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Abstract
This article reports Monte Catrlo results on the simulated maximum likelihood estimation of discrete

panel statistical models. Among them are Markov, G lized Poly, R |, and Habit Persistence Models

with or without unobserved heterogeneity and serially correlated disturbances. We investigate statistical

properties and computational performance of simulated maximum likelihood methods and a bias-correction

P d With a moderat ber of simulation draws for the construction of simulator and the bias
adjusted procedure, most of these complex dynamic models can be adequately estimated for panels with

length up to 30. The Polya model and the Renewal model can be accurately estimated for panels with 50
periods.
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Simulated Maximum Likelihood Estimation of Dy ic Discrete Choice Statistical Models

—— Some Monte Carlo Results
by Lung-Fei Lee*

1. Introduction

In Heckman (1981a), a rich group of discrete time-discrete out tochastic p has been intro-
duced. It contains Bernoulli models, Markov models, 1p , Polya models, latent Markov models,
and other familiar hastic p The models are sufficiently flexible to accommodate time-varying

planatory variables, serial lation for unobeervable, and plex structural ic interrelati
ships among decisions over time. With rich specifications on both lagged dependent variables and lated
disturb , these proposed model date true and spurious state depend and can be used to *
test competing theories on state dependence. Heckman (1981a) has provided di ions on various models

in terms of data requirements, model identification, and implications for probability run patterns. Imple-

mentation of probability run patterns to test true state depend against spurious state depend. can
also be found in Heckman (1978) and Lee (1987).

For computation, Heckman (1981a) has focused on models with fixed effect, random components, or

h

factor analytic for bserved heterogeneity but with serially ind dent distribution for the

Y P

ing disturb Such struct simplify computation as likelihood functions for such models invol

single integral, which can be effectively implemented by the Gaussian Quadrat thod. While the
specification of rand p t for unobserved heterogeneity is a popular approach for panel data, the

serially independent assumption for the remaining disturbance is restrictive. Likelihood functions for models

with general serial correlation will in general involve multiple integrals. For discrete panel data models,
the di jon of multiple integrals will be p

portional to the ber of time periods. The ical

impl tation of such models is known to be computationally difficulty if not intractable. However, the

recent development of simulati thods by Lerman and Manski (1981), McFadden (1989), Pakes and
Pollard (1989), Borsch-Supan and Hajivassiliou (1993), and Keane (1994), among others, provides evidences
that such a difficulty may be overcome with carefully designed Monte Carlo simulation estimation methods. A
simulator due to Geweke (1989), Borsch-Supan and Hasjivassiliou (1993), and Keane (1994) based on recursive

simulation of t ted random variables is shown to provide a good unbiased simulator for multivariat
&
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normal probabilities. Keane (1994) has emphasized its usefulness for the estimation of panel data model and
has provided some Monte Carlo results for binary choice panel regression models with 8 periods. The Model

Carlo results seem encouraging.

In this article, we are going to investigate the simulated i likelihood method for the estimati

of various dynamic panel models introduced in Heck (1981a). Special attention will be on the value

and potential limitation for the estimation of long panels. We report Monte Carlo results for the simulation

"

tion of such models. An important aspect of the experiment is to investigate the discrimination ability

of the true state dependence vs. spurious state dependence in various dynamic models. Other aspects of

interest are on the simulated likelihood method itself. As the time length for a panel data increases, the total

number of choice alternatives, which are compoeed of choice paths, i

P tially and the di
of integration increases linearly. The probability for any specific choice path will become smaller for longer

panel data. One may expect that the simulator would become less accurate as time length increases. So one

of the aspects is to investigate the quality of the simulated esti for model p ters with long panel
data. As the likelihood function is nonlinear, the simulated log likelihood function is a biased estimate of
the exact log likelihood function. The simulated likelihood estimator can be istent only if the ber of
simulated variables in the construction of simul i with ple size. For efficient estimation, the

number of simulated variables has to increase with sample size at a certain rate. If the number of simulated

does not i fast gh or, in practice, the number is not large enough relative to sample size,

the simulated likelihood estimator might have an asymptotic bias or a dominated finite ple bias (relati

to standard error) due to simulation. The leading bias term due to simulation in the simulated likelihood

can be d by a bi tion procedure as suggested in Lee (1993). As a by-product, we

will investigate value of the bi ion p dure for the estimation of dynamic models with our Monte
Carlo experiments.

The organization of this article is as follows. In Section 2, we provide an overview of various interesting
models introduced in Heckman (1981a). It provides a guided tour for models studied in our Monte Carlo

experiments. We review the formulation of simulators and simulated likelihood functions for such models

and describe the bi rrection proced Monte Carlo results are reported for each model in subsequent

ti G | lusions are drawn in the last section.

2. Dynamic Models and Simulated Maximum Likelihood Estimation — an Overview

To analyze panel discrete responses in discrete time, Heckman (1981a) proposed  general f kin

terms of latent dependent variables. Resp are observed from signs of latent dependent variables. The

latent dependent variable at each period can be interpreted as utility difference acroes choice alternatives.

Observed responses are results of utility maximization as in McFadden's discrete choice fi k (1974).

The latent dependent variable y; for an individual i at period ¢ is a function of vector of iabl

iy, past occurrence of the event, and prior propensities to select a state:

00 o0 & 00
Vie=zB+ Y mwat 433 [Tha-1+ Y 88ecs + v, @1
=1 =1li=1 i=1

and the observed dependent variable is

1 ity >0,
Ve =0 ifyg <.

The initial conditions y;, and yf,, ¢t = 0,-1,..., m' assumed to be fixed outside the model. The vector of

disturbances v; = (vi3,---, wr)' are independent of all 2 and are independent across individuals, but its

can be d over time.

The first term on the right-hand side of (2.1) represents the effect of exogenous variables on choice. The
second term on the right-hand side of (2.1) represents the effect of the entire past history of the process on
current choice. The third term represents the cumulative effect of the continuous experience in a state on
current choice. This term could be generalized to allow for depreciation. The fourth term captures the notion
of habit persistence. This general model can further be generalized to allow coefficients to depend on time
as indicated in Heckman (1981a). This specification accommodates a wide variety of interesting stochastic
models. The model that yf; = 28 + Yjo; M1t,e-1 + vis includes the Markov process and the Polya model.
The specification ¥, = zief + A Ton; [Ti=1 ¥iss—1 + vis 8 a l p A latent Markov model

emerges in yf, = zf + E;’:, 81Y{ 41 + vis. Our Monte Carlo experiment will study these various interesting

models.

An important issue for panel models is to distinguish true state depend from spurious state de-

pendence. In true state dependence, past experience has a genuine behavioral effect in that an identical

individual who has not experienced the event will behave differently than an individual who has experienced
the event. The introduction of lagged variables of y or y°* capt such a depend In spurious state
dependence, previ peri pp to infl the determinant of future event solely because it is




due to temporally lated and persistent unobservable that determine choices. The unobservable hetero-

geneity for spurious state depend can be introduced into the model with serially correlated disturbances

and a random individual p t in vy for ple, vis = & + €ir, where € can be serially correlated

and §; is an individual component. With such a specification, the g i k (2.1) dat

g | sorts of heterogeneity and state depend To distinguish true state depend from sp

state dependence, an alternative simple method based on lagged exogenous variables has been suggested
in Chamberlain (1978). However, in contrary to the framework (2.1), that simple method can not make

distinctions with regard to different types of state depend het. ity, and serial correlation. Hsiao

(1986) provides a comprehensive survey on these models and related issues.

For the estimation of (2.1), Hecl (1981a) has proposed the method of maximum likelihood under
the assumption that vy, ..., vr are multivariate normally distributed. A general likelihood function can

be found in his article.! For g ] lated disturb , the likelihood function involves multiple in-

tegrals. In a limited Monte Carlo experiment reported in Heckman (1981b) and an empirical application
in Heckman (1981c), only fixed effect and random component models with vie = & + €1, Where ¢, are

serially uncorrelated, are estimated. For random component or one factor models, multivariate probability

functions involve only single integrals, which can be effectively impl ted by the Gaussian Quadrat
method [Butler and Moffitt (1982)]. For more g \ lated disturb , we suggest estimation by
lated i likelihood methods. Simulation based estimati thods have tly been proposed

by Lerman and Manski (1981), McFadden (1987), and Pakes and Pollard (1987), among others. For the im-

pl ion of simulated likelihood methods, we adopt the Geweke-Hajivassiliou-Keane (GHK) simulator.
The GHK simulator is an unbiased nimulatol.that can provide close approximation to some multivariate
normal probabilities (Borsch-Supan and Hajivassiliou, 1993) and is of special interest for panel data models
(Keane, 1994).

To illusteate the construction of the GHK simulator and the simulated likelihood function for (2.1) that

are t for our experiment, id,

the specification vjy = 0; + €5, where ¢ is 8 ARMA(p,q) process:
€e = Yhoy P1Cie-1 + Wi + 2;‘“ ¥jwi,—j. The initial values for €, wis, Yis and g5, for ¢ < 0 are known
and are assumed to be zero. For normalization, w;; has a unit variance. Also £ has a unit variance in the

above specification. To simplify notation, the individual subscript i will be dropped in the derivation of the

1 The likelihood f la there is t only for models without lagged latent dependent variables. His
likelihood formula needs to be revised for models with lagged latent dependent variables.
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likelihood function for an individual. Let ay = 28 + Toto; nve-1 + A L ony [Tias ve-t + Liny 81wy + 0€.

The joint probability for gy, ..., yr conditional on exogenous variables and £ is
vy Ur
Plnseeosprler, o) = [ oo [ Slerleras s )fleraler-aneee,a)-- fa)er . .des, ()
1

where f(¢le-1, -+, €1) is the conditional density of ¢, conditional on the past ¢s and the integral limits are

_f-a ifm=1, _foo ifwm=1,
L'_{-oo ify =0, ”'_{—ag ify,=0.

Given the initial conditions for ¢ and w, the ARMA process can be inverted recursively so that each w; can

be expressed as a function of €;_,, 8 > 0. Denote b = ay + L}, p1ee-1 + L, ¥jwi—y. Let ¢ and & be,

pectively, the standard normal density and distribution functions. Extend the limits L, and U to
Fo_[-b ify=1, = _fJoo ifwm=1,
""{-oo iy =0 ”"{-b. ity =0.

