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ABSTRACT

In this article, we have investigated a bias in an asymptotic expansion of the maximum simulated
likelihood estimator introduced by Lerman and Manski for the estimation of discrete choice models. This bias
occurs due to the nonlinearity of the derivatives of the log likelihood function and the statistically independent
simulation errors of the choice probabilities across observations. This bias can be the dominated bias in an
asymptotic expansion of the maximum simulated likelihood estimator when the ber of simulated rand
variables per observation does not increase as fast as or faster than the sample size. The properly normalized

maximum simulated likelih timator has even an asymptotic bias in its limiting distribution if the number
of simulated rand iables i only as fast as the square root of the sample size. A bias-adjustment
is introduced which can reduce the bias. Some Monte Carlo experiments have d trated the useful

of the bias-adj ¢ proced
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1. Introduction

In this article, we will study asymptotic biases of which are derived from some maximum
simulated likelihood methods for the discrete choice model. The estimati thods by simulation of moment
equations or likelihood functions have been introduced by Lerman and Manski [8], Pakes (10}, McFadden [9],
and Pakes and Pollard [11). The estimation method in Lerman and Manski [8] and Pakes [10] is a maximum

lated likelihood method. For any possibl ter value in the model, the response probabilities
are approxi d by simulated probabilities and the likelihood function is constructed with the response

babilities replaced by the simulated probabilities. The imulated likelihood estimator is derived
by maximizing the simulated likelihood function. Specifically, the simulated probabilities are g ted
independently for each individual decision maker in the sample. Subsequently, Lee [6] idered the case
where the simulated probabilities need not to be statistically independent. The first case is termed the
maximum simluated likelihood estimation with independently simulated moments to distinguish it from the
latter case which is the maximum simulated likelihood estimation with dependently simulated moments.
The asymptotic properties of consistency and asymptotic distributions of the method of simulated moments
have been studied in McFadden [9] and Pakes and Pollard [11]. The asymptotic efficiency of the maximum
simulated likelihood methods have been studied in Lee [6].

In this article, we will investigate some particular nonlinear features of the simulated likelihood estima-
tion. We will investigate the possible asymptotic biases of the maximum simulated likelihood estimators.
When the response probabilities are simulated independently, even though that the maximum simulated like-
lihood estimator can be consistent, asymptotic bias of the estimator may appear when the rate of convergence
of the simulated probabilities is relatively low as compared with the sample size. Under some situations, the
asymptotic distribution may be degenerated. Unless the number of simulated random variables increases as
fast as the sample size, the i imulated likelihood estimator with independently simulated moments
possesses a bias which has an order larger than the bias of the classical maximum likelihood estimator in an
asymptotic expansion. The existence of such a bias is due to a particular feature of the estimator in that a
second order term, consisting of sample average of squares of simulation errors, in the Taylor series expan-
sion of the derivatives of the simulated log likelihood function with respect to the response probabilities can
denominate a first order error term. We discuss bias adjustment procedures which can reduce or eliminate
such a bias.

This article is org: as foll In Section 2, the i imulated likelihood methods for
the estimation of the discrete choice model are described. Regularity conditions that will be useful for
our analysis are listed. In Section 3, we discuss the asymptotic biases in an asymptotic expansion of the
simulated likelihood estimator with independently simulated moments. The order of the bias is derived and
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its practical implication in simulati timation will be di d. The features of bias will be compared
across the classical i likelihood estimation and the simulated likelihood estimation with dependently
simulated moments. Section 4 suggests some bias-adjustment p d that will be useful to reduce or
eliminate the leading bias due to simulation error. The practical i ," tion of bias-adjustment will be

d

discussed. Some Monte Carlo evidence on the performanu of a bias-adj is reported in
Section 5. Our conclusions are in Section 8. All the proofs of the results are collected in the Appendix B.
Some useful propositions that have applications in our analysis and are of interest in their own, are provided
separately in the Appendix A.

2. Maximum Simulated Likelihood Estimation of The Discrete Choice Model

Consider a utility maximization model of discret p Let C = {1,---,L} be a set of mutually
exclusive and exhaustive alternatives in the discrete response model. For each alternative | € C, the associ-
ated value of the alternative [ is U; = z;ja, where o is a vector of individual weights distributed randomly
in the population and z) is a vector of measured attributes of alternative I. The response j is observed if
U, > U. for alll € C Assume that the distribution of o is known except for a vector of parameters 6 of

k. Let z denote the vector isting of all distinct explanatory variables in z;,...,z;. Define

Vi=(U=UUe = U U1 = Uy, UL —w), 1=1,...,L (2.1

and let gi(v]6, z) denote the density function of Vi conditional on z. The response probability P(l|0, z) for
the alternative [ is

P(Il6,z) = / 91018, v

Let dj; denote a resp indicator for individual i, equal to one when the observed response is the alternative
1, zero otherwise. With a sample of size n of independent observations, the log likelihood function for the
discrete choice model is

n L
L.0) =YY dulnP(ll0, z:). (2.2)

i=1l=1

A simulated likelihood approach will replace the hard-to-compute probabilities P(I|d, z), 1= 1,..., L, by
consistent simulators f, ;(0, z). Broad classes of simulators have been introduced in McFadden [9], Hajivas-
siliou and McFadden [4], Stern [13], Borsch-Supan and Hajivassiliou [2] and others. Consider, for exa.mple,
the smooth simulators in McFadden [9] based on importance simulation technique. The
based on recursive conditioning in Borsch-Supan and Hajivassiliou [2] is in fact also an importance simulator.
Let y(v) be a density chosen for the simulation that has the negative orthant as its support. Let

hy(v,z,0) = y__[__a(:(z,)Z)_

The response probability can be rewritten as
P 2) = [ ho, 2,00(0)dv.

Averaging hi(v, z,0) over one or more Monte Carlo draws from v(v) gives a smooth unbiased estimator of

P(119, ). Suppose there are r Monte Carlo draws from y(v) for each sample observation. Let 0;‘),1' =1,...,r
be the draws for observation i. Define

fra0,20) = L S (o, 20,0). @3)

j=1

Conditional on z;, E(fr,1(8,i)lzi) = [ hi(v, z;,0)x(v)dv = P(119,2;) and hence f,(0,z;) is a conditionally
unbiased simulator (simulated moment). When r goes to infinity as n goes to infinity, f,1(0,z;) is also
a consistent estimator of P({|z;,0). By replacing the response probabilities with simulated moments, we

are working with a simulated likelihood function, which is a pseudo-likelihood function. The log simulated
likelihood function with independently simulated moments is
n L
£6) =33 dulnfou(6, ). (24)
i=1 =1
2



Let 6y, denote the maximum simulated likelihood estimator derived from the maximization of £(8) in
(2.4). For our analysis, the following regularity conditions are assumed for our model:

Assumption 1:

1. The sample observations (d;, z;) where d; = (dyy,...,dL:), i=1,.--,n, areiid.

2. The parameter space O is a compact convex subset of a K-dimensional Euclidean space and the true
parameter vector 0, is in the interior of 6.

3. The support X of z is a compact set.

4. The choice probabilities P(!|0, z) are continuous in (¢,z) € ©x X and are positive for each (z,0) € X xO.

5. The choice probabilities P(l]6, z), Il = 1,-..,L, are continuously differentiable in 8 up to the fourth
order.

6. The 8, is the unique minimizer of the function E{ ,"=, P(l}0,, z)InP(l}0, z)}.

7. The matrix E [Z,’;, P(1[6,, =) 2nElles.) MnPUl.) | i nonsingular.

Assumption 2:
1. The random vector v is simulated independently of d from a common conditional density function,
conditional on z.

