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Abstract. This paper reports on four series of experiments in a five-person committee

voting under majority rule. Each of two voting procedures was paired with each of two

types of preference sets. The types were characterized as high or low intensity. Every set

of preferences had a Condorcet point and that point was the best alternative for one (and

only one) voter. When the high intensity preferences were used, committees operating
under either voting procedure selected the Condorcet point more than 90% of the time;
when low intensity payoffs were used, the success rate was less than 51%. A theory is

suggested which predicts which preference sets should successfully induce selection of the

Condorcet point and which should not; in the latter case, the same theory predicts that
the choice will be confined to a certain collection of the other points. Our observations are

consistent with this theory.





. Committee Voting Under Alternative Procedures and Preferences:
An Experimental Analysis

Stephen W. Salant

Eban Goodstein

1. Motivation

Economists model cartels as quantity-restricting organizations but invariably ignore the

voting processes by which cartels select quotas. It is widely appreciated that differences

among cartel members in costs and/or capacity create sharp conflicts of interest. But

how these conflicts affect what quota members ultimately vote to adopt has not been

investigated.

Recently, Cave and Salant (1987) presented a simple model of quantity-restricting or-

ganizations which choose quotas by majority-rule voting.' Their model was intended to

explain the performance of U.S. industries governed by federal marketing orders. Such

orders permit the establishment of volume-restricting cartels in fruit and vegetable indus-

tries. Marketing boards are exempt from antitrust laws; indeed, the federal government

enforces their quotas and punishes violators.

Under law, every cartel selects by majority rule a fraction which then constitutes the

maximum portion of each firm's stocks which it may sell on the regulated market.2 The

voters in each cartel are industry participants who serve for terms of fixed length. Cartel

meetings are open to the public. The Department of Agriculture, which monitors cartel

meetings, forbids sidepayments. Cave and Salant analyzed the case where the heterogeneity

This preliminary draft was prepared for presentation at the Carnegie-Mellon Conference on Political -

Economy to be held May 1-2, 1987 in Pittsburgh. The research was supported by the National Sci-

ence Foundation program on Political Science (Grant No. 8696084). We would like to thank (without

implicating) Mark Bagnoli and Larry Blume for perceptive comments as this research progressed.

1 Their model is not only applicable to cartels but also to international commodity organizations, mar-
keting boards, and prorationing boards governing common properties.

2 Whether the remaining stock can be sold on other markets, stored, or whether it must be destroyed
depends on the particular order.
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among firms in the industry was limited to their stocks (or, equivalently, to their capacity);

the same methodology is currently being used to investigate the behavior of cartels with

heterogeneity in costs as well.

Cave and Salant employed a two-step methodology. They first asked how the industry

would behave for any quota the cartel might adopt.3 Having derived equilibrium profits of

each firm as a function of the scalar quota, they then used these "induced preferences" as

payoffs in a prior voting game.

Cave and Salant showed that even in the case of linear demand, the induced preferences

need not be single-peaked. Nonetheless, they proved under weak assumptions that these

preferences always have a Condorcet point.' They then asserted that the committee would

select the Condorcet quota under majority rule.'

There is wide diversity in the types of voting procedures and quotas used by different

cartels. For example, the International Coffee Organization, unlike U.S. marketing boards,

uses weighted majority-rule voting to determine quotas and bases its quotas not on available

stocks or capacity but on exports in the recent past. As a result, the voter preferenccs

induced by various quota choices would differ and-even if they did not-the difference in

the voting procedure would alter the collective choice of the voters.

Before analyzing the political-economic equilibrium of other real-world cartels, it seemed

wise to determine if people-at least in an experimentally-induced economy-have the

foresight and sophistication to behave the way the theory predicts.'

We report here on the first phase of this experimental investigation. We began simply.

Fiorina and Plott (1978) had designed an experiment in which a committee of five indi-

a Although in Cave and Salant's model it is assumed that such quotas are perfectly enforced, in other
contexts it may be more realistic to include penalties for cheating or trigger strategies explicitly in the
"economic" part of the model from which voter preferences are derived. If, however, insight rather than
realism is the principal goal, an analysis in which the enforcement issue is ignored and the collective
choice problem is high1ighted rtkay be preferable; in addition, such an analysis complements the previous
literature, which focused attenition exclu.sively orn the enforcement problem.

4 Since this proposition may be of particular interest to participants in the Carnegie Conference, it is
reviewed in Appendix 1.

5 In retrospect, Cave and Salant (1987) paid inadequate attention to the voting game. The absence of
a Condorcet psoint does not imply nonexistence of an equilibrium point aind its presence does not insure
that the Condorcet outcome will occur in equilibrium. Both observations will be illustrated below.

6 There is ample basis for skepticism given that perfect equilibrium play is not always observed When

people play tic-tac-toe or chess.
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viduals selected a point in a two-dimensional issue-space by majority-rule voting. Plott

(1979) had modified the instructions to allow the same committee to make a sequence of

decisions. In both cases, preferences were symmetric and single-peaked.

We wished to examine how a committee would vote under the Fiorina-Plott procedures

if the issue space was one-dimensional and preferences were the multi-peaked, asymmetric

kind generated in the cartel model.7 Had we found in our preliminary experiments that

the Condorcet point was selected with high probability, we would have gone on to see

how subjects would vote if they were not explicitly told the economic consequences of

their voting but could profit by anticipating how alternative quotas would affect their cash

winnings in a subsequent market game.

Unfortunately, we found in our preliminary experiments that committees often failed

to select the Condorcet point when operating under the Fiorina-Plott instructions; indeed

they sometimes voted down the Condorcet point when it had been proposed.

Although Fiorina and Plott (1978) reported observing such phenomena, they inter-

preted them more charitably. Even though in the most favorable series of their experi-

ments ("high payoff, full communication") ,tne Condorcet point was selected only once in

ten trials, they nonetheless argued that many of the other committee choices were "close"

to the Condorcet point in terms of the difference in the Cartesian coordinates of the two

points (hereafter referred to as "Cartesian distance").

Our first reaction to the failure of committees to choose the Condorcet point was

to reject the theory. But what theory? To our knowledge, no one has determined the

sequential equilibrium of the game induced by the Fiorina-Plott instructions. No one

knows if the Condorcet point is even in the set of equilibrium outcomes-let alone its

unique element. The Fiorina-Plott game involves not only incomplete information about

. rivals' payoffs but also uncertainty as to which committee member will make the next

proposal as well as the prospect of unending play. Unable to solve this complex game, we

designed an alternative voting game which we could solve. This alternative game always

has a unique subgame perfect equilibrium outcome even when the Condorcet point does

7 Our instructions are included in Appendix 2. Except for a minor change regarding the termination of
discussion, these are essentially Fiorina-Plott procedures.
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not exist. But in cases where a Condorcet point exists and it is the best alternative of

one of the voters, it will be the unique outcome of this voting game in any subgame

perfect equilibrium. The alternative voting game gave us a theory to reject if a committee

operating under this alternative procedure still failed to select the Condorcet point.

Our second reaction to the failure of our committees to select the Condorcet point

in the preliminary experiments was to question the adequacy of the preferences we were

attempting to induce. Were they "high payoff" relative to Fiorina and Plott's? Were the

outcomes we observed 'close' to the Condorcet point even if they did not exactly coincide

with it?

While both ideas seemed extremely useful in practice-if not in theory" -we found

the term "high payoff" vague and the notion of Cartesian distance unhelpful. Presumably,

preferences are "high payoff" if there are "strong forces of attraction" to the Condorcet

point. Presumably, if a non-Condorcet point is chosen despite the fact that the forces of

attraction to the Condorcet point are strong, then we would want to characterize the choice

as a serious blunder and to refer to such an outcome as "far" from the Condorcet point.

We developed a measure of distance and payoff intensity which has these characteristics

and seems to us plausible; we discuss it in Section 2.

We used this measure of preference intensity to classify preference sets into two groups:

high intensity on the one hand and low intensity on the other. We then ran four series

of experiments. In each, we paired one of the two voting procedures with one of the two

types of preferences. We describe the two voting procedures in Section 3 and the committee

choices in each series of experiments in Section 4. We found that both procedures hit the

Condorcet point with high probability when the preferences were "high intensity" by our

definition. When the preferences were "low intensity" both procedures frequently failed

to elicit the Condorcet point. Section 5 summarizes our conclusions and plans for future

work.

8 In theory, the outcome of the alternative voting procedure should always be the Condorcet point
regardless of the payoff intensity; as for the Fiorina-Plott procedure, it is unknown whether the set of
subgame perfect equilibrium outcomes change if the payoff intensity changes while the Condorcet point
remains fixed.
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2. "Distance" from the Condorcet Point

A measure of distance from the Condorcet point has potential practical-if not theoretical-

value for two reasons: it can be used (1) to distinguish among points which a committee

might select and (2) to evaluate the "strength of attraction" of the Condorcet point in a

given set of preferences.

If the committee chooses some alternative other than the Condorcet point, we wish

to label it "near" the Condorcet point if it was chosen when the forces pushing toward

the Condorcet point should have -been weak and "far" when the forces pushing toward

the Condorcet point should have been strong. If for a given set of preferences every

point is "far" from the Condorcet point in the foregoing sense, then the particular set of

preferences should strongly attract committees toward the Condorcet point. We refer to

such preferences as "high intensity."

