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1. Introduction

An econometric model, which has useful applications in production analysis, is the stochastic frontier
function model of Aigner, Lovell and Schmidt [1]. The likelihood function of their model has an irregular
feature at an interest point in the parameter space where the firms are all technically efficient. At such a
point, the scores are linearly dependent, and the information matrix is singular.

The maximum likelihood method (ML) for the estimation of parametric models has been studied ex-
tensively when the information matrix is nonsingular. When the true parameter vector is in the interior
of the parameter space, it is known that the ML estimator (MLE) is asymptotically normal (see, e.g., Rao
[10]). The case where the true parameter vector is on the boundary of the parameter space has been an-
alyzed in Moran [8], Chant [2] and Gourieroux, Holly and Monfort [4]. For the latter case, the MLE has
the usual N1/-rate of convergence in distribution, and its limiting distribution is a mixture of truncated
normal distributions. More recent developments on the theory of hypothesis testing of inequality constraints
in econometrics can be found in Yancy, Judge, and Bock [20], Kodde and Palm [5], and Wolak [17,18,19].

Silvey [15] has argued that there is a connection between non-identifiability of a parameter vector and
singularity of the information matrix. Rothenberg [11] proved that local non-identifiability of a parameter
vector implies a singular information matrix, and if the true parameter vector is a regular point of the
information matrix, the converse is true. Sargan [12] has constructed examples of simultaneous equation
models which are identifiable, but the information matrices are singular. Sargan has analyzed the asymptotic
distributions of some instrumental variable estimators for his models. The asymptotic distributions turn out
to be nonnormal and are very complicated.

The irregularity in the stochastic frontier function model has been pointed out in Olsen et al [9],
Waldman [16] and Schmidt and Lin [14]. Lee and Chester [6] have suggested some alternative test statistics
and modifications of the classical Lagrange multiplier test and the Wold test, but there are no analyses on
the asymptotic properties of the MLE at such a circumstance. Frontier function models have important
empirical applications in applied econometrics. Literature surveys on the subject can be found in Forsund
et al [3] and Schmidt [13]. Most recent developments are collected in Lewin and Lovell [7]. This article
provides an asymptotic analysis of the maximum likelihood estimator when the irregularity occurs. It fills
in a gap in the econometric literature of stochastic production function models.

2



2. An Irregularity in the Stochastic Frontier Function Model

The stochastic frontier function model introduced by Aigner, Lovell and Schmidt [1] is specified by

y; =x f#+ u; +vi, i= 1,-..,N, (2.1)

where x is a k-dimensional vector of exogenous variables which contain a constant term; the disturbances u,
and vi are independently distributed; u <; 0 represents technical inefficiency; and vi represents uncontrollable
disturbance. A popular parametric distributional assumption is to assume that u, is half normal with density
function

2 u2
h(u) = exp (- - ), u < 0, (2.2)

and vi is normal N(0, o2). Furthermore, (ui, vi) are assumed to be independently and identically distributed
for all i. We assume that the exogenous variables {z} are uniformly bounded; the empirical distribution

of {x} converges in distribution to a limiting distribution, and limN.. k z x z, exists and is positive

definite. For simplicity, the exogenous variables are in the deviation form such that E 1 zij = 0, j =

2, ... , k, where z = (xi, Z2i, ... , X;) with x1 ; = 1. Let 6 = 0'i/0 2 and Q.2 = of + 0- as in Aigner et
al. [1]. The parameter space O of (3', "

2 , 6)' in R', where m = k + 2, is assumed to be compact. These
regularity conditions are sufficient to justify our subsequent asymptotic analysis. While the variance a2 is
always positive, the parameter 6 is nonnegative but can be zero.

