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This paper develops and implements a mathematical framework that enables noise

modeling and removal for any sensor that relies on discretely measured events. Here,

we apply this technique to data from the Fast Imaging Plasma Spectrometer (FIPS),

a time-of-flight mass spectrometer on the MESSENGER spacecraft. An iterative

Monte Carlo event-processing algorithm is used to probabilistically separate instru-

ment measurements into real and noise-based events. Kernel density estimation is

employed as a smoothing technique to enable noise removal for datasets comprised

of only a few events. Given an accurate noise model, the overall misidentification of

events is expected to be less than 25% even for datasets having low signal-to-noise

(SNR) ratios, with substantially improved results expected for progressively larger

accumulations of data. These techniques are shown to successfully recover heavy ion

events from in-flight FIPS data both inside and outside Mercury’s magnetosphere.

Such data analysis methods not only drive a more in-depth understanding of sensor

operation, but also provide a unique post-processing approach that can result in the

improvement of in-flight SNR without any modifications to instrument settings. In

addition, these method are readily applicable to existing archived datasets of past

missions.
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I. INTRODUCTION

Noise events in a spaceborne time-of-flight mass spectrometer (TOF-MS) are undesirable

measurements that can arise from a variety of sources, ranging from background processes

to incident particle events. These erroneous events contaminate mass and energy spectra,

making it difficult to recover accurate ion composition and abundances, especially for heavy

ion species for which measured event rates can be low. A number of these noise sources, as

well as their effects on data analysis are introduced and discussed in detail by Gilbert et al. 1 .

Here, we focus on modeling and probabilistic removal of these events, such that the signal-

to-noise ratio (SNR) of measured datasets can be increased using software post-processing

techniques rather than adjusting limited in-flight instrument settings. The techniques de-

scribed here were used to enable a number of scientific analyses2–5 of observations from the

Fast Imaging Plasma Spectrometer (FIPS)6,7 on the MErcury Surface, Space ENvironment,

GEochemistry, and Ranging (MESSENGER) spacecraft8, currently in orbit around Mercury.

There are two general classes of noise contamination: additive and multiplicative/distortion.

Additive noise is an unwanted signature superimposed on top of a real signal9. The most

common and perhaps ubiquitous form of this contamination is white noise10, with a constant

spectral density and a Gaussian distribution of amplitudes typically superimposed on an

audio, electronic, or image signal. For any additive noise source, however, the underlying

signal remains unchanged. Distortion, on the other hand, involves a convolution of the

uncontaminated signal with a noise function, altering its original properties11. A simple

example of distortion is image blurring, whereby the color in a particular pixel is changed

on the basis of the original properties of its neighbors12.

The vast majority of noise events in a TOF-MS are additive. Although, as will be

discussed, the intensity of some noise sources will scale with the number of real events, these

noise events are nonetheless superimposed on the measured distribution of incident particles.

Therefore, TOF-MS noise removal typically requires only distribution separation rather than

dataset deconvolution. Also, the TOF-MS noise sources discussed here will be characterized

with accumulations of instrument data and will consequently be well-known. A known source

is considerably easier to remove from a dataset than an unknown one, and consequently we

will not require the use of complex blind-signal separation techniques13. Finally, the ability to

post-process measured datasets enables the devotion of substantial computational resources
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to the removal process, allowing each event to be analyzed individually and completely, as

opposed to being limited by the real-time processing power of an on-board flight computer.

In the case of many audio and image processing applications, noise sources exhibit specific

spectral signatures14. After a frequency analysis of a particular dataset, high- or low-pass

filtering can be used to reduce markedly the contribution of many noise sources15. This

strategy, however, may not be best suited for applications to TOF-MS measurements that

are a set of discrete, multi-dimensional events for which properties must not be altered

as a consequence of any noise reduction process. Instead, we will employ Monte Carlo

techniques16 to process instrument-measured events. Monte Carlo techniques have been

applied to a wide variety of applications in fields such as statistical physics17, biology18,

and finance19. Although these techniques vary in their implementation, they all use a set

of sampled random numbers to aid in their computations. Here, the probability that a

particular event is noise will be derived with an instrument-noise forward model. These

probabilities, in conjunction with randomly generated numbers will be used to process sets

of TOF-MS observations.

The primary obstacle for accurate noise reduction for TOF-MS data is low measured

event rates. TOF-MS measurements are discrete datasets that often result in zero recorded

events for a given time step, as opposed to an analog audio signal or a digital image. In

fact, most measured TOF-MS data will rarely form a smooth distribution function unless

they are accumulated over long time periods. The challenge here is to reconstruct a smooth

distribution function sufficient for event processing based on only a few discrete events.

Data from MESSENGER/FIPS are used as examples for both noise forward modeling

and removal processes. FIPS is a double-coincidence TOF-MS, composed of an electrostatic

analyzer (ESA) and a TOF section. As illustrated in Figure 1, charged particles are guided

by an electric field between shaped electrodes of the ESA such that only ions with a par-

ticular energy per charge (E/q) ratio successfully reach and penetrate a thin carbon foil,

liberating secondary electrons. These electrons are accelerated by electric fields in the TOF

section and electrostatically reflected by a mirror harp assembly onto a microchannel plate

(MCP) detector, where they create a start signal. The incident particle, which is most often

neutralized by the foil20, passes through the mirror harp assembly to another MCP detector,

generating a stop signal, resulting in a correlated TOF event. The anode in the start MCP

assembly is position-sensitive, such that valid events have five properties: time step t, energy
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FIG. 1. Illustration of the MESSENGER/FIPS TOF-MS adapted from Andrews et al. 7 . Ions with

a particular range of E/q are filtered through an ESA and then analyzed by a TOF section with

imaging capabilities on the start detector. The yMCP coordinate direction of the MCP is out of

the plane of the figure.

per charge E/q, TOF , and start MCP coordinates (xMCP, yMCP), with coordinate system

geometry defined in Figure 1.

