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Abstract

This article reports Monte Carlo results on the simulated maximum likelihood estimation of discrete

panel statistical models. Among them are Markov, Generalized Poly, Renewal, and Habit Persistence Models

with or without unobserved heterogeneity and serially correlated disturbances. We investigate statistical

properties and computational performance of simulated maximum likelihood methods and a bias-correction

procedure. With a moderate number of simulation draws for the construction of simulator and the bias

adjusted procedure, most of these complex dynamic models can be adequately estimated for panels with

length up to 30. The Polya model and the Renewal model can be accurately estimated for panels with 50

periods.
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1. Introduction

In Heckman (1981a), a rich group of discrete time-discrete outcome stochastic processes has been intro-

duced. It contains Bernoulli models, Markov models, renewal processes, Polya models, latent Markov models,

and other familiar stochastic processes. The models are sufficiently flexible to accommodate time-varying

explanatory variables, serial correlation for unobservable, and complex structural economic interrelation-

ships among decisions over time. With rich specifications on both lagged dependent variables and correlated

disturbances, these proposed models accommodate true and spurious state dependence and can be used to

test competing theories on state dependence. Heckman (1981a) has provided discussions on various models

in terms of data requirements, model identification, and implications for probability run patterns. Imple-

mentation of probability run patterns to test true state dependence against spurious state dependence can

also be found in Heckman (1978) and Lee (1987).

For computation, Heckman (1981a) has focused on models with fixed effect, random components, or

factor analytic schemes for unobserved heterogeneity but with serially independent distribution for the

remaining disturbance. Such structures simplify computation as likelihood functions for such models involve

single integral, which can be effectively implemented by the Gaussian Quadrature method. While the

specification of random component for unobserved heterogeneity is a popular approach for panel data, the

serially independent assumption for the remaining disturbance is restrictive. Likelihood functions for models

with general serial correlation will in general involve multiple integrals. For discrete panel data models,

the dimension of multiple integrals will be proportional to the number of time periods. The numerical

implementation of such models is known to be computationally difficulty if not intractable. However, the

recent development of simulation methods by Lerman and Manski (1981), McFadden (1989), Pakes and

Pollard (1989), Borsch-Supan and Hajivassiliou (1993), and Keane (1994), among others, provides evidences

that such a difficulty may be overcome with carefully designed Monte Carlo simulation estimation methods. A

simulator due to Geweke (1989), Borsch-Supan and Hajivassiliou (1993), and Keane (1994) based on recursive

simulation of truncated random variables is shown to provide a good unbiased simulator for multivariate

* I appreciate having financial support from the National Science Foundation under grant number SBR-
9223325 for my research.



normal probabilities. Keane (1994) has emphasized its usefulness for the estimation of panel data model and

has provided some Monte Carlo results for binary choice panel regression models with 8 periods. The Model

Carlo results seem encouraging.

In this article, we are going to investigate the simulated maximum likelihood method for the estimation

of various dynamic panel models introduced in Heckman (1981a). Special attention will be on the value

and potential limitation for the estimation of long panels. We report Monte Carlo results for the simulation

estimation of such models. An important aspect of the experiment is to investigate the discrimination ability

of the true state dependence vs. spurious state dependence in various dynamic models. Other aspects of

interest are on the simulated likelihood method itself. As the time length for a panel data increases, the total

number of choice alternatives, which are composed of choice paths, increases exponentially and the dimension

of integration increases linearly. The probability for any specific choice path will become smaller for longer

panel data. One may expect that the simulator would become less accurate as time length increases. So one

of the aspects is to investigate the quality of the simulated estimates for model parameters with long panel

data. As the likelihood function is nonlinear, the simulated log likelihood function is a biased estimate of

the exact log likelihood function. The simulated likelihood estimator can be consistent only if the number of

simulated variables in the construction of simulator increases with sample size. For efficient estimation, the

number of simulated variables has to increase with sample size at a certain rate. If the number of simulated

variables does not increase fast enough or, in practice, the number is not large enough relative to sample size,

the simulated likelihood estimator might have an asymptotic bias or a dominated finite sample bias (relative

to standard error) due to simulation. The leading bias term due to simulation in the simulated likelihood

estimator can be removed by a bias-correction procedure as suggested in Lee (1993). As a by-product, we

will investigate value of the bias-correction procedure for the estimation of dynamic models with our Monte

Carlo experiments.

The organization of this article is as follows. In Section 2, we provide an overview of various interesting

models introduced in Heckman (1981a). It provides a guided tour for models studied in our Monte Carlo

experiments. We review the formulation of simulators and simulated likelihood functions for such models

and describe the bias-correction procedure. Monte Carlo results are reported for each model in subsequent

sections. General conclusions are drawn in the last section.

2. Dynamic Models and Simulated Maximum Likelihood Estimation - an Overview

To analyze panel discrete responses in discrete time, Heckman (1981a) proposed a general framework in

terms of latent dependent variables. Responses are observed from signs of latent dependent variables. The

latent dependent variable at each period can be interpreted as utility difference across choice alternatives.

Observed responses are results of utility maximization as in McFadden's discrete choice framework (1974).

The latent dependent variable y;= for an individual i at period t is a function of vector of exogenous variables

zul, past occurrence of the event, and prior propensities to select a state:

y;, = zudtI+ >711,-r + A E lt,.r + [S1yI,:-r + va5, (2.1)
1=1 .=1(=1 =1

and the observed dependent variable is

i if yi, > 0,
10 if y{, < 0.

The initial conditions yi, and y ,, t = 0,-1,..., are assumed to be fixed outside the model. The vector of

disturbances v; = (vai,. -, V1)' are independent of all zu, and are independent across individuals, but its

components can be serially correlated over time.

The first term on the right-hand side of (2.1) represents the effect of exogenous variables on choice. The

second term on the right-hand side of (2.1) represents the effect of the entire past history of the process on

current choice. The third term represents the cumulative effect of the continuous experience in a state on

current choice. This term could be generalized to allow for depreciation. The fourth term captures the notion

of habit persistence. This general model can further be generalized to allow coefficients to depend on time

as indicated in Heckman (1981a). This specification accommodates a wide variety of interesting stochastic

models. The model that y, = zitf + E1 y11,,-i + vi, includes the Markov process and the Polya model.

The specification yj, = zuf + A E E y,i,- + vi: generates a renewal process. A latent Markov model

emerges in y, = zig/+ E'Bry,,.+ vit. Our Monte Carlo experiment will study these various interesting

models.

An important issue for panel models is to distinguish true state dependence from spurious state de-

pendence. In true state dependence, past experience has a genuine behavioral effect in that an identical

individual who has not experienced the event will behave differently than an individual who has experienced

the event. The introduction of lagged variables of y or y* captures such a dependence. In spurious state

dependence, previous experience appears to influence the determinant of future event solely because it is



due to temporally correlated and persistent unobservable that determine choices. The unobservable hetero-

geneity for spurious state dependence can be introduced into the model with serially correlated disturbances

and a random individual component in ve; for example, Vu = (. + te, where tE can be serially correlated

and (& is an individual component. With such a specification, the general framework (2.1) accommodates

general sorts of heterogeneity and state dependence. To distinguish true state dependence from spurious

state dependence, an alternative simple method based on lagged exogenous variables has been suggested

in Chamberlain (1978). However, in contrary to the framework (2.1), that simple method can not make

distinctions with regard to different types of state dependence, heterogeneity, and serial correlation. Hsiao

(1986) provides a comprehensive survey on these models and related issues.

For the estimation of (2.1), Heckman (1981a) has proposed the method of maximum likelihood under

the assumption that v,..., vET are multivariate normally distributed. A general likelihood function can

be found in his article.' For general correlated disturbances, the likelihood function involves multiple in-

tegrals. In a limited Monte Carlo experiment reported in Heckman (1981b) and an empirical application

in Heckman (1981c), only fixed effect and random component models with veu = CE + CE,, where Et are

serially uncorrelated, are estimated. For random component or one factor models, multivariate probability

functions involve only single integrals, which can be effectively implemented by the Gaussian Quadrature

method [Butler and Moffitt (1982)]. For more general correlated disturbances, we suggest estimation by

simulated maximum likelihood methods. Simulation based estimation methods have recently been proposed

by Lerman and Manski (1981), McFadden (1987), and Pakes and Pollard (1987), among others. For the im-

plementation of simulated likelihood methods, we adopt the Geweke-Hajivassiliou-Keane (GHK) simulator.

The GHK simulator is an unbiased simulator that can provide close approximation to some multivariate

normal probabilities (Borsch-Supan and Hajivassiliou, 1993) and is of special interest for panel data models

(Keane, 1994).

To illustrate the construction of the GHK simulator and the simulated likelihood function for (2.1) that

are relevant for our experiment, consider the specification ve9 = o( + Et, where tEi is a ARMA(p,q) process:

eu = E. iPro,,-r + wEt + L2 f 1ej'Es-1. The initial values for te,, wit, yaE and y, for t < 0 are known

and are assumed to be zero. For normalization, wE, has a unit variance. Also ( has a unit variance in the

above specification. To simplify notation, the individual subscript i will be dropped in the derivation of the

' The likelihood formula there is correct only for models without lagged latent dependent variables. His
likelihood formula needs to be revised for models with lagged latent dependent variables.
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likelihood function for an individual. Let a, = r,$ + E l 7:yv- + A E' lii;m y,-, + E l 
6
8V-, + of.

The joint probability for yl,..., yr conditional on exogenous variables and C is

U Ur

P(yT...,yrz,...,,) = .. .. f(er., - - -, )f(erI -2, - ., ) - - - f(e)d ... de,, (2.2)
JL, JLT

where f(eIt.., ---, E1) is the conditional density of e, conditional on the past te and the integral limits are

La= ifUy==oo ify,=1,
Lt -oo if y, = 0, -a ify = 0.

