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I. INTRODUCTION

A COMPUTATIONAL ALGORITHM FOR

OPTIMAL COLLUSION IN DYNAMIC COURNOT OLIGOPOLY

by DAVID ROTH'

Department of Economics
University of Michigan
Ann Arbor, MI 48109

December 1992

Abstract Recent work in oligopoly theory has focused on the optimal degree of tacit

collusion sustainable in a dynamic oligopoly. Such analysis for price-setting oligopoly has

advanced substantially; however, analysis of Cournot oligopoly has not proceeded apace.

This paper analyzes best and worst strongly symmetric equilibria for dynamic

quantity-setting oligopoly with demand dynamics, such as business cycles, that are

independent of previous quantity choices. Two primary results are obtained. First, the

paper shows through construction that best and worst strongly symmetric equilibria exist,

and that the worst equilibria may be constructed, as in Abreu (1983, 1986), so that they

prescribe optimal equilibrium play from periods 2 onward. That is, they have a

stick-and-carrot structure. Second, it provides a simple algorithm for the computation of

the extremal equilibria.

1 This paper is based upon chapter 2 of my Ph. D. thesis. I would like to thank mx advisor
David Pearce for his advice and encouragement. This work was supported by an nderson
Fellowship from the Cowles Foundation, Yale University.

The maximal degree of tacit collusion attainable in a dynamic oligopoly with perfect

monitoring has been the subject of much recent research.2 For price-setting oligopoly,

there has been a remarkably rich literature, with the focus upon extending the results from

purely repeated games to games with demand dynamics such as business cycles.3

However, the literature on Cournot oligopoly has not proceeded past the analysis of purely

repeated interaction. Abreu's work (1983, 1986) is the classic, showing that punishments

worse than Cournot-Nash reversion are generally available, and that worst symmetric

punishments may be chosen to have a stick-and-carrot structure. This paper extends the

analysis of extremal equilibria of quantity-setting oligopoly from purely repeated games to

games with demand dynamics that are independent of the past play of the game.

Two primary results are obtained. First, the paper shows that best and worst

strongly symmetric equilibria exist and that the worst equilibria may be constructed, as in

Abreu (1983, 1986) so that they prescribe optimal equilibrium play in all periods past the

first. That is, the worst equilibria have a stick-and-carrot structure in this broader class

of games as well. This result is straightforward and rather unsurprising in light of Abreu's

earlier work.

On the other hand, the paper also develops a simple technique for the computation

of the extremal equilibria. The computation is based upon incentive-constrained dynamic

programming techniques. General approaches to such computation have been developed

elsewhere (Abreu, Pearce, and Stacchetti (1986, 1990), Fudenberg, Levine, and Maskin

(1991)). These general approaches apply to the present problem, yet are computationally

quite burdensome. The technique developed in the present paper is, by contrast, extremely

2 Related work on collusion in oligopolies with imperfect monitoring includes Porter (1983),
Green and Porter (1984), and Abreu, Pearce, and Stacchetti (1986).

3 See Rotemberg and Saloner (1986), Haltiwanger and Harrington (1991), Kandori (1991).
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simple, as it only iterates upon artificial best and worst value functions, not upon entire

value sets, during computation.

That simplified computation of this sort may apply to best symmetric equilibria in

games with apriori known worst punishments has recently been noted elsewhere (Roth

(1992)). There I show that, when the worst equilibrium is known, the best equilibrium can

be computed through dynamic programming iterating only upon an artificial best value

function, keeping the known worst equilibrium as a threatened punishment. For example,

Bertrand oligopoly has a known worst equilibrium of p=MC and zero profits forever; thus,

the techniques developed in Roth (1992) can be used to compute the optimal sytmmetric

equilibria for all of the above-mentioned papers on dynamic price-setting oligopoly. Here,

on the other hand, the computation is of both the best and worst equilibria, with the best

equilibrium acting as a promised reward for following a suggested action (in both the best

and worst equilibria, due to the stick-and--carrot structure), and the worst equilibrium

acting as threatened punishment. This structure provides us with the simplicity of

computation of extremal strongly symmetric equilibria. I defer details until Section 3.

The remainder of the paper is structured as follows. Section 2 introduces the basic

model under consideration. Section 3 provides equilibrium characterization and

computation. Section 4 summarizes.