2. The simulated moment function h(v, z, ) is conti ly differentiable in @ up to the fourth order. The
absolute vuluel of each component of h(v, z,0) and its ﬁrst four order derivatives with respect to @ are
A, 2 tad b 'Y hle fi 't ” ")

3. h(v,z,0)is a condmonllly ‘unbiased estimator of the vector of choice probabilities P(8,z) conditional
on z, for each § € ©.

4. The conditional first four order moments of the function h(v, z,0,) and its first order derivative with
respect to @ conditional on z exist.

5. The first ten order moments of h(v, z,0,) and its first three order derivatives with respect to 8 at 0,
exist.

Assumption 3:
The number of random draws r for each individual goes to infinity as n goes to infinity.

These regulari diti in mostly familiar regularity conditions on the choice probabilities of
the discrete choice model. Since our asymptotic expansions of the estimators involve higher order derivatives
of the log simulated likelihood function and simulation errors up to certain high orders, the differentiability
conditions and the moment conditions in Assumptions 1 and 2 are required to guarantee that those terms
are well defined. Some of the domination by integrable function assumptions are used for the application of
some uniform law of large ber for the converg of the simulated probabilities and the log likelihood
function to their relevant limits.

The istency of the simulated likelihood estimator 6 depend on uympwnc properties of the simu-
lated moments. As r goes to infinity, the simulated ts are tent tes of the corresponding
response probabilities. Since the support X of z and the parameter space © of ¢ are compact and f, (0, 2:)
is dominated by an integrable function in A ption 2.2, the convergence is also uniform in probability
(see, e.g. Amemiya [1]), i.e.,

sup |If-.(8, z) - P(1l6,z)|| 2+ 0, (2:5)
oxX

forall { = 1,...,L. Assumptions 1.2-1.4 guarantee that the choice probabilities P(l|¢,z),{ = 1,...,L, are
strictly bounded away from zero on © x X. Since P(¢,z) is bounded away from zero on 8 x X, it follows
from (2.5) that

sup -c(o) -= 224,.|np(uo z)| - (2.6)
i-l =1
The uniform law of large bers in A iya (1985) implies that
n L
sup :§§d:.lnP(llo, z)-E (2 P(i16,,z)In P(i18, z)) @7
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Since 1.£(6) converges in probability uniformly to the limit function E(E," P(116,,2)InP(0, z)) on © and
8, is the unique minimizer of this limit function by Assumption 1.6, g is istent. For istency, it is
sufficient to have the random draws r go to infinity as n goes to mﬁmty Any particular growth rate-of r
related to n is not required. H , for asymptotic efficiency, r has to increase at a rate faster than n'/3
(Lee [6]). In the subsequent sections, we will investigate the q that may occur when r increases
at a rate equal to or lower than n‘/2 We will see that asymptotic bias may occur in such situations. We
will show that when r increases slower than n there exists a dominated bias of order higher than the order of
bias in an asymptotic expansion of the classical maximum likelihood estimator. Bias-adjustment p
will be suggested to eliminate or reduce such a bias.

It is. worthwhile to pare the diffe between the simulated likelihood estimation with ind
dently simulated moments with the estimation with dependently simulated ts. For the dep
moments case, a total r number of random variables v;, j = 1,---,r will be drawn independently of d and
z for the construction of the simulated probabilities:

dent

_ U
fea(,2:) = ;Z;h,(Vj,zi,ﬂ), I=1..,L, (28)
for all i, i = 1,...,n. The log simulated likelihood function with dependently simulated te is
- n L -
£0)=Y"Y dulnfes(6,20). (2.9)
i=1 =1

The maximum simulated likelihood estimator of @ from (2.9) will be denoted by bp.



3. Biases in Maximum Simulated Likelihood Estimators

The maximum simulated likelihood estimator § with independently simulated te from (2.4)
satisfies the first order condition:

zzd 8.!1’,.,(0;,23)

l’l =1

The asymptotic distribution of this estimator can be derived by a proper Taylor series expansion. By the
mean-value theorem,

ﬁ(él_%):_{ szuo lnéf;;’(:' zi)} 1 sz“fﬂ:i(fﬂ)., @3.1)

i=11i=1 " i=1 =1

where 8 lies between 8, and 8,. By the uniform law of large numbers,

8f..(0,2) 8P(Il8,
sup | 2eaCi2) _ OPCRL2) 2,
and 0%f,4(0,2) 2P(I)8, )
r iV, T ' & P

o =606 — geee | "

foralll=1,..., L. It follows that
Sinfn0,2) _ 1 0fi(6,2) p, OlnP(8,z)

0 fa(z) 60 a0

and
Pnfri(0,z) 1 8fu0z) 1 8fi(8,2) 3f.1(0,2)
8000'  ~ f,.(0,z) 0006 f30,2) 00 o0
., nP(ll8, 2)
0000"
uniformly in (6, ) € © x X. Since 8 is a consistent estimate of 8., it follows that
1 S, 8Inf,4(0,21) » 0*InP(i|6o, z)
:‘g;"“ 000 F Z"' 060"
BinP(l8.,2) olnP(uo 2]
=-E ):P(uo,, 5 .

Therefore,

-1

¢ Mnfulz)|  _ [ InP llo,, oP(l|6a,)|”
{;E&d" 9000 =E §P('Woy') e +op(l) 3.2)

It remains to consider the asymptotic distribution of &- Yo E,_ di Ml 1t is useful to expand

this function of £, (8., 2:) and —b‘M at P(l]6,,zi) and M“i‘) By Lemma A.1 of the Appendix A
with m =2,

Onf, (0o, z; 1 & al P(llﬂ,, 3
\/“z;.;d o) “mEL L P It G A, (33

5

where
L& Df,;(ﬂ.,n) 8P(l|0.,z.) 0InP(l|0.,:.), ‘
_1l ey 0. 1(8s, 2) OlnP(IIO.,z,)
= _"g:;:dh P(l|0.,z.) [ ! 1., (&.ﬂ)].
" . (3.4)
_1y {__1 8f,i(0,7) _ 0P(l|0.,z.~) _
Q=0 ‘Eﬂ:gd’.{ T ) ]Ur,l(d..ﬂ) P(119,,2:)) a5
and
1 & 1 0fra(0:,2:)  OP(l|6,, i
CR vn §§ Ir |(0°,z,)P’(l'a,,,'){ ) "f” zi) - (I80 % )] [fri(86, i) — P(ll&,zi)]z
0InP(l|0..z-) OnP(M00,2) ¢ (.. 2:) — P(ll6e, z‘)],}
3.6)

The L, is a first order term involving the errors of the simulated resp probabilities, namely, £, (6., 2;) -
P(l]6,,z;), and the errors of their derivatives. The Q, is a second order term involving the squared errors

of the simulated probabilities and their derivatives. The C™ is a remainder term of errors of high orders.

In the following paragraphs, we will investigate the stochastic orders of L,,, Q. and CE®). Al the proofs can
be found in the Appendix B.

Lemma 1: Under our assumptions, L, has zero mean dut

E(Qn) = n'*r ', 3.7
where
L
g =§E{P(II;¢;.:) (v, o)) - cov(h( ) 2| L. a9)

Purthermore, L = Op(r™"/?), Qu = E(Qn) = Op(r™"), and C{® = 0p(nt/3r-3/%).

