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ABSTRACT

Multicomponent Reynolds-Averaged Navier–Stokes Modeling of Reshocked
Richtmyer–Meshkov Instability-Induced Turbulent Mixing Using the Weighted

Essentially Nonoscillatory Method

by

J. Tiberius Morán-López

Co-chairs: James P. Holloway, Oleg Schilling

Hydrodynamic instability-induced turbulent mixing has a primary role in many sci-

ence and engineering applications. Elucidating reshocked Richtmyer–Meshkov insta-

bility is important for improving current techniques in predicting turbulence in com-

plex flows and advancing many areas of high-energy-density physics. Shock-driven

turbulent mixing induced by reshocked Richtmyer–Meshkov instability is investigated

here using a multicomponent Reynolds-averaged Navier–Stokes (RANS) model in-

cluding mixture molecular transport and thermodynamic coefficients closed with a

two-equation K–ε turbulence model. The model is implemented in a hydrodynamics

code using a third-order weighted essentially nonoscillatory (WENO) finite-difference

method for the advection terms and a second-order centered WENO method for the

gradients in the source and diffusion terms.

Turbulent mixing generated by a shock accelerated perturbed air–sulfur hexaflu-

oride interface with Atwood numbers At = ±0.67 is simulated for a variety of exper-

iments with incident shock Mach numbers 1.20 ≤ Mas ≤ 1.98. Parametric studies

are conducted to study the model sensitivity to variations in buoyancy production

xvi



model coefficients, initial conditions, and incident shock Mach number. The time-

evolution of the predicted mixing layer widths corresponding to different reshock

times by variations in shock tube test section lengths is also considered. The RANS

model results are compared with experimental data, previous large-eddy simulation

(LES) and turbulence model predictions, and the early-time analytical self-similar

mixing layer width. Sets of model coefficients that provide very good agreement with

various sets of experiments are established, together with a general coefficient set that

provides generally good agreement with data from all of these experiments.

The model is also applied to reshocked Richtmyer–Meshkov instability with At-

wood numbers At = ±0.21, ±0.67, and ±0.87 (corresponding to gas pairs air–CO2,

air–SF6, and air–H2, respectively) and Mas = 1.50, as experimental and numerical

simulation data for Atwood numbers different from At = ±0.67 are sparse. The mix-

ing layer widths are compared with LES data. Early-time and post-reshock growth

rates of the mixing layer width are considered for the different Atwood numbers.

Shock-driven instabilities are also considered with larger incident shock Mach num-

bers Mas = 3.00 and 5.00, as limited turbulent mixing investigations with larger Mas

values have been conducted. These studies are considered for cases with negative

Atwood numbers, At=−0.21, −0.67, and −0.87.

The budgets of the turbulent kinetic energy and turbulent kinetic energy dissi-

pation rate transport equations are investigated to determine the key mechanisms

in turbulent mixing. The shear and buoyancy production, diffusion, and dissipation

contributions to the budgets are considered for the various cases above. Results for

convergence under grid refinement for mixing layer widths, mean density, mean pres-

sure, mean heavy mass fraction, mean velocity, turbulent kinetic energy, turbulent

kinetic energy dissipation rate, and turbulent viscosity are also presented. These

investigations are considered for early-time and post-reshock mixing, as well as for

changes in the mixing due to secondary expansion, rarefaction, and reshock waves.

xvii



CHAPTER I

Introduction

The effects of multifluid hydrodynamic instabilities and turbulent mixing are of

critical importance to a large number of science and engineering applications, and

elucidating the impact of these effects has been considered for various applications.

Turbulence is manifested in numerous familiar situations and is perhaps often over-

looked as its presence is ubiquitous. Turbulence is present in geophysical flows such as

rivers and oceans, where density fluctuations develop due to temperature and salin-

ity effects. Atmospheric motions are also turbulent, and the effects of these unsteady

flows are especially common in aviation. Other examples include the flow over a base-

ball in motion, the mixing of cream in coffee, and smoke rising from a cigarette shows

the transition from laminar to turbulent flow. Engineering examples ranging from

low-speed to supersonic regimes include high-speed flight and supersonic combustion

ramjet engines (1). Figure 1.1 illustrates examples of turbulent flows in familiar situ-

ations. Gas dynamics typically involves large Reynolds numbers and viscosity has an

important effect on the motion of gases, where perturbations at any point will grow

throughout (45). The generation and evolution of turbulence from variable-density

and compressible hydrodynamic instabilities play a significant role in these processes.

In addition to the wide range of applicability, these examples also show that hy-

drodynamic instabilities are present in multiphase flows of liquids, gases, and plasmas.
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Figure 1.1: Illustrations of turbulent flows in familiar situations.

Important characteristics of turbulence are the effective transport and mixing of flu-

ids, irregular flows, dissipation of energy into heat, and a large range of spatial scales

(33). However, despite the many observable characteristics of turbulence, it is still

difficult to give a precise definition of turbulence despite its long history of investiga-

tion. In a general sense, turbulence can be defined as an irregular condition of flow

in which the various quantities show a random variation with time and space, so that

statistically distinct average values can be discerned (47).

1.1 Hydrodynamic Instabilities and Turbulence in High-Energy-

Density Physics

Of particular interest are turbulent flows and mixing in high-energy-density physics

(HEDP), as hydrodynamic instability-induced turbulence has important effects in

these environments (2), where shocks and blast waves are generated by large and

instantaneous releases of energy. Astrophysical examples are supernovae, stellar evo-

lution, and molecular cloud interactions with the interstellar medium. Other examples

include inertial confinement fusion (ICF), high-energy laser and shock tube experi-

ments, and laboratory astrophysics experiments.
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1.1.1 Astrophysical investigations

Turbulent mixing occurs during stellar core-collapse, where shock waves generated

propagate outward, and traverse and accelerate multiple perturbed gas interfaces.

Stellar convection zones also experience enhanced turbulent mixing processes due to

large and rapid changes in pressure and temperature as gases of different densities

diffuse and mix across interfaces (see Fig. 1.2). In supernovae dynamics, ionizing

radiation and turbulence from blast and shock wave instabilities (3) are processes

found in stellar and galaxy formation. During supernova detonation, stellar matter

is ejected with densities 2–3 × 109 g/cm3, temperatures 108–109 K, and velocities

109 cm/s (63; 64; 65). Molecular clouds in the interstellar medium (ISM), such as

the Horse head nebula (see Fig. 1.2) and the three pillars of creation, are sources

of ionizing radiation and turbulence strong enough to support gravitational collapse,

which are responsible for star formation (66). Hydrodynamical models for SNe Ia

are still poorly understood and controversial (67). Moreover, improved methods for

modeling such instabilities are critical for developing more reliable estimates for the

rate of cosmological expansion (65).

Figure 1.2: Illustrations of convection and radiation zones within a star (left) and the Horse
head nebula (right).
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1.1.2 Inertial confinement fusion and related high-energy studies

Reproducing astrophysical-type events in the laboratory is difficult due to the high

pressures and temperatures involved (68). High-energy implosions, such as those in

thermonuclear fuel compression in inertial confinement fusion (ICF), are inherently

unstable and susceptible to shock-induced hydrodynamic instabilities. Over the past

decades, experiments with various ICF capsule targets have demonstrated the im-

portant role fluid instabilities and mixing have in determining the efficiency of target

implosion and neutron yield or the limiting of thermonuclear fuel compression (7).

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory

(LLNL) consists of 192 40 cm square laser beams and a 10 m diameter chamber hous-

ing the thermonuclear fuel target; it is designed to deliver 1.8 MJ of energy (69) to

rapidly heat and compress deuterium–tritium fuel to achieve thermonuclear fusion.

During the compression process a sequence of inward-driven shock waves are gener-

ated that compress the fuel target. The first NIF experiment successfully sustained a

blast wave speed corresponding to a 14 Mbar pressure held for 3 ns (70). Due to the

extreme energies, pressures, and velocities involved, turbulent instabilities develop

during the compression process.

High-energy density experiments are crucial to linking scaled models in controlled

environments to astrophysical observations (71). Shock tube experiments are used to

generate scaled shocks representative of those found in astrophysical environments, by

separating a low-pressure gas from a high-pressure gas with a thin membrane having

perturbations. As the diaphragm ruptures, the gas expands from high pressure (driver

section) to low pressure (driven section), creating a shock wave (42).

In the context of ICF, even small amounts of mixing can have large effects on the

energy released (72), and the application of Reynolds-averaged models to high-energy-

density experiments has been considered to better understand turbulent mixing (see

Sec. 1.3.3 for the description and application of several Reynolds-averaged models).
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Until recently, simulations were performed without mixing effects, and even now mod-

eling is usually applied in one dimension; high-resolution two-dimensional simulations

have been considered, but they cannot model any fully developed turbulence that is

present (73). Hurricane et al. (72) applied the K–L model in the multidimensional

radiation hydrodynamics code ARES developed at the Lawrence Livermore National

Laboratory and assumed negligible molecular viscosity, diffusivity, and conductivity.

Amendt et al. (74) solved the ICF equations using the CALE code to assess the evolu-

tion of mixing and its effect on target performance, and estimate the yield degradation

from short-wavelength perturbations growing on the inner shell surface. Bradley et

al. (73) applied the BHR-2 turbulence model in an adaptive mesh refinement (AMR)

Eulerian hydrodynamics code xRAGE (see Ref. (29)). The turbulent kinetic energy

used to initiate turbulence was 0.1% of the mean kinetic energy, and the model was

activated until the shock begins to pass through the gas interface. In these studies,

the experimental widths were larger than the simulation predicted widths. Additional

discussion on simulation and modeling studies is provided in Secs. 1.3.2 and 1.3.3.

1.1.3 Turbulent mixing

The present investigation is dedicated to advancing turbulence modeling rele-

vant to the aforementioned applications. The further development and assessment

of turbulence models validated against experimental data, theoretical predictions,

and computational models are important areas of contemporary hydrodynamics and

turbulence research. An important mechanism for the production of shock-induced

turbulent mixing in high-energy-density systems is Richtmyer–Meshkov instability,

in which the impulsive acceleration of a perturbed gas interface induces interfacial

perturbation growth and eventually turbulent mixing at sufficiently large Reynolds

numbers. In many applications, the evolving interface and resulting mixing layer are

reshocked by a reflected shock. Reshocked Richtmyer–Meshkov instability is impor-
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tant to better understand physically and model accurately, as it is a central mecha-

nism for turbulent mixing in diverse applications (6; 17). Sections 1.2 and 1.3 discuss

reshocked Richtmyer–Meshkov instability and previous experimental, theoretical, and

computational endeavors to elucidate this phenomenon.

1.2 Reshocked Richtmyer–Meshkov Instability and Mixing

Initially predicted by Richtmyer in 1960 (48) and later experimentally verified

by Meshkov in 1969 (49), Richtmyer–Meshkov instability occurs when the impulsive

acceleration of a perturbed interface initially separating fluids with different densities

results in the growth of perturbations. As the shock wave interacts with the first

fluid it accelerates the interface and amplifies distortions on both the shock and

interface (11; 10). These perturbations are manifested by the penetration of bubbles

of light fluid into the heavy fluid and penetration of spikes of heavy fluid into the

light fluid (4; 5). Eventually, turbulent mixing within the layer generated by this

interpenetration occurs at sufficiently large Reynolds numbers. Reshock, in which

the mixing layer is subjected to multiple shock–interface interactions rather than

a single interaction (9), also occurs in many applications affected by Richtmyer–

Meshkov instability.

Shock tubes are often used to experimentally investigate this instability. In de-

scribing the multi-stage evolution of reshocked Richtmyer–Meshkov instability in a

shock tube, the incident shock wave is generated in the driver section, which contains

either the lighter or heavier gas. The shock then impulsively accelerates the first gas

towards the second gas situated in the test section. The incident shock and acceler-

ated interface propagate downstream, with the shock traveling ahead of the interface.

Gases behind the shock front can still be supersonic, but remain subsonic relative to

the shock. Upon reflecting from the endwall of the test section, the shock propagates

backwards. Reshock occurs when the reflected shock interacts with the evolving layer,
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and results in enhanced turbulent mixing manifested by an increased growth rate of

the mixing layer width. Following reshock, a transmitted wave continues upstream

and a rarefaction wave is reflected in the direction of the test section endwall. Fig-

ure 1.3 shows Schlieren images from an air–SF6 shock tube experiment conducted by

Leinov et al. (12). Abbreviations for images (a)–(d) in the figure are: initial shock

wave (ISW), mixing zone (MZ), reflected shock wave (RSW), transmitted–reflected

shock wave (TRSW), and rarefaction wave (RRW); images (e)–(h) demonstrate the

enhancement of turbulent mixing after reshock. Reshocked Richtmyer–Meshkov in-

stability is also important in ICF as it can enhance turbulent mixing and limit ther-

monuclear fuel compression and ignition by mixing ablative shell material with the

deuterium–tritium fuel in the capsule (7; 8).
456 E. Leinov and others

(a) (b) (c) (d )

(e) ( f ) (g) (h)

ISW

Air Air AirSF6 SF6 SF6 SF6 SF6

MZ

MZ MZ MZ MZ

ISW MZ RSW TRSW MZ RRW

Figure 2. Schlieren images from a light to heavy gas configuration (air/SF6) experiment: (a)
t = 0.01 ms, (b) t = 0.34 ms, (c) t = 0.56 ms, (d ) t = 0.90 ms, (e) t = 1.07 ms, (f ) t = 1.29 ms,
(g) t = 1.74ms and (h) t = 1.96ms.

First, the downstream (rightward) moving ISW is evident in figure 2(a). The ISW
continues moving downstream and the MZ follows it in figure 2(b). The MZ separates
air on its left side from SF6 on its right side. Following its arrival to the endwall of the
test-section, the ISW reflects from it reflected shock wave (RSW) and moves upstream
(to the left) towards the evolving MZ, which is moving downstream in figure 2(c).
Figure 2(d ) presents the situation just following the interaction of the RSW with the
MZ, a shock wave transmitted – reflected shock wave (TRSW), moving upstream,
is transmitted to the air and a rarefaction wave (RRW) is reflected towards the SF6

(moving to the right towards the endwall). The dramatic increase in the width of the
MZ following the passage of the re-shock is evident clearly in figure 2(e–h). Two
configurations of the test-section were utilized in the present research. A detailed
scheme of the test-sections is given in figure 3. The first configuration (figure 3a)
consisted of a movable endwall, which enabled controlling the evolution time of
the instability prior to the arrival of RSW. The variation of the endwall position
was achieved by welding a screwed rod to the centre of a 15 mm thick aluminium
plate, which functioned as the endwall. The position of the endwall was fixed by
using two bolts, which were adjacent to two plates, adjacent to the frame of the
test-section from the inner and outer sides. The second configuration (figure 3b)
consisted of an elastomeric foam endwall that enabled controlling the strength of
RSW while keeping the incident shock-wave strength constant. The elastomeric foam
was 105 mm long and had a cross-section that matched the inner cross-section of the
test-section, i.e. 80 mm × 80 mm. The elastomeric foam was placed in such a way that
one of its faces was adjacent to the aluminium plate that was used as the endwall
in the just-described first configuration, and its opposite face, faced upstream. The
initial distance of the foam face, facing upstream from the nitrocellulose membrane,
was kept at 80 mm. Figure 3(b) presents the test-section configuration with the foam
endwall. The elastomeric foam was wrapped around and completely covered with a
15 µm thick aluminium foil in order to assure that the elastomeric foam acted as
a ‘soft’ wall, which did not disturb the flow in the test-section and the evolution of
the instability. In this fashion, shock-wave reflections and small disturbances in the
re-shock from the elastomeric foam were avoided. Apart from the aluminium foil, a

Figure 1.3: Evolution of reshocked Richtmyer–Meshkov instability for an air–SF6 experi-
ment conducted by Leinov et al. (12).

Experiments (10; 11; 12; 13; 14) and numerical simulations (15; 16; 17; 18; 19;

20; 21) show that reshock significantly increases the growth rate of the mixing layer,

enhancing turbulent mixing. For example, Vetter and Sturtevant (10) found that tur-

bulent mixing was amplified by a factor of six after the mixing layer was reshocked

in experiments with incident shock Mach numbers ranging from Mas = 1.24 to 1.98.

A summary of previous experimental work, numerical simulations, and Reynolds-
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averaged modeling of reshocked Richtmyer–Meshkov instability and mixing is pro-

vided in Sec. 1.3.

1.3 Previous Experimental, Simulation, and Modeling Stud-

ies of Reshocked Richtmyer–Meshkov Instability

Turbulent mixing induced by shock–interface interactions, as occurs in reshocked

Richtmyer–Meshkov instability, is challenging to diagnose in experiments and nu-

merically simulate and model. The mixing involves two or more gases, so that ad-

vanced diagnostic methods and numerical methods that accurately describe the evo-

lution of the instability, transition to turbulence, and turbulent mixing are necessary.

This section discusses previous experimental, numerical, and modeling of reshocked

Richtmyer–Meshkov instability.

1.3.1 Experiments

A total of ten different experiments were simulated for various investigations in the

present work and initial condition calibration. Table 1.1 provides specifications for

each of the studies conducted including incident shock Mach number Mas =
√
γ p/ρ,

gases, Atwood number At = (ρ2 − ρ1)/(ρ2 + ρ1), and length of the test section δ.

Experimental measurements with other gas combinations or shock Mach numbers

larger than 1.98 are sparse and not as readily available.

Shock tube experiments provide mostly Schlieren visualizations for the turbulent

mixing layer width, where x-rays, differential interferometry, and infrared absorption

and emission are used for average density measurements (11). The three Vetter and

Sturtevant experiments (1995) (10) listed in Table 1.1 were performed in the GALCIT

17-inch diameter horizontal shock tube (50). A thin 0.5µm nitrocellulose membrane

formed the initial interface separating air and SF6, while a wire mesh supported
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Mas Gas order At Test section length, δ [cm]

Vetter–Sturtevant (1995) 1.98 air–SF6 0.67 49
1.50 air–SF6 0.67 61
1.24 air–SF6 0.67 110

Poggi et al. (1998) 1.45 SF6–air -0.67 30

Leinov et al. (2009) 1.20 air–SF6 0.67 8, 9.8, 13.1, 17.2, 19.9, 23.5

Table 1.1: Experiments by Vetter and Sturtevant (10), Poggi et al. (11), and Leinov et al.
(12) simulated in the present study. Specifications include incident shock Mach
number Mas, gas order, Atwood number At, and test section length δ.

the membrane for most of the experiments. To achieve high-resolution imaging,

a single spark-Schlieren photograph with a 0.5µs spark-initiated flash of light was

taken during each run. Due to the single-photograph limitation of Schlieren imaging,

there is significant dependence on the repeatability of flow conditions as many runs

are required to experimentally assemble the mixing layer width evolution (10). This

limitation can be circumvented by capturing several images in one experimental run

using low-resolution imaging; spark Schlieren images are still needed to facilitate

interpretation of the mixing layer width.

Poggi et al. (1998) directly characterized the turbulence intensity with the hy-

pothesis of a global turbulent field (11). Laser Doppler anemometry (LDA) was used

to make instantaneous axial velocity measurements and obtain profiles of the axial

contribution of the turbulent kinetic energy when the turbulent mixing layer swept

past the measurement location. A vertical shock tube with SF6 in the driver section

and air in a 30 cm test section separated by a 0.3µm thick membrane was used in the

experiment. The gases were impulsively accelerated by an upward propagating shock

with Mas = 1.45. The membrane did not induce any measurable turbulence and was

ruptured by the incident shock. As discontinuous interfaces are usually generated by

separating gases with a membrane, a thin wire mesh was placed directly above it.

The spacing and diameter of the wire mesh were 1010µm and 80µm, respectively.
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The LDA probe was positioned at 5.1, 12.6, 16.1, 16.9, and 17.9 cm ahead of the

initial interface location in order to measure turbulence levels in the turbulent mixing

layer before and after reshock. In order to achieve statistical convergence, approxi-

mately forty runs were necessary at almost every location of the LDA probe. This

additionally required reproducing nearly identical initial experimental conditions.

The six reshocked Richtmyer–Meshkov instability experiments conducted by Leinov

et al. were performed at the Ben-Gurion University using a horizontal shock tube

with 550 cm length and constant 8 cm × 8 cm internal cross-section (12). Air and

SF6 were situated in the driver and test sections, respectively, resulting in Atwood

number At = 0.67. A shock with incident shock Mach number Mas = 1.20 was gen-

erated in the air and progressed into the SF6 test section. The gases were separated

by a thin nitrocellulose membrane with randomly-distributed small-scale perturba-

tions with mean wavelength 〈λ〉 = 0.10 cm. To ensure <1% variation in the incident

shock Mach number, an electrically actuated striking pin mounted on a rod inside the

driver section was used to rupture the diaphragm separating the gases in the driver

and test sections. In these experiments, the endwall of the test section was posi-

tioned at δ = 8.0, 9.8, 13.1, 17.2, 19.9, and 23.5 cm downstream from the membrane

to achieve different times of reshock corresponding to different degrees of nonlinearity

of the mixing layer initially generated by the first shock passage through the interface.

Schlieren photography was used to visualize the evolution of the reshocked turbulent

mixing layer. The Schlieren images were digitized and the locations of the shock

waves, mixing layer edges, and endwall positions were measured digitally. Physi-

cal quantities were obtained from the images using a suitable calibration. For each

test section length considered, instantaneous mixing layer widths were plotted as a

function of time from an ensemble of experiments.
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1.3.2 Numerical simulations

The presence of shocks in numerical simulations introduces stringent resolution

requirements. Typically an Eulerian shock-capturing or a Lagrangian method with

artificial viscosity is used to represent the shock over several grid points (52). Material

discontinuities, such as gas interfaces, pose similar difficulties for numerical methods.

Except in particular cases, grid resolutions needed to fully resolve a shock, as would

be required in a direct numerical simulation (DNS), are generally impractical (53).

Therefore, large-eddy simulation (LES) has been applied to shock-driven mix-

ing more recently, in which explicit subgrid-scale models are implemented in the

resolved-scale equations. However, there has been very little validation of subgrid-

scale models applied to Richtmyer–Meshkov unstable flows in comparison to other

more widely studied turbulent flows. Initially proposed by Smagorinsky (75), LES

is a simulation method used in computational fluid dynamics that models the small-

est (unresolved) scales of the flow (33), rather than resolving them directly as in

DNS. The vast majority of multimaterial shock-driven flows have been simulated

using implicit large-eddy simulation (ILES) (54) and monotone implicit large-eddy

simulation (MILES), in which the Euler equations are solved with truncation errors

of the numerical method providing intrinsic dissipation and diffusion that regularize

the discrete solution. Implicit LES methods use finite-volume schemes to capture the

inviscid cascade of kinetic energy through the inertial range, while the inherent nu-

merical dissipation acts as an implicit subgrid model, providing another form of LES

(76). The intrinsic dissipation and diffusion are very difficult to quantify for complex

hydrodynamic flows. Investigations of such flows using LES, ILES, and MILES in

three dimensions is highly computationally intense, as present resources limit these

simulations to grid resolutions that cannot resolve all of the salient structures present

in shocked flows. This limitation is exacerbated when simulating experiments with

large Reynolds numbers and a wide range of spatial scales. Furthermore, because the
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grids presently used are already at the size limit of available resources, numerical con-

vergence studies cannot be performed and most simulations are likely underresolved.

Hill, Pantano and Pullin (15) performed LES of the Mas = 1.24, 1.50, and

1.98 Vetter–Sturtevant experiments using a hybrid tuned center-difference/fifth-order

WENO scheme and the stretched vortex subgrid-scale model. Grid resolutions were

616×1282 and 327×1282 for the smallest and largest Mach numbers, respectively, and

388 × 1282 and 776 × 2562 for the intermediate Mach number simulations. Binary

mixture relations were used to compute transport coefficients and thermodynamic

quantities. The LES overpredicted the mixing layer growth rates prior to reshock

but compared favorably with experimental measurements after reshock for all Mach

numbers. They argued that due to the uncertainty in the initial conditions, the ac-

tual width of the mixing layer is not expected to compare well prior to reshock (15);

measured widths prior to reshock were ≈ 50% of the widths from the simulations.

The post-reshock widths agreed well with the experimental data, with differences of

≈ 4% for the Mas = 1.50 and 1.98 cases and ≈ 10% for the Mas = 1.24 case.

Ukai et al. (55) performed LES of the Mas = 1.50 Vetter–Sturtevant experiment

at a resolution of 746× 1402 using a one-equation model for the subgrid-scale kinetic

energy. A finite-volume method with a fourth-order central scheme in smooth flow

regions was used. While the mixing growth rate before reshock was overestimated,

the growth rate following reshock was in good agreement with experimental data.

However, the predicted mixing layer width was notably larger than the experimental

measurements before and after reshock.

Schilling and Latini (18) performed ILES of the Mas = 1.50 Vetter–Sturtevant

experiment at a resolution of 513 × 2572 using a ninth-order WENO method. The

predicted growth rate of the mixing layer before and after reshock agreed well with

experimental measurements. However, the simulation mixing layer width overpre-

dicted the experimental width before reshock due to the limited spatial resolution
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and large initial perturbation amplitudes, but was in good agreement with the data

after reshock. Grinstein, Gowardhan and Wachtor (19) also performed ILES of the

Mas = 1.50 Vetter–Sturtevant experiment using adaptive mesh refinement with base

resolutions 2402×820 and 4802×1640. The mixing layer growth rates were relatively

insensitive to the initial conditions before reshock, and were more sensitive following

reshock. Growth rates for all of the different initial perturbations considered agreed

well with the experimental growth rates before and after reshock, but the mixing

layer widths were overestimated.

1.3.3 Reynolds-averaged modeling

Reynolds-averaged Navier–Stokes (RANS) modeling is a complementary approach

to the simulations discussed above. This method is widely used in modeling tur-

bulence and mixing in engineering and scientific applications (33) and may be the

only current practical means of estimating the effects of turbulence on mean flows in

complex high-energy-density physics applications such as ICF. In RANS modeling,

ensemble-averaged Navier–Stokes equations are solved with closures for the correla-

tions introduced through averaging of the nonlinear terms. When flow symmetries

permit, such as in shock propagation where most of the transport occurs in the di-

rection of shock propagation, RANS models can be run in fewer than three spatial

dimensions. Unlike for multidimensional numerical simulations, this also permits

numerical convergence studies to be performed. However, RANS models also have

relative disadvantages. Compared to LES where only the subgrid scales are modeled,

all flow scales are modeled in RANS simulations and additional modeled turbulent

transport equations are necessary. Model coefficients in these transport equations can

be numerous and require calibration, or otherwise must be specified using theoretical

considerations, e.g., self-similarity constraints (see Sec. 2.3). Specifying the initial

conditions of the turbulent fields must also be addressed.
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One Reynolds-averaged model that has been used to perform these studies is

the K–L turbulence model; K is the turbulent kinetic energy in the flow and the

turbulent lengthscale L is characteristic of the largest eddy size. The turbulent ki-

netic energy is often taken as a fraction of the mean kinetic energy (≈ 0.1%− 10%).

Dimonte and Tipton (27) applied a K–L turbulence model implemented in an arbi-

trary Lagrangian–Eulerian (ALE) code to model the Mas = 1.50 Vetter–Sturtevant

and Mas = 1.45 Poggi–Thorembey–Rodriguez experiments. This two-equation trans-

port model for the turbulent kinetic energy and turbulent lengthscale is based on a

buoyancy–drag model for the Rayleigh–Taylor and Richtmyer–Meshkov instabilities.