S= [0,m), n=1,...,N, be the set of production levels possible for the nth firm, and let
NS= x S be the set of quantity profiles for all firms.

n=1n

The inverse demand function at time t is

Pt = Ef Qt;zt)'

where Q = E N e. The single-period profit function for firm n, r1 :SxZ-. R is as usual:t n=1 nt n

N
(1) Hn(-1 ,..., z) = p( )E q ;z) e - c q,

:=1

where c is the constant marginal cost common to all firms. V q, z, let ir(q;z) = 111(q,...,q;z).

Let us make the following assumptions on demand:

(Al) p is continuous in (Q;z),

(A2) 3 ME R s.t., V z, q,.~,N' H( 1.''"'N;z) < M,

(A3) V z, p(O;z)>c, I im p(Q;z)=O, and p is monotonic.
Q4 W

(Al), continuity, is necessary for the existence of well-defined, continuous profit functions

and optimal equilibria, and for some concepts to be introduced later to be well-defined.

(A2) and (A3) ensure that for each z there is some level of production for each firm q(z)

such that no production above q(z) would ever be played in any equilibrium at the state of

demand z, for the large short-term losses (A3) could never be recouped by the bounded

present discounted value of future profits (A2). We thus will be able to restrict attention

to the compact move space [O,q(z)] when analyzing equilibrium, and to other compact sets

when considering incentive compatibility more broadly.

II. THE MODEL

The game to be studied is a dynamic, infinite-period, symmetric quantity-setting

oligopoly game of perfect monitoring. In each period, there is a state of demand which is

known to the oligopolists. Demand follows a Markov transition: Let ztEZ be the state at

time t, where Z is a subset of some Euclidean space IRM. There are N identical firms. At

time t, firm n chooses a quantity level e te[O,w) simultaneously with the other firms. Let



5

The dynamics of the game are described by a stationary Markov transition density

function, which is independent of the actions taken by the players. Let the density

f(zt+1|zg) give the distribution of zt+ 1 given zt. Firms know the state when they make

their production decisions each period; given the state z, single-period profits are given

deterministically by (1).

For analysis of equilibrium, let us make the following definitions:

(D1) r*(q;z) := max {fI1(q',q,...,q;z)}
q

(D2) d(q;z) := r*(q;z) - r(q;z).

Then d(q;z) is the greatest value gained by deviating for one period from the symmetric

action profile in which production level q is chosen by all firms at state z; r*(q;z) is the

total one-period profits received by deviating from production level q at state z. Each of

d( ) and ?( ) exists and is continuous, due to (Al), and the fact that r*( ) is the solution

to profit maximization, then, over a continuously varying residual demand curve that

drops below the marginal cost curve.

For the remainder of the paper, I restrict attention to strongly symmetric strategy

profiles, that is, strategy profiles which both on and off the equilibrium path prescribe

similar behavior for all firms. I will use the notation a for both strategies and strategy

profiles. Let G"(6)(z) denote the full supergame with discount factor 6 and first-period

state variable z. Throughout, assume that all past production levels of all firms, and all

demand histories are common knowledge. That is, monitoring is perfect and perceptions

about demand are correct. Assume that players discount future payoffs at the common

factor of 8, and discount to the end of period 1 (first period profits are not discounted).

Firms are interested in maximizing the expected sum of discounted profits.

III. EQUILIBRIUM

In this section, I analyze best and worst strongly symmetric sequential equilibria

(hereafter, simply equilibria) of the supergames G"(5)(z). First, I show that worst and best

equilibrium value functions exist. By this I mean that, for each z, the set V(z) of

equilibrium expected present discounted future profits for G"(6)(z), has a worst and a best

element. In proving the existence of worst and best equilibria, I construct a

stick-and-carrot equilibrium which gives the worst equilibrium value, and a stationary

equilibrium giving the best value (Theorem 1). That is, the worst equilibrium of G"(6)(z)

has a low-profit quantity played in the first period, and the optimal quantity function

played thereafter; the best equilibrium has the optimal quantity function played after all

histories.

I then develop an incentive-constrained dynamic programming technique which I

employ in the computation of the worst and best equilibria. The limits of this procedure

exist (Lemma 1), are equilibrium value functions (Lemmas 2-4), and are (weakly)

dominated by and dominate, respectively, the worst and best equilibrium value functions.

Thus they are themselves the worst and best equilibrium value functions (Theorem 2).

The equilibria giving these value functions can then be extracted and described.

