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1. Introduction

In this article, we will study asymptotic biases of estimators which are derived from some maximum
simulated likelihood methods for the discrete choice model. The estimation methods by simulation of moment
equations or likelihood functions have been introduced by Lerman and Manski [8], Pakes [101, McFadden [9],
and Pakes and Pollard [11]. The estimation method in Lerman and Manski [8] and Pakes [10] is a maximum
simulated likelihood method. For any possible parameter value in the model, the response probabilities
are approximated by simulated probabilities and the likelihood function is constructed with the response
probabilities replaced by the simulated probabilities. The maximum simulated likelihood estimator is derived
by maximiing the simulated likelihood function. Specifically, the simulated probabilities are generated
independently for each individual decision maker in the sample. Subsequently, Lee [6] considered the case
where the simulated probabilities need not to be statistically independent. The first case is termed the
maximum simluated likelihood estimation with independently simulated moments to distinguish it from the
latter case which is the maximum simulated likelihood estimation with dependently simulated moments.
The asymptotic properties of consistency and asymptotic distributions of the method of simulated moments
have been studied in McFadden [9] and Pakes and Pollard [11]. The asymptotic efficiency of the maximum
simulated likelihood methods have been studied in Lee [6].

In this article, we will investigate some particular nonlinear features of the simulated likelihood estima-
tion. We will investigate the possible asymptotic biases of the maximum simulated likelihood estimators.
When the response probabilities are simulated independently, even though that the maximum simulated like-
lihood estimator can be consistent, asymptotic bias of the estimator may appear when the rate of convergence
of the simulated probabilities is relatively low as compared with the sample size. Under some situations, the
asymptotic distribution may be degenerated. Unless the number of simulated random variables increases as

fast as the sample size, the maximum simulated likelihood estimator with independently simulated moments
possesses a bias which has an order larger than the bias of the classical maximum likelihood estimator in an
asymptotic expansion. The existence of such a bias is due to a particular feature of the estimator in that a
second order term, consisting of sample average of squares of simulation errors, in the Taylor series expan-
sion of the derivatives of the simulated log likelihood function with respect to the response probabilities can
denominate a first order error term. We discuss bias adjustment procedures which can reduce or eliminate
such a bias.

This article is organized as follows. In Section 2, the maximum simulated likelihood methods for
the estimation of the discrete choice model are described. Regularity conditions that will be useful for
our analysis are listed. In Section 3, we discuss the asymptotic biases in an asymptotic expansion of the
simulated likelihood estimator with independently simulated moments. The order of the bias is derived and
its practical implication in simulation estimation will be discussed. The features of bias will be compared
across the classical maximum likelihood estimation and the simulated likelihood estimation with dependently
simulated moments. Section 4 suggests some bias-adjustment procedures that will be useful to reduce or
eliminate the leading bias due to simulation error. The practical implication of bias-adjustment will be
discussed. Some Monte Carlo evidence on the performance of a bias-adjustment procedure is reported in

Section 5. Our conclusions are in Section 6. All the proofs of the results are collected in the Appendix B.
Some useful propositions that have applications in our analysis and are of interest in their own, are provided
separately in the Appendix A.

2. Maximum Simulated Likelihood Estimation of The Discrete Choice Model

Consider a utility maximization model of discrete responses. Let C = {1,.-.-, L} be a set of mutually
exclusive and exhaustive alternatives in the discrete response model. For each alternative 1 E C, the associ-
ated value of the alternative 1 is U, = zea, where a is a vector of individual weights distributed randomly
in the population and zg is a vector of measured attributes of alternative 1. The response j is observed if
U > U, for all 1 E C. Assume that the distribution of a is known except for a vector of parameters B of
dimension k. Let z denote the vector consisting of all distinct explanatory variables in z1, ... , zL. Define

V = (Ul - U,...,U,-i - Ug,Ug+i - Ul,...,UL - u,), 1=1.L (2.1)

and let gi(vI|, z) denote the density function of V conditional on z. The response probability P(119, z) for

the alternative I is
P(1j0, z) = gi(v9, z)dv.

Let d, denote a response indicator for individual i, equal to one when the observed response is the alternative
1, zero otherwise. With a sample of size n of independent observations, the log likelihood function for the
discrete choice model is

n L

£ E) .diinP(I0, z1).
i=1 1=1

(2.2)

A simulated likelihood approach will replace the hard-to-compute probabilities P(II9, z), I = 1,..., L, by
consistent simulators f,.,(G, z). Broad classes of simulators have been introduced in McFadden [9], Hajivas-
siliou and McFadden [4], Stern [13], Borsch-Supan and Hajivassiliou [2] and others. Consider, for example,
the smooth simulators in McFadden [9] based on importance simulation technique. The smooth simulator
based on recursive conditioning in Borsch-Supan and Hajivassiliou [2] is in fact also an importance simulator.
Let 7(v) be a density chosen for the simulation that has the negative orthant as its support. Let

h(v,z, ) = .(vj0,x)

7y(v)

The response probability can be rewritten as

P(l|, X) = Jhi(vz,9) 7 (v)dv.

Averaging hj(v,, :0) over one or more Monte Carlo draws from y(v) gives a smooth unbiased estimator of
P(119, z). Suppose there are r Monte Carlo draws from 7y(v) for each sample observation. Let v4),j = 1, ... , r
be the draws for observation i. Define

= r
r1=1

(2.3)

Conditional on xi, E(fr,g(0, zi)|zj) = f h,(v, z,, 9)y(v)dv = P(II8, zi) and hence frI(9, zi) is a conditionally
unbiased simulator (simulated moment). When r goes to infinity as n goes to infinity, f,.,(9, z:) is also
a consistent estimator of P(11zi , 0). By replacing the response probabilities with simulated moments, we
are working with a simulated likelihood function, which is a pseudo-likelihood function. The log simulated
likelihood function with independently simulated moments is

n L
,C(9) = EEc~ulnf,,,(O,zj).

._i 1=1
(2.4)
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Let OL denote the maximum simulated likelihood estimator derived from the maximization of C(9) in
(2.4). For our analysis, the following regularity conditions are assumed for our model:

Assumption 1:
1. The sample observations (di, z) where di = (d1i, ... , dL,), i = 1,... - , n, are i.i.d.
2. The parameter space 0 is a compact convex subset of a K-dimensional Euclidean space and the true

parameter vector 9, is in the interior of 0.
3. The support X of:x is a compact set.
4. The choice probabilities P(l|9, z) are continuous in (9,:x) E Ox X and are positive for each (z, 9) E X xO.
5. The choice probabilities P(119, z), 1 = 1,." --, L, are continuously differentiable in 9 up to the fourth

order.
6. The 9, is the unique minimizer of the function E{ f1 P(lI9., z)lnP(I9, z)).
7. The matrix E [E , P(l|9., z)""e ' -"" i *'j is nonsingular.

Assumption 2:
1. The random vector v is simulated independently of d from a common conditional density function,

conditional on z.
2. The simulated moment function h(v, x, 9) is continuously differentiable in 9 up to the fourth order. The

absolute values of each component of h(v, z, 9) and its first four order derivatives with respect to 9 are
dominated by a square integrable function H(v).

3. h(v, z, 9) is a conditionally unbiased estimator of the vector of choice probabilities P(9, z) conditional
on z, for each 9 E 0.

4. The conditional first four order moments of the function h(v, z, 9,) and its first order derivative with
respect to 9 conditional on z exist.

