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A THEORY OF PARTNERSHIP DYNAMICS:

LEARNING, SPECIFIC INVESTMENT, AND DISSOLUTION1

by DAVID ROTH

Department of Economics
University of Michigan
Ann Arbor, MI 48109

Abstract This paper explores the benefits and drawbacks of potential partnership

dissolution through an infinite-period, dynamic game-theoretic model of learning and

endogenous dissolution. As partners learn about the quality of their partnership relative to

their outside opportunities, the rents associated with the partnership change, effecting a

related change in the strength of incentives to provide effort.

The paper develops an incentive-constrained dynamic programming algorithm for

the computation of optimal symmetric equilibria of dynamic games with known worst

punishments (such as dissolution here). The scheme is much simpler than the more general

set-valued approach pioneered by Abreu, Pearce, and Stacchetti in that it only requires

the computation of one value function at each iteration. The algorithm is then used to

show that rather mild supermodularity conditions lead to effort levels in the optimal

equilibria which rise in the expected quality of the partnership.

' This paper is based upon chapter 1 of my Ph. D. thesis. I would particularly like to thank
David Pearce for his advice and encouragement. I owe an exceptional debt to him. Ennio
Stacchetti and Offer Kella were extremely generous with their time and expertise. I have
also benefitted greatly from conversations with Truman Bewley, Al Klevorick, Rick Levin,
and Ariel Pakes. This work was supported by an Anderson Feowship from the Cowles
Foundation, Yale University.

1. INTRODUCTION

The potential for business relationships to dissolve has both benefits and drawbacks.

The ability to pull out of an existing relationship provides economic actors with the

flexibility to reallocate their resources to uses which they deem more productive, as in job

matching models of the labor market (e.g., Jovanovic (1979)). Furthermore, the threat of

discontinuing future relations with a partner who greatly values one's business may

discipline the behavior of the partner (Klein and Leffler (1981), Shapiro (1983)). Both of

these are important benefits of the proper functioning of any competitive economic system.

However, commitment to a relationship may also be of great value. If parties to a

relationship may always threaten to take their business elsewhere at no great loss, then

there may be no force disciplining the behavior of the parties within their present

relationship.

This paper is concerned with the tradeoffs and interactions between these benefits

and drawbacks of potential partnership dissolution. In order to study these interactions, I

develop a dynamic game-theoretic model of partnerships. This is a natural framework

within which to study the effects of potential partnership dissolution. Many rules of

business behavior are implicit and are not written into enforceable contracts. MaCaulay

(1963) finds that a large proportion of business relations are conducted without recourse to

the safeguards provided by the legal system through contracting. Also, numerous

contributions to business partnerships have public good qualities, and incentives must be

provided for partners to contribute to the general good of the partnership. Finally, the

expected productivity of assets within a given relationship may vary over time relative to

that in their best alternative use.

These are important determinants of the dynamics of performance of many business

as well as social relationships. Industrial firms entering into a research and development

joint venture, for example, may at first be optimistic about the prospects of success in a
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particular R&D project. The benefits of the firms' personnel, financial, equipment, and

planning contributions to the partnership will be at least partially shared, yet the firms

may nevertheless be motivated to provide efficient levels of these inputs because of the

threat of dissolution of the valuable partnership. Were the firms to become more

pessimistic about the prospects of success of the project, however, or alternatively, were

they to discover outside projects that may turn out to be more productive, they may no

longer be sufficiently disciplined by the threat of loss of the small rent remaining in the

partnership to contribute efficiently. A purchaser/supplier relationship of an intermediate

product may display similar dynamics. As the value of continuing the relationship

declines, the product quality provided by the supplier may decline while the purchaser's

timeliness of payments and devotion of personnel to the relationship for planning and

technical expertise may falter. Lawyers within a legal partnership may too decrease their

effort in bringing business into the firm as the firm's expected time horizon shortens.

The economics of the family provides another fruitful area of application of the

theory I develop in this paper. In an agricultural household model, for example, we may

expect to see optimal levels of work effort prevail in families without recourse to attractive

modern sector employment elsewhere. On the other hand, rising city wages and/or

stochastic arrival of opportunities for migration may serve to decrease the efficiency of

effort on the farm. This may be a source of the apparent disruption of rural life brought

about through the development of labor markets during early stages of industrialization

(e.g., Polanyi (1944)). In social relations more generally, we should expect to see low levels

of inputs, broadly speaking, into relationships that face probable rapid dissolution.

In each of these cases potential dissolution displays the important benefits and

drawbacks noted above. Which of the effects dominates has to do with their relative

magnitudes and frequencies over time. Since the expected quality of a partnership must

fall in order to reap the potential gains from dissolution, the partnership will generally pass

through a phase in which its performance deteriorates as a result of its likely demise.

Therefore, the more quickly partners can ascertain a partnership's true quality and the

easier it is to uphold efficient effort levels, the more likely that attractive outside

opportunities will be on balance beneficial.

Since poor incentives for proper performance in partnerships are associated with low

rents, we may expect to find a solution to the motivational problem in partnerships in the

creation of excess rents (see, e.g., Klein and Leffler (1981), Shapiro (1983), Williamson

(1983)). As long as today's effort is limited by the fact that the relationship is not

valuable enough to the partners to support full efficiency, productive relationship-specific

investment will be adjusted upwards at the margin. In Section 6, I present an incentive

constraint-augmented Euler equation which displays this effect. This incentive-based

enhancement of investment is often strongest for partnerships expected to be poor since

supportable effort there is low and may have high marginal returns.

In Section 2,I present the model which will form the basis of the analysis. The

model is an infinite-period symmetric game of input (effort) provision and perfect

monitoring with two dynamic elements: the option of unilateral partnership dissolution in

favor of a known constant outside opportunity, and passive learning through productivity

signals about the quality of the partnership. Assume that there are only two types of

partnerships, good and bad; then each period players will have a common prior/posterior

probability assessment ?rE[0,1] that their partnership is good. For notational simplicity and

conceptual clarity, I restrict attention to this simple case, deferring until Section 6 various

extensions.

In Section 3,I compute the optimal symmetric sequential equilibria (SSEs) of the

game. If an optimal SSE exists, then one will exist whose equilibrium actions are

stationary in the payoff-relevant state variable r, the optimal SSE value function will also

be stationary. I therefore proceed with stationarity as a working assumption, and analyze
value functions on the state space of probabilities.

Theorem 1 shows that optimal SSEs exist and provides a method for their



6
5

computation. This proceeds as follows. Note that partnership dissolution is the worst

punishment to any player, as all players can choose this outcome but may also have it

imposed upon them. The importance of using the severest possible punishment to a player

in supporting equilibrium behavior has been emphasized by Abreu (1988). In analyzing

symmetric solutions we need only analyse a single player's strategic decisions. In the spirit

of dynamic programming, I decompose the decision problem into a first period and the

entire remainder of the game. Transform an arbitrary value function v on [0,1] as follows.