Ezistence of Worst and Best Equilibria

Define the set of equilibrium values of the game GD(6)(z) as follows:

(D4) V(z) := { v |3 an equilibrium a(z) of O"(6)(z) s.t. v = v(T) }

where v(a) is the expeted present discounted value of future profits under e. We call a

function vZ-IR an equilibrium value function if, Y z, v(z)E V(z). This is emphatically not the
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same as saying that there exists an equilibrium such that v(z) is the expected present

discounted value of future profits accruing to each firm whenever the state of demand is z.

Define then the set of equilibrium value functions for notational convenience:

Theorem 1. v ~v* E V. Furthermore, for each z, there exists a stick-and-carrot

equilibrium o(z) of G"(6)(z) such that u(z)E(z).

Proof See Appendix. ||

(D5) V:= { v:Z-4R|Vz, v(z)E V(z) }

Define the limits *, ~*:Z-i4 of the equilibrium value sets point by point as follows:

(D6) For z E Z,v*(z) := i nf v, andv*(z):= sup v.
vEV(z) vEV(z)

Define the sets of best and worst equilibria of G(6)(z) as follows:

(D7) T(z) := {u(z)ja(z) is an equilibrium of G"(6)(z), and v(o(z))=~v*(z) }, and

(D8) o(z) := {c(z)|o(z) is an equilibrium of G"(6)(z), and v(c(z))=v*(z) }.

Define a stick-and-carrot equilibrium as follows:

The proof proceeds by constructing, for z E Z, two sequences of equilibria whose values

converge to the infimum and supremum of equilibrium values v*(z) and ~'(z). Taking

appropriate limits, there are worst and best quantity levels g*(z) and q*(z) for which

recursive computation and incentive compatibility requirements hold which make v*(z) and

~'(z) equilibrium values:

(2) v*(z) = r(?(z);(z)) + 6 ~?(z') f (z'|z) dz',

(3) ~?*(z) = ir(q*(z);(z)) + 6 ~?*(z') f(z' z) dz',

(4) d(g*(z);(z)) < 6J (i(z') -*(z')) f (z'|z) dz', and

(5) d(?(z);(z)) < 6J (v*(z') - v*(z')) f(z' z) dz'. 4

We see from (2) that the constructed equilibrium inducing value v*(z) is indeed a

stick-and-carrot equilibrium. Note that the approach to proof taken here, emphasizing

limits of equilibria, complements the set-valued approach to the existence of best and

worst equilibria, which is based upon compactness of the equilibrium value set (Abreu,

Pearce, and Stacchetti (1986), 1990), Cronshaw and Luenberger (1990), Fudenberg, Levine,

and Maskin (1991)).

Computation

Here I present a method of computing the best and worst equilibrium value

4 All integrals in the paper should be understood to be taken over the state space Z.

(D9) c(z) is a stick-and-carrot equilibrium of G"(6)(z) if o(z)Eo(z), and, Y z',

where u(z,z') is the equilibrium induced by a on the remaining periods 2,3,..., of the game,

when z' is the state of demand in the second period. That is, o(z) is a stick-and-carrot

equilibrium of d"(A)(z) if it is a worst equilibrium, but prescribes optimal equilibrium play

from periods 2 on. We can then show by construction that worst and best equilibria exist,

and that the worst equilibrium value may be attained by a stick-and-carrot equilibrium:
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functions which does not rely on computing the entire equilibrium value set. The method

is, like its set-valued counterparts, an incentive-constrained analog of the iterative

contraction mapping technique of dynamic programming. At its heart is the question of

which actions can be supported by an arbitrary promised continuation value with the

threat of reverting to another, worse punishment value if malfeasance occurs. The iteration

proceeds as follows: A pair of value functions (v,i) is input. v is treated as a punishment

threat, i as promised reward and continuation value. Given these reward and threat

functions, the procedure iterates on v (i) by taking the worst (best) of the actions incentive

compatible with respect to the punishment-reward pair, and adding these one-period

payoffs to the expected discounted continuation value 61I i(z') f(z'|z) dz'. For

v, :Z-4, zEZ, make the following definition:

(D10) A production level q is incentive compatible with respect to (v,i) at z if

6 (i(z')-v(z')) f(z'|z) dz' > d(q;z).