The log likelihood function for a random sample of size N is

NT 1 N N
lnL(O) = Nln2 - ln(27r) - Ino 2 _ Z( z#- ) 2 + E In{1 - <[6(yi -xi3)/r]}, (2.3)

-l 2 i=1 i=12 2 - 2

where 9 = (/3', a 2 , 6)'. Let ei = yi - z/3 and Ai(9) = q(eg&/o)/[1 - <(Se/u)]. The first order derivatives of
(2.3) are

BlnL(6) 1 N ,
2L() I iz(ei +6uaA;(6)), (2.4)

0lnL(O) N 1 N2 6 N
2 = - + 2 z e, + E A:(O)ei, (2.5)

i=1 i=1

and

O1nL(G) _-1 N
= -- Z A;(G)Ei. (2.6)

i=1

One of the interests in this model is to investigate whether all the firms are technically efficient or not.
All the firms are technically efficient if and only if 6 is zero. As 6 is nonnegative, 6 = 0 is on the boundary of
the parameter space. From (2.3), the right-hand derivatives of any finite order of the log likelihood function
with respect to 6 exists. The first order derivatives (2.4)-(2.6) at 6 = 0 are

OlnL(a,0) 1 N
0 E-, (2.7)

s=1

OlnL(exO) _1 N

=u 2u2 *2 ) (2.8)

and

01nL(a,0) _ 1 2 N.9

06 a. V .~
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because Ai(a, 0) = 2/7r, where a = (/3', u2 )'. Any irregularity of the derivatives in (2.7-2.9) is that they
are linearly dependent as

BlnL(a 0)
' S(a) = 0, for all a, (2.10)

where S(a) = (o 2/7r, 0', 1)'. This implies that the information matrix at 6 = 0 is singular. Another

irregularity of the likelihood function occurs on the second order derivatives of the log likelihood at 6 = 0.
The formulas of the second order derivatives of the log likelihood function for the model can be found in
Aigner et al. [1]. At 6 = 0, we observe that

O2 nL(a, 0)ZN 1( 1 N 2 1/ N
000' -204N EL20 Ej i=1Z..Ei

* * - E f

It follows that
82 1nL(ac,0) 2 N (.1S'(a) S(a) = -Zj(1-/ 2 ).(2.11)

i=1

The second irregular feature of the model is that

(8lnL(a, 0) 8lnL(a, 0) 821nL(a, 0)
8/1 , 02  , S'(a) 0 S(a) R(a) = 0, for all a, (2.12)

where R(a) = (0', 4q 2 /7r, 1)'.
We note that even though the information matrix at 6 = 0 is singular, the parameters in this model

are identifiable. As shown in Aigner et al. [1], the parameters in this model can be consistently estimated
by using the first three sample moments of the distribution of y conditional on x and hence the parameters
are identifiable. The problem of interest is to derive the asymptotic distribution of the maximum likelihood
estimator when the true parameter vector has 6 = 0.
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3. Simplification and Transformation

To derive the asymptotic distribution of the MLE, we will follow the approach of a Taylor series expansion
in most of the asymptotic analyses. The two irregularity features (2.10) and (2.12) of the model complicate
the picture. However, these irregularities can be simplified with some simple transformations. The following
statements summarize the 'useful transformations.

Let L(a, 6) denote a general likelihood function with a parameter vector a and a single parameter 6.
The likelihood function is assumed to be continuously differentiable up to the third order.

Proposition 1. Suppose that there exists a differentiable vector-value function V(a) such that

(OlnL(a,0) OlnL(a, 0) V(a))a
a' ' 86 1 = 0, for all a. (3.1)

Define L*( , 6) = L( + 6V ( ), 6). Then

BlnL* ( , 0) _ BlnL( , 0) BlnL* ( , 0) -_

- Oa ' 86 ~ '

_____(,)___a
2lnL(,o V (t;, ,and 2 ln(,o) =[V'(,), 1] Mwhere 0 = (a', 6)'.

Proposition 2. Suppose that there exists a differentiable vector-value function W(a) such that

(olnL(a,0) 2 lnL(a,0) W(a)- o l(
1a ' 82- 0, for all a. (3.2)

Define L*( , 6) = L(. + W( ), 6). Then

8lnL*(e, 0) -B8lnL(e, 0) BlnL*( , 0) _B8lnL( , 0) 82lnL* ( , 0)
a a ' 86 - 86 'and 862 -0.

