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This paper considers any evolutionary game possessing a number of evolutionarily stable

strategies, or ESSs, with differing payoffs. A mutant is introduced which will "destroy" any

ESS which yields a lower payoff than another. This mutant possesses a costless signal and

also conditions on the presence of this signal in each opponent. The mutant then can protect

itself against a population playing an inefficient ESS by matching this against these

nonsignallers. At the same time, the mutants can achieve the more efficient ESS against the

signalling mutant population itself. This construction is illustrated by means of the simplest

possible example, a coordination game. The one-shot prisoner's dilemma is used to illustrate

how a superior outcome which is not induced by an ESS may be temporarily but not

permanently attained. In the case of the repeated prisoner's dilemma, the present argument

seems to render the "evolution of cooperation" ultimately inevitable.

RUNNING HEAD: EFFICIENCY IN EVOLUTIONARY GAMES





1. Introduction and Overview

The title "The Origin of Species" seems to suggest, at least to the unwary, that Darwin

intended a group to be the unit of selection. The subtitle of Darwin's treatise reinforces this

casual impression- "... or the Preservation of Favoured Races in the Struggle for Life".

However, Darwin explicitly recognized that "the struggle for life (is) most severe between

individuals and varieties of the same species". (Darwin, 1958, p. 84. Mayr, 1982, pp.

484-485, attributes Darwin's recognition of the importance of intra-species competition to his

reading of Malthus, 1798. But see also pp. 491-493.) It is still not uncommon to hear popular

explanations of animal behavior which rely upon an appeal to the interest of a species or,

occasionally, even to the collective interest of several. A few modem biologists believe that

there exist phenomena which cannot be explained without invoking a group selection

mechanism. (See, for example, Wynne-Edwards, 1962.) Most other modern biologists, on the

other hand, seem to find such explanations to be unattractive in the light of the logic of natural

selection. Dawkins, (1976, pp. 8-9), for example, argues that natural selection operates most

forcefully below the level of the group and, far from promoting the interest of the group, might

entail its extinction. Indeed, Dawkins argues that the unit of selection is, in a certain sense,

below even the level of the individual, is the gene. (See, in particular, 1982a, pp. 45-64).

Views of evolutionary biology which emphasize the role of the individual are, of

course, highly congenial to economists. Further strengthening both the formal and substantive

links between the two disciplines is that game theory has now also been applied to

evolutionary biology. (See Maynard Smith and Price, 1973, and Maynard Smith, 1982.)

Consider the interactions of the individuals of one -particular species with one another.

Suppose that these interactions involve two identical individuals at one time contesting some

scarce resource, such as food. With a large population, the equilibrium outcome introduced by

Maynard Smith and Price is a special kind of symmetric Nash equilibrium, involving what is

designated an "evolutionarily stable strategy", or ESS. A population playing such a strategy is
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designed to be immune to invasion by a mutant population playing any alternative strategy. It

need not be the case, of course, that such an ESS is unique, and indeed ESSs may have

different payoffs. That is, an ESS can exist which yields an outcome which is inferior to that

obtained under some other ESS. Such a situation has a well-known analogue within pure

game theory. That is, it is often possible to Pareto rank some of the Nash equilibria of a game.

A long-standing problem is how to construct a theory which predicts Pareto-efficiency within

the set of Nash equilibria.

The intention of the present work is to suggest that Mother Nature might be less baffled

by this problem than are game theorists. For there is a simple mechanism, based on the

individual as the unit of selection, whereby such inefficient ESSs can be destroyed. That is, a

mutation can be defined which will successfully invade a population which is playing any ESS

which is payoff-dominated by another. This mutation must, of necessity, involve more than

simply a different choice from the original set of strategies, for it is just these latter mutants

which are considered. in the definition of an ESS. Indeed, the mutation here entails the

possession of a signal, that is, an observable characteristic which can be taken to have zero

inherent cost. Mutants recognize the presence or absence of this signal in the other individual

and condition their choice of strategy on this.

