but because the 

geostatistical model has been improved considerably since this workshop, this work should 

be revisited and expanded.  The geostatistical model could be used to determine the most 

effective sampling network (in terms of sampling interval and envelope) for minimizing 

uncertainty in hypoxic extent estimates, subject to limitations in sampling budget and ship 

time.  The model could also potentially be used to study the effectiveness of new sampling 
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technologies, such as remotely controlled vehicles (e.g., ‘gliders’), that may allow for more 

economical sampling, but that cannot be lowered all of the way to the sea floor.   

For sampling network design studies, it may also be useful to develop BWDO pseudo-

data covering the entire shelf at fine spatial resolution.  This pseud-data could be 

considered as ‘truth’, to which geostatistical modeling results can be compared.  In this 

type of analysis, the BWDO ‘observations’ would be taken from the pseudo-data based on 

a proposed sampling network design, and then used within the geostatistical model to 

develop hypoxic extent estimates that can then be compared to the ‘true’ hypoxic extents 

determined from the pseudo-data.  In this way, it would be possible to consider sampling 

locations not included within historical sampling networks.  Pseudo-data could also be 

used to validate the estimates and uncertainties determined by the geostatistical model.  

However, such a validation exercise may provide somewhat overly-favorable results if the 

model used to generate the pseudo-data is the same model used to determine the hypoxic 

extent estimates.  Thus, uncertainty in model structure would need to be considered. 

Another future research direction could be to re-develop the geostatistical model within 

a hierarchical framework, where model parameters would have the flexibility to vary by 

annual cruise.  Currently, all model parameters are constant across all 27 years, except for 

the cruise-specific east-west trends.  The current methodology for allowing unique east-

west trends could be applied to other model parameters as well.  However, this 

methodology is rigid, in the sense that parameters are either determined solely from a 

specific cruise, or from the data from all regular (non-specific) cruises.  Hierarchical 

modeling, on the other hand, would allow parameters to be determined by both the total 

dataset and the cruise-specific data, simultaneously.  This approach could also be applied 

to the covariance parameters, as well, such that if the variance and spatial correlation varies 

from year-to-year, this could be more accurately represented within the model.  A 

drawback to this approach is that hierarchical modeling would require a more complex and 

computationally expensive Bayesian implementation, and it would be important to explore 

whether this expense is justified through significantly improved hypoxic extent estimates 

with reduced uncertainty. 
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7.3 Mechanistic Model 

The mechanistic model (Chapter 6) links the severity of hypoxia on the west and east 

Louisiana-Texas shelf to its primary biophysical drivers, including nutrient loading, river 

flow, and weather.  The model provides insight into the relative importance of these 

different factors and allows for prediction of hypoxic severity under different future 

scenarios.  The model is rigorously calibrated and validated over the entire 27-year record 

of available mid-summer shelfwide cruise data (1985-2011).  It is the first such model to 

mechanistically incorporate flow and wind data (in addition to load), and to predict the 

severity of hypoxia on multiple shelf segments.   

The mechanistic model is calibrated to output from the spatial estimation model 

(Chapter 5).  Specifically, the model predicts the (geostatistical) mean BWDO values for 

the two shelf sections.  In addition, modeling results can easily be converted to hypoxic 

area, through linear regression.  Modeling results have not yet been developed for hypoxic 

volume, though this could be beneficial future research because the temporal pattern in 

hypoxic volume is somewhat different than that of hypoxic area (Figure 5-12), and they are 

only moderately correlated (r2=0.77).  Plots of hypoxic area and volume per spring 

nitrogen load versus time (Figure 7-1) suggest that volume increases more over the study 

period relative to nutrient loading (though neither of these metrics increase significantly 

based on linear trends with time, p>0.05).  Mechanistic modeling could be used to study 

the temporal variability of hypoxic volume in more detail, and if long-term trends exist, 

explore whether they are related to eutrophication or changing oceanographic conditions 

(e.g., stratification). 

