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Common Knowledge and Game Theory

by Ken Binrnore and Adam Brandenburger*

I know not what I know not.

St. Augustine, ConJcssions

1. Introduction. It is traditional to introduce the subject of common knowledge with a little story.

The following version is quoted from Littlewood's [1953] Mathematical Miscellany.

Three ladies A, B and C in a railway carriage have dirty faces and are all
laughing. It suddenly flashes on A: why doesn't B realize C is laughing at
her?-Heavens! I must be laughable.

A more elaborate version of the storyl concerns three less frivolous ladies called Alice, Bertha

and Cora. Each lady blushes if and only if she knows her own face to be dirty. All three have dirty

faces but, nobody blushes until a clergyman enters the carriage and remarks that there is a lady in the

carriage with a dirty face. It is now impossible that nobody will blush.

If it were true that nobody blushes then Alice could reason as follows:

Alice: Suppose my face is clean so that Bertha and Cora can exclude me from the set of dirty-faced
ladies. Then Bertha could argue as follows:

Bertha: Suppose my face is clean so that Cora can exclude me from the set of dirty-faced
ladies. Then Cora could argue as follows:

Cora: The clergyman's statement tells me that the set of dirty-faced ladies is not
empty. Neither Alice nor Bertha are in the set. Hence I am in the set and must blush.

Bertha: My simulation of Cora's reasoning informs me that she should blush if I have a
clean face. Since she has not blushed, I have a dirty face and must blush myself.

Alice: My simulation of Bertha's reasoning informs me that she should blush if I have a clean
face. Since she has not blushed, I have a dirty face and must blush myself.

But the argument began with the hypothesis that nobody blushes. Since this hypothesis has been

contradicted, somebody muelst biisi. 'he saiiie reaso)niiig, of course, applies however many ladies there

might be.

* This paper is an enlarged and rnuch revised version of Binmore and Brandenburger [1988]
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Why did the ladies in the story have to wait for the clergyman's intervention before blushing?

After all, he only told them that there was a dirty-faced lady in the carriage and each lady already knew

that there were at least two dirty-faced ladies in the carriage. But, to carry the argument through, the

ladies need also to know what the other ladies would know under various hypothetical circumstances.

Thus Alice needs to know what Bertha would know if Alice had a clean face. Moreover, Alice needs to

know what Bertha would know about what Cora would know if Alice and Bertha had clean faces. And

so on through as many levels of knowing as there are ladies in the carriage. It is this information that

is supplied by the clergyman's announcement.

The clergyman's announcement ensures that it will be common knowledge that a dirty-faced lady

is present whenever there actually is a dirty-faced lady present. For an event to be common knowledge,

the requirement is not only that everybody knows it, but that everybody knows that everybody knows

it, and everybody knows that everybody knows it: and so on.

This is an abstruse-looking definition, but it is an important one. The reason is that any

equilibrium notion that incorporates some measure of self-prophesying necessarily entails common

knowledge requirements of some kind, although these are seldom stated explicitly. In equilibrium,

agents optimize given their. predictions of the future. The future therefore partly depends on the

predictions the agents make. Where do these predictions come from? If they are well-founded, they

will be based on an agent's knowledge. In the case of only two agents, this means that agent 1 must

know at least something about agent 2's knowledge, because the future depends partly on agent 2's

predictions. But a relevant part of agent 2's knowledge will be what agent 2 knows about agent l's

knowledge. And so on.

The background intuition for such discussions is that rational agents cannot "agree to disagree"

[Auinann, 1976]. Suppose, for example, that two agents agree to disagree about the probability p that

heads will result from tossing a weighted coin. Agent 1 insists that p is almost certainly 0.501 and

agent 2 insists that p is almost certainly 0.499. The two agents then have the economist's equivalent of

a philosopher's stone, which they can use to resolve all conflicts of interest between them, without the

need for compromise on either side. They can agree to resolve any issue entirely in favor of agent 1 if

the number of heads appearing in 1,000,001 tosses exceeds the number of tails, and entirely in favor of

agent 2 if not.

But, if both agents simultaneously proposed such a deal, would they go through with it? If both

agents are rational and have reason to believe the other is rational, then there are grounds for supposing
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otherwise. After the deal has been proposed, each agent now knows something about what the other

agent knows. This new information should lead both to revise their estimates of p.

The story of the dirty-faced ladies already embodies the essential point. Mutual observation of

agents' behavior can lead to information becoming common knowledge that was not common knowledge

before.

Perhaps the most important area in which such problems arise is in the study of rational

expectations equilibria in the trading of risky securities. How can there be trade if everybody's

willingness to trade means that everybody knows that everybody expects to be a winner? (see

Milgrom/Stokey [1982] and Geanakoplos [1988].) Since risky securities are traded on the basis of

private information, there must presumably be some "agreeing to disagree" in the real world. But

to assess its extent and its implications, one needs to have a precise theory of the norm from which

"agreeing to disagree" is seen as a deviation.

The beginnings of such a theory are presented here. Some formalism is necessary in such a

presentation because the English language is not geared up to express the appropriate ideas compactly.

Without some formalism, it is therefore very easy to get confused. However, nothing requiring any

mathematical expertise is to be described.

2. Knowledge. The account begins with a set Q of possible states of the world. To keep things simple

Q will always be assumed to be a finite set when formal matters are under discussion. A subset E of Q

is to be identified with a possible event.

To discuss what an individual i knows, his knowledge operator K is introduced. For each event. E,

the set KE is the set of states of the world in which individual i knows that E has occurred. Or, more

briefly, KE is the event that i knows that E has occurred.

For example, in the story of the dirty-faced ladies, a state space (1 with eight states is required.

The eight states of the world will be numbered as indicated in figure 1. The event that Alice's face is

states 1 2 3 4 5 6 7 8
A's face clean dirty clean clean dirty dirty clean dirty
B's face clean clean dirty clean dirty clean dirty dirty

C's face clean clean clean dirty clean dirty dirty dirty

Figure 1

dirty is then D = {2, 5,6, 8}. If blushing were not part of the story, she would know that her face was

dirty after the clergyman's announcement only in state 2. Writing KA for Alice's knowledge operator,

it would then be true that KAD = {2}.
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What should be assumed about the knowledge operator? The properties usually considered are

listed below. All but the final property (K4) will be taken for granted throughout the paper. Property

(K4) is more controversial and its use will be postponed until section 5.

(KO) K1 =fl

(K1) K(EnF)=KEnKF

(K2) KE C E (axiom of knowledge)

(K3) KE C K 2 E (axiom of transparency)

(K4) (-~ K) 2E C KE (axiom of wisdom)

The first two properties are book-keeping assumptions. Notice that it follows from (K1) that, if

E C F, then KE C KF. Bacharach [1987] refers to (K2) as the "axiom of knowledge" on the grounds

that it expresses the requirement that one can only really know that something has happened if it

actually has happened. For similar reasons, Geanakoplos [1988] refers to "non-deluded" individuals in

this connection. In (K3), !K2 E stands for K(KE) and hence is the event that the individual knows that

he knows that E has occurred. Thus (K3) means that the individual cannot know that something has

happened without knowing that he knows it. This explains Bacharach's [1987] use of the terminology

"axiom of transparency" for (K3). Notice that (K2) and (K3) together imply that KE = K 2 E. In

(K4), ~ KE stands for the complement of KE, and hence the condition requires that if the individual

does not know that he does not know something, then he knows it. Discussion of this "axiom of

wisdom" is postponed until it is used in section 4.

A truism T will be defined to be an event that cannot occur without the individual knowing that

it has occurred. This translates into symbols as T C KT. For example, the event that a dirty-faced

lady is in the railway carriage is a truism for Alice provided that the clergyman can be relied upon to

draw her attention to the fact whenever it happens and never when it does not.

If one thinks of truisms as embodying the essence of what is involved in making a direct

observation, then there is a sense in which all knowledge is derived from truisms. The following

proposition expresses the idea formally.

Proposition 1. An event E is known to have occurred (w E K(E ) if and only if a truism T has

occurred which implies E (w E T G E).
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The proposition has little content but will serve to illustrate the use of properties (K0) through

(K3). Note first that, by (K2), the criterion for a truism may be simplified to

T= KT.

Since KE = K2E for all events E, it follows that truisms are just the events of the form KE, where E

is any subset of Q.

Returning to proposition 1, observe that, if w E KE, then T = KE is a truism satisfying

w E T C E. On the other hand, if w E T C E, then KT C KE and so w E T = KT C KE. Thus

w E KE.

3. Common knowledge . The formulation of common knowledge in terms of everybody knowing that

everybody knows and so on, was first given by Lewis [1969] in a philosophical study of conventions. Lewis

attributes the basic idea to Schelling [1960]. Aumann [1976] came up with the idea independently in a

somewhat different context. His formulation is important because it provides a precise characterization

of when an event is common knowledge that does not require thinking one's way through an infinite

regress.

For the case of three dirty-faced ladies, the (everybody knows) operator is defined by

(everybody knows)E = KA EnKB EnKc E.

The event that everybody knows that everybody knows E is then

(everybody knows)2 E

and the event that everybody knows that everybody knows that everybody knows E is

(everybody knows) 3 E.

With these preliminaries out of the way, it is now possible to define the event

(everybody knows)**E

to be the intersection of all sets of the form (everybody knows)"E.

Lewis' [1969] critcrioni for common knowledge can now be expressed formally. Au event E is

common knowledge when w occurs if and only if

w E (everybody knows)**E.
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Some observations about the (everybody knows) operator will be helpful in getting to Aumann's

[1976] criterion. It is being assumed that each individual's knowledge operator (KA, K, and Kc

in the case of the three dirty-faced ladies) satisfies (KO) through (K3). It follows that the operator
K = (everybody knows) satisfies (K0) through (1'2). (Usually (K3) will not. he satisfied.) mro

(K2) one may conclude that the sets (everybody knows)"E are shrinking in that each contains its

predecessor. Since f is a finite set, a positive shrinkage can only occur a finite number of times. Thus,

for some N,

(everybody knows)"E = (everybody knows)' E

for all n> N.