By a transfc tion of variables, (2.2) b

Py, yrin, ... 21,6)
Oy Or_y Or
= / o ( /L - [ /l ) ¢(u.,)dw] ¢(w-.)dwr-.) < $(wy)dwy

00 00 T-1
= [T (a0 - o) TT (80000 - $Chr-0) .. or-pfor-tiwr, P
—oo —oo =1
00 00 T-1
= [ o[ a(avr - 000 [T #(@vr-. - Dor-bi,., 0 sfror-wr—,
- =% a=l
because ®(U,) — ®(L:) = &((2y: — 1)b;), where diL,, 0, is atr ted standard ] density functi

with support [L;, U]. The probability of g1, --,yr conditional on z;,--+,2zr is P(yy, -, yrls1, -+, 21) =

J2, P(ws,---,vrl=, - -+ 21, €)$(€)dE.  This function and (2.3) naturally suggest an unbiased estimator,
ly, the GHK simul

The t ted standard | variable wy on [Ly, Uy] can be easily simulated as transformation of a

uniform random variable. Suppose u is a random draw from the uniform [0, 1] distribution. C: di

P s

toy =0, Ly = —co and U, = —by. A truncated standard 1 variable w, can be obtained from the

relation ®(w,)/®(—b) = u. When g = 1, L, = b, and Uy = 0o. For the latter case, the truncated standard

1 bl

can be obtained from [&(w;) — ®(—b,))/[1 — #(—b;)} = 1 — u. Using the symmetric property
of the standard normal density, wy = —(2y — 1)@~ [u®((2y — 1)b;)] is a random draw from the truncated

¢ andnrd 1 dintrik

on (L, U). The random variables for the GHK simulator can be recursively
5



generated. Initiate ¢g = 0 and other initial conditions. Generate uy,---,ur_; independent uniform [0, 1]

random variables. Generate £ from a N(0, 1) random variable g tor. The random variables wy, -+, wp_y

can then be generated recursively from the following steps from¢t =1to T — 1:

1). Compute
$ » ]
we=—(2p - 1)8! [u.o ((2;« —1)(x8+ E-ny. 1+ A TTw-i+ 26.:«. i
a=10=1 =1
+of + Emt«-c + Zfl’jwo-j))] .
=1 j=

2). Update the disturbance process e = 31, prée-1 + wi + L1y $jwi—j.
3). Generate the latent dependent variable
= nl’+2'nm 1+ '\ZH% 1+ Esl!h 1+ 0§+ €.
s=1i=1
For special modcls, some of the above simulation steps may not be needed. For example, if the model does
not involve lagged latent dependent variable y*, simulation of the latent variables y; will not be needed and

the step 3) can be passed over. For each i, with m ind dently g d vector of random draws, the

P

simulated log likelihood function is

c =E”:In { ZO ((21/«- = 1)(zB + Zwv. i+ A [T+ Z&m
i=1 s=11=1 I=1
+og + zp,((i) i+ 2'1’:'04 i-i ) }

where the superscript (j) denotes an independent simulation draw.

(2.4)

Asymptotic properties of the simulated maximum likelihood estimator (SMLE) have been studied in

Hajivassiliou and McFadden (1990), Lee (1992, 1993) and Gourieroux and Monfort (1993), among others. As

the choice probability simulators are independent across i, the simulated MLE can be asymptotically efficient
when limpco n'/2/m = 0. However, when m increases at a rate slower than n'/2, the limiting distribution of
the SMLE becomes nasty. As shown in Lee (1993), if m increases at the rate of n!/2, an asymptotic bias exists

in the limiting distribution. The situation b worse when m increases at a rate slower than n'/2 because

the asymptotic bias will then dominate the variance. To reduce the dominated bias due to simulation, Lee

(1993) has suggested a simple bias- tion proced For the discrete choice model with L alternatives,
suppose the simulated log likelihood is written in a familiar format as £(6) = ¥"0, T, disIn fm,1,4(2:,0)

6

where @ is the vector of parameters in the model, d; is the dich choice indicator for the alt ive [

and fmii =& E;":l h(w? ),z‘,d) is the simulated probability for the alternative { for the individual i. Let
6 be the SMLE. A bias-adjusted estimator 64 can be derived by correcting a bias term from 6:

Ba= {}:Zd 0Inlmu(n.5)0In!ml-(z¢.§)} Zwm‘(,",)/m, (2.5)

i=li=1 i=1

where

L : .
Wmi(2,0) = 2;{ :{‘,"0) [a"'""l;,';("’”(s...,..e(z.v,o)—;;,_,_‘(z.,o))

= (Cmastz) - fm,.(n.o)?""“—“"”)]}.

With Smt4(2,0) = £ T, h(wf, 2,0) and Cm1i(z,0) = -Lg, (), 7, 0) 2250 The bing.

corrected estimator 4 imp upon 6 by eliminating the | g bias term in 6 due to simulation. Another
valuable property of 64 is that its asymptotic efficiency requires only that m goes to infinity at a rate faster

than n!/4 instead of n'/3,

The following sections provide Monte Carlo results for several interesting panel regression and dynamic

del.

choice

We are interested on the performance of simulated maximum likelihood methods; namely,
finite sample statistical properties of the SMLE and bias-corrected estimators, the value of long panel data,

and the time cost for estimation of vari dels. Some limited Monte Carlo results on the GHK simulator

can be found in Borsch-Supan and Hajivassiliou (1993) for multiple choice models, and Keane (1994) for
panel choice regression models up to eight time periods. Bias-corrected procedures have not been considered
in their articles but in Lee (1993) for panel choice regression models and Markov models with four periods.

Our present Monte Carlo experiments provide much more evidences on the value of simulated likelihood

timation. Our experi gate both the simulated i likelihood method and the bias-
proced Panel models with periods much longer than eight are estimated. We are interested
in the estimation of various dy i dels in addition to regressi dels. Practical values of simulation
timation are the ultimate goal of simulation based infa The following Section 3 investigates only
discrete choice regressi dels. Section 4 investigates Markov models. Polya and Renewal dynamic models
are studied, respectively, in Sections 5 and 6. Section 7 iders Habit Persi dels. For all these
dels, first order aut lated disturbances are maintained. For models with bserved heterogeneity,
additional rand p ts are included




3. Panel Discrete Choice Regression Models

3.1 Models with Serially Correlated Disturbances

The di choice regressi dels are models without true state dependence. Throughout all the

peri , the stochastic p for the disturbance ¢;; is assumed to be a AR(1) process. The model for

generating the sample for our experimental study is a binary choice panel model:

Vie = A+ Bzis + € 3.1)

and
€t = peii-1 + Wi, 32)

where wj, are i.i.d. normal N(0, 1). The vector of exogenous variables z;, is (1, zi).

The exogenous variables z;, are generated as z;; = (1/v2)ri;+V/Bs; where r;; arei.i.d. truncated normal
N(0, 1) variables with support [~2,2] and s; are independent uniform variables with support on {—1/2,1/2].
The variance of z is about 1 and its correlation coefficient over time is about 0.5. This process of generating
exogenous variables is used for all the models in this article. The initial condition for (3.2) is €;o = 0 for all

i. ple data are g ted with # =1, A = 0.2 and p = 0.4. This p ts a moderat ¢ of

P

autocorrelation for the disturbance. The sample size is 200. We have experimented with a small number of
random draws and a moderate number of draws, namely, m = 15 and m = 50, for the construction of the
GHK simulator. The simulated log likelihood function for this model is
n 1 m T
£=YIn - S TT #10u(A + Bzis + pe2 101} -
i=1 j=lt=1
The number of periods for the panel data varies from T = 8 to the maximum of 100. For each case, the

number of replications is 300. For each replication, the set of exogenous variables is redrawn. We report the

pirical mean and standard deviation of estimates for each p ter. For the sake of easy comparison, we

will also report root mean square errors for estimates and the CPU time in seconds per replication. All the

computation is performed with IBM RS/6000 machines. The CPU time refers to the computation speed of

a IBM RS/6000 Model 580 workstation.? The maximization algorithm used is a conjugat, dient method

described in Press et al. (1986), Chapter 10. For all the cases and replications reported here, the algorithm

3 Comparing the speed of Model 580 with the model 320H machine, the latter is slow by a time factor of
2.6.

ges without ing into numerical problems.

Table 1.A reports empirical means and standard deviations for both the SMLE (Bias unadjusted SML)

and the bias-adjusted estimates (Bias adjusted SML). Root mean squared errors of estimates are reported

in Table 1.B. For all the panels with periods from 8 to 100, the SMLE of the intercept A and the regr

slope parameter 8 have small biases. The SMLE of the autocorrelation coefficient p has shown some biases.

As the number of time periods increases, the choice pattern becomes numerous and the choice probabilities

b small. As smaller probabilities are more difficult to simulate than larger probabilities (Borsch-Supan
and Hajivassiliou (1993)), biases of the SMLE for long panels become alightly larger. On the other hand,

since longer panel data provide more le infc ion about the stochastic tandard errors of

P 4 "

estimates decrease. Root mean square errors also decrease for estimates with longer panels if time periods
are not too long. However, for long panels with T = 50 or T = 100, root mean square errors for p are
larger. For T = 100, root mean square errors for § are also larger. This is due to the circumstance that

increasing bias may dominate the reduction of standard error. Biases of estimates are all reduced when the

ber of simulated random variables increases from m = 15 to 50. The imp! t of the estimate of

p is more apparent. The increased CPU time cost is close to be linear in m and T. The bias-corrected

procedure eliminates some of the biases. The bias tion is valuable especially for small m with m = 15.
Although standard errors of bias-corrected estimates are slightly larger, the reduction in bias dominates the
slight increase of standard error and results in smaller root mean squares errors for estimates of p. Root
mean square errors of bias-corrected estimates are in general smaller than root mean square errors of bias-
unadjusted estimates for long panels. For short panels with T = 8 and 15, bias-corrected estimates with

m = 15 can be at least as good as unadjusted SMLE with m = 50 in terms of similar bias. The additional

CPU cost for bias-correction is negligible in the Il cost. In sum, the perf of the simulated ML

methods seems satisfactory ever for long panels in this experiment.
Tables 2.A and 2.B report results for another data set. The sample is generated with p set to 0.85, a

rather high lation for the disturb The SMLE have much larger biases when they are compared

with corresponding cstimates in the previous sample with p = 0.4. Estimates with shorter periods T = 8

and 15 seem satisfactory even with m = 15. But for panels with longer periods, biases of estimates seem

3 For models without bserved heterogeneity, initial estimates are arbitrarily set to sero. For models
with unobservable heterogeneity, the initial estimate of o is set to one and the initial estimates of the other
parameters are set to zero. We have also tried some other starting values such as (1,~1,0) and (-1,1,0) for
(8, A, p) with which the algorithm converges to similar solutions.

