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1. INTRODUCTION.

The fundamental idea of game theory is that each player in the game acts in his own best

interests, given the actions of the other players. Nash equilibrium makes this idea precise by defining

each player's best interests as the maximization of his expected utility, where the expectation is

taken with respect to the (mixed) strategies played by the other players.

New equilibrium concepts and refinements of old equilibrium concepts should adhere to this

fundamental idea of self-interested action. This is to say, they must be justified in decision-theoretic

terms.1 A notion of "self interest" must be defined by specifying the preferences of the players, and

equilibrium must be defined with respect to these preferences. This paper characterizes preferences

that justify perfect and proper equilibrium as the outcome of rational, self-interested behavior.

They also provide a framework for discussing the consistency of various rationality hypotheses on

individual choice with properties that we might look for in other refinements of Nash equilibrium.

Not surprisingly, the preferences which rationalize refinements of Nash equilibrium are in fact

refinements of the preference orderings given by expected utility maximization. Each player has a

preference ordering consistent with expected utility maximization, where the expectation is with

respect to the joint distribution of all other players' pure strategies. When a particular Nash

equilibrium is rejected - if it is not perfect, for example - the argument is that some player really

does not prefer the strategy assigned to him in the equilibrium. Some other strategy, which by

definition must be of equal expected utility, is in fact better. For example, consider the game:

Player II
Left Right

Player I Top 2 2Bottom LZ!IZLI11

In this game the strategy pair (Bottom, Right) is a Nash equilibrium which is not perfect.

Given Player II's equilibrium strategy, both Bottom and Top have the same expected utility for

Player I. However, the possibility of trembles makes Player I actually prefer Top to Bottom.

Consideration of trembles refines the preference order generated by expected utility maximization.

Refinements of Nash equilibrium focus on the theories players hold about the play of the

game. Sequential, perfect and proper equilibrium refine Nash equilibrium by requiring "second

order" theories about equilibrium play. In the game, (Bottom, Right) fails to be perfect because,

' This point of view is argued for by Kohilberg and Mertens [1985].
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although Bottom maximizes utility for Player I given the theory, "my opponent will certainly

play Right," it does not do well when the second order theory "perhaps, with tiny probability, my

opponent will play Left" is considered. The strategy pair does not survive the imposition of second

order theories which say, "perhaps there will be a mistake!"

The choice theory that rationalizes the preferences expressed in refinements such as perfect

and proper equilibrium is lexicographic. Only after the first order theory about play of the game

leaves a player indifferent between two alternatives is the second order theory applied. This is easily

seen in the following perturbations of the game:

Player II
Left Right

Player I Top 2,2 1- E,1
Bottom 1,1 - e 1,1

If Player I really thought that the probability of Player II's playing Left was positive, he would

prefer Top to Bottom for sufficiently small positive E. But this is not what happens. The pair

(Bottom, Right) is perfect in all the perturbed games with Ec> 0.

My purpose in this paper is threefold. First, I will characterize the choice theory that underlies

perfect and proper equilibrium. This choice theory is a version of lexicographic expected utility.

I call it expected utility with lexicographic beliefs because each component of the expected utility

vector has the same utility indicator, but (perhaps) different beliefs. This choice theory is justified

by a minimal weakening of the Archimedian postulates in an axiom system for subjective expected

utility. It is consistent with postulates of rationality such as the sure thing principle. Second, I

will define equilibrium play for these preferences, and characterize perfect and proper equilibrium

in the context of this equilibrium theory. I will identify those properties of higher order beliefs

such that preference maximization with respect to these beliefs gives perfect equilibria and proper

equilibria. Finally, I will characterize those higher order beliefs that give rise precisely to the

admissible equilibria - Nash equilibria in which no player plays a weakly dominated strategy.

The goal of this research is to examine the choice-theoretic foundations of Nash equilibriurn

refinements. Two recent papers have also examined these foundational questions. Brandenburger

and Dekel [1986a] also investigate the connection between lexicographic choice and Nash equilib-

rium refinements. We differ more in technique than in substance. Mcbennan [1986] takes a different

approach to choice-theoretic foundations by identifying best response correspondences on the space

of consistent conditional systems whose fixed points are precisely the sequential equilibria. McLen-
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nan is concerned with the lexicographic nature of beliefs, but not with the other aspects of choice

theory.

Lexicographic orderings have lexicographic representations in the real numbers, and numerical

representations in some non-Archimedian ordered fields. Archimedian ordered fields (such as the

real numbers) are familiar, but the numerical representations provided in the non-Archimedian

fields are more convenient for calculations than are lexicographic representations in the reals. Fur-

thermore, the non-Archimedian approach will be of more help in generalizing the lexicographic

refinements of Nash equilibrium to infinite games. Accordingly, I will state all theorems in the

paper using real-valued lexicographic representations, but I will use non-Archimedian representa-

tions in proving the theorems. The necessary algebra is sketched as it is needed in Appendices 1

and 2.

2. EXPECTED UTILITY WITH LEXICOGRAPHIC BELIEFS.

Imagine a decisionmaker confronting a choice situation. There are finite numbers of states of

the world w E Z and outcomes x E X. The decisionmaker chooses an act, which is a map from S2

to probability distributions on outcomes. Let f(w)(z) denote the probability that act f assigns to

outcome x in state w.

This description of choice is a simple version of the Anscombe and Aumann [1963] framework,

which is sufficiently rich for game theory.2 If the decisionmaker is an expected utility maximizer,

then there is a probability distribution p on fl and a utility function u on outcomes such that act

f is at least as good as act g (f >- g) if and only if:

I: PM )I:u(x~fw)(z) > F, p(w) 1 U~zgcx)x)
wE? xEX wEAl zEX

To reinforce the distinction between subjective uncertainty (on SZ) and objective uncertainty (on

X) it is useful to define for each act f the random variable

U(f)(w) = u(x)f(w)(a).
xEX

Then f & g if and only if

E,{U(f)} > E,{U(g)}.

-Lexicographic expected utility is the non-Archimedian version of this choice behavior. The

decisionmaker is a lexicographic expected utility maximizer if there are K utility functions Uk

2 Another version of this choice theory can be found in Branudenburger and Dekel [1986a,b].
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on outcomes and K probability distributions Pk on a such that f E g if and only if the vector

(Epk {Uk(f)})g.i equals or exceeds the vector (E,,{Uk(g)})f. in the usual lexicographic ordering

on RAI.3 I will use the notation >L and >L to refer to the weak and strict lexicographic orders,

respectively.

Expected utility with lexicographic beliefs is a special case of lexicographic expected utility,

where the utility indicator u is independent of k, and only p varies with the index. In other words,

f } g if and only if the vector (Ep,{U(f)})f 1 >L (Eph{U(g)})f. 1 in the usual lexicographic

ordering on Rk.

The rationality of expected utility is best discussed in terms of the axioms on choice behavior

which characterize those preferences with an expected utility representation. The following axioms

characterize those preferences which can be represented by expected utility with lexicographic

beliefs. As before, X will denote the finite set of outcomes and a is the finite set of states. The

set of probability distributions on X is P(X). An act is a function f : -> P(X). Let W denote

the set of subsets of a. The set of acts is denoted by L. The set L is a mixture space. The act

af + (1 - a)g is the act that, in state w, draws x from distribution f(w) with probability a, and

from distribution g(w) with probability 1- a. I will assume that preferences are complete (Axiom

1.), and use the following definitions: f >- g ifff > g and not g f; f ~ g if f > g andg g1 f.

Axioms:

1. >- is complete, transitive and reflexive on L.

2. (independence) For all f,g, h E L, if f g and >0 a> 1 then af-+(1- a)h > ag+t (1- a)h,

with strict preference if f > g and a > 0.

Axioms 1 and 2 allow for the definition of the orderings Es, as in Savage [1954].

Definition. f E s g iff f' g' for every pair of acts f' and g' such that f' = f on S, g' = g on

S and f' = g' on a/S.

Definition. An event S is null iff f ~s g for all f, g E L.

Proposition 1. The orderings as are complete, transitive and reflexive.

3 In general, infinite K may be required, but due to the finiteness of a, finite K suffices for my

purposes.
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To say that f js g is to say that if the decisionmaker knew that S were going to occur, then,

given this knowledge, he would find f at least as good as g. The proof of the Proposition can be

found in Savage [1954] (pg. 23).

3. (Archimedian axiom) Iff >-w, g _{,,} h, then there is a y, 0 < 1s.t. yf+(1- 7 )h '{} g.

4. (non-triviality) There exists w E St, f,g E L s.t. f >-{w} g.

5. (Non-null state independence) For non-null states w,cW' E , if f(x)(w) = f(x)(w') for all

x E X, if g(x)(w) = g(x)(w') for all x E X, and f 4. g, then f .-,{} g.