Fiorina and Plott make a similar distinction but do not define it in a way we could apply

to our sets of preferences. Hence we have no way of knowing if our preliminary sessions

were "high payoff" in their sense of the term. What aspect of the payoffs matters-the

winnings in the session or the winnings at. the Condorcet point relative to other points?

Whose winnings-all individuals or selected individuals? If selected individuals, which

ones?

A number which can be assigned to any preference set ex ante and which can be used

to predict the likelihood that the Condorcet point is chosen seems invaluable. We propose

a plausible distance measure below and suggest that it be used-merely as a starting point

in investigations by others-to classify preference sets ex ante.

"Cartesian Distance

Plott (1979) classifies distance in terms of the difference in coordinates between the

* Condorcet point and the point selected in the experiment. Thus, if (56,67) is the Condorcet

point and (60,75) is selected, then the "distance from equilibrium" is labelled (4,8). This

measure is obviously of little use if the alternatives voted on are not numbers. But even

when numbers happen to be assigned to the alternatives, these are mere labels; relabelling

the alternatives should not affect the voting behavior of committee members under any

conceivable theory based on self-interest. Any reasonable distance measure should be
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invariant to such relabelling. Since relabelling of alternatives directly alters the distance

measure used by Fiorina and Plott, it seems to us inappropriate.

" An Alternative Measure of Distance

Any measure based on the payoffs associated with the underlying alternatives will

be invariant to such relabellings. There are many such measures-each with its own

defects. One might, for example, use as the distance measure the aggregate loss to the

committee in moving from the Condorcet point to each alternative-but this measure

would be nonpositive at some points ( e.g. at the alternative maximizing joint profit).

Alternatively, since some members of the committee (at least a bare majority) are worse

off at any distinct point than at the Condorcet point, one could use the largest or the

smallest of their losses as the measure of distance. We found neither of these measures

appealing and sought some alternative.

In a five-person committee, at least three people lose money (relative to their payoff

at the Condorcet point) whenever the Condorcet point is rejected. If all voted for the

more profitable choice (the usual assumption), the Condorcet point would always win.

Evidently, people are willing to incur small losses for unspecified reasons (computation

costs, guilt, desire to be thought of as unselfish, etc.). However, it seems plausible to us

that no subject would willingly incur a loss if it were sufficiently large. Suppose there is

some threshold, t, such that no one would willingly incur a larger loss. If we insured that

at every alternative to the Condorcet point there are at least three people who would lose

at least t (the identity of the losers would change as the point changed), then a committee

of five such individuals would always select the Condorcet point. On the other hand, if

there existed a restricted set of points the committee could choose where the loss to at least

three of the committee members was smaller than t, then such committees could not be

counted on to select the Condorcet point. But we would then expect that the alternative

the committee did select would be contained in this restricted set. That is, if the preference

set also contained alternatives where at least three people (a majority) sustained losses of

at least t by not selecting the Condorcet point, we would expect that no such alternative

would be selected.

To implement this approach, we defined the distance between the Condorcet point

and any other point as the third largest loss incurred by a committee member. We then
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associated the intensity i with a set of preferences where i is the distance to the closest

alternative to the Condorcet point.

Clearly, if the population has some common threshold t and i > t, then the committee

will always choose the Condorcet point since selecting any other alternative instead would

impose a loss of at least t (indeed, of at least i) on a majority of the committee and such

losses would-by hypothesis-not be acceptable. We classify such sets of preferences

(where i > t) as "high intensity." All other preferences are referred to as "low intensity."

The usual proposition that for any set of preferences the Condorcet point will be chosen

can be viewed as a special case where t = 0. In that case, since every nondegenerate

preference set has i > 0, every preference set would be "high intensity" (i > t) and the

theory would predict that the Condorcet point would always be chosen.

If t > 0, however, then there will exist preference sets which are low intensity. The

theory in that case implies that no point more than t units from the Condorcet point will

be chosen.

We based our estimate of t on observations from our experiments.

Our definition of payoff intensity is motivated by the foregoing theory. But the theory

is admittedly inelegant and ad hoc. Moreover, the theory (unlike subgame perfection)

makes no prediction whatsoever if the preference set has no Condorcet point.

On the other hand, perfect equilibrium theory suggests that payoff intensity should not

matter-at least when the alternative voting procedure is used.' Our experimental results

indicate that payoff intensity-as we have defined it-does matter. This suggests that at

least some modification of that theory should be entertained. We return to this point in

Section 5.

We conclude this section by applying our measure of payoff intensity to Fiorina and

Plott's preference sets. Since they permitted only integer choices in their experiments,

they have a finite set of alternatives-albeit a very large set. We could, therefore, locate

the alternative closest to the Condorcet point. Instead, we merely note that each of

the nine other points chosen instead of the Condorcet point in what they term their ten

*What such theory suggests in the case of Fiorina-Plott's instructions remains to be clarified.
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"high payoff"sessions was within $.001 of the Condorcet point by our distance measure-

three orders of magnitude below our estimated threshold. Hence, the closest point would

certainly be smaller than this threshold and we would characterize these preferences as

"low intensity." Moreover, although the committee failed to choose the Condorcet point in

90% of these cases, the point the committee did select was always "close" by our measure.

3. The Two Voting Procedures

In this section, we describe the Fiorina-Plott voting procedure and highlight aspects of

it which might cause an outcome other than the Condorcet point to be chosen. We then

describe the alternative procedure which we developed. The alternative procedure has the

advantage of simplicity. A game of complete information with a short horizon and no

chance moves, it can easily be solved by backward induction.

The Fiorina-Plott Game

" The Rules

The Fiorina-Plott procedure can be summarized as follows. The process begins with

an initial motion on the floor. Any committee member can then propose that this motion

either be adopted on the one hand or replaced on the other. After a discussion period, a

vote is taken. If the proposal is to replace the existing motion with an alternative then the

winner becomes the motion on the floor. If a proposal to adopt loses, that motion remains

on the floor and is subject to further proposals. If the proposal is to adopt and it wins the

session ends.

Committee members raise their hands when they wish to make a proposal. When the

experimenter is unable to tell which of several hands has been raised first (which we found

happens frequently) he arbitrarily selects one of those raising his hand to make the next

proposal.

Each committee member is given a table indicating his own payoff information. No

one is given information about the payoffs of others-and everyone knows this. Discussion

periods afford members the opportunity to convey messages about their payoffs. They are

not permitted to threaten, offer sidepayments, or characterize the cardinal aspects of their

8



payoff tables. While committee members have the opportunity to convey messages about

their ordinal rankings, their colleagues have no independent way to verify the accuracy of

these messages.

Payoff charts were denominated in tokens and players were publicly informed at the

outset the common rate of exchange of tokens for dollars. At the end of the experiment

subjects were paid dollars in exchange for the tokens they had won. The number of

tokens players earned for a given configuration of preferences varied from experiment to

experiment as did the dollar/token ratio. Thus the dollar payments varied as well. 10 In

our preliminary experiments, we asked the committee to decide among 100 alternatives.

To assist them, we provided each subject with a graphical representation of his private

preferences, in addition to payoff schedules; in all of the experiments reported here, we

limited the choice to 10 alternatives and dropped the graphical aid.

Although reducing the number of alternatives did not significantly affect the commit-

tee's propensity to select the Condorcet point, the character of the discussion sessions

changed radically. Instead of confining themselves to occasional remarks about the alter-

natives on the floor, members used the discussion periods intensively to make statements

about their ordinal preferences. Despite frequent discussion, we observed not a single in-

stance where a subject asserted that his payoff from one alternative would be higher than

his payoff from another alternative when in fact the reverse was true. Moreover, only once

did a subject indicate after a session had concluded that he momentarily considered that

other people might be misrepresenting their preferences. Even given the high proportion

of mid-westerners among our subjects, we find this apparent truthfulness striking.

Each five-person committee met for approximately an hour and made approximately

five separate, sequential decisions. Players were primarily undergraduate economics stu-

dents at the University of Michigan.

. Some Theoretical Aspects of the Fiorina-Plott Game

10 Fiorina and Plott maintained a one-to-one exchange rate between the numbers in the payoff tables and
the dollar amount a subject was paid. They discovered that the committee was more likely to select the
Condorcet point in "high payoff" sessions. Their design did not permit distinction between large payments
in dollars on the one hand and large payments in tokens on the other. By changing the exchange rate, we
were in principle able to distinguish the two effects in these experiments. However, there was not enough
variation of the exchange rate in our experiments to reach firm conclusions. While we found no statistical
evidence of "token illusion," further experiments are needed to confirm this.
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Since subjects using the Fiorina-Plott instructions are given no information about the

preferences of the other members of the committee, recent results on voting games under

incomplete information may be relevant. Ordeshook and Palfrey (1986) have shown for a

different majority-rule voting game under incomplete information that in sequential equi-

librium "a Condorcet winner need not be chosen even if nearly everyone on the committee

most prefers it."

However, even if we follow much of the experimental literature in hypothesizing that

subjects behave under incomplete information the way theory predicts they will behave

under complete information, we do not know what that theory predicts.

It was our experience that the experimenter is frequently confronted simultaneously

with several raised hands and must determine arbitrarily which of these committee mem-

bers will make the next proposal. In effect, even if the game had complete information the

experimenter's decision in such cases introduces a random element into the game.

