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1. Introduction

Until last year, a literature on animal hoarding comprising more than 1500 arti-
cles lay scattered across various journals of behavioral ecology. Stephen Vander Wall
masterfully surveys this wide-ranging literature in his encyclopedic Food Hoarding
in Animals [1991].

Hoarding obviously enables an animal to survive when foraging for new supplies
would be difficult. But as Vander Wall emphasizes, hoarding also contributes to
reproductive success:

An individual must endure periods of resource dearth in good condi-
tion if it is to breed successfully when conditions are favorable. Stored
food could significantly affect reproductive success ... Potential benefits
arising from use of stored food during the reproductive season include
(1) promoting early breeding and increasing the number of individuals
in breeding condition, (2) facilitating courtship, (3) increasing litter or
clutch sizes, (4) increasing nest attentiveness, and (5) supplementing the
diet of the young. [p. 271

After the onset of winter, animals often reduce-and sometimes even suspend-
their food-gathering activities. The food they consume comes to a large extent from
external stockpiles or internal reserves (body fat). Vander Wall notes that hoarding
facilitates hibernation:

For many food hoarders that hibernate or regularly enter torpor, food
stored in or near the hibernaculum, sometimes augmented with varying
amounts of body fat, is essential to successful wintering. The animal
periodically arouses, feeds from its food stores, and then becomes hy-
pothermic again ... [p. 23]

Below, we refer to any winter-time behavior of this kind-where an animal ceases
altogether to hunt for food and lives instead entirely on its external stockpile (or
body fat)-as "hibernation."1

The literature which Vander Wall summarizes has one striking deficiency. As
David Sherry observed in his glowing evaluation in Science, "What his [Vander
Wall's] review makes clear, however, is that quantitative models of the fitness con-
sequences of food hoarding are badly needed."

The purpose of our essay is to provide such a model. Like any work, ours owes
many an intellectual debt-not only to Vander Wall and those he surveys but also
to two economists, Harold Hotelling [1931] for his theory of storage and Gary Becker
[1965] for his theory of time allocation.

The model we develop explains storage and hibernation as intertemporal be-
haviors which maximize fitness. We use the term "fitness" to mean the number
of surviving offspring. Although the determinants of fitness are by no means fully
understood, the evidence surveyed by Vander Wall suggests that fitness is a strictly
increasing function of the food stores gathered for the offspring. Such stores not
only increase the number of offspring produced but also raise the percentage which
survives. The evidence also suggests that the number of surviving offspring is an
increasing function of the body weight of the mother. Increases in her weight con-
tribute to her health and result not only in more offspring but also in a larger
percentage of survivors.

How an animal behaves between one litter and the next determines both its
weight gain and what is stored for the offspring. Many paths of behavior are "inept"
and result in unnecessarily small storage for a given maternal body weight. If

'Thus, we do not distinguish between "true" hibernation and other physiological states of
dormancy.
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behavior is not inept, there remains a fundamental tradeoff between maternal body
weight and food stored for the offspring: the more food an animal stores for its
litter, the harder it must work throughout the year and the less food is available for
its own consumption; hence, the sma ler its weight gain. This tradeoff is represented
in Figure 1.

[Figure 1 goes here]

Figure 1 can be used to summarize the foregoing discussion. "Inept" behavior
results in points inside the frontier. Alternative behavior could result in more
food for the offspring without any reduction in maternal body weight (a rightward
movement toward the frontier).

Inept behavior cannot maximize fitness. As long as fitness is strictly increasin in
the food provided to the offspring, the behavior which maximizes fitness will produce
an outcome somewhere on the frontier.2 Each point on the frontier can be achieved
by only one time path of behaviors (storage, retrieval, foraging, consumption, energy
spent in food-related activities, etc.). Such a path can be conveniently characterized
as the solution to an optimization problem.

To determine which mix of body weight and bequest maximizes fitness requires
more knowledge of the fitness function than is currently available. Even in the
absence of such information, however, the hypothesis that the observed path of
behaviors achieves a point somewhere on the frontier can-in conjunction with a
few plausible assumptions-generate a rich set of predictions.

Our principal assumptions are that food-related activities require work, that
work consumes energy, and that foraging is in fact-and is anticipated to be-far
less productive after the onset of winter. We also assume that a portion of stored
food decays, is stolen, or cannot be relocated.3

Given our assumptions, we show that behaviors which achieve the relevant4 por-
tion of the frontier of Figure 1 must have the following characteristics: food is put
into storage at an increasing rate before the onset of winter and retrieved there-
after at a decreasing rate. Consumption remains constant until storage is initiated
and declines monotonically thereafter. Energy expended on food-related activities
remains constant until storage begins and increases until the onset of winter. Forag-
ing and indeed overall energy expended on food-related activities drop precipitously
at the onset of winter. Depending on the exogenous input parameters, there may
be a "hibernation" phase during which the animal ceases to forage altogether and
continues to reduce its food-related activity (which consists only of retrieval) still
further. Eventually (if not immediately after the onset of winter), the animal's
foraging and work effort begin to increase.

Our paper is organized as follows. In the next section, we formulate the op-
timization problem and present a set of conditions which must hold if a path of
behaviors is optimal. Moreover, we show how these conditions can be solved recur-
sively to construct the optimal path of behaviors. The proof that for any point on
the frontier of Figure 1 there exists only one such path of behaviors is proved in
Appendix 2.

2 Since reductions in maternal body weight would permit additional food to be stored for the
offspring, either the constrained maximum occurs where fitness is strictly increasing in maternal
body weight (as we assume) or the optimum occurs at the bottom right corner of Figure 1 where it
is infeasible to reduce maternal body weight.

slnterviewed in a recent New York Times (1991) article about his book, Vander Wall indicated
that, because of theft, some animals retrieve only one third of what they store! This is like putting
money in the bank and not only getting zero interest but also having to give up two-thirds of the
principal as a "service charge."

"To achieve the bottom-right portion of the frontier, the animal must never retrieve and consume
accumulated stocks. Since retrieval does occur, we find this portion of the frontier of little interest.
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In section 3, we describe the qualitative characteristics of "noninept" paths of
behaviors. We emphasize that unless a path of behaviors satisfies certain arbitrage
conditions, a feasible perturbation in behavior could increase the number of surviv-
ing offspring. The arbitrage conditions are then shown to imply qualitative changes
over time in the endogenous variables of the model. At the end of section 3, we
illustrate the predictions of the model with a spreadsheet simulation.5 Such nu-
merical simulations require as inputs exogenous parameters and provide as output
the unique path of behaviors sofving the necessary conditions of the optimization
problem. Appendix 1 supplements sections 2 and 3 by deriving from the necessary
conditions each behavior in a given period as a continuous function of the "co-state
variable" in that period. These functions underlie our spreadsheet model. Section
4 concludes the paper.

5A disk containing our spreadsheet model is available upon request. Please specify Lotus, Quattro
Pro, or Excel.
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2. The Model

In this section we formulate and solve the optimization problem referred to in
the introduction. To begin, we define the variabes used in the model:

#9= discount factor per period (/e(O,1]);

At = energy expended in period t in food-gathering, storage, and retrieval;

Hit = units of food gathered in period t;

Rt = units of food retrieved from storage in period t;

N = units of food newly-stored in period t;

Ct = units of food consumed in period t;

ah(t) = energy required to gather one unit of food in period t;

a,. = energy required to retrieve one unit of food from storage in any period;

an = energy required to store one unit of food in any period;

6 = the fraction of food retrievable after being stored for one period;

St = food in storage at the beginning of period t;

T = number of periods in planning horizon;

t. = the final period before the onset of winter;

S = minimal allowable stock remaining at T + 1.

