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Goodness-of-Fit in Demand Analysis

Hal R. Varian

There are two approaches to the empirical analysis of consumer choice behavior. Para-

metric analysis proceeds by postulating a functional form for a utility function, deriving

the associated demand equations, and estimating the parameters of the resulting system

of equations. The estimates of the parameters can be used to test the maximization hy-

pothesis, forecast demand, or do welfare analysis. Nonparametric analysis uses revealed

preference techniques to achieve the same ends.

Samuelson (1938) and Houthakker (1950) were the first to develop the implications of

the revealed preference idea for economic theory, but Afriat (1967) was the first to pursue

its implications for empirical demand analysis. Subsequently Diewert (1973), Diewert

and Parkan (1985), and Varian (1982a), (1982b) extended Afriat's analysis in a number

of directions. More recently, several authors such as Browning (1984), Bronars (1987),

Deaton (1985) Green and Srivastava (1985), (1986), Houtman and Maks (1987), Landsburg

(1981), Manser and McDonald (1988), and Swofford and Whitney (1986) have contributed

to nonparametric analysis.

The aspect of nonparametric analysis that I wish to examine in this paper has to do

with the goodness-of-fit of the utility maximization model-what does it mean to say

that some consumer behavior is "almost" consistent with maximization? To motivate this

discussion let us consider the violation of the Generalized Axiom of Revealed Preference

depicted in Figure 1. Here we have x* revealed preferred to x' and x' revealed preferred to

X'. However, the size of the violation is not large: a small perturbation of the budget line

through either observation would eliminate the problem. Hence we might want to consider

this an insignificant violation of the maximization model.

I would like to thank Wei Li for prograrnming assistance and Eduardo Ley for proofreadinig. This work
was supported in part by the National Science Foundation. This paper was prepared for the conference on
Parametric and Nonparametric Approaches to rotiier Analysia, held at the University of North Carolina,
Septernber 29-October 1, 1988.
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Figure 1. A "small" violation of GARP.

The notion of what is or is not significant implicitly relies on a statistical model of

how the data were generated and what are the possible sources of error. In this paper I

will investigate several proposed answers to this question. Some of these proposed answers

have interesting implications for parametric demand analysis as well which we will consider

at the end of the paper.

1. Finding the minimal perturbation

In Varian (1985) I examined how one might formalize the concept of significant violations

in the context of measurement error. I will describe this method here in reasonably general

terms, since it applies to a wide variety of problems involving testing inequality restrictions.

Let r be a vector of observations of consumer choices. The maintained hypothesis is

that

x = X + e,

where X is the vector of true values and e is a vector of error terms. For simplicity we

take the components of a to be IID Normal, with mean of zero and variance o2. The null

hypothesis that we wish to test is that X lies in some region H. In the case of revealed

preference analysis, H is simply the subset of R" for which the data satisfy the revealed

preference inequalities.

It is important to recognize that in our applications H will typically be a subset with

the same dimension as the ambient space. This is in contrast to the standard theory

2



of hypothesis testing in which the null hypothesis usually imposes restrictions of smaller

dimensionality.

In Varian (1985) I proposed the following test statistic

T = minZ(x= - zi)2/a2
ti=1

such that z E H.

This statistic is proportional to the (minimum) distance from x to the set H in the Eu-

clidean metric. Intuitively, this number should be "small" if the data were in fact generated

by maximization.

Standard hypothesis testing methodology would suggest that we calculate the distri-

bution of this statistic under the null hypothesis and identify the critical region. The

problem is how to calculate the sampling distribution of T. It is well-known that the

sampling distribution for the optimized value function can be a very complicated function

of error terms entering in the constraints.

However, the following simple observation makes at least some calculations possible:

under the null hypothesis the distance from the observed data, x, to the true data, X, is

at least as great as the value T, since under the null hypothesis X is an element of H and

T is the minimal distance from x to H. It follows that for any critical value C,

Prob{T > C} <Prob [}>C .
i=1

Note that the probability on the right-hand side of this inequality can be calculated; under

the null hypothesis, it is simply a x2 variable with n degrees of freedom.

Suppose that we choose a test of size a and find the critical value Ca such that

Prob {§_> Es2/a 2 > C"} = a. Then we know from the above inequality that

Prob{T > Ca} < a.

Hence if we reject the null hypothesis when T > C, we are certain that the probability

of rejecting the null when it is true is less than a. Hence our proposed testi has size of 'at

most a.
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This proposed test has some advantages and disadvantages. Among its advantages are

the following:

" It is a very general approach that can be applied in a large variety of cases.