Theorem 1. Let >- on L satisfy Axioms 1-5. Then there exists a utility function u : X -+ R

with minx u(x) = 0, max, u(z) = 1, and a finite sequence of probability measures {pkH-i on S

such that f ? g if

pE )Uzf(x)(~w)l ;> 1 Pa(w) Eu(x)g(x) (.') .(>p))K K
wEfl ,X k=1-w1 l xEX

The utility function u is uniquely determined, as are first-order beliefs p1.

Conversely, if a non-trivial preference order >- on L has such a representation, then it satisfies

Axioms 1-5.

I will call the representation of preferences (beliefs) presented in Theorem 1 a factor repre-

sentation. This Theorem is proved in Appendix 1. I use techniques from non-standard analysis.

Richter [1971] has shown that any reflexive, transitive and complete ordering can be represented

by a utility function whose values are non-standard numbers. Using the techniques of Appendix 1

it is straightforward to show that if a preference order over lotteries satisfies all of the usual axioms

except the continuity axiom, then there exists an expected utility representation where both prob-

abilities and utilities are elements in a non-standard model of the real numbers. The particular

representation theorem I am interested in investigates the implications of a partial relaxation of

the continuity assumption. Utilities will be Archimedian but probabilities will not be.

The axioms are standard except for Axiom 3. If this statement were true for unconditional

preference rather than just for conditional preference given {w}, then the conclusion of Theorem 1

would hold with K = 1, which is to say that the preference ordering would be representable by

Archimedian expected utility.

Unlike the Archimedian analysis, the factor representation of beliefs in the non-Archimedian

case is not unique. For example, in a two state world, an expected utility maximizer with lexico-
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graphic beliefs would make the same choices with lexicographic probability distribution (1/2,1/2),

(1,0) as he would with lexicographic probability distribution (1/2,1/2), (3/4,1/4).

r In applications to game theory, each player's strategy is a random variable that takes values in a

finite set of pure strategies. In Nash equilibrium, each player believes that the strategies of the other

players are independent random variables. The key decision-theoretic aspect of the independence

of events A and B is that preferences over bets about the occurrence of event A are unaffected by

knowledge of the occurrence or non-occurrence of event B. In the Archimedian world, this implies

that beliefs are such that Pr(A fl B) = Pr(A) Pr(B). The non-Archimedian version of the product

rule for independent events is not a consequence of the independence of preferences over bets on

A of knowledge about B. An adequate treatment of independence with non-Archimedian beliefs

is somewhat technical and tedious. The interested reader can find a discussion of the issues, the

correct definition of independence for my purposes and a characterization theorem in Appendix 2.

Finally, we need the notion of marginal distribution. If p1, ... ,PA is a joint lexicographic

probability distribution of the two random variables Z and y, then the marginal lexicographic

probability distribution of the random variable x is given by

Pk(x=a) = E pk( =a,y=6).
b

It is easy to see that this definition of marginal distributions has all the required properties.

3. LEXICOGRAPHIC CHOICE: AN EXAMPLE.

An example will help to distinguish the difference between expected utility with lexicographic

beliefs, Archimedian expected utility, and other lexicographic concepts that arise in game theory.

Consider the decision tree in figure 1. There is one decisionmaker, playing against nature. Nature

chooses A, B or C. The decisionmaker then chooses R or L. If nature has chosen A or B and the

decisionmaker has chosen L, the decisionmaker gets to choose again from among r and 1. Utility

payoffs are given at the terminal nodes.

The decision problem has three states of nature: A, B and C. The decisionmaker can choose

from among four actions: R, Lr, Lm and Li. Let us suppose that, initially, the decisionmaker is an

Archimedian expected utility maximizer, and that his beliefs assign Pr{C} = 1. Then all actions

have expected utility 1, and so R ~~ Lr ~~. Lm ~LI.

.Suppose now that the decisionmaker has lexicographic beliefs, and his second order beliefs

assign Pr{A} =1/3, Pr{B} = 2/3, Pr{C} = 0. Since first order beliefs leave him indifferent

6



AI

1D
Z0

a

- . v 
0 "

"



among all his choices, he resolves the tie with his second order beliefs. Second order beliefs assign

E{U(R)} = 10/3, E{U(Lr)} = 5/3, E{U(Ll)} 8/3 and E{U(Lm)} = 0, so R >- Lr >- Ll >-

Lm.

Another notion of Lexicographic choice underlies sequential equilibrium. The choice model of

Kreps and Wilson [1982] has the decisionmaker use his second order beliefs only in the event that he

should find himself in the second information set. Put differently, second order beliefs can only be

used to break the tie between Lr and L. This theory of choice, without further refinement, can lead

to choice behavior which cannot be rationalized by expected utility theory (Archimedian or not).

Consider the strategy Lr. The choice of local strategy L at the decisionmaker's first information

set and r at the second information set is rationalized only by beliefs which assign probability 1 to

state C. Beliefs at the second information set are really conditional beliefs on the event {A, B},

and must have Pr{B} > 2/3. Given these beliefs it must be the case that r ~ 1 ~ m.

Although Lr is rationalized by sequential rationality with lexicographically consistent beliefs,

it runs afoul of the sure thing principle. Since r >- m, the event {A, B} is not null. Given the

choice r at the second information set, the choice problem at the first information set becomes as

described in Figure la. Since Pr{B} > 2Pr{A}, it must be the case that, given the event {A, B},

R >- L. Given the event {C}, Re~ L. Since {A, B) is not null, we should conclude from the sure

thing principle that R >- L.

The point of this example is to illustrate that the choice criteria embodied in the sequen-

tial equilibrium concept are insufficient by themselves to guarantee consistency with conventional

theories of choice under uncertainty.4

4. LEXICOGRAPHIC CHOICE IN NORMAL FORM GAMES.

In this section I will define an equilibrium concept for normal form games when players prefer-

ences are representable by expected utility with lexicographic beliefs. I will discuss the relationship

of this equilibrium concept to Nash equilibrium with Archimedian expected utility.

An N-person game in normal form is a 2N-tuple G =< I,~, as >$ . Player n has the set

In of pure strategies available to him. I will use the symbol I, both for the set of pure strategies

available to player n and its cardinality. Let I = H Is. This is the set of possible pure strategy

vectors. I will also use the symbol I to refer to the cardinality of this set. Let I_, denote the set of'

'4 In this paper I want to discuss only normal form games. I will discuss sequential equilibrium,

other extensive form equilibrium concepts and lexicographic choice in another paper.
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pure strategy combinations for all traders other than n. Let Sn denote the set of mixed strategies

available to player n; this is the set

I,

Sn = {(p(1),. . . ,p(I)) : p(i) E R+, p(i) = 1}.
:=1

Let S = fIJ 1 Sr, and let S_, denote the set of probability distributions on I_.

If s E S is a mixed strategy vector, then sn is player n's mixed strategy and sn is the marginal

distribution of plays of the players other than n. The same notation will apply to the set I and

any pure strategy vector i E I. Player n's utility function is a map u, : I -+ R.

The games and strategies I consider are just those that arise in normal form game theory with

Archimedian preferences. Now, however, I take up beliefs. Nash equilibrium in an n-player game

requires that each player have a theory of how the game is to be played, that each player choose a

strategy which maximizes his utility given his theory, and that each player's theory be consistent

with other players' theories. Any n-tuple of strategies which meets these three criteria is a Nash

equilibrium strategy n-tuple. Lexicographic beliefs allows for a richer specification of beliefs than

is available with Archimedian expected utility, and so they must be formally examined.

Let K > I be an arbitrarily chosen integer. Player n has beliefs about the actions of other

players. These (non-Archimedian) beliefs can be represented as elements of the set Rn = f_ 1 S_n.

Let r, = (ri,...,rn) be an element of Ra. Probability distribution rn represents player n's first

order beliefs, rn represents his second order beliefs, and so forth. Were player n to play strategy

sn E Sn, his lexicographic expected utility vector would be:

Un(sn; rn) = (zUn(in, i-n)sn(in)r(i_.n),..., un(i ,i-n)sn(in)rff(Ln) .
iEI iEI

It is this vector which must be maximized with respect to the lexicographic ordering L on RK,

Let R = H 1 Rn. An element of R is a vector of joint beliefs.

Definition. A strategy vector-belief vector pair (a, r) E S X R is a lezicographic Nash equilibrium

if for each player n,

jIEI iEI
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for all s' E Sn, and

11 = 8 n

The first condition can be more conveniently written as Un(s,; rn) L Un(4,rs).

The first requirement of the definition is the maximization hypothesis - that each player is

acting in his own self-interest given the expected actions of others. The second requirement is

consistency of each player's theory with actual play of the game.

The purpose of lexicographic Nash equilibrium is to refine Nash equilibrium by imposing con-

straints on higher order beliefs. To see how this works, notice that, by constraining first order and

higher order beliefs to be identical, any Nash equilibrium play is also realizable as a lexicographic

Nash equilibrium. By imposing other constraints on higher order beliefs, we can, as we shall see,

pick out various refinements of Nash equilibrium.

