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In their analysis of the consequences of research joint ventures, Claude d'Aspremont and Alexis

Jacquemin (1988) deduce from the hypothesis of joint profit maximization the behavior of two

firms that are permitted to coordinate their research investments while anticipating that they will

subsequently compete as Cournot rivals in the product market. After modifying slightly their

assumptions about the effects of R&D on production costs, Morton Kamien, Eitan Muller, and

Israel Zang (forthcoming) also consider this same case of "R&D Cartelization". Both papers assume

that firms in the industry have a common "spillover" parameter (0 E [0,1]). Investing $3 in one's

own R&D lowers production costs by the same amount as $1 of investment by a rival.

Both papers presume that-at the joint profit maximum-each firm makes identical decisions

regarding investment and subsequent output. This presumption may seem plausible since the

cost functions for production and research for firms are identical and their outputs are perfect

substitutes. Nonetheless, the presumption is erroneous.
1

Instead of investing identical amounts and then slugging it out as equally matched rivals, the

firms can often earn strictly higher joint profits by investing at the first stage to induce monopoly

(or at least asymmetric duopoly) at the second stage.

I D'Aspremont and Jacquemin's Model

D'Aspremont and Jacquemin consider a market with two firms facing an inverse demand of P =

a - b(q+q2), where P is the market price and q; is the quantity produced by firm i, i = 1,2. They

assume that any investment by firm i which lowers its own constant marginal cost of production

by $1 spills over to the other firm and lowers the rival's constant marginal cost by p E [0,1]. If

z; denotes the amount of investment that firm i undertakes and z the amount of investment by
1
Meister (1992) reports numerical simulations where two identical firms simultaneously choose one of three levels

of R&D and then compete as Cournot duopolists. Some of these simulations suggest that joint profits might be
higher if the two firms did not invest identically. Despite these simulations, however, Meister commits the same error
as the rest of the literature both in extending d'Aspremont and Jacquemin to the n firm case and in investigating
research joint ventures involving only a subset of the firms.
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its rival, then the production cost function for firm i is given by (A - x; - #x,)q;, for i,j = 1,2,

and i $ j. The cost of investment is also symmetric for both firms and is given by yx2/2. The

exogenous parameters must satisfy the following: 0 < A < a, 0 < A < 1, and y > 0.

Assume that both firms cooperate in their choice of investment levels to maximize joint profits,

knowing that they will subsequently compete noncooperatively in the output market. If both

outputs in the second stage are strictly positive and form a Nash equilibrium given the investments

at the first stage, then joint profits may be written as the following function of these investments:

nt [(a - A)+ (2 -i e )zi + (r2p - 1)zj 2 on y 4 aj

D'Aspremont and Jacquemin define their proposed solution on p.1134 as

(1)

. (Q#+1)(a - A)
4.5b'y- (# + 1)2

and

(a -0A) 4.5by7
3b 4.5by - (1+ p)2'

The following parameter restriction, reported by them in their footnote 7, insures that these

decision variables are strictly positive: by > (1+13)2/4.5. Provided # < .5, however, the exogenous

parameters may simultaneously satisfy the following condition: by < 2(1- 3)2. If so, the symmetric

solution that d'Aspremont and Jacquemin identify cannot be optimal.
2 Indeed, any other allocation

of the same total investment between the two firms that still induces duopoly in the second stage

will generate higher profits.

The stationary point cannot be optimal in this region because joint profits are strictly convex in

firm l's investment assuming that firm 2's investment is altered so as to maintain a fixed sum (and

2ln an earlier comment on the d'Aspremont and Jacquemin model, Henriques (1990) considered the game where
firms act noncooperatively in both output and R & D. She proposed restricting attention to the region of parameter
space where the noncooperative solution is stable in the sense that the reduced form first stage reaction functions in
R & D space cross "correctly". See equation (6) on p.639 of her article. Our analysis concerns a different game since
cooperation occurs at the first stage. Moreover, her parameter restriction is not sufficient to eliminate the problem
we have identified.

assuming that both firms produce in the second stage). To verify this, we substitute z2 = k - z,

into (1), where k is any positive constant. Joint profits can then be expressed as:

n(z) = F +} zi(zi - k)(2(1 - #)2 - by)
b

where F depends only on the exogenous parameters. Differentiating the profit function twice with

respect to firm l's investment, we obtain:

d2A -2 (2(1 - #)2 _ b-y)

b

Hence, joint profits (II(z)) are strictly convex in the region of parameter space we identified

above. Figure 1 depicts this region as well as the one identified by d'Aspremont and Jacquemin

as necessary for the symmetric solution to be positive in output and investment. Since any local

change in the neighborhood of their proposed solution does not increase joint profits and since joint

profits are strictly convex where total investment is constant, nonlocal changes in the allocation of

the same total investment must strictly increase joint profits.