By definition, a point on the frontier of Figure 1 maximizes the bequest to the
offspring for any given maternal body-weight at the time the new litter is born. It
is more convenient (and equivalent) to characterize the given point as maximizing
the body weight of the mother for a given bequest to the offsp ring. To achieve
this frontier, te consumption, foraging, storage, and work-effort decisions in each
period must

T

Maximize Zflt{U(C1) - F(At)}
t=1

subject to C = H + Rt- Nt ,fort= 1, ... , T
St+-<( St + Nt-R)6 ,for tl=,..., T

4



At= ah(t)Ht +&a,.Rt + anNt , for t = 1, ..., T

Si

ST+1>2S
and At, NCt, HcRe, St > 0 .

We assume that U(Ct) and F(At) are differentiable and, respectively, strictly con-
cave and strictly convex in their single arguments. Economists may want to think
of U(Ct) as the utility of consuming C, units of food in period t and F(At) as the
disutility of working for At units of time in period t. The re-interpretation suggested
in the introduction is to regard {U(C) - F(At)} as the change in body-weight in
period t resulting from C units of consumption and At units of food-related energy
expenditure in eriod t. If the term in braces is negative, interpret this weight loss
as the result of drawing down internal stores of body fat. If we set # = 1, inter-
pret T as the time when the next litter arrives, and denote as WO the initial body

T

weight of the mother, then ' /3*{U(C) - F(At)} + Wo is her body-weight when
t=1

the offspring are born.
It is convenient to substitute out of the variable Ct. Forming the Lagrangean

we obtain:

T

L = Z/#t{U(H + R - N,,) - F(A,,) + Ad[6(S,,+ N,, - R,,) -S+1
t=1

L+7t[At- (ah(t)H + a,.Rt + anNt)]

+A06(5 - Si) + #T+1OA+1(Sr+1 - S).

The following Kuhn-Tucker conditions must hold if a program is optimal:
For t = 1,2,..., T,

1. Ht 0; = 13 [U'(Ht + Rt - N) - ytcah(t)] <0; with complementary

slackness;6

OL
2. R 0; = /[U'(H+Rt-N)-At9-yta,.] 0; with complementary

slackness;

3. N, 0; a- = 3t[-U'(H,+ R,- Nt)+ At9 - ytan] < 0; with complemen-

tary slackness;

O L
4. St >0; = /3t At9 - #t -A,- 1 < 0; with complementary slackness;

5. ST+1 2 0; - /T+16Ar.1 - /3TAT 0; with complementary slack-
ness;r+

OL
6. A,, 0; ~-=0(S,+N,, - R,,) - St+1 > 0; with complementary slackness;

6C0mplementary slaCkness means that at least one of the two conditions in the list must equal
zero. For example, in (1) either H1 = 0 or #3*[U'(H1 + R,, - N1) - 7laoh(l)] = 0 (or both).

5



8 L
7. Ao;>0; - = 8(S - Si) > 0; with complementary slackness;

8Ao

8L
8. -- = At - (ah(t)Ht + a,.Rt + anNt) = 0;

9. AT+1 > 0; = #T+1l(sT+1 - S) > 0; with complementary slackness;
8aT+1_

and

10. At > 0, _, 3 (-F'(A) + Yt) < 0; with complementary slackness.

We make the following simplifying assumptions to which we will subsequently
refer:

Al: U'(C)>0

A2: ah(s) = ah(t) for s, t = 1, 2,... , t

A3: ah(s) = 'h(t) for s, t = tw + 1, t + 2, ... , T

A4: F'(0) is finite and lim U'(C) = oo
C-+o

A5: ah(t-+1) > max(ah(t.,,), a,, an)

ah(t.) (nA6: ah(t.+1)> + a, + -
00/390

A7: min(a,., an, ah(t)) > 0

A8: 5 > 0
A9: ah(tw) > a, .

T

Since U(Ct)-F(At) is strictly jointly concave in Ct and At, the maximand E #({U(Ct)-
t=1

F(At)} is weakly jointly concave in the full vector of decision variables. Since, in
addition, the constraint set is convex any solution to the Kuhn-Tucker conditions
is optimal. In Appendix 2, we show that these conditions have only one solution.

At the outset of our analysis, we verify that it is never optimal both to add to
and withdraw from storage in the same period. For, in any program where Nt > 0
and Rt > 0 in period t, one could-without varying At-reduce both activities by
some e > 0, have the same amount in storage next period, and use the energy saved
to gather and consume additional food. This presumes, of course, that at least
one of the two activities reduced by e is requires effort (a, > 0 or an > 0). More
formally, suppose to the contrary Rt > 0 and Nt > 0. Then (2) and (3) imply

U'(He +R --N4) - At6-0 7 ta,.= 0

and - U'( H + Re- Ne) + At -7yta,= 0.

Summing, we get

- 7t(an + a,.) = 0. (11)
But by (A7), the second factor is not zero~ moreover, since (Al), (A7) and (1)
imply that the first factor (-ye) is nonzero, ('11) cannot hold. Hence, in an optimal
program either R, or Ni (or both) must be zero.
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Next, we establish that it is never optimal to cease all food-related activity
(At = 0). Suppose to the contrary that At = 0 for some t. As a result, Ht = 0,
Rt = 0 and Ct = 0. Then (1) and (10) reduce to:

U'(0)

ah(t)

F'(0) > 'Y.

But these inequalities are jointly inconsistent with (A4). Therefore, it is optimal to
expend some energy on food-related activities (At > 0) in every period. Simplifying
(10), we obtain:

10'. At>0 andF'(At)=yt.
Since the three other decision variables (He, Rt and Nt) must each be either zero

or strictly positive there are in principle 23 cases to consider. But two of these eight
cases involve Rt > 0 and Nt > 0 simultaneously and, as proved above, this cannot
be optimal. A third case has Hit = 0, Rt = 0 but Nt > 0. Since Ct = Ht + R - Nt,
such a program would violate the constraint that consumption be non-negative. A
fourth case has Ht = Nt = Rt = 0, which cannot be optimal since it implies that
At = 0.

There remain 4 cases to consider:

Ht R Nt

Case1 0 + 0

Case 2 + + 0

Case3 + 0 0

Case 4 + 0 +

In Appendix 1, we show that each decision variable (A, C, H, N,.R) can be writ-
ten as a continuous function of the multiplier A. These functions shift only once: at
the onset of winter.

Prior to the onset of winter, optimal behavior on a given period depends on A in
that period. A must lie in one of the disjoint regions which correspond to the cases
above. If A is in region 1, 2, 3, or 4 then case 1, 2, 3 or 4 (respectively) arises. The
boundary between region i and j at date t is denoted At,. An equation defining each
of these boundaries as an implicit function of the exogenous variables is presented
at the end of Appendix 1.