The model results confirm that both seasonal nutrient loading and stratification 

contribute substantially to the year-to-year variability in hypoxia, as also suggested  by the 

geostatistical regression study in Chapter 4 (2012b).  Stratification is represented by the 

reaeration submodel (eq 6-6), which is a function of summer river discharge, summer east-

west wind velocity, and wind stress.  The role of stratification is found to be larger on the 

west shelf than on the east shelf, which is not surprising given that seasonal nutrient 

loading contributes less to west shelf oxygen demand.  The previous study by Obenour et 
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al. indicated that stratification and seasonal nutrient loading have approximately equal 

influence on the year-to-year variability in hypoxia.  The larger role of stratification in this 

study is likely due, in part, to the shelf division, because summer east-west wind velocity 

impacts stratification oppositely on the west and east shelf sections, such that these impacts 

compensate for each other when studying the shelf as a whole.  (Nutrient loading can also 

be distributed to the east or west, based on spring wind velocity, but spring winds are more 

consistently easterly.)  Also, the previous study focused only on the most commonly 

sampled locations, and thus did not extend as far west, where the role of stratification is 

indicated to be larger.   

 

 
Figure 7-1: Hypoxic area and volume relative to nutrient loading, versus time.  Dashed 
lines show linear tends with time (p=0.48 for area and p=0.12 for volume, accounting for 
extent estimate uncertainty) 

 

Future efforts could focus on exploring assumptions made in model development.  For 

example, it could be useful to explore whether benthic oxygen demands vary across the 

Gulf shelf.  In the current model, a single value for benthic oxygen demand is used for both 

shelf sections, as Murrell and Lehrter (2011) report no clear spatial trends in benthic 

oxygen demands (or water column oxygen demands).  However, one would expect benthic 
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oxygen demands to be higher nearer to river outfalls, and this could be explored more 

rigorously using a geostatistical regression, as suggested in Section 7.1.  Based on the 

results of such an analysis, the two shelf sections could be calibrated to different benthic 

oxygen demands constrained by prior information from the geostatistical regression.  In 

addition, the submodels for hydrodynamic transport and reaeration could potentially be 

refined based on comparisons with more complex hydrodynamic models (Hetland and 

DiMarco 2008, Wang and Justic 2009).  This would require close collaboration with the 

developers of these other models, in order to extract appropriate comparison data.   

Future efforts could also expand the scientific scope of the model.  For example, the 

model could be used to hindcast the severity of hypoxia in past decades (prior to the 

beginning of the shelfwide cruise sampling program).  This type of analysis has been 

performed in previous studies using historical loading data (Scavia et al. 2004), but the 

mechanistic model developed here could also make use of historical flow and weather data.  

The model could also be used to evaluate climate change scenarios, particularly those 

related to changes in Mississippi River basin hydrology that would affect flows and loads 

delivered to the Gulf shelf.   

7.4 Overall Contributions and Path Forward 

As indicated in the previous sections, this research provides new insights into how the 

severity of Gulf hypoxia varies over time and space.  Particularly, it characterizes the 

spatial and interannual variability of Gulf hypoxia through geostatistical spatial estimation, 

and explains this variability in terms of biophysical drivers through geostatistical 

regression and mechanistic modeling.  A primary contribution of this research has been to 

quantify the roles of stratification and seasonal nutrient loading in regulating the year-to-

year variability of Gulf hypoxia.  Overall, these models suggest that stratification and 

seasonal nutrient loading are of similar importance, and taken together, these factors 

explain at least 70% of hypoxic variability throughout the study period (1985-2011). 

In addition to accounting for the uncertainty in various types of Gulf hypoxia models, 

as discussed in the previous sections, this research demonstrates how uncertainty can be 

propagated between models.  For example, the uncertainty associated with the instrument 



128 

 

bias adjustment (Section 5.2.3) is propagated all of the way to the biophysical inferences of 

the mechanistic model (e.g., Section 6.3.2).  This is because the geostatistical model 

samples from the uncertainty in the instrument bias adjustment ‘model’ when performing 

conditional realizations; and the mechanistic model samples from the uncertainty in the 

geostatistical model estimates during the Bayesian calibration process. 

A potentially rewarding future research path would be to further integrate the 

mechanistic and geostatistical modeling results.  These models provide information about 

hypoxic severity (mean BWDO or hypoxic area) based on different types of information.  

The mechanistic model predictions are best estimates of hypoxic severity based on 

environmental drivers (loads, flows, and winds) and the biophysical model formulation 

prescribed.  The geostatistical model provides best estimates of mean BWDO based on the 

sampled dissolved oxygen concentrations and static covariate information such as depth 

and spatial position.   As such, it may be desirable to synthesize the geostatistical and 

mechanistic modeling results in order to obtain overall best estimates of BWDO.  This can 

be accomplished using a Bayesian approach, where the ‘prior’ geostatistical modeling 

estimate is updated (i.e., multiplied) by the likelihood of BWDO, given the biophysical 

controls on hypoxia, as determined from the mechanistic model (per eq 3-9).  