9



ly d d. The Its are better for the biased-corrected procedure. But for better improvement,
larger m is desirable. With m = 50, the SMLE are reasonably good even for T = 50. For strong serial

correlation, estimates for p have smaller standard errors but estimates of the int

pt and the

coefficient have larger errors than corresponding cases with a moderate serial correlation. With strong serial
correlation, one may expect that tl.lere would be less variation and less changes on choices over time. Overall,
simulation estimates perform better for models with moderate serial correlation than models with rather high
serial correlation. The Monte Catlo results in Keane (1894) for a similar model with additional unobserved

heterogeneity pointed out the same problem.*

3.2 Models with Unobserved Heter and Serially Correlated Disturbances

The model with unobserved heterogeneity g lizes the previous model (3.1)-(3.2) by introducing a

random component as an additional disturbance:
Yis = A+ Pzic + 0 + €, (3.3)

where & are i.i.d. N(0,1) and are independent of ¢;¢. The simulated log likelihood function for this model is
n 1 & T
£=Y"Ind =Y T #(Du(r + pzis + o + ol )1 } -
i=1 it
Sample data are generated with parameters A = 0.2, § = 1.0, 0 = 0.5, and p = 0.4. With the additional

o€, the serial correlation of two adj t periods has a lation coefficient about 0.6 and the fraction of

variance due to the individual effect is about 0.3.

Tables 3.A and 3.B report simulated likelihood estimates and their root mean squares errors. All the
estimates for 8 have small biases. Biases for the intercept A are also small for T up to 50. There are some
biases for the SMLE of o and p. The SMLE of o tend to increase as T increases and are biased upward

for long panels with T' = 50 or 100. On the other hand, biases of p are downward. So for long panel data,

the correlation due to unobserved het ity tends to be over estimated and the serial correlation of the
remaining disturbance tends to be underestimated.®* With m i to 50, biases are reduced and the
SMLE are reasonably good for T up to 30. The bias tion p d d some of the biases and

root mean square errors in § and p. Standard errors for estimates of § and p are decreasing as periods in

4 As Keane (1994) has experimented with a very small m, namely 10 draws, and has neither used any
bias tion p dure nor i d the ber of simulation draws, his lusion is too pessimistic.

8 With higher autocorrelation but smaller fraction of variance due to the individual effect, the Monte Carlo
result in Keane (1994) has also shown this pattern of bias for a panel of eight periods based on m = 10.

10

panels increase. For long panels with T" = 50 and 100, biases can dominate standard errors that results in
larger root mean square errors. Overall, those SMLE and bias-corrected estimates with m = 50 are good
for panels with T up to 30 for this model. Comparing these estimates with estimates of panel regression

models in (3.1) without unobserved heterogeneity, these estimates are slightly worse than the corresponding

estimates in Table 1 with p = 0.4 but are much better than the estimates in Table 2 with p = 0.85. This may
be due to the fact that the first lagged autocorrelation of this model is stronger than the autocorrelation of

the model (3.1) with p = 0.4 but is weaker than the case with p = 0.85.

11



SML—Model: Serial correlation only; no state dependence

Table 1.A

True parameters: =1, A =0.2,and p=0.4

SML—Model: Serial correlation only; no state dependence

Table 1.B

Root mean squared errors

T n m 1] A P 4] A P

Bias unadjusted SML Bias adjusted SML
8 200 15| .0545 .0450 .0559 | .0550 .04563 .0521
15 200 15 | .0419 .0336 .0423 | .0416 .0341 .0345
30 200 15 ] .0320 .0237 .0421 | .0299 .0239 .0283
50 200 15 ] .0300 .0170 .0490 | .0264 .0169 .0346
100 200 15 | .0316 .0134 .0641 | .0290 .0132 .0559
8 200 50| .0548 .0453 .0511 | .0552 .0454 .0509
15 200 50 | .0414 .0339 .0351 | .0416 .0341 .0338
30 200 50 | .0203 .0239 .0268 | .0201 .0241 .0232
50 200 50 | .0251 .0166 .0280 | .0240 .0166 .0214
100 200 50 | .0229 .0126 .0380 | .0210 .0125 .0314

T n m B A Il time
Bias unadjusted SML
8 200 15 | 0.9939 (.0542) .1999 (.0451) .3757 (0504) 21.83
15 200 15 | 0.9895(.0406) .2007 (.0337) .3724 (.0322)  43.99
30 200 15 | 0.9854 (.0285) .1984 (.0237) .3633 (.0206)  97.27
50 200 15 | 0.9803 (.0227) .1953 (.0164) .3540 (.0170)  170.54
100 200 15 | 0.9719 (.0144) .1948 (.0123) .3369 (.0109)  367.64
8 200 50 | 0.9999 (.0549) .2010 (.0453) .3905 (.0503) 74.09
15 200 50 | 0.9955(.0412) .2019 (.0339) .3876 (.0328)  151.01
30 200 50 | 0.9943 (.0288) .2002 (.0240) .3842 (.0216)  337.24
50 200 50 | 0.9904 (.0232) .1975(.0164) .3782(.0176)  570.69
100 200 50 | 0.9824 (.0146) .1971(.0123) .3635 (.0108) 1242.82
Bias adjusted SML
8 200 15 | 1.0006(.0551) .2014 (.0453) .3929 (.0517)  22.04
15 200 15 | 0.9969 (.0414) .2023 (.0341) .3905(.0332) 44.40
30 200 15 | 0.9930 (.0291) .1998 (.0239) .3812(.0212)  98.16
50 200 15 | 0.9871(.0231) .1966 (.0166) .3702 (.0175) 172.05
100 200 15 | 0.9749 (.0145) .1954 (.0124) .3452 (.0110)  370.56
8 200 50 | 1.0024 (.0552) .2015 (.0454) .3968 (.0509) 74.80
15 200 50 | 0.9986 (.0416) .2025 (.0341) .3948 (.0335) 152.39
30 200 50 | 0.9985(.0291) .2010 (.0241) .3935 (.0223)  340.09
50 200 50 | 0.9951(.0235) .1984 (.0165) .3888 (.0183)  575.67
100 200 50 | 0.9850 (.0147) .1976 (.0123) .3705 (.0109) 1252.41
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SML—Model: Serial correlation only; no state dependence

Table 2.A

True parameters: § =1, A = 0.2, and p = 0.85

Table 2.B
SML—Model: Serial correlation only; no state dependence
Root mean squared errors

T n m g A r} B A ]

Bias unadjusted SML Bias adjusted SML
8 200 15| .0728 .0737 .0441 | .0682 .0748 .0360
15 200 15| .0737 .0717 .0382 | .0626 .0733 .0302
3 200 15| .1018 .0629 .0537 | .0909 .0639 .0483
50 200 15 | .1387 .0531 .0731 | .1316 .0533 .0697
100 200 15 | .1781 .0537 .1008 | .1776 .0541 .1005
8 200 50 | .0669 .0739 .0343 | .0666 .0744 .0326
15 200 50 | .0551 .0724 .0219 | .0521 .0736 .0192
30 200 50 | .0627 .0640 .0294 | .0537 .0653 .0248
50 200 50 | .0964 .0500 .0458 | .0883 .0505 .0423
100 200 50 | .1440 .0491 .0762 | .1420 .0495 .0753

T n m i) A r} time
Bias unadjusted SML
8 200 15 | 0.9671(.0650) .1922(.0734) 8217 (.0339)  24.69
15 200 15 | 0.9439 (.0478) .1908 (0712) .8176 (.0203)  49.23
30 200 15 | 0.9040 (.0338) .1857 (.0614) .7984 (.0148)  103.21
50 200 15 | 0.8643 (.0288) .1718 (.0451) .7779 (.0116)  170.20
100 200 15 | 0.8228 (.0179) .1596 (.0355) .7496 (.0089)  353.02
8 200 50 | 0.9867 (.0656) .1966 (.0739) .8379 (.0322)  84.54
15 200 50 | 0.9763 (.0498) .1965 (.0724) .8384 (.0186) 165.56
30 200 50 | 0.9486 (.0360) .1944 (.0639) .8241 (.0140) 353.36
50 200 50 | 0.9081(.0291) .1811 (.0464) .8056 (.0112)  561.33
100 200 50 | 0.8572(.0186) .1685 (.0377) .7743 (.0084) 1164.10
Bias adjusted SML
8 200 15 | 0.9862 (.0669) .1956 (.0748) .8364 (.0334)  24.90
15 200 15 | 0.9611(.0492) .1937 (.0731) .8273 (.0200)  49.64
30 200 15 | 0.9159 (.0344) .1878 (.0629) .8039 (.0146)  104.11
50 200 15 | 0.8718 (.0290) .1729 (.0460) .7813 (.0114) 17171
100 200 15 | 0.8233 (.0180) .1595 (.0359) .7499 (.0090)  355.94
8 200 50 | 0.9955 (.0666) .1983 (.0745) .8444 (.0322) 85.25
15 200 50 | 0.9882 (.0508) .1988 (.0737) .8448 (.0185)  166.94
30 200 50 | 0.9607(.0367) .1968 (.0654) .8293 (.0138)  356.19
50 200 50 | 0.9166 (.0293) .1826 (.0475) .8092 (.0112)  566.29
100 200 50 | 0.8593 (.0189) .1685 (.0382) .7752 (.0085) 1173.70
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Table 3.A ble 3.B
SML-Seri lly correlated di b 4. t; no state d pend: Table &