The complete information game might, therefore, be described as follows. There is

an initial motion on the floor. Nature selects according to some stationary probability

distribution which of the five committee members will make a proposal. That player then

proposes one of the set of alternatives. If he proposes the motion already on the floor, it

is interpreted as a motion to adopt; if he proposes some other motion, the interpretation

is a proposal to replace. After he makes his proposal, a simultaneous vote occurs and a

transition occurs to a new motion on the floor at the next stage. Once again, Nature makes

an independent random choice of proposer...and so on. Discussion moves are ignored since

they would be irrelevant if subjects had complete information.

Some branches of this game tree would never terminate; along such branches players

receive a zero payoff from the experimenter. Branches terminate if and only if a member

whom Nature selects proposes adoption and it passes; in that event, players receive from

the experimenter the payoff associated with the proposal adopted by the committee.

We have not yet solved this game.1 1 However, it has two aspects which deserve mention:

variability of duration and uncertainty.

11 Blume and Salant are currently attempting to characterize the subgarne perfeCt equilibrium outcomes
of the complete-information version of the Fiorina-Plott game. Since we are newcomers to this area,
references to related work would be appreciated.
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" " Variable Duration

The Fiorina-Plott instructions do not to control for subjects who are motivated to

adopt an inferior choice early so that they can return to their job or studies (or, as subjects

suggested in our Springtime sessions, to sun themselves on the quad). If they are sufficiently

impatient, rational players might well adopt some point other than the Condorcet point

rather than take the time necessary first to determine the location of that point and then

to get called on to make a proposal.

In addition, by conducting a sequence of sessions in a time-period which subjects must

have surmised was limited, we created a situation where subjects may have feared that

prolongation of one session would jeopardize the total number of sessions which could be

run. Even in the absence of discounting, this might have altered incentives.

Formally, the original instructions and our adaptation of them to a sequence of decisions

create a game where the payoffs to the subjects from playing down a particular branch

might differ from the dollar amounts received from the experimenter.

" " Uncertainty

Impatience of this kind could explain why subjects with complete information might

adopt a proposal prematurely-before the Condorcet point was proposed. But it cannot

explain why the Condorcet point would ever be rejected once it was proposed. However,

this sometimes happens. We observed the phenomenon in our preliminary experiments

and Fiorina-Plott (1978,p.588) report an earlier sighting. One possible explanation of the

phenomenon involves the randomness introduced in the experimenter's choice of proposer.

An example will focus the discussion. Consider the game in Figure 1. In this game,

the Condorcet point (A) is paired against a given alternative at the penultimate stage. If

the Condorcet point is voted down, the alternative will be the motion on the floor; if it

is voted up, it remains the motion on the floor. In either case, Nature will choose who

will make the final proposal. The final proposal is then voted on and the game ends. If

the final proposal is to replace the existing motion with some alternative, the winner in

the vote is the final committee choice and players receive the associated payoffs. If the

final proposal is to adopt the existing motion and that proposal wins, players receive the

11
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payoffs associated with that alternative; if the proposal to adopt is voted down in the final

stage, players receive zero. 12

If the Condorcet point wins in the first vote then the Condorcet point will be the final

motion on the floor and-no matter who selects the final proposal-it will win in the

final vote since it can beat any alternative which is proposed. Hence, at the penultimate

stage, everyone will foresee that if the Condorcet point is chosen then the committee will

ultimately select it.

Suppose, however, that the alternative to the Condorcet point wins in the penultimate

stage. If one knew who would make the final proposal then one could work out what the

final committee choice would be. Suppose the final choice varies depending on who gets

called on to make the last proposal. Then even though the Condorcet point would win one

majority's approval when paired against one alternative and another majority's approval

when paired against the other alternative, nonetheless for the probabilities and payoffs in

the Figure it would lose when paired against a lottery of the three outcomes. Thus, the

committee would always vote down the Condorcet point at the penultimate stage. Which

proposal the committee would ultimately adopt depends on the experimenter's choice of

proposer.13

The Alternative Voting Procedure

The alternative voting procedure was designed to eliminate each of the problems and

ambiguities we felt existed in the Fiorina-Plott procedure. Preferences were common

knowledge: each member of the committee was given a copy of the same five tables in-

dicating the payoffs to each voter from alternative committee decisions. Impatience was

controlled for: subjects were told how long the session would last and were advised that-

should they finish early-they would be required to participate in uncompensated sessions

12 Some payoff must be attached to this outcome; by assigning sero to it, we insure that it will never
occur in equilibrium.

's In the Figure, there is a one-third probability that player 1 will be selected and hence a one-third
chance that the Condorcet point will be the final choice of the committee. The chance that the Condorcet
point will be the final selection can be reduced to sero by reducing to zero the odds that player 1 will
make the final proposal.

12



to fill out the balance of the fixed time period. Uncertainty about the identity of subse-

quent proposers was also eliminated: proposals were made in a specified order as described

below.

In each session, the committee member at one end of the table made the first proposal,

the committee member next to him made the next proposal and so forth. At most,

five proposals were entertained. If it was the turn of one of the first four subjects to

make a proposal, some motion was on the floor and he could propose either that it be

adopted or replaced. A vote then took place. If a proposal to replace had been made,

the vote determined whether the previous motion or the proposed replacement was the

motion bequeathed to the next proposer. If a proposal to adopt had been made and it

was voted down, then the existing motion remained on the floor at the turn of the next

proposer. If a proposal to adopt was victorious, the session ended and subjects received

the payoffs associated with that committee choice. Failure to make some proposal when it

was a committee member's turn resulted in forfeiture of his turn and a zero payoff to that

individual for the session.

If it was the fifth subject's turn to make a proposal, the game concluded as follows. If

he proposed some replacement of the existing motion, then the vote determined which of

these alternatives was the final committee choice. If he proposed adoption of the existing

motion and it was accepted, then the motion was deemed the final committee choice. If

he proposed adoption and the proposal was defeated, every committee member received a

zero payoff for the session.1 '

The subgame perfect equilibrium outcome associated with this procedure can be cal-

culated by backwards induction. Given strict preferences, the outcome is unique. This

uniqueness of the equilibrium outcome in any session in turn implies that there should be

no intertemporal interactions among sessions.15

14 As was intended, the prospect of zero payoffs always deterred subjects from forfeiting their turn to

propose and from voting down any proposal by the fifth person to adopt a motion.

15 This follows from the standard "unravelling" argument. For any history in the previous sessions, the
unique outcome will be chosen in the final session. Hence, no player in the penultimate session has any
incentive to depart from his equilibrium strategy for that session in order to influence play in the final
session.. .In practice, players had access to the payoff charts for every session and it was pointed out that
there were no ties in any session in the payoff charts of any given player (preferences were strict). When

13



Uniqueness follows from a recursive argument. In the last stage, the proposer enters

with some motion on the floor and can propose adoption or replacement by one of the nine

alternatives. Since he knows each person's strict preferences, he can foresee-given each

alternative proposal-the final outcome the committee would vote for; he would therefore

select the proposal which would result in the committee selecting the final outcome he

most prefers. His most preferred final outcome is unique since his preferences are strict.

Every committee member will foresee what the final outcome will be for each motion on

the floor at the last stage.

In the penultimate stage, the fourth proposer enters with some motion on the floor and

can propose adoption or replacement by one of the nine alternatives. For any proposal

he makes, committee members can foresee which pair of final outcomes they are really

choosing between. Since the fourth proposer knows the strict preferences of the committee

members over final outcomes, he can predict what final outcome would result from each

proposal. The fourth proposer would then make the proposal which leads to the final

outcome he most prefers. Since his preferences are strict, his most preferred final outcome

will be unique...As long as preferences are strict, the final outcome is a unique function of

the identity of the proposer and the motion on the floor. Since the initial proposer and the

initial motion on the floor are pre-specified in the rules, the final outcome in any subgame

perfect equilibrium is unique.1 " 1,
The procedure has a unique equilibrium outcome even if no Condorcet point exists.

However, if-as in our experiments-a Condorcet point exists which is the ideal point

of one of the voters, then it will always be the unique equilibrium outcome. The proof

is a variant of the proof of Farquharson's theorem about sophisticated voting. 17 First it

can be verified that a Condorcet point would win at each subsequent stage of voting if

it were ever proposed and would therefore be the final outcome if it were ever proposed.

asked, we suggested that subjects would probably make more money if they focussed on the chart for the
current session and disregarded future charts 1but that the decision was theirs. We were unable to detect
empirically any interdependence between the choices of a given committee in different sessions.

16 Thert will be mnany subgame perfect equilibria but all'will have the same outcome. The multiplicity of
equilibria arises because (1) if a voter is non-.pivotal, he can change his vote without affecting the outcome
and (2) the same final outcome might result from several alternative proposals of a given player.

17 See Theorem 6.5 in Ordeshook (1986), p.271.
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Next, note that if the person whose ideal point is the Condorcet point gets a turn to make

a proposal he will insure that the Condorcet point is the final choice of the committee.

Finally, observe that the committee will not adopt as final a different proposal before this

person's turn because a majority of the committee prefers the Condorcet outcome to any

alternative.

4. Results

We conducted forty-five sessions in total: twenty-four using the Fiorina-Plott procedure

and twenty-one using the alternative procedure. In each session, one of twenty-one sets of

preferences was used."1 The preferences were developed by modifying preferences generated

from the cartel model presented in Cave, and Salant (1987). The cartel model produces

preferences for any quota between 0 and 100% inclusive. As Appendix 1 shows the ideal

point of one of the voters is always a Condorcet point. We computed the profits of five

firms under ten alternative quotas (including the Condorcet quota), and relabelled them

from 1 to 10. To generate a broad range of "distances", we monotonically transformed each

individual's preferences. Selection, relabelling, and monotonic transformation all preserve

the Condorcet point in the preference sets. Copies of the payoff charts are included in

Appendix 4.

