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January, 1993 1. Introduction
The Computation of Opportunity Costs

in Polytomuous Choice Models with Selectivity

by

Lung-fei Lee
Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220

A HSTRACT
This article provides general formulas for the computation of opportunity costs (or forgone earnings) of

unchosen alternatives in sample selection models with binary or polytomous choices. With observed choice
probabilities and outcomes of chosen alternatives, the opportunity costs of unchosen alternatives can be
evaluated. The derived formulas for the general model involve only single integrals. For the probability
indexed sample selection models with conditional logit choice probabilities, which include the polytomous
choice model of Lee [1983], the formulas have simple closed form expressions. These formulas are useful for
empirical studies.
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In Lee [1983), sample selection models with polytomous choices have been formulated. The approach is
based on some order statistics on the decision criteria and the use of some distributional transformations.
The model has been used in several studies in the empirical economics literature (see, for examples,Trost and
Lee [1984), Falaris [1987), Haveman et al [1988), Hensher and Milthorpe [1987), Wong [1986), and Wong and
Liu [1988), among others). The model specification has originally emphasized on the correction of sample
selection biases in continuous outcome equations. For some model analysis, one might be interested in the
computation of opportunity costs for alternatives that are not chosen by an individual. The computation of
such costs is not obvious and has neither been considered in Lee [1983) nor in the existed literature. This
issue is also of interest for many other parametric or semiparametric models where the choice probabilities
and the observed outcome equations have been specified or estimated without the specification of a joint
distribution for all the distrubances in the system. In addition to the model in Lee [1983), the model in
Olsen [1980] based on least squares correction or semiparametric models in Robinson [1988), Powell [1987),
and Ichimura and Lee [1991) are examples.

As an illustration, let us briefly review the polytomous choice model with selectivity in Lee [1983). The

formulas derived in subsequent sections, however, will have broader applicability. A general sample selection
model with m alternatives and n continuous outcome equations:

y1 = rj5o + jy, 1,
(1-1)

(1.2)
and

y; =1;y;+n;, j=1,...,n1,

where u3 and q,, for all j, are independent of z, where z consists of all distinct exogenous variables in

the vectors z1, -" -- , z. and z1,,- -- , z,,,, and have zero means and unit variances. The dependent variable or
outcome y is observed if and only if the alterative j is chosen. The alternative j is chosen if and only if

yj > max(yt : k = I,... .1,; k # j). (1.3)

Equations (1.2) and (1.3) imply a polytomous choice model. Popular polytomous choice models are the
conditional logit model of McFadden (1973) and the nested logit model (McFadden 11978)). Given the choice
probabilities and the marginal distributions of u2, j = 1, -.--, m, Lee [1983] has suggested approaches for

the correction of sample selection biases in the estimation of the outcome equations (1.1) based on order
statistics and some distributional transformations. Define the random variable ej:

e = max {y; :Lk =1,"-"-"-, m; k jr.(1.4)

The inequality (1.3) can then be rewritten as

zjyf > (,

which is similar to a binary choice criterion for the alternative j. Let z-y = (:17i,. , zmYm)' and

Dj = .
0 ' 1 -

is an (m - 1) x m matrix, where 1, denotes the identity matrix of dimension s. Then

Djz7 = (zjyj - zm71, .. ,zjy - Z...j17jt, zj. y - Z,754m, - , -

2

(1.5)

(1.6)



Let G,(D zy) = P(zy, - zk7y > 7k - 1, k / j,k = 1,...,miz) be the specified choice probability for the
alternative j given z. The distribution of ey will be implicitly implied by G,. The distribution of ey at c

conditional on z is

Fj(clz) = Prob[je < c(i]

=G(e-zy,-,.--,c-rz-11'_I,c-zj+I- +t,.--,c-zmym).