It is shown in Appendix 1 that A, 2 < Ats <A-
These boundaries do not change prior to the onset of winter. At the onset of

winter, they jump up but retain the same order. They do not change again.
In our application, we assume the initial period occurs in the spring after the

previous litter is born and that the animal initially has nothing in storage. Conse-
quently, S = 0. Moreover, we assume that the terminal requirement (5) is not so

enpirely.v that it is optimal either to store from the outset or to forego retrieval
If testockpile is initially empty but some retrieval subsequently occurs, there

must be an intermediate phase where food is placed in storage. In such cases, A
must start in region 3 or 4, must grow into the interior of region 4 prior to the onset
of winter, must jump from region 4 to region 1 or 2, and then must continue to

7



increase until the end of the program.7 Figure 2 illustrates how the boundaries of
the regions (denoted R1-R4) jump at the onset of winter:

R1 R2 R3 R4

0 A1,2  A2,3  A

R1 R2 R3 R4

A

6 ~- I

0A 1,2  A2,3  A3,4

Figure 2: The 4 Regions before and after Winter Arrives

As the dashed line indicates, A can increase by the factor 1/f 3 9 and nonetheless can
switch from region 4 to region 1 at the onset of winter. A transition from region 4 to
region 2 would occur instead if the minimal bequest (S) were increased sufficiently.8

Clearly, no hibernation (no transition to region 1) can occur if A*/#3 > A2 1.
For, in that case, if At, lies in region 4 before the onset of winter, At.+ 1 must lie in
region 2 (or higher) after the onset of winter. As is discussed in the final section of
Appendix 1, our assumption A6 insures that transitions to region 1 can occur.9

To conclude this section, we describe how the Kuhn-Tucker conditions can be
solved recursively. If it is not optimal to store initially, then A0 must be contained in
region 3. For, if it were in region 1 or 2 there would be positive retrieval - violating
the requirement that storage be non-negative. Similarly, if A0 were in region 4, there
would be additions to stocks immediately-contradicting the assumption that it is
not optimal to store initially.

As long as A remains in region 3, no new storage or retrieval occurs. Each period
the anim finds and consumes a constant amount of food and spends a constani
amount of energy on food-related activities. If St+1 = 0, (4) implies At+ 1 C At/,#9.
Hence, there is a limit to how fast the multiplier grows. If At leaves region 3 before
the onset of winter (t C tm), it must enter region 4. When this transition occurs in
the optimal program is shown in Appendix 2 to be uniquely determined from the
necessary conditions.

To compute the optimal program, guess at the first period when new storage
occurs. Denote this as t*. Then St. = 0. Denote the boundary between region 3
and region 4 as A3,4. At- can be set in a small interval (A3,4, A3,4/,36). Given the
arbitrary choices of t* and At., the remainder of the program is uniquely determined.
Given At.,we can compute At., Ht*, Re., Nt., and Ct. using the functions derived
in Appendix 1. Since At.> 0, St.+1 can be computed from condition (6). Since
St.+1 > 0, At*+ 1 can be computed from condition (4). The entire cycle can now

'We do not focus on transitions from region 4 to regions 3 or 4 although such transitions are
necessary to achieve some portions of the frontier in Figure 1. In such programs, none of the
accumulated stocks is retrieved before the litter arrives. To our knowledge, such behavior is not
observed-presumably because the fitness function puts sufficient weight on maternal health. For
similar reasons, we do not discuss situations where the animal recommences storage before the litter
is born (where A passes through the entirety of region 3 and re-enters region 4) although this would
clearly be optimal in some circumstances.

'The proposed increase in S would not affect the boundaries between the regions. The boundaries
are also independent of T and t,,,.

SOur first simulation illustrates a case where hibernation is required to reach a particular point
on the frontier of Figure 1.

A
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be repeated given this At-+ 1 ... Eventually, one computes AT, HT, RT, NT, and CT.
Since (6) holds at t = T, ST+1 can be determined. If ST+1 < $, (9) is violated
and the program cannot be optimal. If Sr+1 > S, AT = 0 or the path of behaviors
can not be optimal. For, (9) requires that AT+1 = 0 and (5) and (A8) require that
AT = /3AT+1 = 0. If ST+1 = S,AT>0.

If the constructed program violates any of these end-point (or "transversality"
conditions), the initial guesses are incorrect and should be revised. As a practical
matter, it is sensible to start At. at the lower end of the interval (A3,4) and to adjust

t* first. Assuming the minimal bequest S is not too oppressive, setting t* = 1 will
result in too much storage (ST+1 > S). As one delays the period when region 4
is entered (t*), ST+1 decreases. If possible, set t* so that ST+1 = S. If that is
impossible, because t must be an integer, set t* so that ST+1 is as close as possible
to S but is smaller than this minimal bequest. Now increase At. toward the upper
end of the interval (A3,4/,6) until ST+1 increases to S. This second step would
be unnecessary in the continuous-time analog of our discrete-time model. In our
application, S1 = 0. In this circumstance, it will never be optimal to have ST+1 > S.
For, if stocks were bequeathed at T + 1 that were not present initially, they would
have to be accumulated. But for them to be accumulated At > 0 after t = *. If so,
then (4) would imply that AT+1 > 0 and this would violate the endpoint condition.

9



3. How Behavior Changes over Time

The model predicts how behavior changes before the onset of winter and after
it arrives. These changes are summarized in Table 1 below. The purpose of this
section is to explain these qualitative predictions intuitively.1 0 At the end of the
section, we also discuss how behavior jumps at the onset of winter.

Table 1
Change in Decision Variable Within a Region

as Time Elapses

Variable

Region H R N C A

Region1 0 1 0 1 4.

Region2 1 .1 0 J, I

Region 3 -+ 0 0 -> -+

Region 4 ? 0 I 1

Key: T means a positive variable strictly increases over time.
4 means a positive variable strictly decreases over time.
-+ means a positive variable is constant over time.
? means a positive variable could increase or decrease over time.
o means a variable remains zero over time.

We begin with a preliminary but useful observation. Whenever Hit > 0,

U'(C)= ah(t)F'(At). (12)

(12) is useful because it implies that consumption and activity must change in
opposite directions in successive periods. Either both variables remain fixed or
(Ct+1 - Ct)(At+1 - At) < 0.

Equation (12) must hold (for Ht > 0) if a path of behaviors is optimal. For,
suppose its left-hand side were strictly larger than the right-hand side. Then the
animal could increase its activity at t by dAt, use the additional effort to forage for
more food (dH = dAt/ah(t)), and consume the extra amount (dCi = dHt). If no
other changes in behavior took place, the resulting change in the maximand (scaled
up by the constant 

1
-t) would be:

U'(C1)dCt - F'( A )d A1 = [U * - F'( At)] d At. (13)

10In Appendix 1, equations are derived which define the level of each decision variable as a function
of the contemporaneous co-state variable (A). These equations underlie our spreadsheet simulation
model. In addition, they imply qualitative changes in the decision variables over time and hence can
be used to confirm the results in this section.

10



Hence, if the left-hand side of (12) were strictly larger than the right-hand side, the
bracketed coefficient in (13) would be positive and a utility gain could be achieved by
increasing activity (dAt > 0) in period t as described above. If instead the left-hand
side were strictly smaller, a utility gain could be achieved by decreasing activity and
foraging-provided such decreases were feasible. They are feasible except in region
1 (where Ht = 0). In the other three regions, (12) must hold.