Theorem 2. i) Ifs is a Nash equilibrium of a game G, then there exists a r E R such that (s,r)

is a Lexicographic Nash equilibrium. /
ii) If (s, r) is a lexicographic Nash equilibrium of a game G, then s is a, Nash equilibrium of G.

Proof. i) Obvious from the definition. Set rn = s-n for all n and k.

ii) If (s, r) is a lexicographic Nash equilibrium, then

un(in, in)sn(in)rn(i-n) 2Un(in 7in)S' (in)rn(i_.)

for all s' E Sn. Since ri = s_n, s, is a Nash best response to s-n. *

Again, this Theorem clarifies the purpose for introducing lexicographic beliefs. The set of Nash

equilibria strategy vectors and the set of lexicographic Nash equilibria strategy vectors for a game

G are identical. Further constraints on the nature of lexicographic beliefs, beyond what is already

required for the existence of equilibrium, will serve to refine the Nash equilibrium concept.

5. PERFECTION, PROPERNESS AND LEXICOGRAPHIC NASH EQUILIBRIA.

In this section I identify those constraints on higher order belief which characterize perfect and

proper equilibria among the class of lexicographic Nash equilibria of a normal form game G.5

s For another discussion of the lexicographic characterization for perfect and proper equilibrium,

see Brandenburger and Dekel [1986a].

9



The idea behind perfect equilibrium is that mistakes are possible, although extremely improb-

able, and that, consequently, no strategy combination can be regarded as impossible. Formally,

a Nash equilibrium s E S is perfect if and only if there exists a sequence {s'}&o of completely

mixed strategies converging to s such that, for player n, sn is a best response to si for all j.
This idea has a natural expression in terms of lexicographic beliefs. Each player has higher-order

beliefs which assign positive probability to every strategy combination. An important aspect of

perfect equilibrium is that each player's strategy choice is required to be robust to the same test se-

quence of completely mixed strategies. This idea can be expressed lexicographically in the following

condition:

Definition. A belief vector r E R is independent if each player believes the play of all

other players j and k to be independent random variables. It is shared if there is a lexicographic

distribution s on I such that r; is the marginal distribution under s of the actions of all players

other than i.

The definition of shared beliefs requires that player i's first order beliefs be the the marginal

distribution of s1 on I_;, that his second order beliefs be the marginal distribution of s2 on I_ ,

and so forth. The shared beliefs condition says that all players share the same theories about

how the game is to be played. Independence is the appropriate generalization of Archimedian

independence to the case of lexicographic probabilities. Notions of independence are discussed in

some detail in Appendix 2.

Theorem 3. A strategy vector 8 E S is a perfect Nash equilibrium of G if and only if there

exists a belief vector r E R with shared, independent beliefs such that (s, r) is a lexicographic Nash

equilibrium and such that, for all n and all iL, there exists a k such that r (i..) > 0.

Proper equilibrium is a refinement of perfect equilibrium. In proper equilibrium, trembles are

constrained so that, loosely speaking, if strategy x is worse for a player than strategy y, then the

sequence of trembles must assign probabilities to x and y such that the odds of x to y get arbitrarily

large. Myerson [1978] motivates proper equilibria with explicit reference to beliefs about mistakes

(as opposed to Selten [1975] who does not in his study of perfection). Formally, a Nash equilibrium

a E S is proper if and only if there exists a' sequence {si},**1 of completely mixed strategies

converging to a and a sequence of positive real numbers {e'},**' 1 with limit 0 such that if, for player

'4, Ei.e- Unfin~t-n)*.n > Ei..e.. un(i'ni -,n)s , then s((in) > 's((i'); and such that,

for player n, a, is a best response to s8.. for all j. The constraints on trembles in proper equilibrium

also have a natural interpretation in terms of lexicographic beliefs. If strategy a is worse for player n

10



than strategy b in equilibrium, thea, for all other players, player n's strategy a cannot have positive

probability in any belief of order less than or equal to the order of belief where b first has positive

probability. This says, roughly, that players must believe b to be infinitely more likely than a.

Theorem 4. A strategy vector a E S is a. proper Nash equilibrium of G if and only if there exists

an r E R with shared, independent beliefs such that (s, r) is a lexicographic Nash equilibrium, and

such that if, for player n,

si~-~-~_)>L n(jn) i-n r-n(i-n,,

then for all m / 4n, rkn(il,. ij-.1, "",--,j,..--,iN) > 0 implies that there is an I < k such

that r , (i,.1 .,m-,n +1,- -... , - -, , N) > 0-

Proofs of these two theorems can be found in Appendix 3.

The source of many of the desirable properties of perfect and proper equilibrium can be found

in the behavior of higher-order beliefs. For example, perfect equilibrium play does not involve the

use of dominated strategies. The reason for this is, in Savage's [1954] language, that the beliefs of

the players admit no null events. No combination of pare strategies is impossible, although their

first order probabilities may be 0. Since no combination of plays can be completely neglected,

dominated strategies can never be preference maximizing.

6. CORRELATION AND ADMISSIBLE EQUILIBRIA.

In this section I provide a lexicographic characterization of admissible equilibria - equilibria

wherein no dominated strategies are played. This characterization involves relaxing the hypothesis

of shared higher order beliefs and the hypothesis of independent beliefs.

Definition. A Nash equilibrium is admissible if no player plays a dominated strategy in

equilibrium.

T heoremn 1. A strategy vector s E S is an admissible Nash equilibrium if and only if there exists

an r E R such that (s, r) is a lexicographic Nash equilibrium and such that, for all n and all i- ,

there exists a Ic such that ri (i-2) > 0.

The proof of Theorem 1 is in Appendix 3.
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It is known that the set of perfect equilibria and admissible equilibria coincide in two-person

games. The reason is clear in comparing Theorems 3 and 1. The assumptions of shared beliefs

and independent beliefs impose no restrictions when there are only two players in the game. Each

player is the only player who holds beliefs about the other, so the assumption of shared beliefs is

trivially satisfied. The independent beliefs assumption also does not bind because each player holds

beliefs about the play of only one other player. When in games containing three or more players,

there can be admissible equilibria which are not perfect. In general n-person games, relaxation

of both the shared beliefs and the independent beliefs assumptions is required to identify all the

admissible equilibria, as the following two examples show.

The first example has an admissible equilibrium not supported by shared beliefs. The payoff

matrix for this three-person game is

1 r 1 r 1 r
T 3,1,4 1,1,0 T 3,0,0 1,0,3 T 2,0,0 2,0,0
B 3,0,8 3,0,0 B 3,1,4 3,1,0 B 2,0,0 2,0,0

L C R

Figure 2.

where player 1 chooses the matrix L,C or R; player 2 chooses the row T or B; and player 3 chooses

the column l or r. The strategy triple (R, T, r) is a Nash equilibrium which is justified by higher

order beliefs in which, given {A, B}, player 2 believes that L will be played with high probability,

while player 3 believes that C will be played with high probability. It is easy to see that this

equilibrium cannot be supported by any shared beliefs which assign positive probability to the

strategy set {L, C} of player 1.

The next example is a game with an admissible equilibrium supported only by dependent

beliefs. This example comes from van Damme [19831.6 The payoff matrix for this three-person

game is

6 See Figure 2.2.1 on page 31. Martin Osborne and Vijay Krishna called this example (and its

required violation of independence) to my attention.
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I r l

T 1,1,1 1,0,1 T 1,1,0 0,0,0
B 1,1,1 0,0,1 B 0,1,0 1,0,0

L R

Figure 3.

where player 1 chooses a row T, B, player 2 chooses a column l,r and player 3 chooses a matrix L, R.

The strategy combination (B,1, L) is an admissible equilibrium. Any vector of lexicographic beliefs

which supports player 1's decision and which assigns positive probability to every combination of

strategies for players 2 and 3 must treat individual defections by each player and simultaneous de-

fections by both players as events of the same order. This stands in contradiction to the implication

of independence that the joint probability of two independent second-order events must be at least

third-order.

Dropping the independent and shared beliefs assumptions in the manner of Theorem 1 still gives

lexicographic Nash equilibria because first order beliefs are shared and independent. Nonetheless,

the dropping of these assumptions for higher order beliefs is far from the spirit of Nash equilibrium.

In a Nash equilibrium, the equilibrium strategies of all the players are common knowledge.

One implication of this fact for Nash equilibrium is that (first order) beliefs are shared. Two kinds

of arguments have traditionally been made for this assumption. Both are problematic. First, each

player understands the game, and thus can compute the best responses of his opponents. Second,

repeated play of the game may lead to equilibrium play as players observe and respond to the play

of their opponents. Neither of these arguments seems to apply to higher order beliefs. Higher order

beliefs may represent a theory of irrational play, and thus may not be susceptible to a priori analysis.

Furthermore, higher order beliefs are never directly observable, unlike the first order beliefs which

correspond to actual play of the game. If the assumption of shared higher order beliefs is to be

defended, new arguments must be found.