Proposition 3. Suppose that alnL a,o) = 0 and a2lnLao) =0. Define L*(a, )= L(a, 71/3). Then

8L*(a,0) 1 83 lnL(a,0)
a- 3! 863

All the proofs of these results are straightforward and can be found in the appendix. Proposition 1 says
that the linear dependence of the first order derivatives of the log likelihood function in the form of (3.1) can
be simplified to a zero score case after the transformation: a = ( + 6V( ) and 6 = 6. If this transformation
is one-to-one, it provides a useful reparameterization of the model as it simplifies the linear dependency of
the scores of the likelihood function. The irregularity of the likelihood function in the form (3.2) involves the
first and second order derivatives of the log likelihood function. Proposition 2 says that such an irregularity
can be simplified to a zero second order derivative of the log likelihood function after the transformation:
a = ( + ( W(() and 6 = 6. Proposition 3 says if the first and second order derivatives of the log likelihood
function are zero, the third order derivative divided by 6 is the first order derivative of the log likelihood of
a reparameterized model with the reparameterization y - 63.

By combining these transformations, the irregularity of our likelihood function of the stochastic function
model can be simplified and eliminated. Let li = (1, 0,..., 0)' be the first unit vector in Rk. Define the
transformation

(1=I#3-6o 2~i, ( 2 =u#, 6= 6, (3.3)
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from (3, c 2 , 6) to ( , 6), where ( = , '2)'. This transformation is one-to-one. It follows that (#', .2)' =

( + 6(/2 2 /ir, 0')' which provides the transformation in Proposition 1 to simplify the irregularity in (2.10).
Define Lit( , 6) = L( 1 + 6/22/li, 2, 6) which is the likelihood on the parameter space of ( , 6). It follows
from Proposition 1 that

81nL*((, 0)
ai1l

1N
81nL*(,0) 1 N 2

= -- z-(y, - xzi1) - 1 ,
ad2 262 (2

0 = 0, (3.4)
as

and

021nL*( , 0) { 2(N - 2
062 ~E 1J(y; - zi()

These first and second order derivatives are linearly dependent as

(3.5)

C 81nLi ( , 0) 821nLi ( , 0)1

aV aa2 1

(3.6)

where W(') = (0', 4 2 /ir)', which is equivalent to (2.12). Due to this dependency, these derivatives will not
be sufficient to be used as the leading terms in the Taylor expansion to derive the asymptotic distribution
of the ML estimates. Proposition 2 suggests the further transformation:

'91 = 6 7 'q2= (1 +262/lr)- 16) 6 = (3.7)

which is equivalent to the transformation ( = rj + c(0'4i92/ir)'. The likelihood function of (i, 6) is

L2(7, 6) = L*(?1, (1 + 262 /7) 2 , 6)

= L(9 1 + 6[(2/7r)(1 + 262 /7r)72"1/21, (1 + 262 /7r)2, 6).
(3.8)

Proposition 2 implies that

BlnL (7, 0) 1 N 8lnL2(q, 0) _ 1 N (yi - ii)2
- xz'(yi - xin), = --

081 2i-8072 2721 72

alnL;(,,o) = 0, and 82nL (OO) = 0. From (3.8), by some tedious calculation,86 862

-1},

J

(3.9)

83 1nL*(, 0)
6a3

ir N E
12 Ne}

-r 
u

(3.10)

2 1- 32( , 9~ig12)3y,- xi1)

(i=1 772 i=1 72
Finally, with the transformation y = 63, the likelihood function on (77, y) is

L* (q, 7) = L*(, 71/3) = L() 1 + 71/3{(2/7)(1 + 272/3 /) 2}1/ 21 1, (1 + 272 /3 /)? 2 , 71/3). (3.11)