A production level is thus incentive compatible with respect to the pair (v,;) if the

discounted expected difference between the reward and the punishment exceeds the

one-period benefit of deviation. We can then define the set of effort levels incentive

compatible with respect to a value function pair at a particular state of demand as follows:

(D11) IC(v,i)(z) := { q q is incentive compatible with respect to (v,i) at z }

Notice that, since cost and demand are continuous (by (Al)), d is well-defined and

continuous, and profits become arbitrarily negative with high output but are bounded (A2,

A3), we have:

We can now define the transformations B, : Cx C-.C as follows:

(D12) B(v,i)(z) := min r(q z) + 6 (z') f(z'|z) dz' , and
qEIC(v,)(z)

D(v,i)(z) := max w(q;z) + bJi(z') f (z'|z) dz'
qEIC(v,i))(z)

Let B := (B,T). To reiterate, the map B chooses the worst and best of the values

obtainable by producing in the present period, with continuation values v, subject to the

incentive compatibility constraints given by the punishments and rewards v and v. Since

IC(v,i)(z) is compact, V z, and ar(q;z) is continuous in q, the map B is well-defined. Notice

that B has a stick-and-carrot structure, giving the lowest incentive compatible profits

today and giving high continuation values, while V has the structure of an optimal play,

giving both the highest supportable profits today and high continuation.

We then take artificially low and artificially high value functions og, v0, and iterate

through the map B. Start with a v0 which is everywhere at least the greatest possible

one-period payoffs forever: For example, set v0 = M/(1-6) everywhere, where M is one

firm's share of the total monopoly profits for the state of demand z which gives highest

monopoly profits. Then sii60. Also start with a v0 which is everywhere lower than the

value possible by getting the lowest single period payoffs in IQyov0' 0)(z) plus the expected

continuation values 6 1 0(z') f(z'|z). For greatest simplicity, let v (z) = 0. Then v >v0'

since no production level will be incentive compatible with resect to (0,M/(1-6)) which

gives greater than 6M/(1-6) as losses in the first period, since the firm could always shut

down and receive total profits of zero. For all t>0, let vt+1=-B(t,'t), and i =3(vt)'

Then it+1< t, and t+1-Vt+1 "tvt, V t. Since {vt} is now a decreasing, bounded

sequence of functions, its (pointwise) limit exists; and since {I-vt} is decreasing and thus

has a limit, {vt} must also have a limit:

Proposition 1. The set IC(v,-i)(z) is compact, V z, V v, r Z-4.
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Lemma 1. Set v0 = M/(1-6) and -0 = 0 everywhere, and for all t20, let

t+ 1=B(vt')' and t+1B t;t). Then i:= li m ands := lim vt exist.
CD t-+ mt-

Proof See Appendix. ||

The limit value function pair that we have reached is actually a fixed point of the

mapping B, as seen by the following result. Define F={(v,~) B(v,)=(!,)} to be the set of

fixed points of B. A straightforward limit argument gives us the following:

Lemma 2. (v, ) F.

Proof See Appendix. 1)

Since (,o,i.)EF, 3, is the best value function possible given itself as continuation

value and subject to incentive compatibility requirements based on (V, ,) as the

punishment-reward pair. Somewhat differently, v is the worst value function given , as

continuation and supported by the punishment-reward pair (vi,i,). Therefore, since it is

a value function pair induced by actions supportable by the pair itself, it must be a pair of

SSE value functions, as must any other fixed pair of B. The following results confirm this

intuition:

Lemma 3. If (v,7)cF, then v,t V.

Proof. See Appendix. ||

The point of Lemma 3 is that a value function pair which is a fixed point of B has obvious

associated SSE action functions, taken directly from the recursive definition (v,v)=B(v,v)

of the value functions. In particular, there must be incentive compatible output levels

which provide the first-period profits which, when added to the discounted expected value

of the best payoffs thereafter, give the worst and the best total expected profits. Now,

since (v,i,) is a fixed point of B (by Lemma 2), it is a pair of SSE value functions (by

Lemma 3):

Lemma4. v , V.

We may now show that these limits are in fact the worst and best equilibrium value

functions:

Theorem2. , =D ,and vW =t*.