This point is made to facilitate checking that the common knowledge operator K = (everybody knows)oo

satisfies not only (KO) through (K2), but (K3) as well. The following analog to proposition 1 must

therefore be true.

Proposition 2. An event E is common knowledge (w E (everybody knows)° E) if and only if a

common truism T has occurred which implies E (w E T C E).

A common truism is, of course, an event T that satisfies T = (everybody knows) T. Ilowever,

the infinite regress in this definition can be eliminated. The criterion

T = (everybody knows)T

is equivalent2 and simpler. This in turn can be replaced by the even simpler criterion of the following

proposition.

Proposition 3. An event '1' is a common truism if and only if it is a truism for each individual

separately.

A proof will be given for the case of two dirty-faced ladies. If T is a truism for each lady separately,

then T = KAT and T = KBT. Thus T = TnT = KATnKBT = (everybody knows)T. If T is a common

truism, then T = KATnKBT C KAT C T (by K2). Hence T = KAT and so T is a truism for Alice

and a similar argument shows T to be a truism for Bertha.

(Mathematicians may prefer to express proposition 3 in terms of the set f7of common truisms

and the sets f, fj and 5c of individual truisms. It then asserts that 7= % n9ij fc. One rnay

add that all of these sets are topologies, being closed under intersections and unions (recall that O is
finite). Thus Vis the finest common coarsening of the topologies YA, '1a and c.)
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The importance of what have been called common truisms in the preceding discussion has been

emphasized by a number of authors. Monderer and Samet [1988] call them "evidently known events."

Geanakoplos [1988] prefers "necessarily known events." Milgrom [1981] speaks of "public events."

4. Possibility. After o occurs, an individual will know that certain states are impossible. For

example, if T is any truism containing w, then he will know that states outside T are impossible. Thus

the set P(w) of possible states when w occurs, lies inside each truism T containing w. But P(w) must

itself be a truism because the individual cannot evade knowing what he regards as possible. Thus P(w)

is the smallest3 truism containing w.

Examples of possibility sets can be found by returning to the story of the dirty-faced ladies.

The state space f is described in figure 1. Figure 2 below shows the possibility sets for each lady

before the clergyman provides any information. For example, whatever Alice learns about the faces

of the other ladies, it remains possible for Alice that her own face is either clean or dirty. Thus
PA(1) = PA(2) = {1,2}.

1 1

2 /3 2 3 4 (2 3 4

566 7 5 6 7

(8, 88

Alice Bertha Cora

Figure 2.

Figure 3 shows the possibility sets, after the clergyman's announcement but before any blushing

takes place, on the assumption that all are aware that the clergyman invariably and reliably comments

on the presence of a dirty face. When Alice sees two clean faces, she can now deduce the state of

her own face from whether or not the clergyman makes an announcement. Thus PA(1) = {1} and

PA(2) = {2}.

A more tricky example is obtained by having the clergyrnan announce that a dirty-faced lady is

present if and only if two or rnore diirty-faced ladies are actually present. The ladies know how lhe will

behave except in the case when he sees precisely two dirty-faced ladies in which case they are unsure

whether or not he will make an announcement. Figure 4 illustrates the possibility sets.
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5 6 7

8

Bertha

IIw

\ 5 7

8

CoraAlice

Figure 3.

1'

2 3Brh

G5 
6 

(

BerthaAlice Cora

Figure 4.

In the case when Bertha's face is dirty and Cora's is clean, Alice can deduce from the fact that

an announcement is made that her face is dirty. Moreover, the clergyman actually will announce that

there is a dirty face when Alice's face is dirty. Thus PA() = {5}. But PA(3) = {3, 5} because, if 3

occurs, then the clergyman will make no announcement and, from this eventuality, Alice can deduce

nothing.

Because P(w) is the smallest truism containing w, proposition 1 can be rephrased as

Proposition 4. When w occurs, E is known if and only if P(w) C E (i.e. everything possible implies

E).

Proposition 2 can be similarly rephrased. In its rephrased form it is Aurnann's [1976] criterion for

an event to be common knowledge. Some preliminary explanation is necessary to make this point.
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The smallest common truism containing w will be denoted by M(w). One may think of this as

the set of states deemed to be possible by the community as a whole. It includes not only each state

that somebody thinks to be possible, but also each state that somebody thinks somebody else thinks

to be possible, and so on.

To find M(w), one may use proposition 3 and the fact that truisms are simply unions4 of

possibility sets. To find M(2) in figure 3, for example, look for the smallest set containing 2 which is

simultaneously the union of possibility sets belonging to each of Alice, Bertha, and Cora separately.

Since M(2) contains 2, it must contain 5 because of Bertha. Hence it must contain 8 because of Cora,

and therefore 7 because of Alice. Proceeding in this way one finds that M(2) = {2, 3,4,5, 6, 7,8).

Figure 5 illustrates the communal possibility sets for each of the situations illustrated in figures

2, 3 and 4.

1 C1

2 3 4 2 3 4

5 6 7

8 8 8

Case 2. Case 3. Case 4.

Figure 5.

(Mathematicians may choose to call M the meet of PA, PB and Pc by analogy with the usage for

partitions.)

Proposition 5. [Aumann, 1976] When w occurs, E is common knowledge if and only if M(w) g E

(i.e. everything communally possible implies E).

It follows, for example, that in the information set-up described by figure 3, no matter what

happens, the set D = {2, 5,6, 8}, which represents the event that Alice's face is dirty, never becomes

common knowledge.

In the story of the dirty-faced ladies given in section 1, more information was provided than is

summarized in figure 3. It was also given that ladies blush when they know their faces to be dirty.

Figures 6, 7 anid 8 give three different knowledge configurations that are consistent with the story.
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The shaded regions indicate states in which a lady has a dirty face. If each state in a possibility set is

shaded, a lady will blush if one of these states occurs. Otherwise she will not blush.

6 7

8

Alice

C!'

Bertha

0

Cora

Qi)
Figure 6.

0

Co)

Cora

C)

''1

Alice

5

A lice

Bertha

C)
Figure '7.

5 6'
07

Bertha Cora

Figure 8.

Consider figure 7 by way of example. It has to be checked that the configuration is consistent

with the data given in the story. Suppose, for instance, that event 6 occurs. Cora will then blush, but

not Alice or Bertha. But does the fact that Cora blushes not convey information to Alice and Bertha?
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Notice that PA(6) = {4, 6}. Thus, if 6 occurs, Alice knows that either 4 or 6 have occurred. But Cora

would blush in both cases. Hence the fact that Cora blushes does not tell Alice anything. Nor does the

fact that Bertha does not blush. She would blush neither in case 4 nor in case 6.

In the story, state 8 is what actually occurs. Thus, for the configuration of figure 7, Cora blushes

but Alice and Bertha do not. Observe that M(8) = {4,6,7, 8}, which is precisely the event that Cora

has a dirty face. This becomes common knowledge whenever it occurs. (It is, of course, the smallest

common truism containing 8.)

A final lesson can be extracted from the dirty-faced ladies. It concerns the question of how

things come to be known. In the story, no information is offered on the process by means of which

the ladies learn. A conclusion is reached by indirect reasoning. For example, figure 3 is inconsistent

with what is given about blushing behavior because, if 2 occurs, then Alice will blush whereas, if 5

occurs, she will not. Thus Bertha can distinguish between 2 and 5 and so it is incorrect to assert that

PB(2) = PB(5) = {2,5}. Only certain knowledge configurations are consistent with the data of the

story. Those illustrated in figures 6, 7 and 8 are examples. The argument given in section 1 shows that,

for each such example, at least one of the ladies will blush when 8 occurs. (In fact, a lady will blush

whenever a dirty-faced lady is actually present.)

How might figure 7 arise? One "explanation" postulates that the opportunity to blush rotates

among the ladies, starting with Alice. The knowledge situation then evolves as follows:

1. The ladies observe the faces of their companions. This leads to figure 2 in which M(8) = Q.
2. The clergyman announces the presence of a dirty face whenever a dirty-faced lady is present. This

leads to figure 3 in which M(8) = {2,3,4, 5,6, 7, 8).

3. Alice has the opportunity to blush (but not Bertha or Cora). This leads to figure 9 in which

M(8) = {3,4,5,6,7, 8}.

4. Bertha has the opportunity to blush (but not Cora). This leads to figure 7 in which

M(8) = {4,6, 7,8}.

5. Cora has the opportunity to blush and does so when 8 occurs. But figure 7 remains unchanged

and continues unchanged even if further rounds of blushing are introduced.
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2 3 434

6 7 7 5 . 7

8 -8 /8

Alice Bertha Cora

Figure 9.

An "explanation" of figure 6 can be obtained by supposing that all three ladies have the

opportunity to blush precisely one second after the clergyman's announcement, and then again

precisely two seconds after, and so on. Figure 8 can be "explained" by having Alice and Bertha blush

simultaneously in rotation with Cora.

More on the question of how knowledge evolves over time will appear in section 12.

5. Information partitions. In the previous section, the idea of a possibility set was (evelope(d taking

the knowledge operator K as a primitive. When K satisfies properties (K0) through (K3), possibility

sets necessarily satisfy

(P2) w E P(w)

(P3) C E P(w) => P(T) C P(w)

for all ( and w. The first of these simply says that the state that actually occurs is always regarded as

possible. The second is a little more complicated. It says that, if something is possible, then anything

that would be regarded as possible in that state must also be regarded as possible in the current state.

Section 4 makes it clear that, for practical purposes, the possibility operator P is much more

convenient to work with than the knowledge operator K. One can, in fact, pass back and forward

between the two without difficulty since (KO) through (K3) hold if and only if (P2) and (P3) hold. If

one begins with P, the operator K may be defined by

KE = {w : P(w) C-E}

In applications, it is usually taken for granted that the possibility operator partitions the state

space. This means that distinct possibility sets have no points in common. Figures 2 and 3 illustrate

six possible partitions of the state space f2 = { 1,2,3, 4,5, 6,7, 8}. Figure 4 illustrates three situations in
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which 11 is not partitioned. (Notice that PA(5) = {5) and PA(3 ) = {3, 5). Thus PA(5) and PA(3) are

distinct sets but they have the point 5 in common.)