Proposition 3 implies that

8lnL*(71, 0) 1 N .
= x=[z(y= - xz;71),

a81 ;;2 i 1

OlnLs(1,0) _ 1 N (y;-x-j1)2

8072 2712 712
(3.12)
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and
0lnL (17, 0) _ 1 rr

3!V (1

4N 3
7ri=1

12= 1

(3.13)

3! v -x

4N 3 N

(1----) r + ! (y__-______
7 =1 32 1 J

c~ n :i1 l1

The information matrix of L3(rj, 7) at (,q', 0)' is

IN (T, 0) = ( 0~ixx

12ri Z:l Xi

0
N

0

12wN1 Zi x
0 i

(3.14)

which is nonsingular. The likelihood function on the reparameterized parameter space of (j, '7) does not
have irregularities.
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4. Asymptotic Distribution of the Maximum Likelihood Estimator

Let /3 = (#1,f3 )' where 81 is the intercept of the frontier model. The complete reparameterization of

the model consists of the following transformations:

jii =01 -6o\1/57, 712 =f#2, 72 = (2(1 +262 /r)-1, 7= 63, (4.1)

where 771 = (7111, 12)'. These define a mapping from (3', o
2, 6) to (vj, -y), which is one-to-one. We have from

(4.1) that

#1 = 7n + 71/3, 1/2 (1 + 2923/7r)1/2V/7, /32 = 712,CT2 = 712(1 + 272/3/r), 6 = 71/3. (4.2)

Since the model is defined on 6 > 0 and, correspondingly, y 0, the corresponding MLE (ii', y)' maximizes

the log likelihood function on the transformed parameter space of (t', -y)' with 7 > 0.

For any given sample of finite size, it is possible that the MLE may occur at the boundary with i = 0.

When y = 0, 7 = (BL, &2)' where 1L and a2 are the MLE of the normal linear regression model

= ;#+ei, i = 1, ... , N. As > 0, i = 0 only if alnL ( ,o) 0. An analysis in Waldman [16] has

shown that this necessary condition is also sufficient for y = 0. Equivalently, from (3.13) y = 0 if and

only if E3 > 0, where 2; = y; - xz,/ is the least square residual. As y = 0 may occur with positive

probability, the asymptotic distribution of \/(i' - ,', ) will be a mixture of certain distributions as in the

general estimation of parametric models with inequality constraints (see, Moran [8] and Gourieroux et al.

[4]). As the exogenous variables are in deviation form such that z'x = (1,0, ... ,0). We assume that

limN.-oo x ' : x=1 =( exists and is nonsingular.

When > 0, the MLE ( ~', ~) satisfies the first order conditions: alnL3(n,5) = 0 and alnL; ,5) = 0. By
a Taylor expansion,

alnL;(.,o)
Ij_(,0) _an_ .(4.3)

a_

The conditional asymptotic distribution of -(' - r',y) converges in distribution to F1 (t) where F1(t) is

a m-dimensional truncated multivariate normal distribution defined on -oo < t, < oo, j = 1,..., m - 1

and tm > 0, and has in this region a density function equal to twice the density of a multivariate normal

distribution with means zero, and covariance matrix 1-1(71, 0) where

n2 0 0 in
1 0 2E 0 0

I (,, 0) = lim -IN (9, 0 0 1 - (4-4)
N-oo N

1 n 0 0 sw (5 -s 32)

On the other hand, when j = 0, the MLE (h', 0) satisfies instead the conditions: alnL;(",o) = 0, and

alnL(7,o) 0. From (3.12), it follows that asymptotically

As the exogenous variables are in deviation form, it follows from (3.13) that 21n ) -l. and

alnL;( ,o) -& 0 for any consistent estimate ij of t9. These properties and the relations in (3.13) and (4.4)

8



imply that by the mean value theorem

1 BlnL3(i,0)

1 8lnL (j,0) 1 82 lnL (),r0)

V/K-- By N 8y(8_'

1- 4 1 NE 2  3 121 N1 ( - (4.6)

1 - - +o)(1).