The foregoing argument involves perturbations within a single period. By con-
sidering perturbations in successive periods, we can explain the predicted changes
in consumption and the other endogenous variables. We consider the regions in
the order which is most likely to occur: region 3 followed by 4 before the onset of
winter; and region 1 followed by 2 after the onset of winter.

Behavior does not change in region 3. Recall that there are neither additions
to nor withdrawals from storage in that region. Hence, the only energy-consumin
activity is foraging, and the entire yield from foraging is consumed: At = achttI
and Ct = Ht. Since Ht > 0 in this region, (12) holds. Replacing At in (12), we
obtain:

U'(Ct) = ah(t)F'(ah(t) Ct).
This equation uniquely defines consumption at t. Moreover, since ah(t) is assumed
(in A2 and A3) to be constant before and after the onset of winter, Ct does not
change in region 3 during time intervals which exclude the onset of winter (tw+1).
These facts are summarized in row 3 of Table 1.

In region 4, additions to storage occur in each period. Since storage is augmented
in successive periods (Nt > 0 and Nt+1 > 0), the following arbitrage condition must
hold if the path of behaviors is optimal:

1+ an U'(c)=# / 1+ "a U'(C+1). (14)
ah(t) ah(t+1)

For, suppose instead that the left-hand side were strictly smaller than the right-
hand side. Consider now an alternative path of behaviors which is identical to
the original path through period t -l1 and then again from period t + 2 until the
end of the horizon but differs in periods t and t + 1. In period t, suppose the
animal increases new storage by dNt. If its activity at t does not change, then
the energy it spends gathering food must decrease and a loss in provisions results:
dHt = -[an/ah(t)]dNt. Consequently, the change in consumption in period t is

dCt = dHt - dNt = - (1+ an/ah(t)) dNt.
In period t + 1, there is 9dNt more food in storage. If the animal changes its

new storage in t +'1 by dN+1 = -6dNt, then stocks carried into the future will be
unaffected by the perturbations in these two periods."'

The energy saved because of the reduced new storage at t + 1 can be used to in-
crease foraging without any overall change in the energy spent on food-related activ-
ity. As a result, the change in newly acquired food would be dHt+, = -[an/ah(t+1)]dNt+1 =
[an/ah(t+1)]OdN.

Consequently, consumption increases both because of the reduction in new stor-
age and because of the increased foraging: d + = dHi1-dNT+1 = (1 + " 6dNA.

If no other changes in behavior take place before t or after t + 1, then the change
in the maximan d would be:

U'(C2)dC, + flU'(Ct+1)dCt+1 =

- [U'(Ct) (1 + a" + I3U'(Ct+1) (1+ ah"~i ) dNr. (15)

" Since St+2 = O(St+1 + N1+1 ) = 02(St + Ni ) + 0 11 ~+ = O2dMN + Od N1+1. I f d 1+ =
-6d N1, dSt+2 = 0.

11



Hence, if the left-hand side of (14) is strictly smaller than the right-hand side,
the bracketed coefficient in (15) would be positive and an increase in the maximand
could be achieved by increasing new storage (dNt > 0) at t as outlined above; if
the left-hand side were smaller, the maximand could be increased by reducing new
storage at t. In region 4, each of these arbitrages is feasible.'2

Since ah(t) is assumed to be constant except at the onset of winter, (14) simplifies
to:

U'(Ct) = #6U'(C+1)-
Since #0 < 1 and U'(.) is strictly decreasing, Ct+1 < C in region 4 for successive
periods before the onset of winter or after winter has arrived.

Since foraging is positive in region 4, activity and consumption must move in
opposite directions: hence, At+1 > At. Moreover, the linear identity defining con-
sumption and the linear energy-allocation constraint jointly imply:

N= At - &h(t)Ct
ah(t) + an

Since the numerator of this fraction increases over time in region 4 while the de-
nominator is constant, Nt+1 > Nt. Foragin can change in either direction in region
4. These facts are recorded in row 4 of Table 1.

In region 1, foraging is zero and retrieval from storage occurs in every period
(Rt > 0 and R+1 > 0). In this case, the following arbitrage condition must hold if
the path of behaviors is optimal:

U'(Ct) - a,.F'(At) = #30 {U'(Ct+1) - a,.F'(At+1)} . (16)

For suppose that the left-hand side were strictly smaller than the right-hand
side. donsider an alternative path of behaviors which is identical to the orginal
path through period t - 1 andthen again from period t + 2 until the end of the
horizon but differs in periods t and t + 1. In period t, suppose the animal increases
its retrieval by dRt and, so as not to alter the amount it forages, increases its activity
level by dAt = ardRt. As a result, consumption would increase by dCt = dR.

If at t + 1 retrieval changes by dRt+1 = -6dRt, then the perturbations at t
and t + 1 would not require changes in other periods for the perturbed path to
be feasible. For simplicity, assume that no other changes take place. Moreover,
suppose the animal reduces its activity at t + 1 to accommodate the reduction in

' 2This arbitrage relationship may be derived more formally from the necessary conditions for a
maximum. Since by hypothesis Nt > 0 and Nt+1 > 0, (3) implies:

-U'(Ct) + A68- ytan = 0

-U'(Ct+1) + At+16 - 7t+ia = 0 .

Since Nt > 0, Rt = 0, St+1 > 0, and hence (4) implies:

+1 = A/I6O.

Finally, since N, > 0 and N:+ > 0, Hb > 0 and IH+1 > 0 -- implying from (1):

=U'(Cs) U'(C_+1

7: = and 7t+1 =-

Substituting out of the y's and using the relationship between the successive A's, we obtain the
arbitrage relationship. It therefore must hold whenever N1 > 0 and N1+1 > 0 if the program is
optimal. It is left to the reader to verify that each of the other arbitrage conditions discussed
intuitively in this section can be derived in a similar fashion.
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retrieval without any alteration in foraging. Then dAt+1 = a,.dRt+1 = -a,.6dRt.
Consequently, the change in consumption would be: dCt+1 = dRi = -9dRt. This
perturbation results in he following change in the maximand:

U'(Ct)dCt - F'(At)dAt + Q {U'(Ct+1)dCt+1 - F'(At+1)dAt+1} =
[U'(Ct) - arF'(At) - #6 (U'(Ct+,) - aF'(At+1))] dRt (17)

If the left-hand side of (16) were strictly smaller than the right-hand side, the
bracketed coefficient in (17) would be negative and a utility gain could be achieved
by reducing retrieval (dRt < 0) in period t. If it were strictly larger, a utility gain
can be achieved by increasing retrieval in period t (dRt > 0). Since A > 0, R >
0, and C > 0 in this region, either of these arbitrages is feasible.'3 Therefore, (16)
must hold if the path of behaviors is optimal.'4 Recall that H = N = 0 in region
1. Hence, C = R = A/a,. Substituting into (16), we obtain:

U'(Ct) - aF'(a,.Ct) = # {U'(Ct+1) - aF'(aCt+1)} -

Since /9 < 1 and U'(C) - a,.F'(a,.C) is strictly decreasing in C, we conclude
that Ct+1 < Ct in region 1. Moreover, since C = R = A/a,, it follows that
At+< At and Rt+1 <R. These facts are recorded in row 1 of Table 1.

inally,in region 2 foraging is strictly positive (Ht > 0) and retrieval occurs
in successive periods (R > 0, R:+1 > 0). If the path of behaviors is optimal, the
following arbitrage relationship must hold:

1 - ' U'(Ct) =/39{1 - '} U'(Ct+1). (18)
ah(t) ah(t+1)

For, suppose that the left-hand side of (18) were strictly smaller than the right-
hand side. Consider now an alternative path of behaviors which differs only in period
t and t+1. In period t, suppose the animal changes its retrieval by dRt. If activity is
fixed, there must be an offsetting change in foraging: dHi = -[a,./ah(t)]dR. Conse-
quently, consumption in period t changes by dCt = dHt + dRt = (1 - ar/ah(t)) dRt.