To identify what pair of investment strategies is optimal in the shaded region of Figure 1, the

joint profit maximization problem must be analyzed. The following preliminary observations reduce

the number of cases that must be considered. It is never optimal for both firms to produce zero

output. Denote the firm producing the weakly larger output at the optimum as firm 2. llence, firm

2 will produce strictly positive output. Since firm 2's output is set to maximize its profits at the

second stage for any pair of investments and for any output of firm 1, no local increase or decrease

in firm 2's output will affect its profits. This is reflected in the expression for q2 below. Since firm

2 produces the weakly larger output, it turns out to make the weakly larger investment. Indeed,

since it can be shown that it is never optimal for both firms to make zero investment, firm 2 always

makes a strictly positive investment in R&D. We incorporate these observations in our formulation

of the joint profit maximization problem:

3
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max (a - bq - bg2)(qa + q2) - (A - x - # 2 )q, - (A - z- /1)q2 - .5yzi -. 57z
whr 9q. r2. = 2

whereq92=(a-bq, -[A-x 2 -1,)/2b> qt, and

zx>0, z 2 >0, q2 > 0,

qi > 0,

a-2bq, -bq 2 -(A-zx-#x 2) < 0,

q[a-2bq, -bq 2 -(A-xzI-13z2)] = 0.

(2)

(3)

(4)

(5)

is anticipated to be strictly unprofitable (MHI < 0), it is straightforward to show that such be-

havior is jointly suboptimal. For suppose firm 1 did no investment in these circumstances. Then

a marginal increase in its R&D would create spillover benefits to firm 2 without bringing firm 1

into competition; and given d'Aspremont and Jacquemin's assumption about the cost of investing

in R&D, the marginal cost of doing the first bit of R&D is zero. Since a marginal increase in R&D

by firm 1 would have strictly positive marginal benefits and zero marginal cost, it is suboptimal for

firm 1 to do no investment in these circumstances (for any strictly positive spillover parameter).

Hence, in the region we have identified there remain four candidates for the optimal solution. In

three of the four cases, the firms invest at the first stage in such a way that monopoly occurs at

the second stage.

Each of these four candidate solutions can in fact be optimal as we illustrate below. We assume

that a = 1.5A. and 0 = .1. In each of four exogenous specifications of by, distinguished by dots

in Figure 1, we identify the optimal solution and report the associated joint profit in Table 1. In

addition, we report the profit that would arise at the symmetric solution proposed by d'Aspremont

and Jacquemin.?

Condition (4) states that firm l's marginal revenue must be less than or equal to its marginal cost at

an optimum. We will henceforth refer to the left hand side of (4) as firm 1's marginal profits (MiT).

Equation (5) is the complementary slackness condition: If firm 1 produces a strictly positive amount

at an optimum, then its marginal revenue must equal its marginal cost; if its marginal cost strictly

exceeds its marginal revenue at an optimum, then it must produce nothing.

Firm 1 may or may not produce at the second stage and may or may not invest at the first

stage. Hence, in addition to the case d'Aspremont and Jacquemin considered, there are three other

possibilities for firm 1: firm 1 (a) produces but does not invest (q, > 0, z, = 0), (b) neither produces

nor invests (q = 0,x1 = 0), or (c) invests but does not produce (qi = 0,z1 > 0).

In principle, there are two possible subcases associated with each case where firm 1 produces

nothing. That is, cases (b) and (c) can arise in two ways: a local increase in firm 1's production

above zero can strictly decrease firm l's profit on the one hand (MHI, < 0) or can leave it unchanged

on the other (MliI = 0). Hence, in addition to the solution candidate proposed by d'Aspremont

and Jacquemin, there are, in principle, five other candidates where an optimum might occur.