Treat v as a promised continuation value for periods 2 onward and the dissolution value

(zero) as a threatened punishment. For the first period, take the most efficient action

which is incentive compatible with respect to v, that is, from which no player would like to

deviate and face dissolution rather than follow the action and receive the promised reward

of the expected transition-probability weighted v. Choose a starting value v0 which is

everywhere greater than the maximal one-period payoff forever, and let, for all t, +1 be

the utility of the most efficient efforts incentive compatible with respect to vu, plus the

discounted vt. Since v0 was chosen artificially high, vi < 0. By induction, {Vt} is a

decreasing sequence, and thus i:= lim vt exists. By a continuity argument, vis a fixed

point of this transformation, and is therefore an SSE value function. A simple comparison

shows that it is the optimal SSE value function.

This approach is a maximum-valued analog of the set-valued iterative approach to

the computation of equilibrium values in dynamic games (Theorem 5 in Abreu, Pearce, and

Stacchetti (1990)). In symmetric games with known worst punishments, using a starting

value v0 which is artificially high and threatening the worst punishment ensures us that the

actions taken in the optimal SSE will be supportable at every iteration of the algorithm of

the preceding paragraph, exactly as beginning with a set containing the entire equilibrium

value set ensures that the entire value set will be carried to the next iteration in their

work. By continuity, then, the limits are the optimal SSE value function and the entire

equilibrium value set, respectively.

The present approach is much simpler than the set-valued approach, as it relies

only upon the computation of a single value function at every iteration. Also, here, it is

clear exactly how the optimal equilibrium is computed through the transformation, and

thus we will be able to use properties of the transformation, such as preservation of weakly

increasing functions in certain situations, to analyze optimal SSEs. However, this

computational simplicity and fruitfulness of analysis comes at the cost of a strong

restriction in the class of games to which the algorithm applies: It applies only to

symmetric games with known worst punishments. Section 3 contains details.

The introductory discussion given above of how partnership performance

deteriorates with the decrease in v implicitly assumed a monotonicity result: Effort levels

rise with the expected quality of the partnership. This is confirmed in Theorem 2 assuming

only rather weak supermodularity conditions. For this to be the case, players must both

wish to and be able to uphold a higher level of effort for higher r. Increasing differrences in

effort and v and the public-good nature of effort ensure that partners wish to support

higher levels of effort for higher r. A monotone likelihood ratio property on the signal

distributions to ensure stochastic monotonicity in the transition probabilities, the

public-good payoff structure, and increasing differences in efforts and 7r ensure that rents

rise with r. Finally, increasing differences in own efforts and the efforts of others, and the

public-good nature of effort ensure that in the region in which it is difficult to support

effort - above the one-period Nash levels - partners wish to put in less effort, and the

gain from cheating from a given effort level is less for higher r by increasing differences in

efforts and r. Note that the approach taken in this paper is novel in the theory of

supermodular games (e.g., Topkis (1979), Milgrom and Roberts (1990), Milgrom and

Shannon (1991)), for I do not restrict attention to state-space strategies; rather, my results

rest as much upon the supportability of an equilibrium action as upon the nature of

one-shot game best-response curves.
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Because many of the economic examples of interest and theoretical insights we hope

to gain do not fall within the scope of the basic framework of Sections 2-4,I provide

extensions of the model in Section 5. I consider evolving outside opportunities, active

learning, and relationship-specific investment in turn. I defer discussion of the results

until then.

The remainder of the paper is structured as follows. Section 2 introduces the basic

model under consideration. Section 3 presents the algorithm for the computation of

optimal SSE value functions. In Section 4, I analyze the monotonicity of optimal SSE

action functions in the expected quality of the partnership. Section 5 provides an analysis

of three important economic extensions of the basic framework. A numerical example is

presented in Section 6. Section 7 concludes.

2. THE MODEL

The game to be studied is a dynamic, infinite-period, symmetric partnership game

of perfect monitoring. In each period of the life of the partnership, partners learn about the

quality of the partnership, and each partner may either contribute effort to the

partnership, or dissolve it. Players discount the future at the common discount factor of

b E (0,1), and discount to the end of the first period. (First period payoffs are not

discounted.) Players are interested in maximizing the expected disounted present value of

supergame payoffs.

The Stage Games

There are two types of partnerships, good and bad. This quality represents

something about the partnership as a whole - such as whether or not the partners enjoy

working together or whether or not they are productive as a team - and does not

represent how well the partners perform in equilibrium. Partners are unaware of their

partnership's true quality, and at the beginning of any period have a common prior belief

of the probability that their partnership is good. Call this variable v; the stage games will

then be indexed by the state variable r. Each of Nplayers simultaneously chooses an effort

level eE[0,.) within the partnership, or dissolves it (plays D). Let 3,:= D U (0,,),

N
n=1,...,N, be the set of actions possible for the nth player, and S:= x be the set of

n=1
action profiles for all players. In each period players choose an action and then receive a

productivity signal

w E n C R of the quality of the partnership. The probability densities over 1 for good and

bad partnerships are f4 and 4, respectively, with associated cumulative density functions

F5 and Fb .

Player n has the symmetric utility function U:4-D -, 1 over actions and

productivity. The expected utility u : Sx[0,1] -, R accruing to player n when actions

(a1 ,..,aN)ES are played and sE[0,1] is the probability of a good partnership is then

(Dl) un(al,..,aN ir n(a1,''"'aN1w) [rifg(w) + (1-r)fb(wl dw'

For example, w may be a productivity parameter, and utility may be based upon a

partner's receiving a share of the joint output and some disutility of effort. Make the

following assumptions so that we may interpret the relationships as being good and bad:

(Al) U1 is weakly increasing in w,

(A2) Fb(w) > F5(w), V weD.

These imply that u1 rises weakly in 1r. Finally, if anyone dissolves the partnership, the

utility received by all players is normalized to zero:
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(A3) V N, U(D;a 1 ;w) = 0, V a 1ES 1, WEaf,

N
where S_: x is the action space for all players other than player 1.

n=2

The Dynamic Game

Realizations of productivity provide information with which partners update their

beliefs about the likelihood of a good partnership. If ris the prior going into a period that

the partnership is good, then, by Bayes' Rule,

(1) r'(rw)=" fw)+(-)bw

is the posterior probability of a good partnership given productivity w. Associated with

this learning process is a class of induced transition probability density functions f(r' I)

and cumulative density functions iFr'4r).2

For the remainder of the paper, I restrict attention to symmetric strategy profiles. I

will use the notation a for both strategies and strategy profiles. Let u: Six[0,1] - U be the

symmetric action utility function: u(a;w) := u1(a,...,a;ir). Let H I=flA be the set of

S-period productivity realizations. Let HD= U H t be the set of all finite-period
t=0

productivity realizations, including the null history IO := {#}. Then a strategy c tells a

player what to do as a function of all finite histories of previous actions of the players, and

realizations of productivity. Since monitoring is perfect and all players receive the same

productivity signal in any given period, the strategy u is a sequence {oQt} t of functions

2 Most commonly-used learning distributions have two state variables, for the mean and
accuracy of a posterior. However, when there are only two possible distributions then there
is only one state variable, ir, the probability that one of the two distributions is correct,
which summarizes both the expected value and the variance of the posterior distribution. I
have chosen this case for ease of illustration.

telling the player what to do after any complete t-period history: For t=1,2,...,

of:S t-~x H t-1- S1 determines period t action as a function of history, with S0 := {#}.