The model specification in Lee 119831 differs from the conventional parametric specification as follows. In

a conventional specification, a joint distribution of et and u1 or, more explicitly, the joint distribution of

(7i, ..- , rim) and u1 is specified. The marginal distibutions of uj and Cj are implied by the joint distibution. In

the lee's specification, marginal distributions of u3 and ej are first specified, and the model is then completed

with a specification of a joint distribution for ui and eg with specified marginal distributions. The advantage

of the latter specification is that familiar distribution for the choice probabilities and distributions for the

latent outcome equations can be imposed. When uj is a standard normal variable, Lee [1983] suggested

the use of the normality transformation. The e1 can be transformed into a standard normal variate ej by

= *-'(F)((j Iz)), where $ is the standard normal distribution function. The u3 and c3 are then asssumed

to be bivariate normally distributed with zero means, unit variances and correlation coefficient pj. For this

case, it follows that

2. Selection Biases and Opportunity Costs in General Sample Selection Models

The correction of selection biases for the observed outcome equations in (1.2) for the sample selection
model of (1.1) and (1.2) depends on the following conditional expectations:

E(uIx, qk - q 5,jy - zitk, k = 1,.. , n), j = I,--,m. (2.1)

Given (2.1) and choice probabilities, the problem is to derive the conditional expectations E(umiz,q - nj
zy 3 - z'yk, k = 1, -. -,m) for I j. Denote

v
1

= (NI - 'b' ."bj-i - '1j'j+I - {1j,... 117M- 1'i) =1,t (2.2)

The function G,, where G,(c) = P(v, < c) for any c E R"'', corresponds to the distribution of v5. For
sample selection models where the u and v's are independent of all the exogenous variables in r, specification
of (2.1) is, in general, equivalent to the specification of E(u Iv, c) for any c E Rn-

It is interesting to note that E(ujv, = c) can be derived from E(u, v, < c) and the choice probability
function Gj(c). Let f,(u, v) denote the joint density of (u, v) and g,(v) denote the density function of v1.
It follows that

E(!ij, (;) = zgj + pj j, (1.8)

and

E(y;,|r,j is chosen ) /= r# -- Tj G((z) '(1.9)
Gj(D y)

where 4 is the standard normal density function. If u1 were not normally distributed, other transformation

rather than the normal transformation might be desirable for computational simplicity. If the marginal
distrifution of u, were unknown, flexible functional specifications such as the bivariate Edgeworth expansion

might also be used (see, Lee [1982] for details). Equations such as (1.9) provide the regression equations

for the estimation of the outcome equations given the selected samples. Some simple two-stage consistent

estimation mthods or the maximum likelihood method can be applied to estiimate the model. The above

models can be regarded as special cases of a choice probability indexed sample selection model in that for

each alternative, the sample selection bias correction term is a function of the choice probability of that

alternative. Sample selection models with a hinary decision rule belong to this category. As an example,

the sample selection model with polytomous choices in Dubin and McFadden [1984] does not belong to
this category. In a recent Monte Carlo study by Schmertmann [1991], there are evidences that the sample

selection model of Dubin and McFadden [1984] is more likely subject to the multicollinearity issue and, on
the other hand, the model in (1.8) is more likely subject to misspecification bias. The Lee [1983] article
has emphasized on the specification of selection hias corrected outcome equations. After the estimation

of unknown parameters in the model, one might be interested in the computation of opportunity costs (or
forgone earnings) for unchosen alternatives given the individual's choice. Specifically, one might be interested

in the computation of the conditional expectations E(y&zxj is chosen ) with k # j. The computation of

such terms is not obvious from the model specification above.
The issues of computing the opportunity costs for the unchosen alternatives are general. In this article,

we consider a general sample selection model where the disturbances in the latent equations are independent

of all the exogenous variables ini the model. We assume that the choice probabilities and the observed outcome

equations for the chosen alternatives are estimable from observed data. We shown that these quantities

provide sufficient information for the derivation of opportunity costs (or forgone expected outcomes) for the

unchosen alternatives. These formulas may be useful for parametric and/or semiparametric models.

This article is organized as follows. In Section 2, we show that opportunity costs are identifiable from

the bias corrected outcome equations and choice probabilities. General formulas for opportunity costs can

be derived. Section 3 shows that for the probability indexed sample selection model with conditional logit
choice probabilities, opportunity cost formulas have simple closd form expressions. Section 4 summaries our

conclusions.

E(u, I" c) = G ()lc) , -- j J uf,(u, v)dudt,

_ 1j''-E u | t-j)gj (t'y )d "j,

where c = (ci, - , c,,_...I)'. By the fundamental theorem of Calculus, (2.3) implies that

1 "'-'[E(uIv; < c)G 1(c)]
g,(c) ac, -..- -9em-.