Given the initial conditions for e and w, the ARMA process can be inverted recursively so that each wt can

be expressed as a function of ,-, a > 0. Denote be = a, + E pce --u + .1 #jw..j. Let # and 4 be,

respectively, the standard normal density and distribution functions. Extend the limits Lt and U, to

- b-, if y,= 1, -_ftoo if y,= 1,

L* - -oo if y, = 0, U -6, if y, = 0.

By a transformation of variables, (2.2) becomes

P(y1,...,yrI, .. ,,()

= * ( i: [JL = .. -(wT)dl #(wr-)dwur-.. - -4(wisd0

= O - (O) -. (LT)) II ((T.,) - *(Lr..,))#L ., D...(W-,)dwr-, (2.3)
i---

- -.- f 9((2Yr - 1)6r) [ ((
2

r-., - 1)br-.),ILr..,, o,.,(wr.,)dr-T,
~"e ~0 '=1

because '(U,) - 4(L,) = ((
2

y, - 1)I,), where 4 ,, 0,1 is a truncated standard normal density function

with support [L,, U,]. The probability of y , -- -, yr conditional on zI, - - -, zr is P(y, - - -., yrizi, .. -, zX) =

f : P(y,,.., rlxi, - - , ZT, ,)O()d. This function and (2.3) naturally suggest an unbiased estimator,

namely, the GHK simulator.

The truncated standard normal variable we on [L,, T] can be easily simulated as transformation of a

uniform random variable. Suppose u is a random draw from the uniform [0, 1] distribution. Corresponding

to y, = 0, L, = -oo and U, = -&,. A truncated standard normal variable we can be obtained from the

relation 4(w,)/4(-b,) = u. When y, = 1, Lt = -b6 and , = oo. For the latter case, the truncated standard

normal variable can be obtained from [*(w,) -4(-6,)]/[1- (-b,)]= 1- u. Using the symmetric property

of the standard normal density, we = -(2y, - 1)*-'[uI((2y, - 1)4,)] is a random draw from the truncated

standard normal distribution on [L, U,). The random variables for the GHK simulator can be recursively
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generated. Initiate to = 0 and other initial conditions. Generate u1,... - , UT-i independent uniform [0, 1]

random variables. Generate ( from a N(0, 1) random variable generator. The random variables wI, - - ., wr-i

can then be generated recursively from the following steps from t = I to T - 1:

1). Compute

Wt = - (2y, - 1)$-1 a.,1 (2ys - 1) (zsip+ 71y/-, + A fys-s + oryt-1
1=1 i=1 5=1 1=1

+rC+ pes.-1 +cs we.-f .
1=1 f=1

2). Update the disturbance process cs = E 1pret-1 + w 1 + .; 31Wjgs--j.

3). Generate the latent dependent variable

y* = z:# +E7sys-r + A lye-1+6y14.-1+ O(+ Es.
1=1 =1 1=1 =1

For special models, some of the above simulation steps may not be needed. For example, if the model does

not involve lagged latent dependent variable y', simulation of the latent variables y will not be needed and

the step 3) can be passed over. For each i, with m independently generated vector of random draws, the

simulated log likelihood function is

where 9 is the vector of parameters in the model, dl is the dichotomous choice indicator for the alternative I

and fm,,i, = m 1h(w/j, z, 9) is the simulated probability for the alternative I for the individual i. Let

# be the SMLE. A bias-adjusted estimator $A can be derived by correcting a bias term from 6:

9A = EE d i umlzza,#)/m, (2.5)

where

m,(z,)_ d,, 9) BIn fm.,(zi,09)0(Sm,l, (zi, )- fmgs(zi, 9))

- (C.,,(zs,6) - fm,r,,(zi,B9)'8f'mlZi ))]

with Sm,r,i(zi, 9) = =E h(w 1
, zs,0) and Cmig(zs,9) = "h(w ), zp 9)hI"'''''.). The bias-

corrected estimator $A improves upon 9 by eliminating the leading bias term in 8 due to simulation. Another

valuable property of #A is that its asymptotic efficiency requires only that m goes to infinity at a rate faster

than n
114 

instead of n/2

The following sections provide Monte Carlo results for several interesting panel regression and dynamic

choice models. We are interested on the performance of simulated maximum likelihood methods; namely,

finite sample statistical properties of the SMLE and bias-corrected estimators, the value of long panel data,

and the time cost for estimation of various models. Some limited Monte Carlo results on the GHK simulator

can be found in Borsch-Supan and Hajivassiliou (1993) for multiple choice models, and Keane (1994) for

panel choice regression models up to eight time periods. Bias-corrected procedures have not been considered

in their articles but in Lee (1993) for panel choice regression models and Markov models with four periods.

Our present Monte Carlo experiments provide much more evidences on the value of simulated likelihood

estimation. Our experiments investigate both the simulated maximum likelihood method and the bias-

correction procedure. Panel models with periods much longer than eight are estimated. We are interested

in the estimation of various dynamic models in addition to regression models. Practical values of simulation

estimation are the ultimate goal of simulation based inference. The following Section 3 investigates only

discrete choice regression models. Section 4 investigates Markov models. Polya and Renewal dynamic models

are studied, respectively, in Sections 5 and 6. Section 7 considers Habit Persistent models. For all these

models, first order autocorrelated disturbances are maintained. For models with unobserved heterogeneity,

additional random components are included.

G = Eln { -. E ((2uss- 1)(zitP + F yi,,-ti + A E v,,, s+ E 6spy,

!9

p( )+ Ep54I'r 1 + Oj w
1

;: )}

where the superscript (j) denotes an independent simulation draw.

Asymptotic properties of the simulated maximum likelihood estimator (SMLE) have been studied in

Hajivassiliou and McFadden (1990), Lee (1992, 1993) and Gourieroux and Monfort (1993), among others. As

the choice probability simulators are independent across i, the simulated MLE can be asymptotically efficient

when lim,...., n'/
2
/m = 0. However, when m increases at a rate slower than n

11 2
, the limiting distribution of

the SMLE becomes nasty. As shown in Lee (1993), if m increases at the rate of n
1 1 2

, an asymptotic bias exists

in the limiting distribution. The situation becomes worse when m increases at a rate slower than n
1
/
2 

because

the asymptotic bias will then dominate the variance. To reduce the dominated bias due to simulation, Lee

(1993) has suggested a simple bias-correction procedure. For the discrete choice model with L alternatives,

suppose the simulated log likelihood is written in a familiar format as L(9) = ..., d, In fmi,(za, 9)



3. Panel Discrete Choice Regression Models

3.1 Models with Serially Correlated Disturbances

The discrete choice regression models are models without true state dependence. Throughout all the

experiments, the stochastic process for the disturbance en is assumed to be a AR(1) process. The model for

generating the sample for our experimental study is a binary choice panel model:

ye=J A /3 jg+ e.

~it = Pf,-1 + Will

(3.1)

(3.2)

and

where wit are i.i.d. normal N(0, 1). The vector of exogenous variables zu, is (1, z.).

The exogenous variables zit are generated as zus = (1/f )ri,+/sd where rig are i.i.d. truncated normal

N(0, 1) variables with support [-2,2] and sd are independent uniform variables with support on [-1/2,1/2].

The variance ofz is about 1 and its correlation coefficient over time is about 0.5. This process of generating

exogenous variables is used for all the models in this article. The initial condition for (3.2) is (do = 0 for all

i. Sample data are generated with , = 1, A = 0.2 and p = 0.4. This p represents a moderate amount of

autocorrelation for the disturbance. The sample size is 200. We have experimented with a small number of

random draws and a moderate number of draws, namely, m = 15 and m = 50, for the construction of the

GHK simulator. The simulated log likelihood function for this model is

C= In {-Z [D (A+pzit+ pt,:-1)]}-

The number of periods for the panel data varies from T = 8 to the maximum of 100. For each case, the

number of replications is 300. For each replication, the set of exogenous variables is redrawn. We report the

empirical mean and standard deviation of estimates for each parameter. For the sake of easy comparison, we

will also report root mean square errors for estimates and the CPU time in seconds per replication. All the

computation is performed with IBM RS/6000 machines. The CPU time refers to the computation speed of

a IBM RS/6000 Model 580 workstation.
2 The maximization algorithm used is a conjugate gradient method

described in Press et al. (1986), Chapter 10. For all the cases and replications reported here, the algorithm

2 Comparing the speed of Model 580 with the model 320H machine, the latter is slow by a time factor of

2.6.
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converges without running into numerical problems.

Table 1.A reports empirical means and standard deviations for both the SMLE (Bias unadjusted SML)

and the bias-adjusted estimates (Bias adjusted SML). Root mean squared errors of estimates are reported

in Table 1.B. For all the panels with periods from 8 to 100, the SMLE of the intercept A and the regression

slope parameter A have small biases. The SMLE of the autocorrelation coefficient p has shown some biases.

As the number of time periods increases, the choice pattern becomes numerous and the choice probabilities

become small. As smaller probabilities are more difficult to simulate than larger probabilities (Borsch-Supan

and Hajivassiliou (1993)), biases of the SMLE for long panels become slightly larger. On the other hand,

since longer panel data provide more sample information about the stochastic process, standard errors of

estimates decrease. Root mean square errors also decrease for estimates with longer panels if time periods

are not too long. However, for long panels with T = 50 or T = 100, root mean square errors for p are

larger. For T = 100, root mean square errors for $ are also larger. This is due to the circumstance that

increasing bias may dominate the reduction of standard error. Biases of estimates are all reduced when the

number of simulated random variables increases from m = 15 to 50. The improvement of the estimate of

p is more apparent. The increased CPU time cost is close to be linear in m and T. The bias-corrected

procedure eliminates some of the biases. The bias correction is valuable especially for small m with m = 15.