The strategy profile u induces a stochastic sequence of actions for each player which

is dependent only upon finite histories of realizations of productivity. In the first period,

the action taken is o1 (4,4). Let e:= (1,...,1) ERN After any one-period realization wea,

a"(w) = 42(e'1(ff);w); after any two-period history h=(w,w')EB2,

a,(h) = u3(e- " 1(#,(4),e- u2 (e"'u 1(4,);w);h). Actions prescribed after longer histories are

similarly inductively defined. Thus, fixing a, the actions taken are purely a function of the

realizations of productivity. Associated with the strategy profile a is then a value function

v,: H* -R, which is the expected present discounted value of future utilities accruing to

each player after the productivity history heH", discounted to the end of the period

following the given history. Let z(h) be the posterior likelihood of a good partnership after

the history h. We then have the following value recursion:

(2) v,(h) = u(a,(h);r(h)) + 6 v,(h,w) [r(h) f4(w) + (1-w(h)) fb(w)] d4.

The value accruing to each player under a after history h is the one-period payoff

prescribed by play of the equilibrium action in the present period, plus the expected

discounted future value of all future play after all possible successor histories (h,w).

For zE[0,1], let H(ir)cH be the set of productivity histories such that, after that

history, iris the posterior likelihood of a good match. If, Y rE[0,1], h1 ,h2EH(,r) aqh 1) =

a,(h2),then we say that a and a, are stationary. Notice that the transition probabilities

in the learning process are in a related sense stationary as well, since they only depend on

ir, and not on details of how ir was reached. If a, is stationary, we may define an action

function a: [0,1] -+ S which is consistent with as after all histories. That is, if hEH(ir), let

a(ir)=a,(h). We may then define the associated value function va: [0,1] - R as follows:
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(3) va(ir) = u(a(ir);ir) + 6J va(r') f(ir'|r) dir',

if a(r)#D, and va(7r) = 0 if a(ir)=D.3 Again, this provides players with the first-period

payoff u(a(ir);ir) provided by playing the stationary action a(ir) at probability ir, and

expected discounted continuation value of the rest of the game

61 va(r') f(r'|ir) dr' for all possible posteriors ir'. This will not necessarily be defined

for all action functions a since I will not assume bounded payoffs; however, it will be

well-defined whenever necessary in the equilibrium analysis to come.

3. COMPUTATION OF OPTIMAL SYMMETRIC SEQUENTIAL EQUILIBRIA

In this section, I devise a method for the computation of the optimal symmetric

sequential equilibrium (SSE) value function; this is presented in Theorem 1. The

algorithm is an incentive-constrained analog of the value iteration technique of dynamic

programming (Howard (1960)). The algorithm performs a transformation only upon a

single value function at every iteration, rather than upon an entire value set as in Abreu,

Pearce, and Stacchetti (1990) (APS). The algorithm also extends the APS algorithm for

purely repeated games to dynamic games with a state variable, an extension that has been

shown to be perfectly straightforward (Atkeson (1991)).

I begin with the intuition that an optimal SSE a is likely to be stationary. I

therefore proceed with stationarity as a working assumption, and analyze value and action

S We must make the exception for a(r)=D for the stationary value function but not for the
full productivity realization-dependent value function. When we keep track of full
histories, whenever a partner dissolves at some point, she has therefore dissolved at all
successor histories, and thus the future expected utility stream corresponds to being out of
the partnership. However, when just posterior probabilities of a good relationship are
followed, updates ma occur through f which represent learning, even though the
partnership has dissolved.

functions on the state space of probabilities [0,1]. From principles of optimality of dynamic

programming, it seems natural that only payoff-relevant aspects of history will affect

optimal equilibrium play. This intuition is formally confirmed in Theorem 1, which shows

that any arbitrary (nonstationary) SSE value function is bounded above by the stationary

SSE value function computed by the algorithm.

Let A := {a: [0,1] - S} be the set of all action functions. For aEA to be played on

the equilibrium path of a symmetric sequential equilibrium, it must induce a value function

va which satisfies incentive compatibility requirements. For analysis of incentive

compatibility, let us make the following assumptions and definitions:

(A4) V r, lim u(e;7r) =-m,
e-m

(A5) U1 is nondecreasing in e 1,

(A6) U1 is continuous in efforts.

(D2) u (e; r) :=max {ul(e',e,...,eir)},
C

(D3) d(e;r) := u (e;r) - u(e;r).

Assumptions (A4)-(A6) ensure that s*, d are well-defined and continuous. A number of

different sets of assumptions would suffice as well; this set is chosen for its interpretation

within the model at hand, where we want to interpret effort as a public good (implied by

(A5)) and for there to be efficient levels of effort for each ir ((A4), (A6)). I will hereafter

denote an arbitrary symmetric action profile, including the possibility of dissolution, as a,

and an effort level specifically as e. Here ui(e;r) is the total utility received by deviating
from effort level e when the state variable is r; d(e;w) is the gain from cheating from the

symmetric action profile in which effort level e is chosen by all partners at prior ir. Let
*G(ir) be the stage game at probability ir with domain restricted to effort levels. Let e (e;w)
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be the best response correspondence in G(r) for any player from the symmetric action

profile in which all players play e; let i (e;r) be its maximal element. Again, (A4)-(A6)

ensure that i*(e;lr) is compact and nonempty, V e, i

Let us make the following further definitions. Let C={t:[O,1]-4} be the set of all

value functions. Then:

(D4) For tE C, an effort level e is incentive compatible with respect to v at i if

d(e;ir) < 6J j(r') f(r'ir) dir' .

(D5) IC(v)(r) := {eE[0,u)|; e is incentive compatible with respect to vat ir}

Then an effort level is incentive compatible with respect to a value function at r if,
promised its discounted expected value tomorrow for following the action and threatened

with partnership dissolution, any player would rather put in that level of effort than shirk.

(A4)-(A6) imply that IC(v)(r) is compact, Y Vr, as the gain from cheating is continuous

and rises without bound as e increases. Notice that (A4)-(A6) ensure that there will exist

some effort level i such that no effort level above i will ever be played in an SSE, for

short-term losses could never be recouped (see, e.g., Abreu (1986)). Since SSE action

functions will always lie on S\(e,1,), the corresponding one-period payoffs possible in (1)

will be bounded, and thus there will be a unique solution v, for any possible stationary SSE

action function a.
We can now define the set of stationary SSE value functions as follows:

(D6) V:= {vEC|I3 aEA s.t. v=va, and, Yr, a()E[0O,) (v(r) 0 and a(ir)EIC(v)(r) }.