We estimated the threshold value t by assuming that observations of outcomes were

drawn from two populations (high and low intensity) and that the intensity classification

determined the probability of hitting the Condorcet point. For each threshold t dividing

the two populations and each pair of "hit" probabilities, we computed the probability of

drawing the observed sample of Condorcet hits. We then estimated the three parameters

by maximum likelihood. The liklihood function is:

[PFk(1 -Ps)(N -ksm)][p(NCI(kg-

where P; is the probability of Condorcet selection, k~ is the number of Condorcet selections,

and N1 is the number of observations, for i = h, 1, the high and low intensity populations

18 Given our estimates of the threshold, ten of these preference sets are "high intensity."
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respectively.'9 As discussed below, this estimation procedure put no weight on the impli-

cation of the theory that even when low intensity preferences were used the distance of the

outcome from the Condorcet point should be within the threshold.

This procedure generated a threshold of $1.20. 20 This estimate is consistent with our

expectation from a glance at the raw data. Table 1 displays the intensity measure of each

session in dollars and its success or failure-as well as the actual preference set used in the

session, the committee type, and the point ultimately chosen by the committee. 21

Employing the $1.20 threshold value generated the results shown in the left-hand panel

of Table 2. Under both voting procedures, the committees chose the Condorcet point

greater than 90% of the time in the "high intensity" sessions, but less than 51% of the

time in the "low intensity" sessions. The hypothesis that the parameters underlying the

two intensity populations are nonetheless equal can be rejected at the .005 significance

level. These results tend to confirm our hypothesis that the distance measure we employ is

useful in determining which preferences are more likely to generate the Condorcet outcome.

Given the threshold value determined by the likelihood maximization procedure, our

prediction that if committees did fail to select the Condorcet point the distance to the

alternative actually selected would be below the threshold, is not borne out by the data.

Alternatives other than the Condorcet point which were selected fell under the $1.20

threshold only 6 out of 13 times, for a success rate of 46 %.

However, if the dollar threshold is raised to the next highest level ($1.50), (thereby

reclassifying the lone $1.20 intensity session as low intensity), the value of the likelihood

function falls to the second highest level 22 while the percentage of misses which are below

1o The maximum liklihood estimator of P; is equal to k,/N;-which depends implicitly on the threshold.
Once these two probability estimators were substituted back into the likelihood function, maximization
with respect to t was done numerically.

20 In fact, any t value between $1.04 and $1.20 is consistent with the maximum likelihood estimate, as
can be seen from Table 1. We simply chose the upper bound of this interval.

21 Only dollar distances are reported here. If instead distances were calculated in tokens, our maximum
likelihood estimate of the threshold would be 7.90 tokens but the other results would be similar to those
shown in Table 2 for dollar intensities. In our preliminary experiments we observed that the committees
tended to do better when the token values were high, eme when 4d1ar intensifies were rnduced. However, in
the actual experiments the correlation between token and dollar distances across sessions was too high to
distinguish such "token illusion" if any occurs.

22 A t value anywhere in the interval from' $1.20 to $2.43, including $1.50, generated the second highest
likelihood value.
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Table 1.

Preference Set Condorcet Point Chosen?
and (If not, distance to Intensity of
Experiment Point the alternative choice Preference
Type* Chosen is shown) Set

x

k
j
j
h
h
f
f
f.
f
f
f
h
h
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z
w
w
w
u

u

u

w
w
u

u

a''

v

v

g
v

a'
dt'
t'
dt
a'
dt
d'
t

d

i'
i
d
i

op
op

fp
fp
op
op
op
op
op
fp
fp
fp
fp
fp
op
op
op
op
op
op
op
op

fp
fp
fp
fp
fp
op

op
op
fp
fp
fp
fp
op
fp

fp
fp
fp
op
fp
op
fp
fp
fp

3
2
7
3
4
1
7
7
7
7
7
7
4
4
3
3
4
4
4
7
7
7
4
4
7
7
5
1
8

10
1
4
5
3
4
2
4
3
9
5
3
3
2
7
6

y
y
y
n ($3.30)

y
n ($4.22)

y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n ($1.41)
n ($1.41)
n ($1.41)
n ($1.41)

y
n ($0.50)
n ($1.26)

y
y
y
y
n ($0.13)
n ($0.96)
n ($0.84)
n ($0.34)
n ($0.05)

y
y

$3.56
$3.24
$3.24
$3.24
$3.09
$3.09
$3.09
$3.09
$3.09
$3.09
$3.09
$3.09
$3.09
$3.09
$2.81
$2.81
$2.43
$2.43
$2.43
$2.43
$2.43
$2.43
$2.43
$2.43
$2.43
$2.43
$1. 20* *
$1.04
$1.04
$1.04
$1.04
$0.75
$0.40
$0.34
$0.32
$0.30
$0.16
$0.13
$0.13
$0.11
$0.09
$0.07
$0.05
$0.04
$0.04

i

I

*See Appendix 4 for a listing
"f p" denotes a Fiorina-Plott
"ordered proposers ."

of the preference sets, indicated by letter.
type session, and "op" denotes a session with

**Dollar threshold selected by likelihood maximization procedure.



Table 2.

Threshold $1.20 $1.50

Committee Type Ordered Proposers Fiorina and Plott Ordered Proposers Fiorina and Plott

Intensity Level High Low High Low High Low

I of sessions 152- -6 12 12 15 6 11 13

I of times the
Condorcetk point 14 1 11 6 14 1 10 7
was chosen

Z of times the
Condorcet point 93.33% 16.67% 91.67% 50.00% 93.33% 16.67% 90.911 53.85%
was chosen

% of times an
alternative choice 46.16% 84.62%
fell under the
threshold



this higher threshold increases significantly. As is illustrated in the right-hand panel of

Table 2 for the $1.50 threshold, committees using these slightly reclassified "high intensity"

preferences continue to choose the Condorcet point with significantly greater frequency

than do the "low intensity" committees. However, the percentage of the misses we recorded

that lie within this threshold distance of the Condorcet point increases from 46% to 85%.

These results bear out our expectation that when alternatives other than the Condorcet

point were selected, they tended to lie within The threshold distance.

We have pooled the observations from both voting procedures in calculating both the

estimates of t and the underlying probabilities. Contrary to our expectations, the proce-

dure with "ordered proposers" did not significantly increase the probability of hitting the

Condorcet point. A likelihood ratio test allowed us to reject at the .01 significance level

the hypothesis that the parameters underlying the two voting procedures differed.

5. Conclusion

In this paper, we developed a measure of preference intensity and showed experimentally

that committees operating under either voting procedure are much more likely to select

the Condorcet point when "high intensity" preferences are used. We regard our measure

as very useful empirically but find it unsatisfying theoretically.

Our experimental results using, "low intensity" preferences and the alternative voting

procedure are inconsistent with the predictions of perfect equilibrium theory.23 Nonetheless,

they might be consistent with a minor modification of that theory which takes "threshold

effects" into account. One hypothesis we plan to test soon using our data is that-at each

stage of the game-players select the better alternative with probability p when confronted

with two alternatives whose expected payoffs differ by less than t but always select the bet-

ter alternative when the differences exceed t. This would generate the unique equilibrium

outcome for t = 0 but could generate a probability distribution over outcomes otherwise.

23 Like rnany theories in economics, this one predicts that a given outcome will invariably, occur rather
than predicting that various outcomes will occur with specified probabilities. Theories of the forrner type
are easily rejected by the data. To generate predictions of the latter type, we prefer to include the "error
term" in the theory rather than merely to append it to the prediction in an ad hoc manner. In this case,
however, there is no rmeasurement error, unobserved variables, etc. which might be the source of the
uincertainty. Hence, there seerns no choice but to weaken the usuial assurnption of "rationality."
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When more time and resources are available, we also plan to run further experiments to

determine if our quite dissimilar voting procedures yield any differences in behavior which

are statistically significant.

s
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Appendix 1: Existence of a Condorcet Point with Multi-Peaked Preferences

Although multi-peaked, the preferences in our experiment always have a Condorcet

point (which is the ideal point of one of the voters). In this appendix, we review conditions

sufficient for the existence of such a point.24 Preferences satisfying these conditions were

generated by simulation of the Cave-Salant cartel model; they were then transformed in

ways which preserved the existence of the Condorcet point.25

Assume an odd number (N) of voters with preferences li (F) (for i = 1,... , N) over a

single issue F E [0,1. Assume the preferences have the following properties:

Al. For each i, Hs(F) is continuous and achieves a maximum at I;.26

A2. For each i, there exists a distinct scalar F;-designated a "cutoff" -such that

II=(F) decreases for F > F. Without loss of generality, order the cutoffs and designate

as voter 1 (respectively, voter N) the player with the largest (respectively, the smallest)

cutoff. Hence F1 > F 2 > --- > FN.

A3. If FP< F and G< F for some i andIs(F) >fli(G),then for everyj i such

that F F3 and < F, H(F) > H(d).

Claim: If preferences satisfy Al-A5, then the ideal point of the voter with the median

cutoff is preferred by a majority of the committee to any other F E [0,11.