In game theory, possibility sets which partition the state space are called information sets,

following Von Neumann and Morgenstern. Figure 10 illustrates a simple game free. When player II

gets to move, her state space is (I = {1,2,3). The information set enclosing 2 and 3 indicates that, if

player I chooses M or R, then player 11 will not know which of these were chosen.

L R 1 r 1 r

1 2 3

II II

L M R

Figure 10

In formal terms, the requirement that the possibility sets partition Q may be expressed as

(P4) ( E P(w) = P(() = P(w)

for all ( and w. Conditions (P2) through (P4) are equivalent to (K0) through (K4). Thus (K4), the

controversial "axiom of wisdom," appears on the scene. The implications are discussed in the next

section. This section closes with a comment on the common knowledge operator.

If PA, P8 and Pc partition f2, then so does their meet M. Consider, for example, cases 2 and

3 in figure 5 which illustrate the meets of the partitions of figures 2 and 3. A consequence is that, if

each individual's knowledge operator satisfies (K0) through (K4), then so does the common knowledge

oper~ator.
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6. Small worlds. There is something paradoxical in the preceding section. The use of information

partitions in a situation like the game of figure 10 seems more than harmless: it seems inevitable. On

the other hand, using information partitions is equivalent to incorporating (K4) into the system. But

do we really want to claim that, whenever we don't know that we don't know sornethiiig, then we know

it?

Let us return to Alice in figure 4. The story that goes with this will be told again. The clergyman

may be in a good mood or a bad mood. If in a good mood, he announces the presence of a dirty-faced

lady if and only if all three ladies have dirty faces. If in a bad mood, he announces the presence of a

dirty-faced lady if and only if at least two ladies have dirty faces. In figure 4, the clergyman is in a

bad mood but Alice thinks he may either be in a good mood or a bad mood. The result is a system of

possibility sets that do not partition f.

One reaction is that the state space Q has been improperly specified since it pays no attention

to the mood of the clergyman although this is clearly relevant. If 1,2,3,... , 8 are as previously, but

with the extra understanding that the clergyman is in a good mood, while I, II, III,...,VIII are the

corresponding states in which the clergyman's mood is bad, then Alice's knowledge configuration in

figure 4 may be replaced by that of figure 11.

23' 4
(II II r-' IV

5 (i7
V (VIVII,,

8
VIII

Figure 11

The result is an information partition of a new state space Q* = {1,2,. . . 8,I,1I,. . . ,VIII}. One

can therefore regard the failure to arrive at an information partition in figure 4 as being a consequence

of a wrong modeling judgement being made about the relevant state space. Something which matters,

namely the mood of the clergyman, has been omitted from the description of a state. Once this omission

has been rectified, by constructing a new state space * consisting of more fully described states, the

problem disappears.

For this kind of reason, Bayesian decision theorists often urge that care be taken to begin with a

state space ( in which the description of a state is all-inclusive. This is sound advice if everything that

is to be included can be tagged and enumerated at the outset.
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To see why this proviso is attached, consider the following argument in defense of information

partitions. Recall that the formal requirement for an information partition is (P4) of section 5.

Suppose that an individual finds himself holding the view that only states in P(w) are possible.

If P(() # P(w), he can then deduce that it is impossible that ( has occurred, because, if ( had

occurred, then his current view of what is possible would differ from the view he actually has. Thus

P(() 0 P(w) implies that ( ( P(w) or, what is the same thing, < E P(w) implies P(() = P(w). This

is the requirement (P4) for an information partition. Now tell the same story but with "possible"

replaced everywhere by "conceivable."

From P(C) $ P(w), the conclusion that ( is inconceivable should follow. But if ( is truly

inconceivable, how does the individual manage to "know" the set P(() of those states he would regard

as conceivable if the inconceivable state ( were to occur? If the individual is assumed only to be able to

explore the implications of conceivable states, then only (P3) can be justified. The latter only requires

that anything that is conceivable at a conceivable state be conceivable.

Samet [1987] observes that, without information partitions, an individual must be "ignoring his

ignorance" to some extent. To see this point, take complements on both sides of (1K4) to obtain

KE C K(~ KE). This says that, if an individual is ignorant of something, then he knows he is

ignorant of it. If inforiation partitions fail to exist because (1K4) is riot satisfied, it follows that there is

at least one event of which the individual is ignorant but does not know it. The argument is then that,

since he could examine the contents of his own mind and enumerate those events that he knows and

those that he does not know, if he does not know that he is ignorant of an event, then it is because he

ignores his ignorance. This seems thoroughly reprehensible. On the other hand, who could be blamed

for being unaware of being unaware of something?

Two versions of the same story have been told to make it clear that the English language has

no difficulty in distinguishing between "closed universe" and "open universe" situations. By a closed

universe is meant one in which all the possibilities can be exhaustively enumerated in advance, and all

the implications of all possibilities explored in detail so that they can be neatly labeled and placed in

their proper pigeon-holes. In discussing the foundations of Bayesian decision theory, Savage [1954] uses

the term "small world" for such a state space. Statisticians' sample spaces are invariably "small worlds"

in this sense, with the set Q = { 1,2,3, 4,5, 6} of possible ways a die can fall serving as the archetypal

example. Within a small world, the arguments in favor of (KO0) through (1(4), and of standard Bayesian

principles, are very powerful (although, as the example at the beginning of this section shows, a bad

modeling judgment can generate a world which is too srnall!)
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However, there are difficulties with working in a small world. Certain things can only be expressed

informally. For example, in game theory, it is typically understood that the structure of the game tree

is to be common knowledge. But there is no way of expressing this within a formalism that takes as

its small world the set 0 = {0, 1, 2,3} of decision nodes in figure 10. Just as the use of information

partitions has been defended by appealing to unformalized understandings about what an individual

should be expected to know as a consequence of examining the workings of his own mind, so the

understandings about what is informally regarded as common knowledge will appear on the scene only

when the type of game-theoretic analysis employed comes under attack.

Of course, the larger the small world, the more that can be expressed up-front in formal terms.

Papers that explore what can be done in this direction are Aumann [1987], Bacharach [1985, 1987],

[Brandenburger and Dekel [1985], Kaneko [1987], Mertens and Zamir [1985], Samet [1985], Shin [1987]

and Tan and Werlang [1985]. There is also a large and relevant philosophical literature on the theory

of knowledge and epistemic logic (see Halpern [1986] and the references therein).

The deep issues discussed in these papers certainly need to be thoroughly explored, but perhaps

some healthy skepticism is appropriate about how useful their conclusions are likely to prove in the

foundations of game theory. Any formal characterization of how we acquire knowledge is bound to

be an over-simplification and hence will generate distortions if pushed beyond its limitations. In

particular, one has to expect distortions if "closed universe" methodologies are applied to "open

universe" problems. The risk is greatest when attempts are made to interpret a state as incorporating

a specification of the universe that is totally all-embracing. To know a state then includes knowing, not

only everything there is to know about the state of the physical world, but also everything there is to

know about everybody's stale of mind, including their knowledge and beliefs.

The self-reference implicit in such an interpretation brings Godel's theorem to mind. Recall

that this says that any sufficiently complex formal deductive system cannot be complete unless it is

inconsistent. That is to say, in the world of theorem-proving, the "open universe" is a necessary fact of

life with which one has to learn to live. One is therefore perhaps entitled to be suspicious of theories of

knowledge in which this fact of life is somehow evaded.

7. Algorithrnic knowledge. The previous paragraph draws an analogy between proving a theorem

and acquiring a piece of knowledge. This section briefly explores this idea a little further. The point

is that, if what one knows is known in virtue of its being the result of applying a properly defined

procedure or algorithm, then a very much more critical eye needs to be cast on assumptions (KO)

through (K4) if the "small world" approach advocated in the previous section is not to be followed.
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The notion that questions are to be settled algorithmically is captured by requiring that there exist a

computer programmed for this purpose. The type of computer used in the argument is called a Turing

machine. One may think of this as a machine with a finite program but with an indefinitely large

storage capacity.

In preceding sections, doubts have been expressed about (K4)-the "axiom of wisdom." The

purpose of what follows is to direct suspicion at the very much more fundamental (K2)-the "axiom

of knowledge." This says that one cannot know an event that has not occurred. The corresponding

condition for possibility sets is (P2)-i.e. w E P(w). This means that any state that actually occurs

cannot be regarded as impossible.

Suppose that, in each state w, possibility questions are resolved by a Turing machine S = S(w)

that sometimes answers NO to properly coded questions of the form, "Is it possible that ... ?" If

it answers otherwise, or not at all, possibility is conceded. (Timing issues are ignored.) Consider

some specific question concerning the Turing machine N. Let the coded form of this question be [N].

Consider next the question, "Is it possible that Turing machine M would output NO when offered the

input [M]?" Let the coded form of this question be {M}. Let T be a machine that, when offered

[M] outputs {M}. Then machine R = ST, constructed by composing S and T, responds to [M] as S

responds to {M}.

Suppose that R responds to [R] with NO. Then S reports that it is impossible that [R] responds

to [R] with NO. Thus w ( P(w). If it is to be denied that this can occur for any w E Q, then it must he

that R does not respond to [R] with NO in any state. Nevertheless, S always reports that it is possible

that R will respond to [R] with NO. But then S will fail to report a piece of available knowledge.

Such an argument (which is a version of the halting problem for Turing machines loosely adapted

from Binmore [1984]) can only serve to raise questions about how meaningful it is to work in terms

of all-embracing descriptions of the universe and superhumanly endowed individuals who process such

data. This goes also for more formal attempts in the same direction; such as that of Shin [1987]. But

perhaps it will be enough to explain why this paper persists with a "small world" view in spite of the

attractions of more ambitious foundational positions.