We see from this lemma that the second order term Q, has a stochastic order Op(n‘/’ 1), which can
be larger than the stochastic order Op(r=1/3) of the first order error term L, if r does not increase as fast as
the sample size n. This irregularity occurs because of the nonlinearity of the log simulated likelihood function
and the simulated probabilities are independent across individuals. The errors of simulated probabilities do
not appear additively in the first order condition of maximization as in the method of simulated
of Mcl-‘adden [9]. The nonlmenrllty of the log likelihood function causes the presence of the quadratic term
Qn. The independ of the simulated probabilities across individuals causes the sample average in L, to
g0 to zero at the fast rate r=1/2 instead of the rate n1/3r=1. This irregularity can cause that the limiting
distribution of /(6 — 6,) does not center properly or its limiting distribution diverges when r does not
increase faster than the square root of the sample size n. Indeed, these happen in the following theorem.

Theorem 2: Under our auumptwns
(i) if limp .0 nll/2=1 =,

V(b - 8:) 2 N(0,), (39
(i) if limpco nl/2r=1 = ) g finite positive constant,
Va(dL - 8.) 2 NOQE,Q), (3.10)
6



and
(i6i) if limp oo n}/2r=! = 0o,
r(fz, - 8,) -2+ O, (3.11)

where ji is defined in Lemma 1 and

{ [z‘: Pl 8InP(l|0,,,z)8]nP(l|0.,z)]} 312)

When r increases at a rate as fast as n'/?, the limiting distribution of \/n(f — 0,) is asymptotically
normal but its does not properly locate at zero. An asymptotic bias existe which is proportional to Qji.
From (3.8), we see that i is in general nonzero. It can be a small constant vector if the conditional variance
of hy(v,z) and the conditional covariance of hy(v,z) and 24221 conditional on z are small for all z. The
Monte Carlo experiments in Borsch- Supw and Haijivassiliou (2] provide some evid that their th
importance simulator based on recursive conditioning may have small variance. However, even though Qi
can be small, the limiting distribution /n(8, — 8,) will diverge when the increase of r is slower than n'/,
When the increase of r is slower than n!/2, the limiting distribution \/n(fL, ~ 0,) diverges and the maximum
simulated likelihood estimator 61, converges to 6, at the slower rate r. The slow increasing r causes not
only the simulated likelihood estimator to converge in probability to 8, at a slow rate than Op(n=1/%)
but also a degenerate distribution after proper normalization. Only when r increases faster than n'/?, the
hmmng distribution of \/n(f, — 8,) is properly behaved and the maximum simulated likelihood estlmator
is asymptotically efficient.

However, even though the maximum simulated likelihood estimator 6y, is asymptotically efficient when
r increases faster than n'/2, the bias in Q, due to simulation may cause a bias in the asymptotic expansion
of 5,, —0,. Such a bias may dominate other biases in the estimator when r does not increase fast enough than
the sample sizge. It is known that in a higher order asymptotic expansion, the bias of the classical maximum
likelihood estimator may exist with an order of O(n~1) for a sample of size n (see, e.g., Cox and Hinkley [3],
p.310). Thus for the maximum likelihood estimation of the discrete response model with the exact likelihood
function L., the largest bias of the classical likelihood estimator is expected to have the order O(n~!). For
the simulated likelihood estimator, we expect such a bias order may exist in addition to the bias due to the
simulation. This is shown in the theorem 4.

To get a better approximation, it is useful to increase the expansion in (3.3) with additional terms:

n L
‘/_l_. ‘Z; 8inf, I(Dﬂyti) \/_ zzd 8InP(l|0,,z‘) +Ln+Qn+Cot Dyt R, @.13)

i=11=1

where L, and Q, are the same as in (3.4) and (3.5); Ca = * Yisi6ri; and Dy = a: S, dvi where

L
= Dt (125 - O 200,20~ PC0w, 2P

(3.14)
~ 0P, 00, 20) = P =),
and .
alnp(uo., =) .
dp = d; [ (B, P(l)6,,zi
(= S gty (P 0 ) PO -

a0, 20) ~ P(66, 21}

- [8,r,l(9o;¢i) 8P('|00|zl)"
2]
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and
_ [OInP(llf,, ;) N )
= f §§3 AT P4(na..z.)1 o5 Uril0e.2i) = P(l166,2)] a19)
_ [8Ir, f:;. z;) 3P(I|0nz-)n 1S a(60,25) = P(16e, ‘)]4}
is the inder term. The stochastic orders of these higher order terms are reported in Lemma 3.
Lemma 3: Under our assumptions, E(C,) = n'/r=3¢ and E(D,) = n'/*r=2d(r) where
ah,(u z,0,) 8P(l]0.,z) 2
(Ed«- S (B0 e, - PP

Mﬂ‘!ﬁz([m(« 2,6,) - P(I16,,2)"l2)}).-

and lim, . oo J(r) =d with

d= w(zp‘(d: z){w *(hi(0, 2)|z) ~ var(hi(v, ,),,)m(om(v.

19,, %) v, =)|z))) (3.18)

Furthermore, C, — E(C.) = Op(r=3/2), D,, — E(D,) = Op(r=?) and Ry = Op(n*/*r=%/2),

The terms C,, and D, have the order Op(n*/3r=2), which are smaller than the order Op(n!/3r=1) of
Q... While the mean of Qg is O(n'/?r~*), both the means of C, and D, are O(n!/3+=2). The means of
C, and Dy, are also due to simulation but they have smaller order than the mean of Q.. The interesting
thing to note is that the mean of the higher order term Cy, decreases by a factor of r=! instead of r~*/2 even
though the stochastic order Op(r=3/7) of C, — B(C,) decreases by a factor of r=1/2 as compared with the
stochastic order of Q,, — E(Q,), which is Op(r~!) in Lemma 1.

The following theorem provides all the leading biases in the asymptotic expansion of the

lated likelihood esti with independently simulated moments.

Theorem 4: Under our assumptions,

‘/-(0’__0°) Q{ ‘Z-;'Zd M"'Ln‘an"‘Bln"‘Bﬂu} (3.19)

+Op(mu["-l/2 -1/2, at S nll3 -2])’

where L, and Q,, have been defined in (3.4) and (3.5),

Bin=n |/;{ E lzd" 07ln;’;2::,z. E(Zd G’InP(llﬂ.,z) )] }ﬂ‘/_ zzd OInP(llo.,z‘)

i=1 =1
(3.20)
and

v ([ 95 i K e 0Bl SO T, i d o)
T, TL, d BeElesdop(yE a,%-,ﬂmé_ T TL, d nEGens)y

(3.21)

Byp =

The terms Ly, Qn, Bi,n,and By n have the following properties:



(1) L, has zero mean and L, = Op(r~1/3),
(%) Qn — E(Qn) = Op(r~") and E(Qn) = n"/*r~'/i with ji defined in (3.8) of Lemma 1.
(3) Bin — E(By,n) = Op(n~"?) and E(By,) = n~1?A,, where

L L L :
a=E { [(EJ.J—"'“” (2 (): S0P We ) _ gy o, AuPle.) ))] vec(m} L (322)
I=1 =1 =1

and
(4) Ban — E(Bs,) = Op(n="1%) and E(B;,) = n~'/3A;, where

U(QE(TE, d CpEltss)))

. ) (3.23)

: 3 n. 3
U(QE(TL, di S350y

Az =

From Theorem 4, we see that the leading components of biases of the simulated likelihood estimat

in an asymptotic expansion are generated by the terms Qn, By, and Bz,n- The order of biases of By,
and By, is O(n=1/2). While the bias in Q, is due to the effect of simulating the likelihood function, the
biases in By, and By, are due to the nonlinearity of the likelihood estimation. As a corollary of the above
asymptotic expansion, it provides an asymptotic expansion of the classical maximum likelihood estimator
derived from maximizing the exact likelihood function (2.2). For the classical maximum likelihood estimator

0. of the discrete choice model from (2.2). The corresponding asymptotic expansion of d, will be

n L
\/’-;(64 ~0,)= Q{% Z: Zdu%tﬂ +Byn+ Bz_,.} +0p(n7?). (3.29)

=1 I=1

This expansion can be seen either by inspection of the proof of Theorem 4 or by letting r being infinity in
the formulas of Theorem 4. The terms By, and By, appear because the second order derivatives of the log
likelihood function with respect to 8 are functions of both exogenous variables and endogenous variables. For
the normal regression model, the second order derivatives of the log normal likelihood function are functions
of the regressors only and the i likelihood estimator, which is the least square estimator, is known
to be unbiased. .