However, one of these possibilities need not be considered in the context of their example. Al-

though it remains a logical possibility that firm 1 might invest nothing when subsequent production

by n/(A2-y)

1.5 .046

1.0 .121

zi/A z2/A q41/(Ay)

0 .220 .072

q2 /(Ay) MHt1

.204 = 0

In/(A27)

.045

i;/A i/(A)

.099 .135

0 .625 0 .562 = 0 .076 .167 .228

.9 I .157 .019 .671 0 .652 = 0 .088 .194 .264

.8 .212 .085 .847 0 .847 < 0 .105 .230 .314

Table 1
3
Given the specification of the production cost function, it is possible to invest so much that marginal costs become

negative. However, it is straightforward to verify that for each case in Table 1, marginal costs are strictly positive at
both the optimal solution and at the symmetric solution proposed by d'Aspremont and Jacquemin.

5
4



In three of the four cases, firm l's marginal profit is zero at the optimum and hence joint profit

in the first stage is given by (1). Notice that (1) is equal to the sum of duopoly profits in the

second stage minus investment costs in the R&D stage. The cheapest way to accomplish a given

total investment is to set x1 = z2. Ilowever, with linear demand, the sum of duopoly profits in the

second stage is always maximized by handicapping one firm's marginal cost as much as possible.

This is achieved by doing no R&D at one of the firms. On balance, whether or not an asymmetric

solution obtains depends on the relative tradeoff between these opposing effects.

When y is high enough, minimizing investment costs is relatively more important, and the

d'Aspremont and Jacquemin solution holds. The symmetric solution also holds when the sum of

duopoly profits in the second stage diminishes in importance, as will be the case when demand is

low enough (large b).

For example, when a = 3A/2 and ,6 = .1, the symmetric solution holds for b-y > 1.62. See

Figure 1. However, at 67 = 2(1 - 1i)2 = 1.62, identified by the upper most dot in Figure 1, we

have shown that (1) is linear in the sum of the investment levels. This means that once the level

of industry investment has been decided upon, its allocation between the firms is inconsequential.

The two opposing effects are exactly offsetting. For by < 1.62, maximizing joint profits in the

second stage assumes prominence.

In our example with by = 1.5, the optimal choices of investment are given by xz = 0 and a2 =

.22. The resulting wedge between the two firms' marginal production costs, however, is not enough

to induce firm 1 to exit. It may seem counterintuitive that joint profits are maximized even though

marginal investment by firm I would have a zero marginal cost. However, the marginal benefit of

such an investment to joint profits in the second stage is strictly negative at the equilibrium.

In the example with by = 1.0, the gap created between the two firms' marginal production costs

is sufficient to induce firm 1 to exit. Once again joint profit maximization calls for ai = 0, even

though marginal investment by firm 1 would have a zero marginal cost. The intuition is the same

as before. Holding firm 2's investment constant at z2 = .625, any positive investment by firm 1

would induce entry in the second stage.

Entry in the second stage can only be forestalled as long as the gap in the two firms' marginal

production costs is sufficiently great. Any incremental investment by firm 1 would have to be offset

by a proportionately larger investment by firm 2 to maintain the monopoly. In the previous case,

joint profits were maximized by setting x, = 0. For low enough by, however, the amount of R&D

that firm 2 would undertake if it were constrained to do all of the investing would be more than

sufficient to induce firm l's exit in the output market. Formally, marginal profits of firm 1 would be

strictly negative (MI < 0). But if this were so, joint profits could be improved by shifting some

of the cost of investment to firm 1. This is illustrated for the case by = .9. here, the solution yields

xi = .019 and Z2 = .671. Investment levels are chosen so that firm 1 is just indifferent between

entering the market or staying out (Ml, = 0).

Finally, for sufficiently low by, equilibria are reached in which the allocation of investment be-

tween the two firms is governed solely by the cost efficiency of reducing firm 2's marginal production

cost. The example we give is by = .8. Here, the optimal a1 is exactly ten percent of z2. This

is because a $1 investment by firm I is assumed to lower firm 2's marginal production cost by 10

cents (/ = .1). In equilibrium, firm 1 strictly prefers to stay out of the output market.

II Kamien, Muller, and Zang's Model

Kamien, Muller, and Zang reformulate d'Aspremont and Jacquemin's treatment of "R&D Carteliza-

tion" in such a way that monopoly never results at the second stage. For purposes of comparison,

we specialize their model to the case of two firms producing perfect substitutes. Assume a linear

demand of P = a - q - Q2 and unit cost of production given by A - f(X;), where 1(X1) is the R&D

production function and Xi = z + #3+ is the effective level of firm i's R&D investment. The first

6 7



stage R&D expenditure levels for the two firms are given by zi and z2 respectively. In addition,

Kamien, Muller, and Zang place the following restrictions on the R&D production function:

Assumption I The R&D production function f(X) is twice differentiable and concave, f(O) = 0

and f(X) < A, f'(X) > 0 for all X > 0.