5. The first ten order moments of h(v, x,9.) and its first three order derivatives with respect to 9 at 9,
exist.

Assumption 3:
The number of random draws r for each individual goes to infinity as n goes to infinity.

These regularity conditions contain mostly familiar regularity conditions on the choice probabilities of
the discrete choice model. Since our asymptotic expansions of the estimators involve higher order derivatives
of the log simulated likelihood function and simulation errors up to certain high orders, the differentiability
conditions and the moment conditions in Assumptions 1 and 2 are required to guarantee that those terms
are well defined. Some of the domination by integrable function assumptions are used for the application of
some uniform law of large number for the convergence of the simulated probabilities and the log likelihood
function to their relevant limits.

The consistency of the simulated likelihood estimator 9L depend on asymptotic properties of the simu-
lated moments. As r goes to infinity, the simulated moments are consistent estimates of the corresponding
response probabilities. Since the support X ofz and the parameter space 0 of 9 are compact and f..I(9, z)
is dominated by an integrable function in Assumption 2.2, the convergence is also uniform in probability
(see, e.g. Amemiya [1)), i.e.,

Since 1 G(9) converges in probability uniformly to the limit function E(Ei, P(I|6., z)lnP(9, z)) on 0 and
0. is the unique minimizer of this limit function by Assumption 1.6, 8L is consistent. For consistency, it is
sufficient to have the random draws r go to infinity as n goes to infinity. Any particular growth rate-of r
related to n is not required. However, for asymptotic efficiency, r has to increase at a rate faster than n1/

2

(Lee [6]). In the subsequent sections, we will investigate the consequence that may occur when r increases
at a rate equal to or lower than n112. We will see that asymptotic bias may occur in such situations. We
will show that when r increases slower than n there exists a dominated bias of order higher than the order of
bias in an asymptotic expansion of the classical maximum likelihood estimator. Bias-adjustment procedures
will be suggested to eliminate or reduce such a bias.

It is.worthwhile to compare the differences between the simulated likelihood estimation with indepen-
dently simulated moments with the estimation with dependently simulated moments. For the dependent
moments case, a total r number of random variables vv, j = 1, --"-, r will be drawn independently of d and
z for the construction of the simulated probabilities:

j=1

for all i, i = 1,..., n. The log simulated likelihood function with dependently simulated moments is

n L

G(9)= E dulnrl(9,:i).
T=1 1=1

The maximum simulated likelihood estimator of 9 from (2.9) will be denoted by BD .

(2.8)

(2.9)

sup IIfe,(, z) - Pole, z)II o,
exx

(2.5)

for all I = 1,..., L. Assumptions 1.2-1.4 guarantee that the choice probabilities P(11, z), I = 1,..., L, are
strictly bounded away from zero on 0 x X. Since P(9, z) is bounded away from zero on 0 x X, it follows
from (2.5) that

sup ( - i dulnP(8, z.) 1.0.

The uniform law of large numbers in Amemiya (1985) implies that

(n L(L

sup dulnP(L|8, z;) - EE P(168, z)lnP(116, z) ) - 0.
i=1 1=1 (1=1

3

(2.6)
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3. Biases in Maximum Simulated Likelihood Estimators

The maximum simulated likelihood estimator 8L with independently simulated moments from (2.4)
satisfies the first order condition:

i C. Ljdu Olnh,(GL, z:) U

The asymptotic distribution of this estimator can be derived by a proper Taylor series expansion. By the
mean-value theorem,

n(OLiL 9 Z dii83n ,(B O nLd8 1 n f 09 ,i' (3.1)

where A lies between AL and 9, . By the uniform law of large numbers,

and

X) I ~0, - 00' a

for all I11..,L. It follows that

81nr,,A, ) _ 1 Ofr,.(9, Z) p OnP(119, z)
09 f,,,(, x) 09 09

and Bz18 r(,x f,(.Z ~,(,Z
0909' - f,(9, z) 0909' - f,?1(9, z) 09 80'

p 0
2
lnP(II9, x)

uniformly in (9, z) e 0 x X. Since 9 is a consistent estimate of 9,, it follows that

dL 02
lnfr7 t(B, Zj) 0pEV _d________,

=_- PL19. n( I., ) OlnP(19°,xZ)]

Therefore,

where

L 1 " fd[0fr,(9}, x:)_OP(119.,z.x) 1 0lnP(lie., Zj)f,(o ;)-P Px)
= "j L 1 fri(9s ,) -OlnP(119,x.)1 9z)

091 09 gox;'8*8
[ L1 Ofri(9e. z.) - OP(119s Iz)J[ ( ~ (1.z)

+ P' (11eo~ .) nP(lI0 e)I[f,I(9 5Zdx) - P(119s, z;)]2},

(3.4)

(3.5)

and

n L _______________) - OP (114' Z;) 1-E-11_1 EdulifI( 9sx.)P (lIesz-- L 09o09 J fr,i( 9., x;) - P(I 9., ze)J

-OlnPt8s,zx) [kr,s(9 , z,) - P(1Ies' Z0)1}
(3.6)

The L~ is a first order term involving the errors of the simulated response probabilities, namely, f,,(9o, Zaj) -
P(QI9o,,x;), and the errors of their derivatives. The Q., is a second order term involving the squared errors
of the simulated probabilities and their derivatives. The C in) is a remainder term of errors of high orders.
In the following paragraphs, we will investigate the stochastic orders of L,,, Q,, and C',R). All the proofs can
be found in the Appendix B.

Lemma 1: Under our assumptions, L~, has zero mean but
E(Q,,) = n'r-l i, (3.7)

where

L 1 l9nP(Q19., a) _______E P(1100 ,a)z[ 09 var(hi(v, z)Iz) - cov(hg(v, t), 089s ) )]} (3.8)

Furthermnore, L., = Op(r-1
/
2), Qn - E(Qn) = Op(r-1), and C,(A) = Op(nl/2r- 3

/
2

)"

We see from this lemma that the second order term Q~, has a stochastic order Op(nl/2r-1), which can
be larger than the stochastic order Op(r-1

/
2) of the first order error term L,, if r does not increase as fast as

the sample size n. This irregularity occurs because of the nonlinearity of the log simulated likelihood function
and the simulated probabilities are independent across individuals. The errors of simulated probabilities do
not appear additively in the first order condition of maximization as in the method of simulated moments
of McFadden (91. The nonlinearlity of the log likelihood function causes the presence of the quadratic term
Qn. The independence of the simulated probabilities across individuals causes the sample average in L, to
go to zero at the fast rate r-1/

2 instead of the rate n1 2r-1. This irregularity can cause that the limiting
distribution of f/ (BL - 90) does not center properly or its limiting distribution diverges when r does not
increase faster than the square root of the sample size n. Indeed, these happen in the following theorem.

n nL -' L-1

8 in,,,; 8 "1' =EOnP 119o, z) 0P(1~9s~z) I +o()
n1 E E du~ 0909' J = IE ? EdP(1l~9s z) 09 09' + J 1) (3.2)

It remains to consider the asymptotic distribution of * 1. n1 , 1du; e°f'81 ,s. It is useful to expand

this function of f r,(9 ;a) and 8 at P(119o,, a) and 5P(llG's' . By Lemma A.1 of the Appendix A
with m = 2,

di:81n 1=3 6=zi = 1 i: 1PI~,z)fL .+V )

5

Theorem 2: Under our assumptions,
(,) if lim,-.., nl/2r1 - 0,

V (9L - 9) D+ (Of)

(ii) if lime...,,, n1/2r-1 = A a finite positive constant,

f(L- 9o) - (Ac , )

6

(3.9)

