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BEQUESTS, GIFTS, AND SOCIAL SECURITY

The purpose of this paper is to present a theoretical model illustrating some of the possible
cflects of an unfunded social security system on steady-state national capital accumulation. Such a
social security system contemporaneously transfers tax revenues extracted from the labor incomes
of young families to elderly households — the first benefits accruing to old families which never paid
contributions. Our framework is an overlapping generations model with finite-lived households.
All supply labor inelastically.! Each cares about other generations within its family line. The latter
sympathies may generate intergenerational transfers. The key novel feature of the setup is that
transfers can go both from parents to children and from children to parents. We show that the
elaborate gift-bequest possibilities can affect household behavior in interesting ways and can have
important implications for the influence on the economy as a whole of social security.

As background suppose, for a moment, that net bequests must be non-negative (and al-
ways under the complete jurisdiction of parents). Consider two polar cases. In one, described by
Barro [1974], all families desire to leave bequests or are on the borderline of doing so, and all an-
ticipate the same circumnstances for their successors. For such a model the advent of an unfunded
social security system makes little difference: as the system begins, elderly recipients pass their
windfalls to their heirs, offsetting the latters’ taxes; in time, the heirs receive benefits, which they
in turn bequeath — and so on. All original first—order conditions remain valid and aggregative
wealth accumulation is unaffected. Only bequests change.

At the other extreme, Laitner {1979a,b] presents a model in which labor incomes vary ran-
domly among households. Sufficiently long repetitions of bad luck within family lines can lead to
households which neither desire to leave bequests nor are on the borderline of wanting to do so. In
a stationary-state equilibrium, a positive fraction of all time-t family lines have current members
falling into this non-bequest category. Alternatively, every family line must anticipate a positive
probability, say, ¢, of entering such a state within, say, T < oo generations — see Laitner [1979c|.

In the second model the introduction of a social security system can have a large effect on
an economy’s ability to finance physical capital in the long run. An elderly family receiving a
social security windfall and not otherwise desiring to make a bequest will consume the benefit (at
least in part). As we follow the economy through time, each family line (with probability 1) hits
(many) non-bequest periods. By the time we have (asymptotically) approached a new stationary
state, every family line will be separated —via zero bequest generations — from its ancestors who
witnessed the social security system’s inception.

Consider a family in the new stationary state with social security. As we have just seen, the
family is cut off from any inheritance based on the system’s start. Social security need not affect
its lifetime resources — we can, at this point, think of each household’s social security taxes as
equaling the present value of its benefits. Thus, bequests need not differ from previous levels (at
given factor prices). On the other hand, each family’s life—cycle saving in youth presumably falls
by the present value of its future social security benefit.

In the second model funded and unfunded social security systems affect steady—state family
asset accumulation in identical ways. In the former case, however, accumulation in the social
security trust fund exactly counterbalances reductions in private life-cycle saving. In the second

! Thus, although some of our results below parallel Feldstein [1974], our assumptions and line
of reasoning are entirely different.



instance, in contrast, at given factor prices society’s stationary-state stock of wealth will be reduced
by the amount of the missing trust fund. This is true regardless of the magnitude of ¢.
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Diagram 1. Steady-state desired per capita wealth
holdings normalized by the wage rate

Diagram 1 shows the aggregate supply of financing for physical capital. K; represents the
aggregate of the steady-state wealth holdings of all private individuals and the social security
system; w is the steady—state wage rate; r is 1 plus the steady—state interest rate; and, E, is the
“effective” labor force —the natural labor force multiplied by a factor 4%, with 4 equaling 1 plus
the rate of labor augmenting technological progress. The supply curve S corresponds to a fully
funded social security system. Subtracting (hoxizontally) the amount of social security trust fund
per unit of labor income, S* corresponds to an economy with an unfunded system and the second
bequest framework above. Dropping the assumed equality in present-value terms of each family’s
social security taxes and benefits, S might correspond to the case with no social security at all.?

As stated, this paper allows young families to care about their parents and to make nonneg-
ative “gifts” to them. As in Barro and Laitner, parents care about their children and can make
nonnegative bequests to them. A parent’s “net bequest” (the bequest it gives to its children minus
the gift it receives from them), therefore, may turn out to be negative, zero, or positive. Although
the possibility of negative net bequests might seemn to rule out Laitner’s [1979ac| corner-solution
behavior, that turns out not to be true. Thus, in some ways our results resemble the second scenario
described above.

On the other hand, the existence of some negative bequests (prior to the advent of social
security) can reduce the magnitude of the shift from S to S* in Diagram 1. First, the possibility
of receiving a gift allows households — especially those of average or below-average means — to
save less for retirement than an ordinary life—cycle model would predict. In fact, we show that

2 We could endogenize factor prices by adding a second relation between r and K,/w-E,. If, for
example, K, is held as physical capital and we have a Cobb-Douglas aggregate production function
Q¢ = (K¢)*(E¢)'~°, the second curve would graph r = [a/(1 —a)]/[K:/(w - E;)] — see Tobin [1967].
In the case of a Samuelson [1958] consumption loans model, we might fix r = 4 and think of K, as
money holdings. In a model with international financial flows, r might be fixed in world markets
and our K; would correspond to domestic wealth holdings.
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parents may intentionally exaggerate this reduction, because their descendants control the gifts
they receive. Families which would otherwise save little for retirement have limited lattitude for
cuts under a different social security regime. Second, we show that social security may alter family
marginal rates of substitution in such a way as to minimize (or even offset) réductions in life—cycle
savings which are feasible.

An interesting sidelight of our gift-bequest transfer setup becomes apparent in the course of
the analysis: we find that risk-loving behavior is likely to emerge for households in some wealth
classes. This conclusion holds despite the concavity of underlying direct utility functions in our
framework. A possible result is that families may intentionally neglect to make full use of life
insurance and annuities — even when both are available at actuarially fair prices.

The organization of this paper is as follows. Section 1 presents our model of family utility
maximization. Section 2 characterizes desired saving and intergenerational transfers. Section 3
discusses intentional risk taking. Section 4 considers the steady-state distribution of wealth for the
economy as a whole and derives our version of the supply curve S for Diagram 1. It establishes
the inevitability of some corner solutions. Section 5 introduces an unfunded social secunty system.
Section 6 concludes the paper.

1. Family Utility Maximization

This section describes our model of the behavior of families. As stated, the economy consists
of overlapping generations of individual households. Time is discrete. Each household lives two
periods. During its first period, a family raises one offspring; in the second, the child forms its own
household and passes its first period of life.3 There is one consumption good in the economy. Its
current price is normalized to 1 in every period. Each household supplies one manhour of labor
in youth and none in old age. Differences in ability cause the quality of labor supplied to vary
across families, however, as explained below. For simplicity we set the rate of labor augmenting
technological change, 7 — 1, equal to 0.4 Savings carried from period ¢ to t+1 yield a nonstochastic
steady—state return r — 1 > 0. Until Section 5 there is no social security system.

Our model of household behavior has three basic elements. One is a direct utility function for
each family. Consider a household born at time ¢. Its replication of the utility function includes as
arguments its own two lifetime consumption figures, Cy; and Cy;; the two figures for its descendant,
C1,1+1 and C3z ¢41; the two for its parent family, C; ¢ ; and C3¢—;; the two for its second—generation
descendant, C 42 and Cj¢42; the two for its parents’ parents, Cy 2 and Cz¢_2; and so on. For
simplicity, we assume additive separability and homotheticity. Thus, the household utility function
is a member of the Bergson class — see Katzner [1970]. If k € (0,1) is the subjective discount
factor, and if

u(C)=1In(C) or CP/B somef <1, B#0,

v(C)=a-u(C) some a>0,

3 We could reinterpret the model to allow two offspring per family and marriage between families
with perfectly assortative mating. Laitner [1979b] allows two offspring per family and random
mating. The within-generation tax implications of similar models, which has recently been explored
in Bernheim and Bagwell [1985], is not a topic here.

4 Laitner [1979c], in a simplier, but related context, shows how to incorporate technological
change. In applications, the magnitude of 4 would be a very important determinant of household
bequests in our framework.



then family born at time ¢t wants to maximize

h-v(Ca-1) + Y k' [u(Crets) + 0(Cre44)- (1)

=0

Earlier family line consumption figures (C; ¢—1, C2¢—2, etc.) are determined prior to time t and
hence superfluous in the time-t maximization process. Formulation (1) assumes subjective dis-
counting based on time proximity. To simplify the analysis in Section 4, we assume

a<l1 (2

(a being the parameter in the definition of v(.)). This seems sensible since our families have fewer
members in their second period of life.

Having each family assign its own lifetime consumption the highest weight in (1) is crucially
important in this paper. It embodies an underlying limitation to altruism — families care most
about themselves. It leads to conflict between adjacent generations (within the same family line):
time~t parents desire more lifetime consumption for themselves than for their children; the children
desire more lifetime consumption for themselves than for their parents.

On the other hand, the scope of the disagreement above is restricted: (1) implies that time-t
parents will weight the lifetime utility of their descendant of time t+s, s > 1 relative to the lifetime
utility for their time—(t + s 4+ 1) successor in the same way as their child. For example, the parents
will weight the lifetime utility of their child relative to their child’s child in the same manner as their
child compares himself and his offspring. This degree of agreement enables us to write recursive
equation (13) below.