] P SML-Serially correlated disturbances; ponent; no state depend
True parameters: §= 1, A= 0.2, 0 = v0.5 = 0.7071.., and p = 0.4 ) Root mean squared error

T " 3 y - T n m p A 4 P I} A o '}
m ' P time Bias unadjusted SML Bias adjusted SML
Bias unadjusted SML
8 200 16| .0717 0722 .1513 0866 | 0681 .0742 .1311 .0906
8 200 15 | 0.9694(.0650) .1992 (.0724) .6408 (.1362) .4018 (.0867)  23.28 15 200 15| 0532 0663 0751 0514 | 0487 0682 0741 0490
15 200 15 | 0.9724(.0456) .1933 (0661) .6042 (.0741) .3765 (.0452) 3934 30 200 15| 0344 0702 0637 o604 | o471 0722 0680 0500
:g :gg :: 2'95’: (.0344) ':g';: (-:“”) 7181(.0628) 3472 (-0?3) 89.87 50 200 15| .0520 .0745 0757 .0744 | 0459 .0765 .0812 .0640
9559 (.0277)  .1956 (0745) .7404 (0681) .3279 (.0183)  177.12 100 200 15| .0552 .1006 .1180 .1025 | .0531 .1014 .1204 .0978
100 200 15 | 0.9486 (0202) .1879 (.1001) .7903 (.0839) .2083 (.0133)  410.54
8 200 50| 0663 .0758 .0980 .0810 | .0865 .0767 .0941 .0825
8 200 50 | 0.9912 (0658) .2063 (.0757) .6948 (.0974) .3864 (.0800)  73.80 15 200 50| 0460 0633 0662 0454 | 0459 0641 0663 0446
;: 200 50 | 0.9918(0453) .1959 (.0633) .7102 (.0662) .3865 (.0434) 123.30 30 200 50| o402 o054 0353 0377 | 0376 0668 0566 0312
200 50 | 0.9802(0350) .2033 (.0654) .7124 (.0552) .3739 (0272)  300.90 5o 200 50| 033 0652 0554 0426 | 0305 0676 0583 0316
50 200 50 | 0.9798 (.0273) .2029 (.0652) .7253 (.0525) .3613 (.0179)  572.90 100 200 50| 0336 0836 0825 0670 | 0313 0849 0846 0601
100 200 50 | 0.9715(.0178) .1869 (.0827) .7521 (.0692) .3342 (.0128) 1394.93 4

Bias adjusted SML

8 200 15 | 0.9884 (.0672) .2030 (.0743) .6906 (.1302) .3938 (.0906)  23.40
15 200 15 | 0.9864 (.0468) .1958 (.0682) .7143 (.0739) .3843 (.0466)  39.76
30 200 15 | 0.9682(.0348) .1920 (.0718) .7297 (.0643) .3598 (.0207)  90.73
50 200 15 | 0.9637 (.0282) .1968 (.0765) .7482 (.0701) .3387 (.0184)  178.60
100 200 15 | 0.9512(.0208) .1880 (.1009) .7926 (.0849) .3031 (.0133)  413.55

8 200 50 | 0.9989 (.0666) .2082 (.0764) .7092 (.0942) .3844 (.0811)  74.54

15 200 50 | 0.9989 (.0460) .1975 (.0641) .7151 (.0659) .3938 (.0443)  124.73
30 200 50 | 0.9878(.0356) .2054 (.0666) .7158 (.0560) .3860 (.0280)  303.82
50 200 50 | 0.9871(0277) .2042(.0675) .7297(.0539) .3741 (.0181) 577.72
100 200 50 | 0.9743(0179) .1867(.0840) .7545(0703) .3414 (.0130) 1404.82
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4. Markov Models
4.1 Markov Model with Serially Correlated Disturbances

The Markov dynamic choice model considered in the experiment is
Vit = Bxie + Mgy + €, 4.1)

where

€y = peig-1 + Wity

and wj are i.i.d. N(0,1). The stochastic process starts at the initial period with ¢;o = 0 and d;o = 0 for all
i. This model is a first order Markov model as choices made last period are the only prior choices relevant

to current choice. The simulated log likelihood function for this model is

n m T
L= Zln {% ZH‘P[D.'«(I’Z.': + Adi ¢y + m?{.’.l)l} .
i=1 j=14=1

This model differs from the model in (3.1) in that the ) represents the effect of true state dependence. The
z variable is generated by the same stochastic process before.

Tables 4.A and 4.B report simulated likelihood estimates and their root mean square errors for the case
where true parameters are set to § = 1, A = 0.2, and p = 0.4. With a sample of size n = 200 and m = 15,

biases of the SMLE of @ are small. But there are upward biases in the SMLE of A. The SMLE of p are

biased downward. So the dynamic effect can be over stated but the serial correlation of disturk can be

d i d. Standard errors of all the SMLE decrease as panels become longer. For the longest panel
with T = 100, biases dominate standard errors and their root mean square errors become larger than the

root mean square errors for panels with shorter periods. With m = 50, biases of the SMLE of A and p have

hat Lo

been y reduced. The bias correction procedure can also substantially reduce biases of the SMLE.

By solely increasing the sample size n (from 200 to 500) but without i ing the ber of simulated

random variables m, biases can not be reduced as predicted by theory. Overall, estimates of this model are
reasonably good for panels with T' up to 50. With m = 50, bias-corrected estimates have small root mean

square errors among all the estimates. Comparing these estimates with estimates of the regression model

without state dependence in Tables 1.A and 1.B, standard errors and root mean sq errors of estimat

of the Markov dynamic model are larger. When small m (m = 15), is utilized, the estimate of the dynamic
effect of the Markov model is more biased.

18

Tables 5.A and 5.B provide estimates for the case with a high autocorrelation p = 0.85. Biases and
standard errors of the SMLE for both § and A become larger, even though standard errors for p are smaller.
With the bias-correction procedure and m = 50, estimates can be quite accurate for shorter panels with T
up to 15. Biases and root mean square errors tend to be larger for panels with T equal to 30 or more.

4.2 Markov Model with Unobserved Heterogeneity and Serially Correlated Disturbances

The Markov dynamic choice model considered for Monte Carlo study in this section is
Yo = Bzit + Mi g~y + 0&i + €, 4.2)
where
€t = peig-1 + Wi,
and & and w;, are i.i.d. N(0,1). The stochastic process starts at the initial period with ¢;o = 0 and dip = 0
for all i. The simulated log likelihood function for this model is

n m T ’
L= Zln {% Z HQ[Du(ﬁz“ + Mo+ ot 4 pcs{.)_.)]} .

i=1 j=1t=1

Q

ple data are g ted with §=1,1=0.2,02 = 0.5, and p = 0.4.
The SMLE and their root mean square errors are reported on Tables 6.A and 6.B. The SMLE of g are
biased downward, biases of the dynamic effect A are upward, and estimates of p are biased downward. The

gnitude of bias i as the length of the panel becomes longer. The SMLE of ¢ with small m = 1§

are biased downward for short panels but biases become upward for long panels. Directions of bias of the
SMLE for 8, A and p are similar to the Markov model (4.1) without unobserved heterogeneity. Biases for

B for the Markov model with additional unobserved heterogeneity are slightly larger. Biases for p are much
P

more severe when T' are 30 or longer. Biases of the SMLE of the dynamic effect A are also quite severe for

T as long as 30 or longer. By increasing m to 50, biases of estimates are reduced. Bi ted estimat
have smaller biases. With m = 50, biases of bias ted estimates for all the p seem quite small
for T up to 15. In terms of root mean sq errors, estimates are improved with T up to 30. When T

becomes long as 50 or 100, root mean squares errors of estimates can be larger than the ones with shorter
T. By increasing m to a large 100, biases and root mean squares errors can further be reduced but the
time cost is double. Bias-corrected estimates have slightly larger standard errors but their root mean square

errors are, in g 1, ller. In lusion, for this model, bias-corrected estimates with m = 50 can be

reasonably good for T up to 30.
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Table 4.A
SML—serial correlated disturbances; Markov state dependence
True parameters: §=1,1=0.2,and p =04

Table 4.B
SML—serial correlated disturbances; Markov state dependence
Root mean squared errors

T n m I} A P g A p

Bias unadjusted SML Bias adjusted SML
8 200 15 ) .0565 .0783 .0697 | .0575 .0767 .0644
15 200 15| .0449 .0596 .0540 | .0438 .0546 .0410
30 200 15} .0350 .0481 .0559 | .0311 .0390 .0366
50 200 15 | .0348 .0476 .0647 | .0200 .0367 .0441
100 200 15 ] .0381 .0626 .0859 | .0343 .0553 .0739
8 200 50| .0561 .0770 .0634 | .0569 .0772 .0632
15 200 50 | .0438 .0553 .0424 | .0440 .0546 .0402
30 200 50 | .0303 .0372 .0339 | .0208 .0358 .0292
50 200 50 | .0270 .0323 .0350 | .0251 .0292 .0250
100 200 50 | .0263 .0415 .0523 | .0232 .0355 .0423

T n m ;] A P time
Bias unadjusted SML
8 200 15| 0.9928 (.0562) .2217(.0754) .3682(.0622)  20.04
15 200 15 | 0.9853(.0425) .2293 (.0520) .3609 (.0373)  40.21
30 200 15 ( 0.9799 (.0287) .2339 (.0341) .3505 (.0260)  81.65
60 200 15 | 0.9743(.0235) .2301 (.0270) .3382 (.0191)  146.25
100 200 15 | 0.9648 (.0145) .2508 (.0185) .3153 (.0141)  318.58
8 200 50 | 1.0007 (.0562) .2076 (.0768) .3890 (.0626)  67.77
15 200 50 | 0.9939 (.0434) .2138(.0536) .3828 (.0388)  137.84
30 200 50 | 0.9920 (.0203) .2128 (.0350) .3804 (.0277) 277.19
50 200 50 | 0.9877(.0240) .2161(.0281) .3713(.0201) 483.74
100 200 50 | 0.9780 (.0144) .2368 (.0193) .3497 (.0142) 1062.70
15 500 15 | 0.9828 (.0233) .2289(.0300) .3622 (.0235)  101.65
30 500 15 | 0.9795(.0161) .2340(.0206) .3515 (.0168)  239.84
Bias adjusted SML