It should be emphasized that there is little doubt that animals actually use signals, for

certain purposes at least. Thus, for example, Maynard Smith (1982, pp. 82-86) discusses the

Harris sparrow, individuals of which vary in the color of their plumage and also in aggression

towards other birds, with the darker birds being more aggressive. Dark birds painted pale

continued to behave aggressively but were involved in a larger number of fights than normal

dark birds. Pale birds painted dark tended to be persecuted by normal dark birds and were

sometimes forced to feed away from the flock. It is not asserted that this will necessarily

precisely fit the model here. What it does demonstrate is the reality of signalling as a natural

phenomenon.
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Consider then a population for some evolutionary game which is in a low-level trap,

that is an ESS which is inferior to another ESS. The appropriate mutant uses the kind of

signal discussed above as follows. Against the old non-signalling population the mutant plays

the old inefficient EES, thus protecting itself from the consequences that would otherwise

generally occur. On the other hand, mutants recognize the signal in other mutants and then

can attain the more efficient ESS. It is assumed that the old non-signalling population

remains blind to the signal. (This motivates the phrase the "secret handshake" of the subtitle.)

The argument can better be understood with the aid of the simplest possible example,

an evolutionary game with two pure strategies, each of which is an ESS. This is presented in

Section 3.1. The effect of the mutation is to add a third pure strategy which plays the inferior

strategy against either of the original two strategies and the superior strategy against itself.

Thus the entries in the new 3x3 matrix are derived in a straightforward way from the those in

the original 2x2 matrix. It is then readily shown that the only ESSs now are the old superior

strategy and the new mutant strategy, which are equivalent in payoffs. Furthermore, it is

shown that the population must converge to one of these equivalent ESSs, given a generic

initial point, and initial points near the original inefficient ESS converge in particular to the

new efficient mutant ESS.

The analysis of the above example suggests that a similar mutant would be successful

in invading a population playing some ESS if only there exists an outcome yielding a superior

payoff. That is, the argument does not appear to use directly the assumption that the superior

outcome be itself an ESS. In order to discuss this issue, the one-shot "prisoner's dilemma" is

presented as a second example, in Section 3.2. It is noted firstly that, indeed, the addition of

an appropriate mutant to the standard 2x2 prisoner's dilemma game results in a 3x3 game in

which the group preferred "cooperative" outcome is generated by the unique ESS. Even if this

is credible as a short-run outcome, there is an obvious objection to this in the long-run. That

is, there is another mutant waiting impatiently in the wings, a mutant which avails itself of the
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signal and plays the old "fink" ESS against the old population, but also "finks" against the first

mutant. This second mutant thus "finks" unconditionally. It is desirable, then, to consider the

4x4 game with both mutants. It is noted firstly that this 4x4 game does not, strictly speaking,

possess any ESS. However, this is simply a technicality rather than a deep difficulty. It is

shown, indeed, that the path of the population over time generally converges to some mixture

between the old "fink" strategy and the mutant which signals but "finks" always anyway. The

limiting payoff is uniquely determined as the usual payoff for the 2x2 game. In essence then,

the conventional equilibrium prediction for the prisoner's dilemma is ultimately restored.

Section 2, following, defines the notion of an ESS and the dynamical system. Section

3, as noted above, discusses two key examples. Section 4 discusses related work and the

implications of the present results. The Appendix shows how the analysis of the first example

can be straightforwardly generalized whenever there are at least two ESSs with differing

payoffs.

2. Definitions

Definition 1: Basic Evolutionary Game

There is a large (strictly infinite) population of individuals who interact two at a time.

(Riley, 1979, discusses the complications needed in order to analyze small populations.) In

each interaction, each individual can choose a pure strategy 1,...,n. The proportion of the

n
population playing strategy i is denoted x2o where Z x. = 1 and so x E An> the (n-1)

i=1

simplex in Rn. If a given individual chooses strategy i and his opponent chooses j, the payoff

to the first individual is a.. . The payoff to the second individual, given that the two

individuals are identical, is therefore a~ . (These payoffs measure "fitness" in the biological

sense of determining the number of descendants, as is modelled explicitly in the dynamics

below.) Given the symmetry between individuals, it is enough to specify A = (a..), a single

nxn matrix.
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The payoff to choice of strategy i against a population x is now given by

n
e{Ax = (Ax). = 7 a..x.