The geometric subjective discounting in (1) is also required for (13). Homotheticity would
be essential to our stationary-state analysis if ¥ # O — see note 4. Other than concavity and
monotonicity, Section 2 makes heavy use of the property u/(0) = v'(0) =.o0; Bergson functions
are a convenience for constructing the upper bound in (10); and Section 4 uses the property
u/(C)/u'(C — Z) — 1 as C — oo any fixed Z < oo. The homotheticity of u(.) and v(.) leads to
homogeneity results for saving and net bequest functions which allow us to write the supply of
savings as a function of r, as in Diagram 1 — although, in this regard, other ways of presenting
our arguments are possible.

A second key element of our model is an exogenous random variable A, independent of time,
from which every household’s ability is drawn.® If the steady-state wage is w, ¥ = 1, and a family
born at time t has ability A, its (lifetime) labor earnings are w - A;. A family’s ability becomes
known to it, and to everyone else, as it first supplies labor. Since there are many families in each
cohort, average ability per labor supplier at any time t is nonstochastic. However, the randomness
of A is critical — without it, h < 1 in (1) would leave no basis for any positive bequests; with it,
lucky families may leave estates.

We assume the density p(-) for A is 0 except on the interval

4 = [AL, AY] c (—o0,00)

5 An implication is that abilities are not heritable within family lines. Although we could modify
this, for the sake of simplicity we will not.



and is continuous and strictly positive on 4. The analysis of Section 4 will be streamlined if we
also assume

Al < AY)2. (3)

This has the reasonable implication that the best paid families in a generation will earn more than
twice as much as the worst.

Our third basic element is a set of rules for bequests and gifts: In its second period of life, a
family can make a bequest to its descendant. The transfer must be nonnegative but is otherwise
entirely under the (older) family’s control. At the same time, the descendant family, in its first
period of life, can make a gift to its parents (and next period a bequest to its own offspring).
The gift must be nonnegative but is otherwise entirely under the descendant’s control. As stated,
since parents weight their own lifetime utility relative to their descendant’s differently from the
descendant, the parties will disagree about both gifts and bequests.

We confine our attention to stationary states. We will take r, w, and p(.) as given and derive
an analogue of the S curve in Diagram 1. For convenience, in most of the family behavioral and
utility functions below we will include w as an argument but surpress r and p(.).

We use the following notation. The “wealth” of a household started at time t, Wy, is the sum
of its labor income, w - A¢; its inheritance, B:; and negative the gift, G, it transfers to its parent:

We =w- At + Bs — Gq. (4)

All of the variables in (4) are realized at the start of period t. The household divides W; into
life-cycle savings, S¢, and first—-period—of-life consumption, Cy;:

W‘t = St + Clt‘ (5)

Life—cycle savings S; can be invested in an actuarially fair lottery f,(St) — the need for which
will become apparent below. Each lottery E(Sg) is specified with a finite payoff-probability vector
(€1,91;-;€m, qm), where & > O is a payoff, ¢; € (0, 1] is the corresponding probability, > i, ¢: = 1,
and r-Sy = 3", g;-£;. Let L be the set of all such lotteries. (Note that one lottery choice, £y = r-S
and ¢q; = 1, involves no risk.) In the second period of life, our household splits its lottery outcome,
say, L(S¢), and its descendant’s gift (if any), G¢4+1, into a bequest, B;.;, and its own retirement
consumption, Caq:

Gi41 + L(St) = Byy1 + Ca. (6)

We assume bankruptcy laws compel S¢ > 0 and £ > 0 all 1 any acceptable lottery.

The law of large numbers shows society as a whole incurs no risk per citizen in providing
stochastically independent lotteries of the type described above. Questions of why individual fam-
ilies would want to purchase lotteries and of what interpretation such lotteries might have in the
real world are topics of Section 3.

Before proceeding, let us digress to show that our household framework can be restated in game
theoretic terms. Each family line engages in a separate infinite time horizon game. Consider one
line. The “players” are the households of different generations. The “payoffs” have been described.
At any time ¢ two players are active: the family line’s time-(t — 1) household, the “parent,” and
the time-t household, the “child.” At time ¢, first w, - A;, the children’s earnings, and the outcome
of the parent’s lottery, L(S;-1), are revealed (w¢—j - A;—; is already public information). Second,



the parent chooses its bequest (to the child), B;. Simultaneously, the child chooses its gift (to the
parent), G;. The bequest and gift must fall within the sets

0 S Bg S L(Sg) and 0 S Gt 5 w ‘Ag. (7)

The lower limits have been explained. Lines (4) and (6) seem to imply B, < G + L(S;) and
G¢ < w- A; + B, would be appropriate upper bounds. However, in describing a game we want
a player’s time—t stategy space to be independent of rivals’ current actions. In fact, in working
through our solution below we employ (4)—(6) exclusively, but Proposition 2 deduces the validity of
(7). Furthermore, the intuition is straightforward: the conflict in preferences described in preceding
paragraphs causes a parent always to desire a smaller “net bequest”, B, — G, than its child does.
Hence, whenever the parent wants B; > 0, the child will certainly set G; = 0. Similarly, whenever
the chxld desires G¢ > 0, the parent will want By = 0. Line (7) then follows from (4) and (6).

In the final step of the game at time ¢, the parent derives C2¢—; from (6) (lagged one period)
and the child chooses S; and Cj; subject to S; > 0 and (4)-(5). We seek a subgame perfect Nash
_equilibrium for the infinite time horizon game. What is more, the equilibria on whlch we focus are
also stationary with respect to time.

Turning to our solution procedure, for any W; = W, let V;(W;w) give a household’s utility
from its own lifetime consumption plus the consumption of its descendants in all generations (in
other words, expression (1) less its first term). If the wealth of the household’s child is W41, let
Vi+1(Wet1; w) give the offspring’s analogue of Vy(Wy; w). Define

§(L,N;w; A;V)=h-v(L-N)+V(w-A+ N;w), (8)

A(L,N;w; A;V)=v(L-N)+h-V(w-A+ N;w). (9

If L is our household’s lottery outcome and w - A¢4; the labor income of its descendant, then the
bequest it leaves, By+; = B, and the gift it receives, G441 = G, must simultaneously satisfy (see

(1)

B=arg sup A(L,B' - G;w;Aet1;Ver), (10)
B'€[0,L+G]
G =arg sup §(L, B - G";w; Ar41;Vit1) (11)

G‘G[O,W'A¢+1+B]

If B and G satisfy (10)-(11), the parent household’s net bequest, N = B — G, depends on w, L,
Att1, and Veyq: .
N = N(L, w; Ag+1;Vg+1). (12)

The fact that the household and its descendant both care most about themselves creates the
difference between A(.) and &(.).

Let E[.] be the expected value operator. Below we show N(.) is a unique function, continuous
in A, in our model. So, V;(.) must obey

Vi(W;w) = sup  {u(W — S)+ E[v(L(S) - N(L(S); w; Aet1;Ver1))+
selo,w],L(S)eL
h-Verr(w- Aerr + N(L(S);w; Aeqa; Visa); w)]}- (13)



A household with wealth Wy = W can certainly achieve a utility V(W ; w) higher than
VE(W;w) =[w(W/2) + v(r - W/2)] + h - [u(w - A%/2) + v(r - w- AL/2)]+
h? . [u(w- A%/2) + v(r-w- AL/2)] + ... (14)

Selecting consumption figures more favorable than those which are actually feasible, V;(W; w)
should be bounded above by

ViWw;w) =
[wW)+o(r-W+w-AY) ) +h-[ulr-W+w-AY)+o(r2- W +r-w- AV + w- AV))+
R [u(r? W+r w- A" +w-AY)+o(r®* W+r?.w- AV +r-w- AV + w- AY)] +...(15)
For finiteness, we limit our attention to values of r with
r>1 and r-h<1l (16)
Then

VU(W;w) < [1+hr+2(rh)? +..] - uw(W +w- AY) + [r + 2r2h 4+ 3r3R% + ] . v(W 4+ w - AY).

Fix an r satisfying (16). With our geometric subjective discounting, unchanging distribution
for A, and identical direct utility functions through time, we seek a stationary V'(.):

Vi(W,w)=V(W;w) all ¢, all w>0, andall W >0. (17)
For V (.) to constitute a “solution” to our model we require
VIW;w) <V(IW;w) <VY(W;w) all W >o0. (18)

Although the preceding paragraph makes this seem unrestrictive, it rules out nonsense cases such
as V(W;w) = oo all W. Finally, we want (10)-(11) to define at least one function N(.;V), as in
(12). For such an N(.), we want (13) to hold (with V(.) in place of V¢(.) and V¢41(.)). V(.) is a
“solution” to our family model if it satisfies (13) and (17)-(18) in this manner.

A formal proof of the existence of at least one family-model solution function V(.) and corre-
sponding unique first-period of life saving function S(W;w;V) = S and unique (and continuous in
A) net-bequest function N(L;w; A;V)= N foreach W >0,w >0, A€ 4, L > 0, and r satisfying
(16) is available from the author — see Laitner [1986].% Given Proposition 2 below, this solution
defines a subgame—perfect, stationary Nash equilibrium for each family line’s infinite time game,
as explained. Fortunately our method of solving the game provides d#s#¥%® characterizations of
V(.), S(.), and N(.).

2. Families’ Saving and Net Bequest Functions

This section derives several properties of each solution V(.) and, in particular, each corre-
sponding first—period—of-life saving and second-period net bequest function.