The biases in By ,, and By, in the approximation of v/n(dy, — 8,) can dominate the bias in Q,, only if
r increases faster than the increase of the sample size n. If r increases faster than or propositional to n, the
leading biases will be of order O(n=1/3), which is the same bias order in the classical likelihood estimator in
(3.24). If r increases slower than n, the order O(n!/3r=1) of bias in Q. will be larger than O(n=/?) and it
will be the dominated bias. When r increases slower than n, the bias of the simulation likelihood estimator
is severe than the bias of the classical likelihood estimator. The practical implication of this lysis is
that in order to achieve asymptotic efficiency and to keep the bias of the simulated likelihood estimat
with independently simulated moment to the usual order O(n~*/2), it is necessary to have the number of
simulation r for each individual to increase as fast as or faster than the sample size n. To suppress the bias
due to simulation, it is y to i r faster than n. These designs seem demanding in terms of the
total number of simulated variables, which will be proportional to or larger than n?, and the computational
burden. In 8 subsequent section, we will di bias-adj t proced that may be useful to reduce
the bias to some satisfactory degree.

So far, our analyses have trated on the simulated likelihood estimator with independently simu-
lated moments. It will be of interest to compare and clarify the possible differences between the simulatd
likelihood estimator with independently simulated moments and the likelihood estimator with dependently
simulated moments. It is also useful to point out the differences of the maximum simulated likelihood
hes and the method of simulated scores introduced by Hajivassiliou and McFadden [4].

Y
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The maximum simulated likelihood estimator dp with d pendently simulated ts is derived from
(2.9). By the mean-value theorem,

-1
; 1gnan Ofz)| 7 1 O Olnf (6, 2i)
Vn(lp - 8,) = - {; § gdﬁ—oa'”,— 7 g §du ‘% . (3.25)
The istency of the simulated likelihood estimator will require that r increases to infinity as n goes to

infinity. The major difference between the two simulated likelihood estimators is due to the asymptotic
distribution of * h 3 3l du&[‘-g-(,'—'&z. By an expansion similar to (3.3),

1y OInfea(Bo,zi) _ 1 OP(ll6s,z) = . ~ A
ﬁ§§"" o6 ‘%&,2""‘—00—“”0”03’”. (3:26)

whete L,, Q.. and C{™ have the similar expressions in (3.4), (3.5) and (3.6) with the dependently simulated
moments f,i(6;, ;) replacing the independently simulated moments f, (0, ,z;).

The following theorem for the maximum simulated likelihood estimator with dependently simulated
moments will be useful to clarify some of the differences between the two cases.

-

Theorem 5: Under our assumptions,
L, =0p(n'*~Y% and Q. =0p(n'*r ). (3.271)

When limpo /1 = Ay czists and is finite,
Va(fp - 0,) 24 N(0,Q(Q" + A, V]R). (328)

On the other hand, when lim,_,co n/r = oo,

V(fp - 8,) = N(0,2V), (3.29)
where L
_ Ohy(v,z,0,) SlnP(l]6,,z)
v=E{ ’Z;E [—-00—. - hi(,2,8,)]v
o [Oh(0) OnP(le) @20
1(v, 2,0 n P00,z !

x gE[ 30 - Pl h,(u,z,@,)'v] }

The major difference bet the dependent ts case and the independent moments case is on the

stochastic order of the first order term Ly. As contrary to the term Ly, in (3.4) which has order Op(r~1/ 3,
the term L, in the above theorem has order Op(n/?r=*/2), which is apparently much larger. Both L, and
L., have zero mean. It is the variance of L, that is larger. This is so due to the d pend of the simulated

ts across individuals. The ple average across individuals in L, does not reduce the variation of

the simulation errors due to depend, The quadratic error term Q.. has the same mean as Q,, and hence
have the same order as Q. Sample averaging cross products of independent moments have no effect on
reducing the mean of the products of simulated The first error term L, has an stochastic order

larger than the second error term Q... The second order error term @y, does not dominate the leading first
order error term L. When r increases as fast as or faster than n, the simulated likelihood estimator 6p is

istency. It is asymptotically efficient when r increases faster than n since in that case A, in (3.28)
is zero. When r increases in a rate slow than n, the estimator 85, converges to 0, at a slow rate J/F rather
than /n. However, since the L, domi @n in stochastic order, the limiting distribution of the properly
normalized statistic +/*(0p — 0, ) is located at the center zero. The normalization of dp — 6, with V/r instead

10



of /n when r increases slower than n rescales the bias E(Qn) in the expansion (3.26) by a factor V/r/n. The
order of \/r/nQy becomes Op(r~"/2). The leading bias term in the asymptotic expansion of /(fp — 0,)
has order O(r=1/2) when r increases slower than n. When  increases as fast as or faster than n, the bias
order O(n'/3r=1) of @,, will apparently be equal to or smaller than O(n~1/3). In y, for the simulated
likelihood estimator with dependent ts, it has in g | larger asymptotic variance than the estimator
01, however, the properly normalized statistic of p — 6, has asymptotically normal distribution located at
the center zero.

Hajivassilion and McFadden [4] introduced a method of simulated scores which overcomes the bias
problem in the maximum simulated likelihood approach. Their method is based on the method of simulated
moments (see, McFadden [9]). The maximum simulated likelihood estimator f, with independently simulated
moments in (2.4) satisfies the first order equation:

For the case that f, (0, z;) has the adding-up property, i.e., 2,’;, fr1(0,2;) = 1 for all z;, the first order
condition will be equivalent to

n L ~
% §§(du = Fea(O, z.‘»g%% =0. (3.31)

Instead of (3.31), the Hajivassiliou and McFadden estimator ¢ is solved from the following equation:

n L = 2
1 33"~ FraBum,z) OnteiOnn.2:) 0, (3.32)
n i=1i=1 80

where £, (0, z;) and i,_.(o, z;) are two independently simulated probabilities. As f,_.(o.,z) is an unbiased
gstimator of P(1]0,,z), the expectation of z,';l(du - f,,,(o.,z;))g'll‘*‘}'-ﬂ is zero. So the bias problem
in a asymptotic expansion of (3.32) does not exist. Because of the unbiasedness design in their simulation
method, the Hajivassiliou and McFadden estimator can be asymptotically efficient if r goes to infinity at
any rate as n goes to infinity. The independence of the simulated probabilities f, (0, z;) and the simulated
instrumental variables AMri{0i£9) 4o ¢ne crycial setting in their method.

1

4. Bias Adjustment

The slow increasing r case can cause not only the simulated likelihood estimator f, to ge in
probability to 0, at a slow rate but also converge to a degenerate distribution after normalization. The
latter phenomenon has some useful implication for correcting the asymptotic bias in the case (ii) and the
potential bias in the case (§). Let ry be the ber of simulated rand iables such that lim, o 1 =
and limp oo n~2r; > 0 and let 5,,,; be the corresponding maximum simulated likelihood estimator of 6,.
Select a slow increasing r such that limp.o r3 = 00 but limp—co ran~1/? = 0. Let fz, 3 be the maximum
simulated likelihood estimator derived with r, number of simulated rand: iables. Define an estimator

63 where
b (a-20)/ 1-32)
We note that 8} — 8, = (1 - r3/r1)~}[(§,1 — 6s) = (ra/r1)(61.2 — 6,)] and
V(0;, = 86) = (1 = rafr1) " [V = 8.) = (V/r1)ra(Br,2 — 60)).