Proof See Appendix. I

The proof proceeds by showing that at every iteration of the procedure, the difference it-vg

is at least as great as the difference between the best and worst SSE values v*-v*. Thus

the same weak inequality holds in the limit, making i, and v the best and worst SSE

value functions themselves. Formally, the difference between ttl(z) and vt+1.z) is simply

max_ r(q;z) - min_ iq;z), which is at least as great as the difference
geIC(3-t, t)( z) esIC( tvt2)( 2)

i*(z) - v*(z) as long as IC(v*,~v*)(z) £ IC !t,'t)(z). This is true if i -vt i- v*. But v0' o
were chosen so that v0-)425*-v*. Thus, by induction, ot~vt *-v*, V I. Thus in the limit

j -v >v*-v*. Thus ~ and v are the best and worst SSE value functions.
. e - * -oi

Finally, given the limit functions~m and v,,it is easy to extract equilibria of any

d5(5)(z) which induce values i(z) and v,(z). Lemma 3 shows how to do this, since
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(v*,i*)EF. Notice that the equilibrium value functions and corresponding equilibria satisfy

the value recursion and incentive compatibility conditions (2)-(5).

The proof rests on the fact that, at each step of the iterative process, at least as

much incentive power is provided by the artificial continuation values, in terms of choosing

incentive compatible output levels, as is provided by the pair of best and worst equilibria

themselves. We begin the scheme with a pair (4,i0 ) with this property, and the property

is preserved by the map B. Note that were we to start with initial artificial best and worst

values which provided less incentive power, then the best and worst equilibrium quantities

might never become incentive compatible. This can be seen most starkly as follows.

Suppose that for all states of demand z, there exists exactly one one-shot Cournot Nash

output level. Further, suppose that we began with each of 4 and v0 equal to the value of

playing each of the respective Cournot Nash levels forever. Then there is no incentive

power in the punishment-reward pair (v0,v0), only the Cournot Nash levels will be

incentive compatible, (v0,0) will be a fixed point of B, and thus the iterative procedure

will never reach the best and worst equilibrium values. Notice that B is in no relevant

sense a contraction mapping and that, as the present example of Cournot Nash payoffs

shows, may have multiple fixed points. The precise choice of artificially high and low

initial values suggested in Lemma 1 and carried throughout the analysis is fundamental, in

contrast to the unimportance of the starting point in ordinary dynamic programming

problems.

IV. CONCLUSION

This paper has been concerned with the analysis of best and worst equilibria for

dynamic quantity-setting oligopoly. In particular, it has focused on the existence,

characterization, and computation of best and worst strongly symmetric equilibria and

their associated value functions. Best and worst equilibria were proven to exist by

construction; the equilibrium constructed which gave the worst value had a

stick-and-carrot structure. Finally, the best and worst equilibria were computed as the

limits of an incentive-constrained iterative procedure suggested by earlier

dynamic-programming approaches to the study of dynamic games.

The substantial advantage enjoyed by the present approach over set-valued

iterative approaches is in computation. The class of dynamic Cournot games studied here

has best and worst equilibria which have the best equilibria as continuations; thus

computation may be restricted to best and worst values, and may disregard any

intermediate values. The drawback of the approach is its limited applicability. Games

with stick-and-carrot worst punishments and games with convex equilibrium value sets

may be the only games whose worst punishments are unknown a priori to afford such

simplified computation. General dynamic games have worst punishments, during whose

paths continuation values are not necessarily extreme points of the equilibrium value sets.

Complete set-valued approaches to the computation of best and worst equilibria are then

in order.

Although the class of oligopolies to which this analysis applies is substantial, we

should note that extremely important dynamic elements must be left out as well. Capacity

expansion, advertising, product development and location, firm-specific learning-by-doing

or research and development, and any other firm-specific lasting investment, must be left

out due to asymmetries. Industry-wide lasting investment (e.g., lobbying, advertising,

R&D, learning-by-doing, stochastic or not), even when it affects all firms equally, may

not be analyzed with the present techniques because stick-and-carrot punishments may no

longer be optimal when actions affect future payoffs. Finally, as emphasized also by

Abreu, there generally exist asymmetric punishment paths which are worse than the worst

symmetric punishments for particular players, and thus the best symmetric equilibrium is

generally better than the best strongly symmetric equilibrium. The present techniques,
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however, only apply to the latter. (3) ?*(z) = 7r(?(z);z) + 6J *(z') f(z'|z) dz'.

APPENDIX

Proof of Theorem 1. The proof proceeds by constructing, for each z, two sequences

of equilibria whose limit values are the limits i*(z) and v*(z), which are then shown to be

equilibrium values themselves, by construction of particular limit equilibria.