(3.10)
(3.3)



and
(iii) if lim,.... n'/2r-1 = o0,

r(L -9,) -4
-0+ p, (3.11)

where jis defined in Lemma 1 and

E Le 81nP(X, z)81nP(119., z)(31A = jE [ ~P(IIO., )OlPG ) ~ J . (3.12)

When r increases at a rate as fast as n1/2, the limiting distribution of f-(OL - 9.) is asymptotically
normal but its does not properly locate at zero. An asymptotic bias exists which is proportional to S1 .
From (3.8), we see that N is in general nonzero. It can be a small constant vector if the conditional variance
of h,(v, z) and the conditional covariance of hk(v, x) and ah conditional on x are small for all x. The
Monte Carlo experiments in Borsch-Supan and Haijivassiliou [2] provide some evidence that their smooth
importance simulator based on recursive conditioning may have small variance. However, even though S2
can be small, the limiting distribution ,/f(9L - 9,) will diverge when the increase of r is slower than n" 2.
When the increase of r is slower than n1/s, the limiting distribution f (BL - .) diverges and the maximum
simulated likelihood estimator #L converges to 9. at the slower rate r. The slow increasing r causes not
only the simulated likelihood estimator to converge in probability to 9. at a slow rate than Op(n-1/2)
but also a degenerate distribution after proper normalisation. Only when r increases faster than n'"2 , the
limiting distribution of f (9L - 9,) is properly behaved and the maximum simulated likelihood estimator
is asymptotically efficient.

However, even though the maximum simulated likelihood estimator 9L is asymptotically efficient when
r increases faster than n/

2
, the bias in Q. due to simulation may cause a bias in the asymptotic expansion

of h - 9.. Such a bias may dominate other biases in the estimator when r does not increase fast enough than
the sample size. It is known that in a higher order asymptotic expansion, the bias of the classical maximum
likelihood estimator may exist with an order of O(n-1) for a sample of size n (see, e.g., Cox and Hinkley [3],
p.310). Thus for the maximum likelihood estimation of the discrete response model with the exact likelihood
function 4, the largest bias of the classical likelihood estimator is expected to have the order 0(n-1). For
the simulated likelihood estimator, we expect such a bias order may exist in addition to the bias due to the
simulation. This is shown in the theorem 4.

To get a better approximation, it is useful to increase the expansion in (3.3) with additional terms:

1 " L lnf,,I(8., z;) 1 "L BnP(l|6., e)
a)du= -- Edu 8 9 ) +L. +Q + Cn +Dn+Rn, (3.13)

g=1(=1 5 =;'=1l=d

where L,, and Q,, are the same as in (3.4) and (3.5); C,, = *" , c,.t; and 0,, = - LE= d,., where

and

R=- du__ B89nP(l|6, Z:)[fr,,(., z;) - P(119., z;)]5
n=111 fr,,(6., zi)P4(ll6., zi) 89

- [ Lf,. r(9., z) _8P(19s, az)][f ,,(., i) - P(l|6., z j)]4

is the remainder term. The stochastic orders of these higher order terms are reported in Lemma 3.

Lemma 3: Under our assumptions, E(C,) = n1/
2
r-sz and E(D ) = n'/

2
r-d(r) where

5= E L d lr { [h,( , ,9.) _ 8P(1|., )][h(o,z) -P(1|6.,)]
2
|z)

L= 1 v , *,,ze) _686 eoz
= E n(Zd., zP(GZ) IE( 8 - 89-

~ 8lnP(l19, a)E([h,(v, z,9.) - P(119.,2)13x)})] .

(3.16)

(3.17)

and lim,.... d(r) = d with

d=3(L di 8IlnP(119A,, z) sOh,(vi, z) '38d = 3E( ( {8nP19,,z) { 89 var
2

(hA(v, z)Iz) - var(h,(vz)I|)cov( 89 , A9B ,(v, z))}) .(3.18)

Furthermore, C. - E(C.) = Op(r-
3 2

), D. - E(D,) = Op(r-2) and R,, = Op(n1/2r-6/2

The terms C and D,, have the order Op(n'/
2
r-

2
), which are smaller than the order Op(n'/ar-

1
) of

Q,,. While the mean of Q, is O(n1/
2
r-'), both the means of C, and D are O(n

112
r-

2
). The means of

C, and D are also due to simulation but they have smaller order than the mean of Q,. The interesting
thing to note is that the mean of the higher order term C, decreases by a factor of r-' instead of r-1/2 even
though the stochastic order O(r-3/

2
) of C, - E(C,,) decreases by a factor of r-

11 2 
as compared with the

stochastic order of Q, - E(Q,), which is Op(r-') in Lemma 1.
The following theorem provides all the leading biases in the asymptotic expansion of the maximum

simulated likelihood estimator with independently simulated moments.

Theorem 4: Under our assumptions,

= > di 89, + Ln + Qn + B,n +B 2 ,n}
"=1 1=1

+ Op(max[n-1/2,-
1/

2,n-1,r-1 ,1/2r-2

where L~ and Q. have been defined in (3.4) and (3.5),

(3.19)

and

e,t = 88du9[) f, (6., )0 _ 8 , ][f,,(6.,IzX) - P(l| _,i)]2

d l (= 1 d u P 4) ( 9 ) - n P ( l , ) ( . ), ]

[Of,,,(9.o,a) 8P(l|9W, eg) iri (1,
- [ 89 ~ 86x[f, .(.,z - tiP(l|6., g)]J;

(3.14)

B _, =n1/2 nEf Ldu 82ln (!|6, zi) - E( di galnP(l|6, z) )1 1 du 81nP(1l|6,, g)
'=18 '=11=1 *i=1 1=1

(3.20)

and

... i/2 1 11du ann .,n E(F1-1 d1 8",818' )A du1 E nP1 ,,l

B2,,, = 2 -* y, DE. du, ber r.,sC E(E , daInoP l.)) u*inP .21)

(3.21)

The terms L,, ,Qn, B1,n,and B2,n have the following properties:

8

(3.15)



(1) L. has zero mean and L. = Op(r-1/
2
),

(2) Qn - E(Qn) = Op(r- 1
) and E(Qn) = n/ 2

r-lp with f defined in (3.8) of Lemma 1.
(3) B1,n - E(Bi,n) = Op(n-1/2) and E(Bi,n) = n-1/ 2A1 , where

A0 = E ( diinP_ 6.nP)QdnP(l|., z) - E(I d BnP( 6., z)
A1  E , E 888 )~ vec~fi) (3.22)

and

(4) B2,, - E(B2,n) = Op(n-
1

/
2) and E(B 2,n) = n-1

1 2A2, where

tr(AZE(E , d18 ia ) )

A2 = -- ) . (3.23)

tr(A)E( L1di *3",'1 )

From Theorem 4, we see that the leading components of biases of the simulated likelihood estimator
in an asymptotic expansion are generated by the terms Qn, B1 ,,, and B2 ,n . The order of biases of B 1,,,
and B2,,, is O(n-1/2). While the bias in Q. is due to the effect of simulating the likelihood function, the
biases in B3,,, and B2,, are due to the nonlinearity of the likelihood estimation. As a corollary of the above
asymptotic expansion, it provides an asymptotic expansion of the classical maximum likelihood estimator
derived from maximizing the exact likelihood function (2.2). For the classical maximum likelihood estimator
9, of the discrete choice model from (2.2). The corresponding asymptotic expansion of i. will be

The maximum simulated likelihood estimator 9D with dependently simulated moments is derived from
(2.9). By the mean-value theorem,

1 z f~(B x) 1 L 8nfrl ,IZo,(3.26f (n eD- e.) = -- du gC21n (# zE)du 1nf,(9,z). (3.25)

The consistency of the simulated likelihood estimator will require that r increases to infinity as n goes to
infinity. The major difference between the two simulated likelihood estimators is due to the asymptotic
distribution of E n 1z 1 d l,If, .,). By an expansion similar to (3.3),

8n L 9n, V0.,9 zi)f1P ,E du =8e -- du 89 + in + da),G
ic =1 ici d 1.1~

(3.26)

where L,,, Q. and R) have the similar expressions in (3.4), (3.5) and (3.6) with the dependently simulated
moments f,,,(9., x,) replacing the independently simulated moments f,,(, , z,).