Although FIPS is used as a case study, the techniques developed here should be readily

generalizable to any TOF-MS. In Section II, we develop a mathematical framework for TOF-

MS measurements as well as a noise removal process suitable for datasets with varying SNR

and low total count rates. In Section III, we discuss a method to create a complete TOF-

MS noise forward model from accumulations of measured data, using MESSENGER/FIPS

as an example. Finally, in Section IV, we apply the noise forward modeling and removal

processes to successfully recover measured heavy ion events in and around the magnetosphere

of Mercury from MESSENGER/FIPS in-flight observations.

II. MATHEMATICAL FRAMEWORK

In order to model noise in a TOF-MS sensor, a mathematical framework for describing

how an instrument measures events must be developed. Such a framework will enable

comprehensive noise forward modeling and removal processes. The techniques described here

4



TABLE I. Notation used for the mathematical framework of TOF-MS noise modeling and removal

processes. Here, Φ is a dummy variable used to represent any of several different quantities and

distributions introduced throughout the paper.

Notation Definition

Φreal Real signal distribution of Φ

Φnoise Noise signal distribution of Φ

Φbg Background signal distribution of Φ

Φinc Incident particle signal distribution of Φ

Φ̂ Normalized distribution of Φ

Φm Φ derived from instrument measurement

Φ∗ Φ derived from noise-removal processing

are applicable to any TOF-MS. Table I introduces notation that is used to describe quantities

throughout the paper. Additional subscripts and superscripts that appear throughout the

paper but are not given in Table I will be defined at first use. The derivations here, as

well as the noise processing developed later in this section, are limited to one dimension.

However, as will be discussed, these results will apply to multi-dimensional datasets.

A. Measured events

Let the distribution of all measured events with respect to some parameter, x, be defined

as fm(x). In general, x is one of the measurable event parameters (e.g., t, E/q, TOF ). Since

it is produced from discretely measured events, fm(x) necessarily can only have integer

values. The measured events that form fm(x) can be considered to be a set of random

samples of some probability density distribution, f(x). f(x) can have non-integer values,

but its total integrated value must be the same as for fm(x) such that, for all possible values

of x,

∑
i

fm(xi) =
∑
i

f(xi). (1)

The instrument-measured fm(x) is formed through a histogram of discretely measured

events. In such an accumulation, each event corresponds to a Kronecker delta function (δij)
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FIG. 2. Comparison of measured distribution fm(x) obtained from generating N samples from the

example distribution f(x) for (a) N = 10,000 events and (b) N = 100 events. For small numbers of

events there are large point-wise differences between fm(x) and f(x). For large N , fm(x) ≈ f(x).

For each pair of distributions, N =
∑

i fm(xi) =
∑

i f(xi).

shifted to the appropriate histogram bin center, xi. fm(x) can be written in terms of a sum

of measured events as,

fm(x) =
N∑
i=1

δx,xi , (2)

where N is the total number of measured events and xi is the histogram bin location of

the ith event.

For large numbers of events, fm(x) and f(x) are nearly identical, as indicated in Figure

2a, which shows a sampling of a distribution f(x) for N = 10,000 events. However, since

fm(x) must necessarily have integer values, for small numbers of events, fm(x) can differ

substantially from f(x). This difference is illustrated in Figure 2b, which shows a sampling

of only N = 100 events from the same distribution. Therefore, f(x) can be thought of as

the limit of fm(x) at large N .

Distributions of events can be separated into two subsets: noise-based events and real

particle events, such that,

f(x) = freal(x) + fnoise(x), (3)

and

fm(x) = fm,real(x) + fm,noise(x). (4)

6



The total number of noise-based events is defined as η, and the total number of real

events is defined as S, with S + η = N .

As will be discussed in Section III, a noise forward model will naturally produce the

fnoise(x) distribution, since average noise event rates, which can be non-integers, are used to

generate the expected noise for a given time interval.

1. Signal-to-noise ratio estimation

In order to best characterize and understand the impact of noise sources on data analysis,

a direct estimation of the instrument SNR is needed. For a given accumulation of data, the

measured SNRm is defined as the total number of measured real events, S, divided by the

total number of measured noise-based events, η:

SNRm ≡

∑
i

fm,real(xi)∑
i

fm,noise(xi)
=
S

η
=
N − η
η

(5)

As discussed previously, large accumulations of data are needed to have fm,noise(x) ≈

fnoise(x). However, an accumulation over one or more dataset dimensions should be sufficient

to achieve
∑

i fm,noise(xi) ≈
∑

i fnoise(xi). In the case that this relationship holds, SNRm is

directly calculable and can be used to obtain a direct estimate of the signal-to-noise ratio

for any data product from the total measured data, fm, and forward modeled noise, fnoise.

This value can be used as a quality indicator for a set of measured data, independent of any

noise removal process that may be applied.

2. Noise event probabilities

Following equation (3), the probability that a measured event with property x is a noise-

based event can be written as,

Pm,noise(x) =
fm,noise(x)

fm(x)
. (6)

Likewise, equation (4) can be used to form the probability,
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Pnoise(x) =
fnoise(x)

f(x)
, (7)

which is effectively the large-N limit of equation (6).

If there is a known probability, Pm,noise(x), that a measured event with property x is noise,

then a Monte Carlo processing technique can be used to separate a distribution into real and

noise-based subsets as follows: (1) For each measured event, a random number is uniformly

generated between 0 and 1; (2) given the property x of each event, the corresponding prob-

ability Pm,noise(x) is compared with the value of the random number; (3) if the generated

number is smaller than Pm,noise(x), the event is flagged as noise-based. Otherwise, the event

is considered to be real; (4) After all events have been processed, recovered distributions

f ∗m,noise(x) and f ∗m,real(x) are produced. It follows from these steps that an accurate estimate

of Pm,noise(x) is vital for a successful noise removal process.

Consider several sets of N measured events randomly sampled from the distribution

fnoise(x). Although each set originates from the same distribution, for small N the point-wise

differences between their sampled distributions will be large. No set of events is necessarily

better than another; they are simply independent samplings of the same distribution. It

is therefore extremely difficult to precisely reproduce an instrument-measured fm,noise(x)

distribution from random samplings of fnoise(x), as all possible combinations of samplings are

computationally unreasonable to calculate. Therefore, it is not feasible to directly determine

Pm,noise(x).