Although standard errors of bias-corrected estimates are slightly larger, the reduction in bias dominates the

slight increase of standard error and results in smaller root mean squares errors for estimates of p. Root

mean square errors of bias-corrected estimates are in general smaller than root mean square errors of bias-

unadjusted estimates for long panels. For short panels with T = 8 and 15, bias-corrected estimates with

m = 15 can be at least as good as unadjusted SMLE with m = 50 in terms of similar bias. The additional

CPU cost for bias-correction is negligible in the overall cost. In sum, the performance of the simulated ML

methods seems satisfactory ever for long panels in this experiment.

Tables 2.A and 2.B report results for another data set. The sample is generated with p set to 0.85, a

rather high correlation for the disturbance. The SMLE have much larger biases when they are compared

with corresponding estimates in the previous sample with p = 0.4. Estimates with shorter periods T = 8

and 15 seem satisfactory even with m = 15. But for panels with longer periods, biases of estimates seem

S For models without unobserved heterogeneity, initial estimates are arbitrarily set to sero. For models

with unobservable heterogeneity, the initial estimate of o is set to one and the initial estimates of the other
parameters are set to zero. We have also tried some other starting values such as (1, -1,0) and (-1,1,0) for
(#,A, p) with which the algorithm converges to similar solutions.

9



severely downward. The results are better for the biased-corrected procedure. But for better improvement,

larger m is desirable. With m = 50, the SMLE are reasonably good even for T = 50. For strong serial

correlation, estimates for p have smaller standard errors but estimates of the intercept and the regression

coefficient have larger errors than corresponding cases with a moderate serial correlation. With strong serial

correlation, one may expect that there would be less variation and less changes on choices over time. Overall,

simulation estimates perform better for models with moderate serial correlation than models with rather high

serial correlation. The Monte Carlo results in Keane (1994) for a similar model with additional unobserved

heterogeneity pointed out the same problem.
4

3.2 Models with Unobserved Heterogeneous and Serially Correlated Disturbances

The model with unobserved heterogeneity generalizes the previous model (3.1)-(3.2) by introducing a

random component as an additional disturbance:

panels increase. For long panels with T = 50 and 100, biases can dominate standard errors that results in

larger root mean square errors. Overall, those SMLE and bias-corrected estimates with m = 50 are good

for panels with T up to 30 for this model. Comparing these estimates with estimates of panel regression

models in (3.1) without unobserved heterogeneity, these estimates are slightly worse than the corresponding

estimates in Table 1 with p = 0.4 but are much better than the estimates in Table 2 with p = 0.85. This may

be due to the fact that the first lagged autocorrelation of this model is stronger than the autocorrelation of

the model (3.1) with p = 0.4 but is weaker than the case with p = 0.85.

ylg = A+fSzg + l + u, (3.3)

where & are i.i.d. N(0, 1) and are independent of cit. The simulated log likelihood function for this model is

n m T
= n In -E1 [Di.(A+/ku+og f u)

=1 j=1 t=1

Sample data are generated with parameters A = 0.2, Q = 1.0, o2 = 0.5, and p = 0.4. With the additional

ef, the serial correlation of two adjacent periods has a correlation coefficient about 0.6 and the fraction of

variance due to the individual effect is about 0.3.

Tables 3.A and 3.B report simulated likelihood estimates and their root mean squares errors. All the

estimates for Q have small biases. Biases for the intercept A are also small for T up to 50. There are some

biases for the SMLE of o and p. The SMLE of a tend to increase as T increases and are biased upward

for long panels with T = 50 or 100. On the other hand, biases of p are downward. So for long panel data,

the correlation due to unobserved heterogeneity tends to be over estimated and the serial correlation of the

remaining disturbance tends to be underestimated.' With m increases to 50, biases are reduced and the

SMLE are reasonably good for T up to 30. The bias correction procedure reduces some of the biases and

root mean square errors in /9 and p. Standard errors for estimates of / and p are decreasing as periods in

4 As Keane (1994) has experimented with a very small m, namely 10 draws, and has neither used any
bias correction procedure nor increased the number of simulation draws, his conclusion is too pessimistic.

d With higher autocorrelation but smaller fraction of variance due to the individual effect, the Monte Carlo
result in Keane (1994) has also shown this pattern of bias for a panel of eight periods based on m = 10.
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Table L.A
SML-Model: Serial correlation only; no state dependence

True parameters: 8 = 1, A = 0.2, and p = 0.4

T n m # A p time

Bias unadjusted SML

8 200 15 0.9939 (.0542) .1999 (.0451) .3757 (.0504) 21.83
15 200 15 0.9895 (.0406) .2007 (.0337) .3724 (.0322) 43.99
30 200 15 0.9854 (.0285) .1984 (.0237) .3633 (.0206) 97.27
50 200 15 0.9803 (.0227) .1953 (.0164) .3540 (.0170) 170.54
100 200 15 0.9719 (.0144) .1948 (.0123) .3369 (.0109) 367.64

8 200 50 0.9999 (.0549) .2010 (.0453) .3905 (.0503) 74.09
15 200 50 0.9955 (.0412) .2019 (.0339) .3876 (.0328) 151.01
30 200 50 0.9943 (.0288) .2002 (.0240) .3842 (.0216) 337.24
50 200 50 0.9904 (.0232) .1975 (.0164) .3782 (.0176) 570.69
100 200 50 0.9824 (.0146) .1971 (.0123) .3635 (.0108) 1242.82

Bias adjusted SML

8 200 15 1.0006 (.0551) .2014 (.0453) .3929 (.0517) 22.04
15 200 15 0.9969 (.0414) .2023 (.0341) .3905 (.0332) 44.40
30 200 15 0.9930 (.0291) .1998 (.0239) .3812 (.0212) 98.16
50 200 15 0.9871 (.0231) .1966 (.0166) .3702 (.0175) 172.05
100 200 15 0.9749 (.0145) .1954 (.0124) .3452 (.0110) 370.56

8 200 50 1.0024 (.0552) .2015 (.0454) .3968 (.0509) 74.80
15 200 50 0.9986 (.0416) .2025 (.0341) .3948 (.0335) 152.39
30 200 50 0.9985 (.0291) .2010 (.0241) .3935 (.0223) 340.09
50 200 50 0.9951 (.0235) .1984 (.0165) .3888 (.0183) 575.67
100 200 50 0.9850 (.0147) .1976 (.0123) .3705 (.0109) 1252.41

Table 1.B
SML-Model: Serial correlation only; no state dependence

Root mean squared errors

T n m 0 A p p A p

Bias unadjusted SML Bias adjusted SML

8 200 15 .0545 .0450 .0559 .0550 .0453 .0521
15 200 15 .0419 .0336 .0423 .0415 .0341 .0345
30 200 15 .0320 .0237 .0421 .0299 .0239 .0283
50 200 15 .0300 .0170 .0490 .0264 .0169 .0346
100 200 15 .0316 .0134 .0641 .0290 .0132 .0559

8 200 50 .0548 .0453 .0511 .0552 .0454 .0509
15 200 50 .0414 .0339 .0351 .0416 .0341 .0338
30 200 50 .0293 .0239 .0268 .0291 .0241 .0232
50 200 50 .0251 .0166 .0280 .0240 .0166 .0214
100 200 50 .0229 .0126 .0380 .0210 .0125 .0314
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Table 2.A
SML-Model: Serial correlation only; no state dependence

True parameters: # = 1, A = 0.2, and p = 0.85

T n m / A p time

Bias unadjusted SML

8 200 15 0.9671 (.0650) .1922 (.0734) .8217 (.0339) 24.69
15 200 15 0.9439 (.0478) .1908 (.0712) .8176 (.0203) 49.23
30 200 15 0.9040 (.0338) .1857 (.0614) .7984 (.0148) 103.21
50 200 15 0.8643 (.0288) .1718 (.0451) .7779 (.0116) 170.20
100 200 15 0.8228 (.0179) .1596 (.0355) .7496 (.0089) 353.02

8 200 50 0.9867 (.0656) .1966 (.0739) .8379 (.0322) 84.54
15 200 50 0.9763 (.0498) .1965 (.0724) .8384 (.0186) 165.56
30 200 50 0.9486 (.0360) .1944 (.0639) .8241 (.0140) 353.36
50 200 50 0.9081 (.0291) .1811 (.0464) .8056 (.0112) 561.33
100 200 50 0.8572 (.0186) .1685 (.0377) .7743 (.0084) 1164.10

Bias adjusted SML

8 200 15 0.9862 (.0669) .1956 (.0748) .8364 (.0334) 24.90
15 200 15 0.9611 (.0492) .1937 (.0731) .8273 (.0200) 49.64
30 200 15 0.9159 (.0344) .1878 (.0629) .8039 (.0146) 104.11
50 200 15 0.8718 (.0290) .1729 (.0460) .7813 (.0114) 171.71
100 200 15 0.8233 (.0180) .1595 (.0359) .7499 (.0090) 355.94

8 200 50 0.9955 (.0666) .1983 (.0745) .8444 (.0322) 85.25
15 200 50 0.9882 (.0508) .1988 (.0737) .8448 (.0185) 166.94
30 200 50 0.9607 (.0367) .1968 (.0654) .8293 (.0138) 356.19
50 200 50 0.9166 (.0293) .1826 (.0475) .8092 (.0112) 566.29
100 200 50 0.8593 (.0189) .1685 (.0382) .7752 (.0085) 1173.70

Table 2.B
SML-Model: Serial correlation only; no state dependence

Root mean squared errors

T n m P A p P A p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0728 .0737 .0441 .0682 .0748 .0360
15 200 15 .0737 .0717 .0382 .0626 .0733 .0302
30 200 15 .1018 .0629 .0537 .0909 .0639 .0483
50 200 15 .1387 .0531 .0731 .1315 .0533 .0697
100 200 15 .1781 .0537 .1008 .1776 .0541 .1005

8 200 50 .0669 .0739 .0343 .0666 .0744 .0326
15 200 50 .0551 .0724 .0219 .0521 .0736 .0192
30 200 50 .0627 .0640 .0294 .0537 .0653 .0248
50 200 50 .0964 .0500 .0458 .0883 .0505 .0423
100 200 50 .1440 .0491 .0762 .1420 .0495 .0753
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Table 3.A
SML-Serially correlated disturbances; random component; no state dependence