The asymptotic distribution of /n(fz,1 — 8,) satisfies either (3.9) of the case () or (3.10) of the case (i) in
Theorem 2. The probability limit of ry(fz,3 — 8,) is the one in (3.11) of the case (iii). As limpco ¥2 = A,
the asymptotic bias in /n(fz,1 — 8,) is eliminated by substracting the limit of (y/i/r1)ra(fr,2 — 6,). Since
ra/ry converges to zero,

Vi — 60) = N(0,9).

This bias tion involves the putation of two estimates. As it will be shown in subsequent sections,
the bias can be corrected directly without the computation of different estimates. The above correction is
illustrative.

A bias-adjusted estimator 04 can be derived by correcting a bias term directly from the simulated
likelihood estimator 6y :

-1
s 1S, Plflrz)| 1
0A=0L"'{; rz=1 L 7y : ;¢§=| ve(Or,2:), (1)

n
izl

where v,(0,2;) = Lpp(0,2;) with

L
020 = 3 {7 (PP, - B0, 20) = (Craore - a0,z 220 |},

L
Sea(8,2:) = ;gh?(v}".aa,v),
and @
1« i Ahy(v;*, 2,0
Cra8,2) = = 3 hi(vf )""0)_'('87—)'
i=1

As an alternative of (4.1), a bias-adjusted estimator can also be defined as

L ] 3 -l a
b=y - {% T ""‘"';,‘:""’"'“"',',f,‘f"“’} » i, @y

n
i=1i=1

Conditional on z;, Spi(6L,%:) — f2/(f,z:) and Cr(fL, z:) - I,,;(éz,,ti)ﬂ"'-g,m are respectively consis-
tent estimates of var(hi(v, z;)|z;) and cov(hi(v, z;), ’—“‘ﬁﬁllzi). The sample average 2 Y7, yr (0, ) is a
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consistent estimate of i in Lemma 1. The second term on the right hand side of (4.1) adjusts approximately
the bias 19;; from 6,. We note that this b dj dure is applicable to any simulated likeli-
hood estimator from (2.4) without imposing any rate of ;rowth on r except that r goes to infinity when n
goes to infinity. Of course if r has already be chosen to increase faster than n, the above bias-adjustment
is y and redundant. The following th d trates that the bias of O(n)/3r=!) has been

eliminated.

Theorem 6: Under our assumptions,

f(o,-a.)_n{ sz m—"MMnHQ.. E(Qn)]+an+an}

::l =1

+ Op(max[n="/2r~13 q=1 y=1 nl/3.-7))

4.2)

The bias E(Q,) has been removed from 8. Since Q— E(Q») has zero mean in the asymptotic expansion
of \/n(f4 — 0,), the biases in 64 do not contain a bias term of O(n!/?r ~1!). The biases in B),, and By,
of order O(n~1/2) remain but they are due to the nonlinearity of the log likelihood function and not due
to simulation. The bias order Op(n~!/?) remains because our bias adjustment is designed to eliminate the
leading bias term due to simulation. It is possible to remove these biases but it is out of scope of this article
and will not be discussed here. The biases due to simulation error have not been completely eliminated, but
the remaining biases due to simulation are of much smaller orders. From the asymptotic expansion in (4.2),
the largest remaining biases can have orders no larger than the orders O(n=1/2), O(n'/?r=3) or O(r-}).
With a little bit of analysis, we see that the dominated bias orders can only be O(n=1/2) or O(n!/3s-3),
This is so, b when r in faster than n'/?, the order O(n=1/2) is larger than O(r=!). When
r increases proportionally to n'/3, Op(r=!) is the same order as O(n~'/?) or O(n"/?r~?). Finally when
r increases slower than n!/2, the order O(n!/r=3) is larger than O(r='). In all cases, the order of the
largest remaining bias in \/_(04 — 0,) can not be larger than O(max[n=1/3,n1/3p=2]). If r increases at a
rate proportional to n'/*, an asymptotic bias will be there in \/n(f4 — ). 1f r increases slower than nl/A,
the asymptotic dmtnbuhon will dwerge The bias-adjusted estimator 64 will be asymptotically efficient if
the number of simulated random variables r i faster than n!/4. The bias-adjusted estimator 64 will
be asymptotically efficient and has biases with orders no larger than O(n=!) as in the classical maximum
likelihood estimator if r increases as fast as or faster than n!/2. Comparing this requirement with the
requirement that r increases as fast as or faster than n for the bi djusted estimator O, it is much
less demanding on the total number of simulation for the whole sample and the computational burden
on the evaluation of the simulated probabilities. The practical implication is that it is possible to have an
asymptotically efficient estimator of § with a bias of order no larger than O(n=*) by the method of maximum
simulated likelihood with independent ts with a simulated design by letting the number of simulated
variables r to increase as fast as or faster than n!/2.

5. Some Monte Carlo Evid

In this section, we repoﬂ. some Monte Carlo experiments on the i imulated likelihood esti-
tion with i dently simulated moments and the bias dj t dure (4.1)’. The model is a

dynamic discrete chon:e panel data model used in Lee [6] The model is specnﬁed as follows:
Yie = BZis + My + uyy (5.1)

and
Uig = pigatey, i=1--nt=1--.T, (6.2)

where d; ¢ is the observable dichotomous indicator of the latent variable yf,. The disturbances ¢;; are i.i.d.
normal N(0,0?). In order to normalize the variance of u to be unity, o2 is set to be equal to 1 — p?. To
capture possible correlation of the regressor z;; over time, z,, is specified to possess an error component
structure:

i = %m + V6s;, (5.3)
where 2 are i.i.d. truncated normal N(0, 1) variables with support [-2, 2] and s; are independent uniform
variates with support on [-4, 1]. The variance of z is about 1 and its correlation coefficient over time is
about 0.5. To start the dynamic process, the initial condition is specified as dio = 0 for all i. The true
parameters in the model are # = 1.0, A = 0.2 and p = 0.4. With T time periods, the product of T independent
univariate standard exponential densities is chosen as the T-dimensional multivariate importance sampling
density for this model. A four time period model is used for our experiment, i.e., T = 4. The sample size
n for each replication is either 100 or 200. The ber of simulated dom variables is ranged from 10 to
100 per observation. The ber of replications for each case is about 600.

Table 1 reports the maximum simulated likelihood estimates and their bias-adjusted estimates. The

maximum simulated likelihood estimation for this model tends to underestimate the regression coefficient
B and the serial correlation coefficient p but tends to overestimate the dynamic coefficient A of this model.
The bias-adjustment dure has app ly reduced the biases of the estimates of regression coefficient 8

and the serial correlation coefficient p. The standard deviations (SD) of all the bias-adjusted estimates are
slightly larger. However, the gains in the bias reduction of the estimates of § and p are substantial and their
root mean squared errors (RMSE) are reduced. The biases in the estimates of the dynamic coefficient A do
not change much and their RMSE increase slightly. Overall, the bias-adjustment procedure does reduce the
biases of the maximum simulated likelihood estimates.