This approach is demonstrated in Figure 7-2, where geostatistical, mechanistic, and 

synthesized model estimates for mean BWDO on each shelf section are compared side-by-

side for the 27-year study period.  Here, all model predictions are represented by 95% 

prediction intervals.  While mechanistic model uncertainties are fairly uniform across all 

cruises, geostatistical estimate uncertainties are more variable due to factors described in 

Section 5.4.  In almost all cases, the geostatistical estimates have less uncertainty, and this 

is not surprising, given the relatively dense sampling performed during these mid-summer 

cruises.  However, in 1989, the west shelf was not sampled, resulting in greater uncertainty 

in the geostatistical estimate (Figure 7-2.a).  In all cases, the synthesized estimate more 

closely resembles whichever model estimate contains less uncertainty.  Also, the 

synthesized estimate always has the lowest uncertainty, and may be the best metric for 

future studies exploring the large-scale ecological and economic consequences of hypoxia. 
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A potential concern regarding this approach is that because the mechanistic model is 

calibrated to the geostatistical estimates, the geostatistical estimates are effectively used 

twice.  Thus, it would be more defensible to use blind mechanistic model predictions (as 

determined from CV) in this type of analysis.  However, this approach would be expected 

to yield similar results to those shown in Figure 7-2, because the CV analysis (Section 

6.3.1) indicates that a mechanistic model prediction for a given year is largely independent 

from its corresponding geostatistical estimate.  It should also be noted that the 

geostatistical model is independent of the temporal processes considered in the mechanistic 

model; the only temporally varying inputs to the geostatistical model are the DO 

measurements themselves. 

In the future, it would also be beneficial to expand the mechanistic and geostatistical 

modeling over the entire summer season.  Currently, model results are developed only for 

the times of the LUMCON shelfwide cruises (usually in late July).  However, as discussed 

in Section 5.4, hypoxic conditions may vary considerably throughout the summer based on 

changing weather and river inputs.  The geostatistical model could be used to develop 

hypoxic extent estimates using data from other periodic hypoxia monitoring cruises 

(Section 2.2.2).  These other cruises typically have less dense sampling than the LUMCON 

shelfwide cruises, but this would be reflected in increased estimation uncertainty.  Also, 

the mechanistic model could be applied across the entire summer by allowing model inputs 

to vary in time, and by potentially modifying the model formulation (if the model is not 

found to be representative of the entire summer season).  The results synthesis presented 

above (Figure 7-2) could then be applied at times when a geostatistical estimate is 

available.  Furthermore, if the differences between the geostatistical estimates and 

mechanistic predictions are correlated in time, then synthesized predictions could be 

temporally interpolated, between the times when geostatistical estimates are available.  

This temporal interpolation could potentially be performed using an adaptation of the 

geostatistical methods presented in this research. 
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Figure 7-2: BWDO 95% prediction intervals for (a.) west and (b.) east shelf sections, from 
geostatistical model (blue, left), mechanistic model (red, right), and synthesized model 
results (brown, middle) 
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APPENDIX:  Geostatistical Estimates for total hypoxic area and volume 

 

Chapter 5 describes the models for BWDO and BWHF, which yield the area and 

volume of the hypoxic bottom layer.  However, models can also be developed for the 

minimum dissolved oxygen (MinDO) and total hypoxic fraction (THF) which yield the 

total hypoxic area and volume, as described in Section 5.2.1.  These models account for 

layers of hypoxia existing higher (i.e., suspended) in the water column.  The 

parameterization and results of these models are provided below.  Table A-1 corresponds 

to Table 5-1 in the primary text.  Table A-2 presents the total hypoxic area and volume 

results (CR+UK methodology), corresponding to Table 5-3.  Figures A-1 and A-2 present 

maps of expected MinDO and total hypoxic thickness, corresponding to Figures 5-14 and 

5-15.   

