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ABSTRACT

The author, in an expository paper [4], has presented an algorithm
for choosmg a non-negative vector n to minimize the function v(n)
w(N N M 17t subject to the constr_@mt Cht = C > 0, where N = d1ag(n),
7 3,2 >0are given vectors and M is positive definite symmetric. In
this paper a derivation of this algorithm is presented, including an ex-
act solution in a degenerate case, only alluded to in [4]. Several appli-
cations, in addition to that of [4], are briefly indicated.

1. INTRODUCTION AND APPLICATIONS:

Let 1\71 be a kxk positive definite symmetric matrix, let 71(#6) and ¢ >0 be given
k-dimensional row vectors, and let C > 0 be a given scalar. The problem discussed here is
that of choosing n = (n1 e, nk) to minimize

1 v(R) = #(N + M)

subject to the constraints

(2) n=0
and
(3) ¢t = ¢,
n, 0
where N = diag () = Ny ) .
0 "y

(A superscript '"t'" will throughout denote transpose.)

The author [ 4] has shown that the posterior variance of Z LA is of the form v(ﬁ)
when the ui's are a§signed a k-dimensional normal prior distribution with variance-
covariance matrix M'l, and where given Ky the conditional distribution of relevant sample
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statistics )'ci (i=1,...,k) based on sample sizes n,, respectively, are independently normal
with mean By and variance proportional to l/ni . Also it is easy to verify, using results given
in Raiffa and Schlaifer [ 8], that under a wide variety of models of k independent data generating
processes and natural conjugate prior distributions, the posterior variance (or prior expectation
of the posterior variance) of a linear combination of the unknown process parameters may be
put into the form (1), where the n, are essentially the to-be-determined sample sizes. Thus
the problem indicated above is one of choosing sample sizes to minimize the posterior variance
of a linear combination of unknown parameters subject to a cost constraint. This has immedi-
ate applicability to problems of optimal stratified sample allocation as well as to optimal

design for inference regarding the difference (or contrasts) among treatment effects. These
problems have been treated by the author in a series of papers [4], [5], and | 6].

2. PRELIMINARIES
Let the ij-th elements of M and (N + M)'1 be denoted respeptively by mij and
uij(ﬁ), further let

k
ti(n) =Z ﬂjuij(n), i=1,...,k.
=1

Observe that it may be assumed that 7 = 6, for if some one or more ni's are negative
they may, without altering the function v(n), be replaced by their absolute values provided
merely that the sign of every element in the corresponding rows and columns of M be

reversed.
Also letting R = {f 17 =0, ¢at = C}, it is clear that R_ is a closed, bounded,
convex set of k dimensional vectors 1. Several useful properties of v(n) for n ¢ R are

given in the following lemma.

LEMMA 1: For ne R v(n) possesses the following properties:

a) v(Rn) is twice differentiable with respect to n having derivatives

av(n) _ fov(R) av(n)\ _ (22 202
(4) - =<W,...,W>_<tl(n),...,tk(n)>,
and
2%v(i) 2%v(R) Bt (i
(5) = ... col o= Lo 2yt (R) g (B) L]
852 anianj

b) v(R) >0, for @ =0.
¢) v(n) is a non-increasing function of 1.
d) v(n) is a convex function.

e) For every € >0, there is an n* = 0 such that @ > f* implies v(n) =e.
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PROOF: Property b) follows immediately from the definition of v(1), and the as-
sumption that 7 = 0. The derivatives of a) may be verified by direct calculation, or much
more easily by using the matrix derivative theory of Dwyer [ 3]. Properties c) and d) follow

immediately from the form taken by the partial derivatives (4), (5), and the positive definite-

ness of [... ui-(ﬁ) ...} . Todemonstrate e€), it suffices, by c), to show that for every

€ > 0 there isan i* > 0 such that v(i*) < e¢. Assume the contrary, i.e., for all & = 0,

v(ﬁ) > €, Let € = ﬁﬁ?rt for some arbitrary positive definite diagonal matrix R. Then as

shown in [ 1, p. 341] or in [ 2, p. 58], there exists a non-singular matrix L such that