8. Agreeing to disagree? In specifying who knows what during the course of a game, it is usual to

take (KO) through (K4) for granted and therefore to work with information partitions. This practice

will be followed throughout the paper (except where otherwise stated), since the game trees with which

we shall be concerned, like that considered already in figure 10, constitute very small worlds indeed.
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If everybody always knows what has happened previously in the game, as in Chess, then the game

is one of perfect information. In such a game, each information set encloses only a single decision node.

Poker, on the other hand, is a game of imperfect information. The players do not know what other

players have been dealt when they make their bets.

A game of perfect information must be distinguished from a game of complete information. All

games of perfect information are games of complete information, but so are all games of imperfect

information. The information that is complete in a game of complete information is the information

about the structure of the game. This can be classified under two headings: information about the rules

of the game and information about the tastes and beliefs of the players. The former includes what the

game tree is, where the information sets are placed and who makes what decisions. The latter subsumes

the players' Von Neumann and Morgenstern utilities for the possible outcomes of the game (i.e., the

terminal nodes of the game tree) and the probabilities that the players attach to the various chance

events that may occur in the game which lie outside the control of the players (as when the cards are

shuffled and dealt in Poker). All this information is taken to be common knowledge among the players

in a game of complete information. (Since everybody is then necessarily in the same informational state

before any moves are made, a game of complete information is also commonly referred to as a "game

of symmetric information." However, this should not be taken to imply that games of incomplete

information cannot have a symmetric structure.)

Games of incomplete information, in so far as they can be dealt with realistically at all, are

studied by reducing them to games of complete information using an ingenious methodology introduced

by llarsanyi [1967/68]. For example, I may be in doubt whether my opponent at Chess is really aiming

to win or whether he actually wants to lose. Harsanyi would say that the game should then not be seen

as a two-player game of perfect information, but as a game of imperfect information with at least three

players in which the opening event is a chance move that selects my opponent from a menu of possible

opponents with various different preferences.

A standard procedure is to take for granted that everybody attaches the same probabilities to the

possible outcomes of such a chance move. This does not need much justifying when the chance move is

that of shuffling and dealing at Poker. But matters are less clear-cut with a chance move like that in

the story attributed above to Hlarsanyi.

Recall that, in a game of complete information, the probabilities the players attach to the possible

outcomes of chance events are common knowledge. Aumann [1976] asked whether rational players can

"agree to disagree" under such circumstances by maintaining different probabilities for the same event.
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His answer is that this is impossible. Intuitively, each player will use his knowledge of the other players'

estimates of the probabilities to refine his own estimate and this will continue until all the estimates

are the same. (See Bacharach [1985] for a more general expression of the idea.)

However, Aumann requires a strong assumption that will be important throughout the rest of

the paper. He likes to refer to this as the "Harsanyi doctrine." (See section 13). The idea is that the

players' informational status can be modeled as follows. Before the rational players to be considered

received any data at all, they were all in the same position and therefore assigned the same probabilities

prob(w) > 0 to the states w E Q. Moreover, these prior probabilities are common knowledge among

the players. The Harsanyi doctrine is therefore that there is common knowledge of a common prior.

Later, the players had different experiences which led them to revise their probabilities. The current

probabilities they attach to the states w E 0 are therefore posterior probabilities obtained by Bayesian

updating from the given common prior. It is in this sense that the posterior probabilities qA, qa and

qc for the event F attributed to Alice, Bertha and Cora in the proof of the following proposition are

to be understood.

Proposition 6. [Aurnann, 1976] If each agent's posterior probability for an event F is common

knowledge when wo E Q occurs, then it is common knowledge that these probabilities are equal.

To see why this is true, focus on Alice. If we occurs, her posterior probability for F is qA. The

event that Alice actually observes when wo occurs is PA(wo). Thus

qA = prob(FIPA(wo).

It follows from proposition 3 that M(wo) is a union of a collection of Alice's information sets. Let

these information sets be Qi,Q2, ... ,Q. One of these sets is, of course, PA(wo).

Observe that

gA = prob(F|Q; )

for each j = 1,2,... .k. The reason5 is that, if prob (F|Qg) were not equal to qA then, as soon as gA

became common knowledge, it would become common knowledge that Q, had not happened, and hence

the event ~Q, would be common knowledge. But proposition 5 then implies that M(wo) Q Q,, and

so Qj Qi U Q2 U .. .Qk = M(wo) C Q, which is a contradiction.
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It then only remains to observe that

prob(M(wo) n F) = prob(Qi fn F) + . .+ prob(Qk n F) (8.1)

= prol)( F'IQt) prob(Q,) +- --+ prob(F|Q.) prob(Qk)

= qA(probQ i + -+prob Qk)

= qA prob M(wo)

Thus, since prob M(wo)> 0, qA = prob (FIM(wo)). But the same is true for q and qc and therefore

qA = qB = qc

as required.

Samet [1987] has pointed out that proposition 6 does not depend on having information partitions.

The result survives without (K4). It is easy to see why. In the preceding proof, it is only at step (8.1)

that information partitioning is required. For this step to be valid, the possibility sets Q1, Q2,...,k

must not overlap. Without (K4), the sets may overlap. In the case k = 2 for example, one must then

replace (8.1) by

prob(M(wo) n F) = prob(Q1 n F) + prob(Q2 n F) - prob(Q1 n Q2 n F)

All is then well provided Qi nQ 2 can be expressed as the union of possibility sets. But this is guaranteed

because the intersection of two truisms is again a truism. Thus, in Samet's words, we cannot "agree to

disagree" even if we "ignore our ignorance."

But a pause for thought is perhaps appropriate. In a world in which we "ignore our ignorance",

does it really make sense to proceed as though probabilistic assertions can sensibly be formulated and

the manipulated according to the usual rules? Is it not a background presumption of probabilistic

decision theories that information sets partition the universe? This is a question which returns us to

the "small world" issues of section 6 and anticipates some of what is to be said in section 13.

Any doubts that may arise seem amply justified, as the following example is intended to indicate.

Return to Alice's informational configuration of Figure 4, reproduced as the "Arabic world" on the left

in Figure 12. Recall that the clergymnannnounces that a dirty-faced lady is present if and only if two

or more such ladies actually are present, but Alice only knows for sure what he will do when the actual

number of dirty-faced ladies differs from two. Suppose that Alice attaches equal prior probabilities to

each of the states in G. What probability should she attach to to the event E that her own face is dirty,

given that she sees that Bertha is dirty and Cora is clean?
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1 4 IIV'

6) 7 VI/i

Alice in Arabia Alice in Rome

Figure 12.

If this is posed as the question, "What is prob({3}|{3,5})?" then a conventional conditional

probability calculation yields the answer 1/2. But does this make any real sense?

Consider the following alternative line of reasoning. Before anything happens, Alice does not

"know" the informational structure of the world in which she lives. To be precise, she does not know

whether or not the clergyman tells when there are exactly two dirty-faced ladies present. She may find

this out. For example, she will learn that the clergyman does tell if state 5 occurs. But, if state 3 occurs,

then it will remain possible for her that the clergyman does not tell. That is to say, she will have two

possible worlds to take into account. The Arabic world on the left of Figure 12 and the Roman world

on the right. We therefore ought to be looking at Figure 11 and calculating prob({3,Ill}|{3,5,lll}).

This will.be 2/3 if Alice attaches equal prior probabilities to both the Arabic ;nd the Roman worlds.

The point is that "ignoring ignorance" is not properly consistent with organizing uncertainties

probabilistically. If Alice attaches a probability of 1/2 in state 5 to the event E that her face is dirty

given that Bertha is dirty and Cora is clean, then she is behaving as though she knew that the roman

world were impossible. But this conclusion is not one which anyone would wish to claim was a necessary

consequence of her informational status. If she is not to explore the possibility that the world might be

Roman, the most that one can reasonably assert about her conditional probability for the event E is

that it lies between 1/2 and 1. That is to say, "ignoring ignorance" means that probabilistic judgements

may be incomplete.

As iolt [1988] observes, the interdependence of assurptions regarding probability orderings,

informational structures arnd characteristics of knowledge is not as well-known in the economics

literature as in the philosophical literature (e.g. Hughes/Cresswell [1985] and Giidenfors [1975]), but it

is a subject of some importance in this context.
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9. Common knowledge of the game. It is clear why it should be assumed that players know

the structure of the game they are playing. But why should it be required that the game structure is

common knowledge?

To make this point, a version of an example of Rubinstein [1988] will be described. The game

is one of "pure coordination" of the type considered by Lewis [1969] when introducing the notion of

common knowledge. In such games, the players' interests coincide and their aim is to act as a "team" in

getting to the best possible outcome. Their problem is that their freedom to communicate is restricted

and it is therefore not necessarily easy for them to coordinate on a joint plan of action.

The payoff matrix for the game to be considered is given in figure 13. At the beginning, the

players do not know how the letters A and B are used to label the strategies. This is decided by tossing

a weighted coin which comes down heads with probability 2/3 and tails with probability 1/3. If it were

common knowledge that a head had appeared, then both players would, of course, choose strategy A.

If it were common knowledge that a tail had appeared, both would choose strategy B. However, only

player I observes the fall of the coin.

II II
A B B A

9 0 9 0
A B

0 1 0 1
B A

0 1 0 1

heads tails

Figure 13

Player I would like to inform player II of his information but can only communicate through the

electronic mail system as follows. If he sees a head he sends no message at all. If he sees a tail, he

sends a message. Those familiar with the electronic mail system will know that messages fail to reach

their destinations with some small probability e > 0. If player II gets the message, she automatically

sends an acknowledgment. If player I gets the acknowledgment, he automatically acknowledges the

acknowledgment; and so on.

To study this in'ormational set-up, the state space f(2= {0, 1,2, 3,. .. ,} is introduced. A state e
in this space represents the number of messages sent. The event H that heads occurs is H = {0}. The

event that tails occurs is T = {1,2,3,. .. ,}. Observe that

w E (everybody knows) "WlT (w = 1, 2,. .. , )
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For example, if w = 3, then tails occurred and player I knows it because he gets to see the coin.