Tue parameters: 0 = 1, A = 0.2, e = 0.= 0.7071.., and p = 0.4

T n m l3 A o p time
Bias unadjusted SML

8 200 15 0.9694 (.0650) .1992 (.0724) .6408 (.1362) .4018 (.0867) 23.28
15 200 15 0.9724 (.0456) .1933 (.0661) .6942 (.0741) .3755 (.0452) 39.34
30 200 15 0.9579 (.0344) .1902 (.0696) .7181 (.0628) .3472 (.0293) 89.87
50 200 15 0.9559 (.0277) .1956 (.0745) .7404 (.0681) .3279 (.0183) 177.12
100 200 15 0.9486 (.0202) .1879 (.1001) .7903 (.0839) .2983 (.0133) 410.54

8 200 50 0.9912 (.0658) .2063 (.0757) .6948 (.0974) .3864 (.0800) 73.80
15 200 50 0.9918 (.0453) .1959 (.0633) .7102 (.0662) .3865 (.0434) 123.30
30 200 50 0.9802 (.0350) .2033 (.0654) .7124 (.0552) .3739 (.0272) 300.90
50 200 50 0.9798 (.0273) .2029 (.0652) .7253 (.0525) .3613 (.0179) 572.90
100 200 50 0.9715 (.0178) .1869 (.0827) .7521 (.0692) .3342 (.0128) 1394.93

Bias adjusted SML

8 200 15 0.9884 (.0672) .2030 (.0743) .6906 (.1302) .3938 (.0906) 23.40
15 200 15 0.9864 (.0468) .1958 (.0682) .7143 (.0739) .3843 (.0466) 39.76
30 200 15 0.9682 (.0348) .1920 (.0718) .7297 (.0643) .3598 (.0297) 90.73
50 200 15 0.9637 (.0282) .1968 (.0765) .7482 (.0701) .3387 (.0184) 178.60
100 200 15 0.9512 (.0208) .1880 (.1009) .7926 (.0849) .3031 (.0133) 413.55

8 200 50 0.9989 (.0666) .2082 (.0764) .7092 (.0942) .3844 (.0811) 74.54
15 200 50 0.9989 (.0460) .1975 (.0641) .7151 (.0659) .3938 (.0443) 124.73
30 200 50 0.9878 (.0356) .2054 (.0666) .7158 (.0560) .3860 (.0280) 303.82
50 200 50 0.9871 (.0277) .2042 (.0675) .7297 (.0539) .3741 (.0181) 577.72
100 200 50 0.9743 (.0179) .1867 (.0840) .7545 (.0703) .3414 (.0130) 1404.82

Table 3.B
SML-Serially correlated disturbances; random component; no state dependence

Root mean squared error

T n m /0 A a P /3 A p

Bias unadjusted SML Bias adjusted SML

8 200 15 .0717 .0722 .1513 .0866 .0681 .0742 .1311 .0906
15 200 15 .0532 .0663 .0751 .0514 .0487 .0682 .0741 .0490
30 200 15 .0544 .0702 .0637 .0604 .0471 .0722 .0680 .0500
50 200 15 .0520 .0745 .0757 .0744 .0459 .0765 .0812 .0640
100 200 15 .0552 .1006 .1180 .1025 .0531 .1014 .1204 .0978

8 200 50 .0663 .0758 .0980 .0810 .0665 .0767 .0941 .0825
15 200 50 .0460 .0633 .0662 .0454 .0459 .0641 .0663 .0446
30 200 50 .0402 .0654 .0553 .0377 .0376 .0668 .0566 .0312
50 200 50 .0339 .0652 .0554 .0426 .0305 .0676 .0583 .0316
100 200 50 .0336 .0836 .0825 .0670 .0313 .0849 .0846 .0601
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4. Markov Models

4.1 Markov Model with Serially Correlated Disturbances

The Markov dynamic choice model considered in the experiment is

v<= #.-it + Ad,,,- + ci, (4.1)

where

it = pei,-. + Wit

and w;t are i.i.d. N(0, 1). The stochastic process starts at the initial period with eco = 0 and dio = 0 for all

i. This model is a first order Markov model as choices made last period are the only prior choices relevant

to current choice. The simulated log likelihood function for this model is

n m T

S= ZIn LZH [D:(#zii +Ad,..1+pEe -1)]}.
i=1m j=1 t=1

This model differs from the model in (3.1) in that the A represents the effect of true state dependence. The

a variable is generated by the same stochastic process before.

Tables 4.A and 4.B report simulated likelihood estimates and their root mean square errors for the case

where true parameters are set to # = 1, A = 0.2, and p = 0.4. With a sample of size n = 200 and m = 15,

biases of the SMLE of 3 are small. But there are upward biases in the SMLE of A. The SMLE of p are

biased downward. So the dynamic effect can be over stated but the serial correlation of disturbances can be

underestimated. Standard errors of all the SMLE decrease as panels become longer. For the longest panel

with T = 100, biases dominate standard errors and their root mean square errors become larger than the

root mean square errors for panels with shorter periods. With m = 50, biases of the SMLE of A and p have

been substantially reduced. The bias correction procedure can also substantially reduce biases of the SMLE.

By solely increasing the sample size n (from 200 to 500) but without increasing the number of simulated

random variables m, biases can not be reduced as predicted by theory. Overall, estimates of this model are

reasonably good for panels with T up to 50. With m = 50, bias-corrected estimates have small root mean

square errors among all the estimates. Comparing these estimates with estimates of the regression model

without state dependence in Tables 1.A and 1.B, standard errors and root mean square errors of estimates

of the Markov dynamic model are larger. When small m (m = 15), is utilized, the estimate of the dynamic

effect of the Markov model is more biased.

Tables 5.A and 5.B provide estimates for the case with a high autocorrelation p = 0.85. Biases and

standard errors of the SMLE for both 1 and A become larger, even though standard errors for p are smaller.

With the bias-correction procedure and m = 50, estimates can be quite accurate for shorter panels with T

up to 15. Biases and root mean square errors tend to be larger for panels with T equal to 30 or more.

4.2 Markov Model with Unobserved Heterogeneity and Serially Correlated Disturbances

The Markov dynamic choice model considered for Monte Carlo study in this section is

I, = 1#zu + Adi,...1 + o(; + tei, (4.2)

where

tej = Psis-1 + wit,

and ti and wit are i.i.d. N(0, 1). The stochastic process starts at the initial period with do = 0 and dio = 0

for all i. The simulated log likelihood function for this model is

n 1m 7'

G=~ln -L1 Di (zdc + Ad4,,-1. + oi + pe -)]

Sample data are generated with 13 = 1, A = 0.2, 
2 
= 0.5, and p = 0.4.

The SMLE and their root mean square errors are reported on Tables 6.A and 6.B. The SMLE of 1 are

biased downward, biases of the dynamic effect A are upward, and estimates of p are biased downward. The

magnitude of bias increases as the length of the panel becomes longer. The SMLE of o with small m = 15

are biased downward for short panels but biases become upward for long panels. Directions of bias of the

SMLE for 1, A and p are similar to the Markov model (4.1) without unobserved heterogeneity. Biases for

1 for the Markov model with additional unobserved heterogeneity are slightly larger. Biases for p are much

more severe when T are 30 or longer. Biases of the SMLE of the dynamic effect A are also quite severe for

T as long as 30 or longer. By increasing m to 50, biases of estimates are reduced. Bias-corrected estimates

have smaller biases. With m = 50, biases of bias-corrected estimates for all the parameters seem quite small

for T up to 15. In terms of root mean squares errors, estimates are improved with T up to 30. When T

becomes long as 50 or 100, root mean squares errors of estimates can be larger than the ones with shorter

T. By increasing m to a large 100, biases and root mean squares errors can further be reduced but the

time cost is double. Bias-corrected estimates have slightly larger standard errors but their root mean square

errors are, in general, smaller. In conclusion, for this model, bias-corrected estimates with m = 50 can be

reasonably good for T up to 30.
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Table 4.A
SML-serial correlated disturbances; Markov state dependence

'Irue parameters: {9#= 1, A = 0.2, and p = 0.4

T n m A p time

Bias unadjusted SML

8 200 15 0.9928 (.0562) .2217 (.0754) .3682 (.0622) 20.04
15 200 15 0.9853 (.0425) .2293 (.0520) .3609 (.0373) 40.21
30 200 15 0.9799 (.0287) .2339 (.0341) .3505 (.0260) 81.65
50 200 15 0.9743 (.0235) .2391 (.0270) .3382 (.0191) 146.25
100 200 15 0.9648 (.0145) .2598 (.0185) .3153 (.0141) 318.58

8 200 50 1.0007 (.0562) .2076 (.0768) .3890 (.0626) 67.77
15 200 50 0.9939 (.0434) .2138 (.0536) .3828 (.0388) 137.84
30 200 50 0.9920 (.0293) .2128 (.0350) .3804 (.0277) 277.19
50 200 50 0.9877 (.0240) .2161 (.0281) .3713 (.0201) 483.74
100 200 50 0.9780 (.0144) .2368 (.0193) .3497 (.0142) 1062.70

15 500 15 0.9828 (.0233) .2289 (.0300) .3622 (.0235) 101.65
30 500 15 0.9795 (.0161) .2340 (.0206) .3515 (.0168) 239.84

Bias adjusted SML

8 200 15 1.0020 (.0576) .2057 (.0766) .3922 (.0640) 20.27
15 200 15 0.9953 (.0436) .2123 (.0533) .3862 (.0387) 40.62
30 200 15 0.9899 (.0295) .2170 (.0352) .3753 (.0270) 82.49
50 200 15 0.9833 (.0238) .2240 (.0277) .3605 (.0197) 147.71
100 200 15 0.9691 (.0148) .2521 (.0187) .3275 (.0143) 321.51