¢ The dual maximization in (10)-(11) precludes existence arguments based on conventional
dynamic programming theory. Instead, Laitner [1986] resorts to a general fixed—point theorem
applied to a mapping defined on a set of candidate solution functions.
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We begin with a series of lemmas about V(.) which lay the groundwork for studying S(. ) and
N(.). Fix any wage w > 0 and any interest factor r consistent with (16).

The first lemma shows V(.; w) is monotone increasing. When V'(.) is a solution for our family
model, it satisfies (13): if

P(LiwiV) = [ AL N(Liwi 4V )iwi AV) - pA) d4 (19)

then

VW;w) = sup  {u(W - S)+ E[L(L(S); w;V)]}. (20)
se[o,wl,L(g)ez

If we raise W in (20), first holding S fixed, then allowing S to vary, each stage raises (or leaves
unchanged) the total right-hand side expression. The first step yields

Lemma 1. IfV(.) is a solution, V() satisfies V(W + £;w) = V(W;i;w) > w'(W +£)-£ allW >0,
£>0.

The second lemma uses the “steepness” of u(.), v(.), and V(,; w) to put bounds on the argu-
ments of v(.) and V'(.) on the right-hand side of (13).

Lemma 2. Let V(.) be a solution. Let N(.;V) be consistent with (10)-(11). Then (i) there
ezists Xo € (0,AF) such that w- A+ N(L;w; A;V) > w-Xo any L > 9 and any A € 4; (#) if
v(0) = —oo, there ezists Q(L;w) such that L — N(L;w; A;V) > Q(L;w) >0 all L >0 and A € 4.
If v(0) > —o0, let Q(L;w) = 0. Q(.; w) is continvous.

The appendix contains a proof. Part (i) implies that once any solution for our family model has
been in force for more than one period, values of W < w - X no longer appear in the economy.
The lemma together with (17) enable us to bound T'(.):

-

I(L; w;V) <v(L+w- AY)+
h-VU(L+w-AV;w)=TY(L;w;V) < oo all L>0; (21)

I(L; w; V) 2v(Q(L; w;V))+
h-VE(w- Xo;w) =TL(L;w;V)> —c0 all L>0. (22)

We can prove that V'(.; w) must be concave as follows. If a set J C R™, let conv(J) be its
convex hull. We can view conv(J) both (see Rockafellar {1970, p.12]) as (i) the set of all convex
combinations of finitely many elements of J, and (ii) the intersection of all convex sets containing
J. £ V(.) is a solution, and if I'(.) is as in (19), let

$(w;V) = conv({(L,T(L;w;V)) | L 2 0)), (23)

U(L;w;V)=sup{Z| (L,Z) € Y(w;V)} each L2>0. (24)
Lines (21)-(22) show ¢(.) is well-defined. Since I'V(.) is concave,

{(L,2)| L>0, Z<TY(L;w;V)}

8



is a convex set. Line (21) shows it contains ¢(w;V); thus, the second characterization of conv(.)
implies .
Y(L;w;V)<TY(L;jw;V)<oo all L2>0. (25)

Lemma 2 and the first characterization yield
Y(L;w;V) > T (L;w;V) > —c0 all L2>0. (26)

Thus, ¥(.; w; V) is concave in L — see Rockafellar [1970, Th.5.3]. The first interpretation of conv/(.)
and the availability of lotteries yield

sup {u(W - 8) + E[L(L(S);w;V)]} = sup {u(W - S)+¥(r-S;w;V)}. (27)
selo,.w],L(S)eL ) Sejo,w]
Equation (27) implies

Lemma 3. IfV(.) is a solution, V(.; w) must be strictly concave.

The appendix finishes the proof.

The next lemma shows that if V(.;w) is a solution to our family model for w = 1, we can
always extend it to a solution V(.) for all w such that V(.) manifests the same homotheticity as

u(.) and v(.).

I_,emma 4. Let V(.;8) be a solution to our family model for w = 1. If u(c) = P /B, define
V(Wiw)=wf V(W/wil) dlW >0, w> 0. Ifu(c) = In(c), define V(W;w) =V (W/w;1) + (1 +
a) - In(w)/(l —h)alW >0, w>0. Thcn V(.;w) is a solution to our family model for all w > 0.

The appendix supplies a proof. On the basis of Lemma 4, henceforth we restrict our attention to
family-model solutions with the homogeneity property that V(.) has.

Lemma 5 is an incarnation of the familiar envelope theorem.
Lemma 5. IfV/(.) is a solution, 3V (W;w)/dW ezists and equals u'(W — S(W;w;V)) allW >0,
w>0, and A€ A.
The appendix provides a proof.

Lemma 6 collects our final results for V(.). Essentially, we bound I'(.;V) above with a simpler
function. Let

$(Liw; A;V)=  sup  A(L; N;w; A;V).
Ne|-w-A,L)

Lines (21)-(22) yield
—o0 < I‘"(L w;V) < ¢(L; w,A V) <TY(L;w;V)<oco all X>0.

We can see that ¢( ) is monotone in A, hence integrable. Define

®(L;w;V) = L $(L; w; A;V) - p(A) dA.



A comparison of the definitions of ®(.) and I'(.) shows <I>(,w,V) > I'(.;w;V) — the con-
struction of ®(.) gives current—generation parents complete control over N. We can easily see that
®(.;w;V) is concave (see the proof below). Therefore, ®(.; w; V') bounds ¥(.; w; V') above.

Intuitively, very wealthy families will not receive gifts. Thus, Lemma 6 will demonstrate that
®(.) and I'(.) coincide for large enough values of L. Hence, the same is true for ®(.;w;V) and
¥(.;w;V). As Diagram 2 shows, therefore, we cannot draw a linear section of (the graph of) ¥(.)
induced by a lottery and ending beyond the point at which the graphs of ®(.) and ¥(.) begin to
correspond. It follows that wealthy families will not use multi-outcome lotteries.

;'|le V}/;/
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& e
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(Y T [,
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Diagram 2. Graphs of ®(.), ¥(.), and I'(.).

Lemma 6. Let V(.) be a solution. For all L > 0, ®(.;w;V) is strictly concave and &(L;w;V) >
Y(L;w;V) 2 T(L;w; V). L*(w;V) = inf{L > O|N(L;w;4;V) > 0VA € A} € [0,00) ezists all
w>0. If L > L*(w; V), then ¥(L;w;V) = &(L;w;V) = T'(L;w;V) and L must originate from a
single outcome lottery. In fact, if w = 1, there ezists some € > O such that any L > L*(1;V) - ¢
must originate from a single outcome lottery.

The appendix supplies a proof.

"Turning to the first-period—of-life saving function S(.), we find that despite the complexity of
our model, conventional properties hold — in particular, S(.; w; V') is monotone nondecreasing in
W and the propensity to save on the margin never exceeds 1. Lemma 4 enables us to show that
S(.) is linearly homogeneous in its first two arguments.

Proposition 1. Let V(.) be a solution with the homogeneity property discussed above, and let
I(.) be as in (19). Then if W' > W > 0, we have 0 < S(W';w;V) — S(W;w;V) < W' - W,
S(W;w;V) — 00 as W — 00. If o > 0 is any constant, S(a Wa-w;V)=a-S(W;w;V).

The appendix supplies a proof.

The net bequest function is more intricate. If we allowed an elderly family complete control
of its net transfer, it would use

Na(Lyw; A;V)=arg  sup A(L, N;w;4;V). (28)
Ne[-w-A,L}
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If we allowed the same family’s descendant complete control, the choice would be

Ns(L; w; A;V).E arg sup &(L,N;w;A;V). (29)
. Nej-w-A,L) -

(The proof of Lemma 4 in Laitner [1986] shows both Na(.) and Nj(.) are unique and single valued.)
The selfishness of both parties implies N; will always equal or exceed Na. If N, is positive, the
actual net bequest will be positive, as both parties desire. Conversely, if N5 is negative, the actual
.N will certainly be negative. If N, is negative and N is positive, the parents would like a gift but
cannot compel it, and the offspring would like a bequest but cannot compel it; hence, we should
observe N = 0. The following proposition, proven in the appendix, makes these points formally.
(And, incidentally, justifies line (7).)

Proposition 2. Let L > 0, let A € A, and let V() be a solution. Let N = N(L;w;A;V),
Na = Na(L;w; A;V), and N5 = Ns(Lyw; A;V). Then (i) Ns > Na; (i) if Na >0, N = Na;
if N >0, N =Na; (i) if Ny <0, N= Ns; if N< 0O, N=Ny; and, (iv) if Ns > 0 > Na,
N =0. In fact, if L¥(w; A;V) = sup{L > —w-A| Ns(L; w; A; V) < 0} and LV (w; A; V) = inf{L >
—w- A|Na(L;w; 4;V) > 0}, then —oo < L¥(w; A; V) < LY (w;4;V) < 00 and N(L;w; A;V) =0
all L € [L*(w; A;V), LY (w; A; V).

As in Proposition 1, we can also show N(.;w;A;V) is nondecreasing and not too steep.
N(L;w;.;V), on the other hand, is nonincreasing. The homotheticity in line (1) and Lemma 4
imply N(.) is linearly homogeneous in (L,w). The appendix contains the proof.