Moreover, player II knows and knows that I knows because she got a message saying so. Further,

player I knows that II knows because he got an acknowledgment.

The question is whether players I and II can ever be sufficiently well-informed to make it possible

for them to choose strategy B when tails occurs. The answer is that they are never able to do so,

no matter how large w may be, if it is given that player I will always do the natural thing in those

cases when heads occurs and choose A. If tails occurs, it may be that everybody knows that tails has

occurred and everybody knows that everybody knows for 117 iterations. Nevertheless, they will still be

unable to coordinate on strategy B.

To demonstrate this, some more apparatus is required. The players' information sets are shown

in figure 14. For example, player II encloses 0 and 1 in the information set i, because either state is

consistent with her receiving no message. It is necessary to say what each player would do at each of

their information sets. It has already been noted that player I is to choose strategy A at io. To say

what will happen elsewhere, probabilities need to be calculated.

s0o=? _4 IN-+1

Player 3 4) N N+

Player II (0 1 2 3 -- " (N-1 N

1i i3  3$

Figure 14

Let p(w) be the probability of state w. Then p(O) = 2/3, p(1) = e/3 and p(w + 1) =(1 - c)p(w)

(w = 1, 2,3, .. .). If i = {w, w + 1}, then the conditional probabilities for w and w + 1, given that

information set i has been reached, satisfy p(w +1 |Ii)/p( |i) = f (4)+)/ M /' T

p(1| ii1)/p(0 j i1 ) = f/2

p(n + 1|in+)/p(n | in.) = 1 - c (n = 1, 2, 3, ...).

Since player I chooses A at i-, the least that player II can get from choosing A at i is

r=9p(O |ii)+0-p( 1 |i 1 ). The most that can be got fromnchoosing Bat ii is y =Op(0 |Iii)+ 9p( 1 |ii).
Since y/a2 = e/2 <c I, player II selects A at ii.

The iest of the argument proceeds by induction. The induction hypothesis is that strategy A is

chosen at information set in for a given n ;> 1. It is to be shown that A is also chosen at in+1. The
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least that can be got by choosing A is x = 9p(n| in+) + Op(n + 1 I in+1). The most that can be got

by choosing B is y = Op( n I in+1 ) + 9p( n +1| in+1). Since y/z = (1 - e) < 1, A is selected at in+1.

It is easy to see that M (w) = 0 in every state w, and hence the outcome of the coin toss

never becomes common knowledge and therefore neither does the structure of the game. This is the

explanation proposed to account for the players' failure to coordinate successfully.

However, more than one loose end has been left. The first of these is taken up to some extent in

the coming sections. Why should it be supposed that there will be successful coordination even if the

game structure were common knowledge? For player I to know that a strategy is optimal, he needs to

know something about what player II is going to do. To know what player II is going to do, he certainly

needs to know something about what player II knows-which includes what player II knows about

what player I knows, and so on. But he needs to know more. He needs to know how player II uses

her knowledge. Game theorists typically seek to plug this gap with the assertion that it is "common

knowledge that the players are rational." However, what this statement means in precise terms remains

a vexed issue.

The second loose end concerns the question of approximating common knowledge. When tails

occurs, the probability that w E (everybody knows) NT in Rubinstein's example is nearly 1 for each

value of N when c is suffliciently small. Does this not make T "nearly" common knowledge? If so, why

is the players' behavior so far from what it would be if T were fully common knowledge?

More or less the same answers have been simultaneously proposed to these questions by

Monderer/Samet [1988] and Stinchcombe [1988]. They defuse the second question by denying its

premise. They suggest that only approrimately optimizing play should be expected of the players.

They can then play A when they perceive the probability of heads to be high and B when they perceive

the probability of tails to be high. If e is small, A will be chosen at io and it and B will be chosen

elsewhere. This calls for suboptimal play only at ii. But ii occurs only with the very small probability6

of ((1 - c)/3.

As to the first question, they supplement the knowledge operator K with a p-belief operator B,

defined so that BE may be interpreted as the set of states in which E is believed with probability at

least p. One can then define common p-belief in much the same way as common knowledge and use

the former as an approximation to the latter when p is close to one. If there is approximate common

knowledge in this sense, then there are approximate equilibria close to the equilibria that prevail when

there is full common knowledge.
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10. Rationalizability. As noted in the preceding section, even when the structure of a game has

been assumed to be common knowledge, there remains a yawning gap between the results of game

theory and the tenets of Bayesian decision theory on which it is supposedly based. This gap has been

traditionally plugged with ad hoc additions to Bayesian rationality concerning the use of equilibria in

multi-person situations. These ad hoc additions are then defended with vague assertions about there

being "common knowledge of rationality."

Kadane and Larkey [1982] are particularly outspoken in their criticism of this lacuna in the

foundations of the subject. They argue that a Bayesian decision-maker maximizes utility given his

subjective probability distribution and, if the resulting actions are not in equilibrium: so what? This

view depends on the naive notion that Bayesian rationality somehow confers upon its adherents the

capacity to "pluck their beliefs from the air." But, what one believes must depend on what one knows.

And, in game theory, the players know things about the other players.

Only recently have formal attempts been made to model the knowledge that a player has about

the other players in a game explicitly (Aumann [1987], Bernheim [1984, 1985], Brandenburger and

Dekel [1987b], Pearce [1984], Reny [1985], Tan and Werlang [1984]). These attempts all take account

of the fact that a player's beliefs about the strategic choices of the other players in a game should not

be entirely arbitrary.

Bernheim and Pearce's concept of "rationalizability" is the most conservative of the attempts.

The only restriction imposed on beliefs is that everybody knows that everybody maximizes utility

given their subjective probability distributions; and everybody knows that everybody knows; and so

on. That is, it is common knowledge that the players are Bayesian rational. But the actual subjective

probability distributions which the players hold are not assumed to be common knowledge.7 In spite of

the weakness of the assumptions, rationalizability can sometimes lead to a clear-cut prediction about

the outcome of the game.

Consider the game illustrated in Figure 15. Suppose that player II attaches a subjective probability

of p to the event that player I will choose "top" and 1 - p to the event that he will choose "bottom"

Whatever the value of p, "right" cannot be a maximizing choice for player II because "left" is strictly

better when p > 1/3 and "middle" is strictly better when p < 3/4. Since player I knows that player 11
is an optimizer, he therefore must assign probability 0 to the event that player II chooses "right." But

then, whatever probabilities player I attaches to the other alternatives for player II, it is optima for

player I to choose "top." Bunt player II knows that player I knows that player II is an optimizer. Thus
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player II knows that player I will necessarily choose "top." Hence player II chooses "left."

T

I

B

II

L M _R

3 0 1

2 1 0

0 4 1

0 0 4

Figure 15

In two-player games, Bernheim and Pearce show that "rationalizable" strategies are those left

after strictly dominated strategies are deleted from the game; and then strictly dominated strategies

are deleted from the game that results; and so on. (The strategy "right" for player II in Figure 15 is

strictly dominated by an equal mixture of "left" and "middle.") This process of successively deleting

dominated strategies goes all the way back to Luce and Raiffa [1957]. However, it is well known that it

is only in rather special circumstances that the process generates a unique prediction. For the game of

"chicken," illustrated in figure 16A, the process has no bite at all. Every strategy is "rationalizable."

Bernheim [1984] regards this as a serious blow for the traditional equilibrium ideas of game theory.

However, our feeling is that more is implicitly assumed by traditional game theory than Bernheim is

willing to grant. One should therefore not be too surprised if, having thrown out the baby, one is left

only with the bathwater.

11. Correlated equilibrium. In contrast to Bernheim, Aumann [1987] is willing to make quite strong

common knowledge assumptions about players' beliefs in order to defend the notion of a correlated

equilibrium.

Aumann's favorite example of a correlated equilibrium involves the game of "chicken" as illustrated

in figure 16A. Suppose that a random device selects one of the cells in figure 16A according to the

probabilities indicated in figure 16B. These probabilities are common knowledge, but player I is told

only the row of the cell actually selected while player II is told only the column. Then player I and

player II will have different but correlated information. Suppose that player I now uses the row reported

to him as his strategy in "chicken" and player II does the same with the column reported to her. Then

both players will be optimizing given the behavior of the other. For example, if player I is told "top,"

then he expects 6/2 + 2/2 = 4 from playing "top" but only 7/2f+ 0/2 = 3.5 from playing "bottom."
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If he is told "bottom," then he expects 7 from playing "bottom," but only 6 from playing "top."

The idea is, of course, very similar to that popularized by Cass and Shell [1983] under the name of

"sunspot equilibrium." Aumann argues that "Bayesian rationality in games," if properly interpreted, is

nothing other than the play of correlated equilibrium strategies. His argunent makes this almost into

a tautology. But to explain his point requires a little apparatus.

II

L R

6 7

) 6 2

2 0
B

7 0

1/3 1/3

1/3 0

(B)

4/9 2/9

2/9 1/9

(A) (C)

Q
(D) (E) (F)

a2  b2

a1 b1

C2  d2

ci di

(H)

o 1

0 0

o 0

1 0

(I)
0

(G)

Figure 16

Si

U 2

The specification of a two-player game iii normal-form consists of the players' strategy sets,

an(l S2, and tleir Von Neuniatnii and Morgeistern utility functions ni : Si x S2 - I aid

S x S2 -+ R. Thuis uit(s1,s2) is the utility that player I gets if he chooses strategy si E Si and
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player II chooses s2 E S2. In the game of "chicken," Si = {top,bottorn), S2 = {left,right} and, for

example, u2 (top,right) = 7.