I_:(ﬁ + l\—/’l)'lf_’.t = 1—5, a diagonal matrix, and iﬁit = f, the identity. Letting 7= ;(I:, one

finds the obvious contradiction that for all n > 6, ?c(I_:t) 'l(ﬁ + M - f{'l) (ﬁ)'l?(t < 0.
Observe that property c) means, in effect, that the solution to the problem originally

posed will be an n such that

(6) ¢nt = ¢,

so that in analyzing this problem we may replace the constraint (3) by the equality (6). This
Lemma also establishes all the needed properties so that general convex programming algo-
rithms may be utilized in finding specific numerical solutions. The specific algorithm and
solution developed here will yield analytic details of the solution which have been found ex-
tremely useful in applications in decision theory. Finally the properties of v(n) given in
Lemma 1 establish the applicability of a special case of the fundamental result of Kuhn and
Tucker [ 7]. (See also the presentation in [9].) Specifically we have, adapting the Kuhn-
Tucker result to this problem:

LEMMA 2: The minimum of v(n), (1), subject to the conditions (2) and (6) is at
i =19 ifand only if there exists a Xy > 0 such that:

= 2,20 . 0
-A, = -t A C. 2 o=

(N i t] (nY) + Oc] 0 if n] 0
2,20 - 0

8 -t . = .

(8) tJ (n") + )\Oc] 0 if n >0

and

(9) 7%t - c.

Our goal is to use this basic result to find an algorithm whereby the solution to the
problem can be mapped out for all C > 0. The solution which is obtained below may be
described briefly as follows: the interval C > 0 is partitioned into sub-intervals within each
of which some subset of the nio's are non-zero, each such nio being a linear function of C
in that interval. Over all C > 0 each ni0 is a continuous piecewise linear function of C. The
algorithm below gives these linear functions explicit form and gives a method for determining
the sub-intervals.
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3. BASIC RESULTS

Let K = {1,2,...,k}, 8= {ij,... ,ir} be any subset of K, and W = K - S. Now by
Lemma 2 it is clear that for every C > 0 there is some S C K such that the solution for that
C is characterized by

0 =0 . jeW
(10) n.
I 1>0 jes.

A useful first step in obtaining the solution for all.C > 0 is to characterize the set of C's
(perhaps empty) for which ﬁo is of the form (10) for some given subset S of K. This set of
C's is easily obtained using Lemma 2. Note that condition (8) may be satisfied for j € S by
t]. (n) =+ (Aoc.) 1 2; however, if S is specified and if, additionally, one specifies a set of

§ (+1 or -1) for j € S, then the Kuhn-Tucker conditions may be solved for

Ao njo, (i ¢ S) and )\j (j € W) interms of C. The resulting njo will then be the minimizing

signed ones s

set for all C's such that n].0 =0 (je S), 2o > 0 and )‘j = 0 (j € W). Details of this initial
step are given in Theorem 1 below.

Given S and sj (j € S), we eidopt the following definitions ar_l.d conventions:

In geneﬁral given any matrix A and subsets U and V of K, AUV will denote the matrix
formed from A by deleting all rows i for i . U and all columns j for j & V. In particular
if M is the k xk positive definite symmetric matrix of (1), we will need the following:

- _ > _1
(11) Vww = Myw
(12) ﬁWS = VowMws (=0 if S=¢ or K)

-

(13) Rgg = Mgg - Mgy VywwMys -

Similarly, 7 g and c g are row vectors formed from 7 and ¢, respectively, by deleting all
entries in W (not in S). Let

1/2
85 €]

[c]- Iy (W)/xo(s)]l/2 iew

je S
(14) ¥ = (11/1 ...%), where l,l/j =

where Aj(W) and )\O(S) will be the quantities Aj and A of (7) and (8). IIJS and WW are defined

in analogy with fr's. Also we let

1, 0
- 1
(15) G(S) =
SV
0 r
Finally we adopt the convention that if X = (x1 . xk) then k'z = (xlz, ceey xkz) .

With these preliminaries we have:
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THEOREM 1: For any given subset S of K and a given set of signed ones, 5; (j e8),
and for all C > 0 satisfying

(48) 'a) y(8) = ‘;S(;S - ?Twﬁws)t z 0

(17) b AW) = [Ty Vg - Ay 2E¥B ]2 - A2y =0
and

(18) 0 58) = [75V% ) (ig - Ay Byg) - UgRes|G®=T,
where

(19) P AT I ) B—

the solution to the problem of minimizing (1) subject to (2) and (3) is given by

(20) Ry = 0
and
(21) id = US) .

PROOF: By the definition of t]. (n) the conditions (7) and (8) become

A+ =AY 2m)v.