Pnoise, however, can be readily computed because fnoise is directly produced from a noise

forward modeling process (Section III), and f(x) can be accurately estimated for a given

fm(x) (Section II B). Therefore, as an approximation, Pnoise rather than Pm,noise is used in

order to create a computationally reasonable Monte Carlo processing algorithm. To take

into account errors in the estimation of Pnoise, this Monte Carlo technique can be iterative,

whereby the dataset is continually reprocessed using updated values of f(x) and fnoise until

the total expected amount of noise has been removed, or until the algorithm converges.

As detailed in Appendix A, with the use of synthetic datasets to characterize algorithm

accuracy, this process will necessarily remove the amount of noise predicted by fnoise but

will result in the misidentification of some events (less than 20% of all events even for low

SNR values). The real events that are more likely to be misclassified, however, are those

that are statistically indistinguishable from the distribution of noise events. Concentrations
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of high-SNR events, for example, are less likely to be misclassified than single events during

times of low SNR.

B. Kernel density estimation

In order to determine Pnoise(x), the distributions f(x) and fnoise(x) must be known. Noise

forward modeling will produce fnoise(x), and for large N , fm(x) naturally approaches f(x).

However, for small N , another technique must be used to convert the measured fm(x) to a

reasonable approximation of f(x). Kernel density estimation (KDE)21 is a technique that

can accomplish this conversion for small N . In KDE, instead of using delta functions as

in equation (2), each event is represented by an arbitrary normalized function, or kernel.

Kernels that span multiple histogram bins enable non-integer representation of measured

events. A Gaussian kernel is a natural choice for TOF-MS systems since measured events

often accumulate to form a set of Gaussian-like peaks due to their normally distributed error

in the high-count limit.

A KDE-based distribution of measured events, fm,KDE(x), can be written as a sum of

normalized discrete Gaussians:

fm,KDE(x) =

N∑
i=1

e−(x−xi
w(x) )

2

∞∑
x=−∞

N∑
i=1

e−(x−xi
w(x) )

2

N. (8)

Here, w is the bandwidth of the Gaussian kernel for which the value must be tuned

to a particular type of dataset. In general, w can be a function of x. Proper selection

of bandwidth w(x) can be difficult and is distribution dependent22. This choice is further

complicated by the fact that the distribution of TOF-MS data changes with time. For this

reason, fnoise(x) is used to aid bandwidth selection, since the measured distribution must

encompass the noise distribution. The choice of w(x) here is not found analytically, but

rather empirically, to provide a reasonable estimation of f(x) guided by measured instrument

data.

Our empirical bandwidth will be composed of two parts. First, we recognize that integer

values of expected noise, on average, should be accompanied by a corresponding integer

number of measured events. The fractional part of fnoise(x), however, will likely be accom-
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panied with either zero or one measured events. For example, if the expected number of

noise events is 3.3, we would expect to measure either 3 or 4 noise events. Therefore, the

kernel bandwidth should be based on the fractional part of fnoise(x), fnoise(x) − bfnoise(x)c,

where b c denotes the integer part of the enclosed quantity23. This factor is well suited for

setting bandwidths for datasets composed almost entirely of noise, i.e., SNRm ≈ 0. In this

case, following equation (8), the amplitude of the Gaussian kernel for a single event will be

approximately equal to its corresponding noise distribution value.

For distributions with high SNR, however, a bandwidth set by this fractional noise factor

will tend to overspread, resulting in a poor estimate of f(x). To compensate for this over-

spreading, the factor 1/(1+SNRm) is included. This factor will reduce the overall spreading

of the measured events for increased signal strength, where SNRm ≈ 0 and SNRm → ∞

result in spreading reduction factors of 1 and 0, respectively. Together, the fractional noise

and spreading factors combine to form the empirical bandwidth,

w(x) =
1

fnoise(x)− bfnoise(x)c
· 1

1 + SNRm

. (9)

Equation (9) is intended to be generally applicable, suitable for datasets with both

strongly localized and uniformly distributed events and a variety of SNR values. Further

modifications to this bandwidth may be required to best fit a particular dataset of interest.

A metric that determines how well a generated distribution matches the true distribution

f(x) is the relative error between them. The relative error, E, is defined as,

E(f, fm) ≡

∑
i

|f(xi)− fm(xi)|∑
i

f(xi)
, (10)

where f(x) is the true distribution and fm(x) is the measured distribution. Here, the

sum over i represents only the portion of the dataset over which there are measured events,

since those are the only steps where Pnoise will be computed.

Some individual steps (xi) will have a very high local SNR, for example, when a real event

is measured at a step with almost no expected noise. In this case, the bandwidth w(xi) from

equation (9) will be large, causing overspreading such that fm,KDE(xi) will be very different

from f(xi). Whereas the factor 1/(1 + SNRm) can help to mitigate this overspreading,

high local SNR is still possible for steps with overall SNRm close to zero. However, in
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FIG. 3. (a) An example distribution f(x) with corresponding fm and fm,KDE distributions for

N = 100 and SNRm = 0. (b) E(f, fm) and E(f, fm,KDE) as functions of N , showing that KDE

techniques provide better estimates of f for small N , with a relative error nearly independent of N .

Ten sets of samples were obtained from f for each data point. The mean and standard deviation

of E for the 10 sets are shown for each as the data marker and error bars, respectively.

such cases the ratio fnoise(xi)/fm,KDE(xi) can still be very small, leading to Pnoise(xi) ≈ 0

and the measured event not being removed, as desired. The most sensitive SNR regime

for noise removal will therefore be SNRm → 0, and for such a regime it is imperative that

fm,KDE(xi) ≈ f(xi).

The distribution f(x) from Figure 2 and its corresponding fm,KDE distribution with

SNRm = 0 are shown in Figure 3. fm,KDE clearly provides a better estimation of f(x)

than the samples forming fm(x). To quantify this improvement, E(f, fm) and E(f, fm,KDE)

are computed for various N values as shown in Figure 3b. For large N , the KDE distribu-

tions have a slightly higher relative error than fm, but for small N they are more accurate

by two orders of magnitude.

In the case of noise modeling for TOF-MS, KDE techniques can be applied for any accu-

mulation, such as time history, TOF, or incident particle direction datasets. For the incident

particle direction datasets, the bandwidth can apply to a two-dimensional Gaussian kernel.