The following theorem for the maximum simulated likelihood estimator with dependently simulated
moments will be useful to clarify some of the differences between the two cases.

Theorem 5: Under our assumptions,

d 8(9 - ) = dn,,z + B 2, +B2,}+Op(nis).
i=1 1=1

(3.24)

,, = Op(n
1

/
2
r-1/2) and On = Op(nit

2
r-1).

When limn....o n/r = Al exists and is finite,

f( - 9.) -- + N(O,nA[1~ 1 
+ A1Vjn).

On the other hand, when lim,,... n/r = oo,

5(#D - 9,) -- N(0,AVfl),

This expansion can be seen either by inspection of the proof of Theorem 4 or by letting r being infinity in
the formulas of Theorem 4. The terms Ba,n and B2,n appear because the second order derivatives of the log
likelihood function with respect to 9 are functions of both exogenous variables and endogenous variables. For
the normal regression model, the second order derivatives of the log normal likelihood function are functions
of the regressors only and the maximum likelihood estimator, which is the least square estimator, is known
to be unbiased.

The biases in B1,,, and B2,n in the approximation of '/n(9L - 90) can dominate the bias in Q~ only if
r increases faster than the increase of the sample size n. If r increases faster than or propositional to n, the
leading biases will be of order O(n-1/2

), which is the same bias order in the classical likelihood estimator in
(3.24). If r increases slower than n, the order O(ni/ 2

r-1) of bias in Q. will be larger than 0(n-1/2) and it
will be the dominated bias. When r increases slower than n, the bias of the simulation likelihood estimator
is severe than the bias of the classical likelihood estimator. The practical implication of this analysis is
that in order to achieve asymptotic efficiency and to keep the bias of the simulated likelihood estimator
with independently simulated moment to the usual order O(n-1/2), it is necessary to have the number of
simulation r for each individual to increase as fast as or faster than the sample size n. To suppress the bias
due to simulation, it is necessary to increase r faster than n. These designs seem demanding in terms of the
total number of simulated variables, which will be proportional to or larger than n2, and the computational
burden. In a subsequent section, we will discuss bias-adjustment procedures that may be useful to reduce
the bias to some satisfactory degree.

So far, our analyses have concentrated on the simulated likelihood estimator with independently simu-
lated moments. It will be of interest to compare and clarify the possible differences between the simulatd
likelihood estimator with independently simulated moments and the likelihood estimator with dependently
simulated moments. It is also useful to point out the differences of the maximum simulated likelihood
approaches and the method of simulated scores introduced by Hajivassiliou and McFadden [4].

9

(3.27)

(3.28)

(3.29)

(3.30)

where

V =E L E [8hi(v, ,.) _lnP(Io,xz)h( x,)|

xZE Bh(vz,6) _ lnP(lI6s, z)h,(o, .)|] }.
= 89 199

The major difference between the dependent moments case and the independent moments case is on the
stochastic order of the first order term ,n. As contrary to the term L~ in (3.4) which has order Op(r1/

2
),

the term L in the above theorem has order Op(n1/2r-1/2), which is apparently much larger. Both L. and
L have zero mean. It is the variance of L. that is larger. This is so due to the dependence of the simulated
moments across individuals. The sample average across individuals in L. does not reduce the variation of
the simulation errors due to dependence. The quadratic error term Q. has the same mean as Q. and hence
have the same order as Q,,. Sample averaging cross products of independent moments have no effect on
reducing the mean of the products of simulated moments. The first error term i, has an stochastic order
larger than the second error term Q.. The second order error term Q, does not dominate the leading first
order error term L,.. When r increases as fast as or faster than n, the simulated likelihood estimator 9D is
y-consistency. It is asymptotically efficient when r increases faster than n since in that case Al in (3.28)
is zero. When r increases in a rate slow than n, the estimator AD converges to 9. at a slow rate f rather
than V. However, since the L4 dominates Q, in stochastic order, the limiting distribution of the properly
normalized statistic f/(#D -9.) is located at the center zero. The normalization of 9D - 9 with V instead
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of f when r increases slower than n rescales the bias E(Q,) in the expansion (3.26) by a factor r/n. The
order of fr/Q. becomes Op(r-1/

2
). The leading bias term in the asymptotic expansion of /i(9D - 0,)

has order O(r-1
1 2

) when r increases slower than n. When r increases as fast as or faster than n, the bias
order O(n'/

2
r-

1
) of QO will apparently be equal to or smaller than 0(n-1/

2
). In summary, for the simulated

likelihood estimator with dependent moments, it has in general larger asymptotic variance than the estimator
BL, however, the properly normalized statistic of BD - 0, has asymptotically normal distribution located at
the center zero.

Hajivassiliou and McFadden [4] introduced a method of simulated scores which overcomes the bias
problem in the maximum simulated likelihood approach. Their method is based on the method of simulated
moments (see, McFadden [9]). The maximum simulated likelihood estimator $L with independently simulated
moments in (2.4) satisfies the first order equation:

! * Blnfr,,(#r,zd) =
;=1 1=1 00

For the case that f,(0, z) has the adding-up property, i.e., EL fv(0, zi) = 1 for all zithe first order
condition will be equivalent to

4. Bias Adjustment

The slow increasing r case can cause not only the simulated likelihood estimator #L to converge in
probability to 0. at a slow rate but also converge to a degenerate distribution after normalisation. The
latter phenomenon has some useful implication for correcting the asymptotic bias in the case (ii) and the
potential bias in the case (i). Let ri be the number of simulated random variables such that limr1.....r1 = oo
and lim,..,n-1/2

r, > 0 and let #L,1 be the corresponding maximum simulated likelihood estimator of 9,.
Select a slow increasing r2 such that lime...... r2 = oo but lim,...,, r2n-1/2 = 0. Let #L,2 be the maximum
simulated likelihood estimator derived with r 2 number of simulated random variables. Define an estimator

#L where

-= -- ,2) / (-- (,).
ri ' r1

We note that 9' -06. = (1 - r2/ri)-1[(#L,1 - 60) - (r2/ri)(#L,2 -6)] and

(#n- 0,) = (1 - r2/ri)-'[/(6Li -6.) - (v/ri)r2(L,2 - 6.)].

The asymptotic distribution of f/(9L,i - 6.) satisfies either (3.9) of the case (1) or (3.10) of the case (ii) in
Theorem 2. The probability limit of r2(#L,2 - 0,) is the one in (3.11) of the case (iii). As limn., = A,

the asymptotic bias in V(L. i - 0,) is eliminated by substracting the limit of (/i/ri)r2(L,2 - 60). Since
r2/r7 converges to zero,

( - 0.) -c-+ N(0,fl).
This bias correction involves the computation of two estimates. As it will be shown in subsequent sections,
the bias can be corrected directly without the computation of different estimates. The above correction is
illustrative.