Using the fact that N is diagonal and the assumption that I-:IWW =0 , this system becomes

_1/2 s e —‘» - - -
(22) rg % () Hg = Vg (NSS + MSS) + Yy Myg
and
12 2 3w o
(23) Ao (8) iy = ¥gMgy + ¥wMyny -

Solving (23) for JJW one finds

-

> 1/ e -
Yy = 29 7T ) T Vww - ¥YsBys o

and by the definition of t_,l;w, (14); and by letting X(W) be the vector of ?tj(W)'s, one has
immediately
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- Ind -

(29) W) = (Fy V- 28720 UsBg)? - 2@y -

Further, by substituting the above expression for J/W in (22) one finds

-

DS 12 (2 3
VsNgs = 29"% ©® (75 - wBws) - ¥sRss -

But the elements of WS;ISS are just S; c.l/2 no

j i for j € S. Hence multiplying this expression
by G(S) one has

-

(25) R - [AO' 1/2 (g (?rs - éwﬁws) - J/SRSS] G(S) .

Further, by multiglying the expression above for wSﬁSS by dfst and solving this scalar

equation for )\61/ (S), one finds that

- —»t -, —-»t
-1/2 . YsNgs¥s + ¥sRgs¥s
gV (s - ) :

- - _'t
("s - 1Tw‘3ws>“’s

and by the use of condition (9}, that ‘zSﬁSS stt = Z ¢ njo = C yields Eq. (19). When these
jes

solutions for X(W), HO(S), and )\O(S) are used, the conditions a) - ¢) of the theorem are mere

re-expressions of Lemma 2, establishing the theorem,

Observe that if the subset S and signs s; satisfy the conditions of this theorem then
so do S and the signs -s;. Thus it may be assumed that given any subset S we will always
take signs 8; such that v(S) > 0.

It is also important to note that for a given subset S of K and signed ones sj (je S
each of the k conditions (17) and (18) defines an interval on C where the corresponding in-
equality obtains. It is then for all C in the interval, possibly empty, found by taking the
intersection of these k intervals that 10 is given by (20) and (21). Clearly to check all
possible inputs to Theorem 1, i.e., all subsets S of K and all sign assignments, Sj’ is not
feasible. Fortunately there is a simple procedure for determining the sequence of meaningful
S and s.'s which define the successive intervals on C mentioned earlier. As a first step in
this procedure we have the following special case of Theorem 1 for the situation where all n].
are positive, i.e., no s is zero. Taking S=K and s, =1 (j=1,...,Kk) the following
corollary is an immediate consequence of the preceding theorem:

COROLLARY: If 7> 0 and

(26) C=Cy = max
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-, —+t
- M - i d
(27) 70 - <C_+\_lf—wn-1plv[ G,
Tyt
-1/2
¢y 0

where G = T
0 . cl_{l/ 2

Thus if 7 > 0 the first (open) interval C = Cy and the solution vector 79 for C's in
that interval are established by this corollary., What remains is only to provide a mechanism
by which one can, given any meaningful interval on C (set of inputs to Theorem 1 yielding ﬁo
for a non-empty interval on C), find the next set of inputs to that theorem which yield the
solution in the next adjacent interval on C. A special important case of such a result is given
in Theorem 2 below. This result can be used in practice to find the solution (or at least a good
approximation) for any problem of the type under discussion. This is the so-called non-
degenerate case.

DEFINITION: By non-degeneracy is meant that 7 >0 and also for every interval on
C for which the conditions b) and c) of Theorem 1 are met, these conditions are satisfied
with strict inequality in each, except at the end points of the interval where one and only one
of the k conditions b) and c) is met with strict equality.

Most real problems of the form (1), (2), and (3) are of the non-degenerate type and, if
not, may be subsumed under this general case by randomly perturbing the wi's by adding to
them arbitrarily small and unequal ei's. In this non-degenerate case an algorithm for obtaining
the solution for all C > 0 is completed by the following theorem:

THEOREM 2: In the non-degenerate case if for 0 = CL =C= CU = « the conditions
a) through c¢) of Theorem 1 are satisfied for some given subset S* of K and signs sj* (G € 8%
and further if

(a) for C < CL the condition ¢) is violated for j* ¢ S* then for a finite interval on
C (C= CL) , ﬁo is given by Theorem 1 by taking S = S* - {j*} and signs Sj = sj* for
j € S; and