In general, KDE techniques can be applied to higher-dimensioned datasets22, with each di-

mension permitted its own characteristic bandwidth. The visualization of such techniques

becomes difficult, and in the case of TOF-MS, the determination of appropriate bandwidths

may become intractable. For this reason, KDE techniques for TOF-MS may be practically

limited to lower-dimensional datasets. As detailed in Appendix B, use of KDE techniques
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with a Monte Carlo event processing algorithm should result in the misidentification of less

than 25% of all events, only a modest increase in overall error when compared with using a

known f(x) instead of fm,KDE(x) (determined as <20% in Appendix A) .

III. FORWARD MODELING OF INSTRUMENT NOISE

A good estimate of fnoise(x) is vital for an accurate noise removal. Furthermore, even

in the absence of a suitable approximation for f(x), fnoise(x) will provide a direction esti-

mation of instrument SNR. The complete fnoise(x) distribution should have contributions

from any and all noise sources in an instrument. Here, the MESSENGER/FIPS sensor is

used as a baseline, and both background and active noise sources will be discussed and

modeled appropriately to demonstrate how to generate fnoise(x) from a set of accumulated

observations.

An unfiltered 50-day accumulation from the day-of-year (DOY) range 100–149 in 2011

of all MESSENGER/FIPS-measured events is shown in Figure 4. The E/q of each event

is plotted as a function of TOF, with curved tracks corresponding to real events that are

superimposed onto various noise sources. This time period of data will serve as the cali-

bration dataset that will be used to characterize the behavior of fnoise. Data from the E/q

steps marked as ”Background” will be used to characterize the background noise rates and

distributions. The distributions of events from the E/q − TOF steps marked as ”Protons”

will be used to model the contamination of the H+ mass peak into the peaks for species

of higher mass per charge (m/q) ratios. Finally, the events within the E/q − TOF steps

marked as ”ESD” will provide the rates of events triggered by increased electron-stimulated

desorption (ESD) of material from the start MCP at times of high incident particle flux.

The distribution of each of the active noise sources will be extrapolated to the TOF region

200–300ns, a range over which neither source appears to be dominant.

A. Passive noise sources

Background, or passive noise, is constant in time and independent of E/q. However,

such noise may have specific TOF and MCP position dependence. Consider as an ex-

ample, electron-stimulated desorption processes in the MESSENGER/FIPS sensor. Two

12



FIG. 4. (a) E/q − TOF spectrogram of 50 days (day of year 100-149 in 2011) of orbital MES-

SENGER/FIPS heavy-ion (m/q > 1 amu/e) measurements. Curved tracks correspond to incident

ions. Boxes marking the E/q−TOF steps corresponding to background events, proton tail events,

and induced electron-stimulated desorption events are indicated as ”Background”, ” Protons”, and

”ESD”, respectively, and will be used to characterize each noise source.

background electron sources have been identified, as described by Gilbert et al. 1 : emission

from high-voltage wire harps, and a localized field emission source near the edge of the

MCP active area. A complete noise model must include distributions corresponding to each

source.

The E/q steps marked as ”Background” in Figure 4 are the lowest instrument energy per

charge steps over which few numbers of real ion events are expected, particularly outside

of Mercury’s magnetosphere. To further avoid possible contamination from any actual low

energy per charge events, only time steps where the ratio between the start MCP rate and

valid event rate was greater than 10 are used, as real incident events will have ratios of∼2 due

to the efficiencies of ion detectors. Due to frequent drifts in instrument operating conditions,

most notably ambient temperature, the background rate calculations were performed from

daily accumulations of data. The background rates are the ”front” rate, i.e., the background
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signal on the start MCP (FSRbg); the ”rear” rate, i.e., the background signal on the stop

MCP (RSRbg); the background proton event rate, i.e., background events with low TOF ,

(PEbg); and the valid event, i.e., the double-coincidence, background rate (V Ebg). These

rates (in units of s−1) are used in various stages of the instrument noise forward model.

The accumulation time in seconds for each time step, ∆(t), is readily calculable and can

change with the operating mode of the instrument. The background TOF and MCP x− y

spectra are obtained using the full 50-day accumulated dataset, since they are not expected

to change quickly with time.

The total background distribution must be separated into its harp emission and other

field emission subcomponents, denoted with subscripts ”he” and ”fe” respectively. A simple

separation isolates events corresponding to the ”hotspot” pixels (Gilbert et al. 1) in the

background MCP x− y distribution as the generalized field emission source and attributes

the rest to wire harp emission of electrons. Following Gilbert et al. 1 , the TOF distribution

of the harp emission source corresponds to the flight times of desorbed ions from the surface

of the start MCP to the top of the TOF chamber. The TOF of the field emission source also

includes a set of peaks at a constant fraction of the flight times of the harp emission source,

indicating that desorbed species are striking the sides of the TOF chamber instead of the

top. These accumulated distributions are smoothed to reduce statistical noise. The resulting

distributions of MCP x− y and smoothed-TOF for each source are shown in Figures 5 and

6, respectively.

The TOF background noise distributions fnoise,fe(t, TOF, xMCP, yMCP) and

fnoise,he(t, TOF, xMCP, yMCP) can be written for a given accumulation of time following equa-

tions (11) and (12),

fnoise,fe(t, TOF, xMCP, yMCP) = gfe · V Ebg · f̂fe(TOF ) · f̂fe(xMCP, yMCP) ·∆(t), (11)

and

fnoise,he(t, TOF, xMCP, yMCP) = ghe · V Ebg · f̂he(TOF ) · f̂he(xMCP, yMCP) ·∆(t). (12)

Here, gfe and ghe are the fractions of contributions of both sources, where gfe + ghe = 1.

V Ebg is the total background valid event rate in s−1, and ∆(t) is the accumulation time for

a given time step in s. Other background sources of noise can be characterized similarly.
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FIG. 5. Normalized MCP x − y distribution of background ESD events in MESSENGER/FIPS

triggered by (a) harp emission electrons (f̂he(xMCP, yMCP)) and (b) field emission electrons

(f̂fe(xMCP, yMCP)). The red circle indicates the boundaries of the MCP active area. The field

emission electrons are concentrated in a beam forming a set of ”hotspot” pixels near the edge of

the active area whereas the harp emission electrons strike almost uniformly over the surface of the

MCP.