Proposition 3. Let V(.) be a solution with the homogenesty property discussed above. Let L > 0,
A€ A, and € > 0. Let N = N(L;w; A;V). Then (1) 0 < N(L + §w; A;V) — N < € and the
same inequalities hold strictly for Na(.) and Ns(.); (%) if A+ € A, 0< N-N(Liw; A+ € V) <
w - € and the same inequalities hold strictly for Na(.) and Ns(.); (#%) if @ > O is a constant,
N(a+L;a-w;A;V)=a- N; and, (iv) N — o0 as L — co.
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Diagram 3. The graph of the net bequest function

For any A € A and any solution V (.) to our family model, Propositions 2 and 3 characterize the
shape of the graph of N(.; w; A; V), as illustrated in Diagram 3. For all L, the graph is nondecreasing
and its slope is less than 1. For L < L¥(w; A;V), both the parent and descendant want a negative
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net bequest. The descendant chooses the magnitude; the parent would like the absolute amount to
be bigger but has no leverage. For L € [LL(w; 4;V), LY(w; A;V)], the parent would like «iff? a gift
and the descendant would like a bequest. The outcome is no net transfer. For L > LY (w; 4;V),
both parties desire a positive net bequest. The descendant prefers a larger magnitude than the
parent, but the parent controls the amount. The shape of the graph in Diagram 3, therefore,
directly manifests the conflicting maximization problems of (10)-(11).

3. Lotteries

The potential importance of lotteries is evident in Section 2: if I'(.;w;V) — see (19) — is
not concave, young families will sometimes be able to enhance their total utility by investing their
life—cycle savings in lotteries. In this section, we first show that convexities are likely to arise for
some families of low wealth. This occurs despite the concavity of direct utility functions (see (1));
it is due to the fact that when parents receive a gift, the gift is under the control of their offspring
— and the offspring have different preferences from the parents. Second, we suggest a possible
empirical counterpart for the lotteries in L.

For a solution V(.), w > 0, and A € 4, consider
T(L;w; A;V) = A(L; N(L; w; A;V); w; A; V). (30)

The expected value of (30) —taking expectations over A — gives a family’s second-period-of-life
total utility —see (19)-(20). Let LX(w; A; V) be as in Proposition 2.

Diagram 4. The graph of (30) with respect to L

Lotteries seem likely to play a role for some families because the graph of (30) —see Diagram 4
— will tend to have a convexity at Lo = L¥(w; A; V). Let 81 T(.)/dL be the derivative from the
right for T(.). Moving to the right from Lo, the envelope theorem — see the graph of N(.,; w; A;V)
in Diagram 3 — shows

87T (Lo; w; A;V)/OL = v'(Lo — N(Lo; w; A; V). (31)

This is a conventional outcome: for L > Lg, a parent family’s net bequest is under its own, albeit
constrained, control; thus, an extra unit of resources yields an increment to total utility equal to
second—period—of-life marginal utility from consumption.

12



Moving left from Lg the story is quite different. For L < Lo, N is under the offspring’s control
and is the wrong magnitude from the parents’ viewpoint. Thus, in evaluating changes in L, parents
will care not only about v’(.) but also about how L is manipulating N(L;w; A;V). In particular, if
N is constant, a smaller L will lead to a decrease in A(.) equal, as before, to v'(.). But, Diagram 3
shows N will drop as L < Lo does. The latter change will yield a partially offsetting increase in
utility to the parents because, in their evaluation, N is too high. Mathematically, if 8~ T(.)/dL
exists,” .

37 Y(Lo;w; A;V) /8L = v'(Lo — N(Lo; w; A;V)) — [v' (Lo — N(Lo; w; A;V))—
h-8V(w-A+ N(Lo;w; A;V);w)/dW] - [0~ N(Lo; w; A;V)/AL). (32)

From Diagram 3, we expect
8~ N(Lo;w; A;V)/dL = ONs(Lo;w; A;V) /AL > 0.
Because N = Ns > Na,
—[v'(Lo = N(Lo;w; A;V)) — h- 8V (w - A+ N(Lo;w; 4;V); w)/dW] < 0.

If 3-71(.)/8L < 3*7(.)/3L, we must, however, have a convexity at Lo.

Provided the integration in (19) does not iron out the convexity at LX(w; A;V), agents con-
sidering savings levels near or below LY (w; A;V)/r will desire to use fair lotteries. Lemma 6 shows
this will not apply to wealthy families. Notice in Diagram 4 that lotteries such as (£;,¢1;£2, ¢2)
some ¢q; and g2 which leave parents either well enough off to be independent of their offspring’s
(restricted) generosity or precommitted to low enough resources to extract a sizable gift may be
quite popular.

In practice not many families of any wealth group seem to spend large fractions of their incomes
on lottery tickets. However, a “real world” analogue for lottery purchases might be families not
taking full advantage of insurance and annuities. Life insurance may be the best example. Our
life—cycle model is severely simplified. Suppose we temporarily deviate slightly from our framework
and think of a second-period—of-life labor income component o - w - A for families. Presumably
a family’s sampling A is known in the first period of life. Uncertain time of death will induce
uncorrelated randomness in a. With full use of life insurance, the insured value of @+ w- A can
simply be incorporated into second-period—of-life family resources. A household desiring a lottery,
on the other hand, might leave a portion of &-w- A, say, &*-w- A, uninsured. We can then interpret
the family’s L(S) as manifesting r+ S + E[& - w- A] + &* -w- A— E[&* - w- A].

The same type of argument applies to annuities. Uncertainties about life spans presumably
make v(.) a random function. A perfect annuities market would provide a full set of contingent
securities — see, for example, Yaari [1965]. In our problem, however, families might well choose
not to make full use of such instruments.

4. The Economywide Distribution of Wealth

For any given r satisfying (16) and w > 0, we can find a solution V(.) to our family line
maximization conditions — see Section 2. V(.), in turn, yields unique life—cycle saving and net
bequest functions S(.) and N(.). The present section uses these functions to study the evolution

7 Kolmogorov and Fomin [1970, p. 321] show this derivative exists almost everywhere.
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through time of the national distribution of “wealth” values. The randomness of A prevents the
distribution from collapsing to a single value. In fact, we prove convergence to a stationary dis-
tribution. We also show that when the economy has reached a stationary distribution, provided
there are any positive bequests, a positive fraction of families in each cohort are at corner solutions
of their maximization problems — a result having important implications for the study of social
security in Section 5.

For some w > 0 and r obeying (16) let V(.) solve our family model as in Section 2. If a given
family line has wealth W; at time t and W,;; at time ¢ 4 1, the connection between W, and W, ,
involves a composition of S(.;V') and N(.;V): W; leads to youthful savings of S(Wy;w;V), which,
together with a realization A¢4+; from A and a lottery L(S(W;;w;V)), yield Wiy, —

Wet1 = w+ Agpr + N(L(S(We; w;V)); w5 Aega; V). (33)

For each W, think of a corresponding normalized variable X; = W, /w. Then dividing through (33)
by w. and using the linear homogeneity properties established in Propositions 1 and 3,

Xes1 = Aer1+ N(L(S(Xe; 1,V)); 1 Aeen; V), (34)
with L(S(X¢;1;V)) = L(S(We; w;V))/w. Our analysis focuses on (34).

The preferred lottery may not be unique. If not, we simply assume the family uses the lottery
(£1,91;£2,92) with £; the minimum and £; the maximum payoff among preferred mixed strategies.®

Line (34) then induces a Markov transition function for X as follows. Given a solution V (.),
with each X, we can associate a unique life—cycle savings figure S(X;1;V). The latter now
implies a unique lottery (£3,41;£2,92). We employ the notation £; = £L(X;V) < £ = £Y(X,; V),
q1 = q(X¢; V), and g2 = 1 — ¢1. If the descendant from a young household with normalized wealth
X receives normalized labor income A;;;, the normalized wealth of the descendant, X, ;, will
equal

Aty1 + N(€E(X;V);1; Aggq; V) with probability  ¢(Xe; V),

Aty + N(€Y(Xe;V);1; Ag+1;V)  with probability 1 — ¢(Xe; V).
Proposition 3 shows A + N(L;1; A;V) is continuous in A. Thu;, if X is a Borel (or “Lebesgue
measurable”) set in R, for any L > 0
AL X;VY={A€ A|A+ N(L; 1, 4;V) e X'} (35)
is Lebesgue measurable. So, we have a well-defined Markov trausition rule A(.) for X;:

MXe; Xer1; V) =¢(X; V) - p(A) dA+
A(LE(XeiV )i Xet13V)

[1-g(Xe; V)] p(4)d4. (36)
A(LU(X¢3V);Xeg25V)

Lemma 2 (part (i)) shows values of X < X, are transitory — thus they play no role in a steady
state. Lemma 6 and condition (16) enable us to establish an upper bound. The idea is that there
is some normalized wealth figure so large that a parent family possessing it would set aside for its
own consumption a portion larger, in-second-period—of-life terms, than the fixed amount AV. In
such a case, even the most favorable (normalized) labor income for the offspring would not enable
the descendant to achieve as high a (normalized) wealth figure as its parent.

8 Alternatives, such as assuming all possible pairs of equally desirable lottery outcomes are
chosen with equal probability, would not affect our outcomes substantively.
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Lemma 7. There ezists XU(V) < oo such that X > XU(V) implies S(X;1;V) will not be
invested in a multi-outcome lottery and A+ N(r-S(X;1;V);1;A;V) < X all A€ A. Thus, all
ergodic sets for A\(.) must lie in the interval I(V) = [Xo, XY (V)] c (0,00).