A formal proof for any odd number of voters is contained in Cave-Salant (1987). Here,

we illustrate the argument by confining ourselves to the case where N = 5. In this case,

voter 3 has the median cutoff. The claim is, therefore, that 13 is the Condorcet point.

From Al and A2, 13 F3 .

Case (a): If 13 > F4 , then 13 is preferred to any F > F3 by voters 3, 4, and 5. This

follows from A2. Moreover, 13 is preferred to any F < F3 by voters 1, 2, and 3. This

follows from A3. Hence, if I3 > F4 , then 13 is a Condorcet point.

24 For details, see Cave and Salant (1987).

25 First, ten points in the domain (including the Condorcet point) were selected; then these points were
relabelled; finally, each preference was subjected to an increasing monotonic transformation.

28 We do not assume that the maximum is unique. Our assumption of continuity of each 11g(F) could
be weakened to the requirement that any jumps be downward.
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Case (b): If instead F5 < 13 < F4 , then as before I3 is preferred to any F < F3 by

voters 1, 2, and 3. This follows from A3. Moreover, as before, using A2, voters 3 and 5

prefer 13 to any F > F3 . To prove that voter 4 likewise prefers 13, however, requires an

additional step. From A3, we know that voter 4 prefers 13 to F4 . We know that I14 (F) is

continuous at F4 and is decreasing for F > F4 . Hence voter 4 must prefer 1 to F4 and it

would defeat any alternative in pairwise voting.

Case (c): If instead 13 <F 5 , once again it is clear that Is is preferred to any F < F3 by

voters 1, 2, and 3 and for the same reasons. That voters 4 and 5 will join 3 in preferring

13 to any F > F3 requires the same two-step argument used in the previous case.

To complete this appendix, we consider two ways to generate a set of preferences with

the foregoing properties. The first way is an ad hoc constructive procedure; the second

way shows that the induced preferences of a standard cartel model satisfy Al through A4.

Geometric Construction

" Draw one continuous function of F (it may have multiple peaks).

" Monotonically transform it four times to obtain five separate preference functions.

" Pick five distinct cutoffs with F1 > F2 > -".- > Fs and assign one to each of the five

preferences.

" Check that each preference function is decreasing for F > F; if any is not, replace

that portion of the function with one that has the same value at F; but is decreasing for

F> F.

The ideal point of the voter with the third cutoff is the Condorcet point for this set of

preferences.

Cartel Model

Cave and Salant (1987) considered the case of quota restrictions applicable to N firms with

common constant marginal cost C and distinct capacity constraints (qi <q92 < ---< (IN).

Under the quota, firm i is allowed to produce y, < q;F, where F is chosen by a committee

of sellers. Assumptions are made to insure that each firm's optimization problem is concave

and that a unique equilibrium exists in pure strategies for any F. Let Hi (F) be firm i's

profit in the Nash equilibrium if the quota is F.
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Cave and Salant show that {Hf(F)} satisfy Al through A3 and therefore have a Con-

dorcet point.

Consider the largest quota which binds on firm i. Since the firm with the smallest

capacity (qi) is allowed to sell the least (q1F), it will be constrained at a larger quota

than the other firms. Moreover, the firm with the next smallest capacity will be the next

to be constrained. It remains to verify that these points where the firms are constrained

have the properties of the cutoffs {F} in A2. Intuitively, since q < q2 < --- < qN,

F 1 > F 2 > - - - > FN. In addition, since relaxation of a quota which is already nonbinding

on firm i can only hurt i by allowing other members of the cartel to expand and thereby

drive down the price, Hi1(F) decreases for F;> F. Thus, A2 holds.

If a firm is constrained, its profits are simply the net price times its allowed sales.

Hence, if firm i prefers quota F to quota G, then q F[P(F) - C] > q;G[P(G) - C].

Now consider firm j. Multiplying each side of the foregoing inequality by 2 we obtain

qF[P(F) - C] > q0[P(0) - C]. This implies that firm j will likewise prefer F to o
provided it is constrained at both quotas. Thus, A3 holds.
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Appendix 2: Instructions for Modified 27 Fiorina-Plott Procedure

49,

f

27 Except for occasional changes in wording, the main modification of the Fiorina-Plott instructions is
a minor change in the rules regarding termination of discussion; in practice, our time limit on discussion
was never invoked.
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Instructions for
Committee Experiment

General. You are about to participate in a committee process experiment in which one of ten
competing alternatives will be chosen by majority rule. The instructions are simple. If you
follow them carefully and make good decisions, you might earn a considerable amount of
money. You will be paid in cash at the end of the experiment.

Instructions to Committee Members. There will be six sessions this morning. In each session,
you and your fellow committee members in this room will be asked to reach a collective decision
by majority rule. In each session, your five- person committee--after considering a series of
alternatives--will select one and only one alternative from a set of ten alternatives. Your
compensation for that session will be dictated by the final choice of the committee as described
in your private Payoff Table. For example, suppose your Payoff Table was the attached Sample
Table and that the committee's final choice of alternative is the point (x) = (7). Your winnings in
this session would be 6.75 tokens. At the end of the series of sessions, you will be paid in dollars
one fourth of your cumulative winnings of tokens.

You should be aware that different individuals will receive different Payoff Tables. For the
convenience of each committee member, private Payoff Tables have each been arranged so that
the alternative yielding the most tokens is listed first, the one yielding the next most tokens is
listed second...and the least profitable alternative is listed last (tenth).

You will not all have the same patterns of preferred choices and will have different payoffs
as well.'The committee choice which would result in the highest payoff to you may not result in
the highest payoff to someone else. You should decide what choice you want the committee to
make and do whatever you wish within the confines of the rules to get things to go your way.

The experimenters are not primarily concerned with whether or how you participate so
long as you stay within the confines of the rules. You are free, if you wish, to discuss with your
fellow committee members which proposals you like best. But under no circumstances may you
mention anything quantitative about your compensation or show your Payoff Table to your
fellow committee members. Nor may you mention anything about activities which might involve
you and other committee members after the experiment, i.e., no deals to divide winnings
afterward and no physical threats.

Parliamentary Rules. The process begins with an existing motion (1) on the floor. You are
free to propose amendments to this motion. Suppose, for example, (1) is the motion on the floor
and you want the group to consider the amendment (4). Simply raise your hand and, when you
are recognized by the experimenter, say "I move to amend the motion to (4)." At that time any
individual will have the opportunity-- when recognized by the experimenter-- to argue either in
favor of the motion on the floor or its proposed amendment. No individual shall speak for more
than five minutes on any particular proposal. Once anyone wishing to has had the opportunity to
speak, the group votes on the amendment. If three or more individuals (a majority of the
committee) favor the amendment, (4) is the new motion on the floor and is subject, itself, to
amendments. If less than three individuals favor the proposed amendment, it fails and the
motion (1) remains on the floor and is subject to further amendment. Thus, amendments simply
change the motion on the floor. Your committee may pass as many amendments as it wishes.



Provided no amendment is under consideration, you are free to propose that the motion on
the floor be adopted as the final choice of the committee. Simply raise your hand and, when
recognized by the experimenter, say "I propose that we adopt the existing motion on the floor."
At that time any individual will have the opportunity--when recognized by the experimenter--to
argue in favor of or against this proposal. No individual shall speak for more than five minutes.
Once each of you has had the opportunity to speak, the proposal to adopt the motion on the floor
will be voted on. If three or more of you vote in favor of the proposal, the motion on the floor
becomes the final choice of the committee and the session terminates. If your proposal is
rejected, the amendment process resumes.

To sum up, the existing motion on the floor is (1). You are free to amend this motion as
you wish. The session will not end until three or more of you consent to end debate and accept
some motion. Your compensation will be determined by the motion on the floor finally adopted
by the majority.

At the end of each session, you should circle the committee's final choice and your
winnings for that session on your Payoff Table. A new Payoff Table will be issued to you at the
beginning of the next session. At the end of the last session, your cumulative winnings of tokens
will be computed. You will be paid in dollars one fourth of your cumulative winnings of tokens
(dollars equal tokens divided by four). Hence the more tokens you win, the more dollars you
win.

Are there any questions?



Appendix 3: Instructions for Alternative Procedure of "Ordered Proposers"



Instructions for
Committee Experiment

General. You are about to participate in a committee process experiment in which one of ten
competing alternatives (designated "one," "two,"..., "ten") will be chosen by majority rule. The
instructions are simple. If you follow them carefully and make good decisions, you might earn a
considerable amount of money.

The experiment should take approximately one hour and a half. There is no advantage in
rushing to finish sooner since in that event a supplementary session for which there is no
compensation will be used to fill up the balance of the time. You will be paid in cash--but only at
the end.

Instructions to Committee Members. There will be three sessions this morning. In each
session, you and your fellow committee members in this room will be asked to reach a collective
decision by majority rule.

In each session, you will take turns making proposals. After each proposal, the
experimenter will ask your five-person committee to vote on the proposal. If a proposal to adopt
some motion as final is made and passes by majority rule, the session ends. Otherwise, a
different committee member will be asked to make a proposal. After at most five such proposals
are voted on, the session must end. The motion adopted as final by the committee, or the motion
remaining on the floor after the fifth person's turn to make a proposal, will be deemed the final
choice of the committee.

Your compensation for the session will be dictated by this final choice of the committee as
described in your Payoff Table. For example, suppose your Payoff Table was the attached
Sample Table and that the committee's final choice of alternative is the point (x) = (7). Your
winnings in this session would be 6.75 tokens. At the end of the series of sessions, you will be
paid in dollars one third of your cumulative winnings of tokens.