FIG. 6. Normalized TOF distribution for background ESD events in MESSENGER/FIPS triggered

by (a) harp electrons (f̂he(TOF )) and (b) field emission electrons (f̂fe(TOF )). The harp emission

TOF distribution corresponds to the flight times of desorbed species from the surface of the start

MCP to the top of the TOF chamber. The field emission events include a contribution from

desorbed ions that strike the side of the TOF chamber, leading to flight times at a constant

fraction of the corresponding harp emission distribution peaks.
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B. Active noise sources

Active sources create noise as a function of incident particles or photons. Any external

stimulus capable of generating signals from the start and stop detectors is considered an

active source. The sources considered here will be ion energy straggling and induced ESD, as

discussed in detail by Gilbert et al. 1 . Accidental coincidences due to high flux or penetrating

radiation will not be modeled due to the extremely low SNR of measurements during those

time periods.

1. Ion energy straggling

Particles passing through a thin carbon foil lose some of their kinetic energy, a phe-

nomenon called ”energy straggling”24. The resulting distribution features a high TOF peak

tail for each species. For a TOF-MS, H+ will always have the smallest TOF , as it has the

smallest possible m/q of 1 amu/e. The tail for H+, therefore, has the potential to con-

taminate the TOF channels corresponding to all other ion species, as shown in Figure 4.

Furthermore, for MESSENGER/FIPS, the most easily measured ion is H+, which is present

in both the solar wind and Mercury’s magnetospheric environments and is typically orders

of magnitude more abundant than other species25. The rates of heavier ion events can be

comparable to the magnitude of the proton peak tail, making it difficult to distinguish be-

tween the two sets of particles. Events in the E/q − TOF steps in Figure 4 labeled as

”Protons” are assumed to be dominated by the proton peak tail.

Although it is possible to obtain an overall good fit to energy-straggled TOF s using a

kappa distribution24, for heavy ion species small errors in the fit can create relatively large er-

rors in fnoise. Therefore, rather than use a functional fit for the entire proton peak shape, the

accumulation of data from Figure 4 is smoothed and used as the noise distribution directly,

analogous to the formation of the background noise distributions. The average proton peak

shape is expected to change with time, as changes in ambient temperature may affect the

energy straggling process through the carbon foil, and the thickness of the carbon foil may

not be spatially uniform, leading to different peak shapes for time periods where, on average,

particles enter the instrument aperture from different directions. For MESSENGER/FIPS,

the proton peak shape is updated from 10-day accumulations, providing a balance between
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FIG. 7. TOF distribution of proton tail events from E/q = 1.5 keV/e for DOY 100–209 in 2011,

normalized by the proton event rate. TOF s corresponding to solar wind ion tracks for He2+, He+,

and 〈OC〉, the averaged solar wind heavy ions3, are indicated. The black solid curve is the set of

normalized raw measurements . The red dashed curve represents a smoothed curve that has been

interpolated through ion track TOF s and extrapolated to higher TOF s with a power law.

statistical significance and capturing this time variation.

The expected background spectum calculated in Section III A is subtracted from this

accumulation, and TOF channels corresponding to actual ion tracks are excluded. The data

are linearly interpolated through these data gaps and extrapolated to higher TOF channels

with a power-law fit, consistent with a kappa TOF peak shape. An example TOF spectra

for a 10-day accumulation at E/q = 1.5 keV/e is shown in Figure 7, with a corresponding

noise curve fit that interpolates through ion track locations and extrapolates to higher TOF

values.

The amplitude of the H+ tail should scale with the total number of measured proton

events (PE) measured at lower TOF s, i.e., near the peak of the H+ TOF distribution. The

accumulated data in each energy step is therefore normalized by the total corresponding

proton event rate to form f̂noise,H+(TOF,E/q). The errors in this quantity are greatest
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for energy steps in which the proton event rate is comparable to the background rate.

However, since the expected noise from proton events in these steps will be low, this error is

manageable. The MCP x− y distribution of this noise will be that of the incident protons,

f̂inc,H+(E/q), which can be obtained by accumulating events close to the proton peak at each

energy step. The expected fnoise therefore becomes:

fnoise,H+(t, TOF,E/q, xMCP, yMCP) = (PE(t, E/q)− PEbg)

×f̂noise,H+(TOF,E/q)

×f̂inc,H+(xMCP, yMCP)

×∆(t). (13)

2. Induced ESD

In addition to electrons from field emission or harp emission sources, secondary electrons

from incident particles can desorb ions from instrument surfaces, resulting in valid TOF

events. For MESSENGER/FIPS, a number of ion species are desorbed from the start MCP

and follow trajectories that lead to correlated stop signals. This effect occurs with some

probability relative to an incident particle being detected. Therefore, the total number of

these events should be proportional to the number of non-background start signals detected

in a particular E/q step. Also, desorption rates will depend not only on the number of

incident particles but on where those particles enter the instrument.

Given, as in Section III A, that a uniform distribution of harp electrons strikes the MCP,

the harp electron event distribution is proportional to the number of valid events per start

signal in each MCP ”pixel”. Not every start signal will have a corresponding stop signal, so

the ratio of the valid event rate to the start rate will always be less than one. In addition, the

incident particle distribution (f̂inc) should correspond to the distribution of start signals on

the MCP. Multiplying f̂inc(xMCP, yMCP) by the background harp electron event distribution

f̂he,bg(xMCP, yMCP) should therefore give an estimation of the MCP spatial distribution of

induced ESD events.