1 =iJ 11

If a population y plays against a population x the payoff to the first population is then

yTAx

The notion of an "evolutionarily stable strategy", or ESS, then requires that the population x,

say, be resistant to invasion by any population y. Suppose indeed that (1-e) of the total

population is x and E is y, so that the total population is (1-e)x + Ey, where E is small. The

payoff to x is then

xTA((1-E)x + Ey) = (1-E)xTAx + ExTAy

and the payoff to y is

y A((1-e)x + Ey) = + EyA

This motivates the following:

Definition 2: Evolutionarily Stable Strategy, ESS

An ESS is x e A ~ such that, for all yc E ~,where y # x, either

(i) yTAx < xTAx

or (ii) yTAx = xTAx and yTAy < xTAy.

The above conditions can be paraphrased in game theoretic terms as follows. It is

required that the strategy x be a best-reply to itself and, further that any other best-reply to x,

y, say, be a worse reply to y than is x. In particular, then, an ESS yields a symmetric Nash

equilibrium. This can be described with just one strategy vector, x. The fractions xi could be

interpreted from this formal game theoretic point of view as probabilities of choosing i, so that

x itself is then a mixed strategy. Not every symmetric mixed strategy Nash equilibrium

induces an ESS, however, as taking A to be a matrix of zeroes shows. Indeed, this also shows

that an ESS need not exist.
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For some purposes it is useful to consider not only an appropriate static equilibrium

concept, as above, but the evolution of the population over time. Thus:

Definition 3: Dynamical System

The fraction of the population playing a particular pure strategy is taken to evolve

according to the difference between the "fitness" of this pure strategy and the average fitness

of the population (Taylor and Jonker, 1978). Indeed, this yields a quite concrete interpretation

of the payoff matrix, A. Thus,

K.
X= (Ax). xT Ax

X.

or

= x1[(Ax)1 - xTAx], i=1,...,n

where the right-hand side is cubic in x. Clearly, if xi=0, for any i, at t=o, then x1 =O always.

Furthermore, it is easily seen that every solution path remains on the unit simplex, given that it

starts there. Hence the dimensionality of the system is n-1 rather than n.

A point x e An1 is said to be a "point attractor" if it is the limit of the solution path

of the above dynamical system for all initial values in some neighborhood of x. Zeeman

(1979) shows that any ESS must be a point attractor, but that an attractor need not be an ESS.

He recommends attractors as a more satisfactory equilibrium notion, when the dynamical

system is given in the above pure strategy form. (Zeeman presents an example due to

Hofbauer, Schuster, Sigmund and Wolff of a generic "Hopf bifurcation", but states that he does

not know whether "strange attractors" and hence "chaos" can occur.) Hines (1987) indicates

that being an ESS is both necessary and sufficient for being an attractor if each individual is

permitted to use a mixed strategy and the appropriate corresponding dynamical system is

considered.
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3. Two Key Examples

3.1 A COORDINATION GAME.

This is, it seems, the simplest possible game yielding two ESSs which have different

payoffs. It is given in Figure 1.

INSERT FIGURE 1 HERE.

It is clear that both "u" and "d" are ESSs and it is not difficult to see that there is no

other ESS. (This follows also from Bishop and Cannings, 1978, p. 91.) Clearly the ESS "d",

which yields a payoff of 2, is better for the population as a whole than is "u", which yields

only a payoff of 1. Notice however that "u" is certainly immune to invasion by a small group

of mutants playing "d". Indeed, suppose that the mutant "d" comprises a fraction E of the

total population with the remaining fraction (1-E) being still "u". In this case, each mutant

obtains an average payoff of 2E against the whole population, whereas the original "u" strategy

yields (1-E). Thus the mutant will die out if E < 113.

Now suppose that the mutation discussed in the introduction is introduced. This mutant

carries a signal which is assumed to cost nothing to produce. Furthermore the mutant

recognizes the presence of the signal in its opponent and conditions its choice of strategy on

this. Suppose that the mutant here plays "u" against the non-signalling original population but

plays "d" against other signalling mutants. The effect of this is to enlarge the original 2x2

game to the 3x3 game given in Figure 2.

INSERT FIGURE 2 HERE.