For zEZ, let {it(z)} be a weakly increasing sequence, with ii z(z) E V(z), V t, and

lim i t(z) = i*(z). Then for each t, 3 an action it (z) E S1, and equilibrium value
t-ewm) s
functions wt , wt :Z-4 with wt (z), wt (z) E V(z), V z, V t, such that:

(1)

(2)

S(z) = w(i (z);z) + 6 wtjz(z') f(z'|z) dz' (value recursion), and

d(itjz(z);z) 6J (ii(z') - w ,z(z')) f(z' ;z) dz' (incentive compatibility).

An almost identical proof holds for the construction of a recurisve definition for

f'(z). The only difference is that we can make the analogous Jitz(z') f(z' z) dz'

converge to J *(z') f(z'|z) dz' by a stick-and-carrot argument instead: Any equilibrium

value function can be achieved by a worse first-period payoff and better continuation

values, if such are available. Formally, suppose that for some t, 3 e>O s.t.

(*(z') - t z(z')) f(z'|z) dz' > e. Then 3 an equilibrium value function 's'z s.t.

(i't 5(z') - (z')) f(z'|z) dz' > 0. Increase gt,z(z) to g' (z) so that

gt,z(z) = r(g' (z);z) + 6 ii' (z') f(z'|z) dz'; we know we can do this by (A2). Do this

for each tin a way such that IirmJ (?(z') - i' (z')) f(z'|'z) dz' = 0. Now it just

remains to show that each g' (z) is incentive compatible. First note that r*(g'z(z);z) <

7r*(gt'z(z);z),since it is the monopoly profit for a downward-shifted residual demand curve.

We now have:

d(g' ' (z);z) = r*(g' (z);z) - r(g' z(z);z)

< 7r*(2t,z(z);z) - r(g' (z);z)

t ir(&tz(z);z) + d(gSt(z);z) - r(g't (z);z)

S tz(z);z) - 7(gt'(z);z) + 6J (iiiz(z') - ut(z')) f (z'|z) dz'

-a6J(itz(z') - ut(z'))f(z'|z) dz'.

This completes this section of the proof. Now take a convergent subsequence of {g'z(z)},

with limit g*(z). The analogs of (1)-(3) for v*(z) are then the following:

(1') vtz(z) = r(gtz(z);z) + 6J Jiui(z') f(z'Iz) dz' (value recursion), and

(2') d(g2,5(z);z) S 61(t,(z') - ui, (z')) f(z'|z) dz' (incentive compatibility).

Consider the limiting behavior of (1). By construction, lim i 5(z) = i*(z). Next, since
t-4m

the sequence {g 5(z)} is bounded, it has a convergent subsequence. Call its limit ?(z).

Restrict attention from here on to this subsequence. By continuity of 7r, then,

li m ir(It (z);z) = ir(*(z);z). Finally, Ji m J wt Z(z') f(z'|z) dz' = i'(z') f (z' z) dz'.
m t-mu

Suppose not; then it doen't converge from below. Thus 3 t, e1 > 0 s.t. i (z) >*(z)-e

since {i , 5 (z)} converges to ?(z), but J itz(z') f(z'kz) dz' < I?(z') f(z'|z) dz' - eg.

Thus 3 e2>0 s.t. r(it z(z);z) > i*(z) - 6 *(z') f(z'|z) dz' + E2. But then we can find

an equilibrium value function w' zwith integral close enough to that of i* that the

equilibrium value i' z(z) = r(i (z);z) + 6[ i (z') f(z' jz) dz' > i*(z), a contradiction.

Summarizing these limit results, we have:
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(3') 1(z) = ir(?*(z);z) + if ?(z') f (z';z) dz' .

Now it only remains to check that there are equilibria which give ,*(z) and v*(z) as values.

(3) and (3') imply that ?(z) is induced by the path (?*(z),j*,...,?..,while v1(z) is

induced by((),,.?..) By (2), d(gt (z);z) < if (wi (z'1) - wt, (z' )) f (z'lz) dz';

redefine so that its integral decreases as follows: Let o't 2() = mi n wto(z' ). Then

luiz(z)E lV(z), and (2) becomes d(4t~z(z);z) < if (iit~(z') - t't(z' )) f (z';z) dz' . Taking

limits, we have:

d(?(z);z) = lim i~()z (by continuity of d)

< limbif(iw(z') - w ozz' )) f(z' z) dz'
~ i ((z' -v*(zI )) f (z'1z) dz' .