The TOF distribution for induced ESD events for MESSENGER/FIPS should follow

that of the harp-emission-based events. However, it should be noted that incident particles
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on average tend to hit closer to the center of the MCP active area than the background

events. Ions desorbed from these locations have a larger distance to travel due to the curved

top of the TOF chamber. This effect is observed as a small shift in TOF (TOFo) of the harp

electron TOF distribution. For MESSENGER/FIPS, TOFo can be computed for each daily

accumulation of data through the calculation of the change in the first moment of the largest

TOF peak (325–375ns) from the expected background distribution, following equation (14),

TOFo =

∑
ESD

TOF · (fm − fhe,bg)∑
ESD

(fm − fhe,bg)
−

∑
ESD

TOF · fhe,bg∑
ESD

fhe,bg
, (14)

where

∑
ESD

≡
375ns∑

TOF=325ns

∑
(E/q)ESD

∑
t

∑
(xMCP,yMCP)

. (15)

The distribution of ESD-induced noise with respect to E/q step and MCP x−y can then

be written as,

fnoise,ESD(t, xMCP, yMCP, E/q) = c · (FSR(t, E/q)− FSRbg)

×f̂he(t, xMCP, yMCP)

×f̂inc(t, xMCP, yMCP, E/q)

×f̂he,bg(TOF − TOFo)

×∆(t), (16)

where c is a constant.

The constant c can be found from a daily accumulation of data such that,

∑
ESD

(fm − fhe,bg) =
∑
ESD

fnoise,ESD. (17)

With a full TOF spectrum of noise known, the ESD spectrum readily applies to the

”overlap” region in TOF between 200 ns and 300 ns.
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FIG. 8. Block diagram describing noise modeling and event processing for MESSENGER/FIPS.

Measured data as well as noise calibration factors are input into a noise forward model that produces

fnoise and consequently, estimates of dataset SNR. The measured data fm along with fnoise is input

to a KDE estimator that provides fm,KDE, a distribution suitable for use in a Monte Carlo processor

that separates fm into f∗m,real and f∗m,noise.

IV. NOISE PROCESSING FOR MESSENGER/FIPS

As illustrated in Figure 8, with all noise sources well characterized, fnoise can be accurately

determined for a given set of measured data fm, resulting in a direct estimation of SNR for

any size dataset. A KDE estimator, given fnoise and fm as inputs, can produce fm,KDE,

an approximation to the underlying distribution function (f) that can be analyzed using a

Monte Carlo event-processing algorithm, and the measured distribution of real events, f ∗m,real,

can be recovered. This model is applied here to in-flight data from MESSENGER/FIPS.

A. Noise forward modeling

To model the various sources of noise, the relevant noise distributions from Section III

must be added together for each time step. It is important to note that the spatial distribu-

tion of incident particles is required in both the models of proton peak tail noise and induced

ESD events for MESSENGER/FIPS. When the SNR in each E/q step is low, an iterative

noise removal/modeling process may be required to obtain the proper incident spatial distri-

bution. However, in the case of MESSENGER/FIPS, the number of expected noise events

will be small for a single time step, i.e., fm,noise(t) � fm,real(t). E/q steps that contribute

substantially to active noise sources will have large numbers of incident particles that should

dominate the measured MCP x−y distribution. Therefore the total MCP x−y distribution
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is used for an approximation to the spatial distribution of incident particles. The error in

this approximation will be large for small numbers of incident particles, but since active

noise sources scale with the measured start rate, the contribution from these low count-rate

steps to the total accumulated active noise should be negligible.

Due to the number of data dimensions and their corresponding interdependencies, a

complete five-dimensional fnoise(t, E/q, TOF, xMCP, yMCP) distribution may be difficult to

manage and store. Furthermore, as discussed in Section II B, noise removal using KDE

techniques is challenging for higher-dimensional datasets. Therefore, instead of producing

the complete distribution of noise, several noise data products can be produced that represent

accumulations along one or more of the dimensions. Such summation seemingly removes

vital information for reconstructing an accurate fm,real. However, as will be discussed in

Section IV B 1, with proper choice of accumulations, a reasonable fm,real can be recovered.

For MESSENGER/FIPS, the MCP x− y distribution is measured with the least precision.

Furthermore, the majority of the noise sources are either widely spread over the MCP active

area or have a similar positional dependence as the incident particles. Therefore, ignoring

the MCP x− y dependence is expected to improve statistical significance of accumulations

with minimal impact on the accuracy of modeled distributions.

Two accumulations are calculated here as an example. The first, fnoise, is a E/q − TOF

spectrogram for a particular time period. Such an accumulation, although not as useful from

the perspective of scientific analysis, provides a good evaluation of noise forward-modeling

performance. The second, fnoise, is an energy-dependent time series for a given ion that

accumulates over MCP x − y and several TOF values, and that series will be the baseline

for all FIPS heavy ion science analysis.

An accumulated E/q−TOF distribution (9a) with corresponding forward modeled noise

(9b) for 10 days (DOYr 100–109, 2011) in shown in Figure 9. Ion tracks for He2+, He+, Na+,

and Ca+ are marked. For clarity, not all ion tracks present in the data have been included.

The two distributions vary only at the locations of ion tracks, where the noise distribution

underestimates the total number of events, as expected. There are good matches with the

proton peak tail and induced ESD noise in terms of both E/q−TOF location and intensity.

Synthetic data are used in Appendix A to demonstrate that with an accurate fnoise, removal

should be accurate to within 25%. Given the quality of the generated fnoise shown in Figure

9, this estimation of error should be directly applicable to measured MESSENGER/FIPS
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FIG. 9. (a) 10 day (DOY 100–109, 2011) E/q − TOF accumulation of events measured by MES-

SENGER/FIPS. Tracks corresponding to heavy ions He2+, He+, Na+, and Ca+ are highlighted.

(b) Forward modeled E/q − TOF noise distribution for the same time period. There is an ex-

cellent match between the measured data and generated fnoise distribution, with the only major

discrepancies occurring at the locations of known ion tracks, at which actual events are expected

to be present.

data.

B. Noise removal

Once fnoise is generated, the set of processed events can be split into sets of recovered

real and noise-based events. Although it is not possible to calculate the accuracy of this

separation for measured datasets, the expected properties of recovered events, both real and

noise, can be used to gain confidence in the removal process. On-orbit MESSENGER/FIPS

data (DOY 100–109, 2011) have been analyzed using daily accumulations of He2+, He+,

Na+, and Ca+ at each E/q step, yielding a series of one-dimensional time series suitable for

processing with the algorithm described in Section II A 2.