* It actually identifies a perturbation of the data that satisfies the appropriate revealed

preference conditions, and which can be interpreted as a maximum likelihood estimator

of the true choices. (On this last point, see Varian (1985).)

Among its disadvantages are:

* One need to specify a priori the error variances.

e The test may be difficult to compute, even for relatively small data sets.

I find the last objection the most serious. If there are n observations, then finding the

minimal perturbation of the data will involve solving a quadratic programming problem

with n2 constraints. This means that problems with more than 50 or so observations will

demand significant computer resources for their solution.

Of course the problems under examination typically have a very special structure, and

a deeper analysis could provide much improved algorithms. However, this computational

problem seems significant enough that it warrants thinking about alternative approaches.

2. The Afriat index

The last section emphasized the idea that the "error term" in the optimization was due

to measurement error or other sorts of "observational" problems. In this section I want to

examine a different approach to the problem of how to account for violations of maximizing

behavior. The approach is based on a notion of "almost maximizing" behavior that was

first described by Afriat (1967). Initially I will describe the goodness-of-fit measure without

referring to a statistical model of error generation, and then turn to a statistical model.

Afriat's measure is calculated in the following manner. For a given set of numbers

(et), t = 1,... ,T, with 0 _< et < 1, define an extension of the standard direct revealed

prefcrence relation by

x' 1R? .r' if and only if etptz' p'tz'.I
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If et = 1 this is the standard revealed preference relation; if et= 0 the relation is vacuous

in the sense that observation t cannot be revealed preferred to any other observation. As

et varies from 1 to 0 the number of observations revealed preferred to other observations

monotonically decreases.

The number et is known as the efficiency index, and it can be thought of as how much

less the potential expenditure on a bundle x8 has to be before we will consider it worse

than the observed choice x'. If e t is .90, for example, we will only count bundles whose cost

is less than 90% of an observed choice x as being revealed worse than x*. Said another

way: if e' is .90 and x" would cost only 5% less than xt, we would not consider this a

significant enough different to conclude that x was preferred by the consumer to x'. We

are allowing the consumer a "margin of error" of (1 - et).

Given an arbitrary set of data (p t , xt), let us choose a set of efficiency indices (et) that

are as close as possible to 1 in some norm. If the data satisfy the revealed preference

conditions exactly, then we can choose et = 1 for all t = 1,... , T. If we choose et = 0 for

all t = 1,... , T, then the data vacuously satisfy the revealed preference conditions, since

no observation is revealed preferred to any other. Thus for any reasonable norm, there will

be some set of (e*) that are as close as possible to 1 in some norm that will summarize

"how close" the observed choices are to maximizing choices.

In Afriat's (1967) original treatment of this idea, he considered choosing a single e that

applied to all observations, rather than a different et for each observation. We refer to

this as a single index model as opposed to the multiple index model described above. The

advantage of Afriat's original proposal is that it is much easier to compute a single index

e than the multiple indices (e t ).

Houtman and Maks (1987) suggest the following binary search. Start with e = 1 and

test for violations of revealed preference using Warshall's algorithm as described in Varian

(1982a). If the data fail to satisfy the strong axiom, try e = 1/2. If e = 1/2 doesn't work,

try e = 1/4. If e = 1/2 does work, try e = 3/4, and so on. After n revealed preference

tests, you are within 1/2" of the actual efficiency index.

Computing the set of efficiency indices that are as close as possible to 1 in some norm

is substantially more difficult. If we choose a quadratic norm, for example, we would have
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so solve a problem such as:
T

E = mi (et -1)2(1
et=1

subject to the constraint that the revealed preference relation Re satisfies the Strong

Axiom. This approach is significantly more demanding from a computational perspective.

3. The sampling distribution of the Afriat index

Afriat's original definition of the efficiency index was motivated by considerations of the

goodness-of-fit of the optimization model. It provides a reasonable measure of how well a

given set of data satisfy the optimization hypothesis. But without some specification of

the reasons why the data fail to satisfy the optimization hypothesis in the first place, it

is hard to know whether we have a significant or an insignificant violation of the model.

However, if we formulate a stochastic model of describing how the data were generated,

then we can view the Afriat index as a statistic and ask the usual sort of questions about

the distribution of this statistic.