8 200 15 | 1.0020 (.0576) .2057 (.0766) .3922 (.0640)  20.27
15 200 15 | 0.9953 (.0436) .2123(.0533) .3862 (.0387)  40.62
30 200 15 | 0.9899 (.0205) 2170 (.0352) .3753 (.0270)  82.49
50 200 15 | 0.9833 (.0238) .2240 (.0277) .3605 (.0197) 147.71
100 200 15 | 0.9691(.0148) .2521 (.0187) .3275 (.0143) 321.51
8 200 50 | 1.0042(.0568) .2014 (.0774) .3979 (.0633) 68.48
15 200 50 | 0.9982(.0440) .2063 (.0544) .3933 (.0397)  139.23
30 200 50 | 0.9977(.0298) .2030 (.0358) .3939 (.0286)  280.02
50 200 50 | 0.9940 (.0244) .2052 (.0288) .3865 (.0211)  488.51
100 200 50 | 0.9819 (.0147) .2297(.0195) .3603 (.0146) 1072.31
15 500 16 | 0.9927(.0240) .2121(.0307) .3870(.0246)  102.74
30 500 15 | 0.9804 (.0164) .2174 (.0212) .3760 (.0174)  242.01
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Table 5.A
SML-Serially correlated disturbances; Markov state dependence
True parameters: # =1, A = 0.2, and p = 0.85

Table 5.B
SML_D 2 Il‘ latad dlat § 1 Mark 'm A, P A,
Root mean squared errors
T n m /] A P I} A P
Bias unadjusted SML Bias adjusted SML
8 200 15 .0729 .0991 .0502 | .0708 .0976 .0403
15 200 15 ) .0723 .0781 .0447 | .0626 .0738 .0351
30 200 15| .0089 .0813 .0634 | .0885 .0766 .0568
50 200 15| .1341 .0985 .0893 | .1267 .0947 .0849
100 200 15 ] .1734 .1496 .1283 | .1721 .1464 .1270
8 200 50 | .0686 .0951 .0372 | .0694 .0952 .0351
15 200 50 | .0545 .0701 .0243 | .0523 .0694 .0209
30 200 50| .0617 .0574 .0338 | .0535 .0542 .0283
50 200 50 | .0932 .0644 .0542 | .0855 .0609 .0500
100 200 50 | .1368 .1146 .0940 | .1342 .1113 .0922

T n m B A P time
Bias unadjusted SML
8 200 15| 0.9744(.0683) .2231(.0965) .8179 (.0387)  24.42
15 200 15 | 0.9478 (.0501) .2358 (.0695) .8118 (.0232)  47.40
30 200 15 | 0.9077 (.0357) .2626 (.0520) .7892 (.0182)  104.58
50 200 15 | 0.8689 (.0282) .2895(.0413) .7621 (.0157)  188.52
100 200 15 | 0.8277(.0192) .3455(.0349) .7222(.0114)  386.83
8 200 50 | 0.9943 (.0684) .2093 (.0948) .8371 (.0350)  83.45
15 200 50 | 0.9794 (.0506) .2135(.0689) .8366 (.0203)  150.61
30 200 50 { 0.9507 (.0372) .2322(.0476) .8202 (.0159)  346.88
50 200 50 | 0.9116 (.0295) .2520(.0380) .7975(.0136)  627.23
100 200 50 | 0.8647 (.0201) .3094 (.0340) .7566 (.0104)  1352.99
Bias adjusted SML

8 200 15 ( 0.9932(.0706) .2093 (.0973) .8355 (.0377)  24.64
15 200 15 | 0.9642(.0515) .2248 (.0697) .8231 (.0225)  47.84
30 200 15 | 0.9194(.0365) .2559 (.0525) .7960 (.0177)  105.46
50 200 15 | 0.8765(.0283) .2851 (.0416) .7665 (.0153)  189.94
100 200 15 | 0.8290 (.0195) .3422 (.0350) .7235 (.0114)  389.84
8 200 50 | 1.0028 (.0695) .2034 (.0953) .8446 (.0347) 84.16
15 200 50 | 0.9907(.0516) .2066 (.0692) .8439 (.0200) 159.61
30 200 50 | 0.9622(.0379) .2259 (.0477) .8263 (.0154)  346.88
50 200 50 | 0.9199 (.0297) .2474(.0384) .8018 (.0134) 631.98
100 200 50 | 0.8674 (.0202) .3050 (.0342) .7584 (.0104) 1362.58
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SML-Serially 3
True parameters: =1, A =0.2, 0 = 0

Inted d:

Table 6.A

t; Markov state dependence
.0 =0.7071..,and p = 0.4

Table 6.B
SML-Serially lated disturt ; rand p t; Markov state dependence
Root mean squared error
T n m ] A 4 P I’ A ' rs
Bias unadjusted SML Bias adjusted SML

8 200 15 | 0720 .1124 .1560 .1129 | .0672 .1118 .1335 .1175
15 200 15 | .0566 .1062 .0817 .0897 | .0406 .0952 .0761 .0814
30 200 15 | .0596 .1379 .0643 .1189 | .0509 .1197 .0636 .1002
50 200 16 | .0559 .1862 .0639 .1513 | .0484 .1704 .0666 .1338
100 200 15 | .0581 .2865 .0993 .2156 | .0550 .2799 .1017 .2072
8 200 50 | .0669 .1094 .0986 .1075 | .0669 .1095 .0939 .1090
15 200 50 | .0473 .0800 .0716 .0652 | .0466 .0782 .0713 .0636
30 200 50 | .0417 .0873 .0588 .0725 | .0380 .0737 .0589 .0580
50 200 50 0349 .1163 .0544 .0913 | .0309 .0931 .0550 .0692
100 200 50 | .0338 .1891 .0669 .1406 | .0310 .1714 .0683 .1251
8 200 100 | .0661 .1067 .0934 .1041 | .0663 .1068 .0016 .1049
15 200 100 | .0471 .0791 .0714 .0629 | .0471 .0790 .0713 .0628
30 200 100 | .0370 .0704 .0570 .0543 | .0361 .0649 .0574 .0469
60 200 100 | .0299 .0819 .0519 .0633 | .0283 .0650 .0525 .0469
100 200 100 | .0277 .1435 .0543 .1050 | .0254 .1244 .0651 .0891

T n m g A o '} time
Bias unadjusted SML
8 200 15 | 0.9662(.0637) .2317(.1081) .6299 (.1358) .3876 (.1124)  25.24
15 200 15 | 0.9654 (.0448) .2667 (.0827) .6766 (.0769) .3427 (.0692)  44.65
30 200 15 | 0.9516 (.0347) .3216 (.0652) .6904 (.0622) .2905 (.0464)  91.16
50 200 15 | 0.9510 (.0269) .3775(.0662) .7107 (.0640) .2525 (.0337) 157.31
100 200 15 | 0.9459 (.0212) .4817(.0526) .7662 (.0799) .1860 (.0266)  353.14
8 200 50 | 0.9884 (.0660) .2224 (.1073) .6851 (.0963) .3787 (.1085)  81.35
15 200 50 | 0.9876 (.0458) .2227 (.0768) .6978 (.0712) .3795 (.0620)  152.19
30 200 50 | 0.9763(.0344) .2508 (.0637) .6946 (.0575) .3442 (.0464)  334.48
50 200 50 | 0.9775(.0268) .3030 (.0541) .6956 (.0532) .3153 (.0341)  558.50
100 200 50 | 0.9713 (.0179) .3848(.0400) .7168 (.0663) .2610 (.0214) 1178.51
8 200 100 | 0.9927 (.0658) .2167 (.1056) .6942 (.0927) .3819 (.1027)  161.69
15 200 100 | 0.9933 (.0467) .2120 (.0783) .7021 (.0714) .3890 (.0620)  300.13
30 200 100 | 0.9839 (.0334) .2337 (.0619) .6975 (.0562) .3671 (.0432)  667.17
50 200 100 | 0.9868 (.0269) .2640 (.0513) .6972 (.0510) .3462 (.0334) 1151.58
100 200 100 | 0.9790 (.0180) .3382 (.0387) .7027 (.0542) .2970 (.0201) 2378.40
Bias adjusted SML
8 200 15 | 0.9871(.0661) .2146 (.1111) .6819 (.1314) .3880 (.1171)  25.46
15200 15 | 0.9812(.0459) .2435(.0849) .7000 (.0759) .3610 (.0715)  45.07
30 200 15 ] 0.9633 (.0353) .2090 (.0673) .7039 (.0636) .3120 (.0479)  92.02
50 200 15 | 0.9602 (.0276) .3604 (.0575) .7197 (.0655) .2708 (.0348)  158.78
100 200 15 | 0.9493 (.0214) .4747 (.0533) .7688 (.0810) .1047 (.0274)  356.08
8 200 50 | 0.9969 (.0670) .2147 (.1087) .7007 (.0938) .3808 (.1075)  82.09
15 200 50 0.9958 (.0465) .2062 (.0781) .7057 (.0714) .3944 (.0633) 153.63
30 200 50 | 0.9847 (.0349) .2346 (.0652) .7020 (.0587) .3668 (.0477)  337.42
60 200 50 | 0.9855 (.0273) .2749 (.0555) .7034 (.0550) .3401 (.0347) 563.44
100 200 50 | 0.9747 (.0180) .3667 (.0400) .7203 (.0672) .2768 (.0217) 1188.43
8 200 100 | 0.9973 (.0664) .2123 (.1063) .7017 (.0915) .3836 (.1038)  163.14
15 200 100 | 0.9982 (.0471) .2016 (.0791) .7058 (.0714) .3986 (.0629)  302.97
30 200 100 | 0.9901(.0338) .2144 (.0634) .7023 (.0573) .3843 (.0443) 683.03
50 200 100 | 0.9934 (.0276) .2385 (.0525) .7042 (.0625) .3678 (.0342) 1161.44
100 200 100 | 0.9822 (.0182) .3183 (.0386) .7069 (.0552) .3132 (.0202) 2398.21
24
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5. Generalized Polya Models
5.1 Polya Models with Serially Correlated Disturb

The generalized Polya model with a depreciation factor § is idered for our Monte Carlo experiment.