What does Bayesian rationality require in such a situation? Suppose that, when w E Q occurs,

players I and II observe P1(w) and P2 (w) respectively, and that Bayesian rationality leads then to

selects strategies bi(w) E S1 and b2(w) E S2 . If each player's behavior is to be optimal in each state w

given the players' beliefs, then it must be the case that

Eui(b1 , b2 Pi(w)) Eui(d i ,b 2 Pi(w)),
Eu2( b1, b2 | P2(w)) ? &u2( bi, d2 P2(')). (11.1

where d1 and d2 represent any alternative strategy to that prescribed by Bayesian rationality.9

The essential point to be gleaned from this discussion is simply that requirement (11.1) is an

equilibrium condition. Aurnann's [1987] gloss is to observe that (11.1) implies the condition for a

correlated equilibrium provided that, in each state w E 0, the players know the Bayesian rational

strategy. For example, in the game of "chicken," let TOP denote the set of those w E 1 for which

Bayesian rationality requires player I to choose "top". Then to know his Bayesian rational strategy,

player I will need to know when the event TOP occurs and, similarly, when the event BOTTOM occurs.

As far as "chicken" is concerned, he can discard any other information he might have and just retain

the information partition {TOP, BOTTOM) of Q. Similarly, player II need only retain the partition

{LEFT, RIGHT). But then we have the picture of figure 16B and hence Bayesian rationality has

generated for us the correlated equilibrium discussed earlier, provided that the players' prior beliefs

(i.e. the beliefs they have before observing anything) satisfy

pro) (TOP fl l') = prob (TOP fl RIG lIT) = prob (BOTTOM fl LEFT) = 1/3.

This is the first explicit mention of the players' prior beliefs on Q. What do the players know about

these? There is no difficulty in supposing that players know their own prior beliefs on (1. They are

therefore in a position to check that the behavior required by Bayesian rationality does indeed maximize

their expected utility, provided the other players do not deviate. But to check that the others will

not deviate, a player needs to know something about the prior beliefs of the other players. Otherwise,

it would not be possible to check that the behavior required by Bayesian rationality maximizes their

utility also. Aunmann [1987] argues that we actually have no choice but to assumie that all the prior

subjective probability distributions are, in fact, common knowledge. He reasons that, if player j were to

learn that w E fO had occurred but continued to entertain two possibilities for the subjective probability

attached by player i to the state w, then w would not be an all-inclusive description of the state of the
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world. An all-inclusive description would include a description of the probability that player j attaches

to that description. Thus, everybody must know everybody's prior beliefs and, by a similar argument,

everybody must know that everybody knows, and so on. We share the unease that the reader will

probably feel about the self-reference built into this argument, for the reasons already discussed in

Section 6. For us, the assumption of common knowledge of prior probability distributions therefore

remains something which needs defense.

We have seen how common knowledge assumptions provide the glue which holds together

Aumann's defense of correlated equilibrium in Bayesian context. Some taxonomy is now appropriate.

This depends on the answers to the following questions:

1 Are the players independent?

2 Do the players have common priors?

To say that the players are independent means that all of the players believe that their own

information is statistically independent of that received by the other players. Thus, for example, in

"chicken," both players' priors will satisfy prob(TOPf LEFT) = prob(TOP) x prob(LEFT). Think

of the description of w E 0 as including the fall of a weighted coin observed only by player I and the

fall of an independent weighted coin observed only by player II.

To say that the players have common priors is to say that their prior beliefs on G are the same.

This is not, of course, implied by the hypothesis that their priors are common knowledge. The players

may "agree to disagree" about what the prior beliefs should be.

We begin with the case when it is simultaneously true that the players choose independently and

that they have common priors. These are the traditional assumptions of noncooperative game theory

and the conclusion is the traditional conclusion: namely, that the result will be a Nash equilibrium. For

example, if the players' prior beliefs are as indicated in figure 16C, then the result is a Nash equilibrium

for "chicken." An observer will see player I choose "top" with probability 2/3 and "bottom" with

probability 1/3, while player II independently chooses "left" with probability 2/3 and "right" with

probability 1/3. Each of these "mixed strategies" is an optimal reply to the other. Given player II's

behavior, player I will get 6 x 2/3+2 x 1/3 = 14/3 from the choice of "top" and 7 x 2/3+0 x 1/3 = 14/3

from choice of "bottom." He is therefore indifferent between these two alternatives and therefore

content to use any mixture of them. Similarly for player II.

"Chicken" has two other Nash equilibria. These involve only "pure strategies." In the first,

player I always chooses "top" and player II always chooses "right." (The players' common prior is then
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as in figure 16D.) For the second Nash equilibrium in pure strategies, player I always chooses "bottom"

and player II always chooses "left." (The players' common prior is then as in figure 16E.)

Note that for Nash equililbriul, in contrast to the general case of a correlated equilibriumx, the

players' posterior beliefs about each other's choice of strategy are common knowledge. If we had not

begun with a discussion of correlated equilibrium, this might have been a more natural characterization

of Nash equilibrium. (See Brandenburger and Dekel [1987b] and Aumann [1988] for a different view.)

In the correlated equilibrium supported by the prior of figure 16B, for example, player I's posterior

belief about player II's choice of strategy depends on whether I observes TOP of BOTTOM, but II

does not know which of these I observes.

Before leaving the subject of Nash equilibrium, there is a point to be made about the relevance of

mixed equilibria. Economists sometimes reject these out of hand on the grounds that economic agents

simply do do randomize when making decisions. But such a view depends on adopting a rather naive

interpretation of what a mixed Nash equilibrium is. One advantage of working strictly in terms of an

underlying state space Q is that a more sophisticated interpretation lies immediately on the surface. In

the mixed Nash equilibriurm for "chicken" described above, neither player actively randomizes. Both

simply see themselves as choosing deterministically, given their information. Tphe random element arises

from uncertainty in the mind of the other player about what that choice will be. It may well be that

real-life economic agents do not consciously randomize when making decisions, but they will nearly

always be conscious of being uncertain about what other agents will decide. No a priori case therefore

exists for the wholesale rejection of mixed equilibria in the economic context.

The case when the players' choices may be correlated, but prior beliefs are common, is that of

correlated equilibria. In "chicken," the correlated equilibrium described earlier is only one of many.

In general, the prior subjective probability distributions which support a correlated equilibrium are

described by a simple system of linear inequalities. Referring to figure 16F, it is easy to check that the

appropriate inequalities for "chicken" are:

6a + 2b> 7a

7c > 6c+ 2d

6a+2c> 7a

'Tb > 6b+ 2d.

Nash equilibria are special cases of correlated equilibria and it is not difficult to see that any convex

combination of Nash equilibrium outcomes is achievable as a correlated equilibrium. (Just let the

players jointly observe a random device which selects a Nash equilibrium and then require them to take
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whatever independent actions are necessary to implement that Nash equilibrium.) For example, the

common prior of figure 16G gives the two pure Nash equilibrium outcomes for "chicken," each with

probability 1/2. But note that the resulting payoff of 7/2 + 2/2 = 4.5 for each player is not so good

as the expected payoff of 6/3 + 2/3 -- 7/3 = 5 that each player gets with the correlated equilibrium

supported by the common prior of figure 16B. The expected outcome with this latter correlated

equilibrium is not obtainable as a convex combination of Nash equilibrium outcomes. For a prettier

example, see Moulin and Vial [1978].

For the case when priors are not common, consider figure 16H. The numbers at, bi,ci, and di are

subjective probabilities for player I and the numbers a2, b2 , c2, and d2 are subjective probabilities for

player II. All these numbers are common knowledge but the players "agree to disagree." Figure 161 is

a special case chosen to highlight the fact that something counter-intuitive is perhaps involved in such

situations. With priors as in figure 161, both players believe it is certain that they will come away from

the game with their maximum payoff of 7.

It is pleasant to be able to round off this section by pointing out that Bernheim and lPearce's

rationalizability is not so distant from Aumann's correlated equilibrium after all. Brandenburger and

Dekel [1978b] have shown that rationalizability can be recast in an equilibrium mold. in the two-player

case, a pair of payoffs is rationalizable if and only if it is the vector of payoffs from what Aumann

calls a "subjective correlated equilibrium." By this is meant an equilibrium of the type we have just

been discussing: namely, one in which the players may agree to disagree and use commonly known

but different priors. This result emphasizes the importance of the assumption of common priors in

determining which solution concept is to be regarded as the "correct" expression of Bayesian rationality.

Finally, what of independence when the priors are not common? On this point, we want only to

mention that, in discussing "rationalizability," we have restricted attention always to the case n = 2,

because Bernheim and Pearce make independence assumptions which become relevant when n> 3 but

which it would be pedantic to describe here.

12. Updating beliefs. Section 4 describes how the acquisition of new information may lead

decision-makers to update their information partitions. Such refining of their information partitions

will be accompanied by an updating of their prior beliefs. The study of this phenomenon is clearly very

important if one hopes to get somec sort of handle on markets in which speculation is an imnportanit

clernent.

The current discussion begins with Aumnann's "agreeing to disagree" result (which is proposition 6

of section 8). The agents are enidowed with common knowledge of a common prior. Each theni receives
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some private information. Their posterior probabilities for an event F then become common knowledge.

Aumann's result is that these posterior probabilities must necessarily be equal.

An example of Geanakoplos and Polemarchakis [1982] serves to show that this result leaves

various stones unturned. In this example, Alice and Bertha have a conmioii prior that attaches equal

probabilities to each element of 0 = {1,2, 3,... , 9}. Their information partitions are {A 1, A2 ) and

{ B 1, B2 , B3} respectively as illustrated in figure 17. For example, PA (4) = A2 and PB(9) = B3 . The

meet M of PA and PB (section 4) satisfies M(w) = 1 for all w E . It follows from proposition 5 that

the only event that can be common knowledge when it occurs is 11. Thus, if

E = {w: prob(FIPA(w) = qA)}

is common knowledge as required in the hypotheses of Aumann's result, then E = ff. This means that

Alice always attaches probability qA to the event F whatever her private information. Similarly Bertha

always attaches probability qB to F. Their private information is therefore irrelevant to the event F

and hence Aumann's result is empty for this example.