My preliminary investigations indicated that it is very difficult to say anything of much

use analytically, except in very simple cases, so I have proceed to simulate the sampling

distribution of the Afriat index under a standard stochastic model. Here I will present

some of my initial findings.

I begin by constructing a random set of prices. I then calculate the set of demands

implied using a parametric system of demand equations. In the particular set of simula-

tions I describe below I used a CES utility function with parameter p. I then added an

Normally distributed error term to the demand for each good. Finally, I took these data

and calculated the implied Afriat index. I repeated this process a hundred times, and

examined the resulting frequency distribution of the Afriat index.

My major concern was how the index varied with respect to the two major unknowns

of the problem-the tastes, as measured by the CES parameter p, and the variance of

the error term. Charts 1 and 2 present typical examples of the sampling distributions for

dIilferet values of the error terms and CES parameter.

As you can see from the tables, it is quite unusual to observe a value of the Afriat

efficiency index less than about .8(93 13/16) under the null hypotheses used to simulate

6



Dist'n of Afriat Index

rho=.05

0.6

0.5--_----.----------------

e=4.0I 0.4. .------..----.---------

0.2------------------------------- -

0.11------.---- --.-...---.----.--.--

0.0

1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

Value of Afriat Index (1 6ths)

Chart 1. Sampling distribution of the Afriat index (p = .05).

the sampling distribution. Put somewhat differently: if the stochastic model is correct,

then a value of the Afriat index less than .8 is strong evidence against the null hypothesis

of utility maximization.

The method of simulating the sampling distribution under the null hypothesis can be

extended in several directions. In any particular problem it would make sense to condition

on the observed prices rather than generate the prices randomly, as I did in my simulations.

Furthermore, if a specific alternative hypothesis is available, it makes sense to simulate the

sampling distribution under that alternative. The resulting sampling distributions can be

used for power calculations, as in Bronars (1987), or for calculating the posterior odds in

favor of the null, as in the Bayesian approach to hypothesis testing.

The major difficulty that I have with this approach is that the null hypothesis is not

really a nonparametric hypothesis. It is unfortunately a rather sharp parametric hypoth-

esis: the observed choices are a perturbation of a particular CES utility function. I'm not

sure exactly how to solve this problem. One could postulate a prior distribution over the

parameter p and then (numerically) integrate the sampling distribution over this nuisance
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Dist'n of Afriat Index

rho=4.O
0.6~

e...04

0.5 --- -------------------------------------------------------------

e=4.0
0.4 ------ ------ ------ --------- ---- ----- --------- ._.._ . ---

0.3-- .-...------------------------

0.2-------.-- ..--.-- --- ---..-.---

0.1 --- ---- --- - -------------------

o.c
1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16
Value of Afriat Index (1 6ths)

Chart 2. Sampling distribution of the Afriat index (p = 4.0).

parameter. Although this procedure seems theoretically sound, it appears somewhat ad

hoc and computational demanding to carry out in practice.

My preferred approach is to estimate the CES parameter p and the variance of the

error term using standard parametric methods and use these numbers to construct the

simulations of the sampling distributions described above. This also suffers from the defect

of being somewhat ad hoc but at least it seems like a sensible thing to do.

4. A characterization of the efficiency indices

There is a characterization of the set of (et) that minimize some norm that will be useful

in what follows. In order to describe it, we need some formal definitions.

As above, define the relation R° by x' Re x iff etpt xt> ptx, and let R, be the transitive

closure of this relation. Then define GARPe to mean

x" Re x t implies etptx* _< p~rx*.

If et = 1 for all t then this reduces to the standard definition of GARP.
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Here is another way to state this definition: if some data (pt,xt, et ) satisfy GAEPe,

then

for all x* Re ' we have etptxt < px.

This statement can be written as

e' tfor all z* R, X*.

If we attempt to choose a set of (e t ) that are on the average as close as possible to 1, then

this inequality will typically be binding for some observation s so we have:

e = min .(2)
e Rzt ptzt

Note that this is not really an "operational" way to determine e*, since et is implicitly

involved in the relation Re. Nevertheless, the characterization is still useful, as we shall

see in the next section.

5. Parametric methods

The characterization of (et) described in the last section is useful because it can be extended

to a novel way to estimate parametric demand systems. Suppose that one is willing to

postulate that some observed demand behavior was generated by the maximization of a

particular parametric utility function u(x, /3), where 3 is a vector of parameters.