In Figure 2, the mutant signalling strategy is labelled "m". It should be emphasized

that this enlarged 3x3 game still has just "u" and "d" as its underlying choices and that the

payoff consequences of a given pair of these underlying choices also remain as in the 2x2

game.
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It is easy to check that "u" is no longer an ESS, although (u,u) remains a Nash

equilibrium. That is, "m" is also a best reply to "u" but "m" does better against itself than "u"

does against "m". The only ESSs are now easily seen to be "d" and "m".

In order to more fully characterize the behavior of the population with these three

strategies, the dynamic system derived from the above matrix, A, is treated. This is:

xl
-=x1 + x3 -W

1 3

x2

-=2x 2 - WX2

x

3= x +2x 3 - W
3

where, x1 , x2, and x3 are the components of the vector x, corresponding to "u", "d" and "m"

respectively, and where,

W = x +1( x3 )+2x 2 +x 3(x1 +2x 3 )

now denotes the average fitness of the entire population. Using the relation that

x 1 = (1 - x2 - x3) to eliminate x1 and simplifying yields the following equations for x2 and

x3

K2= 2 2-=-l +4x2 -3x 2 -3
2

3 32 2
- =x2+x3-3x2~x3
3

The phase diagram for these equations is readily derived and is sketched in Figure 3. (When

there are two dimensions it is not possible for exotic behavior such as "chaos" to arise.)

INSERT FIGURE 3 HERE.
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This diagram shows that generally initial points with strictly positive amounts of all

three strategies have solution paths which tend to either "d" or "m", and there is a limiting

payoff of 2 in all cases. All such initial points near "u" have solution paths which tend to "m"

in particular. That is, the old inefficient ESS at "u" has, in this sense, been supplanted by a

new efficient ESS at "n".

It should be noted that the above process is not reversible. That is, suppose instead the

mutant plays the efficient ESS against non-signallers and plays the inefficient ESS against

fellow signallers. It is easily shown that "u" an "d" remain the only ESSs of this augmented

game. Hence "d", in particular, not destroyed as an ESS by the introduction of this mutant.

Such a mutant indeed will die out.

3.2 THE ONE-SHOT PRISONER'S DILEMMA

This game is given as Figure 4.

INSERT FIGURE 4 HERE.

In this case it is easily seen that the unique ESS is "u", which yields a payoff of 2,

despite the possibility of obtaining 3 by means of the entire population playing "d". The

analysis of the previous example suggests that a mutant playing "u" against the old population

and "d" against itself will be able to successfully invade a population playing "u". Indeed,

consider Figure 5.

INSERT FIGURE 5 HERE.
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The only ESS now is easily seen to be "m", which entails the payoff of 3. If this

mutant and only this mutant were introduced, there is no reason to doubt the merit of this ESS.

The difficulty is just that such an ESS is a "sitting duck" for the introduction of still another

mutant, one which would prey on the first mutant. The second mutant should carry the signal,

but play "u" against the first mutant as well as against the non-signalling population. (It

would seem that this second mutant could evolve relatively easily from the first since all it

involves is a switch in the underlying choice to be played against other signallers.) With the

introduction of the second mutant in addition to the first the game is as in Figure 6.

INSERT FIGURE 6 HERE.

In Figure 6, the second mutant is labelled "f". It is not hard to see that there are now

no ESSs, and hence the dynamical system associated with this matrix needs to be analyzed

directly. This is a three-dimensional system on the tetrahedron, A3 . In general,

three-dimensional systems can have markedly more complex behavior than that possible in

two dimensions. However, the present example is rather simple. Notice, in fact, that the

strategy "d" is unambiguously "dominated" not just by one of the other strategies but by all of

them. (A strategy is said to be dominated by another strategy if it yields no more payoff for

every choice of the other player and strictly less for some choice.) When strategy "d" is

included in the dynamical system, it unambiguously decreases to zero along nontrivial solution

paths. It can be shown that the limiting behavior of the full system is then determined by the

limiting behavior of the two-dimensional system where "d" and its corresponding fraction