8 200 50 1.0042 (.0568) .2014 (.0774) .3979 (.0633) 68.48
15 200 50 0.9982 (.0440) .2063 (.0544) .3933 (.0397) 139.23
30 200 50 0.9977 (.0298) .2030 (.0358) .3939 (.0286) 280.02
50 200 50 0.9940 (.0244) .2052 (.0288) .3865 (.0211) 488.51
100 200 50 0.9819 (.0147) .2297 (.0195) .3603 (.0146) 1072.31

15 500 15 0.9927 (.0240) .2121 (.0307) .3870 (.0246) 102.74
30 500 15 0.9894 (.0164) .2174 (.0212) .3760 (.0174) 242.01

Table 4.B
SML-serial correlated disturbances; Markov state dependence

Root mean squared errors

T n m P A p 0 A p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0565 .0783 .0697 .0575 .0767 .0644
15 200 15 .0449 .0596 .0540 .0438 .0546 .0410
30 200 15 .0350 .0481 .0559 .0311 .0390 .0366
50 200 15 .0348 .0475 .0647 .0290 .0367 .0441
100 200 15 .0381 .0626 .0859 .0343 .0553 .0739

8 200 50 .0561 .0770 .0634 .0569 .0772 .0632
15 200 50 .0438 .0553 .0424 .0440 .0546 .0402
30 200 50 .0303 .0372 .0339 .0298 .0358 .0292
50 200 50 .0270 .0323 .0350 .0251 .0292 .0250
100 200 50 .0263 .0415 .0523 .0232 .0355 .0423
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Table 5.A
SML-Serially correlated disturbances; Markov state dependence

True parameters: / = 1, A = 0.2, and p = 0.85

T n m A p time

Bias unadjusted SML

8 200 15 0.9744 (.0683) .2231 (.0965) .8179 (.0387) 24.42
15 200 15 0.9478 (.0501) .2358 (.0695) .8118 (.0232) 47.40
30 200 15 0.9077 (.0357) .2626 (.0520) .7892 (.0182) 104.58
50 200 15 0.8689 (.0282) .2895 (.0413) .7621 (.0157) 188.52

100 200 15 0.8277 (.0192) .3455 (.0349) .7222 (.0114) 386.83

8 200 50 0.9943 (.0684) .2093 (.0948) .8371 (.0350) 83.45
15 200 50 0.9794 (.0506) .2135 (.0689) .8366 (.0203) 159.61
30 200 50 0.9507 (.0372) .2322 (.0476) .8202 (.0159) 346.88
50 200 50 0.9116 (.0295) .2520 (.0380) .7975 (.0136) 627.23
100 200 50 0.8647 (.0201) .3094 (.0340) .7566 (.0104) 1352.99

Bias adjusted SML

8 200 15 0.9932 (.0706) .2093 (.0973) .8355 (.0377) 24.64
15 200 15 0.9642 (.0515) .2248 (.0697) .8231 (.0225) 47.84
30 200 15 0.9194 (.0365) .2559 (.0525) .7960 (.0177) 105.46
50 200 15 0.8765 (.0283) .2851 (.0416) .7665 (.0153) 189.94

100 200 15 0.8290 (.0195) .3422 (.0350) .7235 (.0114) 389.84

8 200 50 1.0028 (.0695) .2034 (.0953) .8446 (.0347) 84.16
15 200 50 0.9907 (.0516) .2066 (.0692) .8439 (.0200) 159.61
30 200 50 0.9622 (.0379) .2259 (.0477) .8263 (.0154) 346.88
50 200 50 0.9199 (.0297) .2474 (.0384) .8018 (.0134) 631.98
100 200 50 0.8674 (.0202) .3059 (.0342) .7584 (.0104) 1362.58

Table S.D
SML-Serially correlated disturbances; Markov state dependence

Root mean squared errors

T n m P A p P A p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0729 .0991 .0502 .0708 .0976 .0403
15 200 15 .0723 .0781 .0447 .0626 .0738 .0351
30 200 15 .0989 .0813 .0634 .0885 .0766 .0568
50 200 15 .1341 .0985 .0893 .1267 .0947 .0849

100 200 15 .1734 .1496 .1283 .1721 .1464 .1270

8 200 50 .0686 .0951 .0372 .0694 .0952 .0351
15 200 50 .0545 .0701 .0243 .0523 .0694 .0209
30 200 50 .0617 .0574 .0338 .0535 .0542 .0283
50 200 50 .0932 .0644 .0542 .0855 .0609 .0500

100 200 50 .1368 .1146 .0940 .1342 .1113 .0922
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Table 6.A
SML-Serially correlated disturbances; random com onent; Markov state dependence

True parameters: #= 1, A = 0.2, o = V = 0.7071.., and p = 0.4

T n m A a p time
Bias unadjusted SML

8 200 15 0.9662 (.0637) .2317 (.1081) .6299 (.1358) .3876 (.1124) 25.24
15 200 15 0.9654 (.0448) .2667 (.0827) .6766 (.0759) .3427 (.0692) 44.65
30 200 15 0.9516 (.0347) .3216 (.0652) .6904 (.0622) .2905 (.0464) 91.16
50 200 15 0.9510 (.0269) .3775 (.0562) .7107 (.0640) .2525 (.0337) 157.31
100 200 15 0.9459 (.0212) .4817 (.0526) .7662 (.0799) .1860 (.0266) 353.14

8 200 50 0.9884 (.0660) .2224 (.1073) .6851 (.0963) .3787 (.1055) 81.35
15 200 50 0.9876 (.0458) .2227 (.0768) .6978 (.0712) .3795 (.0620) 152.19
30 200 50 0.9763 (.0344) .2598 (.0637) .6946 (.0575) .3442 (.0464) 334.48
50 200 50 0.9775 (.0268) .3030 (.0541) .6956 (.0532) .3153 (.0341) 558.50

100 200 50 0.9713 (.0179) .3848 (.0400) .7168 (.0663) .2610 (.0214) 1178.51

8 200 100 0.9927 (.0658) .2167 (.1056) .6942 (.0927) .3819 (.1027) 161.69
15 200 100 0.9933 (.0467) .2120 (.0783) .7021 (.0714) .3890 (.0620) 300.13
30 200 100 0.9839 (.0334) .2337 (.0619) .6975 (.0562) .3671 (.0432) 667.17
50 200 100 0.9868 (.0269) .2640 (.0513) .6972 (.0510) .3462 (.0334) 1151.58

100 200 100 0.9790 (.0180) .3382 (.0387) .7027 (.0542) .2970 (.0201) 2378.40

Bias adjusted SML

8 200 15 0.9871 (.0661) .2146 (.1111) .6819 (.1314) .3880 (.1171) 25.46
15 200 15 0.9812 (.0459) .2435 (.0849) .7000 (.0759) .3610 (.0715) 45.07
30 200 15 0.9633 (.0353) .2990 (.0673) .7039 (.0636) .3120 (.0479) 92.02
50 200 15 0.9602 (.0276) .3604 (.0575) .7197 (.0655) .2708 (.0348) 158.78

100 200 15 0.9493 (.0214) .4747 (.0533) .7688 (.0810) .1947 (.0274) 356.08

8 200 50 0.9969 (.0670) .2147 (.1087) .7007 (.0938) .3808 (.1075) 82.09
15 200 50 0.9958 (.0465) .2062 (.0781) .7057 (.0714) .3944 (.0633) 153.63.
30 200 50 0.9847 (.0349) .2346 (.0652) .7020 (.0587) .3668 (.0477) 337.42
50 200 50 0.9855 (.0273) .2749 (.0555) .7034 (.0550) .3401 (.0347) 563.44

100 200 50 0.9747 (.0180) .3667 (.0400) .7203 (.0672) .2768 (.0217) 1188.43

8 200 100 0.9973 (.0664) .2123 (.1063) .7017 (.0915) .3836 (.1038) 163.14
15 200 100 0.9982 (.0471) .2016 (.0791) .7058 (.0714) .3986 (.0629) 302.97
30 200 100 0.9901 (.0338) .2144 (.0634) .7023 (.0573) .3843 (.0443) 683.03
50 200 100 0.9934 (.0276) .2385 (.0525) .7042 (.0525) .3678 (.0342) 1161.44

100 200 100 0.9822 (.0182) .3183 (.0386) .7069 (.0552) .3132 (.0202) 2398.21

Table 6.B
SML-Serially correlated disturbances; random component; Markov state dependence

Root mean squared error

T n m A o p j A p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0720 .1124 .1560 .1129 .0672 .1118 .1335 .1175
15 200 15 .0565 .1062 .0817 .0897 .0496 .0952 .0761 .0814
30 200 15 .0596 .1379 .0643 .1189 .0509 .1197 .0636 .1002
50 200 15 .0559 .1862 .0639 .1513 .0484 .1704 .0666 .1338
100 200 15 .0581 .2865 .0993 .2156 .0550 .2799 .1017 .2072

8 200 50 .0669 .1094 .0986 .1075 .0669 .1095 .0939 .1090
15 200 50 .0473 .0800 .0716 .0652 .0466 .0782 .0713 .0635
30 200 50 .0417 .0873 .0588 .0725 .0380 .0737 .0589 .0580
50 200 50 .0349 .1163 .0544 .0913 .0309 .0931 .0550 .0692
100 200 50 .0338 .1891 .0669 .1406 .0310 .1714 .0683 .1251

8 200 100 .0661 .1067 .0934 .1041 .0663 .1068 .0915 .1049
15 200 100 .0471 .0791 .0714 .0629 .0471 .0790 .0713 .0628
30 200 100 .0370 .0704 .0570 .0543 .0351 .0649 .0574 .0469
50 200 100 .0299 .0819 .0519 .0633 .0283 .0650 .0525 .0469
100 200 100 .0277 .1435 .0543 .1050 .0254 .1244 .0551 .0891
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5. Generalized Polya Models

5.1 Polya Models with Serially Correlated Disturbances

The generalized Polya model with a depreciation factor 6 is considered for our Monte Carlo experiment.