The appendix provides a proof. For future reference, let the class of Borel subsets of J (V) be B(V).

We now turn to the well-known analysis of Markov models in Doob [1953, ch.v]. Let u(.) be
the Lebesgue measure. Doob shows that A(.; V) will have a finite number of ergodic sets in 3(V)
if: (i) A(X;.;V) each X € I(V) is a probability measure on B(V); (ii) A(;; X;V) is a measurable
function on I(V) each X € B(V); and, (iii) (hypothesis of Doeblin) there exists ¢ > O such that
if X € B(V) and p(X) < ¢, then A(X; X;V) < 1-¢€all X € I(V). The first two properties are
strictly technical. The third requires, roughly speaking, that A(X;;.;V) not assign probability 1
to a transition into any set Xi41 € B(V) of very small radius. Looking at (36) and recalling our
assumptions about the density function p(A), in economic terms the third condition will hold if a
descendant’s (normalized) first—period-of-life wealth figure is dependent on his/her realization of
A. Independence could only occur if the descendant’s net inheritance offset changes in its labor
income realization dollar—for—dollar — which is inconsistent with the selﬁshness inherent in our
direct utility function.

Proposition 4. Let V(.) be a solution to our family model. Doob’s properties (i)-(iii) hold for
A(;V). Thus, A(;;V) has a finite number of ergodic sets on I(V). Each has a single cyclic subset.

The appendix supplies a proof.

Inequalities (2)-(3), assumed in Section 1, immediately streamline our discussion to one ergodic
set.

Proposition 5. Let V(.) be a solution to our family model. Then (2)-(3) tmply A(.;V) has a
single ergodic set.

The appendix supplies a proof.
Returning to Doob [1950, ch.v],

Proposition 6. Let V(.) be a solution to our family model. Let & be the unique ergodic set
for A(;V). Then a unique stationary distribution D(.) corresponds to £. Let E € B(V). Define
AAX;X) = MX; X;5V) and X(X;X) = [, XY(2;X) - A%(X;dZ) all X € B(V) and § = 1,2,....
Then lim;—, o A*(X; E) = [ D(dX) any X € €. Also, [, D(dX) =1.

Proposition 4 and Doob [1953, ch.v] establish this result. Proposition 6 shows that over time the
cross sectional distribution of normalized wealth must converge to D(.). After convergence, with
probability 1 realizations of X outside of £ do not occur.

We can proceed to our version of the supply curve in Diagram 1. An r satisfying (16) leads to a
family-model solution V'(.). Proposition 6 then gives the steady-state cross—sectional distribution
of normalized wealth, D(.). Let X have the latter distribution. It is independent of the wage rate.
For any w, however, the distribution of wealth, W, is generated from w - X. The function S(;1;V)

° Laitner [1979a] discusses the implications of multiple ergodic sets. Without (2) and (3) a
multiplicity is possible in the present context. It would complicate our discussion but leave its
substance unchanged.
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is uniquely defined and continuous. Thus, the mean normalized savings figure for the economy is
well-defined:

E[S(w- X;w;V)]/w = BS(§;1,V)]. (37)

The distribution for X is bounded (see Lemma 7); hence, if there are many families in each gener-
ation, we can appeal to the law of large numbers to derive an excellent proxy for K,/(w - E;):

K¢/(w- E) = E[S(X;1;V)] all t. (38)

(Recall that E; corresponds to the number of current young families in the economy.) Considering
different values of r, we can then plot out our S curve.

As the introduction shows, the effect of social security may depend heavily on whether or not
family lines inevitably experience over time corner-solution net bequests. Proposition 2 sets the
stage for an affirmative answer. We must prove, however, that the stationary distribution D(.) puts
positive probability weight on family-line (normalized) wealth figures in the flat section of N(.) in
Diagram 3. Lemma 6 provides the key.

Proposition 7. Let V(.) be a solution to our family model. Suppose some families leave positive
bequests. Then there ezist ¢ > 0 and T < oo such that in the steady state any family must
assign a probability > ¢ to the event that one of its descendants within T generations will have
second-period-of-life normalized wealth L and an offspring with ability A € A such that L €
(LE(1; 4;V),LY(1; A;V)) — see the notation of Proposition 2.

The appendix provides a proof. Proposition 7 implies a crucial distinction exists in the long-run
between funded and unfunded social security systems.

5. Social Security

This section considers the introduction of an unfunded social security system at time t = 0. We
want to compare the stationary state of the economy before ¢t =0 with the new one emerging after
time 0 — a stationary state consisting of fixed factor prices r gnJ w; a solution V(.) to our family
model; and, a stationary distribution of normalized wealth, X. Specifically, we want to compare
the curves giving the steady-state supply of financing for physical capital — see Diagram 1 —
before and after the advent of social security.

To simplify the discussion, think of social security as follows. When the wage rate is w, young
families face a lump sum social security tax of w - 7. To be sure everyone can pay it, assume

r < AL,

Each family’s benefit in old age is 4 - w - 7 — with an unfunded system stationary-state benefits
grow at the sum of the rates of labor-augmenting technological progress and natural labor force
increase, v — 1. Thus, the present value of each household’s tax less benefit is ¢ - w with

o= -/l

We assume bankruptcy laws prevent young families from using their future social security benefits
as collateral for loans.1?

10 In the U.S., future social security benefits are not legal collateral for a loan — see Diamond
[1977].
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In Diagram 1, the S curve gives the supply of financing for physical capital in the absence
of a social security system. As we introduce social security and complete the transition to a new

stationary state, S* becomes the supply curve. We can distinguish several components of the total
shift.

At the first level of analysis, social security changw a given household’s net lifetime labor
earnings from w- A to w - [A — o]. Replace each A in (34) with A4y — 0. Assume (16) and (36)
hold. We can then compute a stationary distribution of normalized wealth X (¢). X(0) corresponds
to the case without social security.

In the absence of social security, average normalized stationary-state financial holdings per
worker carried between periods of life equal

IS 1V (39)
With an unfunded social security system we might imagine they are
E[S(X(0); V)] = (7 -4/r). , (40)

The last term reflects the fact that social security’s tax—-in—-youth and benefit-in—old—age nature
reduces (by 7~ - w/r) each household’s need for life—cycle saving. Subtracting (39) from (40),

{E[S(X(0); V)] = EIS(X(0); ,V)]} = (- 2/r). (41)

The {.} term might be thought of as causing the twisting of S relative to S in Diagram 1. The
definition of o shows
o>(<)0 as r> (<.

The —(7 - 4/r) term in (41) causes the displacement from S to S* in Diagram 1.

At the next two levels, the story depends on Proposition 7. We assume some families leave
positive bequests. Proposition 7 then shows that when the economy reaches a new stationary
state after time 0, all families will be completely cut off from the windfalls distributed to elderly
households (at time 0) as the social security system started up.

Because bankruptcy laws prevent social security participants from borrowing against their
future benefits, and because of our constraints § > 0 and 4 > O all ¢ in the definition of L, in
general our household-model solution V(.) and resulting saving and net bequest functions and
stationary dlstnbutlon of normalized wealth will change after time ¢ = 0. Specifically, line (20)
becomes

VWiw)=  sip  {u(W - S)+Ell(y- wer+ LS wiV)]}. (42)
Selo,w),L(S)eL
The consequences may be very complicated; the following discussion is only designed to suggest
intuitively what may happen.!?

Line (40) presupposes that households which would have set S = So < (r-~/r) in the absence
of social security borrow the present value of their system benefits, registering life—cycle savings of
So — (r - 4/r). As stated in the preceeding paragraph, however, the constraint S € [0, W] and the

11 As suggested in Section 3, in the real world families may have some labor earnings compar-

atively late in life. Our story only depends on having social security benefits being significant in
magnitude relative to such earnings.
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definition of £ prevent such behavior in (42). Thus, the savings of such families cannot be reduced
(as in (40)) by the full amount of social security taxes, and the horizontal shift from S to §* in
Diagram 1 will be cut back.

Although this effect could emerge in a life—cycle saving model with a nonnegativity constraint
on asset holdings but no gifts or bequests, households in such a model would be almost sure to set
aside for retirement in the absence of social security a larger sum than the benefits of a modest
system. In our framework, in contrast, young households have the option of consuming their labor
earnings and relying on gifts to finance their retirement. In the absence of social security, households
of low and moderate means — especially in an economy with a positive rate of technological progress
— may well find this course of action attractive. Further, the derivative calculations of (31)-(32)
show that parents anticipating partial reliance on a gift may intentionally choose a very low S
in order to extract a larger gift than their self-directed descendant would otherwise be willing to
make — see Section 3. (Or, parents may gamble with a lottery having some chance of a very low
payoff.) Social security will limit such families’ precommitment possibilities instead of displacing
saving they would otherwise want.