(b) for C < C;, the condition b) of Theorem 1 is violated for j* ¢ W* = K - S*, then
for a finite interval on C < CL the optimum 79 is given by Theorem 1 taking S = 8* U {j*}
and s. = s*, j=j*, and s* determined so that for )\O(S*) evaluated at C = CL’ sj* takes
the sign of the j*th element of

1/2

- - t
(28) Ay 2 (8% ¥ gu Bluge -

ﬁ'w* Vw*w* -
This result is a simple special case of Theorem 3 below, and its proof follows from the
proof of the latter theorem.
Thus in the non-degenerate case the solution for all C > 0 is mapped out by using the
Corollary to Theorem 1, then Theorem 2a, Theorem 1, Theorem 2a or 2b, etc., until the result-

ing sequence of non-overlapping intervals covers C = 0. It should also be pointed out that at
each step in this process no matrix inversion is necessary, for explicit formulae are given in



40 W. A, ERICSON

[4] (special cases of Lemma 3 below) for changing the expressions of Theorem 1 from the
inputs S* to those for S. A numerical example of the algorithm resulting from the preceding
theory is also given in [ 4].

4, DEGENERACY

Although in most practical applications the expedient is to perturb the ni's and thereby
eliminate any possible degeneracy, in this section the necessary general theory for finding
exact solutions is given. Recall that degeneracy may arise either because one or more (but
clearly not all) 7 i's may be zero or where at the lower endpoint, CL’ of one or more of the
sub-intervals on C several of the conditions (17) or (18) may hold simultaneously with equality
at C = CL and are violated for C < CL‘ We handle this second type of degeneracy first. The
problem arising is solved by a suitable generalization of Theorem 2. The following prelimi-
naries are needed.

Let S, J, and W' form a partitionof K= {1,2,...,k| and M be the k x k positive
definite symmetric matrix of (1). Let M * consist of permuted rows and columns of M so that

Mgs Mgy Mgw:
M* = | Mg My Muw: |
Mws Mwyy  Myw

where the matrix elements of M* areasdefined earlier. It isassumed that the relevant tz, 1?,
E, and so on, are conformably permuted and partitioned. In Lemma 3 below the quantities
defined in (11), (12), and (13) for S and its complement W = W' U J are related to the same
quantities taking S'=S U J and its complement W'. We first redefine these six quantities
in partitioned form as follows:

for S and W
- - —1
Vis Vawr Mg M yy
S _ -1
(29) Vww = |, B} = |, . = Myw >
Vwy Vww My My
-1 .
B s My M gy M ;s
I - _ ad _1 -
(30)  Byg = | = MywMys = | R . ,
Bws Myrg My Mys
and
- nd s had _1 - .
(31) Rgg = Mgg - Mgy My My ;

while for S' and W' we have
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, B -1
(32) ww = [Mw'w'] ,
B. = |B' B! = ml o [m M
(33) ws' = [Bws Bwy ww' | Mws Mgyl
and
Rgs Rgg
RS'S' = _" >,
Rjs Ry
M My M M Ml w
ss = Mgy Mg Mypg Mgy - Mgy, Myl w'J
Mg - Moo, M2 M M Mzl o owm
Js My Mg Mgz = Mg Myt w'J

These expressions follow immediately from (11) - (13). With these definitions one has:

LEMMA 3: Under the above definitions with f/[* positive definite symmetric:

2 _1 2y _1 2y t
. (R5) -(R35) 7 (B)
(35) wa = ’
2, =, _1 2y 2y 2 _1 =
'BW'J(R J) » Vww + Byyg (RJJ> B ywr
Dt y\=12
(RJJ> Rys
(36) Byg = :
= 1 g 14 = A _1 g 1
Bw's - Bwyg (RJJ) R3s
and
= = =g =4 =12, .
(37 Rgg = Rgg - RSJ<RJJ> Ryss
while conversely
2 _ - - - _1—9
(38) View: = Varw: = Vg (Vag) 7V e
(39) Big = [Bws - VwuVitbyg Vg Vil]
wrs' w's - YwgViyBss waVas] o