Perhaps the most successful approach to the justification of equilibrium is provided by Aumann

[1987]. Aumann shows that equilibrium is equivalent to the expression of Bayesian rationality

on the part of the players, where the uncertainty is not just over nature's moves, but also over

the play of other players in the game. The appropriate notion of equilibrium is not the Nash

equilibrium, but rather the more general correlated equilibrium. His analysis is driven in part by

the Common Prior Assumption, that all players share the same prior on the common state space

of the players' decision problems. In Aumann's analysis, the Nash equilibria can be recovered from
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those information structures where the players' information partitions are independent.

One can imagine carrying out the same analysis in the domain of expected utility with non-

Archimedian beliefs. Both formally and at the interpretative level, Aumann's story remains equally

valid once the correlated equilibrium concept is modified to account for non-Archimedian beliefs

just as the Nash equilibrium concept was modified in Section 4.

It is not my intention to redo Aumann's arguments in the non-Archimedian framework. In-

stead, I want to briefly discuss non-Archimedian correlated equilibrium and its relationship to

lexicographic Nash equilibrium. The following definitions for correlated and subjective correlated

equilibria are straightforward extensions to th non-Archimedian framework of Aumann's [1974,

1987] definitions and restatements of these definitions. I find it most convenient to work directly

with correlated equilibrium distributions.

Definition. A lexicographic subjective correlated equilibrium (l.s.c.e.) is an N - tuple

of non-Archimedian probabilities ((pi)k1)N1 on I such that, for each player n,

)K K

i_~=1 i_, k=1

for all inn j E In.

A correlated equilibrium (l.c.e) is an l.s.c.e. in which, for all players m and n, pn = pm .

The first two observations are trivial. Every lexicographic Nash equilibrium is an 1.s.c.e. If an

l.s.c.e. is a lexicographic Nash equilibrium, then first order beliefs are shared and independent, and

for each player n, strategy combinations i-, of the other players are independent of his own action

in. These observations follow immediately from the definitions. They are collected in the next

Theorem, which also specifies the maps from l.s.c.e.'s to lexicographic Nash equilibria and back.

Theorem 2. 1. If (s, r) is a lexicographic Nash equilibrium, then there exists a lexicographic

subjective correlated equilibrium (l.s.c.e.) ((p).i)fi with pt(in,i-) = r(i_)s (i ).

2. If an l.s.c.e. is a lexicographic Nash equilibrium, then p1 (i) = p1(i) -.. p1 (iN), and pi(i) =

The question I want to raise concerns the role of1l.c.e.'s. Is every lexicographic Nash equilibrium

describable as a correlated equilibrium satisfying the Common Prior Assumption? I claim that the

answer is "no". Neither of the examples in this section are l.c.e.'s. They can only be described

as a lexicographic subjective correlated equilibria. Nonetheless, as Theorem 2 makes clear, the
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equilibrium is not totally subjective. First order priors agree. Players' priors differ only in higher

orders. The relationship between l.c.e.'s and lexicographic Nash equilibria are detailed in the next

Theorem, whose proof can be found in Appendix 3.

Theorem 3. If an l.c.e. ((pk) .i is an lexicographic Nash equilibrium, then beliefs are shared

and independent. If (s, r) is a lexicographic Nash equilibrium with shared and independent beliefs,

then (s, r) describes an l.c.e. with pk(i) = r(i._L)sn(in) for all n and i E I.

The sets of perfect and proper equilibrium can be justified in the spirit of Aumann [1987]

as expressions of Bayesian rationality where various common knowledge restrictions on beliefs are

imposed, chief among them being the Common Prior Assumption. In light of Theorem 3, the

significance of the first example is its demonstration that if the admissible Nash equilibria are to be

justified along the lines laid out by Aumann, the non-Archimedian version of the Common Prior As-

sumption must be relaxed to a Common First Order Prior Assumption. Differences in higher order

beliefs cannot be explained by information differences alone. Other "conceptual inconsistenc[ies]

between players"7 must be appealed to in order to justify the class of admissible equilibria. Exactly

what is the subset of admissible equilibria that can be described as l.c.e.'s? Combining the criteria

in Theorems 1 and 3, the answer is given by Theorem 3: the perfect equilibria.

7 Aumann's words, [1987] pg 15.
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Appendix 1: Proofs for Section 2.

In this Appendix I prove the theorems of Section 2. First I will prove a representation theorem

where expected utility takes values in a non-Archimedian ordered field R that contains a proper

subfield isomorphic to R. Next I will use this representation to prove Theorem 1. Finally, I will

discuss some of the issues surrounding the definition of independent events and independent random

variables.

My notation will not distinguish between elements in IR, and elements of the subfield of R

isomorphic to R.

Theorem 1'. Let >- on L satisfy Axioms 1-5. Then there exists a utility function u : X - R

with minx u(x) = 0, max, u(x) = 1, a proper ordered-field extension R of the real numbers, and

a R-valued probability measure j on fl such that f > g iff

p A) E u(zT)f(x)(w) > E p(x) { uWz~cx)w).
wEn EX wEfi xEX

Conversely, if a preference order >- on L has such a representation, then it satisfies Axioms 1-5.

Proof of Theorem 1'.

First I will use the independence axiom (Axiom 2) to establish some monotonicity and substi-

tution properties of preferences, and then the sure-thing principle.

Lemma 1. If f E g and 0 <# < a < 1, then af + (1 - a)g } #ff+(1 - #)g with strict

preference if f >- g.

Proof. From Axiom 2, af+(1-a)g b g, with strict preference if f > g. Let y = /3/a. Applying

Axiom 2 to the mixture of the lottery af + (1- a)g with probability 'y and g with probability 1--7

gives af + (1 - a)g >- 31 + (1 - pg), with strict preference if f >- g. I

Lemma 2. If e > f and <0 a < 1, then g > h implies ae + (1- a)g af + (1 - a)h, with

strict preference if a < 1 and g >- h.

Proof. This follows from repeated applications of Axiom 2. First, ae +(1- a)g E af + (1 - a)g.

Second, af + (1- a)g & af + (1- a)h, with strict preference if a < 1 and g >- h. The conclusion

follows from Axiom 1 (transitivity). I
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If f and h are lotteries, define the lottery

( f(w) ifw E S,
JishA iW) = k(w) if w S.

Definition. For S E W, write f >-s g if there exists a lottery h such that fish > glsh.

The sure-thing principle guarantees that these orderings are well-defined, complete, transitive

and symmetric.

Lemma 3. If there exists a lottery h such that fish >- gIsh, then for all lotteries k, fisk >- glsk.

If fish ~igish, then for all lotteries k, fisk ~^ !,isk.

Proof. (>-) Suppose not. Suppose instead that for lotteries f,g, h, k, fish >- gjsh and gisk >
fisk. Then by Lemma 2,

f Ish + gf sk > ggIsh + 2fIsk,

9isk+ fisi fisk+ fish.

Each side of the two equations in (1) is a mixture. Computing them,

g|sh+ gfisk = (g+ f)is(h+ 2k)
1 1

= -gIsk + -fish.

From transitivity (Axiom 1), }fish+ }fisk - {fish+}ifisk, which contradicts reflexivity (Axiom

1).

For the case of indifference (~#), replace >- with ~ and - with >- in (1) to reach the same

contradiction. I

Lemma 4. For all S E W, ?-s is well-defined, complete, transitive and reflexive.

Proof. From Axiom 1, Lemma 3 and the definition. I

Lernma5. Let S E W and let Si E W, i = 1,...,n, be apartitionmof W. 1f f >-s, g for all i,

thien f >-s . If there exists an i such that I >.s, g, then f M..s g.

17



Proof. By induction on n. For n = 1 the conclusion is trivial. For n = 2, define

{f on S1, f on S1 ,
f' = g on S 2, f" = f on S2 ,

g on S*, g on S*.

Then f >s, g iff ' >- g. Also, f :s2 g iff f" f'. By transitivity, f" ! g, so f s g.

For arbitrary n, let C = Uz~1 Si. By the induction hypothesis, f ts, g for i = 1,... ,n - 1

implies f >:c g. Since C and Sn are a two-set partition of S, f >-s g. U

Lemma 6. Given Axioms 1-3, there exists a utility function u : X x S - R such that for all

w E 1, f {} giff

U(f)(w) = u(x,w)f(x)(w) u(xw)g(x)(w) = U(g)(w).
cEX xEX

The function u can be chosen such that, for all states w for which the conclusion of Axiom 5

holds, maxiu(x,w) = 1, minu(x,w) = 0. If Axiom 4 holds as well, then for all zxE X, and all

W,w' E fS, u(x, w) = u(x,w').

Proof. All of this follows from conventional arguments using Lemma 1 and the Archimedian

assumption to construct the utility indicator for each state.

Notice that if the vector U(f) E RI'I is at least as big as U(g) in the usual vector ordering,

then f >- g. This follows from Lemma 5 since the sets {W}WEO forms a finite partition of f2.
Let v1,...,vk and w1,... , wi be vectors in R", and consider the following two propositions:

a) For some x > 0 in R",
vi - x > 0 for all i,

wj-x= 0forallj,

b) There exists y E R+, z E R' such that

k 1

1 1

If y = 0,'then L'41zjw 1 $0.