A bias-adjusted estimator #A can be derived by correcting a bias term directly from the simulated
likelihood estimator OL:

E ~~ - fJ.,l (dL x3)) 8 fr1BL
n 0 .0 

= 1=1 0
(3.31)

Instead of (3.31), the Hajivassiliou and McFadden estimator OHM is solved from the following equation:

E aLdi - A,1 (BHM i)) Olnfr,(OHM rzi,)_0

n =2 1=1 009 (3.32)

where fr,,(0, z) and f,,(8, z) are two independently simulated probabilities. As fj,,(O0, z) is an unbiased
estimator of P(I|J.,x), the expectation of Egi (du - frg(O,, z;))a!Lj J. is zero. So the bias problem
in a asymptotic expansion of (3.32) does not exist. Because of the unbiasedness design in their simulation
method, the Hajivassiliou and McFadden estimator can be asymptotically efficient if r goes to infinity at
any rate as n goes to infinity. The independence of the simulated probabilities fj,,(0, z) and the simulated
instrumental variables ""e ' is the crucial setting in their method.

- - 1 01n 000' 1 a -BA = E+u-4 (,; (4.1)

where vr (8, z) = * it(8, z;) with

ja~0,z)= d1  [ln~i(0i)((0 - frl(9,,_;)) - (Cr1(0 zi) -fr,( 0 ) Ji) Zd )DI~,

S'(,Z)= r!1h (4),a, , 0),
j_1

and

Cr,,(e, z,) = - 1 hi(vti, ze,)0) .hi>vz
1

, 0)
=1 0

As an alternative of (4.1), a bias-adjusted estimator can also be defined as

1(1 * {lnf(Lzs) Blnf,(#Lxz)j 1
#,, = #L-- n du 80'nL"- ,,Z;),i

1=t ,=1 g=1
(4.1)'

Conditional on z;, Sr,,(#L,zs) - f,
2

(#L, z;) and C,l(#L, z;) - f,l(#L, ;) zie,' are respectively consis-

tent estimates of var(h,(v, z;)jz.) and cov(h,(v, z;), aeA ; zi). The sample average E7"1 p, (#L, s) is a
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consistent estimate of in Lemma 1. The second term on the right hand side of (4.1) adjusts approximately
the bias Oflp from 6L. We note that this bias-adjustment procedure is applicable to any simulated likeli-
hood estimator from (2.4) without imposing any rate of growth on r except that r goes to infinity when n
goes to infinity. Of course if r has already be chosen to increase faster than n, the above bias-adjustment
is unnecessary and redundant. The following theorem demonstrates that the bias of O(n/

2
r-1) has been

eliminated.

Theorem 6: Under our assumptions,

5. Some Monte Carlo Evidence

In this section, we report some Monte Carlo experiments on the maximum simulated likelihood esti-
mation with independently simulated moments and the bias-adjustment procedure (4.1)'. The model is a
dynamic discrete choice panel data model used in Lee [6]. The model is specified as follows:

yi = Ozi + Ad,,_i + ui,

and

(5.1)

(5.2)6(63 - 0.) = O(--1 j du OnP s a,) + La + [Qn - E(Qn)J]+ B1,n + B2,n

+ Op(max[n-1/
2
r-1/2, n-

1
,,-

1
,n1/

2
r-1)

Uie = pui,:-1 + fit, i = 1,..., n; : = 1,..., T,

(4.2) where d.,, is the observable dichotomous indicator of the latent variable yh. The disturbances tit are i.i.d.
normal N(0, o2). In order to normalize the variance of u to be unity, .2 is set to be equal to 1 - p

2
. To

capture possible correlation of the regressor zrt over time, za, is specified to possess an error component
structure:

The bias E(Q,) has been removed from BL. Since Q - E(Q,) has zero mean in the asymptotic expansion
of /(9A - 0.), the biases in 9A do not contain a bias term of O(nl/

2
r-1). The biases in B1,,, and B2,,,

of order O(n-1/
2
) remain but they are due to the nonlinearity of the log likelihood function and not due

to simulation. The bias order Op(n-1/2) remains because our bias adjustment is designed to eliminate the
leading bias term due to simulation. It is possible to remove these biases but it is out of scope of this article
and will not be discussed here. The biases due to simulation error have not been completely eliminated, but
the remaining biases due to simulation are of much smaller orders. From the asymptotic expansion in (4.2),
the largest remaining biases can have orders no larger than the orders O(n-1/

2
), O(n'/

2
r

2
) or O(r-').

With a little bit of analysis, we see that the dominated bias orders can only be O(n-1/
2
) or O(ni/2r-2).

This is so, because when r increases faster than n'" 2, the order O(n-1/ 2) is larger than O(r-1). When
r increases proportionally to n

1
/

2
, Op(r-1) is the same order as O(n-'/

2
) or O(n'/

2
r-

2
). Finally when

r increases slower than ni/
2
, the order O(n'/

2
r-

2
) is larger than O(r-'). In all cases, the order of the

largest remaining bias in Vfri(OA - 9.) can not be larger than O(max[n-1/ 2, n'/2r1). If r increases at a
rate proportional to n"

4
, an asymptotic bias will be there in /i(9A -- .). If r increases slower than n

1 /4,
the asymptotic distribution will diverge. The bias-adjusted estimator 0A will be asymptotically efficient if
the number of simulated random variables r increases faster than n

1
/

4
. The bias-adjusted estimator @w will

be asymptotically efficient and has biases with orders no larger than O(n-1) as in the classical maximum
likelihood estimator if r increases as fast as or faster than n1/2. Comparing this requirement with the
requirement that r increases as fast as or faster than n for the bias-unadjusted estimator 

9h, it is much
less demanding on the total number of simulation for the whole sample and the computational burden
on the evaluation of the simulated probabilities. The practical implication is that it is possible to have an
asymptotically efficient estimator of 0 with a bias of order no larger than O(n-') by the method of maximum
simulated likelihood with independent moments with a simulated design by letting the number of simulated
variables r to increase as fast as or faster than n1/2.

zt= zi +Vai
72g

(5.3)

where z11 are i.i.d. truncated normal N(0, 1) variables with support [-2, 2] and s; are independent uniform
variates with support on [-1, }]. The variance of z is about 1 and its correlation coefficient over time is
about 0.5. To start the dynamic process, the initial condition is specified as d1,0 = 0 for all i. The true
parameters in the model are Q = 1.0, A = 0.2 and p = 0.4. With T time periods, the product of T independent
univariate standard exponential densities is chosen as the T-dimensional multivariate importance sampling
density for this model. A four time period model is used for our experiment, i.e., T = 4. The sample size
n for each replication is either 100 or 200. The number of simulated random variables is ranged from 10 to
100 per observation. The number of replications for each case is about 600.