Good agreement with the data before and after reshock was obtained for both cases

by adjusting a model coefficient CP and the initial turbulent lengthscale L0 between

these cases. Chiravalle (28) used a similar K–L model implemented in a Lagrangian

code with a von Neumann–Richtmyer artificial viscosity, and showed similarly good

agreement with both experiments by adjusting model coefficients and initial con-

ditions. Furthermore, Mügler and Gauthier (51) also performed ALE simulations

of the Mas = 1.45 Poggi–Thorembey–Rodriguez experiment. The two-dimensional

Navier–Stokes equations using a two-species formulation were simulated with the

Baldwin–Lomax turbulence model for near-wall boundary layers. Predicted mixing

layer widths were slightly larger than experimental measurements, but better agree-

ment was achieved after reshock. In addition to conducting experiments for various

reshock times, Leinov et al. also performed three-dimensional numerical simulations

using the arbitrary Lagrangian–Eulerian LEEOR3D code for δ = 8.0, 17.2, and 23.5

cm (12; 31). Simulation mixing layer widths matched experimental widths with good

accuracy.

Another Reynolds-averaged model often used is the K–ε model, where the turbu-

lent kinetic energy dissipation rate, ε, is modeled instead of the turbulent lengthscale,

L. The turbulent lengthscale and the turbulent kinetic energy dissipation rate can
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be related by ε = CDK
3/2/L (74), where CD ≈ 1.25 (27) is the bubble drag coeffi-

cient. Gauthier and Bonnet (25) developed a K–ε model for turbulent mixing, where

the closure relations were supplemented with algebraic relations in order to provide

reasonable predictions under strong gradients. A fully turbulent state was assumed

for closing the turbulent fluxes by gradient-diffusion models using the corresponding

mean quantities. The model was applied to two experiments for instability-induced

turbulent mixing with incident shock Mach numbers 1.00 ≤ Mas ≤ 1.30. However,

a constant coefficient set was not established as the two experiments were modeled

using three different combinations of σρ and Cε0. Valerio et al. (61) developed a

one-dimensional Reynolds-averaged model (an early version of the BHR model) for

simulating reshocked Richtmyer–Meshkov instability-induced turbulent mixing. Cal-

ibrations were made against results from the impulsive acceleration of an air–He

interface by a Mas = 1.3 incident shock. The model was applied to experiments with

gas configurations CO2–He, CO2–Ar and CO2–Kr with corresponding Atwood num-

bers At=−0.73, −0.05, and 0.31; the incident shock Mach numbers considered in the

studies were Mas = 2.4, 3.1, and 4.5. The model also predicted multiple reshocks for

the various studies. Except for small Atwood numbers, the predictions agreed quan-

titatively with theoretical estimates and experimental results. Gauthier and Bonnet

(25) and Valerio et al. (61) solved the equations using a Lagrangian method.

Banerjee, Gore and Andrews (29) applied the three-equation Besnard–Harlow–

Rauenzahn (BHR) model to the Mas = 1.24, 1.50, and 1.98 Vetter–Sturtevant and

Mas = 1.45 Poggi–Thorembey–Rodriguez experiments. This model is also based on a

K–L turbulence model. However, an additional transport equation is modeled for the

averaged fluctuating velocity, v′′j . Agreement with the pre-reshock experimental data

was good, but the model generally predicted less turbulent mixing following reshock,

resulting in smaller growth rates of the mixing layer widths.

Grégoire, Souffland and Gauthier (26) applied a second-order Reynolds-averaged
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Euler model to simulate the Mas = 1.45 Poggi–Thorembey–Rodriguez experiment.

The components of the Reynolds stress equation (instead of the turbulent kinetic en-

ergy) were solved together with an equation for the modeled turbulent kinetic energy

dissipation rate. These equations were coupled to modeled transport equations for

the averaged Favre fluctuating velocity v′′j and density variance ρ′ 2. The model was

implemented in a Lagrangian finite-volume code using a second-order staggered spa-

tial discretization and shock-capturing was achieved using a von Neumann–Richtmyer

artificial viscosity. The model showed some inaccuracy prior to reshock as a smaller

width was predicted. However, agreement with experimental data improved following

reshock as the growth of the turbulent mixing layer was well predicted.

In this thesis, a multicomponent (two species) Reynolds-averaged Navier–Stokes

(RANS) model based on a two-equation K–ε turbulence model is used to simulate

reshocked Richtmyer–Meshkov instability. The model equations are solved using a

third-order conservative finite-difference weighted essentially nonoscillatory (WENO)

shock-capturing method and a characteristic projection formulation. The governing

equations include heat conduction, viscous effects, mass diffusion, and enthalpy dif-

fusion, unlike previous studies (25; 26; 27; 28; 29) in which the Reynolds-averaged

Euler equations were considered. Rather than using an arbitrary lengthscale, the lin-

ear Richtmyer growth rate is used as a relevant timescale to relate the initial values

of K and ε.

1.4 Outline of the Thesis

The multicomponent Reynolds-averaged Navier–Stokes equations coupled to a

two-equation K–ε turbulence model are introduced in Chapter II. Mixture molecular

transport and thermodynamic contributions are discussed, followed by the closures

for the Reynolds stress and averaged fluctuating velocity. Definitions for the mixing

layer width and the analytical self-similar solution are presented. A discussion of the
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numerical method used to solve these equations is also given.

The model predictions are evaluated in Chapter III by simulating four reshocked

Richtmyer–Meshkov instability experiments. The first three experiments were con-

ducted by Vetter and Sturtevant (1995) (10) for Mas = 1.24, 1.50, and 1.98 with

At = 0.67. The fourth experiment was conducted by Poggi, Thorembey, and Ro-

driguez (1998) (11) for Mas = 1.45 with At = −0.67. In addition to experimental

measurements, results are compared with predictions from the BHR model (29), LES

data (15), and self-similar solutions. Parametric studies are conducted to test the

sensitivity of the model to changes in initial conditions and key model coefficients.

The model is applied to study the effects of variations in reshock timing by ad-

justing the test section length δ in Chapter IV. A set of six experiments conducted

by Leinov et al. (12) with δ = 8, 9.8, 13.1, 17.2, 19.9, and 23.5 cm are considered

to evaluate the predicted mixing layer widths using an optimal set of coefficients.

Results from three-dimensional simulations (31) for δ = 8, 17.2, and 23.5 cm are also

available for additional comparison. A second set of general coefficients applicable

to a broader range of Mas, At, and δ was also determined; comparisons are made

between the mixing layer widths obtained using the optimal and general coefficients

for the ten experiments just discussed. To the author’s knowledge, this is the first

published application of a RANS model to simulate these experiments.

Reshocked Richtmyer–Meshkov instability is investigated in Chapter V for dif-

ferent Atwood numbers. Combinations of air with CO2, SF6, and H2 resulting in

At = ±0.21, ±0.67, and ±0.87, respectively, are considered for both light-to-heavy

and heavy-to-light configurations. Although experimental data are not available for

these investigations, results from perviously performed LES are compared to the

model predictions. Mixing rates following reshock are compared between gas pairs for

the positive and negative Atwood numbers. RANS modeling of reshocked Richtmyer–

Meshkov instability is considered in Chapter VI for larger incident shock Mach num-
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bers, Mas = 3.00 and 5.00. Comparisons are also made for early-time and post-

reshock mixing between Atwood numbers for larger Mas values. Finally, conclusions

and future work are given in Chapter VII.

The principal contribution of this research to the field is the systematic applica-

tion of a multicomponent RANS turbulence model to reshocked Richtmyer–Meshkov

instability. The present work addresses the following questions and new contributions

to this field:

• How is reshocked Richtmyer–Meshkov instability modeled differently in this

RANS study?

A multicomponent (two species) RANS model including mixture molecular

transport and thermodynamic contributions coupled with a K–ε turbulence

model is used. The linear Richtmyer growth rate is used as a relevant timescale

in initializing K and ε instead of an arbitrary turbulent lengthscale. The model

is used to systematically investigate a broad range of reshocked Richtmyer–

Meshkov instability cases.

• How is confidence established in the model?

This work entails comparisons to a variety of experimental and numerical simu-

lation data and the analytical self-similar solution for early-time mixing. Para-

metric studies were conducted to test the model sensitivity to variations in key

model coefficients, initial conditions, and experimental uncertainty. Numerical

convergence under grid refinement for the mixing layer width, the mean den-

sity, mean pressure, mean heavy mass fraction, mean velocity, turbulent kinetic

energy, turbulent kinetic energy dissipation rate, and turbulent viscosity was

considered for each of the cases. Converged results show good agreement with

the experimental data, and also suggest the possibility of underresolved results

from other Reynolds-averaged models and LES.
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• How do variations in model coefficients and initial conditions affect turbulent

mixing predictions?

Turbulent budgets for the turbulent kinetic energy and turbulent kinetic en-

ergy dissipation rate transport equations and how they correlate with features

observed in the mixing layer growth are considered; see also Ref. (62) for a

similar analysis of these budgets for Rayleigh–Taylor turbulent mixing. The

buoyancy and shear production, diffusion, and dissipation contributions to the

budgets are evaluated for early-time and post-reshock mixing. These studies

elucidate changes in the mixing layer growth rates, shock speeds, turbulence in-

tensities, and general mixing processes as initial conditions, model coefficients,

and experimental parameters are varied.

• What areas of reshocked Richtmyer–Meshkov instability relevant to high-energy-

density physics are elucidated?

As the model shows good agreement with various experimental data and the

analytical self-similar solution, its application is extended to cases for which

experimental and numerical simulation data are either not available or sparse:

reshocked Richtmyer–Meshkov instability for Atwood numbers At = ±0.21,

±0.67, and ±0.87 corresponding to combinations of air with CO2, SF6, and H2,

respectively. Comparisons of the mixing layer growth rate and turbulent bud-

gets are made between Atwood numbers. Furthermore, reshocked Richtmyer–

Meshkov instability-induced turbulent mixing is also considered for larger inci-

dent shock Mach numbers, Mas = 3.00 and 5.00. These regimes are relevant

to high-energy-density applications, and experimental and numerical simulation

data is very limited.
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CHAPTER II

Turbulence Modeling and Numerical Method

2.1 Turbulence Modeling

2.1.1 The multicomponent Reynolds-averaged Navier–Stokes model

The multicomponent RANS model including mixture molecular transport and

thermodynamic coefficients describes the transport of mean density ρ, velocity ṽi,

total energy ẽ, and heavy gas mass fraction m̃H (22; 24). All quantities are in cgs

units. The mean transport equations are

∂ρ

∂t
+

∂

∂xj
(ρ ṽj) = 0 , (2.1)

∂

∂t
(ρ ṽi) +

∂

∂xj
(ρ ṽi ṽj) = − ∂p

∂xi
− ∂τij
∂xj

+
∂σij
∂xj

, (2.2)

∂

∂t
(ρ ẽ) +

∂

∂xj
(ρ ẽ ṽj) = − ∂

∂xj
(p ṽj)−

∂

∂xj

(
p v′′j

)
− ∂

∂xj
(τij ṽi) +

∂Hj

∂xj
(2.3)

+
∂

∂xj

(
κ
∂T̃

∂xj
+
µt
σU

∂Ũ

∂xj

)
+

∂

∂xj

[(
µ+

µt
σK

)
∂K

∂xj

]
,

∂

∂t
(ρ m̃H) +

∂

∂xj
(ρ m̃H ṽj) =

∂

∂xj

[(
ρD +

µt
σm

)
∂m̃H

∂xj

]
, (2.4)
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where overbars and tildes denote Reynolds and Favre averaged fields, respectively (see

Appendix A for the derivation of these equations and the approximations used in the

present study). The mean total energy includes the mean kinetic, mean internal, and

turbulent kinetic energies, respectively,

ẽ =
ṽ2

2
+ Ũ +K . (2.5)

The gases are assumed to satisfy the ideal gas equation of state relating the mean

internal energy Ũ , pressure p, and temperature T̃ ,

Ũ =
p

(γ − 1) ρ
= cv T̃ . (2.6)

The mixture ratio of specific heats

γ =
cp
cv

=
cpH m̃H + cpL (1− m̃H)

cvH m̃H + cvL (1− m̃H)
(2.7)

depends on the heavy mass fraction, m̃H , and light mass fraction, m̃L = 1 − m̃H .

Specific heats at constant pressure and volume are cpH,L and cvH,L, respectively, and

are assumed constant for each gas. Subscripts H and L denote the heavy and light

fluids, respectively. The mean viscous stress tensor is

σij = µ

(
∂ṽi
∂xj

+
∂ṽj
∂xi
− 2

3
δij

∂ṽk
∂xk

)
(2.8)

and bulk viscosity is neglected. Molecular transport coefficients and thermodynamic

quantities, κ, µ, D, and Hj, are discussed in Sec. 2.1.2. Closures for the Reynolds

stress tensor τij and averaged fluctuating velocity v′′j are discussed in Sec. 2.1.4. The

model coefficients σm, σU , σK are discussed in Sec. 2.3.

The second and third terms on the right side of Eq. (2.3) are the buoyancy
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production (pressure work) and shear production, respectively, of the mean total

energy followed by the mean enthalpy diffusion. The last two terms in Eq. 2.3 are

the internal energy and turbulent kinetic energy diffusion, which account for both

molecular and turbulent contributions. Diffusive terms in Eq. 2.4 for the heavy mass

fraction similarly account for molecular and turbulent transport processes.

2.1.2 Mixture molecular transport coefficients and thermodynamic quan-

tities

The binary mixture relation (15; 38; 40)

φ =
φH m̃H/

√
MWH + φL (1− m̃H) /

√
MWL

m̃H/
√
MWH + (1− m̃H) /

√
MWL

(2.9)

is used for the molecular transport coefficients, where φ = µ, D, and κ are the dynamic

viscosity, mass diffusivity, and thermal conductivity, respectively; these quantities are

assumed constant for each gas. The molecular weights for the heavy and light gases

are MWH,L.

The mean enthalpy diffusion term in the mean total energy equation (2.3),

Hj = −
2∑
r=1

h̃rJr,j , (2.10)

depends on the mean enthalpy and diffusive flux of gas r,

h̃r = Ũr +
pr
ρr

(2.11)

Jr,j = −ρ

(
Dr

∂m̃r

∂xj
− m̃r

2∑
s=1

Ds
∂m̃s

∂xj

)
(2.12)

respectively. Indices 1 and 2 refer to H and L.
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2.1.3 The K–ε turbulence model

The transport equations for the turbulent kinetic energy K and turbulent kinetic

energy dissipation rate ε (22; 24; 32; 33) are

∂

∂t
(ρK) +

∂

∂xj
(ρK ṽj) = −v′′j

∂p

∂xj
− τij

∂ṽi
∂xj
− ρ ε+ ΠK (2.13)

+
∂

∂xj

[(
µ+

µt
σK

)
∂K

∂xj

]
,

∂

∂t
(ρ ε) +

∂

∂xj
(ρ ε ṽj) = −Cε0

ε

K
v′′j

∂p

∂xj
− Cε1

ε

K
τ dij

∂ṽi
∂xj
− 2

3
Cε3 ρ ε

∂ṽj
∂xj

(2.14)

−Cε2
ρ ε2

K
+ Cε4

ε

K
ΠK +

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
,

respectively (1; 25; 32). The first two terms on the right side of Eq. 2.13 represent the

production of turbulent kinetic energy through buoyancy (pressure work) and shear,

respectively. The third term is the dissipation of turbulent kinetic energy, followed

by the pressure–dilatation ΠK , which generally behaves as an additional dissipation

term. The last term in Eq. 2.13 is the diffusion of turbulent kinetic energy, which is

the same as that in Eq. 2.3. The right side of the turbulent kinetic energy dissipation

equation is proportional to the right side of the turbulent kinetic energy equation

by the inverse of the turbulent timescale K/ε and dimensionless model coefficients

Cε0–Cε4. The physical interpretation of the mechanisms in Eq. 2.14 is similar to those

in Eq. 2.13. These equations are closed using the expressions in Sec. 2.1.4.

2.1.4 Turbulence model closures and principal model coefficients

Contributions from the Reynolds stress tensor are found in the mean momentum

transport in Eq. 2.2 and in the shear production in Eqs. 2.3, 2.13, and 2.14. The clas-

sical Boussinesq closure (32; 33) for the Reynolds stress is (the summation convention
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is used for repeated indices)

τij =
2

3
ρK δij − 2µt

(
S̃ij − δij

S̃ k
k

3

)
. (2.15)

The isotropic part is often expressed in terms of the turbulent pressure pT = (2/3) ρK,

while the deviatoric part of the Reynolds stress tensor (with zero trace, and not

included in the present work) is τ dij = −2µt

(
S̃ij − δijS̃ k

k /3
)

, where the mean strain-

rate tensor is S̃ij = (1/2)(∂ṽi/∂xj + ∂ṽj/∂vi).

The turbulent viscosity has the standard form (32; 33; 60)

νT =
µt
ρ

= Cµ
K2

ε
(2.16)

with its magnitude related to the intensity of turbulent mixing within the core of the

layer. The averaged fluctuating velocity v′′j contributes to the buoyancy production

(pressure work) in Eqs. 2.3, 2.13, and 2.14. The algebraic closure used here is (34; 35)

v′′j = −
ρ′ v′′j
ρ

=
νt
σρ ρ

(
∂ρ

∂xj
− ρ

p

∂p

∂xj

)
, (2.17)

which accounts for the mean pressure gradient in addition to the mean density gradi-

ent. The standard expression in variable-density and compressible turbulence includes

only the mean density gradient (1).

As turbulence is dissipative, it requires a source of energy to be sustained (60).

Otherwise, the turbulent kinetic energy is dissipated rapidly due to viscous effects as

eddies transfer this energy to the internal energy of the medium. The volumetric rate

at which the turbulent kinetic energy dissipates is

ρ ε = σij
∂v′′i
∂xj

(2.18)
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with viscous stress tensor σij. The pressure–dilatation correlation, ΠK = p′∂v′′j /∂xj,

behaves as an additional dissipative term, but is not currently included in the simu-

lations as it is expected to be small compared to the other terms. This term is often

neglected in compressible turbulence modeling.

Diffusion of turbulent kinetic energy is composed of three unclosed terms: molec-

ular diffusion σijv′′i , which is a process in which molecular transport of the gas causes

turbulent energy to diffuse; the rate at which energy is transported through the fluid

due to turbulent fluctuations is the turbulent transport, −1
2
ρv′′2v′′j ; the last compo-

nent is another form of turbulent diffusion due to pressure and velocity fluctuations,

−p′v′′j . In some cases molecular diffusion is neglected and this term is approximated

as the combination of turbulent transport and pressure diffusion (32). The molecular

diffusion and turbulent transport are modeled by a single term as

ρ v′′2 v′′j
2

+ p′ v′′j − σij v′′i = −
(
µ+

µt
σK

)
∂K

∂xj
(2.19)

and the internal energy flux is modeled by an analogous expression

ρU ′′ v′′j = − µt
σU

∂Ũ

∂xj
. (2.20)

The model coefficients held constant in all of the simulations in this study are

(22; 24)

Cε1 = 1.44 , Cε2 = 1.92 , Cε3 = 2.00 , (2.21)

σm = σU = σK = σε = 0.50 .

The values of Cε1 and Cε2 are standard values for shear turbulence (33; 32), while

the value of Cε3 is chosen to be consistent with shockless rapid compression [see Ref.

(27) for a derivation corresponding to the K–L model]. As current simulations do

not include the pressure–dilatation, Cε4 = 0. The two coefficients varied in the sim-
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ulations are σρ and Cε0, which are associated with the buoyancy (shock) production

mechanisms in Eqs. (2.13) and (2.14). The coefficient σρ affects the magnitude of

the K and ε buoyancy production terms while Cε0 scales the dissipation of turbulent

kinetic energy generated by buoyancy (shock) production. Note that self-similarity

(see Sec. 2.3) requires σm = σU = σK = σε, and these coefficients are chosen here to

be smaller than their typical values close to unity (32).

2.1.5 Initialization of the mean and turbulent fields

The initial pressure and temperature for the quiescent gases in the driver and test

sections are held constant at p = 23 kPa and T = 70o F = 294 K, respectively. The

equation for an ideal gas is used to calculate the initial density, ρ = pMW/(RT ),

where MW is the molecular weight and R is the universal gas constant. The test

section length is adjusted for each case by placing the interface a distance δ from

the endwall. In all cases considered in this study, the shock is generated a distance

0.25 cm away from the interface. The Rankine–Hugoniot relations (41; 42) used to

calculate the initial mean post-shock density, pressure, and velocity are

ρ0(x, 0) =
ρ1Ma

2
s (γ1 + 1)

Ma 2
s (γ1 − 1) + 2

, (2.22a)

p0(x, 0) =
p1[2 γ1 Ma

2
s − (γ1 − 1)]

γ1 + 1
, (2.22b)

ṽ0(x, 0) =
2 cs(Ma

2
s − 1)

Mas(γ1 + 1)
, (2.22c)

respectively, where Mas and cs =
√
γ (p+ pT )/ρ are the incident shock Mach number

and initial sound speed, respectively. Subscripts 1 and 2 denote the gas where the

shock is initiated (driver section) and the (test section) gas that is impulsively accel-

erated by the first gas; the subscript 0 denotes the post-shock region of gas 1. Figure

2.1 shows the conditions in the post-shock, driver, and test sections at the onset of
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the simulation for a study with At = 0.67 and Mas = 1.50.
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Figure 2.1: Initial mean density, pressure, heavy mass fraction, and velocity in the post-
shock, driver, and test regions for At=0.67 with Mas = 1.50. The locations of
the interface and shock are denoted by the dashed and solid lines.

Two important degrees of freedom in RANS modeling are the initial turbulent

kinetic energy and turbulent kinetic energy dissipation rate. Predictions of unsteady

RANS models can generally depend on the initial values of the turbulent fields. Defin-

ing the turbulent kinetic energy seed K0 as a small fraction of the initial mean kinetic

energy, the turbulent kinetic energy is initialized as

K(x, 0) = K0 (At ṽ0)
2 . (2.23)

The initial condition for the turbulent kinetic energy is proportional to the initial

post-shock mean kinetic energy, ṽ 2
0 . The dependence on the Atwood number, At =

(ρ2 − ρ1)/(ρ2 + ρ1), allows K(x, 0) to approach zero in the limit of equal gas densities.
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The turbulent kinetic energy dissipation rate is initialized as

ε(x, 0) = K(x, 0)ω (2.24)

and depends on K(x, 0) and the linear Richtmyer growth rate ω = krms |At|∆v

for an rms perturbation wavenumber krms = 2π/λrms and initial rms perturbation

wavelength λrms (22; 24). The linear Richtmyer growth rate is a relevant timescale

that relates K(x, 0) and ε(x, 0) at the initial shock–interface interaction. The change

in velocity due to the passage of the shock is ∆v (36). This method is different

from other approaches that introduce arbitrary values when initializing the turbulent

kinetic energy dissipation rate. For example, the K–L model introduces a value

based on a ‘turbulent’ lengthscale through ε(x, 0) = CεK(x, 0)3/2/L(x, 0), where Cε

and L(x, 0) must be specified (see Sec. 1.3.3).

2.2 Defining the Time-Dependent Mixing Layer Width

The mixing layer width h(t) is a fundamental hydrodynamic instability-induced

quantity associated with the mixing of two fluids. This quantity is typically measured

or inferred in experiments and computed in numerical simulations (22). There is no

unique definition of this quantity. In the mixing process the light and heavy fluids

interpenetrate in the form of bubbles and spikes (24), respectively, thus generating

the mixing layer. As the turbulent mixing process develops following the shock–

interface interaction during reshock, the growth rate of the mixing layer becomes

correspondingly steeper as the mixing increases.

Several approaches exist to calculate the mixing layer width. The mean heavy gas

mole fraction (16) is used here,

X̃H(x, t) =
MWL m̃H(x, t)

(MWL −MWH) m̃H(x, t) +MWH

, (2.25)
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where MW is the molecular weight and subscripts L and H differentiate the light

and heavy gases, respectively; m̃H(x, t) is the mean heavy mass fraction. The time-

dependent bubble location hb(t) is determined by the point on the plane where

X̃H(x, t) ≤ 1− η. Similarly, the spike location hs(t) is the point where X̃H(x, t) ≥ η.

The mole fraction limit η = 0.02 is held constant for all simulations. Other commonly

used mole fraction limits include η = 0.01 and 0.05. The mixing layer width, h(t), is

then calculated as the difference between the spike and bubble locations,

h(t) = hs(t)− hb(t) . (2.26)

2.3 The Pre-Reshock Analytical Self-Similar Solution

The analytical self-similar mixing layer width prior to reshock is

h(t) = h0

(
t

t0
+ 1

)θ
(2.27)

with amplitude h0, t0 = h0/(θ∆v), and power-law exponent (see Ref. (27) for a

derivation of the self-similar mixing layer width corresponding to the K–L model),

θ =
2Cε2 − 3

3Cε2 − 3
≈ 0.30 . (2.28)

The initial amplitude of the mixing layer width is compared with the ≈ t 0.3 evolution

of this quantity prior to reshock. The expression for h(t) can be derived by solving

a simplified form of the one-dimensional Reynolds-averaged equations, in which the

shock–interface interaction is treated as an impulse at the initial time, and ṽi = 0,

τij = 0, and µ = 0. The resulting K and ε equations include only the dissipation and

turbulent diffusion terms, and can be solved analytically using the self-similar scaling

variable η = 2x/h(t) with h(t) = h0 (t/t0)
θ.
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2.4 Implementation of the Model in a Third-Order WENO

Shock-Capturing Code

The six RANS equations are implemented in a one-dimensional hydrodynamics

code developed at the Lawrence Livermore National Laboratory (LLNL) and further

modified at the University of Michigan to conduct the present investigations. Invis-

cid (advective) flux reconstruction is achieved using a conservative Eulerian finite-

difference weighted essentially nonoscillatory (WENO) shock-capturing method and

a characteristic projection formulation (43; 44). The numerical implementation in-

cludes four mean flow equations (see Sec. 2.1.1) and two turbulent transport equations

(see Sec. 2.1.3; one or two additional scalar turbulent transport equations are also

available, but are not considered in the present study). The 6×6 left and right eigen-

vector matrices resulting from the Jacobian of the inviscid fluxes are used to project

the fluxes between characteristic and physical space, together with Lax–Friedrichs

flux-splitting and Roe averaging generalized to multicomponent flow (i.e., to include

the mean mass fraction equation and a variable γ) and to additional turbulent trans-

port equations. The advection terms, numerical flux, Jacobian ∂f(u)/∂u, eigenvalues,

and Roe-averaged left and right eigenvectors for the 6 × 6 system of equations are

given in Appendix A.6.

Following Refs. (43) and (44), first consider the spatial discretization for a con-

servative scalar equation of the form

du

dt
+
df(u)

dx
= 0 (2.29)

and assume a positive flux gradient with respect to the advective term, ∂f(u)/∂u ≥ 0:

a positive wind direction. Defining the domain X and number of points n, dx ≈ ∆x =
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X/n. An approximation uj(t) to the exact solution u(xj, t) with fj = f(uj(t)) satisfies

duj(t)

dt
+
f̂j+1/2 − f̂j−1/2

∆x
= 0 . (2.30)

The numerical flux f̂j+1/2 for the third-order WENO scheme is

f̂j+1/2 = ω1 f̂
(1)
j+1/2 + ω2 f̂

(2)
j+1/2 . (2.31)

For cases with a positive wind direction, the stencils for the fluxes in Eq. (2.31) are

biased to the left and are given by

f̂
(1)
j+1/2 = −1

2
fj−1 +

3

2
fj , f̂

(2)
j+1/2 = −1

2
fj +

3

2
fj+1 (2.32)

with the nonlinear weights

ωm =
ω̃m∑2
n=1 ω̃n

, ω̃n =
γn

(ε+ βn)2
. (2.33)

In Eq. (2.33), the linear weights are

γ1 =
1

3
, γ2 =

2

3
(2.34)

and the smoothness indicators are

β1 = (fj − fj−1)2 , β2 = (fj+1 − fj)2 . (2.35)

The parameter ε = 10−6 in Eq (2.33) ensures that the denominator in the nonlinear

weights does not equal zero. For cases with a negative wind direction, ∂f(u)/∂u ≥ 0,

the numerical flux f̂j+1/2 is calculated in the exact mirror image with respect to

xj+1/2 and the stencils are biased to the right. If ∂f(u)/∂u changes sign, smooth flux
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splitting is used: f(u) = f+(u) + f−(u), where ∂f+(u)/∂u ≥ 0 and ∂f−(u)/∂u ≤ 0.