For a stationary value function to be an SSE value function, it must come from some

stationary action function and must satisfy incentive compatibility requirements. Players

can deviate in two ways, leaving the partnership or shirking, from a prescribed equilibrium

effort level. The value of following the prescribed equilibrium v(z) must therefore be

positive; it also must be incentive compatible with respect to the value function itself.

Implicit is that dissolution is the severest SSE punishment to any partner, and that

therefore any equilibrium actions can be upheld by the threat of dissolution (Abreu

(1988)); this will be true as long as anybody can dissolve the partnership unilaterally at

any time. We therefore also do not need an incentive compatibility condition for dissolving

the partnership in the definition of V.

Now let us shift attention to optimal SSEs. The following is an expository outline

of the issues addressed in Theorem 1, whose formal proof appears in the Appendix.

Suppose v : [0,1] - R is the optimal SSE value function; anticipating Theorem 1, we can say

without loss of generality that there exists a stationary SSE value function which is

optimal in the class of all SSEs after all histories. v must satisfy both the recursive and

incentive compatibility requirements which make it a member of V. But it must also be

derived from an action function which at all wc[0,1J is the best supportable action: It will

never pay to play an action in a given period when better incentive compatible actions are

available. This motivates the following definition of the transformation B: C-4 C:

(D7) Bt() := max { 0, max u(e;r) + b t(r') f(r';ir) de' }.
eEIC( v)(1r)

This mapping chooses the best of the values obtainable by playing the actions in the

present period, with continuation values v, subject to the incentive compatibility

constraints applied to the continuation values. Since IC(v)(r) is compact and u

continuous, B is well-defined.

The optimal SSE value function v must be a fixed point of B: At each value of r,

v* must be equal to the value of the best action which is incentive compatible with respect
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to v itself, plus the discounted, transition-weighted continuation value of v . To compute

the optimal SSE value function, we would then like to have a method of finding fixed

points of B. But since B is not a contraction mapping, due to the incentive constraints, it

may have multiple fixed points. If an iterative procedure based upon the mapping

converges, the point to which it converges may be sensitive to the starting point. 4

Nonetheless, we can ensure that an iterative procedure will converge to the optimal

SSE value function if the actions supported in the optimal SSE are supported at every step

of the iteration; they will then be supported in the limit. If the promised continuation

value function, therefore, is at least as great everywhere as the optimal SSE value function,

it will provide both at least the value of the optimal equilbrium actions today, since

optimal SSE actions themselves are supported, and a continuation value higher than the

optimal SSE value itself. Thus, the property of being uniformly greater than or equal to

the optimal SSE is preserved by the mapping. Note that (A4) and the definition of u imply

that there exists MER such that u(e;r) < M, for all e, x. If we choose the starting point of

our iterative procedure to be equal to M/(1-) everywhere, then vt+i := Bvt ov, Y t, by

induction, and thus the point-by point limit i;= lim vt exists.

This limit is a fixed point of B by continuity. And since the optimal SSE actions

are incentive compatible at each iteration, they will be in the limit as well. Any fixed
point of B is an SSE value function, as we can simply read off supportable actions which

give the value function.

Finally, there is no nonstationary equilibrium value function on the space of all

4 The following is an intuitive example of multiple fixed points of B. Consider the infinitely
repeated risoners' dilemma game. Finking forever gives the worst symmetric equilibrium
payoff. Ifwe were to use the value of shirking forever as a promised continuation and
threatened punishment, then only finking will be incentive compatible. Thus the
transformed value function still equals the value of finking forever; this is a fixed point of
B. However, were we to start with the value of playing mum forever as the promised
continuation, then, if it is in fact supportable in the best equilibrium, it will be incentive
compatible, and the transformed value will again equal the value of mum forever, and this
will be a fixed point as well.

histories of productivity which is anywhere better than the stationary value function i. It

is in this strong sense that we say that i is the optimal SSE value function. This follows

since any SSE value function v' on the extended state space of full productivity histories

will be less than or equal to the payoff from the best supportable action plus v' as

continuation, since it must come from some supportable action and itself as continuation.

So on the extended state space, BN,' )'; therefore i' := lim (Bh)t' exists. (Bh is the
t-.m

natural extension of Bto functions on the space of all productivity histories.) But by

choice of v0, v' < v0; the same weak inequality will hold in the limit of the procedure.

Therefore i 2 i' ) i'. Theorem 1 summarizes these results;

Theorem 1: Assume (A3)-(AO), set v0 ;= M/(1-6) everywhere, and let vt+ 1 := By1, t>0.

Then:

(a) v:= lim vi exists,
t-'.

(b)

(c)

(d)

v= Bv,

v E V, and

suppose o is an SSE. Then, V r, V hE H(e), v,(h) { i()

The proof follows the lines drawn above and appears in the Appendix.

To reiterate, this is a maximum-valued analog of the set-valued approach to

computation of equilibrium values pioneered by Abreu, Pearce, and Stacchetti (1986,

1990). Their method generalizes to all finite or compact-continuous games of perfect

monitoring, and finite-move constant-support games of imperfect monitoring.

I have focussed on symmetric dynamic games with known worst punishments not

only due to the nature of the economic problem under study: No significant generalization

is possible. Such simplified computation is clearly ruled out for the conputation of optimal

asymmetric equilibria, for the entire Pareto frontier of the equilibrium value set must be
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computed generally. Games with unknown worst punishments are similarly troublesome,

as worst punishments are generally asymmetric and have continuation values which are not

extremal points of the equilibrium set. Finally, and most interestingly in terms of its

potential for related research, imperfect monitoring is ruled out. In the present setup

under imperfect monitoring, deviations from equilibrium behavior provide the deviator

with a posterior assessment different from that held by all others. The value of deviating

must take this into account. I know of no research yet along these lines.

4. MONOTONICITY

We might expect any optimal equilibrium action function i which induces the value

function ivto have certain monotonicity properties. With the expected quality of the

partnership should rise rents and therefore effort levels. Partnerships very likely to be bad

are those that should dissolve. Monotonicity is confirmed in Theorem 2: Effort levels rise

with r, and the criterion for dissolution is a simple trigger rule in T.

In order to derive the most general monotonicity result possible, I utilize the theory

of supermodular games. For an extremely thorough and clear introduction to

supermodular optimization and supermodular games and their implications for

monotonicity, see Milgrom and Roberts (1990) and Milgrom and Shannon (1991). For

monotonicity, I make assumptions which ensure both that players would like to be able to

support higher effort levels at higher values of r, and that they are in fact able to. Let X

be a lattice and T a partially ordered set. Then we say a function f: Xx T-4 R has

increasing differences in (z,t) if for z' > z, f(z',t) - f(z,t) is nondecreasing in t. I will

henceforth use the descriptive term "increasing" to mean nondecreasing. Make the

following assumptions:

(A7) f4(w)/fb(w) is increasing in w,

(A8) U1 has increasing differences in (el,e1) for fixed w,

(A9) U1 has increasing differences in ((el,...,eN),w).