Each time series is further split into two parts: ”active” and ”quiet”, with active times

defined as periods when the proton rate goes above 15 events per E/q step (i.e., inside

Mercury’s magnetosheath or during FIPS solar wind observations), and quiet times (typi-

cally inside Mercury’s magnetosphere) defined as when the proton rate has remains below

15 events per E/q step for at least 64 FIPS energy per charge scans ( 1 hour or 1 minute
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FIG. 10. Total measured (fm), modeled noise (fnoise), and recovered ion events (f∗m,real) as a

function of E/q for a 10 day (DOY 100–109, 2011) accumulation of MESSENGER/FIPS on-orbit

data for quiet and active periods for (a) He2+, (b) He+, (c) Na+, and (d) Ca+. The noise processing

algorithm accurately recovers ion events, resulting in a substantial increase in measurement signal-

to-noise ratios, especially for E/q steps corresponding to a high incident proton flux.

depending on operating mode). The active time periods will be dominated by active noise

sources such as H+ energy straggling and induced ESD, which have larger uncertainty in

the forward modeled fnoise. If the noise for a particular step is overestimated, real events

that occur during quiet times would be thrown out. By splitting up the time series, a more

sensitive recovery of events is expected.

The total number of events from both active and quiet time periods for each ion as a

function of E/q is shown in Figure 10, along with corresponding recovered real events and

predicted fnoise. For all ions, the large peak near E/q = 1 keV/e is effectively removed, since

it corresponds to the proton peak tail/ESD events. From Figure 9, where there are clear ion

tracks at higher energies in the absence of modeled noise, almost no events are removed.

Statistics will also play a role in the recovery, as the counting error (
√
N) for low SNR

datasets results in some uncertainty on the number of events that should be eliminated.

Consequently, the threshold ratio of the recovered signal to counting error ratio, S/
√
N ,

may be required to give confidence in the recovery even in the presence of errors in the noise

forward model. For example, in the analysis of Gershman et al. 3 , Zurbuchen et al. 2 , and

Raines et al. 5 , the threshold used for solar wind heavy ions was S/
√
N > 1 for quiet times

and S/
√
N > 2 for active times. The threshold in the study by Gershman et al. 4 for He+

pickup ions was S/
√
N > 1 and S/

√
N > 10 for quiet and active periods, respectively, to
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ensure that times of increased solar wind proton flux into the instrument did not lead to an

erroneously high measurement of He+ events.

1. Recovery of individual ion events

The output of the noise processing algorithm is a one-dimensional time history of ion

events as a function of E/q. However, to enable the most flexibility in scientific analysis

of measured instrument data, a list of real individual events in the full five dimensions is

desired. Surprisingly, the low measurement statistics are actually advantageous for this

recovery. The processed dataset will have at most a few measured events (often only one)

per time step. For this case, there is very little ambiguity on which event per step should be

identified as noise. However, in cases with multiple events per time step, a simple criterion

is used in which the proper number of events with the highest predicted MCP x − y noise

for that particular step are removed. Such a recovery will result in increased error, but this

ambiguity will not be common for low statistics, and in fact datasets with large numbers of

events will most likely not require such a recovery. Furthermore, the effects of any errors

introduced by incorrect assignment of events are expected to be small, especially since most

noise events have MCP distributions similar to those of actual events.

As an example, Figure 11 shows the total modeled MCP x − y noise distribution for

He2+, He+, Na+, and Ca+, and the corresponding MCP x− y distributions of the recovered

noise events, f ∗m,noise. The overall recovery errors are expected to be less than 25% as

predicted by the example distributions from Appendix B. The removed noise events exhibit a

similar distribution to the predicted noise in terms of both spatial distributions and intensity.

Therefore, despite the fact that the MCP x − y distribution was not considered during

the removal process, a reasonable five-dimensional event distribution recovery has been

accomplished.

V. CONCLUSIONS

We have developed a mathematical framework for the characterization, forward mod-

eling, and post-processing of noise events in spaceborne time-of-flight mass spectrometers.

Using in-flight data from MESSENGER/FIPS as examples, a forward model of sensor noise
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FIG. 11. Total recovered and modeled noise MCP x− y distributions for DOY 100–209, 2011 for

(a) He2+, (b) He+, (c) Na+, and (d) Ca+ ions. The recovered noise MCP x−y distributions are the

set of individual events (with full five-dimensional information) that have been processed with the

Monte Carlo noise removal algorithm. Although the MCP x−y dependence was originally ignored

in the event processing, the recovered distribution, f∗m,noise, still matches the predicted noise, fnoise,

implying a quality removal.

was constructed that provided estimations of the ratio of signal to noise in all data dimen-

sions. Kernel density estimation techniques were used to take measured instrument data

and recover their underlying distribution functions suitable for use with a Monte Carlo

event-processing algorithm. With an accurate noise model, measured events were separated

into real and noise-based events, with an expected overall misidentification of events ex-

pected to be less than 25%, even for datasets with low SNR or poor counting statistics.

This removal was done after accumulating over incident particle directions that were later

recovered, enabling maximum versatility in possible scientific analysis.

Although applied to MESSENGER/FIPS as an example, the techniques described here

are applicable to any such TOF-MS or even other sensors that measure discrete events.

An in-depth characterization of noise not only results in an improved understanding of

idiosyncrasies of a particular spaceflight instrument, but can also make any changes in

sensor response or newly measured scientific phenomena more easily identifiable. These

techniques provide a way to improve the SNR of instruments for which settings may not

be sufficiently adjustable in flight, a method to mitigate unexpected instrument behavior

in the harsh and unpredictable space environment. Furthermore, existing archived datasets
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plagued with low SNR can be revisited and potentially reanalyzed, producing new scientific

results from all-but-forgotten instruments.

Appendix A: Event processing errors

Before being applied to in-flight data, the performance of the removal process must be

evaluated with synthetic datasets. A direct calculation of the change in SNR after processing

data is not necessarily an adequate metric in determining the accuracy of the noise removal.

In fact, the results of such a computation may be misleading as, in addition to removing

noise-based events, an algorithm may remove some real events, biasing measurements of

SNR. Therefore, the relative loss of signal, |∆S/S|, and relative reduction in noise, |∆η/η|,

should be analyzed individually. Note that with the presented technique, the total number of

recovered real events will be set by the total amount of modeled noise, so errors in processing

will likely be a misclassification of noise and real events rather than removal of the incorrect

number of events. Therefore, it is expected that |S| ≈ η − |∆η|.