In each session, you will receive a sheet of paper containing not only your own Payoff
Table but also the Payoff Tables of every member of the committee. That is, in each session
every one of you will learn not only his own Payoff Table but the Payoff Table of every other
player. To distinguish your own Payoff Table, it is circled in red.

For your convenience, the alternatives in each table have been re-arranged so that--for
each voter--the alternative with the highest payoff appears first, the alternative with the next
highest payoff appears second, and so forth. There will never be any ties: in none of the three
sessions will anyone get the identical payoff from two alternatives.

- The Payoff Tables for a given session contain a lot of information. You will be given five
minutes at the start of each session to study them. You should note how your table differs from
that of the other committee members. The commiuttee choice which would result in the highest
payoff to you may not result in the highest payoff to someone else.

You should decide what alternative you want the committee to choose and-given how
other committee members are likely to behave-what you should do to get things to go your way.
The experimenters are not primarily concerned with how you participate so long as you stay
within the confines of the rules.



Parliamentary Rules. The process begins with an existing motion on the floor. By convention,
it will be the number "one" (1) in every session. The committee member on your extreme right
will make the first proposal. After his proposal is voted on, the session either ends or continues.
If it continues, it becomes the turn of the person on his left to make the next proposal...and so on.

Whenever a person makes a proposal, there will always be some existing motion on the
floor. The person may make one of two proposals: 1) a "proposal to adopt" the existing motion
as final or 2) a "proposal to replace" the existing motion with one of the nine alternatives. If no
proposal is made, the person forfeits his turn to propose and receives zero for the session no
matter how he votes in the future; if such forfeiture occurs, the existing motion remains on the
floor and the next person will have a turn to make a proposal. Each proposer will be given two
minutes to formulate his proposal. The experimenter will remind him or her when the two
minutes have elapsed.

After each proposal, the entire committee deliberates in silence for two minutes. At the end
of that period, the experimenter will call for a vote. A proposal wins if at least three people (a
majority of your committee) vote for it.

1) If the proposal was "a proposal to adopt" the existing motion as final and it passes, then
the session ends. If such a proposal fails, the motion on the floor remains on the floor and it is the
next committee member's turn to make a proposal.

2) If instead the proposal was "a proposal to replace" the existing motion with one of the
nine alternatives and it passes, then the proposed replacement becomes the new motion on the
floor. If such a proposal fails, the prior motion on the floor remains on the floor and it is the next
committee member's turn to make a proposal.

If no motion is adopted as final before the last committee member's turn to make a
proposal, then the session must end as follows: The last committee member may make a
"proposal to adopt" the existing motion on the floor. If a majority of the committee accepts this
proposal, then this motion becomes the final committee choice and each participant receives the
payoff associated with that choice in his Payoff Table.

If the "proposal to adopt" is voted down by a majority of the committee; then the session
ends and each participant earns zero for the session.

If the last committee member instead makes a "proposal to replace" the existing motion
with one of the nine alternatives, then the committee vote determines whether the existing
motion or the proposed replacement is the final committee choice. Each participant then receives
the payoff associated with that choice in his Payoff Table.

If the last committee member fails to make any proposal at the end of two minutes, he
receives zero tokens for the session and the final committee decision is deemed to be the existing
motion on the floor. Payoffs to the other four committee members are determined from their
Payoff Tables.

To~ sum up, the session ends either when a "proposal to adopt" wins approval or after the
fifth commitee member has his turn to make a proposal. The final choice of the committee is
deemed to be either 1) the motion which wins in a proposal for adoption or 2) the alternative
which wins in the final vote. Should a "proposal to adopt" fail on the fifth vote, the session ends
and all participants earn zero for the session. Any individual who fails to make a proposal when
it is his turn to do so earns zero tokens for the session. Otherwise, each participant wins in the
session the number of tokens associated in his Payoff Table with the final decision of the
committee.
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At the end of each session, you should circle your winnings for that session on your Payoff
Table. A new Payoff Table will be issued to you at the beginning of the next session. At the end
of the hour and a half and after the third session has been completed, your cumulative winnings
of tokens will be computed. You will be paid in cash one third of your cumulative winnings of
tokens (thirty-three cents for every token earned in the experiment).

Are there any questions?



Test

~ To make sure that you understand the procedures, we would like you to answer the
following questions in the spaces provided using the attached Sample Payoff Table. We will
collect your answers, and will clarify any sources of confusion before the experiment
commences. We want to make sure that each of you thoroughly understands the rules before we
begin the experiment.

I,

1. At I would make the most possible money. The amount of tokens I would win is
. The amount of dollars I would therefore receive is .

2. Suppose (8) is the motion on the floor and a "proposal to replace" it with the alternative (6)
passes, then the new motion on the floor is . Suppose the proposal fails. Then the
motion on the floor is . If the "proposal to replace" was made by the middle person at
your table, it would be the turn of (first name) to make the next proposal. If all five members had
taken a turn making a proposal, then the game (continues. ends).

3. Suppose it is my turn to make a proposal. At the end of __minutes, the experimenter will
remind me that it is time to make my proposal. If I fail to make one then, I will earn

tokens for the session no matter how I subsequently vote or what the commitee
chooses as its final decision.

4. Suppose (8) is the motion on the floor and it is the turn of one of the first four proposers to
make his proposal. If he proposes adoption as final and it passes, your winnings in tokens would
be . Your winnings in dollars would be . If he proposes adoption as final
and it fails, then the new motion on the floor is .

5. Suppose (8) is the motion on the floor and all five members have taken a turn making a
proposal. If the final proposal is to adopt the existing motion and it fails, your winnings in tokens
for this session would be . Your compensation in dollars would therefore be



Appendix 4: Preference Sets
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sesf Ccc,\~cz~ l j r' x .0C10 V'L 2 z -~A

VOTE
7
8
9

3
6
5
4

1

PLAYER 1
TOKENS

23.60
10.64
10.56
10.48
10.40
5.84
5.68
5.. 04
4.72
0.00

VOTE

7
6
3

4
2
1

PLAYER2
TOKENS

24. 80
22. 14
20.43
18.72
5.90
5.803
2. 9
1.05
0.77
0. 10

VOTE
3
4
2-

1

6

7
8
9

10

PLAYE R,
TOKENS

37. 60
31.60
28. 00
2.90 ~
19.60
13.60
12.m94
0.22
0.16
0.04

A

VOTE

9
8
7
6
3

4

I

PLAVE R4
TOKENS

24. 90
22.24
20..53
18.82
600
56 90

3.05
1. 15
0.86
0. 20

VOTE
3
4
2
1
5
6
7
8
9

1 0

PLAYERS.
TOKENS

37.64
31.*64
28.04
5.94

19.64
13.64
12.98
0.26
0.20
0.08
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d

C- evdo rcet rdNi = 3 ~e~d c.~~EjdctsL± CJ Nt= 2106$ TcA4CsA5

VOTE
1

3
4
5
6
7

10

PLAYER I
TOKENS

288.20
214.20
188.70
170.00
163.40

1 6 1.8
159.30
157.70
156.50
156.00

2
3
4
5
6
7
S

10

VOTE
PLAYER 2
TOKENS

184.8E0
172.30
146.70
1285.00
121 .90
119.80
117.70
115.70
115.50
115.0C,

3
2
4
1
5
6
7
8
9

10

VOTE
PLAY ER 3
TOKENES

106.83
91.00

89.00
88.70
82.90
80.80
78.70
76.70

76.17

VOTE
5
6
4
7

9
10
3
2
1

PLAY ER4
TOKENS

58.90
56.80
54.90
54.70
52.70
52.03
52.00
35.60
30.33
29.60

VOTE
10
9
8
7
6
5
4
3
2
1

PLAYERS
TOKENS

46.00
45.97
44.*60
40.40
36.*10
31.50

27.*4
17.*80
15.17
14.*77



L _ Li CC6Ad(.;(Za TOt4-1 = Z SEE.G Cc~\cZrw~z~?o~: 2 ' ({C . l5 +.k 5

10.

10
1
2
3
6
4

7
8

FLAYER 1
TOKENS

20.00
18.60
17.10
16.80o
12.65

12.60

*7.3

1 .50

VOTE

10
1
2
3

6
4
5
.7

8

F LAYE R2
TO KENS20. 00

18.60
17.70
16.80
12.65
12.60
9.90
7.50
7.35
1 .50

VOTE

2
10

3

4

7
B

PL.AY ERS

TOKENS
1970

14.30
1 4.06,
13.40
13.28
13.04

5.78
5.54
2.00

j GTE

6

4
3

L

1 Cs

PLAYrER 4
TOKENS

350
28.50
25 *5
23.75
18.50
13.50
8.10

2.20

6
7
8
4
3
2
1

10
9

VOTE
PLAYERS
TOKENS

33.50
28.50
25.50
23.75
18.50
13.50

8410
2.35
2.30
2s20



sesh *q~' Oo~ocA 'sA:Lk~ " .S Z~s \' - 2 4V.iv y

. VOTE
1
2

4

8
6

9
10z

PLAYER I
TOKENS

24.80
2.14
20.43
18.72

5.8

1.05
0. 77
e. 10

VOTE
8
7
9

10
6

.4
3
2
1

PLAYER2
TOKENS

37.78.
31.78
28. 18
26.08
19.78
13.78
13. 12
0.40
0.34
0. 2

VOTE
PLAVE R3
TOKENS

4 23060
10. 64

E 10.56
1 10.48
8 10.4th
5 5.84
6 5.68

7 5.0Z4
9 4.72

10 0.00

VOTE
8
7
9

10
6
J.