and
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- _1—» —» — 1

Rgg + BgyViyBysy BgyVig
(40) Ré'S' =

5 12 1

ViiBis Vi

PROOF: It is a commonly known and easily verifiable result that

— -1
: Myy Mgy
Vww = |,
Mg My gy
o -1 a0 \-lg -1
<RJJ> ’ '(RJJ> My Mgy
1 2 5 )1 -1 1 2 >, V-1 -1
W'W'MW'J< JJ) ;Mg + MW'W'MW'J<RJJ> M gy Mgy
where l?{!']J = (1\7[JJ JW' 1'W' ,J) as per (34). The result (35) then follows from

this form using (32) and (33). The expression (36) is readily obtained by substituting the abo
expression in (30) and then using definitions (32) - (34). By substituting (36) in (31), one find:
R = Mg - My Bl - Mgy (B]) " Rl + Mgy Bige (R) 1R
SS SS SW'TW'S SJ\"JJ JS SW'-W'J\""Jd Js’
from which (37) follows using (34). Finally, expressions (38) - (40) are easily obtained by
solving the system of equations (35) - (37) for the primed quantities.
Finally, since we are aiming at relating the successive inputs to Theorem 1, we re-
state, for convenience, the quantities used in that theorem for the subsets S' =S U J and S

in the partitioned notation used above. We have first for the subset S':

(a1) y(SY) - $S<ﬁs - Ty Biyg)" + vy 7y - f By

4 W) = [y Vi - 26 (JsBivs + ¥yBimg)] - 2®)Ey
and

(43) i) = (52 ) (7 - Ay Blys) - Velag - Yyips|Ggs0,
5 = V20 (7 - AwBigyg) - VsRyy - UyRyp G,

where
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S'
(45) "2y - — Zﬂ’ e el
- e ' 2 ) =,
C+ ¥gRgg¥g + ¥gRgy¥y + VyRyg¥g + VyRyp¥y
and éS(S') and éJ(S') are diagonal matrices having elements 1/1[/]. forj ¢ Sand j ¢ J,
respectively.
For the subset S = §' - J, the same quantities are given by:

- - - - -5 2 t
(46) ¥(8) = Vg (T - Ty By - TyByg)",
5 . . 1/2 3 at 12 -
(47) A (W) = [”W'VW'W' v gV gy - Ay (SWSBW'SJ - XS ey,
(48) A5W) - [ﬁW'VW'J + Vg - A(I)/z(s)wsﬁfls]z - Sy,
and
- _ -1/2 I - = - 2 = =

(49) 5(s) - [AO ©) (s - By - 7yBys) - wSRSS]G(s),
where
(50) A2() - R t

C + WgRgg ¥y

With these preliminaries we may state and prove the following generalization of
Theorem 2:

THEOREM 3: (a) Consider the inputs to Theorem 1 consisting of the subset S' =
S U J of K and signs st (j € S"). Suppose for such inputs ¥(S') > 0 and further that at the
point C=C;, v (S") =0 and v(S) <0 for C < C , then taking the new subset S € K and
L J J L " 1/2 1/2 > 5
signs 8; = 8; for j ¢ S one finds ¥(S) > 0; at C=Cy, Ay “(8) = Ag" (87, v(S) = vg(s),
XW,(W) = X(W"), and XJ(W) = 0, while for C < Cy., XJ(W) ¥ 0. Also if additionally at
C=¢Cy, X(W') < 0 and US(S') > 0 then in an interval on C < Cr» XW,(W) < 0 and b(s) > a.
(b) Consider the inputs to Theorem 1 comprising the subset S of K (with complement

W =W'U J) and signs s, (j € S). Suppose for such inputs ¥(S) > 0 and also at the point
C-= CL’~ XJ(W) = 0 and XJ(W) < 0 for C< Cp,» then letting the new subset be S' =S U J and

signs s]f = 8 for j ¢ S and 8; for j € J (or equivalently E}J(S')) determined so that at C = Cy,

5 2 5 2 1/2,cvq at 1 _ 31/22 jar
(51) [ﬂW.VW,J+ Vg - Ab (S)ll/SBJS] = 23/26 69,
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then 7(S") > 0 andat C = Cp, 23/2(s) = AY/2(5), B(s) = ¥(8), X(W") = Xyy(W), and
v 580 = 0, while for C < Cr,s iJJ(s') £ 0. Also if additionally at C = Cr, XW.(W) < 0 and
2(S) > 0, then in an interval on C < Cp» XW') < G and D’S(S’) > 0.