A1  A2  A3

Alice 1 2 3 4 5 6 7 8 9'

Bertha (i 2 3 4 5 6 7 8\

B1  B2  B3

Figure 17

Consider, however, the case when F = {3, 4} and the following sequence of truthful interchanges

between Alice and Bertha takes place. Suppose that w = 2. Then, Alice observes PA( 2) = A1 = {1, 2,3).

She then communicates her posterior probability of 1/3 that the event F has taken place to Bertha.

Bertha observes PB(2) = B1 = {1,2, 3,4} and so, before receiving Alice's message, has a posterior

probability of 1/2 for F. On getting Alice's message, she deduces that Alice has observed A1 or A2 but

cannot deduce anything else. Since she knew this already, she leaves her posterior probability for F

alone. The next step is for her to report this to Alice. Alice deduces that Bertha must have observed

B1 . Since she knew this already she leaves her posterior for F alone and reports this to Bertha. But

this tells Bertha a great deal. She knows Alice observed A1 or A2. If Alice had observed A2 = {4, 5, 6),

then the information that Bertha observed B1 = {1, 2, 3,4} would have conveyed the fact to Alice

that w = 4 and so Alice would have reported a posterior probability of 1 for F. Since she did not,

Bertha deduces that Alice observed A1 = {1, 2,31 and hence now announces a posterior probability
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of 1/3 for F. After this, all future announcements of the posterior probability of F are 1/3. It has

become common knowledge that the event A1 = {1,2, 3} has occurred and it is common knowledge

that prob(F|A1) = 1/3.

Alice and Bertha therefore reach a consensus in respect of their beliefs about F. That is to

say, the probabilities they attach to F finally become common knowledge and hence are equal (by

proposition 6). But more is true in this particular case. They also end up with the same information;

namely that A1 has occurred. This need not always happen. Geanakoplos and Polemarchakis provide

a second example in which the agents' posterior beliefs about an event are common knowledge, but not

their full information about the event. The commonly known consensus beliefs are then not what they

would be if the two agents pooled all their information.

The example is illustrated in figure 18. The state space is fi = {1, 2, 3,4} and the common prior

is that all states are equally likely. When w = 1, the consensus probability for the event F = {1, 4) is

1/2, but pooling the total information would reveal that F is certain.

B 1  B2

1 2A 1 1

31A2 3

Alice Bertha

Figure 18

While there are situations in which it makes practical sense to imagine agents directly and

truthfully reporting their posterior probabilities for some event in the manner examined above, a more

likely scenario is that only some statistic of individual beliefs becomes a public event. An example is

when asymmetrically informed agents come to a market to trade. The trading process causes private

information to be aggregated into a public statistic, such as a price or quantity. If agents recompute

their beliefs on the basis of the value of this public statistic, and then further prices or quantities are

announced, will the agents eventually reach a situation of common knowledge and hence consensus in

their beliefs? This question has an obvious relevance to rational expectations equilibria but arises in

numerous other contexts also.

There is a considerable literature in Statistics on the reconciliation of differing expert opinions

(e.g. Dalkey [1969J]). The so-called "Delphi technique" is a commnonly discussed exarnple. The experts

are envisaged as offering predictions of the likelihood of some event based on their private inforrnation.
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'lie average of their predictions is announced publicly. The experts then use this information to revise

their predictions. This leads to the announcement of a new average and so on. Parimutuel betting has

similar characteristics.

McKelvey and Page [1986] have demonstrated how common knowledge can arise through the

publication of such aggregate statistics. (A number of people have noticed that simple proofs of the

result are possible, e.g. Brandenburger and Geanakoplos [1986].) We shall look only at the "Delphic"

special case of their result. Each of n agents computes his or her posterior probability qi(w) for an

event F. Thus, originally, q=(w) = prob(Fjp'(w)). then the statistic

1n

4(w) _ gq=(w)
i=1

is published. Each agent revises his or her posterior q(w), using the value of the published statistic.

These posteriors are then averaged and the new statistic is published; and so on. The result is that, after

a finite number of iterations of this process, the agents' posteriors must become common knowledge

and so consensus is achieved.

An example (taken from McKelvey and Page [1986]) may be of assistance. Suppose that Alice,

Bertha and Cora are experts who face a state space 0 = {1,2,3,4,5}. The common prior is that

each state is equally likely. The initial private information is provided by the information partitions

illustrated in figure 19. The experts are interested in the probability of the event F = {1,2, 3}.

(: 3"2 3)/2 (
55 '454 (5

Alice Bertha Cora

Figure 19

Suppose that the true state is w = 1 so that Alice, Bertha and Cora calculate their pos-

terior probabilities for F to be 2/3,2/3 and 1/2 respectively. The average of these assessments,

(2/3 + 2/3 + /)/3 = 11/18 is then published. This gives Alice no new information but informs Bertha

and Cora that {5} did not occur. ence the experts' revised posteriors are 2/3,1 and 1. Thus a

statistic of (2/3 + 1 + 1)/3 = 8/9 is published. At this point, Alice can conclude that {2, 4) did not

occur since this would have resulted in a second-round announcement of (2/3 + 2/3 + 2/3)/3 = 11/18.

She therefore revises her posterior probability of F to 1 and consensus is achieved.
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Such simple models are reminiscent of Keynes' "beauty contest" story. Keynes drew attention

to newspaper competitions of the time in which the aim was, not to identify the most beautiful young

lady whose photograph was supplied, but to predict the way the voting would go on this matter. The

aim, in both cases, is to draw attention to certain aspects of the problem of speculation in financial

assets. What models like that of McKelvey and Page [1986] add to the Keynesian picture is a formal

identification of the basic difficulty. The trading activities of rational agents with common knowledge

of a common prior, who all receive different pieces of private information, must be expected to lead

to an eventual consensus in beliefs, after which no rational basis for speculation will exist. One might

rationalize continued speculation by supposing that the agents are in continuous receipt of new items

of private information about an environment assumed to be constantly changing (although we do not

know of work in which this is attempted within a formal common knowledge framework). But, is

this the way things really are? Or is it simply that speculators are actually "agreeing to disagree"?

(Varian [1987] contains further discussion of these issues.)

13. Are Comrnon Knowledge Assuim1)tions Realistic? In brief, our view is that it is precisely

in those applications which lean most heavily on common knowledge assumptions, whether this is

explicitly recognized or not, that the assumptions are least realistic. We have particularly in mind those

models in which a great deal can happen as time passes and a number of agents, each of significant

size, seek to learn what has happened and to adapt their behavior to the circumstances. One might

summarize what we have to say with the observation that it seems to us painfully naive to suppose that

Bayesian updating captures more than a tiny part of what is involved in genuine learning. Whatever

the answer to the problem of scientific induction may be, it will surely involve more than the trivial

algebraic manipulation called Bayes' rule.

Savage's [1954] theory, in which lie synthesized von Neumann and Morgenstern's expected utility

theory with the subjective probability ideas of Ramsey, de Finetti and others, is entirely and exclusively

a descriptive theory of consistent behavior. It has nothing to say about how decision-makers acquired

the beliefs ascribed to them: it asserts only that, if the decisions taken are consistent, then the decision-

makers act as though they were maximizers of expected utility relative to a subjective probability

distribution. (Objections to the definition of "consistent" in the theory are possible but this is not

our point. In particular, the objection that "real people" are sornetimes inconsistent is irrelevant to

a theory of rational behavior. People often get their sums wrong. But nobody argues that we should

therefore change the rules of arithmetic.)
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The "Bayesian blunder" is to suppose that Savage's passive descriptive theory can be re-interpreted

as an active, prescriptive theory at negligible cost. Obviously, a sensible decision-maker will be unhappy

about inconsistencies. A naive Bayesian therefore assumes that it is enough to assign prior beliefs

to a decision-maker and then forget the problem of where beliefs come from This was the attitude

we adopted in the preceding sections in sketching the nature of the orthodox approach to common

knowledge. Consistency then forces any new information that may transpire to be incorporated into

the system by Bayesian updating-i.e. a posterior belief is deduced from the prior belief using Bayes'

rule. The naivet6 does not consist in using Bayes' rule, whose validity as a piece of algebra is not in

question. It lies in supposing that the problem of where the priors come from can be quietly shelved.

Some authors even explicitly assert that rationality somehow endows decision-makers with priors and

hence the problem does not exist at all.

Savage [1954] had a considerably more complex view. He did argue that his descriptive theory

could be of practical assistance in helping decision-makers from their beliefs. His point was that rational

agents would not rest if they found inconsistencies in their belief systems. Luce and Raiffa [1957, p.302]

expound Savage's view as follows:

Once confronted with such inconsistencies, one should, so the argument goes,
modify one's initial decisions [about beliefs] so as to be consistent. let us as-
sume that this jockeying, making snap judgments, checking on inconsistency,
etc.-leads ultimately to a bona fide, a priori distribution.

For what follows, we need to expand on this quotation. What is at issue is why a rational decision-maker

should want to be consistent. After all, scientists are not consistent, on the grounds that it is not

clever to be consistently wrong. When surprised by data that shows current theories to be in error,

they seek new theories which are inconsistent with the old theories. This is what genuine learning is

like. Consistency, from this point of view, is only a virtue if the possibility of being surprised can be

eliminated somehow. How does Savage see this situation being achieved?

A person who makes judgments in a reasonable way will presumably prefer to make judgments

when he or she has more information rather than less. A decision-maker might therefore begin to

tackle the problem of constructing an appropriate belief system by asking: for every conceivable

possible course of future events, what would my beliefs be after experiencing them? Such an approach

automatically discoun*.s the impact that new knowledge will have on the basic model being used to

determine beliefs-i.e. it eliminates the possibility that the decision-maker will feel the need to alter

this basic model after being surprised by a chain of events whose implications had not previously been

considered. Next comes the question: is this system of contingent beliefs consistent? If not, then the

37



decision-maker may examine the relative confidence that he or she has in the "snap judgments" he

or she has made and then adjust the corresponding beliefs until they are consistent. With Savage's

definition of consistency, this is equivalent to asserting that the adjusted system of contingent beliefs

canl be deduced, using Bayes' rule, from a single prior. It is therefore true, in this story, that the final

"massaged" posteriors can be deduced formally from the final "massaged" prior using Bayes' rule. This

is guaranteed by the use of a complex adjustment process which operates until consistency is achieved.