4

2

PLPYER4
TOKENS

37.60
31.60
28.00
250.90
19.60
13.60
12.94

0.22
40. 16

VOTE
I

3
4

7
9

PLAYERS
TOKENS

24.90
22.24
20.53
18.82
6.00
5.90
3.05
1.15
0. 86

1 e. 04 .410 0.20
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VJOTE
3
4

L

5

6

9
10

PLAYER I
TOKENS

392.40
346.60
345.40

205.40
200 .20
177.70
1 71 .30
120.20
113.50
108.40

DOTE
3
4

I
5
8

10

PLAYER2.
TOKENS

392.40
346 .60
345.40
205.40

200.20
177.70
171.30
120.20
113.50
108. 40

VOTE

8

9
6
3

10
5
4

1

PLMYER'3
TOKEN---S

119'.50
117. 70
113.50
110 . 0
1 09l . 00C
108.40
102. 20

J.90

57 s 10

4r,

VOTE
1 0

9

3

4
2
1.

FLAYER4
TOK ENS

102.00
99.20
97.40
95.60
88.50
87e 2O

81 .80
77.00

76.70
45.60

VOTE
10

8
7
6
3
5
4
2

PLAYERR
TOKEN S

102.* 00
99.20
97 .40

95.60
88.50
87.20
81 . 80
77.00
76. 70
45.60



ti

Ccc'r<.c7
j

15 2 tit~ = t 'l G v SsesJ

'COT E

11

10
S3

8
7
6

4
-J

1.

PL.RYER I
TOKENS

26. 10

21.0

13.70
6.20
6.10
3.10
1. 10
0.80
0. 10

10

7
6
3

'I

VOTE
PLAYER 2.
TOKENS

26. 10
23.3e
~1.50

113.70.
6.200
6.10
3.10
1. 10
0.80
0. 10

7
8

10
3
6

4

.1

PLAYE R3
TOKENS

2'.060
10. 64
10. 56
10.48
10.40
5.84
5.68
5.04
4.a72
21.00

VOTE

4

6
7
8
13

10

PL.AYER4
TOKENS

43.o83
36.8a3
32.63

30.018

22.83
15. 83
15.0i6
0. 22
0. 15
0001

VOTE
PLAYERS
TOKENS

3 43. 83
4 36083
c: 32.63
2. 30.18

J.

6
7
8
93

10

2283
15.83
15.06
0.22
0. 15
e.01



sesk 5kCcJkcAccc4,k %Ns=2.

VOTE
10
9
1

3
6
4
5
7
8

PLAYER
TOKENS

26. 14
23. 34
21.54
19. 74
6.24
6. 14
3.14
1. 14
0. 84
0b.14

VOTE
102

9
1

4

8

PLAYER
TOKENS

26.07
23. 27-

21.47
1S. 67
6.17
6.07

307
1.07
0.77
0.07

PLAYER3
TOKENS
2 230E63

1 lt.6E7
1 1 0. 59

9 10.51
6 10.43
3 5. 87
4 5.71

5.07
7 4.75

8 Z. 03

VOTE
6

7
8
4

1
10
9

PLAYER4
TOKENS

44.11
37.11
32.91
30.46
23. 11
16.11
15. 34
0.50
0D.43
0. a29

VOTE
6

7

4
3

1.

10

9

PLAYERS
TOKENS

43.99
36.99
32.79
30.34
"2.99

15.99
15.22
0.38
0.31
0.17

a



w "! 'J 10)1 av( 4*:= C ot42 TcV4b.

'-.OTE
FLAYtER 1
TOKENS VOTE

PLAY ER2
TOKENS

8 31.50
VOTE

10

4

1

26.50
23.50
21.s75
16.50"
11 .50

10.95
0.35
0.30
0 .20

7
9

10
6
5
4
v -

2

26 .50
23.50
21.75
16.50
11.50
10.95

0.w35
0.30
0 .20

FLA ER3
TOKEN

1 21 .60
2
3 17.92
4 16.48
5 5.68
8 5.60
6 3.20
7 1.60

.9 1.36
10 0.80

-'I, r,

1

4

6
7,

9
1 0

PLAYER4
TOKEN

21 .60

1 6.48

5.60
3.20
1 .60
1 .36
0.80

VOTE
4

6
7
9

10

PLAYERS
TOKENS

18.70
8.98
8.92
8.86
8.80
5.38
5.26
4.*78
4.54
1.00



SESY ? w rto

15 Puu. ,IS 1 1 \
0

A.

VOTE
7
8

1I
1.
4
J,

3

6

PLRYER1
TOKENS

E0. s0
26. 60
17.70
16.80
12. 6z
12~,60
8. 90
7. 50
7. 3

1. 50

V:OTE
7
a

10

4
2
3

6

PLAYE R2
TOKEN~'S

18.60
17.70
16.80
12.65
12.60b
9.90
7.50e
7a35

VOTE
10
'3
8
4
1
7

6

PLPYER3
TOKENS

19.70
14. 30
14. 06
13.40
13. as
13.04
9. 32

5.78
5.4

a.00o

/CT E
3-

4

6

10

9
8
7

PLRYER4

TOKENS
33+ 50'
E,8. 50
254-i~50

23e 75

16.50
13050
8.10e

. 20

VOTE
1i

4

6

8

PLAYER!

TOKENS
33.,50
28.50O
250 50
23.,75
18.50
13.50
8.10
2.35
2. 30

.20b



sesu ,(,

?ovjT

VOTE
7

9
10
3
6
J

4

1

PLAYER 1
TOKENS

18.70
8.98
8.92
8.86
8.80

4.78
4.54
1.00

VOTE

4

1
5

6
7
8
9

10a

PLAYERS
TOKENS

31.*50
26.50
23.50
21.*75
16.50
11.*50
10.95
0.35
0.30
0.20

VOTE
PLAYER3
TOKENS

3 31.5J0
4 26. 50
2 23.541
1. 21.75
v 16.50
6 11.50
7 10.95
8 0t.35
9 0.30

10 0.'20

IVOTE
1 0
9
8
7
6
3
5.

4

1

PLAYE R4
TOKEN

21.*60
19. 36
17.92
16.48
5.68
5.60

3.20
1.*60
10*36

0.80

VOTE
1 0
9
8
7
6
3

4
2
1

PLAYE RS
TOKEN

21.60
19.36
17.92
16.48
5.68
5.6O
3.20
1lo 60
1.*36

0.w80
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VOTE
10

9
8
7
6

4
3

1.

PLAYER 1
TOKENS

1109. 20
107.45
1 04.-30
89.60
74.55
58.45
44.6,10
10.50

1. 4i~
0.00

PLAYE R4
TOKENS

34.9S0
as.w65
15.85
6.50
3. 45

VOTE

6
4
7
8

10
9
3
2
1

VOTE VOTE
1

4

6

8

10

1

3
4

PLAYSER2
TOKENS

58.60
54.40
50.60

46.2.0
44.80

PLAYERS
TOKENS

60.74
27.44
15.92
7.50
4.76

3.8~1
g. 77
1.96
1.66
1.65

VOTE
-ft

4
1

5.

6
7
8
9

10

PLPYER3
TOKENS

18.48
9.i00
7.80
7.62
4.14
2.088
1.62
0.42
0.30
0.00

2.40
11.35
0.35
0.25
0a.00

6
7
8
93

10



sesx CAA&4c- A ?: -D is t,. -G A ,Tov.cN5;

VOTE
10
9
8
7
6

4
3

1

PLAYER I
TOKENS

109.2 0

107.45
104.30
89.0
74.55

58.45
44. 10O
10.50
1.40
0.00

5
6
4
7
8

10
9
3
2
1

VOTE
PLAYER2
TOKENS

58.60
54.40
50.60
50.20
46.20
44.80
43.80
12. a00
1.40
0.00

3
I-

4
1
5-

6
7
8
9

10

VOTE
PLAYERS
TOKENS

20. 08
10.60

9. 40
9"*22
5.74
4.48
3.22

2.02
1.90
1.60

4 VOTE
1

4

7
8
9

10

PLArE R4
TOKENS

42. 88
35.38
20.02

8.80
5..14

3.88
2.62
1.42
1.30
1.00

VOTE
1

4
5'