Since e; is normal N(0, q 2 ), E(E?) = 3c4 and E(e') = 0 for any odd r, we see from (4.4) and (4.5) that

N(# -'1) and 1 alnL3 (n,0) are asymptotically independent. Therefore, - i) is asymptotically
independent of the event that alnL ',o) < 0. Hence, conditional on y = 0, (- 7', ~y) converges

in distribution to a distribution F2 (t) of which its marginal distribution on the subspace -oo < t= < oo,
i = 1, ... , m - 1 is a multivariate normal distribution with means zero and covariance matrix Q where

fer2 0 0

0= (0 2E- 1  20 ,
0 0 2a4

and its marginal distribution on im is the indicator function of the set [0,xoo), where t = (ti,..., tm).

From (4.6), we see that 1 alnL(n,o) is aymptotically normally distributed with zero mean. Hence the

probability of the event 1alnL(^,O) < 0 is asymptotically 0.5. It follows that the unconditional distribution

of 1(' - y',5) converges in distribution to a mixture of distributions 2F 1(t) + 2F 2(t). This implies,
in particular, that V7~y converges in distribution to a mixture of discrete and half-normal distributions

2 Fn (tm) + !Fo(tm) where Fo(tm) is a degenerate distribution with unit mass at 0 and Fn(tm) is the half
normal distribution of N(0, 37r/[1 - 4/7r]2) defined on tm > 0.

The asymptotic distribution of the MLE ('3',<~2, 6) of (/3',,u 2, 0) can be derived from (4.2). As /V 3 
-

'/i is of order 0(1), 6 has a slow rate of convergence of order 0(1/N1/6). Conditional on 6 > 0, the
limiting distribution of N1/66 is the cubic root of the half normal N(0, 37r/[1 - 4/7r]2) variable. A mean value
theorem applied to (4.2) implies that

#1 -#1 = (711- u)+ (77 2-772)+ - y3~

where 3i /0112 and 93k/071/3 are evaluated at a point lying between (7', 71/3) and (q', 0). The consistency

of the estimates implies that plimN.+o = 0 and plimN-,--+o0 /1/3 = g/2/~7. It follows that for 56> 0

1 - 1) = N1 N 2(i- ) + N1N1/2(l 2 - /2) + ( 2~/3

= [(2N2 /ir) 3 /2 N(/ 2 ~ 1/3 + op(1),

which converges in distribution to the cubic root of a half-normal variable N(0, 240.6/(4 - x)2). When 6 = 0,
S= 0 and

-y( _ #1) - N'12(ih - 7/1) + N972(# - 7/2)

- N" 2 (ihu - 7/1) + op(l)

- Ni 2 (1L - #1) + op(1),
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which is asymptotically normal N(0, u2 ). The MLE /3 has different rates of convergence depending on the
sign of 6. From (4.2), (4.3) and (4.5),

N1/2(/32- /32) = N1
/

2 (712 - 7112) D N1/2(#2L - 32).

The MLE /32 has the rate of convergence of order O(N9-), independent of the sign of 6, and has the same

limiting distribution as the least squares estimate /32L of 132. A mean value theorem applied to o2 in (4.2)
implies that

22 a 2 -2~2 2 2--~2/3

Since plimN-=oo an NooN 8a y .a2f 0 g>

N1 -g _ 2 ) 1 -N1/2(# 2 - 92+ (N/2&2/
=N/

2 -"13 0 12 7+2) 72/3

= [(202/7r)3/2N1/2,] 2/ 3 + op(1),

which converges in distribution to the square of the cubic root of the half normal variable N(0, 24x6 /(4-7r) 2).
On the other hand, conditional on 6 = 0,