Sunppose retrieval at t + 1 offsets the change at t so that the perturbation does
not affect the stockpile size at t + 2. This requires that dRt+1 = -9dRt.

If activity is not to change foraging must be adjusted to compensate for the
change in retrieval: dHt+1 = -la,./ah(t+1)]dRt+1 = [a,/ah(t+1)]dRt. The change in
foraging and retrieval result in a change in consumption: dCt+1 = dHt+1 + dRt+1 =
9 ([a,/aht+1)] - 1) dRt. As a result the maximand changes by:

U'(Ct)dC + /U'(Ct+1)dCt+1 =

[U'(ct) (1 - ). - /3U'(C 2+,) 1 - a,. dR . (19)

If the left-hand side of (18) is strictly smaller than the right-hand side, the
bracketed coefficient in (19) would be negative and the maximand could be increased
by reducing retrieval (dRe < 0) at t. Conversely, if the left-hand side of (18) is

'aTo derive (16), use conditions (2), (4), and (10).
"4Note that we do not vary foraging in conducting this exercise. Since H = 0 in this region, any

arbitrage which required dH < 0 would be infeasible.
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strictly larger, increasing retrieval at t would result in a larger maximand. Since
each of these arbitrages would be feasible in region 2, (18) must hold.15 This
condition simplifies to:

U'(C ) = #6U'(Ct+1)
since ah(t) does not change before the onset of winter or after winter arrives. This
in turn implies that Ct+ 1 < C in region 2. Moreover, since foraging is positive in
region 2, activity and consumption move in opposite directions. Hence, At+1 > At.
The linear identity defining consumption and the linear energy-allocation constraint
jointly imply:

_ah(t)Ct - At

ah(t) - a,

Since the numerator of this fraction decreases over time in region 2 while the de-
nominator is constant, RtH < Re. If retrieval decreases and yet activity increases,
the energy-budget constraint requires that foraging increase: Ht+1 > Ht in region
2. These facts are recorded in row 2 of Table 1.

To conclude this section, we consider the jumps in behavior which occur at the
onset of winter. In period t = t., the animal adds to storage (Nt > 0). In the
following period (the first period when foraging requires more energy), the animal
retrieves from storage (Rt+1 > 0). Since activity is positive in both periods (At > 0
and At+1 > 0), the following arbitrage condition must hold if the path of behaviors
is optimal:

U'(Ct) + anF'(At) = #3 {U'(C+1) - arF'(At+1)} (20)
For, suppose the left-hand side were strictly smaller than the right-hand side.

Consider now the following perturbation in behaviors at t and t + 1. At t, the
animal stores an additional amount which would otherwise have been consumed
(dCi = -dNt). This increased storage requires an additional expenditure of energy.
Assume the animal does not alter its foraging (dHt = 0), but instead increases
its activity (dAt = andNt). In period t + 1, the animal retrieves and consumes
what remains of the additional storage (dCt+1 = dRt+1 = 9dN). The increased
retrieval requires the additional expenditure of energy. Assume again that the
animal does not alter its foraging dHt+1 = 0) but instead increases its activity
(dAt+1 = a,.dRt+i = ,r9dNt).

Since the stocks carried into period t + 2 are unchanged, restricting changes in
behavior to those outlined for periods t and t ±1 results in a feasible perturbed
path. Assume no other behaviors are altered. Then the change in the maximand
would be:

U'(Ct)dCt - F'(At)dAt- + , {U'(Ct+1 )dCt+1 - F'(At+1)dAt+1} =
[-U'(Ct) - axF'(At) + 36 {U'(C2+1) - a,.F'(At+i)}] dNt (21)

If the left-hand side of (20) were strictly smaller than the right-hand side, the
bracketed coefficient in (21) would be positive and a utility gain could be achieved
by increasing storage (dNt > 0) in period t. If it were strictly larger, a utility gain
can be achieved by reducing storage in period t. Since At > 0, Nt > 0, Ct >
0, Rt+1 > 0, and Ct+1 > 0, either of these arbitrages is feasible. Therefore, (20)
must hold if the path of behaviors is optimal.16

This same condition holds whether the transition is from region 4 to region 1 or
from region 4 to region 2. Since F'(-) > 0 and /39 < 1, (20) implies that Ct+1 < Ct.

isTo derive (18), use conditions (1), (2), and (4).
1 6To derive (20), use conditions (2), (3), (4), and (10).
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If the transition is to region 1, it can be shown17 that activity jumps down
(At+1 < As). As for the other three endogenous variables, new storage and foraging
jump down to zero and retrieval jumps up from zero.

If the transition is instead to region 2, the following arbitrage condition must
hold between periods t (= tw) and t +1:

kxh(t) + a.]F'(At) = #6[&h(t+1) - a,]F'(At+1). (22)

For, suppose the left-hand side were strictly smaller than the right-hand side and
consider now the following perturbation in behaviors at t and t + 1. The animal
increases its activity in period t and uses the increase to find and store additional
food (dAt = andNt + ah(t)dHt). Assume consumption in period t does not change
(dCi = dHt - dNt = 0). Consequently, dAt = (an + ah(t))dNt. In period t + 1,
assume the animal retrieves what remains of the additional storage (dRt+i = 6dNt)
but cuts its foraging by the same amount so that consumption remains unchanged
(dCt+, = dHt+1 + dRt+1 = 0). Activity must therefore change by:

d At+1= ach(t+1)dHt+1 + a,d R+1 = (a,. - ah(t+1)6dNt.

Since these perturbations would not alter the stocks carried into period t + 2
(dSt+2 = 0), it is feasible to restrict changes in behavior to those outlined above for
periods t and t +1. Assume no other behaviors are altered. Then the change in the
maximand would be:

U'(C )dCt - F'(At)dAt + # {U'(Ce+1)dCt+1 - F'(At+1)dAc+1} =

-(an + ah(t))F'(At) + #9 (ah(t+1) - a,) F'(At+1 )] dNt (23)

If the left-hand side of (22) is smaller than the right-hand side, then the bracketed
coefficient in (23) would be positive and an increase in the maximand could be
achieved by increasing new storage (dNt > 0) at t as outlined above; if the left-
hand side were smaller, the maximand could be increased by reducing new storage
at t. As long as At > 0, Ht > 0, Nt > 0, At+1 > 0, Hti > 0, and Rt+1 > 0, each
of these arbitrages is feasible.'8 (22) must therefore hold if a path of behaviors is
optimal and the transition is to region 2.

Given (A6) and F'(.) > 0, (22) implies that activity must jump down (At+1)
in transitions to region 2. Moreover, foraging must also jump down (Ht+1 < H).
For, in region 4 (where Rt = 0), the linear consumption identity and the linear
energy-budget constraint jointly imply:

Hi= A.+&f~ (24)
ah(t) + &n

and in region 2 (where Nt+1 = 0), these two equations imply:

H4+1 = -. r~~ (25)
&h(t+1) -- ,

Since At+ < At, the numerator of (25) is smaller than the numerator of (24).
Moreover, assumption (A6) is sufficient for the denominator of (25) to be larger
than the denominator of (24). Therefore H4+1 <lit.