Lemma 7. If a) is false, then b) is true.

18



Proof. I will prove that the failure of a) implies b), using a separation theorem. Equation system

is satisfied if and only if

a') For some x >0,
vi -x >1 for all i,

iv 3" x = 0 for all j.

Any solution to a') also solves a). Any solution to a) can be multiplied by a positive scalar to give

a solution to a').

Define the non-empty, closed convex sets

C = {(v1 -2,...,v -z, ei -z,..., w;-"x) : x > 01,

D = {(Si,...,sk,O,. ..,O) : 31,...,S > 1].

The set C is a cone. If a) has no solution, then a') has no solution and C fl D = 0. Thus C and

D can be properly separated by a hyperplane through the origin (Rockafellar, Theorems 11.3 and

11.7). Thus there exists p = (y, z) E Rk+l such that

inf p -d sup p .c = 0 (i),
D c

supp-d > infp-c (ii).
D C

(Proper separation means that both sets are not contained in the hyperplane.)

First, Ek y~v,+ E z <; 0. This follows from supc p -c = 0 apon substituting the standard

ordered basis in R" for z.

Second, y= > 0. If not, infD p - d = -00, which contradicts (i).

Third, suppose that y = 0. Then p . d = 0 for all d E D, and p -c = zjw -x. Thus (ii)

implies that Elzj wu-x< 0 for some x> 0. U

Lemma 8. Let 1 be any finite set of lotteries in L such that f >- g for some f, g E 1. Then

there exists a probability measure pi on Q such that, if f,.q E 1, 1 2 g iff ZEg U(f)(w)pj(w) >

Proof. Let vi, i = 1,... ,k be the vectors vi = U(fi) - U(gi) for all fig E L' such that

f, >. gj. Let wj, j = 1,... ,l be the vectors w3 = U(f,) - U(g1) for each pair fy, g3 E 1 sucli

that f3 g 39. I need only prove that there is au x solving a) of Lemma 7. If so, since x is not 0
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and non-negative, it can be normalized to a probability measure p1, and by construction, it has the

desired representation property.

To see that there is such a x, suppose not. Then system b) of Lemma 7 has a solution. Define

Z' = |zli, and w' = sgn zw;. Then (y,z') > 0 but (f 0) and Ek yvi + E ztv' < 0.. W.l.o.g.

we can assume that >i; yi+ E j z = 1. Each v= andwj is the difference of two vectors U(f,) -U(g),

where fj3 ~ gg. Then for all w E fl,

yiU(fi)(w) + ZzU(f)(w) (w) + E zjU(gj)(w).

By linearity,

U(E yif + E z fj)(w) <_U(E ygig + E zjg,)(w).

This implies, by Lemma 5, that E; yigi + E, zjgj } >; y2f; + E3g zjfj. But f >- gj and f1 ~ g,

so by repeated application of Lemma 2, if any of the V > 0, Ej y:f, + E zjf >} E; ygi+ F3 z jg ,

a contradiction. If all the y= = 0, then we can replace < with < in the preceding inequality. Thus,

again by Lemma 5, E, yig-+ Ezjg >.- E Eif=+E, z, f,. By the same reasoning as before we get a

contradiction, since repeated application of Lemma 2 yields >3; yjg,+ E> z gj ~E; yjf; + E3 z jf 3 .

I

Now I will construct a non-Archimedian ordered field representation of beliefs over G. Our

field will be a reduced ultrapower of the reals R.

The obvious thing to do at this point is to apply the compactness theorem from model theory.

But in the next section I will use ultrafilter constructions so that I can explicitly relate non-

Archimedian probabilities to sequences of Archimedian probabilities. For the sake of consistency,

then, I will undertake an ultrafilter construction here.

Let £ denote the collection of all finite sets of lotteries in L containing at least one strictly

ordered pair. Let Lf E £ denote the set of all finite subsets containing f. For any finite set

of acts fi,. .. , fa, the intersection fl L1f is non-empty, since the set {f1,... , fn} is contained

in each Lf,. It is an easy exercise to show that there exists a free filter on containing all the

sets L1 for f E L. It can be shown as a consequence of Zorn's lemma that there exists an

ultrafilter Ul on £ containing the filter, and hence all the sets Lf for f E L. This ultrafilter

must be free. Let .Y denote the set of all functions from £ into R. Two functions r, s E F

are equivalent if {I E £ r(l) = s(l)} is a member of the ultrafilter U. It is a standard

exercise to show that this relationship is in fact an equivalence relationship, and that the set 7Z

of equivalence classes of functions is an ordered field, and an extension of the reals. Addition and
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multiplication of two elements are defined by pointwise addition and multiplication, respectively,

on any two representatives of the two equivalence classes. The order relations are derived from

applying the appropriate order relationship on R pointwise. Let r and s be two elements of R,

with representative functions r' and s'. Consider the complementary sets {l E L : r'(t) s'(l)}
and {l E C£: r'(l) < s'(l)}. One and only one of these sets is in u (since any ultrafilter contains

either a set or its complement, but not both). If the first one is, then r > s; else r < s. The

absolute value of r E R is defined to be the equivalence class containing the function Ir'I, where r'

is a function in the equivalence class r.

The ordered field 1Z has a subfield isomorphic to R, namely the field of equivalence classes

containing constant functions. The field 7? is a proper extension of R. Let r(l) = #1. The function

r assigns to each finite set of lotteries the number of lotteries in the set. This function is not

equivalent to any constant function. For suppose it were equivalent to the function k(l) = k for all

l E L. First, since r(l) is integer-valued, k must be an integer if it exists. Then the set K of all sets

of lotteries of cardinality k must be in U. Take any distinct k + 1 sets Lf and intersect them. This

set is a finite intersection of sets in U, and thus is in U. However each element of this set is a set of

lotteries containing at least k + 1 elements. This set is thus contained in KC, and so KC is also in

U, which is a contradiction. It is not hard to show that any proper extension of R contains infinite

elements, elements greater in absolute value than any element in R; and infinitessimal elements,

elements less in absolute value than any element of R. Finally, for every s E 7? there is a unique

r in the subfield isomorphic to R such that is - ri is infinitessimal. We then say that s ~ r, and

write r = Os.

Now for the construction. Define p(w) to be the equivalence class that contains the function

assigning to each I E £ the number pj(w) constructed in Lemma 8. Since for all 1, p1(w) > 0,

p(w) > 0. Since E, pg(w) = 1 for all 1 E £, C, p(w) = 1. Thus A is an 7?-valued probability
distribution on f.

Finally, we need to show that f y g iff E(U(f)(w)- U(g)(w))#(w) > 0. The set A = Lf flLg

is in the ultrafilter U. For any 1 E A, both f and g are in 1, and so f } g if E,(U(f)(w) -
U(g)(w))p1(w) _ 0. This completes the proof of the sufficiency of the axioms for the representation.

Necessity is straightforward to check, and therefore left to the reader. I

Proof of Theorem 1. Given Theorem 1', it suffices to show that if A is an 1Z-valued probability
distribution on f0, then there exists p1,... ,pK, K _< |f|, such that

Uw ) ;() wUg)a;w
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if and only if

( U(f)(w)pk(w)) 2 ?L U(9)(w)Pk(w)) ;
/k=1 W .k=1

and conversly. It is clear that we need only show that we can write

p(w) = a(p 1 + 82P2 + 626aPa --- +62 -.- -KPK),

where each pk is R-valued, a > 0 and each 6k is positive and infinitessimal. Notice that the ratio

of any coefficient of a Ph to the coefficient of any predecessor pi is infinitessimal.

Lemma 9. There exists a # E 7R, #p 1 and p', v mapping fl into 7 such that for all w E ,

##i(w) = p'(w) + v(w),

*p'(w) =

Sp'(w) = 1,

v(w) 0,

v(w) 0,

v(w') = 0 for some w'.

Proof. Let w' be a minimizer of p(w) - *p(w), and let # = /(w')/*p(w'). Then #Q 1. Further-

more, since F, p(w) = 1, there must exist an w' such that /3(w') - */0(w') < 0. Thus p3> 1. Now

computing,

#p3(w) = 0(1#p(w) +p(w) - *(#p(w))

*(#I(w)) + (w) - *,(W)

2 O(#,(w)) + A(w') - op(w')

*(#j/(w)).

Furthermore, equality will hold when w = w'. Taking p'(w) = *(#3j3(w)) and v(w) = #p(w -
*(3p(w)) proves the lemma.

To complete the proof, write /3 = (1/#3)(p' + v). Let p1 = p', and let 62 = XE v(w). Define

p2 = (1/6 2 )v. Then

=~ (P1+ 62/2).

The function j32 is a '%-valued probability distribution on f, and its support is of cardinality less

than that of the support of p3. Repeat this argument again on #32, /s., etc. so long at the remainder
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term i is not 0. Since at each iteration at least one more 0is added to the remainder terrn, the

process must stop in no more than K steps. This proves suffciency of the axioms.