Assumption II The R&D production function f(X) satisfies

9
lim f(X) < a - A, and f'(0) > .

r--oo2(a -I)

Assumption III For all X > 0, (a - A + f(X))f"(X) + f'(X)
2 

< 0.

It is straightforward to derive the second-stage Cournot quantities as a function of the first-stage

investments:

Writing outputs as a function of the two investment levels, fixing their sum at what Kamien et

al. regard as optimal but allowing reallocations of investment between the two firms, we discover

joint profits need not be weakly concave at the presumed optimum. Hence, the alleged optimal

solution can be dominated.

Differentiating (7) twice, we obtain:

4(#- 1)2 ((a - A +f((1+)*))f"((1+#)')+9f'((1#)z*)2 I
9 (U)

= a-A+2f(X,)-f(X;) for i,j 1,2, and .
3

(6)

Assumptions I and 11 insure that both outputs are strictly positive for any nonnegative investments.

In their "R&D Cartelization" game, Kamien, Muller, and Zang allow firms to coordinate their

R&D decisions so as to maximize joint profits. The firms' problem is given by

Assumption III is insufficient to insure that (9) is weakly negative. For example, let f(X;) =

AX;/(X; + 9) , i = 1,2. For a > 2A and 9 < (a - A)A/4.5, it can be verified that assumptions

I, II, and III hold. For concreteness, let A = 10, a = 30, 9 = 40 and fl = .1. Then the solution

proposed by Kamien, Muller, and Zang yields xz = 2 = 5.04, giving joint profit of 89.96. But at

that point, the second derivative defined in (9) equals .056 > 0. Hence, the proposed solution can

he strictly dominated.
5 

For example, reallocating the same total investment as z, = 0, 22 = 10.08,

gives joint profit of 90.69.

Indeed, it can be verified that for a = 3A and 9 = 2A
2
/5, (9) is strictly positive for all spillover

parameters #3 E (0,1) and all values of the production cost parameter A > 0. The symmetric

solution they identify is never optimal for these parameters.

III Conclusion

Contrary to the implicit assumptions of the literature, identical participants in research joint ven-

tures may often increase their collective profits by investing asymmetrically in cost-reducing R&D.

"Joint profits equal industry gross sales revenue minus research costs minus production costs. At the symmetric
stationary points which the respective papers identify as optimal, industry sales revenue minus research costs is
a strictly concave function of the investments of the cooperating firms. This follows since the cost of research is
a convex function of the investments (strictly convex in d'Aspremont and Jacquemin's formulation and linear in
Kamien et al's formulation) while industry revenue is a quadratic function of industry output which, in turn, is a
concave function of the investments (strictly concave in Kamien et al.'s formulation and linear in d'Aspremont and
Jacquemin's formulation). In both formulations,joint profits fall to be strictly concave because the remaining term
in the sum - minus joint production costs - is sufficiently convex in the investments to outweigh the other terms
in the sum.

max (a-1 - 92 )(4 +492 )-(A- f(Xi))qi -(A-f(X 2 ))2-zs -z2,
rt. X2

(7)

where outputs are given in (6).

A stationary point for this function occurs where 2l = z2 = z* and is implicitly defined as

follows:

4(1 4-)(a- A+f((1+#)z*))f'((1l+ 4 ) 2 0 .
(8)

Kamien et al. presume that the function given in (7) achieves a global optimum at the unique

symmetric solution to (8).4 If so, then the function must be weakly concave there.

4Uniqueness is implied by Assumption III.

9
8



By doing so, they avoid slugging it out in the output market as equally matched rivals. If sidepay-

ments are costless, such asymmetric investments should occur rather than the symmetric invest-

ments characterized in the literature. If, on the other hand, sidepayments are not costless, then

investment decisions cannot be separated from decisions about how the proceeds will be distributed

and the assumption of joint profit maximization is inappropriate. Predicting investment decisions V
Q Q

then requires taking explicit account of the costliness of making sidepayments.

(.)- 1
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