A third factor is even more subtle. Consider Diagram 5. In the pre-social security world, a
low income family might have selected a life—cycle savings level yielding the outcome at L. Social
security benefits might equal L;. Roughly speaking, if the curves are as shown, social security will
prevent the family from extracting a gift from its descendant — it cannot reach outcomes with
L+~v-7-w < L;.'2 What is more, left to its own devices, the household’s marginal utility for
further saving at L, is higher than at Ly. Thus, the household may save a positive amount, moving
to Lg, for example.!® Total private saving for the household in the world with social security,
(L2 — L,)/r, may exceed, equal, or fall short of a corresponding household’s saving Lo/r in the
society before t = 0. Thus, we have a second reason for the shift between S and S* in Diagram 1

12 We must be careful here. The analysis at this point is only meant to suggest intuitively various
possible outcomes. In particular, comparing (20) and (42) we see that in general V'(.), and hence
the graph in Diagram 5, will change after ¢t = 0 (even for the same r and w).

13 As I wrote the final draft of this paper, I became aware of a related manuscript by Hansson
and Stuart [1986]. Their framework differs from ours in not allowing parents to leave bequests and
in not allowing families to have different labor incomes. Although gifts similar to ours are possible,
Hansson and Stuart do not allow lotteries — see Section 3 above. Their model may sometimes
permit a desirable stationary state with no gifts and an undesirable one with (universally) positive
gifts. A proper social security system can force the economy from the latter to the former type of
outcome. Such a switch is somewhat analogous to what is happening above in Diagram 5.
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to be less than —(r - v/r) — conceivably S* even lies to the right of S in some ranges.

‘:Pl/) W_,l) =
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Diagram 5. Desired lottery realizations

An interesting sidelight is that if social security benefits are large enough, they may force
households into the concave region of I'(.;; w;V) — recall Lemma 6. This happens in Diagram 5
if benefits are L;. (But, see note li'\ﬁ) Returning to the discussion of lotteries in Section 3, this
might imply a difference in households’ behavior toward risk after the advent of social security:
private-sector demand for life insurance and annuities might well rise.

Finally, suppose conditions (2)—(3) fail to hold. Then there may be multiple ergodic sets —
€1,--s€m. The proof of Proposition 4 shows they can indexed so that & > £;4; all {, where the
inequality means X; € €; and X;41 € €4, imply X; > X;41. Assuming there are some positive
bequests, they must come from family lines in £; — the proof of Proposition 5 will yield inf £; < A%.
The latter result means families in set £; any £ > 2 will give and receive positive gifts. Thus, the key
condition of no corner solutions which Barro’s [1974] analysis assumes holds for such households,
and, as explained in the introduction, a modest enough social security system will not affect their
saving. Again the magnitude of the shift in Diagram 1 from S to S* is reduced. (Proposition 7
holds for all families in £;.)

6. Conclusion

We have presented a model of intergenerational wealth transfers without conventional nonneg-
ativity constraints on net bequests. Instead, we allow nonnegative bequests controlled by parents
and nonnegative gifts controlled by offspring, the parents’ “net bequest” being the difference be-
tween the bequest they choose and the gift they receive. The characteristic net bequest function -
which we derive is negative but rising at low wealth levels (for the parent family), zero over an
intermediate range of wealth values, and then positive and increasing.

We show that if there are any positive bequests in the economy, a positive fraction of families
will be in the flat section of their net bequest function. Over time the economy will then be cut
off from the windfall transfer payments to old families accompanying the start of an unfunded
social security system. This leads us to expect the same deleterious effects on national wealth
accumulation from social security as in much simpler life~cycle models.
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On the other hand, the possibility of gifts, and their specific nature, suggests that our inter-
generational transfers will motivate some low and middle income families to precommit themselves
to very low retirement resources. Social security will force them to a different program — there
being little or no savings to be offset in the process. Life—cycle saving may be enhanced in some
wealth catagories as marginal rates of substitution change.

We also showed that risk-loving behavior may well emerge (as a result of the way gifts are
chosen), but that social security may constrain households in such a manner that risk-averse
behavior is restored.

A projected next step in this research is to expand our life-cycle model to many-period lives, to
incorporate technological change, and to generate simulation examples which attempt to measure
the quantitative importance of the theoretical issues identified here. An additional interpretation
of portions of the empirical literature on social security and national wealth accumulation (see, for
example, Feldstein [1983], Leimer and Lesnoy [1982], and Darby [1979]) may then be possible.
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APPENDIX

This appendix uses the following notational conventions: for the function F(X,,X5,...),
F'(X1,Xa2,...) = 0F(X1,X2,...)/8X;; for the one-sided derivatives with respect to X,

F_(Xl,X2,...) = a_F(Xl,Xz,...)/axl, F+(X1,X2,...) = 8+F(X1,X2, )/8X1

Proof of Lemma 2:

Part i. Define N*(.) from h: v'(-w - N*(A)) = v'(w- A+ w- N*(A)). Define f(A) = A+ N*(A).
Then f(.) € C° A > AL and u'(0) = —oo imply f(A) > 0. Hence, 0 < X; = minge {f(4)}.
Define Xo = min{X;/2, A¥/2}.

If N(L;w; A;V) > 0, we are done because then w+ A+ N(L;w; A;V) > w-A> w-Xo. If
not, N = B —G with G > B > 0. Suppose the latter. Define F(A) = w- f(A). Let 0 < € < F(4A).
Note that —N*(A) > 0 because v'(0) = oco. Integrating over [L — w - N*(A),L — w- N*(A) + ¢,
and using Lemma 1, .

V(F(A)iw) = V(F(4) - ¢w) > u'(F(A))-e=h-v'(-w-N*(4)) - e =
h-[v’(—w-N‘(A))dZ?_ h-/v’(L—w-N"(A))dZ> h-fv’(Z)dZ:
h{v(L —w-N*(A)+¢€) —v(L-w-N*(4))).
Hence, §(L;w+ N*(A);w; A; V) > §(L;w - N*(A) — €;w; A; V). So, the arbitrariness of € implies
N(L;w;A;V) > N*(A). Thus, w- A+ N(L;w; A;V) 2 w- X; > w+ Xo.

Part ii. Suppose v(0) = —oo. Define f(w,L) = VU(w - AY + L) — VE((w - AL + L)/2). There
exists Q = Q(L; w) < (w- A¥ + L)/2 such that 2 > 0 and k- [v((w- AL + L)/2) — v(Q)] = f(w, L).
Hildenbrand [1974, p.30] shows €(.; w) is continuous. Let A € 4, N = N(L;w;A;V),and Z =
(w-A+L)/2. Then N < L. When L—N <, V(w- A+ N) -V (2) <V(w-A+L) - V(2) <
f(w,L) < h-[v(Z)-v(Q)] < h-[v(Z)—v(L— N)] — hence, §(L, N;w; A;V) < §(L,L—Z;w; A;V).
The same inequality certainly holds for A(.). Thus, L— N > Q. 1

Proof of Lemma 3:

Let W' >0, W" >0,0< 0 < 1, W = 6.W'+(1-0)-W", §' = S(W",w;V), §" = S(W";w;V),
and S=0-5'+ (1 0)-S". Then the strict concavity of u(.) and the concavity of ¥(.) imply (see
(20) and (27))

VIW;w) 2 u(W - S)+¥(r-S;w;V)>0-u(W’ - S') +(1-0) -w(W"-S")+
0-¥(r-Sw;V)+(1-60)-¥(r-S";w;V)=0-V(Ww)+(1-0) V(W' w).

Proof of Lemma 4

Define N(L;w; A) = w- N(L/w, 1; A; V) and S(W;w) = w- S(W/w;1;V). Then (10), (11),
and (13) show S(.) and N(.) give maximizing values of S and N when V(.) replaces V;44(.). (13)
also shows that Vi(.) = V(.) in the latter case. V'(.) satisfies (17). &

1



Proof of Lempma 5.

Let W' > W > 0,8 = S(W;w;V), and S’ = S(W’; w;V). Rockafellar [1970, Th. 24.1]
shows the one-sided derivatives of ¥(L;.) with respect to L are defined, nonincreasing, and obey
U (L;w; V)2 ¥+ (L;w;V). Define E=W' - W.

Step 1. Weshow 0< S'—-S<W'-W.

The definition of S shows —u/(W'—S)+r-¥~ (r-S;w; V) > —u'(W—-8)+r- ¥~ (r-S;w;V) > 0
or $=0. Thus,S' > S. Then —u'(W' =S - £)+r - UM (r-S+r-&uw;V)=-u'(W-8)+r.
UH(r-S+r-&w;V)< —u'(W—S)+r. . 0¥(r.S;w;V)<0.! Thus, S+£2> 5"

Step 2. We show V+(W;w) = u'(W — S).

Note that u(W’'—S’)—u'(W-S) = [u(W’'-S)—u(W —S)|+[u(W’'-S’)—u(W'-S)]. Using (27),
Step 1, and the mean value theorem, [V(W + & w) -V (W;w)]|/§ =o' (W —S+n)+T1.[S' - S]/¢
some n € [0,&] where T1 = [—u(W+£-S)+u(W+£-S")+P(r-S";w; V)= T(r-S;w; V)]/(S'-5).
Let £ | 0. Suppose S(W + ¢’;w; V) = S some ¢’ > 0. Then Step 1 shows S(W + £";w;V) =S
all £” € [0,¢’]. Canceling S’ — S terms, we have VI (W;w) = «/(W — S). If not,as € | 0,
T1— —u'(W—-8)+r-¥t(r-S;w;V). The definition of S shows the last sum < 0. Strict inequality
implies S(W + &';w; V) = S some £’ > 0. Equality and Step 1 yield VH(W;w) = u'(W - S).
Step 8. We show V~(W; w) = u'(W — S). This plus Step 2 complete the proof.