Analogously, d(?*(z);z) < if (?i(z') - i*(z' )) f (z' ;z) dz'. Thus ?(z) and ?*(z) are

supported by the punishment-reward pair (v,?), and the following are equilibria with

induced value functions v*, ?: For v*, play the path(? .,.) until someone

deviates, and then start the equilibrium over again; for !*, play the path (q,.,*.. until

a deviation occurs, and then play the equilibrium giving v*. Finally, the worst equilibrium

constructed is indeed a stick-and--carrot equilibrium. 11

- E IC(v 'vt+ 1)(Z)f+

r-ince vt 1 - J+1  v implies IC(!it+l1tvt+1)(z) C IC(_!t,v)(z), V z,

< max iw(qz) + ibiit(z') f(z' ;z) dz' ,

since v~ t and f is nonnegative,

_ R(!t,vt)(z) = v+()

Next,

= max (qz) - min r(qz)

< max tr(q; z) - min w(q; z)

since ii~l-t 1 v~- vtimplies IC( t+i,iit+i)(z) C IG(vt,iit)(z), V Z,

= B( vt,it) (z)-B(vt~I t) (z)

Proof of Lemma 1. The proof proceeds by induction. We wish to show that if ii~l

<v and i -vt+ 1'< i-'t, then "t+2 <_ "t+11, and _-2 +2Sv+ -t i.But:

But, since v was chosen artificially high and h artificially low, i <v and v > v0. Thus

tJ1-vi VO -y. Thus, vt±1 <vt and _ -tt1 v v, t. Since { ' } is a decreasing,
bounded sequence, its limit ao exists; similarly does the limit of {it-vt} exist, and thus the

limit v of { vt} must exist as well. fltt+2(z) = ctlU+)z
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Proof of Lemma 2.

D( ,,)(z) = max_ r(q;z) + 6 im(z') f(z'|z) dz'
QE IC , v)(z)

=lim max_ r(q;z) + 6bli m [t(z') f(z'|z) dz'
t- ,m eeIQ v t' 't)(z) t+m

since each of the sets IC(vt,t)(z) is compact and nonempty, and since

IC~vt+1' t+1)(z) C IQvei)(z),

= limDB(vt't)(z)
ta

= z).

An analogous computation utilizing B shows that B(v,,i)(z)=v(z). Thus

B(v m,)=(-,,i). ||

Proof of Lemma 3. Suppose (v,v)EF. Then, define g,.Z4SI as follows: If

v(z) = (q;z) + 61/ i(z') f(z'z) dz', set g(z) = argmin{d(q';z)'w(q';z)=w(q;z)}. Then if
qJ

any production level giving one-period profits of ir(q;z) was supported by the pair (v,1), q
must have been, too. Similarly, if i(z) = ir(q;z) + 61 i(z') f (z'|z) dz', set q(z) =

argmin{d(q';z)ir(q';z)=r(q;z)}. Then v(z) is generated by playing g(z) in the first period

and following it with the function q thereafter, while i(z) is generated by playing q(z) in the

first period and q thereafter. But each of g and q can be supported exactly by the

punishment-reward pair (vv). Thus the following is an SSE inducing value function v(z):

Play the sequence ( until someone deviates, starting the sequence over

thereafter. The following SSE induces i: Play (z), and then the function q, until someone

deviates, playing the SSE inducing v thereafter. ||

Proof of Theorem 2. v* and ? are the best and worst equilibrium value functions.

We can therefore see directly from their construction in Theorem 1 that B(v*,T*) = (v*,?).

The proof proceeds by constructing a comparison of the differences between the best

and worst equilibrium value functions v*-v* on the one hand, and the limit equilibria

-i, on the other. Suppose that for some t, it~ > >*-v*. Then, for zEZ:

it+1(z)-vt+1(z) = max ir(q;z) - max r(q;z)
gE ICv t ' 't)( z) qE ICv t , Vt)( z)

> max 7r(q;z) - max Tq Z),
QEICv* ,i*)(z) qEIU(v* ,i*)(z)

since ii- ?>*-v* implies that IC(v*,?)(z) g IC(yv,ui)(z), V z,

= R(if*,~i*)(z) - B(u*,~i*)(z)

But v0 and o were chosen artificially high and artificially low, so -v0 *?-v*. Thus, by

induction, ii-u ~v*-v*, V t. Thus, in the limit, v -v > ?-v*. Thus i and v must bethe *a~-b"c-"
the best and worst SSE value functions themselves. ||