As far as the massaged beliefs are concerned, Bayes' rule therefore has the status of a tautology, like

2 + 2 = 4. Together with the massaged prior, it serves essentially as an indexing system which keeps

track of the library of massaged posteriors. It would perhaps be wrong to argue that there is no learning

going on when an index system is used to locate a book in a library, but it will be clear that, if the

above story is to be believed, then the real learning takes place during the massaging process. Notice

that what happens during the real learning process is that a massaged prior is deduced from a set of

primitive posteriors. To pursue the analogy given above, the actual learning should be thought of as

assembling the right books to go in the library, the final step being the provision of a suitable index.

Sophisticated Bayesians, among whom we would like to count ourselves, sometimes follow llarsanyi

in signaling that some analog of Luce and Raiffa's jockeying procedure is required by asserting the

Bayesian theory applies only to "closed universe" or "small world" problems-i.e. to problems in

which all potential surprises can be discounted in advance (section 6). Suitable examples are to be

found in the small decision trees with which books on Bayesian decision theory for students of business

administration are illustrated. Naive Bayesians make no such qualifications. For them, something

which is not formalized in Bourbaki-type mathematics does not exist and hence no account need be

taken of it at all.

The implications of taking a sophisticated view of Bayesian theory are serious enough when only

one decision-maker is involved. In sections 6 and 7, and again in section 11, we considered the orthodox

practice of asserting that the states of the world w E ( are to be all-inclusive. This allows various

tricks of the trade to be practised on the unwary. However, whatever else may be clear, a problem in

which all future histories, without exception, have to be taken into account is not one for which the

massaging process described earlier makes any practical sense whatsoever. If Bayesian conclusions are

not to be abandoned altogether, it is therefore necessary to be very much more circumspect about how

inclusive a state of the worIld is takent to be.

hlowever, although all this is related to what comes next, it is not the main point we wish to make.

The main point concerns what Aumann [1976] calls the "Harsanyi doctrine": namely, that priors should
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be taken to be common, to which Aumann adds the rider that it should be common knowledge that

the priors are common. The orthodox defense need not be spelled out in detail since it is closely related

to the idea of the "original position" as popularized by Rawls. Individuals are thought of entering the

world with a mind which is a tabula rasa. Since rational individuals in this "original position" will all

have the same information, how could they adopt different priors?

Obviously, such a defense of the common prior assumption will not survive the interpretation of

Savage's theory offered above. However, one can recast the defense as follows. Imagine all of the players

constructing their beliefs, before there is any action, using the Luce and Raiffa jockeying process. How

could beliefs come to be commonly held under such circumstances? Each player would need to be able

to argue with confidence that lie would make the same subjective judgments as any other player under

all circumstances provid(ed that he or she were to contemplate precisely the same contingencies under

precisely the same conditions. (llarsanyi [1977] refers to a related notion as "extended sympathy.") In

this case, each player could regard the other players, in their aspect of information processors, simply

as surrogates of himself. The massaging process would therefore generate a common prior.

But this new defense asks us to swallow a great deal more than the old defense. Both require us to

think of individuals beginning with an identical kit of information-processing tools and no information

at all. Differences between individuals then emerge entirely as a result of different information that

they receive as time passes. If the kit of tools is conceived of as containing only Bayes' rule and

nothing else, then the idea that we can mimic the reaction of other players to their information does

not seem fraught with difficulty. But once the massaging process is taken into account, we are faced

with a tool-kit. of unkiiowii composition. Not only that, people learn about how to learni as they gaiin

experience. A person's tool-kit after the passage of some time will not therefore be the same as his or

her original tool-kit. Even if one is prepared to grant the doubtful proposition that we "know" what

tools we have in our current kit (i.e. we know the mechanism by means of which we currently make

subjective judgments), it does not follow that we can distinguish those tools that we have acquired

through experience from those with which we were equipped originally. And probably it does not even

make sense to suppose that we can itemize those tools we would have had in our current kit if our

experience of the world had been other than it was. But, without this sequence of increasingly unlikely

requirements, the new defense is unworkable. This is not to say that the defense may not have value as

a useful approximation~ in simple enough situations, only that it seems unwise to elevate its conclusions

into holy writ.
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We continue this last point with some remarks on extensive-form games. In Sections 10 and 11,

we looked only at normal-form games (in which all of the action can be thought of as taking place at a

single instant). But, in extensive-form games, time enters the picture. During the play of such a game,

the players may receive evidence that the hypotheses they need to sustain the Harsanyi doctrine, or

some other doctrine, are false. Figure 20 is the game-tree of an example adapted by Reny [1986] from a

similar example of Rosenthal [1981]. (See also Basu [1985].) Reny calls the game "take-it-or-leave-it."

A philanthropist arrives with $10' unsure of which of two institutions to endow. Alice and Bertha

represent the two institutions. The philanthropist makes them play the following game which may

proceed through n stages. If the k"' stage is reached, the philanthropist will have placed $1 0k on the

table. If k is odd, Alice can take the money and so end the game. If k is even, Bertha can take the

rnoney and end the garie. If the money is not taken and k < n, then the philanthropist multiplies the

amount available by ten and the game proceeds to the k'h stage. If k = n, the philanthropist leaves in

disgust taking the money with him.

A B A B A B o

0

10 0 1,000 0 104V10

0 100 0 10,000 0 10"

Figure 20

Reny's [1985] point is very simple. He notes that "rationalizability" (and most other game theory

"solution concepts") requires Alice to take the money at step 1. But what would Bertha then deduce

about Alice if Alice did not take the money? The natural answer is that Alice is not a rationalizer.

What then is she? The "rationalizing" theory offers no clue. But suppose Bertha decides that, whatever

sort of person Alice is, if she left $10 on the table at step 1, then it is very likely that she will leave

$1, 000 on the table at step 3. In this case player II will leave $100 at step 2, expecting to be able

to claim $10,000 at step 4. IHowever, if Alice anticipates all this, it will not be optimal for her to

"rationalize' at step) 1 because she will be passing up the chance of being able to claim $1,000 aL step) 3.

Such discussions are absent from traditional game theory. In Selten's [1975] concept of perfect

equilibrium, any deviation by players from the "Bayesian rational" course of action is attributed to

small random errors. The players' hands are said to "tremble" slightly in selecting their actions, so that
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there is always a small chance that they will do the wrong thing by "mistake," although they always

intend to do the right thing. In Chess, for example, we are supposed to explain a long sequence of bad

moves by asserting that the opponent always meant to move the correct piece, but continually picked

the wrong one up by mistake. More often, however, a formalism is adopted within which it is difficult,

or impossible, even to express the relevant issues so that they then do not "need" to be considered at

all. One advantage of being explicit about what is being assumed about the players, as discussed in

section 10, is that such evasions become very difficult to sustain.10

Progress on these issues must presumably await advances in the theory of bounded rationality

(although Aumann [1988] has a proposal for cutting the Gordian knot). Binmore [1987/8] reviews some

of the issues.

14. Conclusion. What does all this mean for the study of common knowledge? Do the criticisms and

reservations of the preceding section mean that its continued investigation is fruitless? This would not

be a good conclusion to draw. Firstly, our criticisms are directed at applications of the theory which

hopelessly overload its currently rather tenuous underpinnings. In small-scale applications, however,

such as normal-form games with a small number of strategies, these criticisms are not necessarily

relevant. Even in the much more doubtful large-scale applications, there is comfort to be drawn from

the fact that, without an explicit understanding of the nature of common knowledge, it would not even

be possible to properly appreciate where the inadequacies lie in the theories which are current.
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Footnotes

1. There are various difficulties with the raw version of Littlewood's story. One might respond to A's

question by asking why B is still laughing given that she can analyze the situation just as easily as

A.

2. The first criterion implies the second because, if T = (ek)**T, then

(ek)T = (ek)(ek)ocT= (ek) T= T.

The second criterion implies the first because, if T = (ek)T, then (ek)T C (ek) 2T by (1(1). But

(ek)2T C (ek)T by (K2). Thus T = (ek)T = (ek)2T. Similarly, T = (ek)'"T for all n, and so

T = (ek) T.

3. In symbols

P(w)=flT= f E
wET wtEKE

where 'I' ranges over all truisms and E over all events.

4. The union of two truisms, S and T, is a truism because SuT = KSUKT G K(SuT) U K(SST) =

K(SUT).

5. Formally, this means that the event

E = {w : prob(FIPA(w) = gA)}

is common knowledge. Thus M(wo) C E by proposition 5. Suppose Q = PA(w). TheIn

w E PA(w) C M(wo) C E. Hence prob(FIQ,) = prob(F|PA(w)) = qA.

6. Of course, player II's choice of B is not approximately optimal after i1 has occurred. Player il's

choice is approximately optimal before the realization of w.

7. A natural criticism is that Savage's [1954] theory constructs von Neurnann-Morgenstern utilities

and subjective probabilities simultaneously. At first sight it therefore seems odd that one should

be the subject of common knowledge but not the other. Brandenburger and Dekel [1987b] present

an expanded model with private information in which this objection does not bite. See also the

discussion at the end of section 11.

8. A significant evasion is concealed in this argument. The assumption that Bayesian rationality leads

to a specific recommnendation for behavior rather than merely a set of constraints on behavior is

left undefended.
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9. Shin [1988] suggests that, with a truly all-inclusive description of a state, (11.1) is not appropriate

since part of what one observes is the action one actually takes. Hence the P,(w) on the left of the

inequalities should not be the same as that on the right.

10. Fudenberg, Kreps, and Levine [1987] and Dekel and Fudenberg [1987] address the issues raised in

this paragraph in a more precise context.
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