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Abstract

When is the Standard Analysis of Common Property
Extraction Under Free Access Correct?---A Game-

Theoretic Justification for Non Game-Theoretic
Analyses

Analyses of common property extraction under "free access" used to assume period-by-

period rent dissipation thus avoiding the use of game theory; more modern analyses

instead deduce the subgame perfect Nash equilibrium of the common property game and

then investigate its free-access limit. Salant and Negri (1987) provided a troubling
example where these two methodologies yield radically different predictions: while the
older analysis predicts eventual extinction of the resource, the game-theoretic analysis
predicts unlimited growth. We review and simplify their example and then provide weak
conditions insuring that the two methodologies yield the same predictions.
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WHEN IS THE STANDARD ANALYSIS OF COMMON PROPERTY

EXTRACTION UNDER FREE ACCESS CORRECT? -- A GAME THEORETIC

JUSTIFICATION FOR NON GAME-THEORETIC ANALYSES

Introduction

Analyses of common property extraction follow two distinct paths: analyses for small

numbers of extractors that use game theoretic solution concepts and analyses for large

numbers of extractors that assume period-by-period rent dissipation and make no use of

game theory. Levhari and Mirman (1980) formulated the first dynamic game of common

property extraction under restricted access; Eswaran and Lewis (1985), Mirman (1979),

Reinganum and Stokey (1985) have also applied game theory to the restricted-access case.

Gordon (1954) first used the rent dissipation assumption to analyze common

property extraction under free access. His approach has become the standard for analyzing

the free-access case, appearing in both undergraduate (Hartwick and Olewiler (1986)) and

graduate (Dasgupta and Heal 1979) textbooks. Indeed, even the pioneers of the game-

theoretic models eschew analyzing the free-access case as the limit of Markov-perfect

equilibria' as the number of extractors goes to infinity, in favor of using the rent dissipation

assumption (Levhari, Michner, and Mirman (1981)).

The question naturally arises whether the game-theoretic analysis always gives the

same predictions in the free-access limit as the older-style analysis. In an unpublished note,

Salant and Negri (1987) provided the answer: an example where the predictions of the two

methodologies differ. Indeed for certain parameter values of the Salant-Negri example, rent

dissipation implies that the resource will become extinct while game theoretic-analysis

provides a solution in which the exact opposite occurs--that the stock grows without bound.

Our purpose here is to provide conditions sufficient to ensure that the two

methodologies for analyzing the free-access case yield the same predictions. Since these

conditions strike us as easily satisfied, we tend to regard Salant and Negri's troubling

example as pathological although highly valuable in illuminating what our sufficient

conditions exclude. Others, however, do not regard the biological growth assumptions

underlying Salant and Negri's example as pathological. For example, Rosen (1987) used

precisely the same biological growth function as Salant-Negri in his competitive

equilibrium model of holding animal stocks as assets. Our sufficient condition is violated

in such cases and, if any are economically relevant, our analysis should be taken as a

warning that assuming rent dissipation in the free access limit may be inappropriate.

In the next section, we reformulate Salant and Negri's example. In the free-access

limit, there exists a Markov-perfect equilibrium in which neither industry profits (the form

of rent dissipation assumed by Gordon) nor the marginal value of additional stock

remaining (the form of rent dissipation assumed by Levhari, Michener, and Mirman)

approaches zero. We then identify the source of the difficulty in the example and--using

this observation--provide conditions sufficient in general for the two approaches to yield

the same conclusion.
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The Example

Consider a common property extracted under free access. Suppose the average cost

in period i for any individual extractor is:

(1) Aj(y,,x,) = x, +Y,

where y, is the individual's current extraction as a fraction of the total current stock, and x,

is everyone else's current extraction as a fraction of the current stock.. Both x, and y, are

constrained to be non-negative and x, + y, s 1

Let S, denote the non-negative stock at the beginning of the current period t.

Suppose that the stock S,,, is related to S, by

Though many Markov-perfect equilibria may exist for this example, we simplify the

analysis by confining our search to those equilibria in which x, is independent of t. That

is, we restrict attention to equilibria in which all other extractors extract a constant

proportion x of the stock in every period.

When x, is constant at some value x independent of time, we will show that the

optimal y, for any one extractor proves to be independent of time also (y, = y for all t=

0,1,...). Then there turn out to be two pure-strategy, symmetric, Markov-perfect equilibria

in which strategies are independent of time. We find both of these equilibria by using a

recursive approach and a simple graphical analysis.

By induction, the growth relationship (2) implies that

C2) s, I - gs, - (x, + Yt) st _ (g-x, y1) sr
fort 0

S, = So i (g-x-y,) for t 1.

where g is a constant growth factor.