(2.3)

(2.4)

With the knowledge of E(ufiu,) and G,, E(u;Ivr <; c) for r E R"'- can then be derived as follows.
From the discrete choice component of the model, since only the differences q, - qk, where j, k = 1, -- ,m

are relevant in the determination of choice probabilities, u1 = (q, - im,, -- -, - - m;,,,) can be taken as the
basic vector of disturbances. (2.2) defines a one-to-one mapping from r in R'

5  
to e in R" -'for each j.

Ihus there exists a one-to-one transformation from e to v1 for each pair of 1 and j:

j = Aeit, (2.5)

where .4, is a (ni - 1) x (m - 1) matrix constructed from the expansion of a (en - 2) x (m - 2) identity
matrix by inserting a (en - 1)-dimensional row vector (0,- -- ,0,-l,0, -"-"-,0), where -l is in the (j - 1)th
position, as the Ith row of A1, and by inserting a (m - 1)-dimensional column vector (-1, -I,. -I, -)' as

the (j - 1)th column of Ar, if I < j; otherwise, by inserting (0,. ,0, -1,0,. -"--,0), where -1 is in the jth
position, as the (l- )th row of Ail, and by inserting a (m - 1)-dimensional column vector (-1,-,1,. -
as the jth colimnin of Ar, if j < 1. Explicitly, for I < j,

0

0

-i-i

-1

-l

-

0

0

0
I"')

and, for j < 1,

(2.6)

(2.7)

-1

-1

-l

4

0

0i 0-

0: M-
3



For any vector r E R'"~'-, E(u, vi < r) can be computed from the following formula:

E(u Iv < r) - L - J E(ujv, = c)g,(c)dc

=G.(r) -.. j E(uj lvi = A,, c)g,(c)dc

1 "'.. . ' V'-'[E(u tvi < Arjc)Gy (Ali c)]Jg(c)ede,
r) _ g. (Ar )

(2.8)

The formulas (2.10) and (2.11) can be used to evaluate E(ujIz, vr < Drzy). Whether they have closed form
expressions or not will depend on more specific structures of the selection model. In the subsequent section,
we will show that, for the probability indexed sample selection model with the conditional logit choice
probabilities, closed form expressions of (2.10) and (2.11) can be derived. However, closed form expressions
do not seem to exist for general polytomous choice models. For the latter cases, (2.10) and (2.11) can be
numerically computed by standard subroutines for a single integral.

Finally, we note that for the model with a binary decision rule the formulas (2.10) and (2.11) can always
be simplified. For m = 2, Aye = -1 for all I and j with I $ j, and

E(uIvr 5 r) =Gr(r)1 V[E(ujlv; < -t)G,(-t)]dtwhere V'm- denotes the (m - 1)th order partial differentiation operator with respect to the m-1 different

arguments involved in relevant functions [see (2.4)1. This formula can he simplified. From (2.5), g,(v,) =

g,(Aq :v) because the Jacobian of the transformation A,1 is unity. Ilence = -(E(u<) - E( j -r)G,(-r))
GC(r)

-Eu~, -)G,(-r)

(2.13)

I uj j-1 r)= - -r - C'"[(s~vy 5Arja) (A())]da.

Consider the case j < I. Define the transformation c = Aypa. Explicitly, from (2.5) with (2.7),

Ata = (a
1
, -- ,a-_,a+,ta . .-,a-g ,0,a, - - -,am--)' - a,(1, , )',

(2.9)

by using the property E(u,) = 0. The derivation of the opportunity costs in the model with a hinary decision
rule is conceptually straightforward because there is only a single disturbance in the decision component of

the model.

where a = (t, -. , a,,,-:Y. Since the Jacohian of Ali is unity, by the transformation of variables, (2.9)

implie

1(uIi,< r)

V'"'[tE(uj,Iv < c)G,(r)Jdc, ... dcgc...,c1 ,tdt

= r -~ ~ V [ a,.,. O r . ,r,- )' r- ( .. . I' (2.10)

where V. denotes the partial differentiation operator with respect to the sth argument,i.e., V,[E(uj Ivc <

c)CG,(c)J = . (E(uj v < c)Gy (c)) with c = (c,,-.- ,em-i)'. Similarly, if I< j,

Aija = (ai,..., ).. i, ,- .,aj-2.,aj,...,a,~ -1)'- aj_:(1,---,1)',

and

e) (' (e) V(r , , j (, .,~2,t, r,.,r~ i 1 . ,
(2.11)