To prove necessity, construct the l-valued representation from the lexicographic representa-

tion. Choose a positive infinitessimal e, and let

K K

P(W)= Z E kpk(W).

It is easy to see that expected utility computed with respect to ,P will represent the same ordering as

that represented by the lexicographic ordering on the expected utility vectors. Then apply Theorem

1'. 1



Appendix 2: Independence and Non-Archimedian Beliefs.

1. Weak Independence.

Let A and B be events in W. The independence of these two events can be expressed in

terms of properties of the preferences on acts. However, independence is ,more complicated with

non-Archimedian beliefs than it is in the Archimedian domain.

Definition. A bet on A is an act f such that

(pif w E A,
W) =1 v if w E Ac,

where pt and v are two probability distributions in P(X).

Definition. The event A in W is weakly independent of event B in W if B is either certain,

impossible, or, for any two bets f and g on A,

f >-Bg iff fE8cg.

Another way to view the definition is as follows. Let:

=A Zt&(x) f(x)(w) w E A,

6AC = u(x)f(x)(w) w E Ac,

7A = u(x)f(x)(w) w E A,

Ac = wu(z)g()(w) E Ac.

Let p denote a non-Archimedian representation (7Z-valued representation) of beliefs. Then A

and B are weakly independent if B is certain, impossible, or

OAp(A n B) +GAC p(A* n B) > 7Ap(A n B) +17Acp(Ac n B)

if

OAP(A n B) + 6AIp(A* n B*) Ap(A n B") +1Acp(AC n B*
for all 0 <6GA,6A_,7AwAC < 1. This definition is easily seen to be equivalent to the usual

multiplicative property p(A nl B) = p(A)p(B) when p is Archimedian.

The next Theorem characterizes weak independence in terms of the non-Archimedian repre-

sentation p. If p(B) > 0, assume w.l.o.g. that p(A* fl B) > 0.
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Theorem 4. A is weakly independent of B iff B is certain, impossible, or the interval in Z whose

endpoints are
p(AfnB) p(A nBC)

and
p(AclnB) p(Acn Bc)

contains no element of R unless it is degenerate.

Proof. The certain and impossible cases are statements from the definition. Suppose, then that

B is neither certain nor impossible.

(If) Suppose the inequalities are not satisfied. In particular, suppose that the first inequality

is true but the second is false. Since p(AC n B) > 0, the truth of the first inequality implies that

( )P(Afl B) (A- )+ 9 > A0-O

p(AcfnlB)

If p(A fn BC) = 0 then one endpoint is finite while the other is infinite and so the interval must

contain a standard number. If p(Ac l BC) > 0, then, since the second inequality fails,

p(AC nB*)

Putting these two inequalities together,

p(A n B)> p(A nlB)(9OA -4) (AC nB) >A c Oe> (OA-A) p(Ac n B*)'

First, this implies that the standard number (0A -7) is not 0. Dividing,

p(A n B) 7AC-6O4c p(A n BC)
p(AC n B) - O6- p(A*cnBe)p( Acfl) 6 4A p( AcfB)

The middle number is standard.

(Only if) Suppose that weak independence is satisfied, and set OC = yA = 0. The weak

independence condition becomes

0p(A n B) 74 4cp(A* nB)

if and only if

04p(A n BC) >7cp(Ac fn BC).

If p(Ac n BC) is 0 or infinitessimal, then p(AC n B) must be 0 inflnitessimal or it is possible to choose

standard parameters 441 and .4 to violate the condition. The converse is also true. If p(AC B)

is not infinitessimal, then p(AC fl BC) is finite and not infinitessimnal, and so

p( AflB) > 1 .~ p( A n B*) > A

p( AC n B) - 04 p( A" n B*) -~0

for all 0 < 74,044 _< 1.

This implies that the interval cannot be non-degenerate and contain a standard number. U

25



The following Theorem reinterprets the necessary and sufficient condition of Theorem 4 in

terms of a factor representation of lexicographic beliefs.

Theorem 5. Let p1,... ,PK be a factor representation of beliefs. Then A is weakly independent

of B if B is certain, impossible, or (assuming, w.l.o.g. that pi(Ac f B) > 0),

pi(AfnB) _ pi(AfnB*)
p1(AcfnB) p1(Acn Bc) =r

and, if i is the first index for which one of the inequalities

p=(A n B)_ p=(A n Bc)
= = A~BC r

p=(AC n B) p(AC f BC)
fails, then

Sp;(An B) \ ( p;(AnB*)
sgnp( Ac nB)-r = sgn p=(A BC ) -

Proof. It suffices to consider the case where B is neither certain nor impossible. Given the factor

representation (p1,... ,pk), any 1Z-valued probability distribution (1/ 1 Ek) EY=1 EkPk, where

El = 1 and Ek+1/Ek is infinitessimal,represents beliefs. Accordingly, the conditions of Theorem 4

must be satisfied for all values of the Ek satisfying the aforementioned properties. The interval

whose endpoints are

E 1 Ek pk(A fn B) and E. 1 Ekpk(A n BC)

1 Ekpk(Ac n B) E 1 Ekpk(AC n BC)

must contain no standard number unless the two endpoints are equal. To simplify calculations

define
pk(A n B) k pk(Afl Bc)

rk pk(Ac n B)' pk( Ac n Bc)
Then the endpoints can be written as

1 Ekrkpk(AC n B) Ean fEkskpk(AC n BC)
e = ,and f=

k=1 Ekpk(Ac n B) E qekpk(A" fn BC)
respectively.

The conditions of Theorem 4 are true if e s f. Note that *e = ri, and *f = si so r1 = s1.

Now look at the remainders. e - ri and f - 1. A necessary and sufficient condition for the condition

of Theorem 4 to hold is that r1 = si and sgn(e - ri) = sgn(f - si). Computing,

sgn(e - r1) = sgn ( Ek(Tk - r1)pk( A*C B))
k2

sgn(f -8s1) = sgn ( Ek(sk - s1 )pk(A* fl B*)).

The equality of the signs of the differences is easily seen to be equivalent to the stated conditions

in the Theorem by noting that each term in each sum is infinitely larger than its successors. U
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In game theory, independence is a property that applies to n-tuples of strategies - to random

variables. The definition of weak independence is easily defined for random variables.

I will consider the case of two random variables; finite numbers of random variables can be

accounted for by induction. Denote the two random variables by a and b, which can take on I and

J different values, respectively. Then Q = {1,... ,I} x {1,. .. , J}. Let i denote the event {I5 =i},

and j the event {b = j}. Similarly for i' and j'. Let G denote the set of mixtures of bets on 5.

An the outcome of an act in G depends only on the value of a, and not on b.

Definition. The random variable a is weakly independent of the random variable b if the

preference orderings > are independent of j on G.

This assumption says that knowledge of the value of b does not affect preferences over bets

(mixtures of bets) on the value of a. It is easy to check that the random variables a and b are

weakly independent if and only if the events {a = i} and {b = j) are weakly independent for all

i and j.

When the representation of beliefs p is Archimedian, weak independence is equivalent to the

condition p(A fl B) = p(A)p(B). When the representation is non-Archimedian, weak independence

implies that this multiplicative condition must hold approximately - that the difference between

the right and left hand sides must be infinitessimal.8 It is also easy to see that if there exists

a non-Archimedian representation of beliefs for which the multiplicative condition holds exactly,

then the event A is weakly independent of B. However, it is not always true that there exists

a representation of beliefs which will satisfy the multiplicative condition for weakly independent

events. Consider the following example. A gambler is to bet on the flip of two coins. Three

outcomes are conceivable for each coin: The coin can come up heads H, the coin can come up tails

T, or the coin can land on edge E. The state space S consists of the nine possible combinations

of H, T and E for each of the two coins. Define the following acts, where payoffs are in terms of

utility:

{1 if w = ey,j =r if w = HH,h { s if w = HE,
0 if= 0 if otherwise, !'" if otherwise, h, =8 if otherwise,'

Let 0 denote the act that pays off 0 in each state. Suppose the gambler's preferences include the

8 Non-standard probability theory makes use of a concept called S-independence, which requires

that p(A fl B) - p(A)p(B) is infinitessimal. Weak independence is stronger than S-independence.

The concept of independence which I define below is identical with the notion of *-independence

from non-standard probability.
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following specifications:

fHH ~ fHT ITH fTT,

fHE fTE ~ fEE fET JEH,

g,>-h, for all 0 < r,s > 1,

h,>.-0 for all0<s<1.

These preferences are consistent with lexicographic expected utility maximization, and it is easy to

see that any non-Archimedian representation of beliefs must look as follows:

H T E

H 1- 5 E 1-5c E
4 4

T 1- 5 E 1-5E
E E E E

where the rows index the flip of coin 1, the columns index the flip of coin 2, and E is a positive

infinitessimal. Simple computations now show that the events {coin 1=H} and {coin 2=H} are

weakly independent:

1 p{HH} - 15E 1- p{HHc}

p{HcH} 1- E 1+ 7 - p{H*HC}

in every representation. The multiplicative condition implies that these ratios are equal, so in fact

the multiplicative condition is violated in every representation. From direct calculation it is clear

that
1 - 5E 1-6E-+ 9E2

p{HH} = 4 > 4 = p{H}p{H}.