The present discounted value of returns from all periods, if it converges, is:

(3) F ({x,}, {y,}) = p'[Py,-y,fx,+y,]S,

where p is the discount rate , 0 < p < 1, and P is the price of the extracted resource,

which in this example we assume to be constant over time.3 A sufficient condition for the

sum in (3) to converge is that

(4) x, > b -=g- 1/f3 for all t.°

We therefore assume (4). Condition (4) also ensures that a maximum exists for F with

respect to the sequence {yJ.5

Using this expression and the convenient notation R(y,) = Py, - (x + y,)y, the discounted

profit of a single extractor in response to the repeated extraction x of the others becomes

(5) F (x,y,}) = So [R(yo) + f 1p'R(y,) V (g -x -y,)].

Clearly, the optimal sequence {y,) is independent of the initial stock size So0. But

since none of the other parameters of the problem ( P, , g, and x ) changes with time, this

implies that no matter what the single extractor does in period 0 , the extractor's problem

in period 1 is exactly the same as it was in period 0 . In fact, in period 1 , the extractor's

problem is to maximize his stream of profits discounted to period 1 :

3 4



(6) S, [R(y,) + p'R(y,+,) _ (g-x-y,+,)]

which is exactly the same as (5) except that each y, has been replaced by y,., and So

has been replaced by S, . Thus if y* is an optimal value for yo in (5) it must also be

optimal for y, in (6). More precisely, if there is an optimal sequence whose first element

is y*, then there is one whose first two elements are y* . Cotroneo (1994) shows that any

optimal value for yo and similarly for y, and Y2 etc. is unique.' It follows that we must have

the optimal values for Yo , y, , y2 etc. all equal to the same y*.

When we rewrite (5) with constant x and y, we have an ordinary geometric

series:

F (x,y) Sol R(y) (pig-ix -py) = So(1-pg+fx+fly) ' R(y)

which permits easy derivation of the optimal y. (Recall that convergence is guaranteed by

(4)). Analysis of the derivative of F(x,y) with respect to y shows that the optimal y for

given x (the "reaction function") is:7

(7) y* -(x-b) +[(x-b(P-b)]"
2  pifxP

to if x>P

where b g - 1/fl, as in condition (4). Figure 1 shows the optimal reaction function

when 1h 0 and x < P . (If x > P , then rivals extract so much that average cost exceeds

price no matter what extraction the individual chooses and his best response is to extract

nothing. Since this situation cannot arise in a symmetric equilibrium, it is of no further

interest.) In the case depicted in figure 1, b > 0 .When x is either b or P then y* is

zero, which accounts for the x intercepts in Fig. (1). Condition (4) and x s P ensure that

P lies to the right of b .

Also shown in Fig. (1) is the line

(8) y = x/(n -1)

where n is the number of extractors. Symmetric Markov-perfect equilibria are found

where this line intersects the reaction function for an individual extractor. If b < 0 , the

ray intersects the reaction function only once. If b> 0 , then the ray intersects either twice

or not at all. If for a given n the graphs of Eqs. (7) and (8) do not intersect, then n is not

large enough for condition (4) to be met by a symmetric pattern of outputs. (There may be

other Markov perfect equilibria; only symmetric ones are precluded by the non-intersection

of the graphs.) As n approaches infinity, the ray approaches the horizontal axis yielding

two Markof-perfect equilibria in the free-access limit. In both, y approaches zero. In one,

x approaches P from below. In this case, as x approaches P, the payoffs both to the

individual extractor and the industry approach zero, which matches the rent-dissipation

assumptions of the traditional analysis. In the other, x approaches b from above. As x

approaches b from above, the individual extractor's profits approach the finite, positive

value So(P-b)/f3, so the marginal value of stock approaches (P-b)/fl), while the

industry's payoff approaches infinity. This obviously violates the traditional assumption

that rent is dissipated under free access. Both individual profits and the marginal value of

stock fail to approach zero. Hence, there is a Markov-perfect symetric equilibrium the limit

of which as the number of extractors approaches does not involve rent- dissipation.
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Salant and Negri focus on this equilibrium in order to emphasize the disparity

between the non game-theoretic and game-theoretic predictions. Gordon's rent-dissipation

approach predicts that x - y approaches P under free access and the period t stock (S,

(g-x-y)' 'So) approaches (g-P)'-'So . Thus, if 0 < g-P < I , then the stock approaches

extinction as time i increases. In contrast, in equilibrium 1, the limiting extraction (as the

number of extractors becomes large) is b = g - 1/p3 so at time t the stock level is (g -

b)' 'So (1 /3) 'SO which grows without limit as t becomes large. Instead of extinction,

game-theoretic analysis predicts that society will be overrun by stock.