The Polya model is specified as
t

Y =2aB+AY 8y + e, (5.1)
=t

and

€t = pei -1 + Wie,

where wy are i.i.d. N(0,1). The initial conditions are ¢;0 = 0 and djg = 0 for all i. In this model, the entire

history of the p is rel to t decision making. The simulated log likelihood function for this
model is
n 1 m T ] . )
L= zln {;ZH"[Dﬂ(ﬂ‘“ + AZ&’J;,--: +p¢§f.’.;)l} .
i=1 i=ti=1 =

For comparison purpose, the di factor 6 is d to be a known constant and is set to be 0.7. Sample

data are generated with parameters =1, A = 0.2, and p = 0.4.

The SMLE and the bias-corrected estimates for this model are reported in Tables 7.A and 7.B. We
have experimented with T' = 8, 15,30, and 50. Biases of all the SMLE of 8 and A are very small even for
m = 15. There are some downward biases for the SMLE of p for large T" with m = 15. These biases can
be easily reduced by increasing m to 50 or by the bias correction procedure. Even with m = 15, the bias-
corrected estimates are quit good. Estimates of the dynamic effect A are accurate for all these T. Comparing
estimates of this model with corresponding estimates of the Markov model in Table 4, the Polya model can
be better estimated. Estimates of the dynamic effect A not only have small biases but also have much smaller

standard errors. The generalized Polya model has app ly much stronger state depend property than

the Markov property. That may explain the excellent statistical properties of these estimates. On the other

hand, the computational time cost for this model is relatively more

pensive. The additional time coat is

due to the need of computing more tail probabilities in this model.

5.2 Polya Models with Unobserved Heterogeneity and Serially Correlated Disturbances

With a rand P t € to capt beerved heterogeneity, the g lized Polya model for our
experiment is specified as
¢
Ve=zuB+AY_F Vg + ok + G, (5.2)
J=1
26

and
€t = peie-1 + Wig,

where §; and wy, are i.i.d. N(0,1). The simulated log likelihood function for this model is
n 1 m T 1
£=Ym ;ZHO Dis | Bzus+2Y 80di ooy + 060 + pef) | :
i=1 i=lt=1 i=t1

Tables 8.A and 8.B report the SMLE and bias-corrected estimates and their root mean square errors.
There are some downward biases in the SMLE of § and p and upward biases for estimating the dynamic effect
A. These biases are not large. Estimates of o are biased downward for small T'. There seems to be a trade-off
between estimates of ¢ and p. As T becomes longer, the value of estimates of o increases but the value of

estimates of p decreases. For T = 50 and m = 15, the bias of p is 25 percent. The bias-correction procedure

reduces biases. With m = 50 and the bi tion p dure, esti of this model are reasonably good

for T up to 50. Comparing these estimates with the ponding estimates of the Markov model with
unobserved heterogeneity in Table 6, the dynamic effect A and the serial correlation coeflicient p in the Polya
model can be much better estimated. They have small biases and smaller standard errors. This may be due

to the stronger dynamic effect in this model. With the additional unobserved het it timates are

& 24

less precise when pared with estimates of the Polya model without unobserved heterogeneity in (5.1).
‘The time cost for estimation, however, turns out to be less due to the fact that choice probabilities are now

less extreme as an additional disturbance is introduced.
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Table 7.A
SML~—serial correlated disturbances; the Polya model
True parameters: §=1,1=0.2,and p = 0.4

SML-Serially lated disturb

Table 8.A

p ¢; the Polya model

True parameters: =1, =0.2,0 = 0.5, and p = 0.4

T n m B A P time
Bias unadjusted SML
8 200 15 | 0.9949 (.0544) .2054 (.0343) .3821 (.0539) 31.32
15 200 15 | 0.9921 (.0450) .2056 (.0209) .3801 (.0348) 67.58
30 200 15 | 0.9856 (.0297) .2047 (.0130) .3709 (.0226) 152.63
50 200 15 | 0.9788 (.0232) .2022 (.0082) .3547 (.0197) 276.65
8 200 50 | 1.0026 (.0547) .2018 (.0351) .4007 (.0537) 107.75
15 200 50 | 1.0000 (.0459) .2031(.0215) .3979 (.0361) 231.64
30 200 50 | 0.9970(.0310) .2028 (.0132) .3953 (.0232) 505.92
50 200 50 | 0.9917(.0235) .2002 (.0084) .3832 (.0208) 928.09
Bias adjusted SML
8 200 15| 1.0036(.0557) .2016 (.0348) .4023 (.0559)  31.55
15 200 15 | 1.0013 (.0460) .2032(.0213) .4011 (.0363)  68.02
30 200 15 | 0.0950 (.0303) .2029 (.0132) .3914 (.0236) 153.48
50 200 15 | 0.9872(.0238) .2010 (.0084) .3731(.0204) 278.10
8 200 50 ) 1.0059 (.0552) .2003 (.0353) .4082 (.0544) 108.48
15 200 50 | 1.0040 (.0465) .2020 (.0217) .4066 (.0370) 233.15
30 200 50 | 1.0022(.0314) .2016 (.0133) .4062 (.0242) 508.90
50 200 50 | 0.9977 (.0241) .1991(.0086) .3957 (.0217) 932.85
Table 7.B
SML-Serially correlated disturbances; the Polya model
Root mean squared errors
T n m ] A I} V] A I3
Bias unadjusted SML Bias adjusted SML

8 200 15| .0546 .0347 .0567 | .0657 .0348 .0558

15 200 15 | .0456 .0216 .0400 | .0459 .0215 .0362

30 200 15 ) .0330 .0138 .0368 | .0308 .0135 .0250

50 200 15| .0314 .0084 .0493 | .0270 .0084 .0338

8 200 50| .0547 .0351 .0536 | .0554 .0352 .0550

15 200 50 | .0459 .0217 .0361 | .0465 .0218 .0375

30 200 50 ) .0311 0134 .0237 | .0315 .0134 .0249

50 200 50 | .0249 .0084 .0267 | .0241 .0086 .0221
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T n m B A o P time
Bias unadjusted SML
8 200 15 | 0.9648 (.0648) .2201 (.0471) .6317(.1373) .3903 (.0894)  25.79
15 200 15 | 0.9647 (.0476) .2172 (.0296) .6718 (.0787) .3679 (.0516)  53.77
30 200 15 | 0.9503(.0369) .2197 (.0257) .6946 (.0735) .3370 (.0306) 136.88
50 200 15 | 0.9469 (.0286) .2344 (.0221) .7079 (.0700) .3091 (.0230) 263.49
8 200 50 | 0.0801(.0671) .2111(.0470) .6869 (.1089) .3843 (.0773)  85.07
15 200 50 | 0.9871(.0482) .2071(.0306) .6945 (.0721) .3850 (.0523) 182.97
30 200 50 | 0.9773(.0384) .2056 (.0256) .7066 (.0632) .3727 (.0316) 423.20
50 200 50 | 0.9734 (.0289) .2177 (.0222) .7056 (.0606) .3508 (.0236) 837.40
Bias adjusted SML
8 200 15 | 0.9884 (.0675) .2089 (.0488) .6917 (.1327) .3876 (.0036)  26.01
15 200 15 | 0.0818 (.0400) .2007 (.0306) .6993 (.0790) .3805 (.0537)  54.20
30 200 15 | 0.9628 (.0377) .2143 (.0267) .7102 (.0757) .3535 (.0318) 137.75
50 200 15 | 0.9565 (.0293) .2313 (.0228) .7174 (.0720) .3230 (.0237) 264.98
8 200 50 | 0.9987 (.0682) .2064 (.0477) .7058 (.1048) .3845 (.0788)  85.80
15 200 50 | 0.9958 (.0491) .2028 (.0312) .7036 (.0723) .3946 (.0536) 184.42
30 200 50 | 0.0864(.0303) .1996 (.0266) .7150 (.0649) .3885 (.0331) 426.18
50 200 50 | 0.9820(.0206) .2116 (.0234) .7135(.0620) .3677 (0247) 842.32
Table 8.B
SML-Serially correlated disturbances; random component; the Polya model
Root mean squared error
T n m B A o P A 4 P
Bias unadjusted SML Bias adjusted SML

8 200 15 .0736 .0511 .1565 .0898 | .0684 .0495 .1334 .0042

15 200 15| .0592 .0342 .0861 .0607 | .0522 .0321 .0793 .0570

30 200 15| .0618 .0323 .0744 .0700 | .0529 .0302 .0756 .0563

50 200 15| .0603 .0409 .0699 .0938 | .0525 .0387 .0726 .0805

8 200 50| 0679 .0482 .1086 .0787 | .0681 .0480 .1046 .0802

15 200 G50 | .0498 .0313 .0730 .0543 | .0402 .0318 .0723 .0538

30 200 50 | .0445 0262 .0631 .0417 | .0415 .0266 .0653 .0350

50 200 50 ) .0392 .0283 .0604 .0546 | .0346 .0261 .0631 .0407
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6. Renewal Models
6.1 Renewal Model with Serially Correlated Disturbances
A renewal model with a discount factor 6 is considered. This model for our study is specified as
] J
vir = 2B+ 2 ’; L 'I:I‘ i1 + €, (8.1
where

€y = peig—) + Wiy

and w;; are i.i.d. N(0,1). The process is assumed to start at the initial period with ¢;o = 0. The renewal

model cap the that the ti duration in one state is a determi of the d

to remain in or exit the state. The simulated log likelihood function for this model is
n m T t §
L= Zln {::.-EHG [Dn (ﬂzu + '\Zp-lnd(,c-l+9‘gt)—l)] } .
i=1 j=ti=1 i=t =1

The discount factor § is assumed to be a known constant with the value of 0.7. The true parameters are set
to f=1,A=0.2and p= 0.4 as for the other models.