"x 2 ", say, are simply omitted.
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The following equations obtain in this case:

xl_
X= 2x1 +2x 3 + 2x4 -W
1

3+W
= 2x1 +3x 3 +x4-W

= 2x1 + 4x3 +2x 4 -W4

where x1, x3 , and x4, are the fractions of the population playing strategies "u", "m", and "f'

respectively and where

W = x 1(2x1i + 2x3 + 2x4 ) + x3(2x1i + 3x3) + x4(2x 1 + 4x3 + 2x4)

is the average fitness of the entire population. Using the fact that x1 = (1 -3 - x34 ) to

eliminate x1 on the right-hand side, the system can be expressed as

S= -( + 3+ )x3 < (
xl

33=-x 4 +x(-x 3 - 4 )
x3

4= x3 +x 3 (1-x 3 -x 4 )>
x4

The phase diagram for this essentially two-dimensional system in x3 and x4 , say, is

represented in Figure 7:

INSERT FIGURE 7 HERE

All solution paths of the dynamical system converge ultimately to a mixture of "u" and "f",

and so have limiting payoff of 2 as in the usual equilibrium for the original 2x2 prisoner's

dilemma game. However, the path takes a detour towards the vertex at which the first mutant

"mn" is the entire population and the average fitness is hence 3. Indeed, average fitness at first
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increases along a solution path but then decreases as the path heads back to a mixture of "u"

and "f'. Although the indeterminate nature of the mixture involved implies that there exists no

ESS, that there exists indeed no point attractor, this is a technicality in that the payoff is

determinate. Note that this example is clearly "non-generic" in that small independent

perturbations of the payoffs in the 4x4 matrix here are likely to break the ties in the payoffs.

However, these ties are produced endogenously by the signalling mutants and hence should be

treated as ties.

4. Related Works, Implications

A large number of authors from several disciplines have considered how natural

selection might be reconciled with a variety of alternative concepts of altruism. Trivers (1971)

apparently coined the term "reciprocal altruism" to describe a process for attaining group

efficient outcomes by means which essentially respect the individual as the unit of selection.

Discussions of altruism, reciprocal or not, have become a central concern of sociobiology (See,

for example, Wilson, 1975, p. 3).

Within biology, related kinds of signalling mutants to those here are discussed by

Dawkins (1982b, Ch. 8). This comprises a theoretical discussion of how "outlaw genes" might

promote their own survival at the expense of other closely related genes. Two of these

hypothetical outlaw types discussed use signals to distinguish themselves from other genes.

These two types are christened "armpits" and "green beards"! Within pure game theory, a

related contribution is due to Matsui (1988). He presents an analysis of a two-player infinitely

repeated game in which only Pareto-efficient outcomes can be equilibria. It is assumed that

there is a small probability that one agent's entire "supergame" strategy is revealed to the other.

The proof relies on a construction reminiscent of the signalling strategy here. For Matsui, of

course, the two players are fully rational human beings. Finally, many of the ingredients used
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here can be found in Binmore (1988). He uses an evolutionary game argument to buttress the

utilitarian outcome in a certain situation at the expense of the Nash bargaining one. His

argument is reminiscent of that used here in Section 3.2 to analyze the one-shot prisoner's

dilemma.

The game theoretic issue addressed here arises repeatedly in the previous literature.

Dawkins (1976, pp. 197-202), for example, outlines a game-theoretic approach to mutual

grooming. He finds two ESSs with differing payoffs, thus fitting the model here. Axelrod and

Hamilton (1981) and Axelrod (1984) contain a detailed evolutionary game theoretic analysis of

cooperation. (See also Maynard Smith, 1984, Ch. 13, for a summary of this.) Much of this

work assumes that the two individuals play the prisoner's dilemma not once, but repeatedly,

and there is some given probability of termination at each repetition. In this context, different

pure strategies turn out to generate ties in payoffs in a manner which creates difficulties with

the notion of an ESS as in Definition 2. Boyd (1989), however, shows that pure strategies can

be reinstated as ESSs if individuals can make mistakes with certain probabilities. For such a

"supergame", indeed, always finking remains an ESS in this extended sense. A modified

version of the strategy "tit-for-tat", which cooperates initially but thereafter matches the

opponents last move, can also be an ESS. If so it will yield a group preferred outcome. This

model then essentially fits the framework developed here. In the original analysis the

"evolution of cooperation" was hampered because "tit-for-tat" mutants were at a disadvantage

playing against an initial population which always finked relative to this initial population

itself. Thus Axelrod (1984, p. 175), for example, emphasized the need for geographical

clustering of these mutants to provide a friendlier initial environment for themselves. The

present analysis suggests how mutants might arise which are not at a disadvantage relative to

the initial population, while still obtaining higher payoffs against one another. The "evolution

of cooperation" would then be ultimately inevitable.
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APPENDIX: GENERAL CASE

As a minor matter of notation:

Definition 4: Support, Best-Replies

Consider an evolutionary game as in Definition 1. Suppose x e A~, then

define

R(x) = (i e (1,:..,n}|xI > 0} = support of x

and

S(x) = (i e {1,...,n}(Ax). = max(Ax).) = set of pure strategy best-replies to x.