6
7
8
9

10

PLAYERS
TOKENS

78.98
34.58
19.22
8.00
4.34
3.08
1.70
0.62
0.50
0.2E0



r " d t e s ~ t cc.Ar.t4A ?o~'k

'VOTE
1 0
9

7
6

4

r,

PLAYER 1
TOKENS

138.00 7.
136 .00

123.80
97.20
72.00
53.40
45.50
44.30
42.00

VOTE
6
7
8

5
4

1
2

PLAYER2
TOKENS

175.40
163.00
157.00
156.10
156.00
144.00
106.80

91 .00

88.70
84.0

VOTE
4
5

1

6
-7

10

PLAYER
TOKEN S

'4. 10
252.0
247.00
235.00
2290

228.00

(I

VOTE

1

4

6
-7

10

PLAY ER4
TOKENS

288.20
248.80
214.20
1'88.70
177.70
1 63.40
15'.30
157.00
1 56.50
156.00

VOTE

1
2
3
4
5
6
7
8
9

10

PLAYERS
TOKENS

184.8S0
175.00
172.20
146.70
135.00
121 .40
117.30
115e70
115.50
115.00

0



sesa sesa ~coridorcet po'irt = 5 itce=6tkesdistance = 60 t r keres

vote profit vote profit vote prosf it
post pose pos3

49 400 7 4505 400
7 3005 300 6 320

5200 8 300328
8. 200 6 210 7 280

10 200 9 210 8 240
3 140 3 210 1 200
6 140 10 150 9 160
1 100 1 150 4 120
4 60 4 90 10 80
2 402 60 2 80

vote profit vote prof it
pc's4 pcosy

3350 1 400
4 3z02 360

5250 330
1 250 4 280
6 200 5 240
7 175 6 200
8 150 7 160
9 100 8 120

100 9 80
10 50 10 0

6 '



sest sest coradcorcet point = 8 dsaee6 cknd i st ance=6. 7 tokens

VOTE PROFITI
3 572.40
4 526.60
2 525.40
1 385.40
7 380.20

~j380.260
6 351.30

VOTE PROFtT2
3 441.*60
4 411.10
2 410.20
5 380. 20
7 38t. a0
6 351.30
1 3 16. 90

VOTE PROFIT3
8 358.50
7 349. 10
9 340.50
6 331.80
3 327. 00

10 3~~
5. 306.60

4 88.90
2 287.70
1 17 1.30

8 300.20
9 393.50

10 288.40

8 300.2i
9 893. 50

10 288.40

VOTE PROFIT4
10 306.00
9 897.60

8 286.80
7 279.30
6 ;265. 50

3 261.60
5 245.40
4 231.00
2 230. 10
1 136.80

VOTE PROFITS
10 306. 00
9 297.60
8 286.80
7 279.30
6 265.50O
3 261.60
5j 245.40
4 231.00
2 230. 10
1 136.80

0



sesi' ccndorcet Point = 7 distance = . 18 tokens

VOTE
3

4
2-

1

8
6
7
9

10

PLAYER 1
TOKENS

39.24
34.66
34.54
20.54
20.02
17.77
17. 13
12.02
11.35
10.84

VOTE
3
4
2
1

8
6
7
9

10

PLAYER I
TOKENS

39.24
34.66
34.54
20.54
20.02
17.77
17. 13
12.02
11.35
10.84

VOTE
PLAYER3
TOKENS

7 11.95
8 11.77
9 11.35
6 11.06
3 ;0.9

10 10.84
5 10.22
4 9.63
2 9.59
1 5.71

VOTE
10

9
8
7
6

5

4
2-

1

PLAYER4
TOKENS

10.2
9.92
9.74
9.56
8.85
8.72
8.18

7.7
7.67
4.56

VOTE
10
9
8
7
6
3
5
4
2
I

PLAYERS
TOKENS

10.2
9.92
9.74
9.56
8.85
8.72
8.18
7.7

7.67
4.56



sesdt' ccerdcrcet point = 4 dsac 9tkndistance = . 79 tokens

VOTE
10

9
8
7
6
vJ

4
3
1

PLAYER I
TOKENS

13.80
13.79
13.60o
12.38
9.72
7.20
5.34
4.55

4.43
4o20

6
7
8
9

10

4
3
1
2.

VOTE
PLAYERS
TOKENS

17.54
16.30
15.70
15.61
15.60
14.40
10.68
9.10
8.87
8.40

VOTE
4

3

a
6
7
8
9

10

PLAYER3
TOKENS

3205
28.80
27.30
26.61

2*. 70

85

22.85

r

0

PLAYE R4
TOKENSVOTE VOTE

PLAYER 5
TOKENS

18.48
17.50
17. 22
14.67
13.50
12.6i4
11.73
11.7
11.5
11.50

4a

1
2
3
4
5
6
7
8
9

10

28. 82
24.88
21.42
18.87
17.77
16.34
15.93
15.70
15.65
15. 60

I
2
3

4

6
7
8
9

10



0

VOTE
1
2
3
4
5
6
7
8
9

10

seed /

PLAYERi
TOKENS

28.82
21.42
18.87
17.*00
16.34
16.18
15.93
15.77
15.65
15.60

VOTE
1
2
3
4
5
6
7
8
9

10

condorcet point3

PLAYER2
TOKENS

18.*48
17.23
14.67
12.*80
12.19
11.*98
11.77
11.57
11.*55
11.*50

VOTE

distance=*.26 tokens

PLAYER3
TOKENS

3 10.68
2 9.10
4 8.90
1 8.87
5 8.29
6 8.08
7 7.87
8 7.67
9 7.62

10 7.60

5
6
4
7
a
9

10
3
2
1

PLAYER4
TOKENS

5,9 89
5.68
5.*49
5.47
5-. 27
5.*20
5.*20
3.56
3.4 3
2.96

VOTE
10
9
8
7
6
5
4
3
2
1

PLAYERS
TOKENS

4.*60
4.60
4.*46
4.*04
3.61
3.*15
2.*74
1.*78
1.*52

1.*48



*

sesi'

vote

conidorcet point = 6 distance = 2 tokens

1e~

7

6

4
rC,

3
1

profit
post

1 97

191
183
172
171
148
133

vote

1ia
9
8
7
6

4

1

prof it

20~4

197
193
191
183
172
171
148
133

vat e

6
7
8
5
9

10
4
2-

1

orofi t
Do~ss

*39.J

3J
229
229
2:=,3
217
215

14
186
167

i

r

vote

2
3
1
4
5
6
7
8
9

10

rfprofit
pos4
385
334
300
274
233
180
177
172
167
108

2
3
1
4
5
6
7
8
9

1 0

vote rfprofit
385
334

"300
2 74
233
180
177
172
167
108

0



a l tokens*scsa

f- *o e

'v te

coredc'rcet poirst = 4

8
6
7
4

10
5

1

rfprofit
post

100
75
-50
50
50
40

35

15
10

vote
6
7
4
S
8

10
9
3
1

distance

prof it
pose

11'.5
75
75

52.5
52.5
52.5

40
37.5
22.5

15

vote
4
5.

2
6
7
8
3
9
1

10

orof it
pos.

75
60

52.5

45
" 30

2a5

15
15
10

4

6
7
8
1
9

10

profit
poss4

70
60
50
40
35
30
20
20
10

vote

I-

3
4
5
6

7

9
10

oro'f it
posy

90
80
70
60
50
40
30
20
10
5



sesa' condorcet poin~t = 4ditce=15 oksdistance = i . 55 tokens 'V

vot e
8
6
7
4
9

10
5
2-

3
1

profit
post

10.00
7.50
5.00
5.00
5.600
4. 00
3.50
3.50
1.50
1.*00

prof it
pos4

7.00
6.00
5.00
4.00
3.0
3. 00

. 00
2.00
1.00
0.50

vote
6
7
4
5
8
2

1 0
9
3
1

prof it
pose

11.25
7.50
7.50
5.25
5. 25

5.25
4.00
3.75
~.25
1.50

Drof it
posy

S. 00
8.00
7.00t
6.00
5.00
4. 00
3.00
2. 00
1.00
0.50

vots
4
5

6
7
8
3
9
1

1@

profit
pos3

7.50
6.00

56 25
4. 50
3000
2. 25
1.50
1.50
1.00

71

voteS vote

:r.

3
4

6
7
8
1
9

10

1

3
4
5
6
7
8
9

10

0



lest' condorcet point = 8 sest codoret pint- 8d ist ance- *s67 tokens

VFTE

3
4
2
1
7

6
8
9

1 0

PROFITi
57.24
52.66
52.54
38.54
38.02
38.02
35. 13
330.02

85. 35
28.84

VOTE
3
4

7
6
1
8
9

10a

PROFIT
44. 16
41. 11
41.02
38.02
38.02
35. 13
31.69
30.02
29.35
28.84

VOTE PROFIT3
8 35. 85
7 34.91
9 34.15
6 33.18

3 32.70
10a 32m.52

5 30.66
4 28.89
2 28.77
1 17.1 3

VOTE
10
9
8
7
6

4

1

PROFIT4
30. 60
2 9.76
28.68
27.93
26.55
26. 16
24.54
23. 1 0
23.01
13. 68

VOTE
10
9
8
7
6
3
5
4
2
1

PROFITS
30.60
23. 76
28.68

26.55
26. 16
24.54
23. 10
23.*01
13.68
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VOTE
I
2.

3
4

6

7
8
9

10

PLAYER 1
TOKENS

109. 20
107.45
104. 30

89.60
74.o55
58.45
44. 10O
10. 5i
1.40
0.00

VOTE
6
5
7
4
3
1
2
a
9

10

PLAYERS
TOKENS

58.60
54.40
50.60
50.20
46.20
44.80O
43.80
1200

1. 40
0.00

VOTE
8
9
7

10
6

4

2
1

PLA {E R3
TOKENS

18. 48
S.00

7.80
7.62
4.14
2.88
1.62
042

0.30
0.00

VOTE
10

9
8
7
6
5
4
3
2
1

PLAYER4
TOKENS

34.90O
28.65
1 5.85
6.50
3:"45
2. 40
0.35

0.2c5

O.00O

VOTE
10

9
8
7
6
5
4
3

1

PLAYERS
TOKENS

60. 74
27.44
15.98
7.50
4.76
3.81
2.77
1.96
1. 80
1. *
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