Table 1 reports the maximum simulated likelihood estimates and their bias-adjusted estimates. The
maximum simulated likelihood estimation for this model tends to underestimate the regression coefficient
(3 and the serial correlation coefficient p but tends to overestimate the dynamic coefficient A of this model.
The bias-adjustment procedure has apparently reduced the biases of the estimates of regression coefficient ,6
and the serial correlation coefficient p. The standard deviations (SD) of all the bias-adjusted estimates are
slightly larger. However, the gains in the bias reduction of the estimates of 3 and p are substantial and their
root mean squared errors (RMSE) are reduced. The biases in the estimates of the dynamic coefficient A do
not change much and their RMSE increase slightly. Overall, the bias-adjustment procedure does reduce the
biases of the maximum simulated likelihood estimates.
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TABLE 1.
Maximum Simulated Likelihood Estimation with Independently Simulated Moments

and Bias-Adjustment
True parameters: 8#= 1, A = 0.2, p = 0.4

Mean SD RMSE Median LQ UQ

T n r Bias-Unadjusted Simulated Likelihood Estimates

4 100 10 l .7900 .0694 .2212 .7851 .7427 .8306
A .2435 ..1206 .1281 .2493 .1688 .3249
p .1932 .1027 .2309 .1977 .1298 .2609

4 100 30 A .8791 .0790 .1444 .8768 .8256 .9335
A .2454 .1298 .1374 .2437 .1564 .3352
p .2508 .1147 .1881 .2606 .1733 .3260

4 100 50 / .9099 .0784 .1194 .9069 .8544 .9630
A .2467 .1335 .1413 .2462 .1508 .3422
p .2662 .1074 .1715 .2745 .1989 .3431

4 100 100 0 .9414 .0895 .1069 .9374 .8729 .9985
A .2558 .1350 .1460 .2476 .1560 .3460
p .2761 .1165 .1700 .2867 .1969 .3573

4 200 15 a .8242 .0537 .1838 .8250 .7880 .8569
A .2449 .0901 .1006 .2430 .1841 .3069
p .2187 .0830 .1993 .2231 .1664 .2738

4 200 50 A .9083 .0541 .1064 .9069 .8718 .9438
A .2506 .0942 .1069 .2591 .1859 .3093
p .2644 .0820 .1584 .2710 .2122 .3230

T n r Bias-Adjusted Estimates

4 100 10 p .8493 .0740 .1679 .8417 .8000 .8962
A .2458 .1324 .1400 .2557 .1604 .3398
p .2301 .1195 .2077 .2335 .1557 .3070

4 100 30 Q .9330 .0876 .1103 .9303 .8707 .9928
A .2475 .1421 .1498 .2442 .1467 .3480
p .2843 .1305 .1743 .2943 .1985 .3752

4 100 50 3 .9567 .0871 .0972 .9545 .8958 1.0154
A .2492 .1438 .1519 .2486 .1502 .3483
p .2940 .1180 .1585 .3049 .2181 .3795

4 100 100 p .9780 .0987 .1011 .9753 .9057 1.0419
A .2592 .1430 .1547 .2517 .1555 .3485
p .2958 .1250 .1627 .3122 .2131 .3821

4 200 15 /3 .8811 .0575 .1321 .8822 .8408 .9210
A .2479 .0987 .1096 .2452 .1771 .3146
p .2535 .0934 .1737 .2622 .1960 .3178

4 200 50 /3 .9533 .0598 .0758 .9503 .9123 .9927
A .2538 .1007 .1141 .2571 .1831 .3157
p .2903 .0908 .1424 .3003 .2315 .3533

6. Conclusions

In this article, we have pointed out a bias in the asymptotic expansion of the maximum simulated
likelihood estimator BL with independently simulated moments. This bias in the asymptotic expansion of

f(9L - 9.) has an order O(n
1
/

2
r

1
) where n is the sample size and r is the number of simulated random

variables for each sample observation. This bias occurs due to the nonlinearity of the derivatives of the log
likelihood function and the statistically independent simulation errors. The classical maximum likelihood
estimator is known to have biases of order no larger than O(n-1/

2
) in an asymptotic expansion of f/(9. -90.)

where 9, is the classical maximum likelihood estimator. The maximum simulated likelihood estimator $L
is asymptotically efficient when r goes to infinity with a rate faster than n

1
/
2
. However, the bias due to

simulation will dominate the biases of 0(n
1

/
2
) unless r goes to infinity with a rate as fast as or faster

than n. This is quite a demanding requirement for the simulation estimation with independently simulated
moments. If r is increasing only as fast as n

1
/
2
, an asymptotic bias will be present in the limiting distribution

of f/(9L - 9.). If r increases slower than n
1
/
2
, f/(9L - 9.) will diverge. Under such a circumstance, $L can

only be r-consistent and the properly normalized asymptotic distribution of 
9
L is a degenerated distribution.

In this article, we have also suggested some bias-adjustment procedures to correct for the dominated
bias due to simulation. The bias can be reduced to an order O(n

t
/

2
r-

2
) in an asymptotic expansion of

f(9A - 0) where 
9
A is a bias-adjusted estimator constructed from $L. The bias-adjusted estimator is

asymptotically efficient if r increases faster than n
114

. The biases in f/(9A - 0.) will have orders no larger
than O(n1/2) if r increases as fast as or faster than n1I 2. This requirement is much less demanding for the
implementation of the simulated likelihood estimation with independently simulated moments. Some Monte
Carlo experiments have demonstrated that the bias-adjustment procedure is valuable.

This article has concentrated on the analysis of the asymptotic expansion of biases of the simulated
likelihood estimator. The analysis has useful implications on point estimation as well as on the construction
of Wald test statistics and Scoring test statistics (Lagrange Multiplier test statistics). The implementation
of such statistics and the likelihood ratio tests statistics will be left for future investigation.
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Appendix A

Lemma A.1: Iffb and b are not zero, then

6j =E -)k-i [(a - a)(&- b - b)k

6kl

+ (_1)m%---[(a - a)(&b - b(b - b)"'+1],

for all m > 0, where = is understood to be zero as a convention.

Proof: This lemma can be proved by induction. Since _ } [1 -j(b - 6)1, we have

b- a= b(& - bb) = b[(&-a)- ba(b - )].

Suppose the result holds for m - 1. It follows that

rn-I

b b= k-[(a ' - a)(t& ki- (b b)kJ
k=1

+ (-1..)m- 1 .- [(a - a)(&b b)"'-1- Q~ - bm

r-i

ki(1 i.[(a - a)(&b--b)k - b (iQb)k]

+ (__1)m_1 1 [1- 1(b- b)]b1 1 [(aR - a)(b - b)m-1 - b (b - bm

k=1

+ (-1)m:b,1n[(a - a)(&, - b)m - (b -b)m+1].

QE.D.

Lemma A.2: Let zi, i = 1,..." , r, be independent random variables with mean 0. Let v be an even

integer. Then

where A. is a universal constant depending only on v.

Proof: This is Lemma A on page 304 in Serfling [121.

Proposition A.3: Suppose that (vl...v 
1
,z.), i = 1,..,n, are identically distributed random

vectors. Letm1,

where mi and m2 are nonnegative intergers and s, p and t are measurable functions such that, conditional
on z, E(p(v, z)jz) = E(t(v, z)Iz) = 0. If m1 > 0 but m2 = 0, assume that E(s

2 
(z)p

2
ml (v, z)) is finite.

Otherwvise, assume that E(Is(z)Iap
2
ml°(v, z)) and E(Is(z)11t2m2(v, z)) are finite, where a + e = 1, some

a >1. Then

F >IqrI = Op(r-4AL)

17

Furthermore, if (vi'l,.. v$Pl,zx), i = 1,.., , are i. i. d. random vector, then

n E=r - N,,) = Op(rAAm),
s=1l

where pf, = E(q7 1) is the mean of q7j.

Proof: By the Holder inequality,

r1=1 rj=1

The Lemma A.2 implies that

and E([
1  ~ t(vj,z)]

2
m2

5
1z) < ~E(t 2m2B(v, z)Iz) where c is a constant. Therefore, E(q~i) d,

where d = Ei/{Is(x)Ip 2m1°(v,zx)}E/{Is(z)It 2m~b(v, az)}. By the Markov inequality and the inequality of
absolute moments,

Since e is arbitary, ni1r~Va E 1 Iqrul = Op(l). This proves the first part of the results.
When the random vectors (vi'

1
,.