Conditions Sufficient for the Traditional Approach to be Valid

Recall that when b < 0 in the Salant-Negri example, the only symmetric Markov-

perfect equilibrium is equilibrium 2, the one in which rent is dissipated in the free-access

limit. Notice that this equilibrium exists even for the sole owner case (n=1). Since x = 0

in that case, the stationary extraction occurs where the reaction function intersects the

vertical axis. The peculiar equilibrium occurs only when b > 0 ." In that case the reaction

curve does not intersect the vertical axis, and as Gale showed, the sole owners discounted

profit is unbounded.' Nonetheless for n sufficiently large, the ray cuts the reaction

function twice, and two symmetric equilibria exist.

Although no solution to the sole owner's problem exists when b > 0, the common

property externality gives firms an incentive to extract more today in the aggregate than a

single agent would. The scramble for the resource serves as a substitute for increased

impatience and can cause the equilibrium to exist where the single-agent optimum does not.

If we require that the sole owners discounted profits be bounded, then in this

particular example that implies that b < 0 . In this case, there is only one symmetric

Markov-perfect equilibrium, the one involving rent-dissipation in the free-access limit. In

what follows, we show that this requirement (along with subsidiary assumptions) is

sufficient to ensure more generally that the game theoretic approach and traditional

approach both yield the same results.

These sufficient conditions ensure that in an infinite-horizon restricted access

common property game with n extractors, if Q,*(S) is the aggregate extraction

corresponding to a symmetric Markov-perfect equilibrium and an initial stock level S, then

as the number n becomes large, Q,,*(S) converges to an unique Q,,*(S) . Moreover the

limit Q,*(S) dissipates all rent. This justifies the traditional analysis of dynamic problems

with free access which makes no use of game theory.

In stationary problems, a very general way to express the wealth of an extractor as a

function of his current extraction q, the current agrregate extraction of his rivals Q , and

the current stock S is

(9) r,(q,S) = P(Q-+q)q - A(Q~+q,S)q + W,,(Q +q,S)

where P(Q) is this period's price, A(QS) is this period's average cost, and W,,(Q,S) is the

wealth the extractor expects to earn from next period onward in current terms if the current

stock is S and the aggregate current extraction by all n firms is Q. The function W, is
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actually the composition V,(G(Q,S)) of two functions G and V,, where G(Q,S) is a

growth function giving next period's stock and V.(G(Q,S)) is its value discounted to the

current period.

For each number n of extractors, we assume there is a stationary, symmetric

Markov-perfect equilibrium, and that Q,*(S) is the corresponding aggregate extraction for

the current period. Thus, if we substitute (n -1)Q~*(S)/n for Q in (9), then (9) is

maximized with respect to q when q = Q,*(S)/n .

We will show, under certain assumptions, that as n becomes large Qn*(S) tends to

an unique extraction Q *(S) satisfying A(Q.*(S),S) = P(Q.*(S)) , i.e., average cost equals

price, so all rent is dissipated. Hence, under these conditions, the limit of the Markov-

perfect equilibria as the number of extractors becomes large, predicts the same aggregate

extraction as the one given by Gordon's rent dissipation rule. Moreover, under additional

assumptions, the Q *(S) and Q.*(S) are continuous functions of S and convergence is

uniform in S.

The most important assumption rules out examples like the one in the previous

section: we assume that even in the case where there is only one extractor, the present

value of all future extraction is a finite value bounded above by some number V,,(S) .

This has the important consequence that in a symmetric equilibrium with n extractors,

V(G(Q,S)) is bounded above by V(S)/n . An intuitive candidate for the upper bound

V, (S) would be the value of future profits discounted to the current period if the resource

were entirely owned and exploited by a sole owner.

Our other assumptions are that P, A , G , and V,, are non-negative, continuous,

and have continuous first derivatives; P(Q) is non-increasing; industry-wide total revenue

P(Q)Q is a weakly concave function of Q (non-increasing marginal revenue); average

cost A(QS) is a strictly increasing function of Q ; industry-wide total cost A(Q,S)Q is a

strictly convex function of Q (strictly increasing marginal cost); next period's stock level

G(Q,S) is a weakly decreasing weakly concave function of this period's extraction'0 Q,

and V~ is a weakly increasing weakly concave function of next period's stock level. We

also assume that P(S) < A(S,S) , so it is not profitable to extract all the stock in this period,

and that P(0) > A(0,S) , so it is profitable to extract at least a little of the stock (although it

may be even more profitable to save it all for the future). We are, of course, only

concerned with the case where the stock level is positive, S> 0 .