The SMLE and bias-corrected estimates for this model and their root mean square errors are reported
in Tables 9.A and 9.B. The SMLE for this model are quite good. There is some biases in estimates of p.
These biases can be reduced by increasing m to 50 or by the bias correction procedure. These estimates are
good for all the panels with T' up to 50. Estimates of both the dynamic effect A and the serial correlation
coefficient p of this model are better in terms of smaller biases and standard errors than estimates of the
Markov model in Table 4. Comparing them with estimates of the Polya model in Table 9, these estimates are
only slightly worse. These results are compntﬂ;le with model specification in that the true state dependence
in the Renewal model is stronger than the state dependence in the Markov model but is weaker than the

state dependence of the Polya model.

6.2 Renewal Models with Unobserved Heterogeneity and Serially Correlated Disturbances
Incorporating a random component £, the model with a discount factor § is
t §
v =zuB+ AN [[dias + 0k + e, (6.2)
j=t =1
where
€ig = peig-1 + Wis
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and & and wy, are ii.d. N(0,1). The process is assumed to start at the initial period with ¢;p = 0. The
simulated log likelihood function for this model is
n PR T 1 J
C=2ln —EHO Dy ﬂz:;+125’_lnd(,t-l+'f?)+l"g)_| .
=1 m j=1t=1 j=1 I=1
The discount factor is known to be 0.7. The ple data are g d with §=1,1=0.2,0% = 0.5, and
p=04.

Results for the estimation of this model are reported on Tables 10.A and 10.B. There are upward biases
in the SMLE of A and downward biases in estimates of p. The magnitude of bias is increasing as T becomes
longer. Biases in estimates of § and p are relatively small. With large m = 50, all the biases are reduced.
The bias-correction procedure has also reduced the bias. The bias-corrected estimates with m = 50 are
pretty good. They have small biases and emall root mean square errors. The model can be estimated
adequately for panels with T up to 50. As the state dependence in this model is relatively weaker than a
corresponding Polya model, estimates of this model are slightly less accurate in terms of biases and standard
errors than estimates of the Polya model in Table 8. On the other hand, these estimates are much better
than estimates of the Markov model with unknown heterogeneity in Table 6. The computing time cost of
this model with unobserved heterogeneity is slightly less than the time cost of the renewal model without
unobserved heterogeneity in (6.1). It is about the same computing cost for a Polya model with unobserved

heterogeneity.
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SML—serial correlated di

Table 9.A
b ; the R | model

True parameters: § =1, A =0.2, and p = 0.4

Table 10.A

T n m s A rs time
Bias unadjusted SML
8 200 15| 0.9953(.0559) .2077(.0392) .3757 (.0611)  27.90
15 200 15 | 0.9871(.0432) .2104 (.0259) .3716 (.0363)  65.01
30 200 15 | 0.9806 (.0316) .2117 (.0161) .3613 (.0252) 142.37
50 200 15 | 0.9755(.0240) .2131(.0106) .3476 (.0188) 262.83
8 200 50 | 1.0040 (.0561) .2004 (.0402) .3969 (.0628)  95.30
15 200 50 | 0.9970 (.0442) .2037 (.0272) .3936 (.0381) 221.65
30 200 50 | 0.9946(.0328) .2039 (.0171) .3905 (.0270) 473.70
50 200 50 | 0.9909 (.0244) .2048 (.0113) .3799 (.0207) 868.00
Bias adjusted SML
8 200 15 | 1.0054 (.0575) .1996 (.0402) .3997 (.0636) 28.13
15 200 15 | 0.9982(.0444) .2032(.0269) .3968 (.0382)  65.42
30 200 15 | 0.9919(.0326) .2051 (.0168) .3860 (.0267) 143.21
50 200 15 | 0.9856 (.0245) .2075 (.0109) .3696 (.0196) 264.27
8 200 50 [ 1.0079 (.0567) .1972 (.0407) .4059 (.0638)  96.02
18 200 50 | 1.0018 (.0449) .2004 (.0277) .4043 (.0393) 223.03
30 200 50 | 1.0011(.0336) .1999 (.0177) .4041(.0283) 476.66
50 200 50 | 0.9981(.0249) .2007 (.0117) .3950 (.0219) 872.76
Table 9.B
SML-Serially correlated disturt ; the R | model
Root mean squared errors
T n m i) A P ] A 3
Bias unadjusted SML | Bias adjusted SML

8 200 15| .0560 .0398 .0856 | .0577 .0401 .0635

15 200 15| .0450 .0279 .0461 | .0443 .0270 .0383

30 200 15| .0371 .0199 .0461 | .0335 .0175 .0301

80 200 15 ) .0343 0168 .0557 | .0284 .0132 .0362

8 200 50| .0561 .0402 .0628 | .0571 .0407 .0640

15 200 50 | .0442 0274 .0386 | .0448 .0277 .0394

30 200 50 | .0332 .0175 .0286 | .0336 .0177 .0286

50 200 50 ) .0260 .0123 .0288 | .0249 .0117 .0224
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SML-Serially lated di 3 p t; the R« I model
True parameters: § =1, A = 0.2, 0 = 035, and p = 0.4
T n m ] A 4 P time
Bias unadjusted SML
8 200 15 | 0.9645(0646) .2240 (0558) .6342(.1251) .3815 (.0943) 27.79
15 200 15 | 0.9610(0464) 2318 (.0343) .6617 (.0783) .3458 (.0587)  55.96
30 200 15 | 0.9507 (0355) .2367(.0269) .6796 (.0635) .3220 (.0376) 131.49
50 200 15 | 0.9465(0288) .2562 (.0223) .7008(.0699) .2876 (.0250) 260.57
8 200 50 | 0.9894(0670) .2146 (.0554) .6873 (.1056) .3806 (.0884) 93.14
15 200 50 | 0.9862 (.0464) .2135 (.0366) .6933 (.0755) .3746 (.0583) 202.58
30 200 50 | 0.9736 (.0354) .2191 (.0265) .6746 (.0555) .3607 (.0370) 440.09
50 200 50 | 0.9757(.0202) .2285 (.0222) .6991 ((0488) .3444 (.0265) 820.62
Bias adjusted SML
8 200 15 | 0.9882(.0671) .2120 (.0577) .6925 (-1211)  .3832 (.0081)  28.00
15 200 15 | 0.9788 (.0476) .2201 (.0357) .6898 (.0788) .3635 (.0613)  56.39
30 200 15 | 0.9641(.0362) .2261(.0279) .6968 (.0650) .3437 (.0300) 132.36
50 200 15 | 0.9560(.0296) 2489 (.0231) .7120(.O717) .3059 (.0268) 262.02
8 200 50 | 0.9989 (.0680) .2091 (.0562) .7054 (.1035) .3833 (.0904) 93.88
15 200 50 | 0.0954(0473) .2081(.0377) .7036 (.0760) .3880 (.0601)  204.02
30 200 50 | 0.9833(.0359) .2089 (.0277) .6839 (.0568) 3813 (0387) 443.03
50 200 50 | 0.9850 (0209) .2169 (0234) .7098 (.0500) 3670 (.0278) 826.54
Table 10.B
SML-Serially correlated disturbances; rand. p t; the R ! model
Root mean squared error
T n m s A 4 I ;] A L4 [
Bias unadjusted SML Bias adjusted SML

8 200 15| .0736 .0610 .1446 .0959 | .0681 .0688 .1217 .0994

15 200 15| .0605 .0467 .0904 .0799 | .0520 .0409 .0806 .0713

30 200 15| .0607 .0454 .0691 .0866 | .0509 .0382 .0657 .0685

50 200 15| .0607 .06805 .0701 .1153 | .0523 .06540 .0717 .0978

8 200 50| .0677 .0572 .1073 .0904 | .0679 .0569 .1033 .0918

15 200 50 | .0483 .0389 0766 .0635 | .0474 .0381 .0759 .0612

30 200 50 | .0441 .0326 .0642 .0539 | .0396 .0201 .0612 .0429

50 200 50 | .0380 .0361 .0494 .0616 | .0335 .0289 .0500 .0424
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7. Habit Persistent Models
7.1 Models with Serially Correlated Disturbances

The habit persistent model is specified as follows:

Vit = ZilB + Ayl ey + €iny (7.1)

where
it = peig-1 + Wis

and w;, are i.i.d. N(0,1). The process starts at the initial period with gy, = 0 and ¢ = 0. The simulated

log likelihood function for this model is

=% {l 3 ﬁo [Da (Bzic + 26i 2, + o0 } :
i=1 j=1t=1
The true parameters are § =1, A = 0.2, and p = 0.4.
The SMLE and bias-corrected estimates and their root mean square errors are reported in Tables 11.A
and 11.B. There are downward biases in the SMLE for all the parameters 3, A and p. Biases for # and A
are relatively smaller than biases for p. With m increased to 50, biases are reduced and those biases for

and A are small. The bias-correction procedure can further reduce bias and biases for p can become small.

Bias-corrected esti have also ller mean sq; d errors than those of the unadjusted SMLE. The

parameters in this model can be accurately estimated with T' up to 30 or even 50. Comparing these esti

with estimates of the previous dynamic models, the main difference is on the direction of bias of estimates
of the dynamic effect \. While estimates of A tend to be upward in Markov, Polya and Renewal models, the

bias in the habit persistent model tends to be downward. The dynamic coefficient A can be better estimated

in terms of ller bias and stand

d error than the corresponding estimates of the Markov model in Table

4. However, they are not better estimated than the ones in Polya and R | models. The habit persistent
model above is a first order latent Markov model. One may suspect that the dynamic effect for this model
is stronger than the dynamic effect of the corresponding Markov model but is weaker than the accumulated
effects of Polya and Renewal models. On the other hand, estimates of 8 and p in this model have larger root
mean square errors than the ones in the Markov model. The 8 and p in Polya and Renewal models are also

better estimated. In terms of time cost, it takes more time to estimate the habit persist. model than the

Markov model but it costs less than the computation of Polya and Renewal models.
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7.2 Models with Unobserved Heterogeneity and Serially Correlated Disturbances

The habit persistent model with a random component is specified as follows:

Vit = iB + Mgy + 06 + €in, (1.2)

where

€it = pEi -1 + Wig

and & and wy, are i.i.d. N(0,1). The process is assumed to start at the initial period with yj, = 0 and

€0 = 0. The simulated log likelihood function for this model is

n m T
£=Yh {% Y IT @lDu(Bzic + ML, + 069 + ,,,g{,)_l)l} .
i j=11=1

As for the other models with unk heterogeneity, the true parameters are § = 1, A = 0.2, 0 = 0.5, and

p = 0.4 to generate sample observations.