In the previous example the events {coin 1=H} and {coin 2=H} are weakly independent,

but the random variables coin 1 and coin 2 are not. The following example, essentially due

to Roger Myerson9 shows that the independence of conditional preferences (weak independence

of random variables) is not enough to guarantee a multiplicative representation. There are two

random variables, each with possible values A, B and C. A non-Archimedian representation of

beliefs is given:

A B C

A 1 E2
1+3E+3e2 +22i+e 1+3e+3c' +2e 3 +e 4  i+3E+3e2+2 3 +E

B 2E 2 _ _ _

1+13e+3E2 +2 +E 1+3e+3v?+2E3 +E' 1+3e+3e +2e 3 +E 4

C
1+3e+3e2 +2 +E 1+3e+3e2+2E3 4 1+3e+3E2 +2E3 +E4

9 Personal communiCation.
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where, for example, cell BA contains the joint probability that random variable 1 takes on the value

B and random variable 2 takes on the value A. It is easy to see that this particular representation

does not satisfy the product rule for independent random variables. Furthermore, no multiplicative

representation can generate the same preferences as does this probability representation. To see

this last fact, observe that the following four acts are indifferent to the act that pays off 0 in each

state:

0 2 0 0 0 1

I-1 0 0 0 -1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

(-1 0 0 0 -1 0

where the number in each cell corresponds to a utility payoff in the corresponding state. One can

verify that no product representation will make these four acts indifferent to the act paying off 0

in each state.

A further perversity of weak independence is that the weak independence relationship is not

symmetric. Consider the following example (matrix entries are again non-Archimedian probabili-

ties):
A B C

A21 E E2

3+2E+2 3+2E+2E2  3+2+2 2

B EE2

3+2 +2E 3+2e+2E 3+2e+2E

Observe that preferences given top and preferences given bottom are identical, but that preferences

given left are different from preferences given center and preferences given right. Random variable

b (columns) is weakly independent of random variable a (rows) but not vice versa.

2. Independence.

The weakly independent strategies that arise in the lexicographic characterization of perfect

and proper equilibrium all satisfy the multiplicative condition. In this section I characterize this

stronger condition on representations in terms of the decisionmaker's preference order. In this

section I will consider the case of two random variables. The generalization to any finite number

of random variables is straightforward but tedious.

The state space will again be the cartesian product T x I, where I = {1, . .. ,I} is the range

of the random variable & and J = {1,... , J} is the range of the randorn variable b. Let A' be the

unit simplex in RJ, and Al is the unit simplex in R4.. I seek conditions under which there exists
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a representation of beliefs for which p(& = i, E = j) = p(a = i)p(b = j). Beliefs for which this is

true will be said to satisfy the product rule.

Associated with each act is a utility vector which specifies the utility payoff in each state of

nature. The preference ordering on acts induces a preference ordering on utility vectors. Two

acts with identical utility vectors are indifferent - in fact, conditionally indifferent in every state.

The. preference ordering on utility vectors inherits all of the important properties of the preference

ordering on acts. One way of viewing the representation question posed by the product rule

is to note that it asks for a bilinear representation of preferences over the vectors of utilities.

The Independence Axiom (Axiom 3) is an invariance property. It requires that preferences be

invariant to objective mixtures of acts. The existence of a bilinear representation requires additional

invariance properties with respect to a different kind of mixture.

Definition. A conditional act on J is a function f : J - P(X).

Definition. A subjective mixture over I of the act f : I x J -k P(X) is an act g : I x J -

P(X) such that each conditional act g(i, -) on J is a mixture of the conditional acts f(k,.), k E I.

Let [f] denote the I x J matrix whose (i,j)'th element is the conditional utility payoff of the

act given that state (i,j) occurs. The following Lemma can be verified immediatgely from the

definitions:

Lemma 10. An act g is .a subjective mixture over I of f if and only if there is a Markov

matrix A such that [g] = A[f].

In this case g(i, -) is just the mixture whose coefficients are described by the i'th row of the

matrix A. I will denote this mixture as A ® f.

Subjective mixing is linear with respect to objective mixing. Thus the Independence Axiom

applies. If A @ f A 0 g, then for all0 < A < 1, A®0 (Af+ (1- A)h) A 0 (Ag + (1-A)h),

with strict preference if f > g and A > 0.

A special class of mixtures is important for characterizing independence. Recall that a bet

on J is an act f such that [f],, = [f]ig for all i, k E I. The characterization of independence is

concerned with those mixtures whose range is the set of bets on J. To always generate a bet on J

the subjective mixture must mix the acts f(i, -) in the same proportions for each i. This requires

that the rows of A be identical. The subjective mixture A~<f is a bet on J for all f if and only if

A has rank 1. I will refer to the mixture as p 0 f, wherejG A' is the row vector of A.
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The condition which characterizes independence is an invariance property for subjective mix-

tures onto bets:

Definition. The random variables a and b are independent if for all fi , f2 and gi,g2 in L

with fk ? gk, there exists an p E A' such that for all 0 < A K 1 there is an event {j} such that

p ® Af 1 + (1 - A)! 2 ?{,} p ® Ag1 + (1 - A)g2. If fk >- gk for some k and lk > 0, then substitute

strict preferences for the relationship between the subjective mixtures.

Independence is a symmetric relationship. The proof of the representation theorem will make

clear that the roles of I and J in the definition are interchangeable. It can also be seen that this

condition implies weak independence, since this condition is equivalent to the existence of beliefs

satisfying the product rule, and any such beliefs are weakly independent.

Theorem 6. The preference order >- has an expected utility representation with beliefs p such

that, for all i and j, p(& = i, b = j) = p(i = i)p(b = j) if and only if 1 and J are independent.

Proof. By examining the usual ultrapower construction, it is clear that non-Archimedian beliefs

satisfying the product rule can be found if and only if for every finite set of lotteries there exists

an Archimedian distribution satisfying the product rule and representing preferences restricted to

that set. Thus I need to show that the independence condition is equivalent to the existence for

any finite set of binary comparisons of acts of a representation satisfying the product rule.

Let fi,. . . , f N and 91,... ,gN be a finite collection of acts such that f, >- g for 1 < n < M

and f,,'..~ g, for M < n < N. A representation of beliefs satisfying the product rule is given by

any solution p E AI, q E AJ of the following system of inequalities:

pT ([f] - [gn])q > 0, 1 K i < M,

pT([fn] - [gn])q > 0, M K < n N, (1)

pT ([gn] - [fn])q > 0, M < K N.

Let AJ = {q E R . : ; qj 1}. System (1) has a solution if and only if there is an

p E A' and q E Afi such that

pT ([f,].- [gn])q> 1, 1<7 n KM,

pT([fn] - [ga])q>2 0, M < n K N, (2)
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Lemma 11. One and only 1 of the following alternatives holds:

i) Equation system (2) has a solution.

ii) For all p E A' there is a A E AN such that sup{fi AnpT([fn] -[gn])q : q E A+} <0. If

An = 0 for all n < M, then the supremum is negative.

Proof. Both alternatives cannot simultaneously be true. Suppose that (2) has no solution. I will

show that ii) is true. Let

D={dER+ : do 1 lfor iM}, and

C = {(PT([fl] - [g1])q,..., pT ([fN] - [N])q) : q E .

The sets C and D are polyhedral convex sets. They are disjoint if (2) has no solution. Thus there is

a A E RN such that infD A - d > supC A -c (Rockafellar TK). Rescale any such A to be an element

of AN. Each An 0, or else infD A * d = -00. It must be true that sup0 A. c < 0 because ac E C

for all a > 1 and c E C, so A -c > 0 for some c E C implies supcA - c = +oo. Finally, if An = 0

for n < M, then infD A -d = 0. In this case, supc A -c < 0. U

Choose p E A'. For act p 0 f, [p ® f];j = pT -[f]j, where [f], is the j'th column vector of

[f]. From Lemma 11, if (2) has no solution, then for each p E AI there exists A E AN such that

[P 0 E~ Ann] ' q I [p 0En Angn] - q for all q E A". Since all the rows within each matrix are

equal, conclude that

[p 0 An fn];j [p 0j Angn]; (3)

for all i and j. Thus, for all j,

P®Z Angn 'j P®Z Ann. (4)

Since the acts being compared are mixtures of bets on j, and thus constant across i given j, (4)

implies (3). If Al = - - - = Am = 0, then we have strict inequality in (3) and consequently strict.

preference in (4).