.  
,,) are i.i.d. for all i, the Chebyshev inequality implies

P(ni1/2r
4 

m.j:(qri - ,j)I 2:e) < carml+m2E(qn - ,,)
2  C-2 cd.

i=1

Since e is arbitrary, n-i/2r 
4  

E" Y7,'=i ,p5 ) = Op(l). Hence * F,".1 (rri - pr,) = O~-m )
This proves the second part of the results. The case with m2 = 0 can be proved without using the Holder
inequality. Q.E.D.

Proposition A.4: Let {v,) be i.i.d. random variables. Suppose that the measurable functions p1(v),
1= 1....4, have mean zero. Then
(i)

k+1 l rk+1

r1 1 & =1,2

(ii)

E[I[! Z pdv,)]) = I {!E[fl pi(v)J + !:1 [E(pi(v)Pa(v))E(pa(v)p4(v))

+ E(Pi(v)p3(v))E(p2 (v)p4s(v)) + E(Pi(v)p4(v))E(p2(v)Pa(v))J }"

Proof: The proof is straightforward by using the independence property of the vs. QE.D.

Proposition A.5: Let (vi'
1
,.

. 
vri, x), i = 1,.vi , be i. i. d. random vectors, and p(v, x) is a mea-

surable function with finite fourth order moment. Denote pr(x.) = Fr_1p(v' , x). Suppose that h is a
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twice differentiable measurable function such that uts second order derivative is uniformly continuous and
bounded. Furthermore suppose that pu.(s) converges in probability uniformly in z to E(p(v, x)jx). Then

!E h(pr(xi)) = 1 E h(E[p(v, x)tzJ) + Op(maxnl/2rl/1
2
, r

11).
Proof: By a Taylor expansion up to the second order,

~h(pr(zi)) = -.. h(E[p(v, Zg)Ix3) + Fn, + S,,

where

=" _ '- V'h(Efp(v, z,)IxJ)(pr(z,) - Eip(v, xj)fx~J),

and

S 2n= Dpr(zs) - E[pr(v, xj)lZ.J)'V'h(lPr(Zj))(pr(Zg) - [rv jIj
i=1

with V and V3 being respectively the gradient operator and the matrix of second order derivatives. The
second result of Proposition A.3 implies F., = Op(n-

1
/

2
r 

11 2
). Since pr(Z) converges in probability to

E(p(v, x)ja) uniformly in x and V'h(.) is uniformly continuous and bounded, sup=, IIV~h(p,,(xi))tI is hounded
in probability. As

ISJ C sup flV h(pr(x))IB r IIr( - Epv ,IjI2

the first part of Proposition A.3 implies that 5S, = Op(r1) QE.D.

Proposition A.6: Suppose (vj) is a sequence of i.i.d. random variables, and (a.) is a sequence of
i.i.d. random variables which are independent of vi, for all j. Let ~t(v, a) be a measurable function of (v, x)
with zero mean and finite variance.
(i) Suppose that r is an integer-valued function of n such that lm..,,~=Al exists and is finite, then

1 ?, F2(vj,ai) -4.. E(,(v,xi)lIz) + 1:E(O4vj,a)lvj) +op(1)
ry" r1 f=1 i1 r =

-.- "N(0, var(E[#(v, x) a]) + Aivar{E[O(v, a)Ivll).

(i) Suppose that that tm,...0  = A 2 exists and is finite, then 
EF ~, i ~ v iIi t EAvxIf p1

p+ N(O,Asvar{E[t/(vxa)IxJ) + var{E[,,b(v,x)Ij)).

Proof: These are central limit theorems for generalized U-statistics in Lehmann [7] (see, also A.J. Lee
[5)). QE.D.

Appendix B

Proof of Lemma 1:
It is apparent from (3.4) that the mean of L., is zero. Proposition A.3 of Appendix A implies that

L., = Op (r-1 /
2
). The Q., can be rewritten as Qn * MI qrj, where

L d,. 8lnP(119., xi) f.,9, 1 -Pl9,i)2

- [fra:9., Z,) - P189,, )J [Ofr,t(9a,*i) 8P0lio, ai)}

Since E(qt, idi,, a) _0F1L = t 1",s;(smnP)l ..1r.var(Al(, )') cVh(v, zj i), os.#.tj) the mean

p, of q,., is p, =0 E(q,,) 0= E{E(qri .j, Z))}0 j where p is defined in the statement of Lemma 1. From

Proposition A.3 of the Appendix A, * '1(qnj - p.) = Op(r 
1
). The remainder term dntR) has a smaller

order than Qi, since

IICR l<O'(I){-(--E2fr(9s,xi) - P(11six.)1 eft(e, - 8P(lG., x) i,
=11189 89

.+ E Ifr,(9s, xi) P(119., x,)j1
3
)

SOp(n" 2zr 3/),

by using the first part of the results in Proposition A.3. QE.D.

Proof of Theorem 2:
From Lemma 1,

I n L 8nrl9~

i=1 1=1

1n di8lnPl(9., aj) + Op(r-1 /2 ) + (Op(r') + n1/ 2
r11i1 4 Op(n1I2&-3I 2 ).

i, 1 89

Hence,

n L 2n /8 i

L ")1 ni=1l=1 8888.4,x~
n L

x { 1 jdi 0. 5B1 i +n
1 2 r' + Op(max[r'

1/2, nu/zrs3/zJ)1.

i 1 s 0For the case (i), as n1/2r 1 goes to zero, VW(UL - 9,) 0= fl* E 1 E L 1d,.i Pfn j/ _" + op(l). The result

of (i) follows from the classical central limit theorem. Under the case (ii),

=1.80 89'8=
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which converges in distribution to N(Aflp, (1). The case (iii) occurs when r increases at a rate slower than
vrn Let k,, = r/. ,F. It follows that

r(9L - 9.) = kn-/r(8L - 9. )

( 1 r=1 8 8 -

x ~Z dri 8ln ,z)+ kn
1 1

r l+ knOp(maxK)/'2,nl232)
i=1 i=1

"-1

_ -1 ri 2ln ,(9, x,) } {Op(kn) + + Op(max[knr-1/ 2,r- 1/2 ]))

because r - oo and k, - 0. Q.E.D.

Proof of Lemma 3:
Proposition A.3 and Proposition A.4 imply that

C, = _= Z(cri - E(cr, )) + ,/iE(cri) = Op(r 3/2 ) + Yn-a

where c is defined in the statement of Lemma 3, and

= _ 1ij:(r - E(drg)) + V/r-
2
J(r) = Op(r

2
s) + rCr)

where
d(r) = E( P

3
(I19.,z,) {0lP8e9x E((f r(oz) - P(1190,zz.)x)

1=1

- E[8f' ° x) _8P- , x [frA,r z;) - P(110,z)]Ix:)}) .

Proposition A.4 shows that

E(j[fr,i(9o, z.) - - P1j x) z; 3r r varN(hi(v zi)lI) ([. i) -P(II1., z'nzxij}

and
- Or~~oz) P(1J9., Ws)J[f r(9., x,) - (lzi]I)

89 098(I 5 z~]I,
- ~ 3!ZiE(

8
h'') 

0
p~

19
.~'~[h( ) -P(110., z,)JIx.)var(h(v, z,))

+ 1!E((Oh(v z) - 8P(1 A,, x) ][hi(t.z) - P(II9.,zi 31z.)}
r 09 8

For the remainder term R,,,

n L

IIRII < OP(1){ E Ifr,(s,Zs) - P(119,z,)I'

+ fr (o xi 0P(1190, -0 II- tfri(9o,,z;) -P(II9., x.)1}
+ 1 =1El 09 09
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from Proposition A.3. Q.E.D.