Since V, is weakly concave and weakly increasing, and G(Q,S) is weakly concave

and weakly decreasing in Q, it follows that the composite W(Q,S) = V.(G(Q,S)) is

weakly concave and weakly decreasing in Q . Since both G and V,, are differentiable, so is

W..

In Markov-perfect equilibrium, the individual extractor will choose a value of q in

the interval 0 s q s S-Q to maximize ir given by (9). We therefore compute the

derivative of ,r~ with respect to q:

(10) ,r~'(q,S) =P(Q-+q)+P (Q +q)q-A(Q-+q,S)-A '(Q +q,S)q +W. '(Q-+q,S)

10
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where the primes on r~,, A and W denote differentiation with respect to the first

argument.

Given our curvature assumptions, ir, is a strictly concave function of q, so the

right side of (10) is a strictly decreasing function of q . We will show that if extraction is

symmetric, then for sufficiently large n we have pr,, 0,S) > 0 and r,, '(S-Q S) < 0 , so it

will be maximized at an unique q* with 0 < q S-Q- . Since this is an interior point,

we will then have n, ~(q*,S) = 0.

For symmetric extraction, we have q = Q/n , so (10) becomes

(11) ,ir, q,S) '(Q) + P '(Q)Q/n - A(Q,S) - A '(Q,S)Q/n + W,, '(Q,S) .

We will rewrite (11) in terms of industry-wide marginal revenue MR(Q) and

industry-wide marginal cost Mc(Q,S). Since total revenue is P(Q)Q, marginal revenue is

Mn(Q) P(Q) r P '(Q)Q . Thus P '(Q)Q/n = MR(Q)/n - P(Q)/n . Similarly, A '(Q,S)Q/n

M(Q,S)'n - A(Q,S)'n. Substituting these into (11) gives

(12) i, '(q,S) =_ (P(Q)-A(Q,S))(n -1)/n 4 (MR(Q)-Mc(Q,S))/n + W '(Q,S) .

For fixed Q and S the first term on the right clearly goes to P(Q) -A(QS) as n becomes

large. The second term goes to 0, since its numerator is independent of n. We'll show that

the last term also goes to 0 .

Since P(S) A(SS), and S > 0 the continuity of A and P implies that we may

choose Q,, so that 0 < KQ,. < S and P(Qmo) <A(QS) also. Then because W,,(Q,S)

is a weakly decreasing, weakly concave, and non-negative function of Q ,

0 W,, (Q,S) (WS,S)-Wn(Q,,mS))/(S-Qm) -W,(Qm,, S)"(S-Qm,,

for any Q in the interval 0 s Q s Q,,m,. But 0 s Wn(Qm,S) S V,(S)"n , so Wn(Qm,,,S)

goes to zero as n becomes large. Therefore W, (Q,S) also goes to zero and the

convergence is uniform on the closed interval 0 s Q s Q,,.

Thus, by choosing n large enough, we may make n,, '(q,S) arbitrarily close to

P(Q) -A(Q,S) for all Q in the interval 0 s Q s Q,,. . Since P(0) -A(0,S) > 0 , it follows

that for sufficiently large n we must have n,, '(0,S) > 0 . Since P(Qm,) -A(Qmx,,S) < 0

it also follows that for sufficiently large n, ir,, '(Q,.nS) <0. Hence, for large enough n

the symmetric equilibrium value Q,,*(S)/n for q is in the interior of the interval 0 s q s

Q,. and therefore satisfies

(13) 1n(Q,*(S)/n, S) = 0 .

Since 7n 'is strictly decreasing in its first argument, (13) uniquely determines Q,,*(S)T.

The interval 0 Q Q,, is compact, so the sequence {Q,,*(S)} has a subsequence

converging to some point Q,.*(S) in the interval. Since the right side of (11) converges

uniformly to P(Q) -A(Q,S) , for all Q in the interval 0 s Q s Qm,, , it follows that

P(Q,*(S)) - A(Q,,*(S),S) = 0 . But, since P(Q)-A(Q,S) is a strictly decreasing function of

Q, the point Q.*(S) is unique. Thus every convergent subsequence of (Q,,*(S))

converges to Q.*(S) , and therefore (by compactness of the interval 0 Q Q,,, ) the

sequence (Q,*(S)) itself converges to Q.*(S).