Steps that contribute to data loss are those for which the total remaining signal (f ∗m,real) is

less than that of the distribution of true real events (fm,real). Accumulating these differences

and dividing by the total number of real events yields the fraction of events lost due to the

removal process, |∆S/S|, as shown in equation (A1),

∣∣∣∣∆SS
∣∣∣∣ =

∑
i


fm,real(xi)− f ∗m,real(xi)∑

j

fm,real(xj)
, fm,real(xi) ≥ f ∗m,real(xi)

0, fm,real(xi) < f ∗m,real(xi)

. (A1)

On the contrary, steps that overestimate the real signal, i.e., f ∗m,real > fm,real, can be used

according to equation (A2) to calculate the fraction of the noise removed, |∆η/η|,

∣∣∣∣∆ηη
∣∣∣∣ = 1−

∑
i


f ∗m,real(xi)− fm,real(xi)∑

j

fm,noise(xj)
, f ∗m,real(xi) ≥ fm,real(xi)

0, f ∗m,real(xi) < fm,real(xi)

. (A2)

If fm,real and fm,noise are known, equations (A1) and (A2) can be used to evaluate the

accuracy of a noise removal process. Note that these quantities are not directly calculable
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from data and can be used in the analysis only of synthetic datasets. Ideally, |∆S/S| → 0

and |∆η/η| → 1, i.e., all of the noise is removed without eliminating any of the true signal.

The overall misidentification of events (|∆f/f |) can be calculated by adding the number

of removed signal events (∆S) to the number of remaining noise events, (η − ∆η), and

normalizing by the total number of events, N ,

∣∣∣∣∆ff
∣∣∣∣ =

S + (η −∆η)

N
. (A3)

From the known relationships between S, η, and SNRm,

S = N · SNRm

1 + SNRm

and

η = N · 1

1 + SNRm

, (A4)

(A5)

and combining these relations with equations (A1) and (A2), equation (A3) can be written

as,

∣∣∣∣∆ff
∣∣∣∣ =

1

1 + SNRm

(
1−

∣∣∣∣∆ηη
∣∣∣∣)+

SNRm

1 + SNRm

(∣∣∣∣∆SS
∣∣∣∣) . (A6)

As expected, for the ideal recovery in which |∆S/S| → 0 and |∆η/η| → 1, the misclassi-

fication of events |∆f/f | → 0.

As discussed in Section II A 2, Pnoise is used instead of Pm,noise as part of an iterative

Monte Carlo event processing technique. The error introduced by this approximation can

be quantified through Monte Carlo processing of two synthetic datasets. Two test cases are

examined: (1) real events uniformly distributed in time, and (2) real events all occurring at

a single time step. Noise sampled from the distribution shown in Figure 2 is superimposed

on each signal.

In the case of a perfectly localized signal, Pnoise = Pm,noise. Therefore, even for small

N , a Monte Carlo processing technique will separate fm,real and fm,noise with almost 100%

accuracy, with |∆S/S| ≈ 0 and |∆η/η| ≈ 1. For a uniformly distributed signal, however,

Pnoise 6= Pm,noise, especially for small N , resulting in errors in the noise removal process that

are dependent on both N and SNRm. For datasets with various SNRm, |∆S/S|, |∆η/η|,
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FIG. 12. (a) |∆S/S|, (b) |∆η/η|, and (c) |∆f/f | as functions of SNR of a uniformly distributed

real event signal for various numbers of noise-based events η. An idealized Monte Carlo event

processing algorithm was used with Pnoise computed using the noise distribution from Figure 2.

Each data point represents the average of 10 independent removals of the same dataset, and the

error bars indicate the standard deviation. The overall misidentification of events, |∆f/f |, is less

than 20% for all SNR.

and |∆f/f | may be computed for a varying number of noise-based events η = 10, 100, 1000,

and 10,000 and are shown in Figure 12.

Both fewer real and noise events are removed with increasing SNR, with approximately

a 20% removal of real events and 80% removal of noise events at SNR ≈ 1 in Figures 12a

and 12b. The overall event identification error, |∆f/f |, in Figure 12c, however, is less than

20% for all SNR, peaking near SNR ≈ 1. Event misidentification is a consequence of using

the large N limit noise probability Pnoise instead of Pm,noise. These errors will be greatest

for non-localized event distributions. As expected, improved results are obtained for large

N , where Pm,noise → Pnoise. However, despite these misidentifications, it is important to

remember that the algorithm will necessarily remove the correct amount of noise, i.e., the

total amount of recovered signal will be accurate to within the errors of fnoise.

Appendix B: Event processing errors from KDE

With appropriately defined metrics |∆S/S|,|∆η/η|, and |∆f/f |, the performance of a

KDE-implemented noise removal algorithm can be analyzed using synthetic data as a func-

tion of the total number of events and dataset SNR. The two test cases used in Appendix A

are re-examined here. Instead of a known Pnoise, however, an approximate Pnoise is obtained

through KDE estimation of f(x). |∆S/S|, |∆η/η|, and |∆f/f | are shown as functions of

SNR for both the uniform real event and localized real event distributions in Figure 13.
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FIG. 13. (a), (b), (c) are the same as Figure 3 but with fm,KDE instead of a known f for a uniform

distribution of real events. (d),(e),(f) are the same as parts (a),(b), and (c) but for a localized

event source at time step t = 2800. With KDE techniques, the overall misidentification error is

expected to be less than 25%.

For the uniform real event distribution, the |∆S/S|,|∆η/η|, and |∆f/f | values here are

similar to the ideal Monte Carlo process results from Figure 12, with slightly more real events

being misidentified at SNR = 1 (∼25%) and slightly less noise events removed at higher SNR

values (∼20%). The localized events also show some increased error when compared with

the idealized case. As expected, an increased number of events N leads to more accurate

removal. The KDE technique therefore appears to provide suitable estimates of f(x), such

that the end result of the Monte Carlo processing algorithm is similar to that of the ideal

cases in all SNR regimes. From these tests, one can expect that for an accurate fnoise, the

total number of expected noise events will be removed with less than 25% of the total events

(noise and real) being misidentified for both localized and more uniform distributions of real

events.
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