Proof of Theorem 4:

For each component 01: of 9,

0 = 1 dn fr,(
9
, xi) + 1 jEdd0n. s92z)(G-

ni=1 1=1 10 i=1 1=1 0~9

+1 E : sL L-0
3

nf,(91i(L-o
2n =1 1=1 89k899

+ j~d1 , y 8'ln fr,i(O, eLIt Gsk,)(
9
L,k -

9
k,)(

9
L,ks-9s,).

iol 1=1 k,=1Itk,=Zk,=1 010101, b

From (3.13) and Lemma 3,

1 n dEFaLln f,,(9s, = xi) I ddL nP(l(s , z;) -/ / 9E s e + Ln + Qn + Op(max[r /, n /r- ])7 = = 91 
181 09 n(1ox),12n 

rT

-n ,,OnQ s,=~+ Op(max[r- 1 /z =n1 1=J)

Proposition A.5 implies that

d,,L81n ,1B, ; _1LZ d 2
nP(lG. zx;) -/ / Ed 98' -nEEd 99 + Op(max[n r- r11),

1=1 1=1 0909' 1 =1 00

and

dL Zd1, 090909' 8Z d 01o09 9'0909w+ OP(max[n- 1/2r-/r1

It follows that

v'(GL -9,) = C) E dOnr,(
9

o,zi)

0988

+ Op(maxn-
1 12

r-
1
/

2
, r

1
] . VIIn- 9.- g11)

V (GL - eo)' n -=£=1 d 0,080 a -9,o))

+ Op(max[n1/
2
r 1

12 
,r-1]J.V 'IIeL _ 0o 112)

+ OP(v'nI-1d-8°3)

From (3.1), (3.2) and (11.2),

-9,1=fl-. 2 d.PiI8
9

sx)+ Op(max[r 1l 2, n1/Zr-'J)

= Op(max[1,n' 12r-]),
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which implid that

{ 1 L ~djj821P~tj EL 
2
1nP(198, tz) ) n(L-9

n 881 i t 1=11=1 880(.7
= B,n + Op(n+1

2
)Op(5X[r-

112
, n 1 2 r~

1)),

where B1,,, is defined in the statement of Theorem 4, and

I a_ L)1; de8nl(1f (z) _ )

4= t1 80&88@

= n12* Ldi olnP~l..,xs))n( dui 1S__i5jt9. z{) )fl( I>2 Zd OlnP(__19.0
fn 1 8 4 =t 8 88 R __=i 1=1 89

+ nII/Op(max[r-1IS, n
1 I

2
r"

1
)

n-lf( 1 L di_________1__ ____d_______ Ol/)) 1 di2n PO(119, TftZ)
ia1 

1=1l 81=1 8&88 ntel tF

+I Op(n1) + Op(man'
2 r- 112 , r 1).

(8.8)

Subtituting (8.2)(8,8.), and B
1
L - 9e. Op(maxn

1 1 2,r-
1

)) into (8.5), we have the asymptotic
expansion in (3.18). Obviously, Bi,,, and 83,,, have the order Op(n-'/3). The computation of the means of

Ba,,, and 82,,. are trivial. QE.D.

Proof of Theorem 5;
By the expansion (3.28),

1nL ' 8nj,.,,Bo,,zi) = 1________8 _

i~l t1 Be t_ 4=1 te

The term L~ can be rewritten as L, V?~£1~,4l),:, where a, (di, a,) and

L 1 [81.(vix.zGs) 1 P(II~e s x:) (i

Since E(.(v, ax)) 0, the central limit theorem of the generalized U-statistic in Proposition A.6 implies that

when lim,..,,,,n/r =Al exists and is finite, L. S°+ N(0, )AV), but when lim,,,, n/r = oo, /n7iL,.--Do

N(O, V') where V is defined in (3.30). In either cases, we have L,.= Op(n
t
Ir'1/). The first part of the

results of Proposition A.3 implies that Q.,= Op(n1Ir1') and C,. = Op(n1( 2
Pr-s(). Therefore,

Vrn(8p -U8e) =_-{ d 4
8 lnf,(,i) 1u 8n { z. s) + L. I pn *1

When lim,...,, n/jr =Al exists and is finite, Proposition A.6 implies

( - 9,) D' .N (0,[fr + 1 vJO) .
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On the other hand, when lr,..,n/r' = 00,

v'(BD -9,)

= L{vci E Edu lP8 sz4) + /Ln ,.I 88'8

{ilirti 0lfr~i X4){/7L 5+op(1)J

-D N(0, OVA),
where the third equality follows because lim,1.,,,, r/n = 0 and ri,.,,a = c. QE.D.

Proof of Theorem 6:

Define v(9, x;) = p(9, xi) where

L8 d), E . [ lnP(ll~ s.:)V a(h,(, 1,X1X) - cov(hi(v,zx;), 80h I zxJ)J

Consider each terms separately in the decomposition:

i= =t n4=1

Since E(v(9,,x)) =ar' j, it follows that

1 1

Proposition A.5 implies that

- v. (9, x) - v(96, a,)= - ' ! 2 "DAM, x-0 p(9d, x:)) =Op(max r 9
1
2, n1

1
2r 2).

By a Taylor expansion,

- ~~a...(LX) -v,(#.X,) r cA( Op(maxfr' 
1

, n" 2r- 21),

because ,/(9L -- 9) = Op(mex[1, n'
1

''J) in (8.6). Therefore,

~ vrG~X, 1
1 2

ai1+Oprnx ,n
1/r)- Op(nI/2r-1). (B.9)

1 7rBt)=n1r1!+O~a~

Denote

_'n889' 8 0909
4=1_1=880=1

4=1 tel 8B ~u
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and

Tn= LdL d I2nfj,,1(L, zj) 1 dL 821nf9,(9.,x)
' i" 11 8989' n 68090'

It is obvious that T1,, = Op(n-1/
2
). Proposition A.5 implies that T2,n = Op(max[n-1/2r-1/2, r-1]). By

the mean value theorem and (B.6),

Ta,. = - du 6626'6 ;(#t, - 9se,k)= Op(max[n-1/2 , r- 1
]).

Therefore,

1 n 82 ---~t~h , z - E(Z dl OalnP(119., z)) =_T , +n '2,. + Ts, = Op(max[n-
1 2

, r- ])
i=1 t=1 i11

and

i=1 t=1 L 0r_'1 89'
n E d 02lnf.P(|L,,z)) -

-ln 66 89888',
r=1 1=1

=O ma=1 1=1 2r]

= Op(max[n-"2
, r-11).
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It follows that

du nL 62lf, 6 ~z) -1 - E(d ganP(1l 6, zi) -1

1 =1_11 =1

= Op(max[r-', n/
2
r-2)"

Hence it follows from (B.10) and (B.9) that

L (#A- 9.) = 
2 (51 - .lnf1, (&,z) '1

i=1 5=1 i=

= AL -9,) - - V,(L, z:) + Op(max[r-' , nar-2

= '(AOL -9,.) - -n'
12

r- ±s +Op(max[r-1,nI/2r-2)

(B.10)

The final result follows from this equation and (3.19) in Theorem 4. The proof of the estimator defined in
(4.1)' is similar. Q.E.D.
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