These are natural assumptions for the partnership model. Assumption (A7) ensures that

high productivity not only brings high payoffs in the given period (along with (Al)), but

also that it is "good news" concerning the likely quality of the partnership, in the sense of

Milgrom (1981). For (A8), (A9), consider the following interpretation of single-period

utility: Each partner shares equally in the joint output of the partnership, but dislikes

providing effort. Then (A8) can be interpreted as each partner's marginal productivity

rising in the efforts of others, and/or as her marginal disutility of effort falling with the

effort put in by others. (A9) will hold for many functional forms for production where w is

simply a parameter. For example, if the production function were Cobb-Douglas with w as

a multiplicative parameter, (A8) and (A9) would hold. However, these assumptions are at

odds with the interesting case where, once partners find themselves to be very successful,

they would like to rest.

Notice that (A7)-(A9) imply the following, whose proof is straightforward and

appears in the Appendix:

Proposition 1: Assume (A7)-(A9). Then:

(a) ut has increasing differences in (el,e 1 ) for fAed r,

(b) i1 has increasing differences in ((el,...,eN)'I

(c) it has increasing differences in (e,r).

For monotonicity of actions with respect to a state variable to hold in best Nash

equilibria of a class of one-period supermodular games with increasing differences, we need

that the direction of desired action correspond with the direction of increasing differences.
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Recall the stage game in efforts G(i) := ({Sn\D} N {u( N). By Proposition 2.1

(a) and continuity of u (from (A6)), each of these games is supermodular on any complete

lattice subset of its domain, for example, any n-fold Cartesian product of a compact subset

of R. Since it is a game of public-good provision (by (A5)) and utilities fall off with high

enough effort (A4), we can bound from above the possible symmetric one-shot Nash effort

levels. Therefore, each G(ir) has a greatest Nash equilibrium (Milgrom and Roberts (1990,

Theorem 5)). Since each partner's utility rises in the efforts of others, the greatest Nash

equilibrium is also the best; see the welfare results presented as Theorem 7 by Milgrom and

Roberts (1990) and Theorem 17 by Milgrom and Shannon (1991). Finally, Proposition 2.1

(b) ensures that the highest Nash effort levels are increasing in w (Milgrom and Roberts

(1990, Corollary to Theorem 6)). Therefore, the best Nash equilibrium effort levels of the

games G(r) rise with 7r.

For monotonicity of actions in the state variable in optimal SSEs of the full

supergame, much more is required. The analysis will no longer be based solely upon Nash

levels of the one-shot games, but also upon how much better the partners can do due to

the incentive power of the partnership. The proof of Theorem 2 presented in the Appendix

proceeds as follows: Consider the solution at : [0,1] -. S1 to the incentive-constrained

maximization problem in the mapping B given value function tlt. If we can show that an

increasing Vt gives an increasing policy function at and an increasing value vt+1 := Bvt,

then the limit policy function will be increasing, and we will be done.

Proposition 2.1 (c) and the public good nature of effort (A5) ensure that the players

would like to uphold more effort at higher values of 7r. Are they able to? They will be if

(1) the rents are higher and (2) the gain from deviation is less for a particular desirable

action when the partnership is more likely to be good. Assumption (A7) gives increasing

rents in i for an increasing te : It ensures that the transition denstities f(r'ir) are

stochastically increasing in v, and this integrated over the increasing vt must be increasing

in r (Ross (1983, p. 154)). The supermodularity of the stage games G(ir) when restricted

to compact domains, the negative eventual returns to effort (A4), and the public good

assumption (A5) ensure that above the highest one-shot Nash effort level, the best

response functions lie strictly below the diagonal; that is, partners wish to cheat by

providing less effort rather than more. This follows since best response functions are

increasing in ir by Topkis' Monotonicity Theorem (Topkis (1978)), they eventually must

fall below the diagonal ((A4), (A5)), and thus, by Tarski's Fixed Point Theorem would

somewhere fall on the diagonal. But this would be another Nash equilbrium, a

contradiction. Thus, in the region of primary interest for choosing good effort levels -

above the one-period Nash equilibria - the best responses are always to put in less effort.

But then any supportable action at a low r will also be supportable at a higher 7r, by

Proposition 2.1 (b).

We therefore get that the players would both like to uphold higher effort levels and

are able to at higher r. The one-period utility will thus rise with r (by (Al), (A7)) as

does the continuation. Therefore, if og is increasing, then at and ot+1 are as well, since not

only are supportable effort levels rising, but dissolution will only be chosen in the lowest

range of expected qualities where the best effort level would give a negative value function

vt+1 . Choosing v0 increasing, then, ensures that the limit value function i and the limit

policy a are increasing, and we have:

Theorem 2: Assume (Al), (A3)-(A9). Then i is increasing, and there exists an increasing

SSE action function :[0,1] -+,Sl such that -= i, that is, the associated SSE is optimal.

The proof follows the argument laid out above, and is included in the Appendix.

5. EXTENSIONS AND APPLICATIONS
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In this section, I alter and extend the basic framework of Sections 2-4 in order to

address a number of important related economic issues. I analyze evolving outside

opportunities, active learning, patience, and relationship-specific investment in turn.

(1) Evolving Outside Opportunities. The rents in a relationship often change not

through learning about its productivity, but rather through the changing value of the

alternative use of assets. Suppose that the value of activity within a partnership is not

changing over time, but rather that the value of dissolution is. Let

-R 1be the single period symmetric utility function in effort, and let z, rather than 0,

be the value of dissolution, which evolves according to a first-order Markov process with

transition functions f(z'|1z) which are stochastically increasing in z. Then the

computational approach taken in Theorem 1 applies directly as long as dissolution is an

available option and is the worst punishment. Here it is no longer quite as natural to

assume that no further learning will occur outside of the present partnership and therefore

that once the partnership dissolves it will never start back up. Permanent dissolution will

lie on some equilibrium paths, but generally not on the optimal path. Still, in certain

situations, transactions costs may preclude the reinitiation of a partnership.

An analog of Theorem 2 will also hold. Here, rents fall with z even though the value

function, including the exit option, may rise. The public-good quality of effort will still be

important for the result, but the interactions between the state variable and marginal

utility of effort will no longer play a role; there will be no corresponding increasing

differences assumption such as (A9).

(2) Active Learning. Accurate information about the true productivity of assets

in their various uses may be extremely valuable. It is generally when partners are most

unsure about the quality of their partnership that it will be most worthwhile to expend

resources on learning. Here, when u is close to 1/2 its variance is greatest. If the speed of

learning is positively related to the amount of effort provided, then effort will be increased

vis-a-vis the passive learning model where the most can be learned. Thus effort will

generally not be monotonic in expected partnership quality, for, although rents will still

generally rise with r, the desired level of effort will not.

In the passive learning model, the transition probabilities representing learning are

independent of the present period's action. The analysis extends straightforwardly to the

more general case of dependence: If the density f is continuous in e, then IC v)(r) :=
{e; d(e;r) < 61 v(r') f(r'|;ke) dr' } will still be compact and thus B well-defined.