Tables 12.A and 12.B report results for this model. With the additional het ity, estimates of

B, A and p have larger downward biases than the ones for the habit persistent model without unobserved

heterogeneity. The magnitude of bias b larger as T becomes longer. For o, there is some bias in its
estimate for panels with small T'. As m increases, biases decrease. The bias-corrected procedure can further
reduce bias and root mean squares errors are in general also smaller. With m = 50 and the bias-corrected

q

p , esti are bly good for panels with T up to 15 or 30. Estimates of A and p are more

accurate than corresponding estimates of the Markov model with unknown heterogeneity in Table 6 in terms
of bias and root mean square error. On the other hand, estimates of 8 and p in this model are less precise in

terms of bias and root mean square error than estimates of the Markov model with unobserved heterogeneity.

Estimates of this habit persistent model are less accurate than estimates of the ponding Polya and

Renewal models.
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Table 11.A
SML-—serial correlation; the Habit Persistence model
True parameters: § =1, A =02, and p = 0.4

SML-Serially correlati
True parameters: =1, 1 =0.2,0 = V0.5, and p = 0.4

Table 12.A

P

t; the Habit Persistence model

T n m '} A P time
Bias unadjusted SML
8 200 15 | 0.9849 (.0577) .1932(.0521) .3666 (.0660)  26.04
15 200 15 | 0.9737 (.0450) .1960 (.0358) .3512(.0453) 56.81
30 200 15 | 0.9644 (.0303) .1887 (.0267) .3365 (.0339) 133.45
50 200 15 | 0.9546 (.0255) .1863 (.0224) .3172(.0287) 247.36
8 200 50 | 0.9952(.0591) .1977 (.0511) .3852 (.0646)  87.70
15 200 50 | 0.9886 (.0463) .2013 (.0342) .3776 (.0422) 194.82
30 200 50 | 0.9823(.0315) .1942 (.0249) .3699 (.0313) 441.81
50 200 50 | 0.9734 (.0258) .1902 (.0209) .3536 (.0258) 811.17
Bias adjusted SML
8 200 15| 0.9973(.0593) .1976(.0515) .3892 (.0647) 26.25
15 200 15 | 0.9866 (.0464) .1992 (.0349) .3753 (.0444) 57.22
30 200 15 | 0.9754(.0310) .1908 (.0257) .3576 (.0326) 134.35
50 200 15 | 0.9636 (.0257) .1874 (.0222) .3343 (.0277) 248.78
8 200 50 | 1.0003(.0599) .1998 (.0509) .3939 (.0642) 88.42
15 200 50 | .9955(.0472) .2036 (.0338) .3892 (.0420) 196.21
30 200 50 | .9905 (.0321) .1967 (.0244) .3843 (.0307) 444.69
50 200 50 .9812 (.0261)  .1920 (.0207)  .3676 (.0253) 816.01
Table 11.B
SML-Serially lation; the Habit Persist model
Root mean squared errors
T n m B A r3 ] A P
Bias unadjusted SML Bias adjusted SML

8 200 15| .0595 .0525 .0738 | .0593 .0515 .0655

15 200 15| .0521 .0359 .0665 | .0482 .0349 .0507

30 200 15 | .0467 .0280 .0720 | .0395 .0273 .0534

50 200 15| .0520 .0262 .0876 | .0445 .0255 .0713

8 200 50| .0592 .0511 .0661 | .0598 .0508 .0644

15 200 50 | .0476 .0342 .0477 | .0473 .0340 .0433

30 200 50 | .0361 .0256 .0434 | .0335 .0246 .0344

50 200 50 ) .0370 .0231 .0531 | .0321 .0222 .0411
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T n m I} A '4 P time
Bias unadjusted SML
8 200 15 | 0.9560 (.0692) .1833 (.0747) .6292 (.1511) .4027 (.1366)  33.62
15 200 15 | 0.0446 (.0467) .1816 (.0802) .6836 (.0899) .3560 (.0928)  73.32
30 200 15 | 0.9134 (.0356) .1772 (.0450) .6978 (.0818) .3127 (.0569) 164.78
50 200 15 | 0.9035(.0204) .1683 (.0395) .7090 (.0790) .2022 (.0482)  289.60
8 200 50 | 0.9872(.0711) .1992(.0651) .6893 (.1104) .3842 (.1086)  109.89
15 200 50 | 0.9771(.0487) .1977 (.0500) .7013 (.0809) .3716 (.0740) 241.21
30 200 50 | 0.9489 (.0367) .1929 (.0398) .6962 (.0788) .3458 (.0486)  560.23
50 200 50 | 0.9402 (.0294) .1818 (.0301) .6958 (.0671) .3298 (.0356) 1013.38
Bias adjusted SML
8 200 15 | 0.9789 (.0727) .1918 (.0700) .6740 (.1465) .4004 (.1333) 33.85
15 200 15 | 0.9623 (.0482) .1872(.0563) .7030 (.0903) .3680 (.0880)  73.76
30 200 15 | 0.9251(.0366) .1791 (.0427) .7087 (0830) .3265 (.0542)  165.70
50 200 15 | 0.9114(.0303) .1688 (.0385) .7157 (.0800) .3028 (.0466)  291.07
8 200 50 | 0.9984 (.0727) .2035 (.0635) .7021 (.1073) .3857 (.1061) 110.64
15 200 50 | 0.9894 (.0508) .2024 (.0483) .7068 (.0812) .3828 (.0720)  242.70
30 200 50 | 0.9610 (.0378) .1967 (.0383) .7019 (.0801) .3603 (.0469)  563.22
50 200 50 | 0.9497 (.0300) .1839 (.0294) .7016 (.0686) .3430 (.0345) 1018.62
Table 12.B
SML-Serially correlation; random p t; the Habit Persistence model
Root mean squared error
T n m J:J A o P g A 4 P
Bias unadjusted SML Bias adjusted SML

8 200 15| .0819 .0764 .1698 .1364 | .0768 .0703 .1500 .1330

15 200 15| .0725 .0629 .0928 .1026 | .0611 .0577 .0902 .0935

30 200 15 ) .0036 .0504 .0822 .1042 | .0834 .0475 .0820 .0913

50 200 15| .1009 .0505 .0789 .1181 | .0937 .0496 .0803 .1078

8 200 50 | .0721 .0650 .1117 .1096 | .0726 .0634 .1072 .1069

15 200 50 | .0547 .0499 .0809 .0791 | .0518 .0483 .0810 .0739

30 200 50 | .0628 .0404 .0794 .0728 | .0543 .0384 .0801 .0614

50 200 50 | .0666 .0352 .0679 .0787 | .0585 .0335 .0687 .0666
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8. Conclusions

This article has reported Monte Carlo results of simulated maximum likelihood methods for the esti-

tion of discrete choice regression and dynamic models. Choice probabilities are simulated with the GHK

ive estimator. We investigate finite ple perfc of the simulated likelihood estimator and a

bias-correction procedure which can eliminate the leading bias due to simulation. The discrete choice model

are panel choice models introduced in Heckman (1981a), that include discrete choice dels with

true state dependence, spurious lation, and unobserved het ity. Even with a binary choice in

each time period, the pattern or path of choices can be very large as time periods become longer. Our

intention is two folds. We would like to i igate finite | f of the simulated maximum

5 Pie P

likelihood estimator for panel data dynamic models, limitation of simulated likelihood methods, and the

value of long panels compared with relatively short panels. The second purpoee is to study the econometric

estimation of interesting dynamic di

choice models, the ability of estimating dynamic effects,

and the distinction of true state dependence from spurious state depend and unobserved het it;

As an estimati thod, the simulated maximum likelihood approach is putationally tractabl
and numerically stable. We have experimented with panel data with time length up to 100. There is not a
single case of failure of convergence of the iterative maximization algorithm. Models with moderate serial

correlation can be more accurately estimated than models with high serial correlation in terms of smaller bias

and standard error. Regression models are better estimated than Markov state depend models. Dynamic
models with strong dynamic effects such as the generalized Polya model and the renewal model can be better
estimated than the Markov model and the latent Markov model. In terms of time cost, the estimation of
generalized Polya and renewal models are more expensive than the estimation of the Markov model and
the latent Markov model. With a small number of simulation draws for the construction of simulator and
relatively long panels, dynamic effects of Markov, Polya and renewal models can be overestimated and the

spurious can be und imated. Only for the latent Markov model, both the dynamic and

spurious correlation effects are underesti d. While standard errors of estimates tend to be smaller for

panels with longer periods, the bias for panel data with long periods such as 100 can dominate the standard
error and results in a larger root mean square error in some of the models. Biases of the SMLE can usually

be reduced with a larger ber of simulated variables for the construction of simulator and by the bias

correction procedure. With the bias correction procedure and a moderate number of simulated draws for the
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simulator, say 50, most of the dynamic models with moderate aut. lation can be ad tely estimated

for panels up to 30 periods. Due to strong state dependence, Polya and Re: | models can be ad tel

estimated up to 50 periods in our Monte Carlo experiments.

While our Monte Catlo experiments have studied

many important aspects of simulation estimation

methods and efficient estimation of dynamic panel statistical models, many interesting issues have not been

addressed. We have not investigated statistical inference procedures on model discrimination or model se-

lection based on simulation estimati thods. For the estimation of dynamic panel models, we have not

investigated the initial value problem, which can be quite difficult and is an open challenging question [Heck-

man (1981b)]. Furthermore, we have not investigated intertemporal optimisation dynamic choice models

where extra plexity will be tered in backward evaluation of value functions in the p of -

serially correlated disturbances [Pakes (1987), Rust (1987), and Wolpin (1984)]. All these issues remain for

further investigation.
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