'7See the concluding pages of Appendix 1
18To derive (22), use Conditions (1), (2), (3), (4), and (10).
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It is useful to summarize the role of assumption A6 in the results we obtain.
As is shown in Appendix 1, A6 is necessary if there is ever to be hibernation (a
transition to region 1); but even if A6 holds, the transition can be to region 2. If
the transition is to region 2, it is evident from (22) that A6 is both necessary and
sufficient for activity to jump down; moreover, the comparison of (24) and (25)
indicates that A6 is sufficient but not necessary for foraging to jump down.

We conclude this section with a simulation from our spreadsheet model which
illustrates the qualitative properties we have been discussing. Panel (a) of Figure 2
reports hoarding behavior and panel (b) reports food-related activity over a 40 week
period. Week 24 is the first period when foraging becomes more difficult because of
the onset of winter. Units of food were scaled so that the animal was required to
deliver at least 1 unit of food to the new litter.

[Figure 2 goes here]

Consider first p anel (a). As the flat part of the graph reflects, no storage occurred
until week 13. Additions to storage began on week 13 and continued at an increasing
rate until week 23. This is reflected in the increasing, convex portion of the gra ph
in panel (a). On week 24 retrieval commenced and continued at a decreasing rate
through week 32. This is reflected in the decreasing, convex portion of the graph
in panel (a). On week 32, retrieval stopped. Stocks declined after week 32 at a
sharply reduced rate due to decay and theft. The litter received the pre-specified
minimal bequest of 1 unit of food on week 40.

Consider next panel (b). As the flat part of the graph reflects, food-related
activity remained constant until additions to storage began on week 13. On week
13, activity began to increase. Activity increased until week 23 as the rising portion
of the graph in panel (b) reflects. On week 24 (the onset of winter), activity plum-
mette and continued to decline until week 30. Activity during this time-interval
reflects retrieval only-there was no foraging. This hibernation phase is reflected
in the graph in panel (b) by the discontinuous downward jump and the subsequent
gradual decline in activity. On week 25, activity began to increase (coincident with
the resumption of foraging) and on week 33 activity re-attained its original level.

These paths are optimal given the exogenous data specified for the simulation.'9

This simulation is included to illustrate the workings of the model. Since the input
data are fictitious and do not conform to the situation confronting a particular
animal, it would be inappropriate to reject the framework we have developed simply
because the outputs of this particular simulation do not correspond exactly to the
behavior of a particular animal.20

'9 The exogenous data inputs are as follows:# = 1, aht- = 5, aht-s = 10, a,. = 1, cn =
1, 0 = .98, T = 39, t,, = 12, S5= 1, U(Cs) = 10ln Cs, and F(As) = .5A?2+ 1OAs.

20We regret that we are unable at this point to produce a simulation using more accurate input
data. If readers have a realistic set of input data, we can either run a simulation based on it or can
provide them with the spreadsheet model so that they can run their own simulations. In response
to written requests, we will provide a Lotus or Quattro Pro version for those with IBM compatible
computers and an Excel version to those with MACS.
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4. Conclusion

To make the source of our results transparent, we have deliberately abstracted
from a variety of real-world complications: various nonstationarities, differences
among stored foods, uncertainty about the arrival time of winter, and so forth.
However, our framework is flexible enough to accommodate any of these compli-
cations. Nonstationarities pose no problem and can be accommodated merely by
adding time subscripts to the exogenous variables or functions. Distinguishing either
the types or vintages of stored foods requires additional state variables (the stock
of each type of stored food put into storage in a given period) but this extension
should remain relatively tractable.21 To see how uncertainty about the arrival time
of winter can be incorporated into the framework, the reader should consult [Salant
and Henderson, 1978] and the references therein. Introducing such complexity will,
however, make the model more unwieldy. For this reason, such refinements seem
to us premature. A more appropriate next step would be to implement our model
empirically. This will clarify which assumptions should be modified to sharpen
predictions.

For many animals, time series are reported in the literature for variables closely
related to those in our model. For example, a monthly series on the hours red
squirrels (Sciurus vulgaris) devote to food-related activitiy is reported in Tonkin
[1983]. Tonkin finds that the hours spent on such activities rises monotonically
over the summer and early fall, drops precipitously and continues to decline over
the winter, and then recovers during the spring; 22 The litters of red squirrels are
typically born in April or May. These observed patterns of time expenditure on
food-related activities are consistent with our qualitative predictions about energy
expenditure on such activities (see panel (b) of our Figure 2). Similar information
about the food-related activity of gray squirrels (Sciurus carolinensis) during the
year is reported in Hougart and Flyger [1981]. Information on the timing of various
food-related activities for gray squirrels is reported in Thompson and Thompson
[1980]. They note that storage behavior begins in August and peaks in October.23

Food recovery begins in October and continues until May.24

These empirical studies typically report the time devoted per month to vari-
ous food-related activities. In contrast, our theoretical model predicts the energy
expended in food-related activity. Nonetheless, as a first approximation, the time
required to pursue food-related activity should be roughly proportional to the en-
ergy expended in such activity. An alternative and more precise way to link our
predictions to the observed data also seems possible. Recall that our model predicts
the amount of food harvested, stored, and retrieved, and consumed in each period
of the season. It seems to us feasible to determine empirically the time required to
find, store, retrieve, or consume one unit of food during different phases of the sea-
son. This information could then be included as exogenous inputs in our model and
would permit prediction of the time spent in each period on each food-related ac-
tivity or the aggregate time per period spent on these activities, the series reported
in the empirical studies.

21As long as the maximand is independent of the state variables, the co-state variable associated
with each strictly positive state variable will still rise by a fixed percentage (1/l6) in each period and,
given concavity, each decision variable will still be a continuous function of the co-state variables.
For an example of how a large system with these characteristics can be solved, see [Salant, 1982].

22For a monthly series, see Table 3 of [Tonkin, 1983]. Tonkin also reports on how the body-weight
of red squirrels varies over time.

23Thompson and Thompson distinguish among different types of food items and report a period
between mid-October and mid-December when a minor amount of storage and retrieval occur at
the same time. Such behavior cannot occur in our model as it is currently formulated; but it could
occur if we were to distinguish among the stockpiles of different foods.

24For monthly time profiles of each activity, see Figures 3 and 4 of their paper.
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Data on most input parameters for these animals have not yet been collected.25

Indeed, a singular contribution of a model (ours or any other) is that it identifies
which input variables are predicted to influence observed behaviors.

As a simplification, we have treated as given certain variables which a full-fledged
theory of hoarding should explain. For example, an animal can either store food in
a central location ("larder hoarding") or scatter it in a variety of locations ("scatter
hoarding"). The literature surveyed by Vander Wall catalogs different strategies
for preparing, transporting, placing, and concealing stored food. Assuming that
more than one of these hoarding strategies is feasible for a particular animal, it is
reasonable to ask why an observed strategy has evolved.