TABLE 1.
Maximum Simulated Likelihood Estimation with Independently Si

1ated M.

and Bias-Adjustment
True parameters: $ =1, A=0.2, p=04

Mean SD RMSE Median LQ uQ
n r Bias-Unadjusted Simulated Likelihood Estimates
100 10 2B .7900 0694 2212 .7851 7427 .8306
A 2435  .1206 1281 .2493 .1688 3249
P 1932 1027 2309 1977 .1298 .2609
100 30 2 8791 .0790 1444 .8768 8256 9335
A .2454 .1208 1374 2437 .1564 .3352
P .2508 1147 .1881 .2606 1733 .3260
100 50 @ 9099 0784 1194 9069 .8544 9630
A .2467 .1335 1413 2462 .1508 .3422
r .2662 1074 1716 2745 .1989 3431
100 100 @ 9414 .0895 .1069 9374 .8729 9985
A .2558 .1350 .1460 .2476 .1560 .3460
I’} .2761 1165 .1700 2867 1969 .3573
20 15 8 8242 0537 1838 .8250 .7880 .8569
A .2449 .0901 .1006 2430 .1841 .3069
P .2187 0830 .1993 .2231 .1664 2738
200 50 A .9083 .0641 .1064 9069 8718 9438
p) .2506 .0942 .1069 .2591 .1859 .3093
P 2644 .0820 1584 2710 2122 .3230
n r Bias-Adjusted Estimates
100 10 28 .8493 0740 .1679 8417 .8000 .8962
A .2458 1324 .1400 2557 .1604 .3398
I .2301 1195 2077 .2335 1557 .3070
100 30 ¢ 9330 .0876 .1103 9303 8707 9928
A 2475 1421 .1498 2442 1467 .3480
I} 2843 .1305 1743 .2943 .1985 3752
100 50 2B 9567 .0871 .0972 .9545 .8958  1.0154
A .2492 .1438 1519 .2486 .1502 .3483
rs 2940 .1180 .1585 .3049 .2181 3795
100 100 8 .9780 .0987 1011 9763 9057  1.0419
A 2592 1430 1547 2517 1555 .3485
P .2058 .1250 1627 3122 2131 .3821
200 15 B .8811 .0575 1321 .8822 .8408 9210
A .2479 .0987 .1096 .2452 111 .3146
P 2535 0934 1737 .2622 .1960 3178
200 50 B .9533 .0598 .0758 .9503 9123 .9927
A .2538 .1007 1141 2571 .1831 .3157
P .2903 .0908 1424 .3003 .2315 .3533
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6. Conclusions

In this article, we have pomted out a blu in the asymptotic expansion of the maximum simulated
likelihood estimator 6, with i dently lated ts. This bias in the uymptohc expansion of
Vn(fg — 6,) has an order O(n!/?r ") where n is the sample size and r is the ber of simulated rand
variables for each sample observation. This bias occurs due to the nonlinearity of the derivatives of the log
likelihood function and the statistically independent simulation errors. The classical maximum likelihood
estimator is known to have biases of order no larger than O(n~!/2) in an asymptotic expansion of \/n(d. -6,)
where 0. is the classical i likelihood estimator. The i imulated likelihood estimator 0,
is asymptotically efficient when r goes to infinity with a rate faster than n'/2. However, the bias due to
simulation will dominate the biases of O(n~'/?) unless r goes to infinity with a rate as fast as or faster
than n. This is quite ad di i t for the simulation estimation with ind P dently simulated

ts. If ris ing only as s fast as n'/2, an asymptotic bias will be p t in the limit dlntr buti
of \/n(f, —0,). If r increases slower than n'/3, \/n(8y, — 8,) will diverge. Under auch a clrcumstanoe, 01 can
only be r-consistent and the properly normalized ptotic distribution of f is a d ted distribution.

In this article, we have also suggested some '- djust 3 d to conect for the dominated
bias due to simulation. The bias can be reduced to an order O(u‘/’ ~?) in an asymptotic expansion of
Vi (04 —0,) where 84 is a bias-adjusted estimator constructed from 0,_ The bias-adjusted estimator is
asymptotically efficient if r increases faster than n'/4. The biases in v/n(04 — 0,) will have orders no larger
t.hun O(n='/3) if r increases as fast as or faster than n'/3, Thls requirement is much less demanding for the

| tation of the simulated llkellhood estimati wuh dently simulated ts. Some Monte
Carlo experiments have d ated that the bi dj t dure is valuabl

This article has concentrated on the analysis of the uymptotlc expansion of biases of the simulated
likelihood estimator. The analysis has useful implications on point estimation as well as on the construction
of Wald test statistics and Scoring test statistics (Lagrange Multiplier test statistics). The implementation
of such statistics and the likelihood ratio tests statistics will be left for future investigation.
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Appendix A

Lemma A.1: Ifb and b are not zero, then

ol

= % = g(“l)t" bl.[(& —a)b-d)r1- {.(i, Zo
+ ('l)mz::[(fl —a)(b-b)™ - %(i — pymHy,
for all m > 0, where T§_, is understood to be zero as a convention.

Proof: This lemma can be proved by induction. Since } = }{1 - i(@ — b)), we have

%_%= %(a-%ﬁ): %[(é—a)-%(f»—b)].

Suppose the result holds for m — 1. It follows that

- m-1
$-5= g(—n)*-',,l.[(a— a)(b- ) — B~ b)")
O G- o) - b - - 87
m-1
= Y () (6 - a)(b- b1 - 26— byY)
k=1

+ Pl 26 - Bl @ - )6 - B - $6- )
= Y1 G- a6 - ) - 36 -0

k=1

+ (P 3@ - )6 - - 56 - HmH.

QED.

Lemma A.2: Let z;, i = 1,---,r, be independent random variables with mean 0. Let v be an even
integer. Then

r r
E|Y &) < Ar$' Y Elsl,
=1 i=1
where A, is a universal constant depending only on v.

Proof: This is Lemma A on page 304 in Serfling [12].

P ition A.3: Suppose that (v(li),....vsi),zi), i = 1,...,n, are identically distributed random

i = ‘(zi) ‘ [; Zp(v}i),z;)] ° % z’:‘(”‘(ii)-zi)] )
j=1 j=1

vectors. Let

where my and my are nonnegative intergers and s, p and t are measurable functions such that, conditional
on z, E(p(v,z)|z) = E(t(v,z)|z) = 0. If my > 0 but my = 0, assume that E(s?(z)p*™ (v, z)) is finite.
Otherwise, assume that E(|s(z)|°p*™%(v,z)) and E(|s(z)|**™**(v,z)) are finite, where 1 + 1 =1, some

a> 1. Then "
3 ol = 05 =4%2),

i=1
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Furthermore, i](v}‘), .. .,vf-‘),z;), i=1,...,n, are i.i.d. random vector, then
1 — myg.
—= 2 _(ari — y,) = Op(r~ )
> ’

where py, = E(gr;) is the mean of gr;.
Proof: By the Holder inequality,

B) < BV (S Yoptos, ™ BVl 3o oy 2P
i=1 j=1
The Lemma A.2 implies that

E([%,z_;!’(w,z)]’"'"lz) < S B(F™ (v, 2)l2)

and E([2 T7_, t(v;, 2)]*™?|z) < 55 E(t*™%(v, z)|z) where c is a constant. Therefore, E(g;) < r%=s5d,
where d = EY*{|s(z)|°p*™%(v, z)} E/*{|s(z)[|*t*™2* (v, 2)}. By the Markov inequality and the inequality of
absolute moments,

n
P r =¥ Y gl 2 ) < PR B(lgal) < T BV (1) < e tet/2a,
i=1

Since ¢ is arbitary, n-ip=E2 ):::1 laril = Op(1). This proves the first part of the results.

h

When the random vectors (uf'), .. .,ug),z;) are i.i.d. for all i, the Cheby inequality impli

n
P(In= 3 =42 (g0 — iy, )| 2 ) S €M™ E(g — iy, ) < €.
=1

Since ¢ is arbitrary, n~1/3r =4 it (gri = pg,) = Op(1). Hence é:z::‘:l("n' - g,) = Op(r~= = ).
This proves the second part of the results. The case with ma = 0 can be proved without using the Holder
inequality. Q.E.D.