7-(S") = 0 which

PROOF: To demonstrate (a) note by hypothesis that for C = Cy,» J(

by (44) implies

- > 2 _'t
("J - "w'Bwa>"’J

(52) A2 = L
VgRgy¥y + ¥ R5s¥;5

Equating this to (45) one finds that

(53) Cy = (7_7. f(s') (“’s ‘;’Jt * J/J Ry 17’Jt) - (J’s ‘I’J) Ryig: (J’S’ ‘_’;J>t-
J

" Ty B\'N'J) 2

Taking the inputs S €K and s]- = s]f for j € S one has by definition

v (7 _ 2 R =Y
(54) A(l,/z(s) - ¥(S) _ Y% ("S - TwBws - J JS> .

Evaluating this expression for C = C; , as given in (53), and using (52), (41), together with (36)
and (37) of Lemma 3, one has for C = C,

t

2 R d =g _" t - "' _" -1 = - "'
© V2 - ¥s (”s - 1Tw'Bw's> - YgRgy (RJJ> ("J - TrW'BW'J)
0 = ,

-1/2 (any 5 (= > g t_(_' 2y Tt T 2 "v)-l"v Tt
Ao T (8 ¥ (“s - "w'Bw's> ViRyg¥s + YgRgs(Ryz) " Rig¥s
Hence using the hypothesis that D'J(S') = 0 one has
-1/2 I o1 gy} -12.+ 7t _ 5 -1z Tt
(8") ( 3 "W'BW'J> (RJJ> Rig¥% = (‘l’s &+ VR JJ) (R ) Rys¥s

from which it follows that at C = C; , 7\(1)/ 2 (S) = )L(])'/ 2 (S"). This, in turn, establishes the fact
that ¥ (S) > 0.
By s1m11ar substitutions it is readlly verified that at C = Cy , V(S) = VS(S ) and
W,(W) = )\(W') And since V(S) and X ,(W) are continuous functions of C it follows that if at
S(S) >0 and AW < 0 then for some interval below Cy 2(S) > 0 and )\W,(W) < 0.
There remains only consideration of A J(W) By definition.

- N /2 .
Ag(W) = [”W'VW'J + 75V - 22 E)¥gB JS] - ey,
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and by Lemma 3 this may be expressed as

A W) = {[(%J - Ty Biyyg) - A2 bR SJ] (4' ) - ["(1)/2(3)%]2

Again by the hypothesis that at CL» v J(S ') #, it follows that at that point x J(W) = 0 for the
quantity in curly brackets is just >‘0/ 2 (S) tl/ Thus the absolute value of that quantity at C
is )\ 1/2 d/JS >0 where S is a diagonal matrix whose elements are s]. for j ¢ J. Suppose

that X (W) >0 for some interval on C below Cy, then

-

(55) [(’?J - fwiByy) - 22 ‘I’sﬁéJ] (R35) 7185 - 224,38, > 8,

for, by continuity, the absolute value of the quantity in curly brackets above is 1tse1f times S
near C;. By hypothesis VJ(S') <0 for C < Cy,» or by (44) and the definition of G J(S')

- - =, 1/2 . M= ooy, - -
(56) [(nJ - nw.BW,J> - 248y (d/SRSJ + lPJRJJ)] S; <0.

By replacing the decreasing function of C, )\(1)/ 2 (S") by the similarly behaved function )\1/ 2(S)
the inequality in (56) continues to hold. Multiplying (55) by the transpose of (56) thus results

in a negative scalf,r and since S Jt = I the identity, one has a contradiction of the positive
definiteness of (R :IJ) _1, we conclude that for an interval below Ci, J(W) ps 0 establishing (a).

Part (b) of the theorem is established in strictly analogous fashion.

Several comments on this result are in order, First observe that if for the interval
C =C = C the solution, ﬁo, is given by Theorem 1 using the inputs S*' =S U J and signs
s. where all the condltlons of that theorem hold with strict inequality except at CL (and C
where VJ(S') 0 and all these components are negative for smaller C's then for the new
subset S and signs Si» as per (a) of Theorem 3, all conditions of Theorem 1 are satisfied for
a contiguous interval on C below C with one exception. This exception being that for C < CL
the only statement regarding AJ(W) is that not all its components are positive. A similar in-
terpretation is immediate from (b) of this result. Second, observe that if J = { ]*} say, then
this theorem clearly yields the next meaningful inputs to Theorem 1 and thus the solution for
the adjacent subinterval on C. This is precisely the special case singled out as Theorem 2
earlier.