Our model is easily extended to address this question. Each hoarding strategy
outlined above results in a different cache-loss parameter (9) and requires different
amounts of energy to store and retrieve (an and a,.). As a first approximation, it
seems reasonable to assume that there are a finite number of such strategies.26

In that case, our model can be used virtually without change to explain why one
feasible hoarding strategy rather than any of the feasible alternatives is adopted in
a given environment. For the observed end-of-year storage, each hoarding strategy
induces a distinct optimal path of behaviors in our model and results in a distinct
maximized value of the objective function. Our theory predicts that the hoarding
strategy which leads to the largest maximized value of the objective function is the
one which evolution will favor.

25A notable exception is estimates of 9. Thompson and Thompson [1980] and others have con-
ducted experiments which yield estimates of the proportion of stored food which is retrievable after
various time intervals.

2 6Alternatively, one could parameterize the hoarding strategies by a continuous variable and treat
it like any other decision variable in the Kuhn-Tucker problem.
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Appendix 1: Optimal Time Paths Before and After the Onset of Winter

In this appendix, we show how the decision variables At, Ht, Rt, Nt, and Ct can
be deduced as functions of At for At in any of four possible regions.

Region 1:
In region 1, N = Ht = 0, At > 0 and Rt > 0. The following conditions must

hold (the numbers refer to the Kuhn-Tucker conditions in the text);

U'(Rt) - Ate - 7t,. = 0 (2)
At - arRt = 0 (8)
F'(At) = yt (10)

Combining (2), (8), and (10) we obtain:

U'(Rt) - Ate - F'(aRt)ar = 0.

This uniquely defines Rt (implicitly) as a strictly decreasing function of Ae.
In addition, (10) implies:

At = arRt.

Hence At is a strictly increasing function of Rt and, therefore, a strictly decreasing
function of At. Since N = Ht = 0, Ct = Rt. Hence every decision variable depends
in region 1 on Ae. As At increases in region 1, Rt, At, and Ct strictly decrease.

Region 2:
In region 2, Nt = 0, Ht > 0, At > 0, and Rt > 0. The following conditions must

hold:

U'(Ht + Rt) - 7tah(t) = 0 (1)
U'(Ht + Rt) - At69- yar.= 0 (2)

At - ah(t)Ht - arRt = 0 (8)
F'(At) = yt (10)

After subtracting (2) from (1) and simplifying, we obtain:

Ate
'Yt =

ah(t) -a,

Inverting (10), we find:

= F'~'(l) = F'~( A
a&h(t) -- /

Hence At is a strictly increasing function of At in region 2. Since Ce = Hi + Re, (1)
implies

C,= U'~1 (yoah(t)) = U'~1 (At&aht
ah(t) - a,

Hence in region 2, Ct is a strictly decreasing function of Ar.
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Finally, from (8), we obtain:

H = At - arCt

ah(t) - r

_ ah(t)Ct - At

ch(t) - cr

Since At and C( are uniquely determined by At so are Ht and Rt. In region 2, as At
increases over time Ht strictly increases while Rt strictly decreases.

Region 3:
In region 3, R = Nt = 0, At > 0, and Hit > 0. The following conditions must

hold:

U'(Ht) - ytcah(t) = 0
At - ah(t)Ht = 0

F'(A) = ye

(1)

(8)
(10)

Combining (1), (8), and (10) we conclude:

U' At - F'(At)ah(t) = 0.
(ah(t)

Hence At in region 3 is independent of At and is constant if ah(t) is
(8)

Ht = At

&h(t)

Moreover, since Ct = Ht + Rt - Nt, Ct = Ht. Note that in region
and A, Ht, Ct remain constant provided ah(t) is constant.

Region 4:
Throughout region 4, Ht > 0, Nt > 0, At > 0and Rt = 0.

conditions hold in region 4:

U'(Ht - N) - ytah(t) = 0
-U'(Ht - Nt) + At9 - anyt = 0

At - ah(t)Ht - anNt = 0

F'(At) = 7yt

constant. From

3,N =R =0

The following

(1)

(3)
(8)

(10)

Adding (1) and (3), we obtain:

ate

&h(t) + an

Hence yt is a strictly increasing function of At. Inverting (10) and substituting, we
obtain:

At = F'~1 (yt).
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Since At is a strictly increasing function of yt, At is a strictly increasing function of
At in region 4. Noting that Ct = Ht - N in region 4, and inverting (1) we obtain:

Ct = U'-1(aht)7ty )

Hence Ct is a strictly decreasing function of 'Y and thus a strictly decreasing function
of At in region 4. Finally using (8) we conclude:

= At + anCt

ah(t) + an

and
At - ah(t)Ct

Nt =.

Oh(t) + an

Hence Nt is a strictly increasing function of At in region 4. Ht is the sum of
a decreasin function and an increasing function of At. As At increases in region
4, At and Nt strictly increase, Ct strictly decreases, and Ht may either increase or
decrease.

Defining the Boundaries of Each Region

In region 1, HIt = 0; in region 2, Ht > 0 and strictly increases. Equations (2),
(8), and (10) hold in both regions, but equation (1) which must hold with equality
when H > 0 need not hold in region 1. To determine the boundary between re ion
1 and 2, we find that value for At, denoted A1 ,2, such that Ht = 0 in region 2. Since

H = At - a,.Ct

ah(t) - r

Ht= 0 aCt =At

or a,'A 1  
-2aht)= F'-'.

\cxh(t) - ar/ \ah(t) - ar

This equation uniquely defines A1,2. The boundary, A1,2 , changes over time only if
ah(t) changes.

In region 2, Rt > 0 and strictly decreases; in region 3, Rt = 0. Equations (1),
(8), and (10) hold in both regions but equation (2), which must hold with equality
when Rt > 0 need not hold in region 3. To determine the boundary between regions
2 and 3, we And that value for At, denoted A2 ,3, such that Rt = 0 in region 2. Since
in region 2

= Q=h(t)Ct - At
h(t) - ar

Ri =0 =- &h(t)Ct -AtZO

or cah(t)U (=~9h) F1 (ht..

This equation uniquely determines A2,3. The boundary, A2,3, changes over time only
if ah(t) changes.

In region 3, Ni = 0; in region 4, Ne > 0. Equations (1), (8), and (10) hold in
both regions but equation (3), which must hold with equality when Ni > 0 need
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not hold in region 3. To determine the boundary between re ions 3 and 4, we find
that value for At, denoted A3,4, such that Nt = 0 in region 4. ince in region 4

At - ah(t)Ct

ah(t) + an

Nt = 0 ==> At=ah(t)Ct

or F 3,49 = ah(t)U -h tA 3 ,4G
ah(t) + anJ ah(t) + an

This equation uniquely determines A3,4. The boundary, A3,4, changes over time only
if ah(t) changes.

Next we verify that
A1,2 < A2 ,3 < A3,4 .

Reconsider the equation defining A1,2. Geometrically it can be regarded as the
intersection of a downward-sloping function of A and an upward-sloping function of
A.

Reconsider the equation defining A2,3. Notice that it too can be regarded as
defined by the intersection of an upward and a downward-sloping functions of A.
Indeed, the upward-sloping function in each case is identical:

F,_1( AG)
ah(t) - a,.

However, the downward-sloping function defining A2,3 lies uniformly above the
downward-sloping function defining A1,2 since

ah(t) U 11 Aa ) > a,U .Aah

ah(t) - a,. ah(t) - a,.