The numerical flux is constructed using Lax–Friedrichs flux splitting in the present

studies:

f±(u) =
f(u) + αu

2
, α = maxu

∣∣∣∣ ∂f∂u
∣∣∣∣ . (2.36)

An explicit third-order TVD Runge–Kutta method is used for the time-evolution:

u(1) = un + ∆t L(un, tn) , (2.37a)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t L(u(1), tn + ∆t) , (2.37b)

u(n+1) =
1

3
un +

2

3
u(2) +

2

3
∆t L(u(2), tn +

1

2
∆t) , (2.37c)

where, L approximates the spatial derivatives L(u, t) ≈ −∂f(u)/∂x.

The Courant-limited timestep determination for the RANS model with mixture

molecular, thermodynamic, and turbulent terms is

∆tRANS = βCFL
∆x√

(|ṽ|+ cs) 2 + Ω/(∆x) 2
, (2.38a)

Ω =

(
µ

ρ
+
νT
σK

)2

+

(
µ

ρ
+
νT
σε

)2

+

(
D +

νT
σm

)2

+

(
κ+

νT
σU

)2

. (2.38b)

For the Euler equations, the timestep condition reduces to

∆tEuler = βCFL
∆x

|ṽ|+ cs
. (2.39)

A CFL number βCFL = 0.2 is used for all simulations.

All first and second spatial derivatives are calculated using centered second-order

accurate WENO derivatives. Although higher-order flux reconstruction is less dissipa-

tive and has greater resolving power than lower-order reconstruction (16), the present

investigation considers third-order reconstruction, which is a good compromise for
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solving the RANS equations. Good agreement is nevertheless obtained with exper-

imental data and with the analytical self-similar solution prior to reshock. Shock-

detection is not used to activate the turbulent production terms [the first terms on

the right sides of Eqs. (2.13) and (2.14)] when a shock is present locally. No limiters

(25) are imposed on the turbulent production terms or on any other terms in the

discretized equations.

The velocity satisfied a reflecting boundary condition at the endwall of the test

section, and the computational domain was chosen large enough to allow the mixing

layers to evolve without waves traveling back from the left boundary and interacting

with the interface. The computational grid was uniformly spaced in x, and the initial

interface between the gases were sharp.
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CHAPTER III

Application of the K–ε Model to the

Vetter–Sturtevant and

Poggi–Thorembey–Rodriguez Experiments

An essential component of establishing and building confidence in a RANS model

is to compare its predictions with experimental, theoretical, and numerical results.

However, as discussed in Chapter I, shock tube experimental measurements for At-

wood numbers different from At = ±0.67 or incident shock Mach numbers greater

than Mas ≈ 2.00 are sparse. Theoretical models typically have a limited range of va-

lidity and may contain many simplifying assumptions. Comparisons with numerical

results also present challenges as RANS, LES, and DNS simulations vary in grid res-

olution, initial conditions, numerical method, and other parameter settings. Another

component of establishing confidence in model predictions is convergence investiga-

tions, which can include spatial and temporal refinement. This topic is often ne-

glected in many turbulence-related investigations, as it is computationally expensive

for three-dimensional simulations.

This chapter presents the application of the K–ε model described in Chapter

II to four different air–SF6 reshocked Richtmyer–Meshkov instability cases over a

range of incident shock Mach numbers with Atwood numbers At = ±0.67. In the
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Figure 3.1: Mean heavy mass fractions, test section lengths δ, domain lengths X, and
simulation times, tend, for the At = 0.67 Vetter–Sturtevant (10) and At=−0.67
Poggi et al. (11) experiments.

light-to-heavy initial shock transition, where At = 0.67, mixing layer widths are

compared with experimental data points for shock Mach numbers Mas = 1.24, 1.50,

and 1.98 with test section lengths δ = 110, 61, and 49 cm (10), respectively, and

domain X = 161 cm. In the reversal of the gas order having At = −0.67, results are

compared with data for Mas = 1.45 with δ = 30 cm (11) and domain X = 131 cm.

Comparisons are also made with BHR turbulence model predictions (29) and LES

data (15). The K–ε model predictions are also compared to the power-law self-similar

solution Eq. (2.27) prior to reshock. Parametric studies are performed to evaluate the

sensitivity of the predictions to changes in model coefficients and initial conditions,

35



together with turbulent budget evaluations. Convergence under grid refinement of

the mixing layer width and mean and turbulent fields is also considered. Ideally,

it is desired to only modify initial conditions for the turbulent kinetic energy seed,

K0, and the initial perturbation wavelength, λrms, to establish a model applicable to

various shock Mach numbers, Atwood numbers, and test section lengths. A general

set of coefficients is established that predicts results agreeing well with experimental

measurements of the mixing layer widths. An optimal set of model coefficients used

throughout these studies are Eq. (2.21), σρ = 0.90, and Cε0 = 0.90 in the K and ε

buoyancy production terms.

3.1 Mas = 1.24: Model Sensitivity to the Turbulent Kinetic

Energy Seed

Effects due to variations in the turbulent kinetic energy seed, K0, are considered in

the Mas = 1.24 study. Reshock and arrival of the expansion wave occur at τR ≈ 9.25

and τE ≈ 14.70 ms, respectively. Referring to Chapter II, this initial condition

determines the percentage of mean kinetic energy used in initializing the turbulent

kinetic energy. Figure 3.2 shows the sensitivity of the mixing layer width to variations

in K0 from 0.1 to 0.001. The turbulent kinetic energy seed affects turbulent mixing

before and after reshock. In comparing the K–ε model results with experimental

measurements, it is found that K0 = 0.01 provides best agreement with the data. The

BHR model (29) agrees well with the early-time mixing but predicts lower turbulent

mixing after reshock. In comparison, LES (15) predicts larger mixing early, but

provides better agreement with data following reshock. Note the order of magnitude

difference in the spatial discretization between LES and RANS, ∆xLES/∆xRANS =

10.5.

In evaluating the K–ε model predictions prior to reshock, larger values of K0
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Figure 3.2: Converged mixing layer widths for Mas = 1.24, At = 0.67, K0 = 0.10, 0.01, and
0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and n = 9600 with ∆x = 0.02
cm. The experimental data are from Ref. (10), the BHR results are from Ref.
(29), the LES data with ∆x = 0.21 cm are from (15), and the self-similar
solution is from Eq. (2.27).

result in larger widths as more turbulent kinetic energy is available for early-time

mixing. Differences in widths are more apparent between K0 = 0.1 and 0.01 in

comparison between K0 = 0.01 and 0.001. Additionally, larger values of K0 result in

stronger compression of the gas interface during reshock. This indicates the relative

energy expended in compressing the gases for each K0 value. As more energy is

deposited during compression, more turbulent kinetic energy is dissipated into heat

as the shock passes through the mixing layer, leading to reduced turbulent mixing

later. For example, using K0 = 0.1 introduces more turbulent kinetic energy for early

mixing and compresses the gas interface to a higher degree, but there is less turbulent

mixing after reshock. In comparison, using K0 = 0.001 leads to a smaller width and

the shock compresses the layer to a lesser extent, but mixing continues at a higher

rate following reshock. After the arrival of the expansion wave at t ≈ 15 ms, which is
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indicated by the change in the width curvature, additional turbulent kinetic energy is

introduced principally through buoyancy production, which is spread by the diffusive

term during turbulent mixing.

To further investigate the effects of K0 variations on the turbulent kinetic en-

ergy production terms, the buoyancy production −v′′j ∂p/∂xj and shear production

−τij ∂ṽi/∂xj = (2/3) ρK∂ṽj/∂xj are considered at t = 5, 10, and 15 ms, correspond-

ing to times before and after reshock, and in the proximity of the expansion wave,

respectively (see Fig. 3.2). Figures 3.3 and 3.4 illustrate the evolution of the K

buoyancy and shear production terms at these times. At t = 5.00 ms the shock is

traveling towards the test section endwall, where it is evident that K0 = 0.1 generates

the most mixing at early times; both production mechanisms for K0 = 0.01 and 0.001

are negligible in comparison. Furthermore, the production mechanisms are strongest

in the vicinity of the shock with larger contributions from the buoyancy production by

approximately one order of magnitude. Shortly after reshock at t = 10 ms, the shock

in the K0 = 0.1 case is traveling ≈ 1 cm ahead of the shocks in the K0 = 0.01 and

K0 = 0.001 cases, as larger K0 values result in larger turbulent pressures, and there-

fore larger sounds speeds. Due to the smaller compressions accompanying smaller K0

values, less energy is dissipated into heat during reshock, and more turbulent mixing

is observed for the cases with K0 = 0.01 and 0.001. Approximately 5 ms after reshock

at t = 15 ms, the expansion wave introduces additional turbulent kinetic energy via

buoyancy production, as seen in the bottom plot of Fig. 3.3. From 10 to 15 ms, the

mixing layer generated with K0 = 0.1 has experienced more dissipation in compari-

son to the other two cases and demonstrates less mixing at later times, despite the

contribution from the expansion wave. As the shear production is not augmented by

the arrival of the expansion wave, the effects of dissipation are more apparent in the

bottom plot of Fig. 3.4.

Figure 3.5 illustrates the evolution of the dissipation rate, −ρ ε, at the same times.
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Figure 3.3: Evolution of turbulent kinetic energy buoyancy production for Mas = 1.24,
At = 0.67, K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90,
and n = 9600 with ∆x = 0.02 cm.
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Figure 3.4: Evolution of turbulent kinetic energy shear production for Mas = 1.24, At =
0.67, K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and
n = 9600 with ∆x = 0.02 cm.
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Figure 3.5: Evolution of turbulent kinetic energy dissipation for Mas = 1.24, At = 0.67,
K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and
n = 9600 with ∆x = 0.02 cm.

Before reshock, the flow with K0 = 0.1 is more susceptible to dissipation, while

the K0 = 0.01 and 0.001 cases exhibit smaller dissipative losses because the initial

condition ε(x, 0) is proportional to K(x, 0), and increases in K0 also lead to larger

dissipation. The top plot in Fig. 3.5 shows that dissipation is largest at the shock front

and gradually decays behind the shock. Strong dissipative effects are still evident at

the shock front after reshock at t = 10 ms, but dissipation also occurs in the mixing

layer as the reflected wave travels towards the test section endwall. The dissipation

is reduced by approximately one order of magnitude at t = 15 ms as the expansion

wave introduces additional turbulent kinetic energy for mixing.

Turbulent kinetic energy diffusion, ∂
∂xj

[(
µ+ µt

σK

)
∂K
∂xj

]
, is also considered and illus-

trated in Fig. 3.6. As with the production and dissipation mechanisms just discussed,

diffusion is also largest for K0 = 0.1. Prior to reshock, diffusive effects at smaller val-

ues of K0 are negligible in comparison to the K = 0.1 case. Following reshock,
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Figure 3.6: Evolution of turbulent kinetic energy diffusion for Mas = 1.24, At = 0.67,
K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and
n = 9600 with ∆x = 0.017 cm.

diffusive effects increase in magnitude because buoyancy production increases the

supply of turbulent kinetic energy for mixing. Diffusion of turbulent kinetic energy

from the arrival of the expansion wave is weakly dependent on the initial condition,

K0, as shown by the similar diffusion profiles for the three K0 values in Fig. 3.6: the

arrival of the expansion wave results in an increase in turbulent kinetic energy due

to changes in pressure and density, which principally affect the buoyancy production,

and minimally affect the shear production. Conversely, the value of K0 principally

affects the shear production.

Figures 3.7–3.9 show the corresponding turbulent kinetic energy dissipation rate

buoyancy production −Cε0(ε/K) v′′j ∂p/∂xj, shear production −(2/3)Cε3 ρ ε ∂ṽj/∂xj,

dissipation −Cε2 ρ ε2/K, and diffusion ∂
∂xj

[(
µ+ µt

σε

)
∂ε
∂xj

]
. These terms are qualita-

tively similar to those in Figs. 3.3–3.5 (recall that the turbulent kinetic energy

dissipation rate is proportional to the turbulent kinetic energy). The difference in
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Figure 3.7: Buoyancy production of turbulent kinetic energy dissipation rate for Mas =
1.24, At = 0.67, K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90,
Cε0 = 0.90, and n = 9600 with ∆x = 0.02 cm.
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Figure 3.8: Shear production of turbulent kinetic energy dissipation rate for Mas = 1.24,
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and n = 9600 with ∆x = 0.02 cm.
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Figure 3.10: Diffusion of turbulent kinetic energy dissipation rate for Mas = 1.24, At =
0.67, K0 = 0.1, 0.01, and 0.001, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and
n = 9600 with ∆x = 0.02 cm.
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magnitudes is also due to the proportionality between K and ε.

3.2 Mas = 1.50: Effects of Shock Mach Number Variations on

Turbulent Mixing

The Mas = 1.50 parametric study evaluates the effects on turbulent mixing due to

variations in the incident shock Mach number, Mas, which indicates the speed with

which the shock travels relative to the speed of sound. This investigation considers

small parametric deviations, Mas = 1.50 ± 0.05, corresponding to ±3% variation

from 1.50. This variation is analogous to experimental uncertainty in the shock Mach

number.
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Figure 3.11: Mixing layer widths for Mas = 1.45, 1.50, and 1.55, At = 0.67, K0 = 0.10,
λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and n = 7200 with ∆x = 0.02 cm.
The experimental data are from Ref. (10), the BHR results are from Ref.
(29), the LES data with ∆x = 0.21 cm are from (15), and the self-similar
solution is from Eq. (2.27).

Figure 3.11 illustrates mixing layer width evolutions resulting from incident shocks
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with, Mas = 1.45, 1.50 and 1.55, where experimental data for Mas = 1.50 (10) are

included for comparison; results using Mas = 1.45 and 1.55 are not expected to

agree with the experiment as these values deviate from the prescribed experimental

value. The K–ε model overpredicts the experimental and self-similar amplitudes at

early times by a small amount. After reshock, the model predictions agree well with

experimental data for Mas = 1.50. The BHR model (29) agrees well with the data

and self-similar solution prior to reshock. However, this three-equation RANS model

predicts less turbulent mixing after reshock. Similarly, LES (15) demonstrates a

deviation prior to reshock but predicts good agreement after reshock similar to the

K–ε model predictions.

The early mixing prior to reshock is considered first in the current parametric

investigation: small changes in shock Mach number have minimal influence on the

mixing evolution as seen in the small differences in the early-time widths between

cases. It was demonstrated in Sec. 3.1 that early mixing is influenced by the initial

condition, K0. Although effects due to changes in Mas are less notable, similar effects

are evident: as Mas increases from 1.45 to 1.55, additional turbulence is introduced

at early times and amplifies the mixing.

At the shock compression stage, a change in the time of reshock is also observed

for the three different Mas values, which occurs at τR ≈ 3.67, 3.42 and 3.20 ms

for Mas = 1.45, 1.50 and 1.55, respectively. The difference in reshock times can be

explained by noting that as Mas increases, the shock speed correspondingly increases.

Therefore, the shock reflects from the test section endwall at an earlier time and

impacts the interface sooner.

Impulsively accelerating the gases with a stronger shock also impacts the evolution

of the mixing layer to some extent after reshock. The approximate mixing layer

growth rates following reshock are ḣ = 3200, 3820, and 4360 cm/s for Mas = 1.45

and 1.50, and 1.55, respectively (see Fig. 3.12). These differences in growth rate are
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Figure 3.12: Approximate mixing layer growth rates for Mas = 1.45, 1.50, and 1.55, At =
0.67, K0 = 0.10, λrms = 1.00 cm, σρ = 0.90, Cε0 = 0.90, and n = 7200 with
∆x = 0.02 cm. The experimental data are from Ref. (10).

≈ 16% and ≈ 12% differences as Mas increases. Similar to mixing at early times, the

production and dissipation terms following reshock demonstrate higher sensitivity to

variations in shock Mach number as a more rapid evolution of gas mixing is observed

for stronger shocks.

To further elucidate the effects of the Mas variations, the evolution of turbulence

mechanisms is also considered in Figs. 3.13 and 3.14, which show the buoyancy and

shear production, diffusion, and dissipation terms at t = 2.00 and 4.00 ms. These

figures illustrate the relative turbulence intensity for each of the shock Mach number

cases before and after reshock. Figure 3.13 compares contributions from the buoyancy

production and turbulent kinetic energy diffusion. At t = 2.00 ms, the shock is

traveling in the direction of the test section endwall and has not yet reflected. The

strongest shock has traveled a farther distance and is more energetic. Although the

buoyancy production typically has a secondary role in early mixing, the increase in
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turbulent pressure pT = (2/3)ρK from larger turbulent kinetic energy as a result

of larger Mas values (and shock speeds) increases the magnitude of this term. At

t = 4.00 ms, the three cases have undergone reshock and are progressing to the left.

The increase in magnitude and localizations in the vicinity of the shock indicate the

increase in turbulent mixing due to reshock.
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Figure 3.13: Turbulent kinetic energy buoyancy production and diffusion terms [g/cm-s3]
at t = 2.00 and 4.00 ms for Mas = 1.45, 1.50, and 1.55, At = 0.67, K0 = 0.10,
λrms = 1.00 cm, σρ = 0.90, and Cε0 = 0.90.

The turbulent kinetic energy shear production and dissipation terms are presented

in Fig. 3.14. Like the buoyancy production, the shear production becomes larger

with increasing Mas values due to the higher turbulent pressure. After reshock, the

shear production has a secondary role in turbulent mixing as the rate of generating

turbulent kinetic energy is approximately one order of magnitude lower than the

buoyancy production. The dissipation of turbulent kinetic energy is strongest at the

shock front prior to reshock and rapidly decays as the shock heats the gas. The domain
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Figure 3.14: Turbulent kinetic energy shear production and dissipation terms [g/cm-s3] at
t = 2.00 and 4.00 ms for Mas = 1.45, 1.50, and 1.55, At = 0.67, K0 = 0.10,
λrms = 1.00 cm, σρ = 0.90, and Cε0 = 0.90.

for the dissipation term after reshock is extended to show that although dissipative

effects are still large behind the shock, dissipation of turbulent kinetic energy is also

strong in the mixing layer after it is compressed and the mixing is enhanced, as is

seen in the behavior behind the shock.

Corresponding plots for the turbulent kinetic energy dissipation rate are provided

in Figs. 3.15 and 3.16; similar behavior is observed as in Figs. 3.13 and 3.14 for the

turbulent kinetic energy. Therefore, to better compare the magnitudes and behavior

between production terms, the buoyancy and shear production are plotted together

in Fig. 3.15. The dissipation and diffusion terms are shown in Fig. 3.16.

To further explain the behavior and evolution of the turbulent budgets, the

Mas = 1.55 and 1.50 cases are investigated together at t = 3.25 ms (see Fig. 3.17).

At this time the shock in the former case has just reshocked the interface while the

latter is approaching the interface for reshock. The transmitted and reflected waves
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resulting from the Mas = 1.55 reshock are evident by the buoyancy production spikes

and diffusion terms as the mixing evolves. The bottom plot in the figure minimizes

the range to better see the structure of the reflected and transmitted waves. This also

better visualizes contributions from the shear production, which are small in com-

parison to diffusion and buoyancy production; dissipation is relatively small. There

is a significant increase of turbulent mixing due to reshock. The comparable mixing

layer widths from the Mas = 1.50 and 1.55 cases before reshock in Figs. 3.11 and

3.12 show that early mixing is minimally affected by the incident shock Mach num-

ber. Thus, Fig. 3.17 illustrates the rapid increase of mixing due to the arrival of

the shock. Finally, the mixing layer at this time is still undergoing shock compres-

sion, and further spreading of the mixing layer is occurring, as demonstrated by the

buoyancy production and diffusion terms.
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Figure 3.17: Turbulent kinetic energy budgets [g/cm-s3] for Mas = 1.50 (dashed lines) and
1.55 (solid lines), At = 0.67, K0 = 0.10, λrms = 1.00 cm, σρ = 0.90, and
Cε0 = 0.90.

Figure 3.18 shows the corresponding terms for the turbulent kinetic energy dis-

sipation rate. Unlike the turbulent kinetic energy, where a significant difference is

apparent before and after reshock for the buoyancy production, the dissipation rate
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terms maintain comparable contributions throughout, showing relatively constant dis-

sipation. Diffusion makes similar contributions through the transmitted and reflected

waves, while the shear production is larger prior to reshock because in compressing

the mixing layer, some of the energy is dissipated and converted into heat. This

can be seen starting at x ≈ 154 cm, where the dissipation causes a sink in shear

production. The budget has the same structure as in Fig. 3.17, with comparable

contributions from buoyancy production and diffusion.

3.3 Mas = 1.98: Effects of Buoyancy Production on Turbulent

Mixing

Sections 3.1 and 3.2 have discussed the effects on turbulent mixing due to vari-

ations in the initial conditions, K0 and λrms, and the incident shock Mach number

Mas; changes in these quantities influence production and dissipation mechanisms

before and after reshock. In addition, the buoyancy production has a primary role

in post-reshock mixing. This section focuses on the buoyancy production (pressure
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work) mechanism to show how variations in this term affect turbulent mixing. As

discussed in Chapter II, this term generates turbulence via pressure and density gra-

dients and is a source that increases the turbulent viscosity, which increases diffusion

of turbulent kinetic energy during mixing. Thus, changes in the buoyancy production

model coefficients can strongly affect reshocked Richtmyer–Meshkov mixing predic-

tions. The two model coefficients in these production terms found in Eqs. (2.3),

(2.13), and (2.14) are σρ and Cε0. To elucidate the sensitivity of the K–ε model to

changes in σρ and Cε0, parametric studies are performed for each of these coefficients.

3.3.1 Variations in σρ
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Figure 3.19: Mixing layer widths for Mas = 1.98, At = 0.67, K0 = 0.10, λrms = 0.50 cm,
σρ = 0.60, 0.70, and 0.90, Cε0 = 0.90, and n = 9600 with ∆x = 0.02 cm. The
experimental data are from Ref. (10), the BHR results are from Ref. (29),
the LES data with ∆x = 0.21 cm are from (15), and the self-similar solution
is from Eq. (2.27).

Figure 3.19 illustrates the sensitivity of the mixing layer width for Mas = 1.98

(with reshock time τR ≈ 1.67 ms) to changes in the coefficient values σρ = 0.60, 0.70,

and 0.90 with Cε0 = 0.90. The initial widths agree well with experimental data and
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follow the ≈ t 0.3 self-similar solution closely. Shortly after reshock, a small deviation

can be observed from the experiment but more accurate predictions are achieved at

later times, ≈ 0.50 ms after reshock. The BHR model (29) predicts a similar width

prior to reshock but substantially underpredicts the mixing layer width after reshock.

Conversely, LES (15) overpredicts the width at early times, but good agreement

is established with experimental data following reshock. Figure 3.19 also indicates

that variations in σρ have minimal influence on model predictions for the early-time

width, and that the shock compression strength and reshock time remain the same.

Thus, unlike changes in K0 and Mas resulting in different shock compression strengths

and reshock times, respectively (see Secs. 3.1 and 3.2), σρ does not influence these

strengths and times.
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Figure 3.20: Turbulent kinetic energy buoyancy production and diffusion terms [g/cm-s3]
at t = 2.00 and 4.00 ms for Mas = 1.98, At = 0.67, K0 = 0.10, λrms = 0.50
cm, σρ = 0.60, 0.70, and 0.90, and Cε0 = 0.90.
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Figure 3.21: Turbulent kinetic energy dissipation rate buoyancy production and diffusion
terms [g/cm-s4] at t = 2.00 and 4.00 ms for Mas = 1.98, At = 0.67, K0 = 0.10,
λrms = 0.50 cm, σρ = 0.60, 0.70, and 0.90, and Cε0 = 0.90.

However, effects due to changes in σρ become more apparent following reshock.

As σρ decreases from 0.90 to 0.60, a corresponding growth in turbulent mixing via

buoyancy production is observed. This coefficient appears reciprocally in the buoy-

ancy production so that smaller σρ values result in larger production of turbulent

kinetic energy and its dissipation rate. Figures 3.20 and 3.21 illustrate the buoy-

ancy production and diffusion terms for the turbulent kinetic energy and dissipation

rate, respectively, at t = 2.00 and 2.50 ms, where the interface has been reshocked

at τR ≈ 1.67 ms. Two observations can be made from Fig. 3.20. First, note the

evolution of the buoyancy production along with the turbulent kinetic energy diffu-

sion. At 2.00 ms, more turbulent kinetic energy is produced with smaller values of σρ

as indicated by the larger magnitudes of buoyancy production. As times progresses,

turbulent mixing enhances (see Fig. 3.19) and the amount of turbulent kinetic en-
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ergy reduces as noted by the decrease in magnitudes between t = 2.00 and 2.50 ms.

Turbulent kinetic energy diffusion is plotted below the buoyancy production at the

same times. Correspondingly, the rate at which turbulent kinetic energy is spread by

the diffusion term grows as post-reshock mixing evolves. Moreover, more diffusion

occurs for σρ = 0.60 due to the larger amount of turbulent kinetic energy produced

via buoyancy production. In comparison, using σρ = 0.90 results in lower rates of

turbulent kinetic energy production and diffusion after reshock.

Second, the speed with which the shock travels for each σρ value in the 0.50

ms interval can be estimated. As buoyancy production and diffusion contributions

are largest in the vicinity of the shock, the shock locations can be determined by

the locations of the peaks. This was further verified by the mean field profiles (not

shown). Noting the distance each peak travels in the same 0.50 ms interval, the

average shock velocity for each case can be estimated. Smaller values of σρ result in

larger shock speeds following reshock as more turbulent kinetic energy is generated via

buoyancy production. These findings are in agreement with the mixing layer behavior

in Fig. 3.19 and with results from Sec. 3.2, where larger amounts of turbulent kinetic

energy result in larger mixing layer growth rates. These results also demonstrate

that turbulent mixing evolution can be influenced at later times through σρ without

modifying the initial conditions or shock strengths. Approximate shock speeds for

σρ = 0.60, 0.70, and 0.90 are provided in Table 3.1.

σρ Shock speed after reshock [cm/s]

0.60 ≈ 4.63× 104

0.70 ≈ 4.58× 104

0.90 ≈ 4.43× 104

Table 3.1: Estimated shock speeds for σρ = 0.60, 0.70, and 0.90 with Mas = 1.98,
At = 0.67, K0 = 0.1, λrms = 0.50 cm, and Cε0 = 0.90 after reshock.
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3.3.2 Variations in Cε0

The second parametric study focuses on the model sensitivity to variations in Cε0.

This coefficient scales the buoyancy production in Eq. (2.14) for the turbulent kinetic

energy dissipation rate. Larger values in Cε0 result in larger dissipation of turbulent

kinetic energy and smaller growth of the mixing layer width. Figure 3.22 demon-

strates that predictions of the mixing layer width are substantially more sensitive to

variations in Cε0 in comparison to σρ. By increasing this value from 0.90 to 0.95,

sufficient dissipation is introduced to considerably decrease the amount of turbulent

mixing after reshock. For example, at t = 2.60 ms where the mixing width is largest,

the width is approximately three times larger for Cε0 = 0.90 in comparison to 0.95.