1 
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Finally, by a standard argument, if S is confined to a compact interval 0 S s S

then the solution Q,*(S) to (5) is for each n a continuous function of S, and so is

Q.*(S) ". If we make the additional reasonable assumption that for each S the sequence

(Qn*(S)} is monotonically increasing, then by a theorem of Dini (Royden, 1963 page 140)

convergence is uniform in S.

Conclusion

What counsel does this analysis suggest for modelers of common property resources

extracted under free access? Quite simply, unless one's model allows infinite profits for a

sole owner, one can confidently compute equilibria using the convenient assumption of

period-by-period rent dissipation knowing that the computed dynamic paths are the same as

would arise in the free access limit of Markov-perfect equilibria. Alternatively, if one's

model permits infinite profits, one should be aware that the limit of Markov perfect

equilibria may not coincide with the soluton obtained by assuming rent dissipation.
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'For a definition of Markov perfect equilibrium, see Fudenberg and Tirole (1992) p 551.

2This specification incorporates both congestion and stock externalities: each extractor
has an average cost which is decreasing in the current stock (for a given number of, say,
fish extracted) but increasing in the aggregate current extraction. Negri (1986,1990)
provided the first analyses of extraction models with both of these externalities present.

'We further assume 0 < P < 1 to preclude obvious solutions of extracting nothing at all
(P s 0) or everything at once (P 2 1).

"Gale (1967) discusses the special case of this condition for the instance in which there
is a sole owner (i.e., x, = 0). He proved that F () converges in the sole owner case if and
only if g < 1//Q. See Cotroneo (1994) for a proof of the more general claim.

'Let Y, be the closed and bounded interval from 0 to I - x,, which contains ally,, and let
Y be the Cartesian product of all the Y,, where I ranges from zero to infinity. In order to
show that a maximum exists for F with respect to the sequence (y,}, it suffices to show
that F is continuous in (y,} and that Y is compact. That F is uniformly convergent can
be shown by comparing it to a geometric series and then applying the Weierstrass M-Test.
Since the convergence is uniform, and each partial sum of F is a continuous function of
(y,) , then F is also a continuous function of (y,) by the Uniform Limit Theorem. Each
Y,, being closed and bounded, is compact by the Heine-Borel Theorem. It follows that Y
is compact by the Tychonoff Theorem which states that the product of compact sets is
compact. See Cotroneo (1994) for details.

6She does this by reformulating the maximization problem as a dynamic programming
problem: Without loss of generality, let So = 1 . Then the maximum value for F satisfies
the functional equation

V (x) = Max [R(y)+ fi(g - x-yo)V (x)].

Uniqueness then follows from theconcavity of R. See Cotroneo (1994) for details.

It's easier (but equivalent) to maximize In F = In R(y) - In(1- fig + fix +y) + In So,
with 0 - y s I - x . Hence, at an interior optimum R'(y)/R(y) = (1-fig +fix +y)~' , or
[(P - x) - yJ / [y(P - x) - y2J = (1-fig +fx +fly)-' , where b = g - 1/f). Simplifying we
obtain the equation y2 + 2(x - b)y - (P - x)(x - b) = 0. Notice that y = 0 if either x = P
or x = b . Otherwise the quadratic equation yields two roots, only one of which is positive.
This is the one reported in equation (7). Further analysis shows that the derivative of F is
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negative when y 1- x , so the only possible end-point maximum is at y = 0 . This
occurs if and only if x P).

'Rosen [1987, p. 550] regards the case where b = g - 1/f is negative as "uninteresting
for farm animals." Whenever b < 0 in his model, animal stocks are depleted as in an
inexhaustible resource model and zero stocks are held after a transition phase. To have a
steady state with strictly positive inventory holding requires b > 0. Rosen regards this as
the relevant parameter range.

'See note 4 above.

'"These assumptions on G admit simple constant growth rate models, like that in our
example, as well as more sophisticated biological growth models that assume population
pressures arising from limited environmental resources for the extant stock.

"To show continuity of Q.* at So let {Sk) be a sequence converging to So . Then
the sequence {Q~*(Sk)) (n fixed, k varying) is confined to the compact interval [0,S,,,]
and therefore has a subsequence converging to some point Q,,*. By continuity of irr,' this
point satisfies ir.,'(Q~0*n, SO) = 0 . But by uniqueness of the solution to (5), this implies
that Q,0* - Q,,*(S ). Hence every convergent subsequence of {Q,,*(Sk )} converges to
Q,,*(So)so the sequence (Q~*(Sk)) converges to Q,*(S), and therefore Q,,* is
continuous at S0 . Similarly, Q.*(S) is uniquely characterized by P(Q,*(S)) -A(Q.*(S),S)

0 , so by the same argument Q,.* is also continuous.
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