J J

Clearly, if x is an ESS as in Definition 2, R(x) c S(x).

Suppose the following holds:

Assumption1 Two EESs

Consider an evolutionary game as in Definition 1 with a nonzero number of ESSs as in

Definition 2. (This number must be finite. See van Danme, 1987, p. 214). Suppose further

that p is any ESS which yields the maximum over ESSs of average fitness, and that there is an

ESS q with strictly lower average fitness:

qTAq <pTAp
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It is desired, then, to introduce plausible mutants which destroy any such inefficient q

as an ESS, or indeed, as an attractor of the pure-strategy dynamic. The obvious set of mutants

to consider, perhaps, comprises each possible combination of a pure strategy to be played

against non-signallers and a pure strategy to be played against fellow signallers. A difficulty

with this approach is that it introduces a large number of ultimately irrelevant ties. Mutants

which differ only in how they play the old non-signalling population will be indistinguishable

when the old population dies out. Formally, then, it is not possible to obtain an ESS with the

full set of these mutants. This would not seem to be an insuperable difficulty in that a slight

generalization of the notion of an ESS is likely to fit the bill.

It is, however, more direct to simply hypothesize the following set of mutants.

Assumption 2 Form of Mutants

Suppose the evolutionary game given in Definition 1 is augmented by the introduction

of n signalling mutants. Mutant i plays strategy i against fellow signallers, i = 1,...,n. Against

non-signalling players, however, every mutant plays the inferior ESS q, as a mixed strategy.

Remarks

1. It is easy to see, given the proof below, that the number of mutants can be reduced to

IR(p)|I,that is, the number of elements in the support of p.

2. In the example of Section 3.1, both ESSs are in pure strategies, a special case in which

IR(p)I = | R(q)| = 1.

3. The above form of mutation is particularly plausible in the case that the old ESS is

played by a "monomorphic" population, each member of which then already uses q as a

mixed strategy.
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1

The effect of Assumption 2 is to augment the matrix A as follows

A B
nxn nxnA =

2nx2n C D
Lnxn nxn.

where A is as in Definition 1. Now B = (bie) where

bie = payoff to old strategy i against mutant I

n
= .7a..q. = (Aq). = b,say.

j =1J 1

Furthermore, C = (ckj) where

ckj = payoff to mutant k against old strategy j
n

= a.q.= (qTA) = c., say.
i=1 i

Finally, D = (dke) where

dkl . payoff to mutant k against mutant I

- ake

Hence

A b...b

X= cT ,where b = Aqand cT =q TA
: A
' T
C

As a notational convention, mutants will be numbered 1,...,n rather than n+ 1,,...,2n and
2-eo za ze 2n-1 wlTTewrtn+

2n-vectors z, say, z e will be written either as [xT,yI] where x, y e Rn, or as

[arT( 1-a)sT] where r,s e en-1 a e [0,1].

The main result follows:

Theorem 1: Elimination of an Inferior ESS

Suppose an evolutionary game is described by A as above, where Definition I applies

to A. Now [qT, 0T] is not an ESS of A. However, both [pT,0T] and [0TT] are ESSs of K.

(ESSs are as in Definition 2.)
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Proof

(a) [qT 0 T] is not an ESS of A.

Note that

[OTT]ATAT = [CT PTA] [q= cTTq = qAq =[qT, 0]A

That is, the mutant [0TT] does exactly as well against [qT,0 T] as [qT,0T] does. Further

[OTTpT]A[C1 = [cTpTA] pTAp
whereas

[qTo]X[=][qToi] = qTb qTAq <pAp

by Assumption 1. Thus the mutant [0T T] does better against itself than [qT 0 ] does against

this mutant. Hence [qT,0] is not an ESS of X.