This implies that A2,3 > A1,2 .
Next, reconsider the equation defining A3,4. It can be regarded as the intersection

of an upward-sloping function of A and a downward-sloping function of A. Note that
the upward-sloping function defining A3,4 is uniformly smaller than the upward-
sloping function defining A2,3:

F 1_1 ( AOGF,_1 AO
F~<F'~

\ah(t) + an / ah(t) - a,.

Note also that our assumptions (A2, A3, A5 and A9) jointly imply that ah(t) uni-
formly exceeds a,.. Hence, the downward-sloping function defining A3,4 is uniformly
larger than the downward-sloping function defining A2,3:

\kah(t) +i an / ah(t) -- a,

This implies that A3,4 > A2,3 .
The following diagram illustrates how the intervals fit together:
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R1 R2 R3 R4
Ri R2 R3 R4 A

0 A1 ,2

These boundaries are ordered in this way regardless of the value of ah(t)-
For simplicity, consider the case where ah(t) is constant until the onset of winter

and then jumps up to a new constant level. Consider the equations defining A1,2.
When ah(t) jumps up, the upward-sloping function shifts down while the downward-
sloping function shifts up. Consequently, the boundary, A1,2 jumps up. For the same
reason, the boundary A2,3 must jump up. As a result At can increase by /3 at the
onset of winter and nonetheless transit from region 4 to region 1 or 2 as discussed
in the text.

A Condition Sufficient for No Hibernation

To conclude this appendix, we show that if the inequality in A6 were reversed,
there could be no transition to region 1 at the onset of winter.

If ah(t+1) < a +(ar + g), the transition will be to region 2. By hypothesis

e <ah(t) + an
ah(t+1) - ar

Hence

At ah(t) + c'n

\t+1 ah(t+1) - ar

Therefore,

ah(t)U,_1 
Ateah(t)

\hth(t)U+an

Recall that since At > A3,4

-1 At+1 'h(t+1)
ah(t+1) - a'r.

Hence

Oah(t) U ( 'h(t)At

O'h(t) + an

a,.U' (At+leah(t+l)
\ 'h(t+1) - ar /

<F-1 .

'h(t) + an

\'h(t) +an/

But the boundary A 2' implicitly solves

Suppose At+1

a,.'~ +/ ah(t+1)

\1 ah(t+1) - a,. /

A2. Then

a,.U'a+
\ 'h(t+1)~ ar /.

F'-1 t >
ah(t) + O'n -

ah(t+l) - ar/

> F'(- [ At

F'-1 At.
o'~h(t+}1) -- O'r

or
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But since F'-'(-) is increasing and 9 <ah(t)+_", this inequality cannot hold.

Therefore, At+1 > A1.
A necessary condition for a transition to region 1 is therefore that ah(t+1)

ah()+an + a,.. We assume that this inequality holds in A6.
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Appendix 2: Uniqueness of the Solution to the Necessary Conditions

Any optimal program must satisfy the Kuhn-Tucker conditions. Moreover, since
the constraint set is the intersection of convex sets, it is a convex set; and since the
maximand is a weighted sum of utility functions each of which is weakly concave in
the decision variables {At, Ct, Ht, Nt, Rt, St}1, the maximand is a weakly concave
function of these variables. It follows from the Kuhn-Tucker sufficiency theorem
that any solution to the conditions is a global optimum. This (by itself) does not
assure that the optimal program is unique. But it does assure that every solution
must achieve the same (highest) feasible value for the maximand.

Next, it can be shown that every optimal program has the same consumption
sequence and activity sequence. Consider two optimal programs. Denote the first
by tildes (~-) and the second by daggers (t):

{ at, At, lt, Nt, R, 5,}t 1  and ST+1

and { Cl, A, Htt, Ntt, Ri, S2}1 and ST+1

Let 0 E [0,1]. Define the mixture program {Ct, At', Ht , N 4 , Rt, S"}tL1 and ST+1
as follows:

Fort=1,...T

C- 40C,+(1-@')Cl
A -= Zt+(1 -4@)A

Ht -= H$$+(1 -@)Ht

Nt'o = N +(1 -@)H

R? = Rt +(1 - )Rt

S -=-S$5+(1 -4)S
and ST+1 = #ST+1+(1 - #)ST+ 1

It is straightforward to show that since each optimal program satisfies a given linear
constrain, so must the mixture program. To illustrate,

le= ah(t)Ht + ar~t + a~N~

and At = ah(t) H + aRI + anNt

since each optimal program satisfies the constraint. Multiplying the first inequality
by 4 > 0 and the second by (1 - 4) > 0, adding, and using the definitions of the
mixture program we can verify that

A? = aYh(t )Ht + arR? + aN

Hence, the mixture program satisfies this constraint. Repeating this procedure for
each constraint, we can verify that the mixture program is feasible. Suppose now
that either {Ct}&L1 f {Cl}&L1 or {le}&'L # {Al}&'L. Then since the maximand,

Zflt{U(Ct) - F(At)}, is strictly jointly concave in {C,}7L1 and {At}11 1 and since
=1

for any 4' E (0,1) the mixture program {C"}2i, {A?}&1 would not be identical
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to either consumption and activity sequence, the mixture program must achieve
a strictly higher payoff. But since the original two programs are by assumption

optimal, no feasible program can dominate them. It follows that {C}i 1 = {C }t1
and {A Ti= = {A t }.

In principle, it is still possible that there might exist two or more optimal pro-
grams which generate the identical consumption and activity sequences but differ
in some other variables {Ht, Nt, Rt, St}tL1 or ST+1. Indeed, if a,. = a, = 0 (con-
tradicting A7), there would in fact be a continuum of optimal programs with this
characteristic. To verify this, add the constant K to Nt and Rt to generate a new
program. Provided a,. = a, = 0, Nt and R enter everywhere in the objective func-
tion and constraints only as the difference (Nt - Re). Since this difference would not
be affected by the addition of K to each term, the new program is also feasible and
would generate the same consumption sequence as the original optimal program.
Hence, it is also optimal.

Given A7, however, a,. > 0 and an > 0. Then it can be verified that there exists
a unique optimal program

{CtAtHt, NRtSt}1 and ST+1

Suppose there were two distinct optimal programs. Suppose the tilde program

begins with Si = 0, changes at t* + 1 to S > 0 and returns at t** to St.. = 0.
Until t*, the tilde program is in region 3. It then must migrate to region 4. At t**
it must return to region 3. Now consider the dagger program. It too starts with

St = 0. If it has the corresponding consumption and activity in each period, then

it must likewise remain in region 3 until t*. Hence Nt = Nt = 0, N 1= Rt = 0 and

= St = 0 until t*.
At t*, both programs must migrate to region 4. For, if only the tilde program

migrated, then A > A. and the activity sequences would be unequal. Moreover,

if C = Ct and At = A then since both C and A are the same monotonic functions

of A (as shown in Appendix 1), At = At. But as long as St > 0 the growth of At
is uniquely determined. Hence At = At for t = t*,...,t** - 1. Since, as Appendix 1
indicates, the value of every variable at t can be determined uniquely as a function
of At, the two solutions must be identical in all respects until t**.

At this point 52.. = Si. = 0 and both programs return to region 3. Since this
was where we started, the argument can simply be repeated. To conclude, there
exists a unique optimal program which satisfies the Kuhn-Tucker conditions.
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