As Cε0 is decreased further to 1.00, the post-reshock mixing evolution is highly sup-

pressed. Like variations in σρ, changes in Cε0 similarly do not influence early-time

mixing, shock compression, or reshock times.
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Figure 3.22: Mixing layer width for Mas = 1.98, At = 0.67, K0 = 0.10, λrms = 0.50 cm,
σρ = 0.90, and Cε0 = 0.90, 0.95, and 1.00, and n = 9600 with ∆x = 0.02 cm.
The experimental data are from Ref. (10), the BHR results are from Ref.
(29), the LES data with ∆x = 0.21 cm are from (15), and the self-similar
solution is from Eq. (2.27).
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Figure 3.23: Turbulent kinetic energy buoyancy production and diffusion terms [g/cm-s3]
at times t = 2.00 and 2.50 ms for Mas = 1.98, At = 0.67, K0 = 0.10,
λrms = 0.50 cm, σρ = 0.90, and Cε0 = 0.90, 0.95, and 1.00.

The turbulent kinetic energy and dissipation rate buoyancy production and dif-

fusion budgets are presented in Figs. 3.23 and 3.24, respectively, at t = 2.00 and

2.50 ms. The K buoyancy production and diffusion terms demonstrate a relatively

large rate of production and diffusion of turbulent kinetic energy for Cε0 = 0.90 in

comparison to Cε0 = 0.95 and 1.00, where the model predicts stronger dissipation of

turbulent kinetic energy. The small increase in turbulent kinetic energy observed at

later times is due to changes in pressure from the arrival of the expansion wave at

τE ≈ 1.98 ms. The rate at which turbulent kinetic energy is spread by the diffusion

term is also substantially reduced for Cε0 = 0.95 and 1.00. This is due to the larger

dissipation in the buoyancy production and reduced supply of turbulent kinetic en-

ergy for post-reshock mixing, and is in agreement with the post-reshock mixing in

Fig. 3.22 as minimal turbulent mixing is observed at these stages. These strong
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dissipative effects are further illustrated in Fig. 3.24 for ε. Larger dissipation in the

buoyancy production term is predicted for larger Cε0 values. When Cε0 is smaller,

dissipative effects decrease and diffusion is larger.

142 143 144 145 146

0

2

4

6

8

10 x 1013 t=2.00 ms
¡ b

uo
ya

nc
y 

pr
od

uc
tio

n

 

 

118 120 122 124−5

0

5

10

15 x 1013 t=2.50 ms

142 143 144 145 146−5

−4

−3

−2

−1

0

x 1013

¡ d
iff

us
io

n

                                                       Domain [cm]
118 120 122 124

−2

−1

0

1

2

x 1013

C
¡0=0.90

C
¡0=0.95

C
¡0=1.00

Figure 3.24: Turbulent kinetic energy dissipation rate buoyancy production and diffusion
terms [g/cm-s4] at times t = 2.00 and 2.50 ms for Mas = 1.98, At = 0.67,
K0 = 0.10, λrms = 0.50 cm, σρ = 0.90, and Cε0 = 0.90, 0.95, and 1.00.

Finally, it was shown that variations in σρ and Cε0 have minimal influence on early-

time mixing, shock compression strength, and reshock timing. However, variations in

the buoyancy production of the turbulent kinetic energy and dissipation rate through

σρ influence the speed with which the shock travels in the post-reshock regime. Ta-

ble 3.1 gives estimated shock speeds for different values of σρ after reshock; as the

rate of turbulent kinetic energy increases via buoyancy production by decreasing σρ,

the transmitted shock travels at a higher speed due to the larger supply of energy.

However, as Cε0 increases and dissipative effects become stronger, transmitted shocks

following reshock also travel faster as Cε0 decreases the rate at which turbulent kinetic
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energy is generated for mixing through buoyancy production. Table 3.2 compares es-

timated shock speeds for different values of Cε0. As the mixing layer growth rate is

reduced for larger Cε0 values, the width also grows to a lesser extent. Therefore, the

region of compressed gas the shock has to traverse, which is at a higher pressure and

density, is shorter. In effect, the shock loses less energy as it exits the compressed

region sooner and increases speed as it enters a region of lower density.

Cε0 Shock speed after reshock [cm/s]

0.90 ≈ 4.43× 104

0.95 ≈ 4.75× 104

1.00 ≈ 4.81× 104

Table 3.2: Estimated shock speeds for Cε0 = 0.90, 0.95, and 1.00 with Mas = 1.98,
K0 = 0.1, and σρ = 0.90 after reshock.

3.4 Mas = 1.45: Variations in the Initial Perturbation Wave-

length with a Negative Atwood Number

The initial perturbation wavelength, λrms, which determines the initial turbulent

kinetic energy dissipation rate can also be adjusted. Like the turbulent kinetic en-

ergy seed K0, variations in λrms similarly influence the early mixing prior to reshock.

However, unlike for K0, the sensitivity of the model to variations in λrms is small

following reshock because the dissipation rate principally affects the shear produc-

tion, which contributes less to turbulent mixing than the buoyancy production after

reshock. Thus, a reduction of turbulent kinetic energy from shear production after

reshock has a smaller effect on the mixing layer width.

To illustrate these effects, an experiment conducted by Poggi et al. (11) is con-

sidered (see Sec. 1.1). The length of the test section is δ = 30 cm and a shock

with Mas = 1.45 is introduced in SF6 a distance 0.25 cm away from the interface.

In this experiment the gas interface experienced a secondary reshock: the first and
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Figure 3.25: Mixing layer widths for Mas = 1.45, At = −0.67, K0 = 0.10, λrms = 0.75,
1.00, and 1.25 cm, σρ = 0.90, Cε0 = 0.90, and n = 14400 with ∆x = 0.01
cm. The experimental data are from Ref. (11), the BHR results are from Ref.
(29), and the self-similar solution is from Eq. (2.27).

second reshocks occur at τR ≈ 1.2 and τR2 ≈ 1.8 ms, respectively. Figure 3.25

shows predicted mixing layer widths for wavelengths λrms = 0.75, 1.00, and 1.25

cm with K0 = 0.1. Also shown are experimental measurements, BHR model pre-

dictions, and the self-similar prediction prior to reshock. In decreasing the initial

perturbation wavelength, dissipative effects become stronger and early-time mixing

is decreased. Based on results in Fig. 3.4, an initial wavelength of λrms = 0.75 cm

introduces excessive dissipation and the initial profile underpredicts the experimental

data. Conversely, as λrms reaches 1.25 cm, dissipative effects become weaker and the

resulting increase in turbulent mixing agrees better with experimental data.

As an additional aid in understanding the effects of λrms on the production and

dissipation mechanisms shortly before and after reshock, Fig. 3.26 shows the turbu-

lent kinetic energy budgets at t = 1.0 and 1.5 ms. The first two rows in Fig. 3.26

illustrate the evolution of the buoyancy production and the turbulent kinetic energy
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diffusion. The magnitude and structure of the buoyancy production are minimally

affected by changes in λrms before reshock because the buoyancy production makes

small contributions to early-time mixing. After reshock, where the buoyancy produc-

tion is the dominant term for mixing, a decrease in turbulent kinetic energy occurs

as it is spread by diffusion.

The bottom two rows in Fig. 3.26 show the evolution of the shear production

and dissipation terms. Unlike the buoyancy production at t = 1.0 ms, the shear

production is more sensitive to changes in λrms. As dissipative effects become stronger

with smaller λrms values, the turbulent kinetic energy correspondingly decreases.

Dissipative effects are strong in the vicinity of the shock as it heats the gas with

dissipated energy evident in the shocked region. Following reshock, the profile of the

shear production remains similar, indicating that this term in not strongly sensitive

to diffusive effects and has a secondary role in post-reshock mixing. The change

in magnitude is due to dissipative losses into heat during reshock. The dissipation

rate following reshock demonstrates that most energy is expended in compressing

and heating the mixing layer, as illustrated by the large decrease of turbulent kinetic

energy in this region. Similar effects were noted in Sec. 3.1, where larger values of K0

resulted in larger compression of the layer. Dissipative effects behind the transmitted

and reflected waves after reshock are of much smaller magnitude. Figure 3.27 shows

the corresponding budgets for the turbulent kinetic energy dissipation rate. As in the

Mas = 1.24 case in Sec. 3.1, these results are qualitatively similar to those in Fig.

3.26.

Recall that effects due to variations in the initial perturbation wavelength are

strongest during early mixing prior to reshock, while those observed after reshock

(including the second reshock) are relatively insensitive to changes in this initial con-

dition. It is instructive to consider the second reshock in more detail. The second

reshock occurs because upon reshock, the reflected wave (evident in Figs. 3.26 and
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Figure 3.26: Turbulent kinetic energy budgets [g/cm-s3] at t = 1.0 and 1.5 ms for Mas =
1.45, At = −0.67, K0 = 0.10, λrms = 0.75, 1.00, and 1.25 cm, σρ = 0.90,
Cε0 = 0.90, and n = 14400 with ∆x = 0.01 cm.
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Figure 3.27: Turbulent kinetic energy dissipation rate budgets [g/cm-s4] at t = 1.0 and 1.5
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Figure 3.28: Comparison of experimental and RANS mixing layer growth rates following
first and second reshock for Mas = 1.45 and At = −0.67, K0 = 0.10, λrms =
0.75, 1.00, and 1.25 cm, σρ = 0.90, Cε0 = 0.90, and n = 14400 with ∆x = 0.01
cm. The experimental data are from Ref. (11).

3.27) travels away from the mixing layer, reflects from the test section endwall, and

again compresses the mixing layer. In this process, this secondary wave loses kinetic

energy as it heats the gas and compresses the layer at a lower energetic state, resulting

in a lower rate of turbulent mixing. Figure 3.28 considers an interval of time when

both reshocks can be observed more closely. The approximate growth rates of the

mixing layer after τR1 and τR2 are ḣ1 ≈ 5× 103 and ḣ2 ≈ 1.5× 103 cm/s, respectively,

which are estimated as the difference in the mixing layer width over an interval of

time. However, there is some deviation between the model predictions and experi-

mental measurements of the growth rate after the compression of the layer. After the

first reshock the model predicts a slightly larger mixing rate than the experimental
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data. Following the second reshock, the opposite is observed, where the experiment

shows a more rapid growth rate. Included with Fig. 3.28 are comparisons between

experimental and RANS mixing layer growth rates following τR1 and τR2.

3.5 Convergence Under Grid Refinement

Demonstration of numerical convergence of Reynolds-averaged model predictions

for reshocked Richtmyer–Meshkov instability-induced mixing is important for several

reasons. Achieving convergence can be problematic in shocked flows as compared to

flows without shocks and other discontinuities. Unless shown otherwise, it is reason-

able to assume that the predictions of Reynolds-averaged models are grid-dependent.

In particular, unconverged results may suggest a set of model coefficients and initial

conditions that provide apparently good predictions, but only for a particular grid

resolution or underlying numerical implementation of the model equations.

Convergence properties under grid refinement are considered for the mixing layer

widths, mean density, mean pressure, mean velocity, mean heavy mass fraction, tur-

bulent kinetic energy, turbulent kinetic energy dissipation rate, and turbulent vis-

cosity. In the preceding sections, predicted mixing layer widths were compared with

experimental measurements (10; 11), LES (15), BHR model predictions (29), and the

self-similar solution in Eq. (2.27). However, convergence studies were not presented

or discussed for either the LES or BHR model studies. The grid spacings for the

present Vetter–Sturtevant studies with n = 2400, 4800, 7200, and 9600 points were

∆x = 0.07, 0.03, 0.02, and 0.01 cm, respectively. For the Poggi et al. study, the grid

spacings for n = 4800, 7200, 9600, 14400, and 19200 points were ∆x = 0.03, 0.02,

0.01, 0.009, and 0.007 cm, respectively. The grid spacings for the LES were ∆ = 0.21

cm (15).
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3.5.1 Mixing layer widths

Simulations with grid refinement were considered starting with n = 2400 points

for a coarse mesh and systematically increased to n = 4800, 7200, and 9600 points.

For Mas = 1.24, similar results were obtained using n = 7200 and 9600 points.

Figure 3.29 shows that the widths nearly overlap prior to reshock; following reshock,

a small deviation is noted shortly before and after the arrival of the expansion wave.

Using n = 2400 points provides a poor representation of the mixing layer evolution.

However, the early-time width and the magnitude of the reshock compression at

this resolution agree well with LES (15). It is possible that insufficient resolution

may explain the LES deviations from the experiment at early times. In the post-

reshock region, grid refined K–ε and LES predictions agree well with experimental

measurements. In comparison, the BHR model (29) matches experimental data well

at early times, but predicts a smaller mixing width after reshock.
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Figure 3.29: Convergence of mixing layer width for Mas = 1.24 and At = 0.67. The
experimental data are from Ref. (10), the BHR results are from Ref. (29),
and the LES data are from (15).
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Figure 3.30: Convergence of mixing layer width for Mas = 1.50 and At = 0.67. The
experimental data are from Ref. (10), the BHR results are from Ref. (29),
and the LES data are from (15).

Similarly, Fig. 3.30 shows that convergence is achieved for Mas = 1.50 between

n = 7200 and 9600 points. A small discrepancy is observed shortly after reshock due

to the arrival of the expansion wave, but convergence is recovered shortly thereafter.

Furthermore, some divergence begins at times near the end of the simulation, starting

at t ≈ 5 ms due to rarefaction wave interactions. As in the preceding convergence

study, using n = 2400 points does not adequately represent the mixing layer evolution.

At this coarse resolution, K–ε model predictions agree with those of LES (15) prior to

reshock as well as with the BHR model (29) after reshock. The widths using n = 7200

and 9600 points agree with experimental and LES data after reshock.

Convergence studies for Mas = 1.98 reveal that n = 7200 and 9600 points produce

comparable results. The widths overlap at early times and agree well with experi-

mental data. After reshock, some deviation between the two resolutions is present, as

seen in Fig. 3.31. Unlike the previous two cases, LES (15) gives a larger early-time
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Figure 3.31: Convergence of mixing layer width for Mas = 1.98 and At = 0.67. The
experimental data are from Ref. (10), the BHR results are from Ref. (29),
and the LES data are from (15).

width and shock compression magnitude. Results obtained using n = 4800 points are

in close agreement with BHR model predictions (29) throughout.

Finally, the study with Mas = 1.45 and At = −0.67 required a finer grid to achieve

convergence. Figure 3.32 shows that good convergence is achieved prior to reshock and

for a short time after. However, as time progresses and the second wave reflects from

the endwall and approaches the interface to initiate the second reshock, the predicted

mixing layer widths begin to diverge. It is possible that oscillations are introduced due

to interactions between the secondary wave and the reflecting boundary conditions

at the test section endwall. It is also demonstrated in the refinement studies for the

mean and turbulent fields that convergence is difficult to achieve in the vicinity of the

gas interface where mixing is strongest. Thus, as the test section decreases in length

(and therefore the distance to the interface is shorter), convergence for cases with

smaller test sections requires more grid refinement. This is further demonstrated in
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Figure 3.32: Convergence of mixing layer width for Mas = 1.45 and At = −0.67. The
experimental data are from Ref. (11) and the BHR results are from Ref.
(29).

Chapter IV.

3.5.2 Convergence of the mean fields

Convergence of the mean fields is evaluated at time, t = 10 and 12 ms for the

Mas = 1.24 case in Fig. 3.33, shortly after reshock and before the arrival of the

expansion wave, τR ≈ 9.25 and τE ≈ 14.70 ms, respectively. The locations of the

transmitted and reflected shocks are denoted by solid and dashed vertical lines, re-

spectively, while the arrows indicate the direction of shock propagation. At each

time, mean field convergence is achieved between n = 7200 and 9600 points. Using

n = 2400 points results in deviations near the shock and mixing layer, where material

discontinuities are present. Using n = 4800 provides a reasonable representation with

some loss of accuracy. Despite the small loss of accuracy for coarser grids, convergence

is maintained throughout the domain.
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Figure 3.33: Mean field convergence for Mas = 1.24 and At = 0.67 at 10 ms (top) and 12
ms (bottom).
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Similar findings are presented for Mas = 1.50 in Fig. 3.34 at times t = 4.50

and 5.00 ms, respectively. In the vicinity of the shock and the mixing region, small

deviations are evident for coarser grids with n = 2400 and 4800 points. Convergence

is achieved between n = 7200 and 9600 points. Moreover, deviations between profiles

manifested by the rarefaction–layer interaction are not present in the mean fields.

Convergence behavior is evaluated for Mas = 1.98 at times t = 1.70 and 2.20

ms in Fig. 3.35. These times correspond to time of reshock at τR ≈ 1.69 ms, and

shortly after the expansion wave arrival, τE ≈ 1.98 ms. The results indicate that

mean field convergence is achieved even at reshock. Pressure and velocity profiles

show that simulations using coarser grids have difficulty capturing the behavior of

the pressure and velocity near the shock and interface, but using n = 7200 and 9600

points is adequate. Figure 3.35 also shows that the expansion wave introduces some

numerical oscillations behind the shock in the pressure and velocity profiles. Some

deviation is also seen in the density and heavy mass fraction profiles near the mixing

layer, which decreases as the grid is refined. Unlike the Mas = 1.24 and 1.50 cases,

lack of convergence for coarser grids is more apparent in the vicinity of the shock and

mixing region for this case.

Finally, Fig. 3.36 illustrates mean field convergence results for Mas = 1.45 with

At = −0.67. As the interface experiences a second reshock, convergence was examined

shortly after the first and second reshock at t = 1.20 and 2.00 ms, respectively. At

t = 1.20 ms following the first reshock, the transmitted and reflected waves are

represented by solid and dashed black lines, respectively, with arrows indicating the

direction of propagation. Similarly, the transmitted wave from the second reshock is

also discernible. In this case, the density and heavy mass fraction achieve convergence

between n = 14400 and 19200 points with small deviations at the edges of the layer.

The pressure and velocity converge well with small deviations evident at the shock

front. Convergence is generally achieved throughout the domain (i.e., in pure gas
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Figure 3.34: Mean field convergence for Mas = 1.50 and At = 0.67 at 4.50 ms (top) and
5.00 ms (bottom).
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Figure 3.35: Mean field convergence for Mas = 1.98 and At = 0.67 at 1.70 ms (top) and
2.20 ms (bottom).
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Figure 3.36: Mean field convergence for Mas = 1.45 and At=−0.67 at 1.20 ms (top) and
2.00 ms (bottom).
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regions), but it is slower to achieve across the layer where material discontinuities

exist and turbulent mixing occurs.

3.5.3 Convergence of the turbulent fields

Studies of the convergence of the turbulent fields demonstrate that the turbulent

kinetic energy, turbulent kinetic energy dissipation rate, and turbulent viscosity are

more sensitive to oscillations, particularly in the vicinity of the mixing layer. Conver-

gence is slowest near the interface where mixing is most active, or in the vicinity of

secondary expansion and rarefaction waves. Evaluation of turbulent field convergence

is performed at the same times as for the mean fields above.

For Mas = 1.24, reshock occurs shortly before t = 10 ms. Figures 3.37–3.39

show that the turbulent kinetic energy, turbulent kinetic energy dissipation rate,

and turbulent viscosity convergence rates are slower principally in the vicinity of the

interface where reshock has just occurred. However, the fields appear converged ahead

of the shock and in the test section away from the interface. The dissipation rate and

turbulent viscosity approach convergence at a slower rate. At t = 12 ms, when

the transmitted wave from reshock is farther away from the interface, the turbulent

kinetic energy has converged throughout the domain with small perturbations at the

interface. The dissipation rate and turbulent viscosity again demonstrate a slower

rate of convergence.

The Mas = 1.50 case provides an example of how secondary waves also affect the

convergence of the turbulent fields. Times t = 4.50 and 5.00 ms form a time interval

over which the rarefaction wave is developing and the gas behind the shock expands.

Although the mean fields in Fig. 3.34 demonstrate convergence, strong oscillations

can be observed in the same region for the turbulent kinetic energy, dissipation rate,

and turbulent viscosity in Figs. 3.40, 3.41, and 3.42, respectively. However, as time

progresses, the shock travels farther from the interface and perturbations become
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Figure 3.37: Turbulent kinetic energy convergence for Mas = 1.24 and At = 0.67 at t = 10
and 12 ms.

80 90 100 110 120 130 140 1500

0.5

1

1.5

2 x 108 t=10 ms

D
is

si
pa

tio
n 

ra
te

 [c
m

2 /s
3 ]  

   
   

   
   

   
  

 

 

0 50 100 1500

0.5

1

1.5

2 x 108 t=12 ms

Domain [cm]

n=2400
n=4800
n=7200
n=9600

Figure 3.38: Turbulent kinetic energy dissipation rate convergence for Mas = 1.24 and
At = 0.67 at t = 10 and 12 ms.
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Figure 3.39: Turbulent viscosity convergence for Mas = 1.24 and At = 0.67 at t = 10 and
12 ms.
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Figure 3.40: Turbulent kinetic energy convergence for Mas = 1.50 and At = 0.67 at t =
4.50 and 5.00 ms.
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Figure 3.41: Turbulent kinetic energy dissipation rate convergence for Mas = 1.50 and
At = 0.67 at t = 4.50 and 5.00 ms.
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Figure 3.42: Turbulent viscosity convergence for Mas = 1.50 and At = 0.67 at t = 4.50
and 5.00 ms.
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weaker; slow convergence is more readily observed in the turbulent kinetic energy

and turbulent viscosity. Notable perturbations are still apparent across the mixing

layer width.

A coarser grid does not adequately represent the mean field behavior for the

Mas = 1.98 case, particularly for the pressure and velocity. A finer grid is necessary

to obtain results where loss of accuracy is minimal with n = 7200 and 9600 points.

Similar observations can be made for the turbulent fields in Figs. 3.43–3.45. Using

n = 2400 and 4800 points represents the behavior of the turbulent fields poorly,

especially the dissipation rate. Although some loss of accuracy is still observed as the

shock compresses the interface n = 7200 and 9600 points, the turbulent fields show

slow convergence.
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Figure 3.43: Turbulent kinetic energy convergence for Mas = 1.98 and At = 0.67 at t =
1.70 and 2.20 ms.

The last set of results for convergence of turbulent fields corresponds to the

Mas = 1.45 case with At=−0.67. At t = 1.20 ms, the turbulent viscosity achieves

convergence in front of the shock and at the interface. However, the reflected shock–
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Figure 3.44: Turbulent kinetic energy dissipation rate convergence for Mas = 1.98 and
At = 0.67 at t = 1.70 and 2.20 ms.
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Figure 3.45: Turbulent viscosity convergence for Mas = 1.98 and At = 0.67 at t = 1.70
and 2.20 ms.
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Figure 3.46: Turbulent kinetic energy convergence for Mas = 1.45 and At = −0.67 at
t = 1.20 and 2.00 ms.
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Figure 3.47: Turbulent kinetic energy dissipation rate convergence for Mas = 1.45 and
At=−0.67 at t = 1.20 and 2.00 ms.
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Figure 3.48: Turbulent viscosity convergence for Mas = 1.45 and At=−0.67 at t = 1.20
and 2.00 ms.

interface interaction results in a slower rate of convergence up to the test section

endwall. The turbulent kinetic energy and dissipation rate demonstrate similar be-

havior, but with a slower rate of convergence at the interface. At t = 2.00 ms, the

second reshock has just occurred and the progression of the reflected wave shows

that passage of this secondary wave delays convergence from the interface to the test

section endwall.

3.6 Chapter Summary

Variations in the turbulent kinetic energy seed K0 affect turbulent mixing before

and after reshock through the production and dissipation mechanisms. Larger K0

values lead to increased mixing at early times prior to reshock through the buoyancy

and shear production terms with turbulent kinetic energy spread through diffusion.

Larger values of K0 also result in a stronger compression during reshock, and corre-
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spondingly stronger dissipation of the turbulent kinetic energy leading to less efficient

mixing at later times. However, smaller K0 values compress the interface to a lower

degree at reshock, but prolong the mixing process to later times. The dissipation

and diffusion terms dissipate and spread turbulent kinetic energy after reshock. The

arrival of the expansion wave modestly increases turbulent mixing. The diffusion is

insensitive to initial conditions at later times, and this mechanism is nearly the same

for all values of K0 upon interaction with the expansion wave. Variations in the initial

perturbation wavelength λrms were also considered. This initial condition principally

affects early-time mixing, but has minimal effect on post-reshock mixing.

Sensitivity of the model predictions to variations in shock Mach number was also

examined. Turbulent mechanisms prior to reshock demonstrate sensitivity to these

variations. As the shock travels faster at larger shock Mach numbers, reflection from

the test section endwall, and therefore reshock, occur earlier. The post-reshock mix-

ing layer growth rate is also affected by changes in Mas. Turbulent mixing increases

significantly by reshock. During compression, the shock speed is reduced and shear

production decreases as energy is dissipated into heat. The buoyancy production

enhances turbulent mixing as density and pressure gradients from reshock result in

larger turbulent viscosity and diffusion spreads turbulent kinetic energy during mix-

ing. Finally, sensitivity to the buoyancy production model coefficients σρ and Cε0

was considered. This production mechanism influences post-reshock mixing but not

early mixing prior to reshock. As σρ appears reciprocally in the buoyancy production,

smaller σρ values resulted in larger turbulent kinetic energy and turbulent viscosity,

resulting in larger diffusion and enhanced mixing. As the turbulent kinetic energy in-

creased, larger shock speeds were also predicted. Similarly, mixing was also enhanced

with smaller values of Cε0 as there was less production of dissipation. Conversely,

larger Cε0 values produced larger dissipation of turbulent kinetic energy and smaller

widths. As Cε0 increased and the mixing layers were smaller, shocks emerged from
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the layers with faster speeds as less energy was lost during compression.

Grid refinement studies demonstrated that convergence is generally achieved be-

tween n = 7200 and 9600 points for the mixing layer width and mean density, pres-

sure, velocity, and heavy mass fraction. Small deviations are evident near the shock

and in the vicinity of the mixing layer due to material interfaces. However, as the

grid is refined, these deviations become smaller. The turbulent fields show stronger

sensitivity to grid resolution and a slower convergence rate compared to the mean

fields. Interactions between the interface and the endwall with secondary expansion

and rarefaction waves are also responsible for slower convergence. However, better

convergence is achieved as waves progress away from these boundaries.
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CHAPTER IV

Application of the Model to Richtmyer–Meshkov

Instability Under Variable Reshock Times

The model was applied to reshocked Richtmyer–Meshokov instability in Chapter

III for a variety of incident shock Mach numbers Mas, Atwood numbers At, and test

section lengths δ. Parametric studies were conducted to test the sensitivity of the

model to variations in initial conditions, incident shock Mach number, and buoyancy

production model coefficients. One important aspect of the present work is that of

better understanding turbulent mixing processes following reshock. It was observed in

the previous chapter that Mas variations influence the time of reshock, where stronger

shocks result in earlier compression of the interface. Another way in which reshock

is influenced is by changing the test section length. This parameter was discussed

in Chapter III, and a systematic approach is used here to understand its effects on

reshock timing.

A set of six test section lengths, δ = 23.5, 19.9, 17.2, 13.1, 9.8, and 8 cm with

constant Mas = 1.20 and At = 0.67 is considered. Experimental measurements and

three-dimensional numerical simulations performed by Leinov et al. (12) along with

self-similar predictions prior to reshock are used to further evaluate the accuracy of

the model. As the values for δ and Mas in this study are smaller than those in

Chapter III, a modified coefficient set is used for this specific study. A general set
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of coefficients applicable to a broader range of parameters is also developed. The

evolution of turbulent production and dissipation mechanisms is compared between

the two sets of coefficients. Finally, convergence under grid refinement is considered

for the mean and turbulent fields in addition to mixing layer widths for each of the

six test section lengths.

4.1 Initializing the Model

The model is initialized as discussed in Chapter II for these studies. The six test

section lengths used to simulate the experiments are δ = 23.5, 19.9, 17.2, 13.1, 9.8, and

8 cm. The domain is adjusted to smaller lengths in conjunction with decreasing values

of δ. It was found that the domain length used in Chapter III for positive Atwood

numbers, X = 161 cm, was too long for most of the simulations in this chapter, and

difficulties were experienced in maintaining stability at lower resolutions. Table 4.1

lists the domains and test section lengths along with simulated experimental times

for each of the six cases.