The Polya model is specified as

i = r,,/3 + Ax: 6-td,-j + cis,
f-1

(5.1)

and

Ef = peit-1 + W,

where w are i.i.d. N(0, 1). The initial conditions are cjo = 0 and dio = 0 for all i. In this model, the entire

history of the process is relevant to current decision making. The simulated log likelihood function for this

model is

£ = I in 1-El [Dc(z u + A E Sidj,:-i + pe..1)]i=1 m 1=1 9=1 fJ=1
For comparison purpose, the discount factor 6 is assumed to be a known constant and is set to be 0.7. Sample

data are generated with parameters # = 1, A = 0.2, and p = 0.4.

The SMLE and the bias-corrected estimates for this model are reported in Tables 7.A and 7.B. We

have experimented with T = 8,15,30, and 50. Biases of all the SMLE of P and A are very small even for

m = 15. There are some downward biases for the SMLE of p for large T with m = 15. These biases can

be easily reduced by increasing m to 50 or by the bias correction procedure. Even with m = 15, the bias-

corrected estimates are quit good. Estimates of the dynamic effect A are accurate for all these T. Comparing

estimates of this model with corresponding estimates of the Markov model in Table 4, the Polya model can

be better estimated. Estimates of the dynamic effect A not only have small biases but also have much smaller

standard errors. The generalized Polya model has apparently much stronger state dependence property than

the Markov property. That may explain the excellent statistical properties of these estimates. On the other

hand, the computational time cost for this model is relatively more expensive. The additional time cost is

due to the need of computing more tail probabilities in this model.

5.2 Polya Models with Unobserved Heterogeneity and Serially Correlated Disturbances

With a random component f to capture unobserved heterogeneity, the generalized Polya model for our

experiment is specified as

and

fit = Pe,t-i + Wi,

where (& and wt are i.i.d. N(0, 1). The simulated log likelihood function for this model is

C = In { EH Di. #zu + AE6Jd,t--i+ e)+ ped_ 1
1= J=11l =1 J=1)1

Tables 8.A and 8.B report the SMLE and bias-corrected estimates and their root mean square errors.

There are some downward biases in the SMLE of P and p and upward biases for estimating the dynamic effect

A. These biases are not large. Estimates of a are biased downward for small T. There seems to be a trade-off

between estimates of o and p. As T becomes longer, the value of estimates of or increases but the value of

estimates of p decreases. For T = 50 and m = 15, the bias of p is 25 percent. The bias-correction procedure

reduces biases. With m = 50 and the bias-correction procedure, estimates of this model are reasonably good

for T up to 50. Comparing these estimates with the corresponding estimates of the Markov model with

unobserved heterogeneity in Table 6, the dynamic effect A and the serial correlation coefficient p in the Polya

model can be much better estimated. They have small biases and smaller standard errors. This may be due

to the stronger dynamic effect in this model. With the additional unobserved heterogeneity, estimates are

less precise when compared with estimates of the Polya model without unobserved heterogeneity in (5.1).

The time cost for estimation, however, turns out to be less due to the fact that choice probabilities are now

less extreme as an additional disturbance is introduced.

e

yi, = Zit+ +A[6J-d + if d + ,
J=i
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Table 7.A
SML-serial correlated disturbances; the Polya model

True parameters: # = 1, A = 0.2, and p = 0.4

T n m p A p time
Bias unadjusted SML

8 200 15 0.9949 (.0544) .2054 (.0343) .3821 (.0539) 31.32
15 200 15 0.9921 (.0450) .2056 (.0209) .3801 (.0348) 67.58
30 200 15 0.9856 (.0297) .2047 (.0130) .3709 (.0226) 152.63
50 200 15 0.9788 (.0232) .2022 (.0082) .3547 (.0197) 276.65

8 200 50 1.0026 (.0547) .2018 (.0351) .4007 (.0537) 107.75
15 200 50 1.0000 (.0459) .2031 (.0215) .3979 (.0361) 231.64
30 200 50 0.9970 (.0310) .2028 (.0132) .3953 (.0232) 505.92
50 200 50 0.9917 (.0235) .2002 (.0084) .3832 (.0208) 928.09

Bias adjusted SML

8 200 15 1.0036 (.0557) .2016 (.0348) .4023 (.0559) 31.55
15 200 15 1.0013 (.0460) .2032 (.0213) .4011 (.0363) 68.02
30 200 15 0.9950 (.0303) .2029 (.0132) .3914 (.0236) 153.48
50 200 15 0.9872 (.0238) .2010 (.0084) .3731 (.0204) 278.10

8 200 50 1.0059 (.0552) .2003 (.0353) .4082 (.0544) 108.48
15 200 50 1.0040 (.0465) .2020 (.0217) .4066 (.0370) 233.15
30 200 50 1.0022 (.0314) .2016 (.0133) .4062 (.0242) 508.90
50 200 50 0.9977 (.0241) .1991 (.0086) .3957 (.0217) 932.85

Table 7.B
SML-Serially correlated disturbances; the Polya model

Root mean squared errors

T n m 0 A p 0 A p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0546 .0347 .0567 .0557 .0348 .0558
15 200 15 .0456 .0216 .0400 .0459 .0215 .0362
30 200 15 .0330 .0138 .0368 .0306 .0135 .0250
50 200 15 .0314 .0084 .0493 .0270 .0084 .0338

8 200 50 .0547 .0351 .0536 .0554 .0352 .0550
15 200 50 .0459 .0217 .0361 .0465 .0218 .0375
30 200 50 .0311 .0134 .0237 .0315 .0134 .0249
50 200 50 .0249 .0084 .0267 .0241 .0086 .0221

Table 8.A
SML-Serially correlated disturbances; random component; the Polya model

True parameters: #= 1, A = 0.2, u = 0i, and p = 0.4

T n m A p time
Bias unadjusted SML

8 200 15 0.9648 (.0648) .2201 (.0471) .6317 (.1373) .3903 (.0894) 25.79
15 200 15 0.9647 (.0476) .2172 (.0296) .6718 (.0787) .3679 (.0516) 53.77
30 200 15 0.9503 (.0369) .2197 (.0257) .6946 (.0735) .3370 (.0306) 136.88
50 200 15 0.9469 (.0286) .2344 (.0221) .7079 (.0700) .3091 (.0230) 263.49

8 200 50 0.9891 (.0671) .2111 (.0470) .6869 (.1069) .3843 (.0773) 85.07
15 200 50 0.9871 (.0482) .2071 (.0306) .6945 (.0721) .3850 (.0523) 182.97
30 200 50 0.9773 (.0384) .2056 (.0256) .7066 (.0632) .3727 (.0316) 423.29
50 200 50 0.9734 (.0289) .2177 (.0222) .7056 (.0605) .3508 (.0236) 837.40

Bias adjusted SML

8 200 15 0.9884 (.0675) .2089 (.0488) .6917 (.1327) .3876 (.0936) 26.01
15 200 15 0.9818 (.0490) .2097 (.0306) .6993 (.0790) .3805 (.0537) 54.20
30 200 15 0.9628 (.0377) .2143 (.0267) .7102 (.0757) .3535 (.0318) 137.75
50 200 15 0.9565 (.0293) .2313 (.0228) .7174 (.0720) .3230 (.0237) 264.98

8 200 50 0.9987 (.0682) .2064 (.0477) .7058 (.1048) .3845 (.0788) 85.80
15 200 50 0.9958 (.0491) .2028 (.0312) .7036 (.0723) .3946 (.0536) 184.42
30 200 50 0.9864 (.0393) .1996 (.0266) .7150 (.0649) .3885 (.0331) 426.18
50 200 50 0.9820 (.0296) .2116 (.0234) .7135 (.0629) .3677 (.0247) 842.32

Table S.D
SML-Serially correlated disturbances; random component; the Polya model

Root mean squared error

T n m $ A o p 1 A v p
Bias unadjusted SML Bias adjusted SML

8 200 15 .0736 .0511 .1565 .0898 .0684 .0495 .1334 .0942
15 200 15 .0592 .0342 .0861 .0607 .0522 .0321 .0793 .0570
30 200 15 .0618 .0323 .0744 .0700 .0529 .0302 .0756 .0563
50 200 15 .0603 .0409 .0699 .0938 .0525 .0387 .0726 .0805

8 200 50 .0679 .0482 .1086 .0787 .0681 .0480 .1046 .0802
15 200 50 .0498 .0313 .0730 .0543 .0492 .0313 .0723 .0538
30 200 50 .0445 .0262 .0631 .0417 .0415 .0266 .0653 .0350
50 200 50 .0392 .0283 .0604 .0546 .0346 .0261 .0631 .0407
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6. Renewal Models

6.1 Renewal Model with Serially Correlated Disturbances

A renewal model with a discount factor 6 is considered. This model for our study is specified as

e I
l, = Zito + A 6'-1 f di,- + eu,

j=1 1=1
(6.1)

where

su = pet.... + wit

and wit are i.i.d. N(0,1). The process is assumed to start at the initial period with oto = 0. The renewal

model captures the essence that the current continuous duration in one state is a determinant of the decision

to remain in or exit the state. The simulated log likelihood function for this model is

C = In { . [Dig (PZiw + A 61-1ld.t4-+ pei_ }.
i=1 M =1 t=1 L \ j=1 1=1 /jJ

The discount factor 6 is assumed to be a known constant with the value of 0.7. The true parameters are set

to f# = 1, A = 0.2 and p = 0.4 as for the other models.

The SMLE and bias-corrected estimates for this model and their root mean square errors are reported

in Tables 9.A and 9.B. The SMLE for this model are quite good. There is some biases in estimates of p.