Proposition A.4: Let {v;} be i.i.d. random variables. Supposc that the ble functions pi(v),
1=1,...,4, have mean zero. Then
()
k41 1 r 1 k41
E{III= M==<E . k=13
(g[,?;m(u,m I (gp.(v))
(i)

r-

—L B ()pa(0) Blpa(0)pu(v)

4 r 4
B[ Y pe = 5 {3E 0] neN+
1=1 ' j=1 i=1
+ E(p1(v)Pa(v)) E(pa(v)Pa(v)) + E(p1(v)pa(v)) E(p2(v)pa(v))] }
Proof: The proof is straightforward by using the independence property of the vs.  Q.E.D.

Proposition A.5: Let (uf‘),...,v(,‘),z;), i=1,...,n, be i.i.d. random veclors, and p(v, z) is a mea-
surable function with finite fourth order moment. Denote p.(z;) = }Z;:: p(ug'),zl). Suppose that h is &
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twice differentiabl ble function such that its second order derivative is uniformly continwous and

J

dounded. Furthermore suppose that p,(z) converges in probabilily niformly in z to E(p(v,z)|z). Then

% ‘z;h(p,(:‘)) = & ‘in(zw, 2)lz]) + Op(maxin-13r1/2, y-1)).
= =1

Proof: By a Taylor expansion up to the d order,

LS hip (=) = 3 Yo (Elp(o,2lz) + Fa+ S5,
i=1 =1

where

Fa= & 2 VMED o leip 20 = Bl =i,

and
S = % E(Py‘(si) — Elpe(v, z)l2il) V*h(Be(2:))(pr(2:) ~ Elpe(v.zi)izi]),

with V and V? being respectively the gradient operator and the matrix of second order derivatives. The
second result of Proposition A.3 implies F, = Op(n~1/2r=1/2). Since p,(z) converges in probability to
E(p(v, 2)\) uniformly in z and V3A(.) is uniformly continuous and bounded, sup, V(5. (z:))|| is bounded
in probability. As

15u] < o IVAG I+ o D lpete) = Bl iz,
£ =1

the first part of Proposition A.3 implies that S, = Op(r~!). Q.ED.

Proposition A.6: Suppose {v;} is a seq of i.i.d. random variables, and {z:} is o sequence of
i.i.d. random variables which arc independent of v, for all j. Let ¥(v, z) be a measurable function of (v,2)
with zero mean and finile variance.

(i) Suppose that r is an integer-valued funclion of n such that limpco I = Ay czists and 13 finite, then

1 n r 1 n r
SNMUBEE MU ’@E”"’"""""’” +op()

i=1
L+ N (0, var{E{¥(v, 2)iz]} + Mvar{E(v, 2)lol})-
(ii) Suppose that that limnco £ = Ay czists and is finite, then

L =L gﬂ(w(».n)lzo + 2 3 b 2l + 0r ()

=1 §=1 i=1

2, N0, Aavar{ E[g(v, 2)l2]} + var{ E[$(v, 2)I1])}).

Proof: These are central limit th for g lized U-statistics in Lehmann [7] (see, also A.J. Lee
). QED.
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Appendix B

Proof of Lemma 1:

It is apparent from (3.4) that the mean of L, is sero. Proposition A.3 of Appendix A implies that
L, = Op(r~'/?). The Q, can be rewritten as Q, = # 301 @ris Where

L
_ dy SlnP(l]6,,
= § T

- [!'.,(9”3‘) - P(lIO.,z;)] [afr,l(:;| 36) - GP(";;,")] }

214, (B0 22) = P(IIBe, 2P

Since E(grild;, zi) = b, Fﬂﬁm (M‘ﬁ!ﬂﬂ-év&(hn(v,za)lzg)— Leov(hi(v, zi), -’—“‘,L',‘!‘)lzg)), the mean
#y f gri i8 pg = E(gri) = E{Egrildi, i)} = L/, where i is defined in the statement of Lemma 1. From

Proposition A.3 of the Appendix A, * S ie1(gri — #¢) = Op(r~?). The remainder term C® has a smaller
order than Q, since

L
ICEN < Op({ 7z 33" UealBe, =) = PO ) 2hetllenz) _ OPCz)y

by using the first part of the results in Proposition A.3. Q.E.D.

Proof of Theorem 2:
From Lemma 1,

1 gy, Onfei(8o,i)
7 ggdu 80.
1 &, BinP(b,,2:)
= Ay 4 Ly 4 Qo + O
ALLYT w
n L
==Y 3 ZBACT) | 0p(r-112) 1 (0p(r~) 4 '] + Op(nf30=302),
i=1 =1
Hence,
; Cf1&& fbm))
Va(lL ~8,) = ~ {; Z;Zl:dn'm‘a%,—l}
n L
x {%..- szum—nﬂo(—:ﬁi)- + 012~V 4 Op(max(r—*/?, n'/’r"”])}.
i=1i=1

For the case (3), as n'/2r=1 goes to zero, yn(f — 0,) = kT, L di 20B{8e.50) 4 5o(1). The result
of (i) follows from the classical central limit theorem. Under the case (ii),

L ~1 L
it = { £ [ (19,2 20 U0e.2) aPU0, ) } { % > d"mnpg;:’o.,a) N .\p} +orll).
I=1

80 14

i=1
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which converges in distribution to N(AQji, ). The case (iii) occurs when r increases at a rate slower than

/n. Let k, = r//n. It follows that
'(éL - 00) = En\/_(é[. - oo
{ ED’ &Inf,1(6, =i } -

S5 600"

n L
InP(ll6,, z; 1= - =
{\/"-Eg‘"“ (ala° ‘)+k,.n‘/‘r Vi + knOp(maxfr=1/2, n1/?r s/z])}

n L ! -t
{ 2> du Ength } {Op(kn) + i + Op (max[kyr=!/%, r=4/2])}
1

i=1i= 0656’
=0Qa+op(l),
because r — oo and k, — 0. Q.E.D.

-

Proof of Lemma 3:
Proposition A.3 and Proposition A.4 imply that

n = f 36ri = B(eri)) + VAE(Grd) = Op(r=0%) 4 =2z

i=1

where ¢ is defined in the statement of Lemma 3, and
Dn = % 2 _(dri = E(dri)) + Vir~2d(r) = Op(r™?) + v/ar~2d(r),
i=1

where L
)= B gy { T g 2B 0o = PO 01

- p2eillezd _ OPWh.zdyy o, 2 - PO, 2Ple0)})-

Proposition A.4 shows that

B(1fra(0n,2) = PO 2)}Ye0) = {37

var? (o, 20)i) + LE(h(v, ) = P00, 20120},

and

p(Zeiluiz) _ 2PWnizdyy g, 2) - (LG, 20Ple0)
= St ez _ B Wetyy 2 P, 2 lec varthu(o, =)le)
+ 1o 2z SR =y, ) - page 2120}

For the remainder term R,

\

n L
1Al < o»(l){% 33 Ve sBo, 22) - P(UIBe, 2}
i=1 =1

L
¢ Ly s it Wz y g,z PO, 20
i=1 =1

= OP(”lIZ,.-E/Z),
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from Proposition A.3. Q.E.D.
Proof of Theorem 4:
For each component 8, of 8,

0= %i mnf,.(o.,z.) +1 Ezd 8 lnfrl(ao»zi)(o —8,)

i=11=1 ‘-l I=

n L
+a 3 dne - 9»)'%,&2(9‘1. ~6,)

n L K K K a
+3m PIPIL'DM Dnfei(0.2) 0Ly — 0ob,)(OL,2s — B0k, )01k, ~ Oar,).