Case 1 2 3 4 5 6

δ cm 23.5 19.9 17.2 13.1 9.8 8

X cm 161 121 101 101 71 61

tend ×10−3 s 3 2.6 2.6 2.2 1.4 1.7

Table 4.1: Test section length δ, domain X, and simulated experimental time tend for
Mas = 1.20 with At = 0.67, K0 = 0.10, and λrms = 0.25 cm.

The incident shock Mach number and Atwood number are Mas = 1.20 and At =

0.67; air fills the driver section while SF6 fills the test section. Initial conditions

for the turbulent kinetic energy seed and initial perturbation wavelength used in

the simulations are K0 = 0.10 and λrms = 0.25 cm, respectively. In comparison

to simulations discussed in Chapter III, λrms is reduced to 0.25 cm. This value is

comparable to the random perturbations found on the membrane of the experiments,
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which have an average wavelength of 0.10 cm (12; 24). This information on the

membrane was not available for experiments conducted by Vetter and Sturtevant

(10) and Poggi et al (11). Three-dimensional numerical data is available only for

three of the Leinov et al. experiments with test section lengths δ = 23.5, 17.2, and

8 cm. The cases with δ = 19.9, 13.1, and 9.8 cm do not have numerical results for

comparison.

The mixing layer width following reshock evolves differently as a result of decreas-

ing δ and Mas. The model coefficients used in simulating the experiments in Chapter

III do not accurately predict turbulent mixing for the present cases, and the need to

introduce a modified coefficient set arises. Table 4.2 compares values for σρ and Cε0

used to simulate the present experiments with those used to predict experiments by

Vetter and Sturtevant (10) and Poggi et al. (11). Table 4.2 additionally includes a

third set of coefficients applicable to a broader range of values for Mas, At, and δ;

these values are listed as the General coefficients. This second coefficient set may

not provide as optimal predictions as those intended for specific investigations, but

results generated when applied to general studies provide better predictions. The

model coefficients, Cε1–Cε4, Cµ, σm, σU , σK , and σε, remain unchanged.

Coefficient Leinov Vetter, Poggi General

σρ 0.20 0.90 0.60
Cε0 0.95 0.90 0.90

Table 4.2: Comparison of model coefficients for simulated experiments.

4.2 Model Predictions with Optimal and General Coefficients

The test section lengths used in experiments by Vetter and Sturtevant (10) and

Poggi et al. (11) ranged between δ = 30 and 110 cm, while those used in experiments

by Leinov et al. are shorter. Decreasing the test section length affects reshock timing

as the distance between the interface and the test section endwall is shortened. To

87



0 0.5 1 1.5 2 2.5 3
x 10−3

0

0.5

1

1.5

2

2.5

3

Time [s]

M
ix

in
g 

la
ye

r w
id

th
 [c

m
]

 

 

b=8 cm
b=9.8 cm
b=13.1 cm
b=17.2 cm
b=19.9 cm
b=23.5 cm

δ cm 8 9.8 13.1 17.2 19.9 23.5 Mean
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Figure 4.1: Mixing layer widths, growth rate estimates ḣ shortly after reshock, and reshock
times τR for δ = 8, 9.8, 13.1, 17.2, 19.9, 23.5 cm with Mas = 1.20, At = 0.67,
K0 = 0.10, λrms = 0.25 cm, σρ = 0.20, and Cε0 = 0.95. The experimental data
are from Ref. (12).

illustrate the change in reshock timing due to a gradual shortening of the test section,

Fig. 4.1 compares model predictions with experimental data for each of the six cases.

As expected, the reshock time is delayed as δ increases, where τR ranges from 0.72 to

1.78 ms for δ = 8 to 23.5 cm, respectively. In addition to reshock timing variations, the

growth rate of the mixing layer width in the post-reshock regime is also of interest.

The table compares experimental and model post-reshock growth rates; the mean

experimental and model growth rates are 2.4× 103 and 2.5× 103 cm/s, respectively.

These estimates are calculated as the ratio of the difference in mixing layer width

shortly after reshock to the time elapsed.

Predictions using both coefficient sets are presented and discussed in Figs. 4.2–
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4.4. Results using σρ = 0.20 with Cε0 = 0.95 and σρ = 0.60 with Cε0 = 0.90 are

considered together when evaluating simulated experiments to compare and test the

accuracy of each coefficient set. Figure 4.2 shows model predictions, experimental

data, and available three-dimensional simulation data for δ = 23.5 and 19.9 cm,

respectively. In both cases, using σρ = 0.20 with Cε0 = 0.95 results in a slightly

larger early-time mixing width prior to reshock in comparison to σρ = 0.60 with

Cε0 = 0.90, as a smaller value in σρ results in additional turbulent mixing due to

buoyancy production. The largest difference (≈ 0.05 cm) between widths occurs

before reshock. In comparisons with experimental data, a smaller width is predicted at

early times with improved agreement closer to reshock. Results for three-dimensional

simulations illustrate similar behavior; both numerical approaches follow the evolution

of the self-similar solution.

Following reshock, simulations using coefficients specific to the Leinov et al. exper-

iments better predict experimental measurements for the mixing layer. The δ = 23.5

cm case in Fig. 4.2 shows the evolution of the mixing layer developing more rapidly

using σρ = 0.20 as smaller values in σρ increase the rate of turbulent kinetic energy

generated via buoyancy production. However, dissipative effects can be noted by the

slight negative curvature of the width as Cε0 = 0.95 also increases the rate at which

buoyancy production dissipation is dissipated. Conversely, as σρ increases and Cε0

decreases, the opposite effects occur. Simulations with σρ = 0.60 and Cε0 = 0.90

predict a more gradual development of turbulent mixing after reshock followed by a

linear-like evolution indicating prolonged turbulent mixing. The more gradual evo-

lution is due to the larger value of σρ, and weaker dissipation effects are due to the

smaller value of Cε0. Many Richtmyer–Meshkov instability experiments, analytical

models, and semi-analytical models have predicted a growth linear in time following

reshock (37; 58). Similar behavior is also present for δ = 19.9 cm in Figure 4.2. Tur-

bulent mixing between coefficient sets develops in a similar fashion following reshock,

89



0 0.5 1 1.5 2 2.5 3
x 10−3

0

0.5

1

1.5

2

2.5

3

Time [s]

M
ix

in
g 

la
ye

r w
id

th
 [c

m
]

 

 

Experiment
3D simulation
Self−similar solution
m
l
=0.20, C

¡0=0.95

m
l
=0.60, C

¡0=0.90

0 0.5 1 1.5 2 2.5 3
x 10−3

0

0.5

1

1.5

2

2.5

3

Time [s]

M
ix

in
g 

la
ye

r w
id

th
 [c

m
]

 

 

Experiment
Self−similar solution
m
l
=0.20, C

¡0=0.95

m
l
=0.60, C

¡0=0.90

Figure 4.2: Mixing layer widths for δ = 23.5 cm (top) and δ = 19.9 cm (bottom) with
Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, X = 161 and 121 cm, and
n = 14400 with ∆x = 0.01 and 0.008 cm. The experimental and simulation
data are from Ref. (12) and the self-similar solution is from Eq. (2.27).
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and it is not until t ≈ 2.10 ms that dissipative effects start to become more apparent

for σρ = 0.20 and Cε0 = 0.95.

Some differences between the predictions using the two coefficient sets is observed

for the intermediate test section lengths. Figure 4.3 illustrates results for δ = 17.2

and 13.1 cm, respectively. Simulations using σρ = 0.20 and Cε0 = 0.95 again produce

results agreeing well with experimental data, indicating the rapid growth rate follow-

ing reshock and dissipative effects shortly thereafter. The model predicts a slightly

smaller early-time width for δ = 17.2 cm, but good agreement after reshock. More-

over, three-dimensional simulations and those of the K–ε model show nearly the same

behavior with minor deviations at later times. The δ = 13.1 cm simulation generates

results that accurately predict the turbulent mixing before reshock and agree well

with experimental data. For this case, the arrival of the expansion wave can be seen

by the increase in the mixing layer width at τE ≈ 2 ms. By comparison, simulations

using the second set of coefficients, σρ = 0.60 and Cε0 = 0.90, produce results that

less accurately match experimental data. The early-time mixing width still agrees

well with experimental data. However, deviations from the experimental growth rate

after reshock are evident. For δ = 17.2 cm, the post-reshock mixing layer begins to

evolve similarly to the widths generated with the first coefficient set, but due to the

smaller value in Cε0, the turbulent kinetic energy dissipation is weaker and enhanced

mixing at later times is seen. Furthermore, the δ = 13.1 cm case shows that the

general coefficient set predicts a more gradual mixing layer growth rate after reshock

than simulations using the first coefficient set due to the larger value of σρ.

Findings for the two shortest test sections lengths, δ = 9.8 and 8 cm, are shown

in Fig. 4.4. For these two cases, the use of both coefficient sets generates good

results when simulating these experiments. For the δ = 8 cm case, simulations using

both coefficient sets predict slightly less early-time mixing than the experimental

data. After reshock, simulation results are very similar and predict the experimental
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Figure 4.3: Mixing layer widths for δ = 17.2 cm (top) and δ = 13.1 cm (bottom) with
Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, X = 101 cm, and
n = 14400 with ∆x = 0.007 cm. The experimental and simulation data are
from Ref. (12) and the self-similar solution is from Eq. (2.27).
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Figure 4.4: Mixing layer widths for δ = 9.8 cm (top) and δ = 8 cm (bottom) with Mas =
1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, X = 71 and 61 cm, and n = 19200
with ∆x = 0.004 and 0.003 cm. The experimental and simulation data are from
Ref. (12) and the self-similar solution is from Eq. (2.27).
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evolution with a slightly larger width. The best results in simulating the mixing layer

width were obtained for δ = 8 cm. Both coefficient sets agree with the experimental

data; the three-dimensional simulation slightly overpredicts early-time mixing but

matches the mixing layer well after reshock. However, there is a small deviation

between the widths after reshock. The first is due to the arrival of the expansion

wave at τE ≈ 0.97 ms and the second is due to the rarefaction wave at τF ≈ 1.27

ms, where the first coefficient set predicts a slightly larger growth rate. Due to the

smaller test sections, simulations for δ = 9.8 and 8 cm were conducted with finer grids

using n = 19200 points, in comparison to the first four cases with n = 14400 points.

Convergence under grid refinement for each case is discussed in Sec. 4.5.

4.3 Extension of the Model to Accommodate Various At-

wood and Shock Mach Numbers

Section 4.2 presented and discussed simulation results using both coefficient sets

for the Leinov et al. experiments (12). The model is extended to a broader range of

shock Mach numbers, Atwood numbers, and test section here by reconsidering the

experiments by Vetter and Sturtevant (10) and Poggi et al. (11) presented in Chap-

ter III: an optimal set of coefficients was obtained with values listed in Table 4.2.

Simulations using these values produced results in good agreement with experimental

data. Figures 3.2, 3.11, and 3.19 compare model predictions with experimental mea-

surements for Mas = 1.24, 1.50, and 1.98 with δ = 110, 61, and 49 cm, respectively,

and At = 0.67. Results for Mas = 1.45 with At=−0.67 and δ = 30 cm are available

in Figure 3.25.

Figure 4.5 summarizes mixing layer evolutions for the At = 0.67 cases listed above

using σρ = 0.90 with Cε0 = 0.90 (dashed lines) and σρ = 0.60 with Cε0 = 0.90 (solid

lines). The buoyancy production of the dissipation rate is scaled by Cε0 for both co-
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efficient sets, but more turbulent mixing is expected with σρ = 0.60. Moreover, recall

that from Sec. 3.3 changes in these coefficients have minimal influence on early-

time mixing. Therefore, differences between predictions are expected mainly in the

post-reshock region. The initial conditions and remaining model coefficients remain

unchanged for each case. The mixing layer width for Mas = 1.20 with δ = 8 cm is ad-

ditionally included as a reference for comparing results from Sec. 4.2. For Mas = 1.98

with δ = 49 cm, both coefficient sets produce very similar results that agree well with

experimental data. This is indicative of the ability to apply the general coefficient set

to a case with δ approximately twice as long as the longest test section used in the

Leinov et al. experiments with an ≈ 60% increase in Mach number, and still obtain

accurate predictions. As the test section is increased to δ = 61 cm for the Mas = 1.50

case, reshock occurs later in time. Predictions between coefficient sets are similar dur-

ing early-time mixing. However, following compression of the interface, differences in

the predicted growth rates are apparent: turbulent mixing is enhanced via buoyancy

production by decreasing σρ from 0.90 to 0.60 and additional turbulent kinetic en-

ergy is produced after reshock. Although results generated using σρ = 0.60 are not as

accurate in matching the experimental data as those with σρ = 0.90, the model still

predicts the evolution of the mixing layer width fairly well, but with a slightly larger

mixing rate. Similar behavior is seen for the Mas = 1.24 case. Simulations using

the optimal coefficient set are in good agreement with experimental data, while the

predictions using σρ = 0.60 predict slightly more mixing after reshock. Comparing

these three cases, small deviations from experimental data gradually increase when

using the general coefficient set, but a larger range of applicability is demonstrated.

Similarly, Fig. 4.6 shows the predicted mixing layer width for Mas = 1.45 with

At=−0.67 and δ = 30 cm. For this set of simulations the initial conditions are K0 =

0.10 and λrms = 1.25 cm. Using these initial conditions results in good agreement

between the predicted width and experimental data before reshock. However, the
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Figure 4.5: Comparison of mixing layer widths for Mas = 1.20, 1.24, 1.50, 1.98 with δ = 8,
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(dashed lines), and Cε0 = 0.90. The experimental data are from Refs. (10; 12).
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Figure 4.6: Comparison of mixing layer widths for Mas = 1.45 with δ = 30 cm and At=
−0.67, σρ = 0.60 (solid) and 0.90 (dashed), and Cε0 = 0.90. The experimental
data are from Ref. (11).
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post-reshock width overpredicts the experimental data when using σρ = 0.60 in the

extended coefficient set. This occurs for the same reason as discussed above for the

Mas = 1.50 and 1.24 cases. The original width generated after reshock with the

optimal value σρ = 0.90 qualitatively follows the behavior seen in the experiment.

Attempting to establish a general set of model coefficients that accommodates a wide

range of δ, At, and Mas is challenging, and will likely provide predictions that are less

optimal for some cases that are very well predicted using a specific set of coefficients.

To further understand differences in the predictions between simulation sets, Ta-

ble 4.3 lists approximate mixing layer growth rates ḣ following reshock for each case.

As expected, the growth rate is generally larger for σρ = 0.60 as the buoyancy pro-

duction generates a larger turbulent kinetic energy for mixing. The mixing rate also

increases with larger shock Mach numbers, which has already been discussed in Sec.

3.2. Finally, a third way to increase the post-reshock mixing layer growth rate is by

reversing the order of the gases, such that the denser gas occupies the driver section:

as the shock is generated very close to the interface, minimal energy is deposited

within the original gas at the onset of the simulation. This results in a front of the

denser gas accelerating the lighter gas in the test section. As the shock travels in

the test section after crossing the interface, it requires less energy to travel through

a lighter gas, resulting in less energy expended in reflecting from the endwall and

reshocking the interface. Therefore, the shock arrives in a more energetic state, and

more turbulent kinetic energy is available for mixing. Table 4.3 also shows that the

growth rate for Mas = 1.45 is very close to that of Mas = 1.98 for simulations with

σρ = 0.60. However, using σρ = 0.90 would result in more confidence when making

such comparisons, as this value is part of an optimal coefficient set for the Mas = 1.98,

1.50, 1.45, and 1.24 experiments.
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Mas 1.98 1.50 1.24 1.20 1.45

At 0.67 0.67 0.67 0.67 −0.67

ḣσρ=0.90 ×10 3 cm/s 13 2 1.3 – 5

ḣσρ=0.60 ×10 3 cm/s 13 2.7 3.4 2.2 10

Table 4.3: Approximate mixing layer growth rates after reshock for σρ = 0.60 and 0.90,
Cε0 = 0.90, and Mas = 1.98, 1.50, 1.24, 1.20 with At = 0.67 and Mas = 1.45
with At=−0.67.

4.4 Evaluation of Production and Dissipation Mechanisms

Simulation sets for predicting the mixing layer width were compared in Sec. 4.2,

while the generalized set of coefficients was applied to a broader range of experiments

in Sec. 4.3. The mechanisms contributing to the production and dissipation of

turbulent kinetic energy for experiments conducted by Leinov et al. (12) are evaluated

in this section. The study with δ = 8 cm is considered due to the various events that

are observed during the experiment. Compression of the interface at reshock and

arrival of the expansion wave occur at τR ≈ 0.74 and τE ≈ 0.97 ms, respectively,

while development of the rarefaction wave can be seen at τF ≈ 1.27 ms. Budgets

for the turbulent kinetic energy and dissipation rate are considered at t = 0.80, 1.0,

1.2, and 1.4 ms to examine the evolution of the mechanisms throughout these events.

Note that the interface has been reshocked and the waves are propagating to the left,

away from the test section endwall.

Figure 4.7 shows the terms in the turbulent kinetic energy budgets. The top two

rows show the evolution of the turbulent kinetic energy buoyancy production (solid

lines) and diffusion (dashed lines). Prior to reshock the majority of the buoyancy

production is concentrated in the vicinity of the shock. At t = 0.80 ms immediately

after reshock, this behavior can still be seen in both simulation sets. Contributions

with larger magnitudes are seen for σρ = 0.20, as expected. Diffusive effects can also

be observed as turbulent kinetic energy generated by the buoyancy term is spread

to enhance turbulent mixing. Diffusion is also stronger for σρ = 0.20. At t = 1.00
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ms, the magnitudes of these terms remain relatively unchanged because additional

turbulent kinetic energy is supplied by the arrival of the expansion wave at τE ≈ 0.97

ms. This can be seen in the turning point of the slope of the mixing layer at this time

(the effect is more easily seen for the σρ = 0.20 case). As time progresses to t = 1.20

ms, the magnitudes of these terms decrease as the turbulent kinetic energy is diffused

and dissipated. In addition to the smaller magnitudes, the area under the profiles

has increased, indicating that the spreading of turbulent kinetic energy is increasing

as time progresses. This is further supported by noting that the mixing layer width

continues to grow with time in Fig. 4.4. Finally at t = 1.4 ms, these terms continue to

decrease in magnitude and spread spatially as the turbulent kinetic energy continues

to supply the mixing process.

The bottom two rows in Fig. 4.7 show the shear production (solid lines) and

dissipation rate (dashed lines) of turbulent kinetic energy. Immediately after reshock

at t = 0.80 ms, the enhanced turbulent mixing has not yet fully developed. Recall that

changes in σρ and Cε0 have minimal effect on early-time mixing; thus, the structure

and magnitude of the shear production is very similar despite variations in σρ and

Cε0. After reshock, the shear production has a secondary role in turbulent mixing

(and evolution of the mixing layer width) as much of the mixing is initiated from

changes in pressure and density due to shock compression of the layer. Mixing from

shear production contributions are due to changes in velocity after compression of

the interface. Comparing the magnitudes of the shear production to the buoyancy

production, the former accounts for ≈ 5% of the turbulent kinetic energy supply after

reshock. The dissipation rate has an even smaller role: Fig. 4.7 shows that this term

is negligible in comparison to the other terms. From prior observations, dissipation is

large behind the shock front: as the shock progresses, a trail of energy dissipates as

it heats the gas in its path. Furthermore, a significant amount of energy is dissipated

and converted into heat as the interface is compressed.
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Figure 4.7: Turbulent kinetic energy budgets [g/cm-s3] for Mas = 1.20, At = 0.67, and
δ = 8 cm, σρ = 0.20 and 0.60, and Cε0 = 0.90 and 0.95. The buoyancy
and shear production terms are represented by solid lines and diffusion and
dissipation terms are represented by dashed lines.
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Figure 4.8: Turbulent kinetic energy dissipation rate budgets [g/cm-s4] for Mas = 1.20,
At = 0.67, and δ = 8 cm, σρ = 0.20 and 0.60, and Cε0 = 0.90 and 0.95.
The buoyancy and shear production terms are represented by solid lines and
diffusion and dissipation terms are represented by dashed lines.
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The production, diffusion, and dissipation terms for the turbulent kinetic energy

dissipation rate are presented in Fig. 4.8. The evolution and profiles of the terms are

similar to those of the turbulent kinetic energy in Fig. 4.7 due to the proportionality

relating ε to K. However, differences between coefficients sets are more apparent for

the dissipation rate as this quantity is directly affected by both σρ and Cε0, whereas

the turbulent kinetic energy is not directly affected by Cε0. As the model is more

sensitive to changes in Cε0 as discussed in Sec. 3.3, dissipative effects become larger

as this model coefficient increases from 0.90 to 0.95.

4.5 Convergence Under Grid Refinement

Convergence studies for each of the six experiments performed by Leinov et al.

(12) are presented here. Results for the mean and turbulent fields in addition to the

mixing layer widths are presented and discussed. These studies were conducted for

the optimal set of coefficients using σρ = 0.20 and Cε0 = 0.95, which are specific to

these experiments. Furthermore, as the different domains can vary between cases,

Table 4.4 gives the grid spacings for each domain used.

Number of points, n 4800 7200 9600 14400 19200

∆x161 cm 0.034 0.022 0.017 0.011 0.008

∆x121 cm 0.025 0.017 0.013 0.008 0.006

∆x101 cm 0.021 0.014 0.011 0.007 0.005

∆x71 cm 0.015 0.010 0.007 0.005 0.004

∆x61 cm 0.013 0.008 0.006 0.004 0.003

Table 4.4: Grid resolutions for the Leinov et al. simulations with domain lengths
X = 161, 121, 101, 71, and 61 cm.

4.5.1 Mixing layer widths

Convergence results for the δ = 23.5 and 19.9 cm cases are presented in Fig. 4.9.

Using a coarse mesh with n = 4800 points does not accurately represent the mixing

102



layer width, and some inaccuracy is still evident when using n = 7200 and 9600

points. A finer grid using n = 14400 and 19200 points is necessary for the width

to approach convergence for both cases. Profiles generated using these resolutions

produce similar results prior to reshock and for some times after reshock. A small

divergence is noted at later times after the arrival of the expansion wave.

Figure 4.10 illustrates mixing layer width convergence results for the intermediate

test section lengths, δ = 17.2 and 13.1 cm. Similarly, using n = 4800, 7200, and 9600

points does not accurately predict the experimental mixing layer width. Simulations

with n = 14400 and 19200 points produce a small loss of accuracy in the early-time

width. In the post-reshock regime, a divergence between profiles similar to that in

Fig. 4.9 is evident, but occurs earlier in time: as the test section is progressively

decreased in length, the arrival of the expansion wave occurs at earlier times. More-

over, convergence is more difficult to achieve at the interface due to the strong mixing

processes. Given the closer proximity of the interface to the test section endwall with

shorter test section lengths, oscillations from secondary wave interactions can overlap,

inhibiting convergence.

Finally, results for the δ = 9.8 and 8 cm cases are presented in Fig. 4.11. As the

test section length is reduced further to these values, difficulty in achieving conver-

gence for the mixing layer width becomes more apparent. Although simulations using

n = 14400 and 19200 points generate similar early-time widths, the rate of conver-

gence is slower in the post-reshock region due to secondary waves reflecting from the

test section endwall and interacting with the interface, which is now situated closer

compared to the larger δ cases. For example, the δ = 8 cm case experiences reshock

and arrival of the expansion wave at τR ≈ 0.74 and τE ≈ 0.97 ms, respectively. Shock

and secondary wave interactions with the interface and the reflecting boundary at the

endwall in such a short time frame can inhibit convergence of the mixing layer width.

Similar results were observed in the convergence investigations of Sec. 3.5. The
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Figure 4.9: Mixing layer convergence for δ = 23.5 cm (top) and δ = 19.9 cm (bottom) with
Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, σρ = 0.20, and Cε0 = 0.95.
The experimental and simulation data are from Ref. (12).

104



0 0.5 1 1.5 2 2.5
x 10−3

0

0.5

1

1.5

2

2.5

Time [s]

M
ix

in
g 

la
ye

r w
id

th
 [c

m
]

 

 

Experiment
3D simulation
n=4800
n=7200
n=9600
n=14400
n=19200

0 0.5 1 1.5 2
x 10−3

0

0.5

1

1.5

2

2.5

Time [s]

M
ix

in
g 

la
ye

r w
id

th
 [c

m
]

 

 

Experiment
n=4800
n=7200
n=9600
n=14400
n=19200

Figure 4.10: Mixing layer convergence for δ = 17.2 cm (top) and δ = 13.1 cm (bottom)
with Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, σρ = 0.20, and
Cε0 = 0.95. The experimental and simulation data are from Ref. (12).
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Figure 4.11: Mixing layer convergence for δ = 9.8 cm (top) and δ = 8 cm (bottom) with
Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25 cm, σρ = 0.20, and Cε0 =
0.95. The experimental and simulation data are from Ref. (12).

106



Mas = 1.50 and 1.24 experiments (10) had test section lengths, δ = 61 and 110 cm,

respectively. Convergence was achieved for these cases between n = 7200 and 9600

points with minimal error. As the test section length decreased further to δ = 49

cm for the Mas = 1.98 case, the rate of convergence decreased. The Mas = 1.45

investigation had the smallest test section length in Chapter III, where δ = 30 cm.

Similar diverging behavior following reshock observed for this case is also evident in

the present studies. These cases further show that shortening the test section length

inhibits convergence due to the closer proximity of the interface to the endwall and

secondary wave interactions within shorter time intervals.

4.5.2 Convergence of the mean fields

Mean field studies under grid refinement consider a time after reshock for each of

the six cases in the Leinov et al. experiments. As variations in reshock timing via test

section length adjustments and post-reshock mixing are of interest, grid refinement

for the mean fields is evaluated at different times following reshock. Figure 4.12 shows

convergence results for the mean density, pressure, heavy mass fraction, and velocity

for the δ = 23.5 and 19.9 cm cases. The reshock times for these experiments are τR ≈

2.10 and 1.78 ms, respectively, and convergence for these cases is evaluated at t = 2.50

and 2.00 ms. In both cases, the density and heavy mass fraction require less points for

convergence: using n = 9600 points for these two fields shows good agreement with

results generated using n = 14400 and 19200 points. The pressure and velocity profiles

similarly demonstrate that away from the interface, good agreement is established

with n = 9600 points. However, in the vicinity of the interface, convergence is delayed

and additional points are necessary to achieve convergence. This effect can be partly

due to the transmitted and reflected waves departing from the interface following the

compression at reshock. Behind these waves, convergence is also approached at a

slower rate. Grids with n = 4800, 7200, and 9600 points demonstrate difficulty in
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Figure 4.12: Mean field convergence for δ = 23.5 cm at t = 2.50 ms (top) and δ = 19.9 cm
at t = 2.00 ms (bottom) with Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25
cm, σρ = 0.20, and Cε0 = 0.95.
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accurately predicting the evolutions near the mixing region.

Results for the intermediate cases with δ = 17.2 and 13.1 cm are shown in Fig.

4.13. Reshock for these cases occurs at τR ≈ 1.52 and 1.16 ms, respectively. Cor-

responding times are taken at 2.00 and 1.60 ms to evaluate convergence properties

following reshock. Similar results to those presented in Fig. 4.12 for the density and

heavy mass fraction are obtained in these cases, where good agreement is achieved

with n = 9600 points. The δ = 17.2 cm case shows the reflected wave from reshock

approaching the test section endwall and initiating the first stages of the expansion

wave. At the right boundary, initial oscillations are evident as the wave reflects from

the endwall. Furthermore, although interface convergence occurs at a slower rate,

good agreement is reestablished as the transmitted and reflected waves become more

distant from the interface. The velocity profiles also demonstrate a slower rate of

convergence, primarily behind the transmitted wave. The δ = 13.1 cm case is an

example showing where the expansion wave has arrived. The pressure profile at the

right boundary exhibits further oscillations from secondary wave interactions with

the reflecting boundary. The velocity demonstrates additional oscillation behind the

shock in comparison with the δ = 17.2 cm case. However, the velocity displays

minimal oscillation from interaction with the reflecting endwall in comparison to the

pressure in both cases.