LetO < W — £ < W. Let §' = S(W — & w;V). Then V(W — €) — V(W) = [u(W — ¢ —
SY—u(W -S) +[u(W -8 —u(W -S)]+ [¥(r-S";w;V) - ¥(r-S;w;V)]. Forming diffcrence
quotients as before, V= (W;w) =u'(W - S). B

Proof of Lemma 6:
The text shows &(L; w;V) > T(L;w; V). ¢(.;w;A;V) is strictly concave — an argument
analogous to the proof of Lemma 3 holds. f L=6-L'+ (1 - 6)- L",
o(Liwi V) = [ $(Liwi 4V p(4)d4 >
A

[10- 60 47) + (1 - 0) 4L 0 4V)] - p(4) dt
A

=0 -B(L;w;V)+(1-0) - 3(L";w; V).
Thus, ®(.; w; V) is strictly concave. Hence, ®(.; w; V) > ¥(.;w;V).

The definition of &(.) shows ®(L; w; V) =I'(L; w; V) for L > L*(w;V). Hence, for such L we
have ®(L;w;V) = ¥(L;w;V) = T'(L;w;V). Since &(.;w;V) is concave, Diagram 2 shows such L
values must originate from single—outcome lotteries.

We show L*(w;V) < oo exists. Define L° from v'(L%) = (h/2)- u'(w-AY). Then L° € (0,0).
Let L > L° and A € A. Suppose N = N(L;w;4;V) < 0. Then (B,G) = (0,—N) solves (10)-
(11). Using Lemmas 1 and 5,

0> —v(L-N)+h-V'(w-A+ N;w)> —v"(L)+h-V'(w-4A;w) >
—v'(L%) + k- u'(w - AY) = (h/2) - ' (w- AY) >0,

1 Note: S =W > 0 makes —uv'(W —S)+r-¥¥(r-S;w;V) = —oo and, hence, is never a chosen
savings level.



a contradiction. Hence, L > L° implies N > 0. So, L*(w;V) < L°.

Define *
¢*(L; A;V)= sup A(L;N;1;4;V).
. Nelo,rL]

#*(.) is bounded and monotone in A just as ¢(.) is. Define
(L) = [ (LiaV)-plA) da
A

The arguments above show &*(; V) is strictly concave. Propositions 2-3 below (estabhshed in-
dependently) show that for some ¢ > 0, ®*(L;V) = ['(L;1;V) all L > L"(l V) - €. Asin
Lemma 5, the envelope theorem shows ¢I>"(L 1;V) exists all L > L*(1;V) — €. So, I'"(L;1;V) =
®*'(L; 1; V) Let € = €’/2. Since any line segment connecting two lottery outcomes and ending
at L'(l;V) — € would then have to be tangent to ®*(.;1;V) at L*(1;V) — ¢, a graph such as Dia-
gram 2 plus the strict concavity of ®*(.; w; V') establish the last part of Lemma 6. [

Proof of Proposition 1:

Step 1 in the proof of Lemma 5 establishes the inequalities; the construction of V'(.) in the
proof of Lemma 4 establishes homogeneity.

It remains to show S(W;w;V) — oo as W — oo. Step 1 in the proof of Lemma 5 shows
S{.;w;V) is nondecreasing. Let lim stand for limp — . Then we can write S° = lim S (W w; V)
If S° = oo, we are done. Suppose S° < co. We have seen ¥~ (.;w;V) exists and is nonincreasing.
Lemma 1 and the first part of Lemma 6 imply I'(L; w; V') must be strictly increasing for large L.
Hence, ¥~ (L;w; V) > 0 all L. So, using Rockafellar [1970, th.24.1], — limu'(W - S(W;w;V)) +
limr: Ot (r- SW;w;V);w;V)) =0+ r- ¥ (r-S%w;V) > 0 — contradicting the first~order
condition —u'(W — S(W;w;V)) +r- ¥ (r- S(W;w;V);w;V) <0. |

Proof of Proposition 2:

Part (i). Recall Lemma 5. Using Lemma 1, we can see —w+ A < Na < L. So, v'(L — Na) =
h-V'(w-A+ Na;w). So,h-v'(L — Na) < V'(w+A+ Na;w). Thensince k- v'(L — Nj) =
V'(w- A+ Ns;w), Ns > Na.

Parts (ii)-(4ii). The concavity of V/(.) and v(.), (10)-(11), and (28) show Na > O implies N =
Na. Further, if N >0, (N,0) solves (10)-(11) and the same properties show N = Na. The same
reasoning works for part (iii).

Part (iv). Suppose Ns > 0 > Na. E N > 0, N = Na — see the preceding paragraph. This
contradicts 0 > Na. f N <0, N= Ns >0. Thus, N=0.

If £ > 0, an analog to the first step in the proof of Lemma 5 shows 0 < N.(L + §;w; A;V) —
N.(L; w; A; V) < & for z = A or 5. Thus, part (i) shows LL(w; 4;V) < LU(w; A;V). Lemma 6
shows the latter is bounded above. The former is bounded below (by definition) by —w - A. The
preceding paragraph completes the last step in the proof. J



Proof of Proposition 3:

Let £ > 0. Define N = N (L + &w; 4;V), N2* = N(L;w; A + §V), and N, =
N:(L;w; A;V) for z = § or A. Define N* = N(L + £;w; A;V). The definition of V() in the
proof of Lemma 4 implies part (iii). ’

Parts (i)-(%). v'(L— Na)=h-V'(w-A+ Na;w)and v'(L+ - N2A)=h-V'(w: A+ N};w).
Both v(.) and V'(.; w) are strictly concave. Hence, N3 > Np and L — Nao < L + £ — NX. So,
NZ — Na < €. The same reasoning implies 0 < Nj — N5 < €. Recall Proposition 2. f N > 0,
N = Na < N, = N*. Suppose N =0. fN* <0,0> N*=N;y > Nsg=N=0—a
contradiction. If N* > 0,0 < N*—= N= N, — N < N3 —Na < ¢ Suppose N <0. EN* <0,
N*—~ N = N; — N5 € (0,¢). IfN">0 0<N" N < Nf— N = N; - Ns <& Part (ii) is
strictly analogous.

Part (iv). Recall Lemma 6. Let L > L*(w;V). Then v/(L — N(L;w;A;V)) = h- V' (w- A+

N(L;w; A;V); w). Given Lemma 1 and the monotonicity of N(.;w;A;V), as L — oo, this first-
order condition requires N(L; w; A;V) — co. |

Proof of Lemma 7:

Proposition 1, Lemma 6, and Proposition 3 imply 3X°(V) < oo such that X > X°(V)
implies S(X;1;V) will not be invested in a multi-outcome lottery and r - S(X;1;V) > L*(w;V)
(see Lemma 6).

Step 1. Let lim stand for limx . For 0 < £ < oo and we show imV'’(X;1)/V'(X - §;1) = 1.

Define C(X;V) = X — S(X;1;V). Lemma 5 shows V'(X;1) = u'(C(X; V)) Since V'(.;1) is
increasing and concave, limV’(X;1) exists. V(X;1) < VU(X;1) and VY (X;1) is bounded above
— see the inequality after (11) — by a function with slope — 0 as X — oo. Thus, limV'(X;1) =
0. So, limu'(C(X;V)) = 0. Hence, imC(X;V) = oo. Proposition 1 shows £ > C(X + &;V) -
C(X;V) > 0. So,

1> 1lmV'(X;1)/V'(X - &1) =lmd'(C(X;V))/W'(C(X - §V)) 2
limv/(C(X;V))/v'(C(X;V) - §) = lim ! (C(X; V)/[C(X;V) - §]) = w'(1) = 1.

Step 2. If X > X%(V), the envelope theorem (see Section 3) and Apostol [1974, th.7.40] imply
I'(Lyw;V) = f v'(L — N(L;1; A;V)) - p(A) dA. Define £ = AV — AL + 1. Step 1 and (11) show
EIXU(V) > X°(V) such that X > XU(V) implies r - h- V(X — £;1) < V'(X;1). Let X > XU (V),
S=5S(X;1;V),and L=r-S. Then

rhVI(X-61)<V(XD)=u(X-8)=r-T"(r-5;1;V) =
. / (L - N(L;1; 4;V)) - p(A) dA=r - - / VI(A+ N(L; L, 4;V);1) - p(A) dA <
A A
r-h-V'(AY + N(L;1; AL V);0).

So, X — € > AX+ N(L;1; AL; V). Hence, X > AV + N(L;1; AL;V) > A+ N(L;1;4;V) all A € A.
|



Proof of Proposition 4:

tep 1. Property (i) follows from the definition of A(;;V') and Kolmogorov and Fomin [1970, p.
298).

Step 2. For property (ii),letc > 0. S (X 1;V) and, by construction, ££(X;V’) and £V (X;V)

are nondecreasing in X. If ¢(X;V) € (0,1), ¢(.;V) is decreasing. Proposition 3 shows A +
N(X;1; A; V) is strictly increasing in A. Hence, if I = [X, ¢] or [Xo,c), A(X; I;V) is nonincreas-
ing in X — thus, measurable in X. A(X| [c1,¢2]; V) = A(X, [Xo,¢2];V) — A(X, [Xo,cl);V) is then
also measurable. Clearly the same is true for A(X, I;V) with I = ¢y, ¢2), (c1,¢2), or (1, ¢3).