(b) [pT,0T] is an ESS of A. Note that firstly since p and q are both ESSs of A

qTAp< TAp

that is, q cannot be a best-reply to p. For suppose

qTAp=pTAp

Then since p is an ESS,

qTAq< TAq

which contradicts q being an ESS. (This result is implied by Bishop and Cannings, 1978, p.

91.) Hence, Vs e An-1

[TsT]K[] = [cT,sTA][ = T - qTAp <pTAp

Also, of course, Vr e An-1

[rTOT] [g] =rTAP PTAP

since p is an ESS of A. Altogether, then, Va e [0,1]

[rT(1-)sT]g[] = aTAp (1-)qTAp pTAp [TpT, g]
and equality is only possible if a= 1. In this case, then,

rTAp =pTAp
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Since p is an ESS of A

rTAr < pTAr

so that

T T[rT,TTT]O[P ]X

exactly as required in order that [p ,O] be an ESS of X.

(c) [0T T] is also an ESS of X.

Note that, of course,

[0TO T TAp[OTPT]A [ P] P

Now V r, s e 2-1 andcae [0,1],

[arT,(1 -asT]X = arTb + (1-a)sTAp = arTAq + (1-a)sTAp

where

rTAqqTAq< TAp

since q is an ESS of A and by Assumption 1. Further

sTAp pTAp

since p is an ESS of A. Hence

arTAq +(1-a)sTAp pTAp

with equality implying a=0. In this case, then,
sTAp =pTAp

and since p is an ESS of A

sTAs < PTAs

so that

[TsT]XO < [0 TTdO

exactly as required for [0T Tp] to be an ESS of X.
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Remark

1. It is not difficult to check that the above result is, in a sense, robust to the choice of

mixed strategy played by mutants against non-signallers. That is, if mutants use q for

this, where R(q) c S(q), as in Definition 4, and q is sufficiently close to q, then the

Theorem remains true.

The coordination game example of Section 3.1 has more structure than that indicated

by Theorem 1, related to the introduction of a dynamical system. The following generalization

applies:

Theorem 2: Dynamical System of Augmented Game

Suppose the evolutionary game is given by X as above. Consider the pure-strategy

dynamical system as in Definition 3. Now [qT,0T] is not even an attractor. Indeed, there is a

[T 0T] T T
path from [qT,0 ] leading to [0 ,p ] in this dynamical system.

Proof

Suppose the initial point is given as

[aqT (1-a)pT], where a E (0,1).

The payoff to the old strategy i is (Aq)i because all other strategies play q against the old

population. The payoff to mutant j is
Taq Aq +(1-a)(Ap).

J
because it obtains the ESS payoff for q a fraction a of the time and plays the mutant

population p the remaining fraction of the time. Hence the average payoff overall is

g~qTAq) + (1-a{)[aqTAq + (1-)pTAp] = a(2-)qTAq + (1-)pTAp

It follows the pure strategy dynamic for [xTyT] as in Definition 3, is given by
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i - qTAq-a(2-a)qTAq-(1-a)2pTAp = -(1-a) T[pAp - qTAq] < 0

for all i e R(q). If i e R(q) then, of course, x.= 0. Similarly,

Y.-PTAPT (~ 2pT p c c)TA T= aqTAq + (1-a) pTAp - a(2-a)qTAq - (1-a)2Ap= a(1-a)[pApA- qT ]>0

for all j e R(p). If j e R(p) then y. = 0. Clearly then the solution is given by

x(t) = a(t)q y(t) = (1-c(t))p

where

at= -(1-a(t))2[pTAp - qTAq] < 0

and a(0) = a. It follows that a(t) - 0as t -+ -, that is,

[xT(t), yT(t)]-[0PT

no matter how close a(0) = a was initially to 1, as was to be shown.

Remark

1. The ESS of X, [0TT], must be an attractor in this dynamical system. Its "basin of

attraction" is then an open set which includes the above path. (See Zeeman, 1979).

That is, ultimate convergence to [0TT] is guaranteed if the initial point is sufficiently

close to the above path.
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Figure 2. The Coordination Game with a Signalling Mutant
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Figure 5. One-Shot Prisoner's Dilemma with Mutant
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Figure 6. One-Shot Prisoner's Dilemma with Two Mutants.
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