Convergence of simulations for δ = 9.8 and 8 cm is shown in Fig. 4.14. Reshock

times are τR ≈ 0.87 and 0.74 ms, respectively, and convergence is considered at t =

1.00 and 0.80 ms. Like results for the mixing layer width in Fig. 4.11, grid refinement

is necessary to achieve convergence for these shorter test sections, particularly near

the mixing region. This is seen in the pressure and velocity profiles as the transmitted

and reflected waves emerge from the mixing layer after reshock. It is expected that

as the reflected wave approaches the endwall, additional oscillations will develop.

However, it is also expected that convergence will improve as the waves become more
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Figure 4.13: Mean field convergence for δ = 17.2 cm at t = 2 ms (top) and δ = 13.1 cm
at t = 1.6 ms (bottom) with Mas = 1.20, At = 0.67, K0 = 0.10, λrms = 0.25
cm, σρ = 0.20, and Cε0 = 0.95.
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cm, σρ = 0.20, and Cε0 = 0.95.
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distant from the interface.

4.5.3 Convergence of the turbulent fields

Turbulent field convergence is evaluated at the same times after reshock for each

case considered. The quantities considered are the turbulent kinetic energy K, the

turbulent kinetic energy dissipation rate ε, and the turbulent viscosity νT .

Studies for δ = 23.5 and 1.99 cm are presented in Fig. 4.15. Turbulence ef-

fects after reshock principally occur between the transmitted wave and the interface

where mixing is enhanced. Turbulent effects ahead of the transmitted wave and in

the unmixed region in the test section are minimal. Figure 4.15 further shows that

convergence is more difficult to achieve near the mixing region, but as the transmitted

wave becomes more distant, convergence improves. For example, in the δ = 23.5 cm

case the transmitted shock is ≈ 12 cm away from the interface at t = 2.50 ms, and

gradual convergence is apparent. Conversely, in the δ = 19.9 cm case, the transmit-

ted wave is ≈ 6 cm away from the interface at t = 2.00 ms, and weak convergence is

apparent. Moreover, the dissipation rate converges slower than the turbulent kinetic

energy and turbulent viscosity. Convergence results for the intermediate test section

lengths, δ = 17.2 and 13.1 cm are shown in Fig. 4.16. Similar convergence properties

are seen as in the preceding two cases illustrated in Fig. 4.15: the turbulent kinetic

energy and the turbulent viscosity show more rapid convergence than the dissipation

rate, with converging behavior away from the interface. Grid refinement for δ = 9.8

and 8 cm is considered in Fig. 4.17, where the turbulent kinetic energy and dissipa-

tion rate appear to approach convergence when using n = 14400 and 19200 points.

However, the turbulent viscosity shows slower convergence.
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Figure 4.15: Convergence of the turbulent fields for δ = 23.5 cm at t = 2.5 ms (top) and
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4.6 Chapter Summary

Reshocked Richtmyer–Meshkov instability under different reshock times was con-

sidered. Reshock occurred earlier for shorter test section lengths. Early-time mixing

was minimally affected by variations in the reshock times. The post-reshock mixing

layer growth rate generally varied from previous studies with longer test sections, and

a new set of coefficients was established to accurately model the turbulent mixing.

Good agreement was established between model predictions and the Leinov et al.

(12; 31) experimental and three-dimensional simulation data. To the author’s knowl-

edge, this is the first published application of a Reynolds-averaged model to simulate

these experiments. A general set of coefficients applicable to a broader range of shock

Mach numbers, Atwood numbers, and test section lengths was also established. To

evaluate the accuracy of the model, the general coefficient set was used to simulate

the Vetter and Sturtevant (10) and Poggi et al. (11) experiments. Comparisons

were made with simulations using the optimal coefficient set for these experiments.

Good agreement was generally established when using the general coefficient set, but

a small loss of accuracy was seen as the test section increased to δ = 110 cm for

the Mas = 1.24 case. The production and dissipation mechanisms for the turbulent

kinetic energy and dissipation rate were considered to further investigate differences

in the predictions between coefficient sets.

Grid refinement studies demonstrated that convergence was generally achieved

between n = 7200 and 9600 points for the mean fields. However, the mixing layer

width and the turbulent fields required finer grid resolution to achieve convergence.

In all cases, convergence was slower in the vicinity of the mixing layer due to strong

mixing and material discontinuities. Interactions between the interface and the end-

wall with secondary expansion and rarefaction waves were also responsible for slower

convergence. However, better convergence was achieved as waves progressed away

from these boundaries.
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CHAPTER V

Application of the Model to Reshocked

Richtmyer–Meshkov Instability for Varying

Atwood Numbers

Investigations of reshocked Richtmyer–Meshkov instability in Chapters III and IV

were limited to air and sulfur hexafluoride (SF6) gas combinations corresponding to

Atwood numbers At = ±0.67. In Chapter III, parametric studies investigating the

sensitivity of the model to changes in key model coefficients and initial conditions

were conducted for shock Mach numbers 1.24 ≤ Mas ≤ 1.98 with At = ±0.67 and a

variety of test section lengths. Chapter IV considered the application of the model

to reshocked Richtmyer–Meshkov instability under different reshock times with test

section lengths δ = 8, 9.8, 13.1, 17.2, 19.9, and 23.5 cm while Mas = 1.20 and

At = 0.67 were held constant. Relatively little experimental work has been conducted

for cases different from At = ±0.67. Therefore, the RANS model is further applied

here to model a set of six different Atwood number cases for which previous LES data

are available (37) with At = ±0.21, ±0.67, and ±0.87 corresponding to combinations

of air with CO2, SF6, and H2, respectively.
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5.1 Mean Field and Mixing Layer Comparisons for Positive

and Negative Atwood Numbers

The six investigations for both positive and negative Atwood numbers used domain

length, shock location, and interface location X = 162 cm, xs = 99.75 cm, and

xi = 100 cm, respectively; this resulted in a test section length δ = 62 cm, as

also used in LES (37). Mean and turbulent fields were initialized as discussed in

Sec. 2.1.5. The Mas = 1.50, At = 0.67 case is very similar to that investigated

experimentally by Vetter–Sturtevant (10), for which model predictions agreeing well

with measurements were achieved in Sec. 3.2. The only difference is that the Vetter–

Sturtevant experiment used δ = 61 cm. This small change causes reshock to occur

slightly later with minimal effect on early-time mixing and post-reshock growth rate

of the mixing layer. Thus, the same initial conditions, K0 = 0.10 and λrms = 1.0 cm,

and principal model coefficients, σρ = 0.90 and Cε0 = 0.90, were used in the present

simulations. Table 5.1 lists the gas pairs resulting in positive Atwood numbers, where

the shock accelerates the light gas towards the denser gas. The negative Atwood

numbers are obtained by reversing the gas order, where the shock is introduced in

the heavy gas to impulsively accelerate the lighter gas.

Gas pairs air–CO2 air–SF6 H2–air

At 0.21 0.67 0.87

Table 5.1: Gas pairs for positive Atwood numbers.

Figure 5.1 shows the mean density, pressure, heavy mass fraction, and velocity

profiles in the vicinity of the initial shock and interface at the onset of the simulations.

Comparisons are made between the three Atwood numbers, At = 0.21, 0.67, and 0.87.

The density plot in Fig. 5.1 shows that the change in density in the post-shock region

is much less apparent when using H2 in the driver section when compared with cases

where the shock is generated in air. Figure 5.2 similarly shows the mean fields for the
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shock, driver, and test section regions at the onset of simulations for At > 0.
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negative Atwood numbers. In comparison to Fig. 5.1, the denser gases occupy the

driver section while the lighter gas is situated in the test section. This is seen in the

density and heavy mass fraction plots of Fig. 5.2. The pressure and velocity again

have the same initial conditions in the cold region. For both positive and negative

Atwood number, jumps in the pressure and velocity are noted in the post-shock region

due to the passage of the shock while the initial conditions are seen in the unshocked

(cold) regions. There is no shock-induced jump in the heavy mass fraction as this

quantity shows the interface and regions occupied by the different gases. Table 5.2

lists thermodynamic properties and initial post-shock values for the mean fields. The

first set of post-shock values corresponds to studies with At > 0 where the shock is

introduced in air or H2; thus, values are not listed for CO2 and SF6. The second set

of post-shock values corresponds to studies with At < 0, where H2 is not used in the

driver section as it is the lightest of the gases used.

Property Units air SF6 CO2 H2

Atwood number with air, |At| 0 0.67 0.21 0.87

Polytropic index, γ 1.40 1.09 1.29 1.41

Molecular weight g/mol 28.97 146.06 44.01 2.02

Density ×10−3 g/cm3 0.2723 1.3731 0.4137 0.0190

Post-shock density ×10−3 g/cm3 0.5067 – – 0.0352

Post-shock pressure ×105 g/(cm-s2) 5.656 – – 5.664

Post-shock velocity ×104 cm/s 2.5 – – 9.0

Post-shock density ×10−3 g/cm3 0.5067 2.9267 0.8366 –

Post-shock pressure ×105 g/(cm-s2) 5.656 5.3028 5.5391 –
Post-shock velocity ×104 cm/s 2.5 1.0 1.95 –

Table 5.2: Gas properties at onset of simulation for positive Atwood numbers. The densi-
ties are calculated at p = 2.3× 105 g/(cm-s2) and T = 294 K.

Figure 5.3 shows mixing layer widths for At = ±0.21, ±0.67, and ±0.87. Initial

positive Atwood number configurations generally result in a reflected expansion wave

after reshock that interacts with the interface (37), while reverse configurations typi-

cally result in a second reshock. Thus, times of reshock τR, arrival of the expansion
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wave τE, and second reshock τR2 are listed in addition to the mixing layer growth

rates ḣ shortly after reshock. The turbulent mixing widths generally evolve differ-

ently, especially after reshock, due to differences in the gas densities. For At = 0.21

and 0.67 (air is the light gas in both cases), the early-time width shows a weak depen-

dence on At. However, a significant difference in reshock times is observed as more

time is required for the shock to reflect from the endwall and reshock the layer for

At = 0.67. A larger width is observed post-reshock for At = 0.67 due to a denser gas

reshocking the interface. Reshock occurs earliest and mixing occurs at a higher rate

after reshock with At = 0.87 for the same reasons.

Similar behavior is observed for the At < 0 cases. Although all of the gases in

the driver section are different, similarities in initial mixing can be seen between

At = −0.87 and −0.21 as the difference in densities is smaller. The turbulent mixing

layer widths also grow more rapidly as compared to the At > 0 cases. As mentioned

above, a result of reversing the gas order is that a second reshock is often observed as

opposed to an expansion wave. These secondary waves can be seen in Fig. 5.3, where

the first reshock induces turbulent mixing, and as time progresses a second reshock

results in an increased mixing rate. Similar behavior was observed in the Mas = 1.45

Poggi et al. study in Sec. 3.4, which was also performed with At = −0.67.

The predicted mixing layer widths are also compared with LES data (37). The

mixing layer behavior generally agrees well with the LES results throughout, but

small differences are evident in the widths. For At = ±0.67 and ±0.87, mixing

layer results generated by the K–ε model give an early-time width slightly smaller

than predicted by LES. RANS and LES results agree better after reshock, especially

for At = ±0.67. Similar results were also observed in comparisons with LES data

(15) for the Vetter and Sturtevant experiments in Chapter III. For At = ±0.21, a

similar pattern is observed prior to reshock, but the RANS model predicts a larger

post-reshock width. Again, there are no experimental data available with which to
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Figure 5.3: Mixing layer widths, growth rates ḣ shortly after reshock, and reshock times
τR for At = ±0.21, ±0.67, and ±0.87 with Mas = 1.50, δ = 62 cm, K0 = 0.10,
λrms = 0.25 cm, σρ = 0.90, and Cε0 = 0.90 and ∆x = 0.02 cm. The LES data
with ∆x = 0.21 cm are from Ref. (37).
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compare results. However, the Mas = 1.50 with At = 0.67 case is very similar to that

investigated experimentally by Vetter–Sturtevant (10), for which model predictions

agreeing well with data were achieved. Therefore, studies for the remaining Atwood

numbers were conducted similarly. Convergence studies in Sec. 5.4 also elucidate

differences between RANS and LES results.

5.2 Turbulent Budget Studies for Positive Atwood Numbers

Referring to Fig. 5.3, the times of reshock and arrival of the expansion wave occur

at τR ≈ 1.354 and τE ≈ 1.925 ms, respectively, for the At = 0.87 case. The turbulent

kinetic energy and dissipation rate budgets consider times shortly before and after τR1

and τE. Considering the turbulent kinetic energy budgets in Fig. 5.4, large amounts

of turbulent kinetic energy are concentrated in the vicinity of the shock shortly before

reshock at t = 1.20 ms. The buoyancy production mechanism (pressure work) gen-

erates larger amounts of turbulent kinetic energy than the shear production. Some

spreading of turbulent kinetic energy is also seen due to diffusion, while the dissipation

rate is negligible. Upon reshocking the interface, energy is deposited during compres-

sion of the mixing layer and turbulent mixing is enhanced. At t = 1.40 ms, ≈ 0.05 ms

after reshock, a clear distinction between the transmitted and reflected waves is seen.

Buoyancy production decreases significantly as diffusion spreads the turbulent kinetic

energy during mixing. Similarly, the dissipation reduces the turbulent kinetic energy

from shear production as the interface is compressed and heated. As the speed of

the shock slows from compressing the interface, turbulent kinetic energy from shear

production decreases and is dissipated. After reshock, turbulent mixing continues

but will diminish as turbulence dissipates without a sustained source. Comparing

the budgets at t = 1.80 and t = 2.20 ms, the arrival of the expansion wave supplies

additional turbulent kinetic energy via buoyancy production for additional mixing

from changes in density and pressure. The diffusion remains relatively unchanged
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expansion wave are τR ≈ 1.354 and τE ≈ 1.925 ms, respectively.
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while contributions from the dissipation rate decrease. The turbulent kinetic energy

dissipation rate budgets evolve similarly as the dissipation rate is proportional to the

turbulent kinetic energy. Prior to reshock, the terms maintain similar profiles near

the vicinity of the shock. Shortly after reshock the dissipation rate is larger as the

gas is compressed, resulting in turbulent kinetic energy dissipation. Similar behavior

is observed at t = 1.80 ms, and an increase in the production terms is seen after the

arrival of the expansion wave.

Similar to the At = 0.87 case, Fig. 5.5 shows times shortly before and after reshock

and the arrival of the expansion wave, τR ≈ 3.487 and τE ≈ 4.255 ms, respectively.

Comparisons can be made between cases despite the different gases used in each case.

Prior to reshock, production of turbulent kinetic energy is concentrated primarily

near the shock, with larger contributions from the buoyancy production. Smaller

diffusion is seen at this time also, as the shock initiating reshock is further away from

the interface in comparison to the At = 0.87 case in the first plot. After reshock, the

transmitted and reflected waves are seen, where both waves diffuse turbulent kinetic

energy as they propagate through the gas. As the transmitted wave progresses at

t = 4.00 ms, the dissipation of turbulent kinetic energy becomes larger behind the

shock as it heats the gas in its path. Additional turbulent kinetic energy is produced

by the arrival of the expansion wave at approximately t = 4.40 ms. Dissipative effects

becomes weaker, and diffusion spreads the turbulent kinetic energy over a broader

region behind the transmitted wave. Moreover, the generally lower magnitudes for

At = 0.67 in comparison to At = 0.87 indicate that the rate of turbulent kinetic

energy production is lower. This is in agreement with Fig. 5.3, as the post-reshock

mixing layer growth rate is lower for At = 0.67, where ḣ0.67/ḣ0.87 ≈ 0.30. As the ε

equation is proportional to the K equation, the turbulent kinetic energy dissipation

rate displays similar behavior and the magnitudes of the budgets are also lower.

The last case in the positive Atwood number studies corresponds to At = 0.21.
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Figure 5.5: Turbulent kinetic energy and dissipation rate budgets for At = 0.67 and Mas =
1.50 at t = 3.20, 3.60, 4.00, and 4.40 ms. The times of reshock and arrival of
expansion wave are τR ≈ 3.487 and τE ≈ 4.255 ms, respectively.
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As shown in the previous two cases, the turbulent kinetic energy and dissipation rate

budgets show similar evolutions. Therefore, the turbulent kinetic energy budgets

are used to focus on the transmitted shock to elucidate its structure. Following the

transmitted wave in time, similar profiles are maintained after reshock. Contributions

from diffusion are larger as post-reshock mixing evolves. At later times the diffusion

of turbulent kinetic energy remain relatively constant; the profiles spatially broaden

as mixing continues. The turbulent kinetic energy dissipation rate budgets consider

the collective evolution of the production, diffusion, and dissipation terms. Similar

behavior is seen as in the previous cases. The transmitted wave generates turbulent

kinetic energy, which is diffused during the mixing. Shear production makes secondary

contributions to the mixing. Dissipation is largest behind the shock as the gas is

heated, and gradually becomes smaller in regions where the gas begins to expand

after passage of the shock.

5.3 Turbulent Budget Studies for Negative Atwood Numbers

As discussed above, reshocked Richtmyer–Meshkov instability with negative At-

wood numbers typically experiences a second reshock. Budgets for the turbulent

kinetic energy and dissipation rate are considered at times when both the first and

second reshock occur.

Figure 5.7 shows three times for the turbulent kinetic energy and dissipation rate

budgets with At = −0.87. The first time is at t = 0.80 ms, shortly after the first

reshock, τR ≈ 0.689 ms. At this time, the transmitted and reflected waves from

the first reshock are seen. The former wave is traveling in air, while the latter is

traveling in H2 (in the direction of the test section endwall). Buoyancy production

is the dominant term near the shocks due to the density and pressure gradients from

compression of the interface, while diffusion of turbulent kinetic energy is small. The

second plot at t = 0.80 ms minimizes the range so that the structure of the mixing
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Figure 5.7: Turbulent kinetic energy and dissipation rate budgets for At = −0.87 and
Mas = 1.50 at t = 0.80, 1.00, and 1.97 ms, respectively. The times of first
and second reshock are τR ≈ 0.689 and τR2 ≈ 1.15 ms, respectively.
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layer width can be elucidated; the diffusion term is strongest in spreading turbulent

kinetic energy at the mixing layer edges as it grows. Additional turbulent kinetic

energy is generated via buoyancy production and diffused within the mixing layer;

the shear production and dissipation terms make small contributions. The distance

between the edges of the mixing layer show that it is ≈ 6 cm thick, which is in

agreement with the width in Fig. 5.3 for At=−0.87 at t ≈ 0.80 ms.

At t = 1.00 ms, shortly before the second reshock, the diffusion and buoyancy

production terms retain their earlier structure. The dissipation of turbulent kinetic

energy has spread across the mixing layer as the gas was heated by passage of the

shock; the shear production is still relatively small. Diffusion of turbulent kinetic

energy is large near the second wave as it approaches the interface for the second

reshock. Finally, at t ≈ 1.97 ms, the transmitted wave from the second reshock

coalesces with the transmitted wave from first reshock to form a single wave. In the

process, the evolution of the budgets are similar to those of the initial shock prior

to first reshock. The dominant terms are once again the buoyancy production and

diffusion of turbulent kinetic energy, while the shear production is smaller and the

dissipation term is negligible. The budget evolution for the turbulent kinetic energy

dissipation rate is very similar, as expected. The orders of magnitude between the K

and ε budgets are different.

The At=−0.67 case in Fig. 5.8 considers times before and after the first and sec-

ond reshock. Shortly before reshock at t = 2.20 ms, early-time mixing is very similar

to the behavior seen for the positive Atwood number cases. Buoyancy production is

the principal mechanism for generating turbulent kinetic energy with smaller contri-

butions from shear production. The turbulent kinetic energy is spread by diffusion in

small amounts near the shock as turbulent mixing occurs, while the dissipation is neg-

ligible. Approximately 0.50 ms after first reshock at t = 2.80 ms, the transmitted and

reflected waves can be discerned by the localized turbulent kinetic energy production
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traveling in opposite directions. Diffusion is again prominent at the edges of the mix-

ing layer as turbulent mixing is enhanced and the layer becomes larger. Within the

mixing layer, shear and buoyancy production make comparable contributions while

the dissipation serves as a sink. Similar behavior as described in previous cases is

seen for the secondary wave reflecting from the test section endwall and reshocking

the interface a second time at t = 3.40 and 4.00 ms. Comparisons between t = 3.40

and 4.00 ms show that the shock loses considerable energy in reshocking the inter-

face the second time. The diffusion of turbulent kinetic energy is much smaller at

the shock front, indicating that the transmitted wave spreads less turbulent kinetic

energy. However, an increase in the shear production is also seen due to the change

in velocity the transmitted wave experiences upon exiting the mixing layer. Another

observation to make in Fig. 5.8 is the growth of the mixing layer. Between the first

and second reshocks, the mixing layer grows ≈ 2 cm; at t = 2.80 and 4 ms, h(t) ≈ 4

and ≈ 6 cm, respectively. These results are in agreement with the mixing layer for

At=−0.67 in Fig. 5.3, and show the evolution of the mixing layer as reshock enhances

turbulent mixing.

The final budget studies for the turbulent kinetic energy and dissipation rate are

for At=−0.21. The first time considered in Fig. 5.9 is t = 2.20 ms, approximately

0.25 ms after first reshock. Some observations can be made when using CO2 to

impulsively accelerate air in comparison with the At=−0.87 and −0.67 cases. The

transmitted wave shows that the buoyancy production and diffusion of turbulent

kinetic energy are the dominant terms as the wave exits the mixing layer and enters

pure CO2. The change in density as the shock crosses boundaries results in larger

buoyancy production and diffusion. However, note that for the reflected wave the

dominant contributions arise from shear production rather than buoyancy production:

the wave is traveling in the compressed region behind the mixing layer where mixing is

occurring, and the difference in densities is smaller. Thus, the change in density from
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Figure 5.8: Turbulent kinetic energy and dissipation rate budgets for At = −0.67 and
Mas = 1.50 at t = 2.20, 2.80, 3.40, and 4.00 ms, respectively. The times
of first and second reshock are τR ≈ 2.321 and τR2 ≈ 3.712 ms, respectively.
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Figure 5.9: Turbulent kinetic energy and dissipation rate budgets for At = −0.21 and
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compression of the interface is smaller during reshock, and the buoyancy production

is also smaller. Smaller buoyancy production also results in less diffusion of turbulent

kinetic energy. This is different from the At = −0.87 and −0.67 cases, where the

difference in densities is larger. Turbulent kinetic energy dissipation is prominent

behind the transmitted wave from the first reshock as the gas is heated as the shock

propagates. Furthermore, dissipation is also large in the compressed region behind

the interface, where energy is dissipated and transformed into heat. The mixing

layer grows between the first and second reshocks between t = 2.20 and 3.20 ms.

As with the previous cases, comparisons showing good agreement can be made with

Fig. 5.3. After the second reshock at t = 3.20 ms, the buoyancy production and

diffusion increase near the transmitted wave as it enters the region with pure CO2.

The transmitted waves from the first and second reshocks coalesce at t ≈ 4.81 ms,

resulting in an increase in buoyancy production and diffusion of turbulent kinetic

energy. The structure and evolution of the budgets for the turbulent kinetic energy

dissipation rate are similar to those for the turbulent kinetic energy.

5.4 Convergence Under Grid Refinement

Convergence properties under grid refinement are considered for the mixing layer

widths along with the mean and turbulent fields for each of the six Atwood numbers.

The mean fields are the density, pressure, heavy mass fraction, and velocity; the

turbulent fields are the turbulent kinetic energy, turbulent kinetic energy dissipation

rate, and turbulent viscosity. Mixing layer widths predicted by the K–ε model are

compared with LES data with grid spacing ∆x = Ly/128 = 0.21 cm, where Ly = 27

cm (37). Convergence results were not presented or discussed for the LES investiga-

tions. Depending on the study, grid refinement for the RANS simulations included

n = 2400, 4800, 7200, 9600, and 14400 points, which correspond to grid spacings

∆x = 0.0675, 0.0338, 0.0225, 0.0169, and 0.0113 cm, respectively.

134



5.4.1 Mixing layer widths

The grid refinement study was initiated with a coarse grid of n = 2400 points

and progressively increased to n = 4800, 7200, and 9600 points. In some cases it was

necessary to refine the grid further to n = 14400 points. Convergence is generally

achieved between n = 7200 and 9600 points. Figures 5.10–5.12 illustrate mixing layer

convergence results for At = 0.87, 0.67, and 0.21, respectively. Simulations using

n = 7200 and 9600 points for At = 0.87 generated nearly identical results. Similar

results were obtained for 0.67, but some divergence is seen starting at t ≈ 5 ms. As

discussed in Sec. 3.5, this is due to secondary waves. For At = 0.21, convergence is

achieved at early times between n = 4800 and 7200 points while comparisons between

the post-reshock profiles show similar results with small loss of accuracy. In these

three cases the converged RANS results predict smaller early-time mixing than the

LES predictions. Comparisons after reshock vary. For At = 0.87, the post-reshock

RANS width is smaller but RANS and LES results are comparable after reshock for

At = 0.67. For At = 0.21, LES predictions are quite similar to RANS results for the

coarsest grid of n = 2400 points: this is a potential indication that the LES were

underresolved.

Figures 5.13–5.15 present mixing layer convergence results for the corresponding

negative Atwood numbers. The At=−0.87 case shows that convergence is achieved

for the early-time mixing between n = 7200 and 9600 points. After reshock, conver-

gence is maintained but a small divergence between profiles starts at t ≈ 0.75 ms due

to the second reflected wave from the test section endwall approaching the interface

for second reshock. However, the diverging behavior does not grow significantly, and

predictions with n = 7200 and 9600 points are similar with small loss of accuracy.

The early-time RANS width is again smaller than the LES width. After reshock, the

LES widths lie between the RANS widths for n = 2400 and 4800 points. Results

for At = −0.67 are illustrated in Fig. 5.14. Unlike all previous cases, nonmonotonic
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Figure 5.10: Mixing layer convergence for At = 0.87 and Mas = 1.50. The LES data are
from Ref. (37).
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Figure 5.11: Mixing layer convergence for At = 0.67 and Mas = 1.50. The LES data are
from Ref. (37).
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Figure 5.12: Mixing layer convergence for At = 0.21 and Mas = 1.50. The LES data are
from Ref. (37).

behavior is seen starting at n = 7200 points, where rather than converging, the profile

with n = 9600 points grows farther away. Finally, using n = 14400 points leads to

converging results with n = 7200 points. LES and RANS approaches produce similar

results after reshock for n = 9600 points, but considering the nonmonotonic behavior

demonstrated by the RANS model, convergence is uncertain. Finally, convergence

findings for At=−0.21 in Fig. 5.15 show converged results between n = 7200 and

n = 9600 points. As with the At = 0.21 case, the LES width most closely matches

the RANS width on the coarsest grid with n = 2400 points.

5.4.2 Convergence of the mean fields

Grid refinement studies for the mean fields were conducted at different times

after reshock for each case to evaluate post-reshock convergence. As with the mixing

layer widths, the mean density, pressure, heavy mass fraction, and velocity generally

achieved convergence between n = 7200 and 9600 points. Simulations using n = 4800
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Figure 5.13: Mixing layer convergence for At=−0.87 and Mas = 1.50. The LES data are
from Ref. (37).
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Figure 5.14: Mixing layer convergence for At=−0.67 and Mas = 1.50. The LES data are
from Ref. (37).
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Figure 5.15: Mixing layer convergence for At=−0.21 and Mas = 1.50. The LES data are
from Ref. (37).

points also capture the profile behavior well, but a small loss of accuracy can be seen

near the mixing layer width and the shock. As discussed in Sec. 1.3.3, this is due to

the material discontinuities in these regions. Slightly larger loss of accuracy occurs

when using a coarse grid with n = 2400 points.