861064, 80,80,

i=11=1 ky=1ky=2ky=1
From (3.13) and Lemma 3,

1 & binfuBe,z) 1
— dyy ——Dx 7Y
O

n L
—l; Z Zdumﬂl;%ﬂ + Op(maxfr~1/3,n'/3p~1)),

Proposition A.5 implies that

2 n 2
L lthn) 15 P G, i,

-.-l =1 i=11=1

and

BInf,1(06,2) _ 1 S, 8°InP(l|,, z; T
Z“z _—_—00.5089' = "Z,:,z,:d"_80.3080' i) + Op(max{n-Y2r-1/2, ,-1)).
"~ "= =

It follows that

Va(lr —8,) = Q—= zzd Olnfu(v.,z.)

u—l =1

ot zzd'ﬂ lngglal::.z. E(z:d 'k InP(l"”’z))]\/—(h —4,)

l"l I=
+0r(mx['-"“ =13, 1) alle —9.ll)

(\/'_'(51- — 8y I, Tk, di DRl )y, - ﬂa))
Q .

VAl - 0y LTI, T, di Rz, - 6,)
+ Op(max[n~/2r=1/2 +=1]. \/n|ldL, — 6o||?)
+Op(ValbL - 0|°).

From (3.1), (3.2) and (B.2),

+

NS |

Va(ly -6,) =0 \/_224 w'_"_‘)+o (max{r=1/3, n}/3p-1])

i=11=1
= Op(max[1,n'/?r"1)),
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(B.1)

(B.2)

(B.3)

(B.4)

(8.5)

(B.6)



which implies that

n L
(: Z‘lzd“azlnp(lwnh! E(Zd 'lnP(l]O., !)]\/_(0" -0. (B 1)
=) =1 .
=Bin +0p(n“”)0r(mlx[""’. 31,

whete B, ,, is defined in the stat t of Th 4, and

it -0yt ):Z 4, SPUI, =) 5.

00,0000

le!
TS InP(l[O.,z.) BMnP(l8e,2) o 1 S, BinP(ll8,, z))
b §§" me 22““ 90,0006 m‘?ﬁgg"“ %0 )

+n"‘”0p(mnx[r"” 1/3 -\])

_ BinP(I)9,, 2;) OIPlf8y,7), ., 1 S alnP(lW,,z;)
= n-3 e g 1nlXl%,7)
n (T §§d )QE(ZJ 56,0909 )Q(V;‘Z;'Z;du )
+0p(n~") + Op(max[n=1/2r-1/2, "l)-

(B.8)
Substituting (B.2),(8.7),(B.8), snd 01 ~ 8, = Op(max{n~1/2,¢~1]) into (B.5), we have the asymptotic
expansion in (3.19). Obviously, By, and By, have the order Op(n~"/?). The computation of the means of
8y and By, are trivial. Q.E.D.

Proof of Theorem 5:
By the expansion (3.26),

n L a L
%22 |nfn!0.,z; ZE lﬂp(ﬂoo,li +iln+Q-n +C—S;R)-
i=1 =1 =1

l

The tezm Ly can be rewritten a8 La = rb= 50, 3, (V, , ), where z; = (dj, z;) and

. 2 1 Bhy(v;, i, 05) 1 P(l)8,,%:)
T P i R E

Since E($(v, £)}2) = 0, the central limit theonmofthe generalized U-statistic in Proposition A.6 impli v.hut
when limy.qo 5/r = Ay exists and is finite, L, £, N(0,),V), but when limy_,q n/r = 00, «r?ni..
N(0,V) where V is defined in (3.30). In either cases, we have L, = Op(n'/*r~*/%). The firet part of the
results of Proposition A.3 implies that &, = Op(n?/?r=*) and C, = Op(n'/3r~3/3). Therefore,

Vi(ip — 6) = '{ sz Pinfes6,51) ‘(om)} { 7 if:dn DlnP(llo.,z;) 4 Lo 4 0p(n'? ")}

=1 J=1 i=1i=1
When limp—oo n/r = A; exists and is finite, Proposition A.8 implies

Valp - 8.) = N(0,QI0"! + M V]Q).
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On the other hand, when lim,_... n/r = oo,

\/;(ED -0.)
= /rfn-u(dp - 6,)

-1
- (sEEa) (L + VAL +0r( )

i=1 =1 -sl 1=t
-1
= { sznj%"ﬂ} {\/’T/—;iu + 0?(1)}
i=1 i=1
24 N(0,QVA),

where the third equality follows because limy .o r/n = 0 and lim, oo r = 0. Q.E.D.

Proof of Theorem 6:
Define v(8,2;) = 1p(8, z;) where

7 [mnP(';l:.,z‘) var(h(v, 2:)lzs) — cov(h(v, i), — 53—

P om(u,z.)
Ho,=) = Z; P10, =) "l

Consider each terms separately in the decomposition:

E"r(oln‘l) = In g"(ohzi) + = f Z[”r(onzt) v(Be, 2z + —= \/— E{"f(ollv“) = vr(fo, %i))

-—l i=1 i=1

Since E(v(86, %)) = r-*f it follows that
1« 1< = -1s i -
25 L) = sz Y= i) 4t el O,
i=1 i=1
Proposition A.5 implies that

Zl“"(o"‘t) o,z = r'n ek 2 Zu‘r(on 2;) - n(8,, %)) = OP("“-"["_:“ 1, r=?).

l_-l

By a Taylor expansion,

leu.(ob.z‘)—-«.(o..zol—r-'n‘“m o) ):"“"‘ 23) = Op(maxlr™", wi/2),
i=1

because /n(dz — 96) = Op(max{1,n*/*r~"]) in (B.6). Therefore,

L v,- 6;,:.') =n'r i+ Op(le["-l. 'll’,"-zl) = ol’("”"’-‘)' (B.9)
Zn

™

Denote

Tm..li:z lnPgllﬂ.,zag E(Z i lnP(qo., 2,
1i=1

L . .
=l 1y Z: ln)goa;:'..z.) lzzd 8’1::::2::‘ l)’

€=
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and

n'" _zzd lik lll!g;;:'[,,zi) 224 8? ln[,,(o.,z.)

=1 I= (—l I=1

It is obvious that Tj , = Op(n~'/?). Proposition A.5 implies that T, = Op(max[n=1/3r=1/2 y-1]), By
the mean value theorem and (B.6),

X -
i 2 o’_l:?%!'(':;_n)(ﬁ.k = 6,,4) = Op(max{n~"/2,r"1])).

&
i
M
[:)..

"
-
1)

-
»

=1

n L A L
%szu Anf, (0, 2:) _ E‘Zd' dzlngo(gzrli)) =Typ+Top + Tsn = Op(maxfn='?,rY)),
I=1

i=1 121 8000
and
(5 Sty (o Ptttz )
= -{ig;li;d"%%}-
s gy PO Pt

= Op(mnx[""' 4

It follows that

1, g (B, i)\~ 8*InP(l|fe, z:) LS o
({;_};‘Ed 5055 i) {E(Z" e } ) ,.g”""”" (B.10)
= Op(maxfr~',n 13 _’D

Hence it follows from (B.10) and (B.9) that

VAlia - 0.) = e - 8)+ {+ 224 Pnfei(Br, )y~ '%iw(én.zi)
i=1

ot 8080'
= V(b -0,) - Q‘/_ Eu,(ﬂ;,z.-) + Op(max[r=*,n"/?r-?))

= \/(aL -0)-9a- n"’ “p + Op(max[r‘l,n'“r"]).

The final result foll from this equation and (3.19) in Theorem 4. The proof of the estimator defined in
(4.1)’ is similar. QE.D.
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