Thus given G,, G,, and E(ujv < c), E(ujlvt < r) can be evaluated. The expected opportunity cost

for the outcome y, given the alternative I heing chosen is

E(y,[l, I ischosen ) = zxjft + ejE(ujlz,v <vi D zy). (2.12)
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3. Probability Insdexed Samaple Selection Models with Conditional Logit Choice Probabilities

Probability indexed sample selection msodlels are referred here to the models of (1.1) and (1.2) with

where i = jfor j <I,buti= j - 1for I<j. Since

it follows from (3.8) that

FuIti< r) =Vi(i )Iic) (3.1)

where V'j is a function of the probability G,(c), which will in general depend on the alternative j. We note
that as c tends to infinity, there will he no selection bias in (1.1). As E(u,) = 0, it following that Oj(l) = 0.
The sample selection models in Lee [1983] are in this category [see (1.9)]. With this type of models, closed
form expressions for (2.10) and (2.11) can be derived when choice probabilities are the conditional logit
probabilities of McFadden (1973].

The conditional logit model corresponds to

F.(uilvl<r)=- 
nI '(;( ')J d 'i(

__ 1 Z 1

'1 P- G1(r) 'j + k;li a-r +r, pr.

k;f V ( ) I

(3.9)

G ()= m-1 C j,.1... a

14+1

With (3.1) and (3.2),

And1(

E(uI , < c)Gjc) - (Oj +i~,e.h

01~j tj<c)G,(c))
Or,

= Vk, ( I e-c;l1 + k,1; i= (lot-I,

(3.2)

(3.3)

(3.4)

(3.5)

ror all t, jwith 10j.

For the sample observation with characteristics x, r = Dszy, which implies that r3 = Z111zj-tj for
i <I, but rj..1 = sY- ziyj for I< j [see (1.6)]. Hlence

E(u1 (z, l is chosen )

1 -kli-s-h)I+Ee / l+ el1=)J+ Psl'1-h,YV,/

( =' e=,1; )(3.10)
e" j __ - , . .

co1b..,in 
I 

)

It is interesting to note from (3.10) that the conditional expectation E(u iz, I is chosen ), where 1 # j,
depends only on the probability that the alterative j is not chosen and is invariant with 1. This invariance
property can be regarded as a theoretical structure or restriction on probability indexed sample selection
models with conditional logit choice probabilities. Another interesting implication of (3.10) is that when
there are positive selection biases, i.e., U.(uIz, j is chosen ) > 0, for all j. the expected opportunity costs
for thme unchosen alternatives will always be less than population averages, i.e., E(u,(z, j is chosen ) < 0 for
all 1, 1 # j. This property generalizes the one of the classical sample selection model with a binary choice
decision rule and normal disturlbances (lleckmnan [19791).

where VVj(1 ~(t) /t For j < 1. (3.3) imupliest that

E(u,I , A,,(r,, . -,r .. ,£,r,+t,.. . ,rm..i)')G,(i(rt,. 
. .,r-, 

I)') 
} 

.,i, .+ 

p

Thme (1 - I) component of I i, 1 1.1,r , . r,,)' is simply -l from (2.7). Ilence it follows from

(1.4)

Similarly, for I < j,

Vd(E(nj It, A,, (r1 , . .. , t,-2, , fr' 1 q- ,5 j)')G(Aj 1 (r11 ... , j Ir - r , r' ... " ,

0 (i +k'.-t +e+ei) E~f1 r+.e2

(3.6)

(3.7)

Therefore, (2.10) and (2.11) imply that, for all 1 and j with 1 #1

E~ j ) - V j,/ .'r.It tm fCt zd, (3.8)

Gi(r) Jf m I + e I0(+ E 1 -~'+



4. Conclusion

This article provides a general method for the computation of opportunity costs for sample selection
models with polytomous choices. It has been shown that the opportunity costs for the unchosen alternatives
can be identified and computed from choice probabilities and observed outcomes of the chosen alternatives.
The derived formulas involve single integrals for the general sample selection model. These formulas may be
useful for empirical studies.

We have also shown that, for probability indexed sample selection models with conditional logit choice
probabilities, which include the models in Lee [19831, the formulas have simple closed form expressions. Such
formulas illustrate some of tIme theoretical structure or restrictions imposed on these models.
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