Figures 5.16–5.18 show convergence results for At = 0.87, 0.67, and 0.21 at t =

1.40, 4.80, and 5.00 ms, respectively. Reshock times for each case are listed in Fig.

5.3. As time evolves after reshock, the progression of transmitted and reflected waves

can be followed. It can also be seen that convergence was achieved faster and with

less error as the Atwood number decreased. Whereas simulations with n = 4800

points still introduced error near the shock for At = 0.87, convergence was achieved

between n = 4800 and 7200 points for At = 0.21. Moreover, recall that a small lack

of convergence was noted in the mixing layer widths for At = 0.67 and 0.21 cases

after reshock. Such lack of convergence was not seen in the mean fields.

Similarly, Figs. 5.19–5.21 illustrate convergence results for the negative Atwood
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Figure 5.16: Mean field convergence for At = 0.87 and Mas = 1.50 at t = 1.40 ms.
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Figure 5.17: Mean field convergence for At = 0.67 and Mas = 1.50 at t = 4.80 ms.
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Figure 5.18: Mean field convergence for At = 0.21 and Mas = 1.50 at t = 5.00 ms.
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Figure 5.19: Mean field convergence for At=−0.87 and Mas = 1.50 at t = 0.80 ms.
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Figure 5.20: Mean field convergence for At=−0.67 and Mas = 1.50 at t = 3.40 ms.
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Figure 5.21: Mean field convergence for At=−0.21 and Mas = 1.50 at t = 2.80 ms.
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number cases At = −0.87, −0.67, and −0.21 at times t = 0.80, 3.40, and 2.80 ms,

respectively. Although the negative cases require slightly higher resolution than the

positive Atwood number cases, convergence is generally achieved between n = 7200

and 9600 points. This is the case for At=−0.87 and −0.21, where using n = 2400

and 4800 points show small loss of accuracy primarily in the vicinity of the interface

and both transmitted and reflected waves after reshock. For At=−0.87, less error

is evident near the interface and shock front. In comparison, the At = −0.21 case

demonstrates slightly more loss of accuracy for coarser grids near the fronts and

interface.

Finally, recall that nonmonotonic behavior was observed in the convergence of the

mixing layer width for At=−0.67. This is also seen in the mean fields, primarily near

the reflected wave from the interface after reshock in the pressure and velocity profiles.

It is also seen to a lesser extent in the density and heavy mass fraction profiles near

the interface. This nonmonotonicity can be due to the significantly higher density

of SF6. Unlike the positive case with At = 0.67, where the denser gas impacted the

interface during reshock, the lighter gas impacts the much denser gas during reshock

in the corresponding negative case. Thus, the wave traveling in the air interacts with

the SF6 interface as a boundary or a wall as it reflects. Furthermore, the interface

is not static, and the interaction of this additional boundary with secondary waves

can make convergence difficult to achieve. After reshock, the reflected wave travels

toward the test section endwall, where lack of convergence is most notable near the

wave front. However, convergence results for both the mixing layer width and mean

fields show that despite this behavior, simulation profiles using n = 14400 points

decrease in magnitude and match results with n = 7200 points.
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5.4.3 Convergence of the turbulent fields

Convergence of the turbulent fields was considered at the same times as the mean

fields. However, unlike the mean fields where a single time was considered, conver-

gence studies of the turbulent fields were extended to later times.
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Figure 5.22: Turbulent field convergence for At = 0.87 and Mas = 1.50 at t = 1.40 and
2.20 ms.

The first case considered is for At = 0.87, with results illustrated in Fig. 5.22.

As with the mixing layer width and the mean fields, convergence for the turbulent

kinetic energy, turbulent kinetic energy dissipation rate, and turbulent viscosity is

achieved between n = 7200 and 9600 points, where the turbulent viscosity converges

slower than the other turbulent fields. Refinement at these levels still results in small

differences between profiles, but loss of accuracy is small. However, unlike the mean

fields, simulations using coarser grids with n = 2400 and 4800 points do not predict

the turbulent fields adequately. Lack of convergence for the turbulent fields appears to

grow for At = 0.67, which appears to be strongest in the vicinity of the interface where
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Figure 5.23: Turbulent field convergence for At = 0.67 and Mas = 1.50 at t = 4.80 and
5.80 ms.
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mixing is most active. Oscillatory behavior is also observed behind the transmitted

wave as illustrated in Fig. 5.23, which may be due to the higher density of SF6;

recall that SF6 impacts air during reshock and progresses past the interface after

compressing the interface. As SF6 is denser, it proceeds past the interface and the

mixing of the two gases continues behind the shock as well. Thus, simulating this

behavior can cause numerical difficulties as the code calculates higher-order terms for

rapidly varying quantities. However, as the transmitted wave becomes more distant

from the interface, the profiles show converging behavior. The last case is At = 0.21.

For this case, convergence of the mixing layer width and the mean fields was achieved

between n = 4800 and 7200 points. This is also the case with the turbulent fields, with

faster convergence achieved for the turbulent kinetic energy. The dissipation rate and

turbulent viscosity also approach convergence more slowly. The rate of convergence

appears to remains constant between t = 5 and 6 ms.
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Figure 5.25: Turbulent field convergence for At=−0.87 and Mas = 1.50 at t = 0.80 and
1.00 ms.
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Figure 5.26: Turbulent field convergence for At=−0.67 and Mas = 1.50 at t = 3.40 and
4.00 ms.
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Figure 5.27: Turbulent field convergence for At=−0.21 and Mas = 1.50 at t = 2.80 and
4.80 ms.
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Finally, convergence results for the turbulent fields with At=−0.87, −0.67, and

−0.21 are presented in Figs. 5.25–5.27. Like the previous studies, the At=−0.87 case

shows that convergence is achieved between n = 7200 and 9600 points, while using

coarser grids with n = 2400 and 4800 points results in lack of accuracy for turbulent

field predictions. The dissipation rate demonstrates a slower rate of convergence in

the vicinity of the reflected wave after reshock. The At=−0.67 study demonstrated

nonmonotonic behavior for the mixing layer width and mean fields. Related behavior

is observed in the turbulent fields as illustrated in Fig. 5.26. As with the mixing

layer, it appears that the turbulent fields approach convergence between n = 4800

and 7200 points. Convergence is observed as the grid is refined further to n = 9600

points. However, unlike mixing layer widths and mean fields, where simulations

with n = 14400 points converge again to match the n = 7200 profile, profiles for

the turbulent fields continue to diverge as the grid is refined further. It appears

that this behavior originates from the reflected wave following reshock, where the

interface is principally affected. Away from these interactions, convergence is achieved

in the cold region and also in the vicinity of the transmitted wave from reshock.

The reflected wave from reshock appears to also affect convergence of the last case,

At =−0.21. Again, the transmitted shock travels away from the interface and the

turbulent field profiles appear to converge in this region. However, lack of convergence

is evident in the region between the interface and the test section endwall, where the

secondary wave is located. This effect seems to be more prominent earlier where both

transmitted and reflected waves are closer to the mixing region. As the waves become

more distant as time progresses, all three turbulent profiles show converging behavior.

Thus, convergence appears to be most difficult to achieve near the interface, where

material discontinuities are present and mixing is most intense.
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5.5 Chapter Summary

Reshocked–Richtmyer–Meshkov instability was considered for At = ±0.87, ±0.67,

and ±0.21 corresponding to combinations of air with H2, SF6, and CO2, respectively.

Post-reshock turbulent mixing for larger Atwood numbers showed larger growth rates

of the mixing layer. For negative Atwood numbers, where the denser gas impulsively

accelerates the light gas, larger growth rates also resulted after reshock in comparison

with the corresponding positive cases. Early-time mixing was independent of the

Atwood number between cases using the same gas in the driver section. However, the

Atwood number significantly affected the reshock times in addition to the post-reshock

growth rates. Expansion waves were generally seen as the post-reshock secondary

waves for positive Atwood numbers, while the negative Atwood cases experienced

second reshocks. The evolution of the turbulent kinetic energy and dissipation rate

budgets were considered for each of the six Atwood numbers. Buoyancy production

and diffusion were generally the dominant terms, with smaller contributions from the

shear production and dissipation. Estimates of the widths from the budget plots were

in good agreement with the mixing layer width data.

The RANS mixing layer widths were compared with LES data (37). The RANS

model generally predicted smaller early-time widths than LES, but comparisons var-

ied after reshock. However, both the RANS and LES predictions were qualitatively

similar. Convergence studies were performed for the RANS simulations, with con-

vergence generally achieved between n = 7200 and 9600 points for the mixing layer

widths and the mean fields. Simulations using coarser grids with n = 2400 and 4800

points allowed for small deviations in the mean fields. The mixing layer widths did

not converge at this grid resolution, and more refinement was necessary. However, the

mixing layer widths at the lower resolution agreed well with LES. This is a possible

indication that the LES were underresolved. The turbulent fields showed slow conver-

gence near secondary waves and boundaries, but converging behavior was seen away
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from these regions. Nonmonotonicity was seen for the At=−0.67 case. However, the

mixing layer width and the mean fields eventually converged, but the turbulent fields

diverged. Convergence for this particular case is uncertain.
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CHAPTER VI

Application of the Model to Reshocked

Richtmyer–Meshkov Simulations for Larger Mach

Numbers

Investigations in the previous chapters have focused on reshocked Richtmyer–

Meshkov instability for moderate incident shock Mach numbers 1.20 ≤ Mas ≤ 1.98,

which constitute flows ranging from transonic to supersonic speeds. Parametric stud-

ies, variations in reshock timing, and the shock-induced acceleration of perturbed ma-

terial interfaces with different gas combinations have been presented and discussed.

Transonic speeds exist in the range 0.80 ≤ Mas ≤ 1.20, while the supersonic range

encompasses Mach numbers 1.20 ≤ Mas ≤ 5.00 (56). Table 6.1 enumerates different

sonic regimes with corresponding shock Mach numbers and speeds. Investigations

considered to this point have focused on low energy supersonics. Simulations for

the Vetter and Sturtevant Mas = 1.24 (10) and the Leinov et al. Mas = 1.20 (12)

experiments border the transonic regime. Simulations for the Mas = 1.50 and 1.98

Vetter–Sturtevant and Mas = 1.45 Poggi et al. (11) experiments are in the lower

supersonic regime.

A principal reason for the larger number of investigations at lower supersonic

speeds is that experimental measurements and numerical simulations for larger Mach
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Regime v/cs Speed [×10 4cm/s]

Subsonic ≤ 0.8 ≤ 2.70
Transonic 0.8–1.2 2.70–4.10
Supersonic 1.2–5.0 4.10–17.10

Hypersonic 5.0–10.0 17.10–34.15
High hypersonic 10–25 34.15–84.65

Re-entry speeds ≥ 25 ≥ 84.65

Table 6.1: Regimes ranging from subsonic to re-entry speeds. The data are from Ref. (56).

numbers are sparse. Lombardini (38) performed LES for Mas = 3.00 and 5.00,

but did not consider reshock, focusing instead on singly-shocked Richtmyer–Meshkov

instability and the transition to turbulence. The lack of experimental and numerical

data can make validating RANS models in new regimes a difficult task. Considered in

this chapter is the application of the RANS model to reshocked Richtmyer–Meshkov

instability at supersonic speeds bordering the hypersonic regime with Mas = 3.00

and 5.00, and Atwood numbers At=−0.87, −0.67, and −0.21. For positive Atwood

numbers, freeze out is observed, in which turbulent mixing after reshock evolves

very slowly, and the mixing layer appears to freeze rather than grow (57; 58; 59).

This topic is not considered in the thesis. Thus, only negative Atwood numbers are

investigated where multiple reshocks occur and the evolution of turbulent mixing can

be more clearly investigated. Flows at larger Mach numbers begin to be affected by

dissociation of molecules and gas ionization (56). The current RANS model does not

consider these effects.

6.1 Initializing the Model for Mas = 3.00 and 5.00

As demonstrated in previous chapters, simulations using the current RANS model

have been compared with a variety of experimental, numerical, and theoretical results

for various Mach numbers and gas configurations. An approach similar to initializing

the Vetter–Sturtevant Mas = 1.98 case (10) is used to initialize the simulations here
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for two reasons. The Mas = 1.98 case is the study with the largest shock Mach number

for which experimental and numerical results are available, and the RANS simula-

tions produced results matching well with experimental data using both optimal and

general sets of coefficients (see Chapter IV). In addition to matching experimental

data well, confidence in the predictions has been further established through conver-

gence studies. Although the rate of convergence for the turbulent fields was slow for

Mas = 1.98, the mean fields and mixing layer width demonstrated convergence at

resolutions with n = 7200 and 9600 points. Therefore, simulations for Mas = 3.00

were conducted under similar conditions: a test section length δ = 49 cm, domain

X = 161 cm, and initial conditions K0 = 0.10 and λrms = 0.50 cm. The general

coefficient set with σρ = 0.60 and Cε0 = 0.90 was selected, while the remaining model

coefficients were unchanged.

6.2 Turbulent Mixing at Larger Mach Numbers

To better understand the dynamics of impulsively-accelerated interfaces at larger

Mach numbers, consider the At=−0.67 case with Mas = 3.00. Figure 6.1 illustrates

the mixing layer width, where different events during the turbulent mixing process

are indicated; Fig. 6.2 shows the mean heavy mass fraction as different times. Fig-

ures 6.3–6.5 show the mean fields and budgets for the turbulent kinetic energy and

turbulent kinetic energy dissipation rate at t = 1.25 ms. The impulsive acceleration

of the interface initiates mixing between SF6 and air; the interface follows the shock

with the width spreading as mixing evolves. After the shock initially reflects from

the endwall, the first reshock occurs at τR ≈ 0.95 ms. The shock does not stop

the interface from progressing towards the endwall, but is sufficiently energetic to

compress the mixing layer so that the width decreases; as a result, the pressure and

density in the compressed region increase. As the interface progresses, the distance to

the endwall is shorter, and the reflected wave from the first reshock travels a shorter
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distance to reshock the mixing layer a second time (see Figs. 6.1 and 6.2). Turbu-

lent mixing is inhibited as the newly compressed mixing layer does not have time

to expand before it is reshocked a second time. Thus, the mixing layer appears to

freeze, while the pressure and density behind the mixing region increase further after

the second reshock. However, the second reshock slows the bulk of the compressed

material. With the third reshock, the gas behind the interface finally starts moving

away from the endwall, and the gas begins to expand and mix once again, resulting in

renewed growth of the mixing layer. These phenomena are not manifested at smaller

shock Mach numbers due to the lower energy of the shock. Instead of inhibited mix-

ing accompanied by shrinking of the mixing layer, turbulent mixing at smaller shock

Mach numbers continues to evolve and the density and pressure decrease with the

expansion of the gas, as the interface is not frozen.
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Figure 6.3: Mean fields for At=−0.67 and Mas = 3.00 at t = 1.25 ms.

At t = 1.25 ms, the transmitted wave from second reshock is leaving the com-
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Figure 6.4: Turbulent kinetic energy budget for At=−0.67 and Mas = 3.00 at t = 1.25
ms.

pressed mixing layer. This is noted at x ≈ 156 cm by the decrease in density and

pressure and corresponding increase in velocity as the shock leaves the concentrated,

denser compressed gas behind the layer in Fig. 6.3. Simultaneously, the wave ini-

tiating the third reshock has impacted the interface at x ≈ 158 cm, as shown by

the increase in pressure and density with decrease in velocity as the wave enters the

denser region. Moreover, comparing the mean heavy mass fraction at t = 1.25 ms

with earlier times in Fig. 6.2 shows the continued development of the mixing layer af-

ter third reshock. Figure 6.4 for the turbulent kinetic energy budgets similarly shows

the decrease in buoyancy production as the transmitted wave from the second reshock

exits the mixing layer at x ≈ 156 cm. The decrease in pressure and density results

in a decrease of buoyancy production. Conversely, as the mixing layer is reshocked

a third time near x ≈ 158 cm, a significant increase in buoyancy production occurs

due to density and pressure gradients. Diffusion is most active in the mixing layer as
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turbulent kinetic energy is supplied for turbulent mixing.

Conversely, the shear production increases as the transmitted wave from the sec-

ond reshock exits the mixing layer due to the increase in velocity as the wave enters a

region of lower density. Shear production similarly decreases as the wave reshocking

the mixing layer the third time loses speed by entering the denser region. The spread

of shear production over a wider region in the vicinity of the interface represents a

more gradual production of turbulent kinetic energy. The dissipation of turbulent

kinetic energy is principally localized behind the shock front, with additional dissipa-

tion in the mixing layer as the interface is compressed and turbulent kinetic energy

is dissipated into heat.
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Figure 6.5: Turbulent kinetic energy dissipation rate budget for At=−0.67 and Mas = 3.00
at t = 1.25 ms.

The budgets for the turbulent kinetic energy dissipation rate in Fig. 6.5 reflect

processes of the turbulent kinetic energy. As turbulent kinetic energy via buoyancy

production decreases as it leaves the mixing layer, the dissipation rate increases, and
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vice versa. Similarly, diffusion is most active near the interface, but decreases as the

shock departs the mixing layer. Furthermore, as the wave from second reshock exits

the compact and denser region, its speed increases, leading to an increase in buoyancy

production. Contributions from the shear production of the dissipation rate form

within the mixing layer, but are minimal as the shear production of turbulent kinetic

energy has a secondary role in this region. Similar effects are noted in the turbulent

kinetic energy dissipation rate.

6.3 Simulations for At=−0.87, −0.67, and −0.21 with Mas =

3.00

Section 6.2 discussed shocked-induced turbulent mixing for At=−0.67 initiated

by a shock with Mas = 3.00. The investigation is extended here to additionally

consider At=−0.87 and −0.21. Figure 6.6 (top) shows mixing layer widths for the

three Atwood numbers with Mas = 3.00, and that shock-induced turbulent mixing

is more effective for larger Atwood numbers. Similar results were presented in Fig.

5.3 for Mas = 1.50 with δ = 62 cm. The enhanced growth rate for larger Atwood

numbers is due to greater differences in densities between the gases in the driver

and test sections. Larger density gradients lead to larger buoyancy production of

turbulent kinetic energy. As the Atwood number decreases and the difference in

densities is smaller, the buoyancy production produces less turbulent kinetic energy

and turbulent mixing after reshock is smaller, as seen in the At=−0.21 case. The

mixing layer width for At=−0.87 shows behavior similar to that discussed in Sec. 6.2

for At=−0.67, but the post-reshock growth rates are larger for reasons just discussed.

The first and second reshocks occur at τR ≈ 0.31 and τR2 ≈ 0.46 ms, respectively,

within ∆t = 0.15 ms of each other. Table 6.2 gives times of the multiple reshocks for

each of the Atwood number cases.
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At −0.21 −0.67 −0.87

τR ms 0.65 0.95 0.31
τR2 ms 0.75 1.15 0.46
τR3 ms – 1.30 –

ḣ (Mas = 1.50) cm/s 5.1× 103 6.6× 103 31.9× 103

ḣ (Mas = 3.00) cm/s 0.9× 103 3.0× 103 8.5× 103

Table 6.2: Reshock times and growth rates after first reshock for At=−0.21, −0.67, and
−0.87 with Mas = 3.00, δ = 49 cm and Mas = 1.50, δ = 62 cm.

Comparisons of the mixing layer growth rates after the first reshock are also

made between the Mas = 3.00 and 1.50 (see Chapter V) cases. Despite the 13 cm

difference in test section lengths, it is useful to compare cases between the different

shock Mach numbers; recall from Chapter IV that variations in δ affect the reshock

time, but minimally affect the post-reshock growth rate. Therefore, differences in

the post-reshock mixing layer widths are primarily a result of the difference in Mach

numbers. As a comparative reference, widths are included in the bottom plot of

Fig. 6.6. In comparing widths between shock Mach numbers in Fig. 6.6, the results

further indicate that turbulent mixing prior to reshock is not significantly affected by

differences in Mas. Similar findings were presented in Sec. 3.2, where variations of

±3% from Mas = 1.50 were considered. While reshock times and growth rates after

reshock vary with Mas, the general behavior and structure remain similar. Reshock

occurs earlier in time due to the corresponding increase in shock speed for larger

Mach numbers, as expected. However, an important result is that in increasing the

initial shock strength to Mas = 3.00, turbulent mixing is less effective for the three

Atwood numbers at later times: this is primarily due to the successive reshocks

in relatively short periods of time. While reshock increases turbulent mixing, the

successive compression of the interface by reflected shocks in short time intervals

suppresses turbulent mixing. Thus, the constantly decreasing distance between the

interface and endwall in conjunction with larger Mas inhibits turbulent mixing. By

comparison, a weaker shock results in slower progression of the interface and longer
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periods between successive reshocks; this allows the mixing layer to further evolve

before the second reshock enhances turbulent mixing.

6.4 Turbulent Mixing for At=−0.67 and Mas = 5.00

The RANS model is also applied to reshocked Richtmyer–Meshkov instability

with At=−0.67 and Mas = 5.00. The dynamics of early-time mixing at Mas = 5.00

are generally similar to those discussed in Sec. 6.2 for Mas = 3.00, but there are

differences between these cases in the post-reshock mixing. Figure 6.7 shows that

mixing is initiated by the initial shock, and the first reshock occurs at τR ≈ 0.56

ms. Like the Mas = 3.00 case, the mixing layer progresses towards the test section

endwall. However, there is no transmitted wave after the first reshock. Part of

the energy imparted during reshock compresses the gas and shrinks the mixing layer,

which results in an increase in pressure and density; the remaining energy is carried by

the reflected wave. The mixing layer remains in this compressed state as it progresses

towards the endwall, decreasing the distance between the interface and wall boundary:

this is seen in the evolution of the mean heavy mass fraction in Fig. 6.8. The second

reshock occurs at τR2 ≈ 0.64 ms, resulting in an additional increase of the density

and pressure within the mixing layer. Unlike the Mas = 3.00 case, the mixing layer

does not slow down after the second reshock, but continues progressing towards the

endwall. After the second reshock, a secondary expansion wave is seen rather than

a reflected wave (that eventually would result in a third reshock). Furthermore, the

density of the gas within the mixing layer is significantly larger than the density in

the downstream region, and a rarefaction wave develops as the denser gas within the

layer pushes the lighter gas. The rarefaction and expansion waves coalesce close to

the endwall at t ≈ 0.66 ms, and mixing is enhanced. This is seen in the growth of the

mixing layer width in Fig. 6.7 and in the evolution of the mean heavy mass fraction

in Fig. 6.8. During the 0.04 ms interval, the mixing layer is still progressing towards
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the endwall. By t ≈ 0.70 ms, all of the air in the test section is mixed as the mean

heavy mass fraction reaches the endwall.
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Figure 6.7: Mixing layer widths for At=−0.67 and Mas = 5.00.

Reshocked Richtmyer–Meshkov instability for At=−0.67 with Mas = 5.00 signif-

icantly inhibits turbulent mixing. This is further shown in Fig. 6.9, where turbulent

mixing for At=−0.67 with Mas = 1.50, 3.00, and 5.00 is considered. As the incident

shock Mach number increases, post-reshock turbulent mixing is reduced. Reshock

times are earlier for larger shock Mach numbers, as expected. Moreover, the early-

time width increases with Mas due to the additional turbulent kinetic energy sup-

plied by the turbulent pressure. However, changes in the early-time width are small.

Reshocked Richtmyer–Meshkov instability for At=−0.87 and −0.21 is not considered

in this thesis, but is a topic of interest for future work. Monotonic behavior is seen in

Fig. 6.9 for At=−0.67. It is reasonable to expect similar evolutions and structures

for the other Atwood numbers. Larger growth rates are expected for At=−0.87, but

a more gradual evolution of the mixing layer width is expected for At=−0.21.
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6.5 Convergence Under Grid Refinement
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Figure 6.10: Mixing layer width convergence for At=−0.67 and Mas = 3.00.

Convergence was considered for the cases discussed in Secs. 6.2–6.4. Grid refine-

ment for the RANS simulations included n = 2400, 4800, 7200, 9600, 14400, 19200,

and 28800 points, which correspond to grid spacings ∆x = 0.067, 0.034, 0.022, 0.017,

0.011, 0.008, and 0.006 cm, respectively. For At = −0.67 with Mas = 3.00, Figs.

6.10–6.12 show that the mixing layer width and the mean and turbulent fields con-

verge between n = 7200 and 9600. A small loss of accuracy is seen in the early-time

width and before the second reshock, but quantities converge as mixing evolves after

the second reshock. Convergence for the mean and turbulent fields is considered at

t = 1.25 ms; at this time the transmitted wave from the second reshock enters the

pure SF6 region while the mixing layer is simultaneously reshocked a third time. Fig-

ures 6.11 and 6.12 show that simulations using coarser grids with n = 2400 and 4800

points inaccurately predict the fields as waves enter and exit the mixing layer due
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Figure 6.11: Mean field convergence for At=−0.67 and Mas = 3.00 at t = 1.25 ms.
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Figure 6.12: Turbulent field convergence for At=−0.67 and Mas = 3.00 at t = 1.25 ms.
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to material discontinuities. Increasing the resolution shows converging behavior with

n = 7200 and 9600 points.

Studies for At=−0.87 with Mas = 3.00 show nonmonotonic converging behavior

for the mixing layer width and the mean and turbulent fields. Figure 6.13 shows

that the mixing layer approaches convergence as the grid is refined from n = 2400

to 7200 points. However, divergence is seen as the resolution increases to n = 9600

points. As the grid is refined further to n = 14400 points, the width converges

to results with n = 7200 points. Similar behavior was seen in Sec. 5.4 for the

At=−0.67 case, where it is possible that the nonmonotonicity was due to the material

discontinuities. Convergence is considered for the mean and turbulent fields at t =

0.40 ms, approximately the same time of the second reshock. Figure 6.14 shows

the increase in pressure and density and corresponding decrease in shock speed as the

wave reshocks the mixing layer. Figure 6.15 shows that the turbulent fields are largest

in the turbulent mixing layer. Simulations with n = 2400 points are not adequate

to correctly represent the mean and turbulent fields. Converging behavior is seen

between n = 4800 and 7200 points, but the profiles diverge with n = 9600 points.

Like the mixing layer, the fields show converging behavior between n = 7200 and

14400 points.

Simulations for At=−0.21 and Mas = 3.00 generally required additional resolu-

tion to achieve convergence. The mixing layer width in Fig 6.16 shows converging

behavior for early-time mixing between n = 14400 and 19200 points, while the post-

reshock width shows a small loss of accuracy between these resolutions. Convergence

for the mean fields was considered at t = 0.70 ms, where the transmitted and reflected

waves after the first reshock are distinguishable in Fig. 6.16. Results show that the

mean fields required less resolution as convergence was reached between n = 4800

and 7200 points. However, the turbulent fields required as much resolution as the

mixing layer width to show converging behavior. Figure 6.18 shows the turbulent ki-
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Figure 6.13: Mixing layer width convergence for At=−0.87 and Mas = 3.00.
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Figure 6.15: Turbulent field convergence for At=−0.87 and Mas = 3.00 at t = 1.25 ms.

netic energy, dissipation rate, and turbulent viscosity within the mixing layer as the

transmitted and reflected waves travel in opposite directions after the first reshock.

The slow convergence behind the transmitted wave is due to the rapid variations in

the turbulent fields as mixing of the gases evolves. Ahead of the transmitted wave,

turbulence is minimal and convergence is achieved sooner.

Finally, convergence for At = −0.67 with Mas = 5.00 required the largest reso-

lution to approach convergence. Figure 6.19 shows that the early-time mixing layer

converges between n = 19200 and 28800 points. However, the width shows lack of

convergence after reshock for two possible reasons. As the density of SF6 is larger in

comparison to the downstream region and no energy is transmitted after reshock, the

interface acts as an additional boundary with which the wave interacts, thus leading

to boundary–wave instabilities. Also, this additional boundary is not static as it pro-

gresses towards the interface rapidly behind the reflected wave as discussed in Sec. 6.4.