(3) Patience. Consider the behavior of optimal equilibria as the discount factor

approahes 1. The option value of remaining in a potentially valuable partnership becomes

positive for lower and lower values of v. Therefore, the partners must become arbitrarily

pessimistic about the partnership before dissolving in the case of complete patience, and

they will generally be able to support fully efficient effort. A previous version of this paper

contains an appropriate "folk-theorem" result (Roth (1992)).

(4) Relationship-Specific Investment. Specific investment may help ameliorate

incentive problems in partnerships by providing quasi-rents which the partners would have

to forfeit were they to leave the partnership. Let specific capital k be a state variable

which provides higher productivity of effort, and let investment i be a control. Let the

single-period symmetric utility and deviation value now be a function of (e;i;k7r). In a

similar model of a firm's accumulation problem with a shut-down option, Pakes (1991) has

shown that if the transition probabilities are stochastically increasing and certain restricted

supermodularity conditions hold, then investment will rise with the stochastic state.

However, when the lack of sufficient rents constrain effort, it may be that at lower

values of i the incentive value of investment is greatest. This is apparent in the example

provided in Section 7: At the highest probabilities of a good partnership, where there are

no incentive problems, no excess investment is necessary. In some intermediate range,

commitment to the relationship is valuable for incentive reasons, and investment is

undertaken even though its own direct productivity will not cover its costs and the project

is in this respect of negative value. Finally, the investment is not undertaken in a



23 24-

partnership most likely to be of low quality, for the expected productive horizon of the

capital is short enough to offset any positive incentive gains.

The derivation of an incentive constraint-augmented Euler equation is

straightforward. Pakes (1991) shows that traditional variational arguments are still valid

in the case of mixed continuous and discrete controls. Here, for investment to have an

incentive effect the inequality in the definition of incentive compatibility must be holding

with equality. Optimal effort is, through this equality, defined implicitly in terms of

capital tomorrow, which is controlled by investment today.

Let (i;i) be optimal effort and investment levels given today's capital stock and

probability (kzr), and i, i be the optimal effort and investment functions more generally.

Let tomorrow's rents be r(k+i;r) 6:= bJ i(k+i;r') f(r'1r) dir' . Let x(k7r) be the

indicator function which takes on the value 1 if the partnership continues at (kir) and 0 if

it dissolves. Then the following must hold, if all terms are well-defined:

- u(i;i;kr)/8i = u(i;i;kwr)/8e Or(k+i;ir)/8k + 6 x(k+i;r'
Od(i;T;k; w)/8e .

[8u(e(k+i;r' );i(k+i;r' );k+i;w')/8k - Ou(e(k+i;ir' );i(k+i;ir' );k+i;ir' )/Oi I f (r'|r) dir'.

This is the usual Euler equation for investment when a firm may shut down, augmented by

an incentive term; it equates the marginal cost of investment to its marginal benefit.

Notice that if u(i;i;k x)/8e = 0, the incentive term drops out, as we must then be at the

efficient levels of effort today and do not need to increase rents for incentive effects. If

Du(i;i;kir)/8e # 0, it must be that Bu(e;i;kr)/8e > 0, for by Lemma 4 to Theorem 2 (in the

Appendix), effort will never be on a decreasing portion of the symmetric utility function

u( ;r). The incentive compatibility constraint is thus binding, and any increase in rents

will increase optimal effort accordingly. In this way, in a neighborhood of the optimum,

the effort level that can be upheld is defined implicitly by the incentive constraint in i.

Therefore, investment has a marginal benefit through incentives of the marginal utility of

effort 8u/8e times the increase in rents 8r/8i divided by the amount of extra rents needed

for a unit of extra effort 8d/8e.

6. AN EXAMPLE

In this section, I provide an example to illustrate a number of issues brought up in

the preceding analysis. Consider the following 2-person, 2-move, 2-productivity

realization (discrete) version of the game. There are two possible effort levels, so

S1={el, e2, D}. Productivity may be either high (h) or low (1), providing the players each

with k>0 or 0 units of utility, respectively. In a good partnership, high productivity occurs

with probability P ,,in a bad partnership, Pb , with Pg>Pb. Effort level el is higher than

level e2, and provides higher utility; however, e2 is Nash in G(i), Y . I have computed

the optimal SSE value function for this model with the following parameters:

b=.9

U1(e1,e1;O=-4.5

U (e2'*2;l)=-7.5

k=10

P =.7

Pb=.3

d(e1)=10

d(e2)=0

(discount factor),

(payoff of high effort and low producitivity),

(payoff of low effort and low productivity),

(extra payoff to high productivity),

(prob. of high productivity for a good partnership),

(prob. of high productivity for a bad partnership),

(gain from cheating from action el; independent of 7r),

(gain from cheating from action e2; independent of ir).

I have followed the computational procedure described in Theorem 1 and have plotted the

optimal SSE value function i in Figure 1. Players play e1 in optimal SSEs inducing i as
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value function whenever v i, play e2 when ir> v r, and leave the relationship when

r < r. (Find r, i on the horizontal axis in Figure 1.) The jump of 3 units at i = I
represents the increase in supergame payoff based upon today's gain in utility from putting

in high effort rather than low. The diagonal dashed line is the optimal SSE value function

v' for the same game without the option of dissolution; there, cooperation is upheld

perfectly everywhere.

Starting from any initial probability of a good match v, players would be better off

with the potential of dissolution than without if i(r) > a'(r). For the example chosen,

there is a substantial region for which this is not true: For all priors r>1r, partners are

better off without outside opportunities than with. Notice that it is not only in regions in

which low effort is provided that ir) < v'(r). Even where high effort is provided, it is

significantly more immanent and likely that the partnership will fall into noncooperation

and lose utility than that it will fall so low as to gain from dissolution, that outside

opportunities are detrimental on balance.

In Figure 2, I plot a family of best SSE value functions using all but one of the same

parameter values as for Figure 1, varying only d(c), the value of cheating from the

cooperative action el. Notice that when d(e1)=0, cooperation is upheld perfectly at all r

for which players stay in the relationship. For sufficiently small values of cheating, good

outside opportunities are always preferable.

In Figure 1, it is clear that partners would be willing to pay up to the difference

v' (r) -ii(r) in order to perfectly commit to the partnership, and receive the perfect

cooperation value without the potential of dissolution thereafter. We may interpret this in

terms of specific capital investment as well; see Section 6, subsection 3. I have computed

the optimal SSE value function for the game of Figure 1 with the possibility of investment

in a unit of assets that are so valuable to the partnership that with the assets in place

perfect cooperation will be upheld everywhere and the partnership will never dissolve.

However, the direct discounted value of the stream of production provided by the assets

(uithout incentive effects) is below their cost. Partners only invest in the assets, therefore,

if their incentive effects more than offset their extra cost.