In general, the results for total hypoxic area and volume are similar to the results for 

bottom layer hypoxic area and volume (as presented in the main text).  On average, the 

total hypoxic area is 14% larger than the bottom layer hypoxic area, and the two sets of 

estimates are highly correlated (r2=0.97).  Similarly, the total hypoxic volume is 18% 

larger than the bottom layer hypoxic volume, on average, and they are also highly 

correlated (r2=0.97).  This indicates that the traditionally reported bottom layer hypoxic 

extent is also proportionally representative of the total hypoxic extent. 
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Table A-1:  Regression coefficients (𝛽̂𝑝) with standard errors (𝜎𝛽� ) for normalized trend 
variables selected in the MinDO and THF models 

Variable 
MinDO  
(mg L-1)   

THF 
(-) 

β σβ   β σβ 
 E -0.74 0.09 

 
n.s. 

E2 0.32 0.07 
 

n.s. 
N -0.45 0.09 

 
-0.005 0.007 

N2 
   

-0.016 0.006 
D -2.45 0.18 

 
n.a. 

D2 2.39 0.16 
 

n.a. 
O n.a. 

 
-0.080 0.004 

O2 n.a. 
 

n.s. 
c.s. E 1998 -1.29 0.43 

 
n.s. 

c.s. E 2010 1.04 0.33   n.s. 
c.s.=cruise specific, 
 n.s. = not selected,  
n.a. = not available 
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Figure A-1:  Maps showing modeled median MinDO concentration, 1985-2011 
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Figure A-2:  Maps showing modeled median total hypoxic thickness, 1985-2011  
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Table A-2:  Tabulated total (multi-layer) hypoxic area and volume estimates, 1985-2011 

Year 
Area (1000 km2) 

 
Volume (km3) 

mean median 
2.5 

perc 
97.5 
perc   mean median 

2.5  
perc 

97.5 
perc 

1985 15.8 15.8 12.3 19.6 
 

63.7 62.5 39.5 92.9 
1986 14.6 14.4 11.1 19.0 

 
45.1 43.3 27.9 71.9 

1987 10.3 10.1 7.1 14.3 
 

25.4 23.9 12.5 46.4 
1988 0.6 0.6 0.2 1.4 

 
1.2 0.8 0.0 4.5 

1989 13.7 13.1 6.5 23.6 
 

41.6 37.1 15.4 92.2 
1990 15.8 15.6 11.7 21.3 

 
61.6 59.3 39.3 95.7 

1991 21.1 20.9 16.1 27.6 
 

86.0 82.7 52.6 139.2 
1992 12.7 12.4 9.8 16.9 

 
42.0 40.4 27.8 66.0 

1993 24.4 24.2 19.9 30.5 
 

112.6 110.1 82.5 160.0 
1994 18.4 18.2 14.8 22.9 

 
89.4 87.6 62.1 130.6 

1995 25.3 25.2 20.5 31.3 
 

88.1 85.6 58.4 131.6 
1996 25.0 24.8 20.0 31.6 

 
109.3 105.2 74.2 163.2 

1997 21.2 20.9 17.3 26.5 
 

71.0 67.9 45.9 114.8 
1998 11.7 11.7 9.9 13.8 

 
58.6 57.4 42.6 81.8 

1999 28.2 27.9 23.0 34.6 
 

140.4 138.3 96.4 197.5 
2000 3.9 3.8 2.8 5.3 

 
15.9 15.3 9.1 26.5 

2001 23.9 23.8 20.0 29.0 
 

88.8 86.9 64.2 125.8 
2002 24.3 24.1 20.7 28.6 

 
74.7 72.5 53.3 105.0 

2003 6.6 6.6 5.1 8.5 
 

14.2 13.4 7.6 24.5 
2004 19.7 19.4 15.8 24.9 

 
107.6 104.5 71.9 161.7 

2005 10.8 10.6 8.5 13.5 
 

34.3 33.0 21.4 54.5 
2006 16.6 16.4 13.6 20.6 

 
69.1 67.1 47.6 102.9 

2007 23.3 23.2 19.3 27.8 
 

123.6 120.9 88.8 173.8 
2008 26.1 26.2 22.4 30.3 

 
142.8 140.6 110.2 190.8 

2009 8.9 8.9 7.4 10.7 
 

51.9 50.9 38.7 71.9 
2010 20.2 20.1 16.2 24.4 

 
78.9 77.6 54.8 110.5 

2011 20.7 20.6 17.8 24.0   82.1 81.1 61.6 110.4 
average 17.2 17.0 13.7 21.6   71.1 69.1 48.4 105.4 
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