Thus, convergence can be inhibited in modeling additional moving discontinuities in
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Figure 6.16: Mixing layer width convergence for At=−0.21 and Mas = 3.00 at t = 0.70
ms.
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Figure 6.17: Mean field convergence for At=−0.21 and Mas = 3.00 at t = 0.70 ms.
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Figure 6.18: Turbulent field convergence for At=−0.21 and Mas = 3.00 at t = 0.70 ms.
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Figure 6.19: Mixing layer width convergence for At=−0.67 and Mas = 5.00.
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Figure 6.20: Mean field convergence for At=−0.67 and Mas = 5.00 at t = 0.60 ms.

addition to the shocks. Furthermore, monotonic behavior is seen in the post-reshock

mixing layer width. Convergence for the mean and turbulent fields was considered at

t = 0.60, shortly after the first reshock. The rise in density and pressure of the mix-

ing layer width due to reshock are seen in Fig. 6.20; approaching the endwall is the

reflected wave. The density in the compressed layer is approximately ten times larger

than in the downstream region; the density of the compressed region grows larger

after the second reshock. Similarly, the pressure in the compressed layer is also larger

than in the downstream region. The mean fields require lower resolution than the

mixing layer width, as convergence is achieved between n = 14400 and 19200 points.

The mean fields can be modeled using n = 9600 points, but using n = 4800 and 7200

points results in some error near the shock fronts and the gas interface. Moreover,

the mean fields do not show the same nonmonotonic behavior seen in Fig. 6.19. Like

the mixing layer width, the turbulent fields require additional resolution to achieve
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convergence. The turbulent kinetic energy, turbulent kinetic energy dissipation rate,

and turbulent viscosity show converging behavior in Fig. 6.21. The fields are larger

within the mixing layer after reshock, indicating enhanced mixing. The active mixing

of gases in this region requires additional resolution for convergence. However, unlike

the mixing layer width, the turbulent fields do not show nonmonotonic behavior.
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Figure 6.21: Turbulent field convergence for At=−0.67 and Mas = 5.00 at t = 0.60 ms.

6.6 Chapter Summary

The RANS model was applied to reshocked Richtmyer–Meshkov instability for

At=−0.87, −0.67, and −0.21 with Mas = 3.00 and At=−0.67 with Mas = 5.00.

Comparisons were made for the Mas = 3.00 cases with Mas = 1.50 results from

Chapter V. The Mas = 3.00 cases showed similar evolution of the mixing layer

widths. However, turbulent mixing was significantly inhibited for the larger shock

Mach numbers due to the continuous progression of the interface towards the endwall
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and the successive reshocks in short time intervals that prevented the mixing layer

width from growing. As the shock Mach number was increased further to Mas = 5.00,

turbulent mixing became even more inhibited. The early-time width was minimally

affected by the variations in the shock Mach number. Furthermore, in using a δ = 49

cm test section with larger shock Mach numbers, all of the gas in the test section

became mixed as the edge of the interface reached the test section endwall.

Convergence studies were performed for the mixing layer width and mean and

turbulent fields. The mixing layer and turbulent fields generally required slightly

higher resolution to achieve convergence, while the mean fields converged at lower

resolution. Nonmonotonicity in the mixing layer width was seen for At=−0.87 with

Mas = 3.00 and At = −0.67 with Mas = 5.00. The nonmonotonic behavior was

also seen in the mean and turbulent fields for the Mas = 3.00 case, which made

convergence uncertain. However, nonmonotonicity was not seen in the mean and

turbulent fields for the Mas = 5.00 case.
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CHAPTER VII

Conclusions and Future Work

Systematic Reynolds-averaged Navier–Stokes (RANS) studies of reshocked Richtmyer–

Meshkov instability were performed with shock Mach numbers 1.20 ≤ Mas ≤ 5.00,

Atwood numbers At = ±0.21, ±0.67, and ±0.87, and test section lengths 8 ≤ δ ≤ 110

cm to elucidate and better understand shock-driven turbulent mixing. Rather than

using the Reynolds-averaged Euler equations, the multicomponent RANS equations

including mixture molecular transport and thermodynamic coefficients were used.

The RANS equations were coupled to a two-equation K–ε turbulence model for the

turbulent kinetic energy and turbulent kinetic energy dissipation rate. The equa-

tions were solved using a third-order conservative finite-difference weighted essentially

nonoscillatory (WENO) shock-capturing method and a characteristic projection for-

mulation. The model was used to elucidate several aspects of reshocked Richtmyer–

Meshkov instability for which experimental and numerical simulation data are sparse.

The Vetter and Sturtevant (10) and Poggi et al. (11) experiments were consid-

ered to perform parametric studies with variations in buoyancy production model

coefficients, initial conditions, incident shock Mach numbers 1.24 ≤Mas ≤ 1.98, and

air–SF6 configurations with Atwood numbers At = ±0.67. An optimal coefficient set

was established; simulations using σρ = 0.90 and Cε0 = 0.90 predicted mixing layer

widths agreeing well with the Vetter–Sturtevant and Poggi et al. experimental data.
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It was found that these coefficients influence early-time and post-reshock turbulent

mixing. The mixing was affected before and after reshock by the initial seed K0

as it scaled the amount of turbulent kinetic energy introduced initially. The initial

perturbation wavelength scaled the initial dissipation rate and principally affected

early-time mixing, while post-reshock mixing was minimally affected. Post-reshock

mixing was sensitive to variations in the buoyancy model coefficients σρ and Cε0, while

early-time mixing was minimally affected. Variations in σρ scaled the amount of tur-

bulent kinetic energy and its dissipation rate generated via buoyancy production,

while Cε0 scaled the turbulent kinetic energy dissipation rate of buoyancy produc-

tion. Post-reshock mixing was highly sensitive to changes in Cε0. Reshock times

varied with ±3% changes in the shock Mach number Mas. Variations in these coef-

ficients and initial conditions also affected the growth rate of the mixing layer after

reshock. Results were additionally compared with LES (15) and BHR model (29)

predictions and the early-time power-law self-similar solution. LES generally agreed

well with experimental data after reshock, but overpredicted early-time mixing. The

BHR model agreed with experimental data for early-time mixing, but underpredicted

post-reshock mixing. The converged RANS model predictions in the present study

agreed well with experimental data throughout the mixing evolution and with the

early-time power-law growth in these cases.

The RANS model was also applied to the Leinov et al. (12) experiments, in which

reshocked Richtmyer–Meshkov instability was considered under different reshock times.

The reshock times were varied by adjusting the distance between the interface and the

endwall, δ. A set of six experiments was considered with test section lengths δ = 8,

9.8, 13.1, 17.2, 19.9, and 23.5 cm. Like variations in Mas, changes in δ influenced

the reshock times, but the early-time width and post-reshock growth rate were not

significantly affected. An optimal set of coefficients was also established for these six

experiments: σρ = 0.20 and Cε0 = 0.95. RANS simulations agreed well with experi-
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mental data in all cases. Good agreement was also achieved with three-dimensional

simulations for the δ = 8, 17.2, and 23.5 cm cases and the early-time self-similar

solution. A general coefficient set (σρ = 0.60 and Cε0 = 0.90) applicable to a broader

range of Mas, At, and δ values was also established so that the Vetter and Sturte-

vant, Poggi et al., and Leinov et al. experiments could be simulated using a single

coefficient set while generally varying only the initial conditions. The deviation from

experimental data was more apparent after reshock for the case with the longest test

section, δ = 110 cm. This represents the first application of a multicomponent RANS

model to systematically investigate these experiments.

As experimental and simulation data are sparse for reshocked Richtmyer–Meshkov

instability for Atwood numbers different from At = ±0.67, the RANS model was

applied to elucidate turbulent mixing for different gas combinations. Cases with

At = ±0.21, ±0.67, and ±0.87 corresponding to combinations of air with CO2, SF6,

and H2, respectively, were considered with Mas = 1.50. Larger post-reshock growth

rates of the mixing layer width were obtained for larger Atwood numbers. Cases with

negative Atwood numbers also showed larger post-reshock growth rates in comparison

with the positive cases. Studies with At > 0 also showed that when the same gas

was used in the driver section (in this case air), the use of different gases in the

test section did not affect early-time mixing. However, differences were observed in

the reshock time. Furthermore, cases with At > 0 experienced secondary expansion

waves, while cases with At < 0 experienced secondary reshocks due to the gas order

during reshock compression. The RANS predictions were compared with LES data,

which were qualitatively similar. LES generally predicted larger early-time widths,

and post-reshock predictions varied between the RANS and LES approaches.

The negative Atwood cases, At = −0.87, −0.67, and −0.21, were also consid-

ered with larger shock Mach numbers, Mas = 3.00 and Mas = 5.00. Singly-shocked

Richtmyer–Meshkov instability was studied previously by others, but data on reshocked
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mixing with larger shock Mach numbers are sparse. In these cases, the mixing layer

also experienced multiple reshocks, but unlike flows with smaller shock Mach num-

bers, mixing was inhibited. The multiple reshocks in short time intervals and the

progression of the mixing layer towards the endwall prevented the mixing layer from

growing. These effects were more evident for Mas = 5.00 as mixing was significantly

inhibited. For Mas = 3.00, the multiple reshocks eventually stopped the mixing layer

width from progressing towards the endwall, as energy from the third reshock was

finally transmitted and mixing evolved. For Mas = 5.00, there was no energy trans-

mitted past the compressed gas in the mixing layer. Instead the energy was either

stored within the compressed gas as the pressure and density increased or carried by

the reflected wave.

The turbulent kinetic energy and dissipation rate budgets were considered for the

cases discussed above. Generally, the shear and buoyancy production contributed to

early-time mixing. However, the buoyancy production was dominant after reshock,

while the shear production had a secondary role. The enhanced mixing after reshock

from buoyancy production was due to the density and pressure gradients from com-

pression of the mixing layer. These effects were more evident for larger Atwood

numbers as the difference in densities between gases in the driver and test sections

was larger. As the Atwood number became smaller, the density gradients became

smaller and less turbulent kinetic energy was generated from buoyancy production.

In these cases, the shear and buoyancy production were comparable. Diffusion was

also larger after reshock, as turbulent kinetic energy was spread during mixing; the

dissipation rate was relatively smaller. However, stronger dissipative effects were seen

behind the shock and near the mixing layer as energy was dissipated into heat during

compression of the gas. Budgets for the turbulent kinetic energy dissipation rate were

generally similar as the K and ε equations are proportional.

Finally, convergence under grid refinement was also considered. This topic is often
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neglected in turbulence studies or is too computationally expensive to perform when

using multidimensional numerical simulations. In all cases, the mean density, mean

pressure, mean heavy mass fraction, and mean velocity converged faster than the mix-

ing layer and turbulent fields. For smaller shock Mach numbers, convergence of the

mean fields was generally achieved with n = 7200 points. Somewhat higher resolu-

tion was necessary for cases with shorter test sections as material discontinuities and

boundaries were in closer proximity to each other. Secondary wave interactions with

these boundaries typically resulted in slower convergence in these regions. Further-

more, higher resolution was also necessary for larger incident shock Mach numbers.

The mixing layer width and turbulent fields generally required more resolution to

approach convergence. For smaller shock Mach numbers, converging behavior for

the mixing layer could be seen between n = 7200 and 9600 points, but for cases with

smaller test section lengths or larger shock Mach numbers, resolutions with n = 14400

and 19200 points were needed at times. The turbulent kinetic energy, turbulent ki-

netic energy dissipation rate, and turbulent viscosity were particularly sensitive where

mixing was strongest. In several cases, it was shown that the RANS predictions with

coarse resolutions generally agreed well with LES and the BHR model results. As

discussed above, it is possible that the LES and BHR model predictions were under-

resolved. This is an important topic to investigate as these modeling approaches are

used to investigate processes in high-energy-density environments such as ICF and

high-energy laser experiments.

Additional work for reshocked Richtmyer–Meshkov instability is planned. The

present investigations were conducted with a third-order WENO method. Although

higher-order methods are more accurate, the third-order predictions showed good

agreement with experimental data. However, it would be instructive to compare tur-

bulent flow predictions and convergence rates between the present model and higher-

order WENO methods.
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The Reynolds-averaged Euler equations have been used in previous studies mod-

eling turbulent flows. The present RANS model includes mixture molecular transport

and thermodynamic coefficients. Predictions between the two approaches are planned

to more closely evaluate molecular transport and enthalpy diffusion effects. Initial

investigations for small shock Mach number Mas = 1.20 and At = 0.67 show mini-

mal differences between these approaches. However, a systematic study considering

positive and negative Atwood numbers and larger incident shock Mach numbers is

planned.

Additional research is also needed to better understand reshocked Richtmyer–

Meshkov instability with different Atwood numbers and larger incident shock Mach

numbers. As experimental data is limited for cases different from At = 0.67 and

Mas < 2.00, systematic parametric studies will be conducted in a similar fashion

to those presented in Chapters III and IV. For larger Mas values, positive Atwood

number cases will also be considered as this thesis only considered negative Atwood

number cases. Detailed investigations will help elucidate the freezeout reported in

previous studies.

The model will also be extended to include the density variance and density vari-

ance dissipation rate transport equations. In addition to the turbulent budgets, these

quantities will further elucidate scalar turbulent mixing properties (such as molecu-

lar mixing) for a broader range of applications. Furthermore, studies with different

approaches to initializing the turbulent fields are planned. It is important to fur-

ther understand the sensitivity of early-time and post-reshock turbulent mixing to

changes in initialization techniques. This work can possibly help understand the

early-time mixing behavior seen in LES. Quantitative measurements for mixing layer

comparisons and convergence rates, as well as different reshock models, will also be

considered.

Hydrodynamic instability-induced turbulent mixing has a primary role in many
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science and engineering applications. Elucidating reshocked Richtmyer–Meshkov in-

stability is important for improving current techniques in predicting turbulence in

complex flows and advancing many areas of high-energy-density physics.
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APPENDIX A

Derivation of the Model Transport Equations and

Numerical Methods

A.1 The Unaveraged Multicomponent Navier–Stokes Equa-

tions

The unaveraged multicomponent Navier–Stokes equations for the transport of

mass, momentum, total energy, and the heavy mass fraction are

∂ρ

∂t
+

∂

∂xj
(ρ vj) = 0 , (A.1)

∂

∂t
(ρ vi) +

∂

∂xj
(ρ vi vj) = ρ gi −

∂p

∂xi
+
∂σij
∂xj

, (A.2)

∂

∂t
(ρ e) +

∂

∂xj
(ρ e vj) = ρ gi vi −

∂

∂xj
(p vj) +

∂

∂xj
(σij vi) +

∂

∂xj

(
κ
∂T

∂xj
+Hj

)
, (A.3)

∂

∂t
(ρmH) +

∂

∂xj
(ρmH vj) =

∂

∂xj

(
ρD

∂mH

∂xj

)
, (A.4)

respectively, where e = v2/2 + U is the total energy, U = p/[ρ (γ − 1)] = cv T is

the internal energy, σij = µ (∂vi/∂xj + ∂vj/∂xi − 2
3
δij∂vk/∂xk) is the viscous stress

tensor, and gi is a constant gravitational acceleration (included here for generality,

and is zero for the present Richtmyer–Meshkov instability study). The heavy and
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light mass fractions are related by mH = 1−mL. Unlike the equations used in Ref.

(15), the present equations include enthalpy diffusion.

The enthalpy diffusion, Hj = −
∑2

r=1 hrJr,j, depends on the enthalpy and diffusive

flux of gas r,

hr = Ur +
pr
ρr

, Jr,j = −ρDr
∂mr

∂xj
, (A.5)

respectively. Indices 1 and 2 refer to H and L. The transport coefficients for the

dynamic viscosity µ, thermal conductivity κ, and mass diffusivity D are calculated

using the binary mixture relation

φ =
φH mH/

√
MWH + φL (1−mH) /

√
MWL

m̃H/
√
MWH + (1−mH) /

√
MWL

, φ = µ, κ,D . (A.6)

The Euler equations do not include these mixture molecular transport and thermo-

dynamic terms.

A.2 Reynolds and Favre Averaging

In deriving statistically-averaged flow equations, it is necessary to first introduce

Reynolds and Favre averaging along with related properties. Reynolds averaging can

take a variety of forms, including temporal, spatial, ensemble, and phase averaging

(32). Time averaging is commonly employed,

Φ(x) = lim
τ→∞

1

τ

t+τ∫
t

φ(x, t) dt , (A.7)

where φ(x, t) and Φ(x) = φ(x) are instantaneous and time-averaged flow fields, re-

spectively. Flow variables are sums of mean and fluctuating components, φ = φ+ φ′.

If Φ is interpreted as a time-averaged field, then the Reynolds average of the fluctu-
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ating component of a flow field is zero,

φ ′ = lim
τ→∞

1

τ

t+τ∫
t

[
φ(x, t)− φ

]
dt = Φ− φ = 0 . (A.8)

In Reynolds averaging the product of two quantities, α and β, the product of mean

and fluctuating components is zero since fluctuating components have zero average.

Conversely, the product of two mean or fluctuating components is not zero,

αβ = (α + α′)
(
β + β′

)
= αβ + α′ β′ , (A.9)

where α′ β′ necessitates a closure approximation. In computing derivatives of scalars

and vectors, the following properties hold:

∂α

∂xj
=

∂α

∂xj
,

∂βj
∂xj

=
∂βj
∂xj

. (A.10)

Similarly, a Favre average is a density- (or mass-) weighted average. Scalar and

vector Favre averages are defined as

ρ α̃ = lim
T→∞

1

T

t+T∫
t

ρ(x, t)α(x, t) dt = ρα , ρ β̃i = lim
T→∞

1

T

t+T∫
t

ρ(x, t) βi(x, t) dt = ρ βi ,

(A.11)

respectively, with the Reynolds-averaged density ρ, and Favre-averaged scalars and

vectors, α̃ and β̃i, respectively. As with Reynolds averaging, vector and scalar fields

are also decomposed into mean and fluctuating parts. For example, to Favre average

the velocity, it is first decomposed as vi = ṽi + v′′i , multiplied by the density, and

Reynolds averaging is performed to obtain ρ vi = ρṽi + ρv′′i . Combining this result

with the definition of a Favre-averaged quantity results in ρ v′′i = 0. Furthermore,
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Reynolds averaged Favre-averaged fluctuating components do not equal zero:

v′′i = vi − ṽi = −ρ
′ v′i
ρ

. (A.12)

Just as the product of two Reynolds averaged fluctuating quantities required a closure

approximation, so does the average of a fluctuating component, v′′i .

A.3 Mean Continuity and Momentum Conservation Equa-

tions

Following Reynolds–Favre averaging rules, the Reynolds-averaged density equa-

tion is

∂ρ

∂t
+

∂

∂xj
(ρ ṽj) = 0 . (A.13)

Averaging the momentum equation gives

∂

∂t
[ρ (ṽi + v′′i )] +

∂

∂xj

[
ρ (ṽi + v′′i )

(
ṽj + v′′j

)]
= ρ gi −

∂

∂xi
(p+ p′) +

∂σij
∂xj

(A.14)

or

∂

∂t
(ρ ṽi) +

∂

∂xj
(ρ ṽi ṽj) = ρ gi −

∂p

∂xi
− ∂τij
∂xj

+
∂σij
∂xj

, (A.15)

where the Reynolds stress tensor is τij = ρv′′i v
′′
j .

A.4 Mean Kinetic and Internal Energy Equations

The mean kinetic energy equation is obtained by first multiplying (A.15) by ṽi,

ṽi ρ
∂ṽi
∂t

+ ρ ṽ 2 ∂ṽj
∂xj

= ρ gi ṽi − ṽi
(
∂p

∂xj
+
∂τij
∂xj
− ∂σij
∂xj

)
. (A.16)
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Using the relation

∂

∂t

(
ρ ṽ2

2

)
= ρ

∂

∂t

(
ṽ2

2

)
+
ṽ2

2

∂ρ

∂t
≡ ρ ṽi

∂ṽi
∂t
− ṽ2

2

∂

∂xj
(ρ ṽj) , (A.17)

the mean kinetic energy equation is

∂

∂t

(
ρ ṽ2

2

)
+

∂

∂xj

(
ρ ṽ2 ṽj

2

)
= ρ gj ṽj − ṽj

∂p

∂xj
− ṽj

∂τij
∂xi

+ ṽj
∂σij
∂xj

. (A.18)

Averaging the internal energy equation gives

∂

∂t

[
ρ
(
Ũ + U ′′

)]
+

∂

∂xj

[
ρ
(
Ũ + U ′′

)(
ṽj + v′′j

)]
= −(p+ p′)

∂

∂xj

(
ṽj + v′′j

)
(A.19)

+σij
∂vi
∂xj

or

∂

∂t

(
ρ Ũ
)

+
∂

∂xj

(
ρ Ũ ṽj

)
= −p ∂ṽj

∂xj
− p

∂v′′j
∂xj
− p′

∂v′′j
∂xj

+ σij
∂vi
∂xj

(A.20)

− ∂

∂xj

(
ρU ′′ v′′j

)
.

Summing the mean kinetic and internal energy equations gives the mean energy

equation,

∂

∂t

[
ρ

(
ṽ2

2
+ Ũ

)]
+

∂

∂xj

{[
ρ

(
ṽ2

2
+ Ũ

)
+ p

]
ṽj

}
= ρ gj ṽj − ṽj

∂τij
∂xi
− p

∂v′′j
∂xj

(A.21)

−p′
∂v′′j
∂xj

+ σij
∂vi
∂xj

− ∂

∂xj

(
ρU ′′ v′′j

)
.
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A.5 Turbulent Kinetic and Total Energy Equations

The turbulent kinetic energy equation is obtained by averaging the product of the

velocity fluctuation and the total momentum equation. Setting v′′j v
′′
j = v′′ 2, the first

step in the derivation of the turbulent kinetic energy equation gives (32)

ρ v′′j
∂

∂t

(
ṽj + v′′j

)︸ ︷︷ ︸
i

+ ρ (ṽi + v′′i ) v′′j
∂

∂xi

(
ṽj + v′′j

)
︸ ︷︷ ︸

ii

+ v′′j
∂

∂xj
(p+ p′)︸ ︷︷ ︸
iii

= v′′j
∂σij
∂xi︸ ︷︷ ︸
iv

(A.22)

or

∂

∂t

(
ρ v′′2

2

)
− v′′2

2

∂ρ

∂t︸ ︷︷ ︸
i

+ ρ v′′i v
′′
j

∂ṽj
∂xi

+
∂

∂xi

[
ρ (ṽi + v′′i )

v′′2

2

]
− v′′2

2

∂

∂xi
(ρ vi)︸ ︷︷ ︸

ii

(A.23)

+ v′′j
∂p

∂xj
+

∂

∂xj

(
p′ v′′j

)
− p′

∂v′′j
∂xj︸ ︷︷ ︸

iii

=
∂

∂xi

(
σij v′′j

)
− σij

∂v′′j
∂xi︸ ︷︷ ︸

iv

.

Defining ρv′′2/2 = ρK and noting that v′′2 [∂ρ/∂t+ ∂ (ρ vi)/∂xi] = 0, the mean tur-

bulent kinetic energy equation becomes

∂

∂t
(ρK) +

∂

∂xj
(ρK ṽj) = −v′′j

∂p

∂xj
− τij

∂ṽi
∂xj

+ p′
∂v′′j
∂xj
− σij

∂v′′i
∂xj

(A.24)

+
∂

∂xj

(
σij v′′i −

ρ v′′2 v′′j
2

− p′ v′′j

)
.

The terms on the right side represent the buoyancy and shear production of turbulent

kinetic energy, pressure–dilatation, and dissipation of turbulent kinetic energy. The

terms on the second line represent molecular and turbulent diffusion. Summing the

mean kinetic, mean internal, and turbulent kinetic energy equations and defining the
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total energy density as ρ ẽ = ρ
(
ṽ2/2 + Ũ +K

)
gives the total energy equation,

∂

∂t
(ρ ẽ) +

∂

∂xj
[(ρ ẽ+ p) ṽj] = ρ gj ṽj −

∂

∂xj
(τij ṽi)−

∂

∂xj

(
p v′′j

)
(A.25)

− ∂

∂xj

(
ρU ′′ v′′j

)
+

∂

∂xj

(
σij v′′i −

ρ v′′2 v′′j
2

− p′ v′′j

)
.

An additional equation for the turbulent kinetic energy dissipation rate ε is needed.

The present study treats the ε equation as proportional to the K equation by the the

inverse of the large–eddy turnover time, K/ε. Therefore, the ε equation is determined

once the K equation is closed. To do so, gradient–diffusion closure approximations

are needed.

A.6 Numerical Flux and Eigenstructure

In conservative form, the conservative fields u and numerical flux f in one dimen-

sion are

u =



ρ

ρ ṽ

ρ ẽ

ρ m̃H

ρK

ρ ε


, f =



ρ ṽ

ρ ṽ 2 + p+ 2
3
ρK

(ρ ẽ+ p+ 2
3
ρK) ṽ

ρ m̃H ṽ

ρK ṽ

ρ ε ṽ


, (A.26)
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respectively. Note that the turbulent pressure pT = (2/3)ρK is included in the flux.

Defining the mean enthalpy h̃ = ẽ+ p/ρ+ (2/3)K, the Jacobian (see Ref. (52)) is

A =



0 1 0 0 0 0

γ−3
2
ṽ 2 − m̃H

∂γ
∂m̃H

p
ρ (γ−1) (3− γ) ṽ γ − 1 ∂γ

∂m̃H

p
ρ(γ−1) −(γ − 5

3
) 0

−
[
h̃− (γ−1) ṽ 2

2
+ m̃H

∂γ
∂m̃H

p
ρ (γ−1)

]
ṽ h̃− (γ − 1) ṽ 2 γ ṽ ∂γ

∂m̃H

p
ρ (γ−1) ṽ −(γ − 5

3
) ṽ 0

−m̃H ṽ m̃H 0 −ṽ 0 0

−K ṽ K 0 0 −ṽ 0

−ε ṽ ε 0 0 0 −ṽ


.

(A.27)

The eigenvalues are

λ = ṽ − cs, ṽ, ṽ + cs, ṽ, ṽ, ṽ , (A.28)

and the Roe-averaged right and left eigenvectors are

R =



1 1 1 0 0 0

ṽ − cs ṽ ṽ + cs 0 0 0

ṽ 2

2
+ c 2s

γ−1 − ṽ cs +
(γ− 5

3
)

(γ−1) K
ṽ 2

2
+

(γ− 5
3
)

(γ−1) K
ṽ 2

2
+ c 2s

γ−1 + ṽ cs +
(γ− 5

3
)

(γ−1) K
(γ− 5

3
)

(γ−1) K
(γ− 5

3
)

(γ−1) K 0

m̃H m̃H m̃H m̃H m̃H m̃H

K K K K K 0

ε ε ε ε 0 0


,

(A.29)
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L =



ṽ
2 c 2s

[
cs + (γ − 1) ṽ

2

]
− cs+(γ−1) ṽ

2 c 2s

γ−1
2 c 2s

0 −γ− 5
3

2 c 2s
0

c 2s−(γ−1) ṽ
2

2

c 2s

(γ−1) ṽ
c 2s

−γ−1
c 2s

0
γ− 5

3

c 2s
0

− ṽ
2 c 2s

[
cs − (γ − 1) ṽ

2

] cs−(γ−1) ṽ
2 c 2s

γ−1
2 c 2s

0 −γ− 5
3

2 c 2s
0

−1 0 0 0 0 1
ε

−1 0 0 0 1
K

−1
ε

−1 0 0 1
m̃H

− 1
K

0


. (A.30)

These eigenvalues are used to transform the numerical fluxes between physical

and characteristic spaces, with the WENO reconstruction performed in characteristic

space.
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