These biases can be reduced by increasing m to 50 or by the bias correction procedure. These estimates are

good for all the panels with T up to 50. Estimates of both the dynamic effect A and the serial correlation

coefficient p of this model are better in terms of smaller biases and standard errors than estimates of the

Markov model in Table 4. Comparing them with estimates of the Polya model in Table 9, these estimates are

only slightly worse. These results are compatible with model specification in that the true state dependence

in the Renewal model is stronger than the state dependence in the Markov model but is weaker than the

state dependence of the Polya model.

6.2 Renewal Models with Unobserved Heterogeneity and Serially Correlated Disturbances

Incorporating a random component (, the model with a discount factor 6 is

and (j and wit are i.i.d. N(0,1). The process is assumed to start at the initial period with ceo = 0. The

simulated log likelihood function for this model is

n m T t j

£ = Xln{! l [Du (Pzu + A lI- 9da.-r+UJ)?+ pde .] .
'=1 j=1t=1 1=1 i1

The discount factor is known to be 0.7. The sample data are generated with P = 1, A = 0.2, ea = 0.5, and

p = 0.4.

Results for the estimation of this model are reported on Tables 10.A and 10.B. There are upward biases

in the SMLE of A and downward biases in estimates of p. The magnitude of bias is increasing as T becomes

longer. Biases in estimates of P and p are relatively small. With large m = 50, all the biases are reduced.

The bias-correction procedure has also reduced the bias. The bias-corrected estimates with m = 50 are

pretty good. They have small biases and small root mean square errors. The model can be estimated

adequately for panels with T up to 50. As the state dependence in this model is relatively weaker than a

corresponding Polya model, estimates of this model are slightly less accurate in terms of biases and standard

errors than estimates of the Polya model in Table 8. On the other hand, these estimates are much better

than estimates of the Markov model with unknown heterogeneity in Table 6. The computing time cost of

this model with unobserved heterogeneity is slightly less than the time cost of the renewal model without

unobserved heterogeneity in (6.1). It is about the same computing cost for a Polya model with unobserved

heterogeneity.

1't= Zito + A 6J-'fl di,:-I+ Of a+ fit, (6.2)

where

fit = pC,s-1 + wit
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Table 9.A
SML-serial correlated disturbances; the Renewal model

True parameters: 13 = 1, A = 0.2, and p = 0.4

T n m /1 A p time
Bias unadjusted SML

8 200 15 0.9953 (.0559) .2077 (.0392) .3757 (.0611) 27.90
15 200 15 0.9871 (.0432) .2104 (.0259) .3716 (.0363) 65.01
30 200 15 0.9806 (.0316) .2117 (.0161) .3613 (.0252) 142.37
50 200 15 0.9755 (.0240) .2131 (.0106) .3476 (.0188) 262.83

8 200 50 1.0040 (.0561) .2004 (.0402) .3969 (.0628) 95.30
15 200 50 0.9970 (.0442) .2037 (.0272) .3936 (.0381) 221.65
30 200 50 0.9946 (.0328) .2039 (.0171) .3905 (.0270) 473.70
50 200 50 0.9909 (.0244) .2048 (.0113) .3799 (.0207) 868.00

Bias adjusted SML

8 200 15 1.0054 (.0575) .1996 (.0402) .3997 (.0636) 28.13
15 200 15 0.9982 (.0444) .2032 (.0269) .3968 (.0382) 65.42
30 200 15 0.9919 (.0326) .2051 (.0168) .3860 (.0267) 143.21
50 200 15 0.9856 (.0245) .2075 (.0109) .3696 (.0196) 264.27

8 200 50 1.0079 (.0567) .1972 (.0407) .4059 (.0638) 96.02
15 200 50 1.0018 (.0449) .2004 (.0277) .4043 (.0393) 223.03
30 200 50 1.0011 (.0336) .1999 (.0177) .4041 (.0283) 476.66
50 200 50 0.9981 (.0249) .2007 (.0117) .3950 (.0219) 872.76

Table 9.B
SML-Serially correlated disturbances; the Renewal model

Root mean squared errors

T n mn 03 A P 13 A P
Bias unadjusted SML Bias adjusted SML

8 200 15 .0560 .0398 .0656 .0577 .0401 .0635
15 200 15 .0450 .0279 .0461 .0443 .0270 .0383
30 200 15 .0371 .0199 .0461 .0335 .0175 .0301
50 200 15 .0343 .0168 .0557 .0284 .0132 .0362

8 200 50 .0561 .0402 .0628 .0571 .0407 .0640
15 200 50 .0442 .0274 .0386 .0448 .0277 .0394
30 200 50 .0332 .0175 .0286 .0336 .0177 .0286
50 200 50 .0260 .0123 .0288 .0249 .0117 .0224

Table 10.A
SML-Serially correlated disturbances; random component; the Renewal model

True parameters: 13= 1, A = 0.2, o = 0#5, and p = 0.4

T n m # A o p time
Bias unadjusted SML

8 200 15 0.9645 (.0646) .2249 (.0558) .6342 (.1251) .3815 (.0943) 27.79
15 200 15 0.9610 (.0464) .2318 (.0343) .6617 (.0783) .3458 (.0587) 55.96
30 200 15 0.9507 (.0355) .2367 (.0269) .6796 (.0635) .3220 (.0376) 131.49
50 200 15 0.9465 (.0288) .2562 (.0223) .7008 (.0699) .2876 (.0259) 260.57

8 200 50 0.9894 (.0670) .2146 (.0554) .6873 (.1056) .3806 (.0884) 93.14
15 200 50 0.9862 (.0464) .2135 (.0366) .6933 (.0755) .3746 (.0583) 202.58
30 200 50 0.9736 (.0354) .2191 (.0265) .6746 (.0555) .3607 (.0370) 440.09
50 200 50 0.9757 (.0292) .2285 (.0222) .6991 (.0488) .3444 (.0265) 820.62

Bias adjusted SML

8 200 15 0.9882 (.0671) .2120 (.0577) .6925 (.1211) .3832 (.0981) 28.00
15 200 15 0.9788 (.0476) .2201 (.0357) .6898 (.0788) .3635 (.0613) 56.39
30 200 15 0.9641 (.0362) .2261 (.0279) .6968 (.0650) .3437 (.0390) 132.36
50 200 15 0.9569 (.0296) .2489 (.0231) .7120 (.0717) .3059 (.0268) 262.02

8 200 50 0.9989 (.0680) .2091 (.0562) .7054 (.1035) .3833 (.0904) 93.88
15 200 50 0.9954 (.0473) .2061 (.0377) .7036 (.0760) .3880 (.0601) 204.02
30 200 50 0.9833 (.0359) .2089 (.0277) .6839 (.0568) .3813 (.0387) 443.03
50 200 50 0.9850 (.0299) .2169 (.0234) .7098 (.0500) .3679 (.0278) 825.54

Table 10.B
SML-Serially correlated disturbances; random component; the Renewal model

Root mean squared error

T n m 13 A p 13 A P
Bias unadjusted SML Bias adjusted SML

8 200 15 .0736 .0610 .1446 .0959 .0681 .0588 .1217 .0994
15 200 15 .0605 .0467 .0904 .0799 .0520 .0409 .0806 .0713
30 200 15 .0607 .0454 .0691 .0866 .0509 .0382 .0657 .0685
50 200 15 .0607 .0605 .0701 .1153 .0523 .0540 .0717 .0978

8 200 50 .0677 .0572 .1073 .0904 .0679 .0569 .1033 .0918
15 200 50 .0483 .0389 .0766 .0635 .0474 .0381 .0759 .0612
30 200 50 .0441 .0326 .0642 .0539 .0396 .0291 .0612 .0429
50 200 50 .0380 .0361 .0494 .0616 .0335 .0289 .0500 .0424
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7. Habit Persistent Models

7.1 Models with Serially Correlated Disturbances

The habit persistent model is specified as follows:

7.2 Models with Unobserved Heterogeneity and Serially Correlated Disturbances

The habit persistent model with a random component is specified as follows:

_=i1 +AY4,1- i + oft + Ed, (7.2)

yi: = zif+ Aty, 1. + eft (7.1)
where

where

eu1 = pgj-t + wi

and wt are i.i.d. N(0, 1). The process starts at the initial period with y u = 0 and eio = 0. The simulated

log likelihood function for this model is

n m T

C = In ( Ln. ([Di. (izx. + AyiIi2 + p4Ui) .
=t fn=t t=t

The true parameters are Q = 1, A = 0.2, and p = 0.4.

The SMLE and bias-corrected estimates and their root mean square errors are reported in Tables ll.A

and 11.B. There are downward biases in the SMLE for all the parameters 1, A and p. Biases for 1 and A

are relatively smaller than biases for p. With m increased to 50, biases are reduced and those biases for 13

and A are small. The bias-correction procedure can further reduce bias and biases for p can become small.

Bias-corrected estimates have also smaller mean squared errors than those of the unadjusted SMLE. The

parameters in this model can be accurately estimated with T up to 30 or even 50. Comparing these estimates

with estimates of the previous dynamic models, the main difference is on the direction of bias of estimates

of the dynamic effect A. While estimates of A tend to be upward in Markov, Polya and Renewal models, the

bias in the habit persistent model tends to be downward. The dynamic coefficient A can be better estimated

in terms of smaller bias and standard error than the corresponding estimates of the Markov model in Table

4. However, they are not better estimated than the ones in Polya and Renewal models. The habit persistent

model above is a first order latent Markov model. One may suspect that the dynamic effect for this model

is stronger than the dynamic effect of the corresponding Markov model but is weaker than the accumulated

effects of Polya and Renewal models. On the other hand, estimates of 1 and p in this model have larger root

mean square errors than the ones in the Markov model. The 1 and p in Polya and Renewal models are also

better estimated. In terms of time cost, it takes more time to estimate the habit persistence model than the

Markov model but it costs less than the computation of Polya and Renewal models.
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Cit = pC;,-i + W;t

and (; and w;t are i.i.d. N(0, 1). The process is assumed to start at the initial period with y 8 = 0 and

ego = 0. The simulated log likelihood function for this model is

(mT)±= VTT,(Q[D (13: + Ay,7-Q1 + f g .)
.=i f=1 t=t

As for the other models with unknown heterogeneity, the true parameters are 1 = 1, A = 0.2, o2 = 0.5, and

p = 0.4 to generate sample observations.