1/2(- _, 2) = --- N1/2(2 - 7 12) - N/ 2( 2 - 72) + op(l),
072

which has the same limiting normal N(0, 2o4 ) distribution as the least square estimate f2 of u2 .
Finally we note that as the model can be reparameterized and lnL(13, 3.2,6b) = 1nL3(, ~y), 2[lnL(3, &2, )-

lnL(/3L, a2, 0)] for the testing of 6 = 0 has asymptotically a mixture of chi-square distributions 2X 2(0)+x(1)
where the distribution X2 (0) is degenerate with a unit mass at zero and the distribution X2(1) is the square
of a positively truncated standard normal variable N(0, 1) (Chant [2] and Gourieroux et al. [4]).
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5. Conclusion

This article has analyzed the asymptotic distribution of a maximum likelihood estimator for a stochastic
frontier function model. The disturbance of the stochastic frontier function model is the convolution of two
independent random variables, namely, a normal variable and a half-normal variable. An irregularity of the
likelihood function occurs at the point where all the firms are technically efficient. At that point, there are
linear dependence on the first order derivatives and linear dependence across some of the first and second
order derivatives of the log likelihood function. These irregularities can be simplified into identically zero
first and second order derivatives of a reparameterized likelihood function. The asymptotic distribution of
the MLE can then be derived from a simple Taylor series expansion. Except for the intercept term, the
MLE of the regression coefficients of the stochastic frontier model turn out to be asymptotically normal as
the ordinary least squares estimates. However, the remaining parameter estimates converge in distribution
at much lower rates of convergence and the limiting distributions are nonnormal. Since the model can be
reparameterized, the maximized log likelihood function provides a valid likelihood ratio test statistic as in
the standard case with an inequality constraint.

We note that the asymptotic distribution for the MLE derived in this article is specific to the stochastic
frontier model. Our asymptotic analysis and the simplified transformations have utilized the specific irreg-
ularities of the likelihood function of our model. We have not provided a general asymptotic theory which
is applicable to any model with a singular information matrix. It is unlikely that a general theory can exist.
However, the Taylor series expansion technique may remain useful for many circumstances.

11



Appendix

Proof of Proposition 1. As

0lnL* ( , 6) _ 0lnL( + 6SV( ) ,6) r1+ 60V'( )] 0lnL( + 6V( ), 6)

0lnL* ( , 6) - 0lnL(e + 6V ( ), 6) V( )+0lnL(e + 6V ( ), 6)
06 Oa' a) 0

and
02 lnL* ( , 6) -(v() ~ lnL( + 6V(e), 6) (V(')\

0962 ' 0' \ OW1 1
where 0 = (b, )', it follows that, at 6 -0, lflL(e,O) = alnL(e,o)

0lnL* ( ,O) _0lnLGe O) VW )+ 0lnL( , 0) =-
and 82lnL (E,o) =(V( ,1)82n o ()) QE.D.

Proof of Proposition 2. For this case, we have

0lnL* ( , 6) r S+2 0W' ( ) 1 lnL( + -W(), 6 )

I+aO lnL* (, 6) 0lnL(. + -W (), 6) 0lnL( + 4-W (), 6)
06 =6S 0' W(~) + 06

and
02 lnL* ( , 6) _0lnL( + -W(), 6) W~

062 0a' W

02n( + W(), 6) 02 lnL(e + fW(), S)
+6S {6W'G() OanhI r' + W60'(6

'6 '0 2lnL(e + SW~) ) 02lnL( + b2W(), 6)
W(,+ a06 + 062

It follows that, at6b= 0, 8lnV(,o) = alnL( o 8lnL',o) = 8lnL( o) and

02 lnL* ( ,0) - lnL( , 0) W + 21nL( , 0)-

Q.E.D.

Proof of Proposition 3. By the Taylor expansion up to the third order,

lnL(a, 6) _ lnL(a, 0) O2 lnL(a,0) 6+1O 3lnL(a, b)6 2

06b 06a + 062 + 2 063
1 O3lnL(cr, 6)6I2
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