v

Finally and more generally, Theorem 3 may be used as follows. Suppose that for some
inputs to Theorem 1 the minimizing n is given for all C € [CL, CU] , but at C; several of the
vi's and/or Ai's are zero and are respectively less than zero and greater than zero for C's
below C;. One can then apply (a) and (b) of the theorem sequentially, resulting in a finite
sequence of subsets of K and corresponding signs, the last of which must define the inputs
yielding ﬁo for the interval [CL., CL] for some CL' < Cy,- That such a process terminates
follows immediately from the theorem, for at each application the number of conditions of
Theorem 1 which are violated for C < CL by the new subset and signs must be reduced by at
least one.
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Exact solutions under the degeneracy of the form discussed thus far may also be
obtained by perturbation. For example, if for some solution interval several conditions on the
ui's and/or )\i's are met with equality at the lower endpoint CL and violated below, then by
randomly perturbing the ﬂi's, say, the degeneracy may be removed and Theorem 2 used to
map out the solution for the perturbed problem. This solution will consist of a sequence of in-
puts to Theorem 1 defining the solution for a corregponding sequence of non-overlapping inter-
vals on C. These inputs may be checked in sequence for the unperturbed problem, most often
the inputs yielding the first interval of non-trivial length will provide the solution for the next
interval below CL for the original problem.

Finally, these same ideas can be used to find solutions when degeneracy in the form of
zero 7;'s occurs. Note that if some of the m,'s are zero all of the previous theory holds with
the exception of the corollary to Theorem 1. Thus zero 7,'s raise only one difficulty, viz.,
how to obtain a start. That is, the first interval, [CO, «c], is not given by the preceding theory.
As pointed out earlier, a solution in this case may be obtained arbitrarily close to the exact
solution by perturbing the n.l's by adding to each a small positive € i Moreover, such approxi-
mate solutions can be adjusted to yield exact results by checking the successive inputs to
Theorem 1, obtained for the perturbed problem, for the unperturbed problem. Once some set
of inputs yield the solution via Theorem 1 for the unperturbed problem for any non-empty
interval on C, then the previous theory may be used to map out the exact solution for all other
C. Note that although we have concentrated on going from one interval to the next on the left,
the results above may also be used in reverse fashion to obtain the next adjacent interval to

the right.

5. v(ﬁ(’) AS A FUNCTION OF C

Letting 70 (C) be the solution to the problem of minimizing (1) subject to (2) and (3),
it is useful then to examine

(57) v (€)= v (i°(0) .
Let Il’ 12, ey Ir be the sequence of non-overlapping intervals on C within each of which
the solution vector ﬁo is given by Theorem 1 for some subset Si of K and signs Sis for
je€ Si’ i=1,...,r. Itis a known result in Lagrangian theory, easily verified directly here,
that
(58) dv*(C) . -2 (Si) for Cel.

dc !

Further it follows from the preceding theory that for all i 2o (Si) exists and is positive,
hence v*(C) is a continuous decreasing function of C. Furthermore, its derivative, -2 (Si) y
is also a continuous function of C, for by (19) it is continuous within each I, and by the result
of Theorem 3 it is continuous at the endpoints of these intervals. Also from (58) and (19)

2
2 2{y<s.)}
d"v+(C) _ i = >0 for Cel
2 - - -
dac [c + Vo R ]
s, Rs.s, s,

i ’
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establishing convexity of v*(C). Finally it may be observed that as C increases v*(C) goes to
zero, this follows immediately from Lemma 1. Summarizing these results we have:

LEMMA 4: v*(C) = v (ﬁO(C)> is a continuous, strictly decreasing, convex function
of C such that

a) lim v¥C) =0

C—cc

and
b) v*(C) possesses a continuous first derivative given by
2
(s)
(59) avx(C) _ “xg (Si> - - i , Cel.
dC

= —vt
C+ VgRgs. ¥s,

This lemma enables us to give a relatively simple expression for v*(C) as a function
of C=0.

THEOREM 4: For C e I, i=1,...,r,

(60) vHO) = K, + [i(slﬂz _
C + wSiRSiSizptSi

where Ki is determined so that v*(C) is a continuous function of C for all C = 0. For the

interval I, containing zero K, is determined so that v*(a) = im 17t or for the interval

Ir(C ZCO)Kr = 0.
PROOF: Follows immediately from the lemma.
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