Figure 3 plots the value function for this game, and notes where the investment will

and will not take place. Investment does not take place at highest likelihoods of a good

partnership, as no extra incentives are there needed. Nor will partners invest if their

partnership will very likely be of poor quality. Only where the relationship is both rather

likely to be good and extra incentives are needed will the partners invest. Although this is

a discrete model and thus the Euler equation of Section 6, subsection 3 does not apply, the

primary determinants of investment are here the same.

7. CONCLUSION

This paper has been concerned with the analysis of the effects of learning about the

quality of a partnership in relation to outside opportunities on the level of work effort

within the partnership, relationship-specific investment, and dissolution. It developed an

iterative procedure suggested by dynamic programming and by previous recursive

formulations of equilibrium in dynamic games (Abreu, Pearce, and Stacchetti (1986,

1990)), for the computation and characterization of optimal SSEs. Optimal SSEs exist, can

be readily constructed, and can be characterized.

Efficient effort levels are best upheld in partnerships most likely to be of high

quality. Partnerships that dissolve will pass through a phase of poor performance prior to

dissolution. How protracted is this period of poor performance depends primarily on the

speed of the learning process.

The potential for partnership dissolution may or may not be beneficial on balance.

Although I have not mentioned potential policy implications of the analysis, a word may

here be in order. In situations where incentives for proper performance are drastically
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reduced by the potential of partnership dissolution, policymakers may consider imposition

of commitment devices. For example, if we could tax dissolution and return the proceeds

lump-sum to the population, the present analysis would generally recommend a nonzero

tax. However, the remarkable diversity of business partnerships and difficulty of

measuring the effects across types of arrangement, as well as the efficiacy of

reputation-based sanctions within the business community itself, may be important

reasons that such taxes and related policies are rare. The policymaker's lack of knowledge

of the true parameters of the model seem potentially quite acute here. However, divorce

laws may be interpreted as commitment devices to partnerships for the purpose of

improving performance. Perhaps the parameters more consistently call for the imposition

of commitment in marriage than in business relationships.

Finally, although the class of dynamic games to which the simplified computational

scheme suggested here applies is quite limited, a number of important economic problems

may be analyzed. Examples which have appeared in the literature include Bertrand

oligopoly (Rotemberg and Saloner (1980), Haltiwanger and Harrington (1991), Kandori

(1991)), and extraction of common-property resources (Levhari and Mirman (1980),

Sundaram (1989), and Benhabib and Radner (1991)).

= max { 0, max u(e;7r) + J vt+1(r')f(17r)dw' }
eEIC v t+)(1r)

5 max { 0, max u(e;r) + J vt+ 1(7r') f(7r'|) dr' }
eEIC( Vt)(r)

5 max { 0, max u(e;7r)+ 6Jvt(vr') f(r'iv) dr' }
eEIC( g)(lr)

= Bvt = vt+1'

where the first weak inequality holds since vt+1 i< t implies IC~vt+1)(7r) £cIC(vt)(lr), V 7.

Since v0 was chosen artificially high, v l <v0. Thus, t+1 Vt.

(b) We must check the following two cases separately: (1) ICli)(r) = 0, and(2)

IC(i)(r) # 0. If ICrv)(r) = 0, then 3 T s.t. V 0 T, Ic vt)(1) = 0, since {IC(v )(r)} is a

decreasing sequence of compact sets. Thus, for t> T, vt(r)=0, and therefore

v(w)=0=B(i)(ir). If ICti)(r) # 0, then

B(i) = max { 0, max u(e;r)+f6 i(r') f(w'r)d7r'}
eEIC( V)(r)

= max { 0, max u(eir) + S[ lim vt(W') f(wr'k) dw' }

by definition of i,

=max { 0,lim max u(e;r) + slim vt(r') f (r'ir) dw ' }
tr- e EIC( v1)(ir) tam

by interchanging limits and integrals, by the continuity of u, and since {IGvt)(r)}

is a decreasing sequence of compact, nonempty sets,

= lim max {0, max (e;7r) + ovt(r') f(lr';) dr' }
t4w eEIC( vt)(7r)

= lim B(vi)(r)
t-4m

= irx).

APPENDIX

Proof of Theorem 1

(a) I will show that {vt} is a decreasing sequence; (a) then follows immediately.

The proof proceeds by induction on t. Suppose vt+1 vt; we wish to show that vt+2 5
vt+1. But:

vt+2(w) = Bvttl(r)
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(c) Since iv= Bi, we can define the optimal SSE action function icA as follows:

If i(w) = 0, set a(ir) = D ; if not, set i(r) = e, where eEIC(v)(r) and and

i(r) = u(e;r) + 61 i(ir') f(r' ir) dr'. Such an e exists. Then iv= a as in the definition

of V, and the incentive compatibility requirements are satisfied, since i(r) = e only when
* .~ir) 0 and i(x) (e;r).

(d) Define the following extension Bk: C - Ch of the transformation function B,

where C := {y: " -+ R): For hEH(s), let

Bhk(h):=max{ 0, max u(e;(h)) + b s(h,w)[w(h) f (w) + (1-w(h)) fb(w) ] dw },
eGIC( v)(h) )(

where IC(v)(h) is the natural extension to the space of full histories of productivity

realizations. The SSE o induces an extended value function vaE Ch which is the expected

utility accruing to each player after each history heMH". Now, Bh can be used to compare

any SSE value function on the extended domain I?, to i. The main point of this proof is

to show that, since v, is an SSE value function, BNA- v,. The comparison is

straightforward: For all hEH', Bkvq(h) v,(h), since o is an SSE and therefore the actions

taken after each history are incentive compatible with respect to v, and therefore are

available to be chosen from in the maximand for Bhkv

Now, since Bhv, t>e_, by the same argument as found in the proof of part (a),
(Blt)t+1 a (BhI)te,, V tao. Thus, lim (Bh) to,=i, exists, and i, 2>_,. Extendv0 to the

state space H' as follows: Set egh(h) = M/(1-6), Y heft. Then by construction, v0 2 ,

everywhere on H ". Thus, since Bk is weakly increasing, BM0 Bhv,. Continuing in this

fashion, (Bh)tv0 > (Bh)tvo, V t0. Thus, since the limits exist, the same weak inequality

holds in the limit. Thus 0 := lim (Bhytv0 > v. But va,>2v,,. Thus ih>2v,,. But, V OERf,
if heH(w), then ih(h)=i(ir), because at every step of the iteration, the same computation

was made for each, since only w is payoff-relevant. Thus, V irE[0,1J, if heH(ar), then vf(h)

i(w). Q.E.D.

Proof of Proposition 2.1

(a) This follows directly from (A8) and the definition of u.

(b) Let (el,...,eN) < (e',...,ek). Since u(e',...,eg r) - ui(ei,...,eMr) =

I [ U1(ei,..., e w) - U1(e,..., e w)][v9(w) + (1-r) fb(w)] dw, this difference is an integral

of an increasing function (by (A9)) weighted by densities which are first-order

stochastically increasing in v (by (A7)), and must therefore be increasing in v.

(c) This follows directly from part (b).

Proof of Theorem 2

The proof shows that if the value function v is increasing:

(1) there is a best action function a supportable by v which is increasing, and

(2) By is increasing.