Tables 12.A and 12.B report results for this model. With the additional heterogeneity, estimates of

1, A and p have larger downward biases than the ones for the habit persistent model without unobserved

heterogeneity. The magnitude of bias becomes larger as T becomes longer. For a, there is some bias in its

estimate for panels with small T. As m increases, biases decrease. The bias-corrected procedure can further

reduce bias and root mean squares errors are in general also smaller. With m = 50 and the bias-corrected

procedure, estimates are reasonably good for panels with T up to 15 or 30. Estimates of A and p are more

accurate than corresponding estimates of the Markov model with unknown heterogeneity in Table 6 in terms

of bias and root mean square error. On the other hand, estimates of 1 and p in this model are less precise in

terms of bias and root mean square error than estimates of the Markov model with unobserved heterogeneity.

Estimates of this habit persistent model are less accurate than estimates of the corresponding Polya and

Renewal models.
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Table 11.A
SML-serial correlation; the Habit Persistence model

True parameters: $ = 1, A = 0.2, and p = 0.4

T n m P A p time

Bias unadjusted SML

8 200 15 0.9849 (.0577) .1932 (.0521) .3666 (.0660) 26.04
15 200 15 0.9737 (.0450) .1960 (.0358) .3512 (.0453) 56.81
30 200 15 0.9644 (.0303) .1887 (.0267) .3365 (.0339) 133.45
50 200 15 0.9546 (.0255) .1863 (.0224) .3172 (.0287) 247.35

8 200 50 0.9952 (.0591) .1977 (.0511) .3852 (.0646) 87.70
15 200 50 0.9886 (.0463) .2013 (.0342) .3776 (.0422) 194.82
30 200 50 0.9823 (.0315) .1942 (.0249) .3699 (.0313) 441.81
50 200 50 0.9734 (.0258) .1902 (.0209) .3536 (.0258) 811.17

Bias adjusted SML

8 200 15 0.9973 (.0593) .1976 (.0515) .3892 (.0647) 26.25
15 200 15 0.9866 (.0464) .1992 (.0349) .3753 (.0444) 57.22
30 200 15 0.9754 (.0310) .1908 (.0257) .3576 (.0326) 134.35
50 200 15 0.9636 (.0257) .1874 (.0222) .3343 (.0277) 248.78

8 200 50 1.0003 (.0599) .1998 (.0509) .3939 (.0642) 88.42
15 200 50 .9955 (.0472) .2036 (.0338) .3892 (.0420) 196.21
30 200 50 .9905 (.0321) .1967 (.0244) .3843 (.0307) 444.69
50 200 50 .9812 (.0261) .1920 (.0207) .3676 (.0253) 816.01

Table 11.B
SML-Serially correlation; the Habit Persistence model

Root mean squared errors

T n m # A p p A p

Bias unadjusted SML Bias adjusted SML

8 200 15 .0595 .0525 .0738 .0593 .0515 .0655
15 200 15 .0521 .0359 .0665 .0482 .0349 .0507
30 200 15 .0467 .0289 .0720 .0395 .0273 .0534
50 200 15 .0520 .0262 .0876 .0445 .0255 .0713

8 200 50 .0592 .0511 .0661 .0598 .0508 .0644
15 200 50 .0476 .0342 .0477 .0473 .0340 .0433
30 200 50 .0361 .0256 .0434 .0335 .0246 .0344
50 200 50 .0370 .0231 .0531 .0321 .0222 .0411

Table 12.A
SML-Serially correlation; random component; the Habit Persistence model

True parameters: P = 1, A = 0.2, o = 0O5, and p = 0.4

T n m A p time

Bias unadjusted SML

8 200 15 0.9560 (.0692) .1833 (.0747) .6292 (.1511) .4027 (.1366) 33.62
15 200 15 0.9446 (.0467) .1816 (.0602) .6836 (.0899) .3560 (.0928) 73.32
30 200 15 0.9134 (.0356) .1772 (.0450) .6978 (.0818) .3127 (.0569) 164.78
50 200 15 0.9035 (.0294) .1683 (.0395) .7090 (.0790) .2922 (.0482) 289.60

8 200 50 0.9872 (.0711) .1992 (.0651) .6893 (.1104) .3842 (.1086) 109.89
15 200 50 0.9771 (.0497) .1977 (.0500) .7013 (.0809) .3716 (.0740) 241.21
30 200 50 0.9489 (.0367) .1929 (.0398) .6962 (.0788) .3458 (.0486) 560.23
50 200 50 0.9402 (.0294) .1818 (.0301) .6958 (.0671) .3298 (.0356) 1013.38

Bias adjusted SML

8 200 15 0.9789 (.0727) .1918 (.0700) .6740 (.1465) .4004 (.1333) 33.85
15 200 15 0.9623 (.0482) .1872 (.0563) .7030 (.0903) .3680 (.0880) 73.76
30 200 15 0.9251 (.0366) .1791 (.0427) .7087 (.0830) .3265 (.0542) 165.70
50 200 15 0.9114 (.0303) .1688 (.0385) .7157 (.0800) .3028 (.0466) 291.07

8 200 50 0.9984 (.0727) .2035 (.0635) .7021 (.1073) .3857 (.1061) 110.64
15 200 50 0.9894 (.0508) .2024 (.0483) .7068 (.0812) .3828 (.0720) 242.70
30 200 50 0.9610 (.0378) .1967 (.0383) .7019 (.0801) .3603 (.0469) 563.22
50 200 50 0.9497 (.0300) .1839 (.0294) .7016 (.0686) .3430 (.0345) 1018.62

Table 12.B
SML-Serially correlation; random component; the Habit Persistence model

Root mean squared error

T n m j A a p / A i p

Bias unadjusted SML Bias adjusted SML

8 200 15 .0819 .0764 .1698 .1364 .0755 .0703 .1500 .1330
15 200 15 .0725 .0629 .0928 .1026 .0611 .0577 .0902 .0935
30 200 15 .0936 .0504 .0822 .1042 .0834 .0475 .0829 .0913
50 200 15 .1009 .0505 .0789 .1181 .0937 .0495 .0803 .1078

8 200 50 .0721 .0650 .1117 .1096 .0726 .0634 .1072 .1069
15 200 50 .0547 .0499 .0809 .0791 .0518 .0483 .0810 .0739
30 200 50 .0628 .0404 .0794 .0728 .0543 .0384 .0801 .0614
50 200 50 .0666 .0352 .0679 .0787 .0585 .0335 .0687 .0666
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8. Conclusions

This article has reported Monte Carlo results of simulated maximum likelihood methods for the esti-

mation of discrete choice regression and dynamic models. Choice probabilities are simulated with the GHK

recursive estimator. We investigate finite sample performance of the simulated likelihood estimator and a

bias-correction procedure which can eliminate the leading bias due to simulation. The discrete choice models

are panel choice models introduced in Heckman (1981a), that include discrete choice regression models with

true state dependence, spurious correlation, and unobserved heterogeneity. Even with a binary choice in

each time period, the pattern or path of choices can be very large as time periods become longer. Our

intention is two folds. We would like to investigate finite sample performance of the simulated maximum

likelihood estimator for panel data dynamic models, limitation of simulated likelihood methods, and the

value of long panels compared with relatively short panels. The second purpose is to study the econometric

estimation of various interesting dynamic discrete choice models, the ability of estimating dynamic effects,

and the distinction of true state dependence from spurious state dependence and unobserved heterogeneity.

As an estimation method, the simulated maximum likelihood approach is computationally tractable

and numerically stable. We have experimented with panel data with time length up to 100. There is not a

single case of failure of convergence of the iterative maximization algorithm. Models with moderate serial

correlation can be more accurately estimated than models with high serial correlation in terms of smaller bias

and standard error. Regression models are better estimated than Markov state dependence models. Dynamic

models with strong dynamic effects such as the generalized Polya model and the renewal model can be better

estimated than the Markov model and the latent Markov model. In terms of time cost, the estimation of

generalized Polya and renewal models are more expensive than the estimation of the Markov model and

the latent Markov model. With a small number of simulation draws for the construction of simulator and

relatively long panels, dynamic effects of Markov, Polya and renewal models can be overestimated and the

spurious correlation can be underestimated. Only for the latent Markov model, both the dynamic and

spurious correlation effects are underestimated. While standard errors of estimates tend to be smaller for

panels with longer periods, the bias for panel data with long periods such as 100 can dominate the standard

error and results in a larger root mean square error in some of the models. Biases of the SMLE can usually

be reduced with a larger number of simulated variables for the construction of simulator and by the bias

correction procedure. With the bias correction procedure and a moderate number of simulated draws for the
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simulator, say 50, most of the dynamic models with moderate autocorrelation can be adequately estimated

for panels up to 30 periods. Due to strong state dependence, Polya and Renewal models can be adequately

estimated up to 50 periods in our Monte Carlo experiments.

While our Monte Carlo experiments have studied many important aspects of simulation estimation

methods and efficient estimation of dynamic panel statistical models, many interesting issues have not been

addressed. We have not investigated statistical inference procedures on model discrimination or model se-

lection based on simulation estimation methods. For the estimation of dynamic panel models, we have not

investigated the initial value problem, which can be quite difficult and is an open challenging question (Heck-

man (1981b)]. Furthermore, we have not investigated intertemporal optimisation dynamic choice models

where extra complexity will be encountered in backward evaluation of value functions in the presence of

serially correlated disturbances [Pakes (1987), Rust (1987), and Wolpin (1984)]. All these issues remain for

further investigation.
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