Let X, be a countable union of disjoint intervals.” Then the paragraph above and Halmos
(1974, p.84] show A(., Xp;V') is measurable. Kolmogorov and Fomin [1970, p.261] shows we can
construct a sequence of such sets with X3 D Xz D> ..and NX, =X any X € B(V). Kolmogorov
and Fomin [1970, p.266] shows lim,_,, A(X, I,.,V) = AMX, X;V). So, Kolmogorov and Fomm
(1970, p.285] shows A(., X;V) is a measurable function.

Step 8. For property (iii), define LY (V') = max{L*(;V),r - S(XU(V) 1;V)} — recall Lemma 6.
'Then for X € I(V) we need only consider lottery outcomes in [0, LY (V)]. Define f(L, A)

A+ N(L;1; A;V) and J(L) = [f(L, A%), f(L, AY)). Proposition 3 shows f(.) is stnctly increasing
in A and continuous in L. Hence, p(J(L)) = f(L,AY) - f(L,AY) > 0is continuous in L. So,
J*(V) = inf{u(J(L)) | L € |0, LU(V)]} satisfies J*(V) > 0. By a.ssumptlon the density p(.) is
positive on A and continuous; therefore, 3p > 0 with p(4) > p” all A € A. The definition of
A()) then shows that if X € B(V), € = min{J*(V')/2,J*(V) - p£/2}, u(X) < ¢, and X € J(V), we

have

AX, X;V) < suP{/ p(A)dA|Le [0, LY (V)]} <
A(L; X3V
1-pL - (J*(V)-p(X))<1-pF . J*(V)/2<1-¢

Step 4. Let ergodic set £ have cyclic subsets C;, 1 = 1,...,n. Then { = UL ,C; and, rearrang-
ing indices if necessary, X, € C; implies A(X;; Ci41;V) = 1 (or, if X¢ € Cp, A(Xy;;C1;V) =

1). Suppose X = infé = inf C;. Define I(c) = [X,c]. Step 2 shows that for any ¢ > X,
AX, I(c);V) 2 M(X', I(c); V) all X' € £. So, inf Ci41 = inf € = X. Thus, (i) we can find Z; € C;
and Z;4; € Ci4, arbitrarily close to each other and to X. But, (ii) Step 3 shows there are inter-
vals. I; and I;+; each of length > J*(V) > O such that Z; € I; c C; and Z;41 € L;41 C Ci4.
Statements (i) and (ii) are consistent only if n=1. J

Proof of Pfoposition 5:

Let & > &j mean X; > X; all X; € &, X; € §;. Let&,a—l, ...,m be the ergodic sets of
A5V

Step 1. We show that rearranging indices if necessary, we can write £; > € > ... > &n. The
monotonicity established in Propositions 1 and 3 shows X; € £; and X; € £; and X; < X imply
sup§; < sup ;. Then X;, X! € €; and X; € €; and X; < X; < X} imply supé' = supé', So,
we can find Z; € §; and Z; € &; with Z; and Z; arbitrarily close together Hence, the preceding
proof shows u(&; N €;) > J "(V)/2 > 0. This contradlcts the fact that for distinct ergodic sets we
must have u(€; N €;) =0.

Step 2. We show inf £;. < AL. Suppose X* = inf £; > AL. Let X; = X*. To preserve Xpqq1 >
X*,if Ayy1 = AL the family line in question will need a positive net bequest at time ¢ + 1; hence,



since v'(0) = oo, we must have §(X*;1;V) = §* > 0. Thus, recalling Lemma 5, V'(X*;1) =
u'(X* - S*)<r-¥(r-S*1;V). Let.T(.) be as in (25).

Let L* be the minimal lottery outcome associated with S*. We have seen N(L*;1; A%;V) >
0. Hence, L* > 0. In fact, v'(0) = oo implies L* — N(L*;1; 4;V) > O all A € 4. Choose any
e > 0 with e < L* — N(L*;1; AY;V) < L* — N(L*;1; A;V) all A € 4 — see Proposition 3. Since
L* is a minimal lottery outcome, I'(L*;1;V) = ¥(L*;1;V). Rockafellar [1970, th.24,1] implies
¥~ (.;1;V) is nonincreasing. Then using a simple graph,

¥ (- 5%1V) < U (L% 1;v)  NEBLV) Z DT ~6LV)

L[T(L‘;I;A;V) - ;I’(L" - €;1;A;V)] -p(A)dA <
REar) el z e MEG AP 2 R ASRIRLATID ayaa
| L[v(L* = N(L*; 1, 4;V)) - :(L‘ — €= NS LAV b(4) da.

Proposition 3 shows N(L*;1; AL;V) > N(L*;1;4;V) all A€ 4. Letting e | 0,
T (r- 8% L;V) < f v'(L* — N(L*;1;4;V)) - p(A) dA < o'(L* — N(L*; 1; AL; V).
A

So, because N(L*;1; A%;V) > 0,
VI(X%51) <r- U (r-S*%1;V) < r-o'(L* = N(L*; ;AL V) =r- h . V(AL + N(L*;1; A V).

Hence, V/(.;1) concave and (11) imply X* > AL + N(L*;1;A*;V) > X*— a contradiction. Thus,
inf 51 S AL.

Step 8. We show m = 1. Define X* = sup £; any 1 > 2. Suppose (2)-(3) hold. Within a family
line let X;—; = X; = X*. Then Proposition 3 implies A,_; = A; = AV. Define S* = S(X*;1,V).
Let L* be the maximal lottery outcome associated with S*. Define N* = N(L*; I;AU;V). Be-
cause AV > X*, N* < 0. Hence, using Lemma 5,

h-v'(L* = N*) =V'(AY + N*;1) = u'(AY + N* - S*).
Also, '
h-v'(L* - N*)<h-v'(r-S*—N*)=h-a-u'(r-S* - N*).

Combining lines, AV + N* — §* > r . S* — N*. Hence, AV > -2- N*. So, AV/2 > —N*. Thus,
X* = AU + N* = (AY/2) + [(AY/2) + N*] > AV/2 > AY — a contradiction of X* < AL from
Step 2. 1 ‘



Proof of Proposition T:

First, some notation. We say a random variable Z has property P(2)if Pr{Z € e, Z]} >0
allc < Z. Let X have the distribution D(.) from Proposition 6. Let X =sup&. We can assume
X has P(X) — if not, Pr{X € [c,X]} =0 some ¢ < X, and lopping [¢, X] off £ does not affect
its ergodicity. Our model induces a Markov process for second-period—of-life lottery outcomes.
Let L be the corresponding stationary random variable. It has a single ergodic set, 7, because X
does. With L = sup 7, the argument. above shows L has P(L). Let F(L,A) = N(L;1; 4;V) + A.
Proposition 3 shows F(L; AV) =

Let L* = L*(1;V) — see Lemma 6. Let £U(.) be as in Section 4, and using the notation of
Proposition 2, define I(A) = (LL(1;A4;V), LY (1; 4;V)). We say result “R” holds if there exists
p > 0 such that .

Pr{(X,A)| Acy1 = 4, Xe = X, 89 (X; V) € I(Ar41)} 2 p.

Step 1. We show “R” holds if L < L*. Suppose the latter. Since there are some positive be-

quests, N(L;1; AY;V)) > 0. The definition of L* yields N(L;1; AV;V) < 0. Let A = sup{A €

A|N(L;1; A; V) > 0}. f A < AU, then P(L), the nature of A, and Proposition 2 show “R”

holds. Suppose A = AV. Then L = L*. The last part of Lemma 6, P(L), and the nature of A

imply there exist Lo < Ly < L with Pr{L € [Lo,L;]} > 0. Proposition 2 shows N(L;1;4;V) =

Na(L;1; A;V). Propositions 2-3 show we can pick Ly and L; so that Na(L;1; 4;V) < 0 <
's(L; I;Z'V) all L € [Lo,L,]. Propositions 2-3 then establish “R”.

Step 2. We show “R” holds if L > L*. Suppose the latter. Define f(X) = r - S(X;1;V), X* =
F(L:; AY), X' = F(L; AY), and X? = F(L; A%). The nature of A and P(L) show P(X) holds
for X each X € [X2,X!]. The proof of Proposition 4 shows X! — X2 > J*(V) > 0. Set L =
max{[f(X') + f(X?)]/2,L*}. Then P(X) above, Lemma 6, and the continuity of f(.) show P(L)
holds. If L = L*, proceed as in Step 1. Othermse redefine X! and X? and repeat the present
step. Since J*(V) > 0, we are done in a finite number of iterations. -

Step 3. We finish the proof. Steps 1-2 and the independence of X, and A,y imply there exist

E € B(V) and Lebesgue measurable F C A such that [ D(dX) = p1, [pp(A)dA = p2, p1+p2 =
p > 0, and (X, A) € E x F implies £Y(X;V) € I(A). Doob [1953, ch.v] shows the convergence of
Proposition 6 is uniform with respect to X. Thus, there exists T < oo such that VX € £ we have
|AT(X; E) — [g D(dX)| < p1/2. Set ¢ = p3 - p1/2. Then for any time—0 family normalized wealth
Xo, if X, is the family line’s wealth at time ¢, conditional on information at time O,

Pr{(Xz,Ar+1)| €7 (Xr;V) € I(Ae41)} 2 ¢ > 0.
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