Suppose w.l.o.g. that A,, > 0. Then let

Then f' a g', and p 0 Akgk + (1 - Ak)g' >.. p 0 Akgk + (1 - Ak)g' for all j. Furthermore, if any
A12 > 0 for n < M, then either 1k >- ga or f' >- g'. This contradicts independence..
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Conversely, suppose independence holds. Then in the same manner the Theorem of the alter-

native (Lemma 11) shows that for no finite set .of binary choices can (4) hold for every p. Thus

every finites set of binary choices of lotteries admits an Archimedian product representation of

beliefs and so a non-Archimedian representation of beliefs satisfying the product rule exists for >-
on L. U
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Appendix 3: Proofs for Section 5.

In this Appendix I prove Theorems 3, 4, land 3. I will use an ultrapower construction to prove

Theorems 3 and 4. The technique is very powerful, and can provide lexicographic characterizations

and sequential characterizations for other refinements, such as strictly perfect and weakly proper

equilibrium.

Let N denote the set of positive integers. The set of all co-finite subsets of N is a filter, called

the Frichet falter. Let U be an ultrafilter containing the Frechet filter. This ultrafilter is free. It

contains no finite subsets of N. Let F denote the set of all functions from N to R. As in Appendix

1, two functions are equivalent if they agree on a set in the ultrafliter U. The set R = F/~ is a

proper ordered-field extension of R. See Appendix 1 for more details.

Proof of Theorem 3. (Sufficiency) Let t denote the lexicographic probability distribution on

joint strategies which generates the common, strictly independent beliefs.

Since beliefs are strictly independent and common, we can choose positive elements el,...,E
in R with the following two properties: First, el = 1, and Ek/Ek-l is infinitessimal for all k. Let

a = ek, and let t = a-1 EK1Ektk. Then r., the beliefs of player n, are represented by the

marginal distribution of t on the set In,. Second, I(i 1,... ,in) = 1(ii) -- -i(i,). Choose sequences

{ck} 1 from the equivalence classes Ek, and define aj as above. Since Ek is infinitessimal for k > 1,

limJE e = 0. The sequence {a 1 (*tl + e *t2 + - - - + E *tK)}°-° 1 is a member of the equivalence

class t.

First, there exists a set A E U such that Ek is positive for all k and j E A. Second,

*.n(i n7i-n)sn(i )f(in) 2 [*n(i") i_,)s'(i,) (i-n)
iEI iEI

for all s' E Sn. This means that the set B of all j such that

Eun(in, i-n)sn(in)tAZi..) 2 [Un(invi-n)s'(in)tj(i...)
iEI iEI

for all s' E Sn is contained in U. There exists a set C in U such that, for all j E C, each t,

is a product distribution of mixed strategy vectors sj, ... si (by strict independence). The set

D = A fl B fl C is contained in U. The sequenece {sl,...s(}jED has all of the desired properties.

Each s,~ is optimal against all of the si,... si. Each si assigns positive probability to all in E I..

To see this, note that in is assigned positive probability by some tk, and for all k and j E A,
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> 0, so the particular tk gets counted in the weighted average t1. Having constructed the test

sequence, this proves sufficiency.

(Necessity). Let {} denote a suitable test sequence, and let ti denote the joint distribution

on I constructed from the belief vector s9. Define t(i) to be the equivalence class containing the

function tj(i).' Clearly the probability distribution t has the strategies of different players being

independent. Since tj(i) > 0 for all j, t(i) > *0. Thus the factor representation of each r, will

assign positive probability to each iL. (For more details on constructing the factor representation,

see Appendix 1). Since, for all j, sn is best given beliefs r'(i_) = t3(iL), sn is best against

r (i _ )= f(i_). This completes the proof of necessity.

Proof of Theorem 4. The proof of sufficiency is the same as that for Theorem 3, except that

one more requirement must be checked. Choose 6 > 0 in R such that Ek/Ek-1 < S for all k. The

requirement on beliefs in the Theorem implies that if

E un(i , i_n)rn(i_n) >L, un(i' , i-n)r-n(i-n),

4-AEI-. i-AEI.-

then I(i')/I(in) < 6. In terms of the 7Z-valued representation,

*un(in, i-n)t(in) > E un~jn)in)t(i-n).

i- 3 EI-i..EI-5

Choose a sequence {S3},_1 in the equivalence class 6. Since 6 is infinitessimal, linj_. oo 6 = 0.

Since 6 > 0, there exists a set E E U such that 6, > 0 for all j E E. If the hypothesis of the

lexicographic condition is true, then for some set F E U, j E F implies

E un(in, i_.)tj(in) > un(jn, i_-)tj(i-n).

..... EI- i..ER-a

If the conclusion of the lexicographic condition is true, then there exists a set G E U such that for

all j E G, tj(i') tit(in). Thus on the set D' = D n E n F n G, the additional requirement

of proper equilibrium is satisfied. Since D' E U, D' is infinite. As before, a suitable test sequence

can be constructed from {t)} JED,.

The proof of necessity is also similar to that of Theorern 3. Starting from the test sequence,

construct I, as before. Properness implies
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ii plies that tj(i',) c t(in). Suppose now that

un(in, i-n)rn(i-.n) >L U(i's, in)r-n(in),

i-A E L.. i-.n.EI-,

so

*Un(i,,i-n)t(i..n) > *un(i',, in)t(in).

Then for some A E U, j E A implies that equation 2 is satisfied. Then for all j E A, tj(i's) <

Egt 3(in). Thus I(i') d(i,). Constructing the factor representation using the algorithm of

Appendix 1, we see that the first k for which tk(in) > 0 is strictly smaller than the first 1 for which

t1(i') > 0. This completes the proof of necessity. I

Proof of Theorem 1. Sufficiency is clearly true, since every possible event has positive probability.

We prove necessity using the following easy separation theorem for polyhedral convex sets, whose

proof is left to the reader.

Lemma 12. Let C be a closed polyhedral convex set in R', and suppose that C ,R'+ = {O}.

Then there exists a vector p E R4+ such that p.- c < 0 for all c E C.

Suppose that s is an admissible Nash equilibrium. The Theorem will be proved if we can find

second-order beliefs rn for each player n that assign positive probability to every pure strategy

combination, and such that the expected utility of sa computed with respect to beliefs rn is at

least as high as that of any other possible strategy s' E S.. Suppose that there are I elements in

In, identified as el,...,el. Let

C'= {x E RI : = u(i,ek)s'(i) for some s' E S}.
iEl.

In other words, x E C' if there is a strategy vector s' for player n which, for all k, pays off xk in

the event that the other players choose joint strategy combination ek. Let

iEI. iEI,

be the vector in C' associated with the equilibrium strategy vector 8,. Let C = {4*} - C'. If

the equilibrium a is admissible, C(A R +14 = 0. Furthermnore, it is easy to see that C, is cidsed,
polyhedral and convex. The separation resujt, Lemma 12, guarantees the existence of a p E R14+
such that z p 0 for all x E CA. The vector p, normalized to be a probability distribution on

I_., is an ri with the required property. U
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Proof of Theorem 3. The second assertion in the Theorem is an immediate consequence of the

definitions. Here I prove the first statement - that if an l.c.e. is a lexicographic Nash equilibrium,

then beliefs are independent and shared. Again the proof is most easily completed using %-valued

representations of beliefs. The convenience is due to the fact that conditional probabilities are

defined just as in the Archimedian case: p*(AIB) = p*(A n B)/p*(B).

I begin with the definition of an l.c.e. using the non-Archimedian representation: A correlated

strategy is now a 1Z-valued probability distribution on I. (A subjective correlated strategy would

be an N-tuple of these objects, one for each player.) An l.c.e. is a correlated strategy &* satisfying

for each player n and all in,jn E In,

un(in, i-n)o*(in, i-n) un~jn, i-n)Q*(in, i-n).

i-a E I-n i-A EI-n

Rewriting in terms of conditional probabilities,

un(in, i-n)O*(i-n~in)C*(in) > un~jn, i-n)C*(i-nI in)C"*(in).

Dividing by U*(in) and multiplying by a*(in) gives, for all in,jn E In,

u6n(in, i....)Q*(i-nIlin)O*O(in) 2un~jn, i-n)O*(i-n jin)Oo*(in).
i-n EI-n i...nE I-n

Since this l.c.e. is in fact a lexicographic Nash equilibrium, it follows that o*(i-n lin) = o*(i-n)

for all in E In and i-, E I-4. Substituting,

u~n(in, i_n)Q*(i-n)O*°(in) 2 un(jn, in)a*(i-n)o*(in).

i--.E.-n i-nEI-n

Summing over in E In,

I: E un(in, i-n)cr*(i-n)0r*(in) un~jn, in)Or*(i_n)Q*(in)
in Eln i-n EI-n in EIn i-A EI-u

un~ja, i-ao*(in)0O*(in),

i-.EI-.

for all j E In. Thus for all n and any R-valued probability distribution r" on In,

In oieun(in, ip)o*(i-n) O(in) I E unjain)9*(in)r*(jn).
in EIn i-nEI- jn E In i.-nEI-n

Thisisth defini tion (in -va71 lued prbabilties) f a lxicog aphcNaheuiirumwt sae
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