It will suffice to show that the best effort level function is increasing; see the end of the

proof. For this reason, all analysis will be conducted only on optimal effort levels,

disregarding the possibility of dissolution until the final choice between the optimal effort

level and dissolution is taken. Given (1) and (2) above, set o := M/(1-) everywhere; this

is increasing. Then iv:= lim Btvo, which by Theorem 1 is the best SSE value function, will
tf4

also be increasing, and there will then exist an optimal SSE action function which is

increasing. Thus, we need only show (1) and (2) above. I divide the analysis into a series

of lemmas. Lemma 2.1 is self-explanatory:

Lemm m : Assume (A4)-(A9). Then:

(a) Y r, there ezists a greatest symmetric Nash equilibrium i1$w) of G(r), and
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eN is increasing in T,
(b) V r, there exists a greatest maximizer (iff r) of u(;,r) ifis increasing

in; Tandef, > N

1r2!Lemma 2.1: (a) By (A4), for all x, usR, 3 i s.t. for ele, u(e;r) < u. In particular,

let u:= u(0;r). Then, for 0ti, u(e;r) <u = u(0;r) < u1(0,e,...,e;r), by (A5). So e cannot

be a symmetric Nash effort level for G(r). Therefore, we may restrict attention to the

game on the restricted domain of [0,iJ in considering symmetric Nash equilibria of G(r).

On this strategy space the game is supermodular by Proposition 2.1 (a), and thus has a

greatest symmetric Nash effort level (Milgrom and Roberts (1990, definition of

supermodular game and Theorem 5)). Proposition 2.1 (b) implies that the greatest Nash

effort levels are increasing in r, by Milgrom and Roberts (1990, Corollary to Theorem 6).

(b) By (A6), u is also continuous, and by (A4) it therefore has a compact set of

maximizers in e with r fixed, which must have a maximum element. By Proposition 2.1

(c) and Topkis' Monotonicity Theorem, this is increasing in r. Finally suppose that for

some r, cpiM() > eff (')' Then u(eeff ()i) = u1(eff(1)...ieff(1)'f) (

u1(i ff(7f),N(7f),..CN(7fi);< u1(iN(r),..4'''('N i) = u(ip(w);r), contradicting the

definition of ieff (), and where the first inequality comes from (An), and the second from

Nash equilibrium. Q.E.D.

Lemma 2.2 shows that rents are higher for higher ,r when v is increasing:

Lemma 2.: Assume (A7), and vE C increasing. Then J v(r') f (r'wjr) dr' is increasing in

Proof2fLemma j: (A7) implies that the densities f(r' iv) are first-order stochastically

increasing in w, and thus their integrals over an increasing function are increasing (Ross

(1983, p. 154)). Q.E.D.

Lemma 2.3 shows that above the highest one-period Nash level of effort, the best response

correspondence must lie completely below the diagonal; therefore, any effort level above the

highest Nash level at a high value of r which is supportable at a lower value of ir, must also

be supportable at the higher r

Lema m : Assume (A4)-(A9). Then:

(a) Fit an arbitrary v, and let e > iNr). Then i (e;i) < e.

(b) Let arnr2 ea c >IN( 2). Then, e e IC(v)(w1 ) * e e IC(v)(W2).

2f!eamnma 2: (a) Suppose not. Let u < u(iegf(r);r) and let a be such that

U(e;r) = u but for e > c, u(e;w) < u. By (A4), (A6) such an e exists for all such u. Note

that e > ff (T). Suppose i (e;i) = e; then e is a symmetric Nash effort level for G(r), a

contradiction of Lemma 2.1 (a,b). Suppose a*(e5r)> e. Then u(e; r) (i e ,e,.e,

< u(e (e;r),...,e (e;r);r) = u(i (e;r);r), contradiction of the definition of e, where the first

inequality holds since ia(e;r) is a best response to e, and the second by (A5). So

i (e;) < e. Since og has increasing differences in (el,e 1) by Proposition 2.1 (a), the

maximal best response function is increasing in c by Topkis's Monotonicity Theorem, it lies

above the diagonal at e and below at e, and thus by Tarski's Fixed Point Theorem has a

fixed point in [e,e. There is therefore a symmetric Nash of C(r) at least equal to e, a

contradiction.

(b) Let e > i$VN2) be in IC(v)(rw). By Lemma 2.2, if we can show that d(e;r2) (

d(e;,r1), then we are done. But d(epr2) = u1(i
4 (e; 2),e,...,e; 2) - u(e";7 2) <

u1(i
4 (e;r 2 ),e'.'e'' 1 ~) - u(e; 1) u1((e;rl'),e,...,eir1) - u(e;7r 1) = d(ei 1), where the first

inequality follows from Proposition 2.1 (b) and part (a), the second from the fact that

i'(epr 1 ) is a best response. Q.E.D.
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Lemma 2.4 shows that we may find an optimal effort level at the maximum of a compact interval (0,J. The Theorem follows from this and Lemma 2.4 (c). Q.E.D.

set which is larger for higher w:

Lemm j: Assume (A4)-{A9), that v > 0 is increasing, and let

E(r): {e V e'e, u(e';r) u(e;r)}. Then:

(a) u (e;x) is increasing in e.

(b) ez(i) := max { [N(r),.) n E(ir) n IG(v)(r) } is an optimal effort level.

(c) Let vi c v2. Then ema(v1) <*ma(u2)'

gf m : (a) Fix r, and suppose that el < e2. Then u (e;1;) =

1(i" (e1;r),e,...,e1 ;w) < ui(i(e 1 ;s),e2 '...,e2;r) <_u1(i*(e2;*r),e 2 ...,e2 r) = u*(e2;r), where

the first inequality holds by (AS) and the second by the fact that A (e2 ;r) is a best

response.

(b) By part (a), we know that V r, i(r) may be chosen at least equal to ig(r),

since any Nash level is supportable since v z/(1-6), and for e < iM/), u(e;r) t* (e;r) <
*

a (iMI();r) = u(iN(r);r). By part (a) we may also restrict attention to the set E (r), for

in an optimal SSE players would not choose any effort level below which there lies an effort

level of higher symmetric utility, for that lower effort level would then also be supportable.

Finally, choices are restricted to being in IC v)(w). Since utility is increasing in E(r), we

may choose the maximal available effort in the intersection.

(c) Suppose not. Then ae r ) ? CNE(2). By Proposition 2.1 (c), we have

E(i) L(r2). So, by this, part (b), and Lemma 2.3 (b), ema(vil) = max { [N(,r2),') f

E( fl) n IC1v)(l) } < max { 1 2 2(12),s) n E(ir2) nI()(r 2) ) = emaz(wi). Q.E.D.

Finally note that one-period payoffs thus rise in v as well by (Al), (A7), and thus

the value function By rises in ;r, since dissolution will only be chosen if at all where

t(e;r) + 61 t(r') f(r' jr) dr' < 0, by (A3), which could only hold, if at all, in some
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