Let >e be the preferences generated by the utility function u(x, 3). Then it is natural

to define a parametric generalization of Afriat's efficiency index by

., 
pt x

z = min-.
z >-Az= ptz*

All we have done is to replace the partial order Re by the total order e.

Using some constructs from duality theory allows for an easier statement of this defi-

nition. Given a preference relation E, the money metric utility function m(p, x) is defined

to be
m(p,z) =min py

s.t. y>-xz.
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In words, the money metric utility function measures the minimum expenditure at prices

p the consumer would need to be as well off as he would be consuming the bundle x. For

more on the money metric utility function see Samuelson (1974), King (1982), and Varian

(1984). If utility is parameterized by ,Q, then the money metric utility function depends

on the same parameters and we write m(p, x, ,#).

In terms of the money metric utility function, we can restate the definition of the

efficiency index as

.t m(pt,x t,3)
P = .
ptxt

In words, m(pt, xt,#) gives the minimum expenditure necessary to achieve utility u(x*, /)

while ptxt gives the expenditure actually observed. Roughly speaking, the consumer is

"wasting" a fraction 1 - it of his money.

An index of the degree of violation of maximization in the data set could be given by

T (m(ptxt, 3) _ 2

t= Z p -1 .

This definition is directly analogous to equation (1).

The discussion to this point has proceeded under the assumption that /3 was known.

But what if 3 is unknown? Then we would like to have an estimate of #/-an estimate that

provides the best fit to the maximizing model. A natural estimate is to find that value of /3

that minimizes the degree of violation of maximizing behavior as measured by the index I.

This makes the average value of et as close as possible to 1, using the sum-of-squared-error

norm. I believe that this estimator has several desirable characteristics.

First, it uses a sensible economic norm for goodness-of-fit. Conventional estimators of

demand parameters use the sum-of-squared errors of the observed and predicted quantities

demand, or some variant on this. But this has little economic content; a large difference

between predicted and observed demand can easily be consistent with a small difference

in utility. This is depicted in Figure 2. Here the observed choice is far from the predicted

choice in Euclidean distance, but quite close in terms of money metric utility. The model

is a had fit in terms of Euclidean distance, but a good fit in the sense that the consumer

really isn't that far from maximizing behavior in terms of money metric utility.

10



good 2

'wasted
expenditure"

optimal choice

.......... observed choice
standard
error term

standard goo 1
error term

Figure 2. This is a good fit in terms of money metric utility although it is a bad fit in

terms of the usual error terms.

Second, the minimized value of the objective function gives a meaningful economic

measure of how close the observed choices are to maximizing choice for the particular

parametric form involved. If the average value of et is .95 for example, then it is meaningful

to say that the observed choice behavior was 95 percent as efficient as maximizing behavior.

Third, the mechanics of the estimation problem may be much simpler than they are

using the conventional approach. Economic theory imposes the restriction that a money

metric utility function must be an increasing, linearly homogeneous, and concave function

of prices. These constraints are not terribly difficult to impose on the maximization prob-

lem. By contrast theory implies that a system of demand equations must have a symmetric

negative semidefinite Slutsky substitution matrix. Imposing this restriction involves im-

posing nonlinear cross equation restrictions on a system of equations. In general this is a

difficult thing to do.

Fourth, this same method can easily be applied to estimation of production relation-

ships. If one starts with a null hypothesis of cost minimization, say, then it makes sense to

measure the goodness-of-fit of estimation procedure by comparing the actual costs to the

minimum costs implied by the estimated parameters. If it is thought that errors in opti-

mization are a significant component of the error term, then it can make sense to estimate

the parameters by choosing parameter estimates that minimize the difference between the

observed costs and the minimum costs.
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6. An example

In order to examine the money metric goodness-of-fit measure described in the last sec-

tion, I tried an experiment using U.S. aggregate consumption data. The data was taken

from the Citibank economic database and consisted of aggregate consumption of durables,

nondurables, and services from 1947 to 1987. (See Table 3.)

I estimated the parameters of a Cobb-Douglas utility system using three different tech-

niques. The first technique was simply to take the average expenditure share of each good.

The second technique was to estimate the regression x = aie/pi, where e is the total

expenditure on the three goods. I used Zellner's seemingly unrelated regression technique

and imposed the normalization that a1 + a2 + a3 = 1. (Estimating the three equations

separately gave almost the same estimates.) The third technique was to determine the

values of the parameters that maximized the goodness-of-fit, as measured by difference

between the money metric utility and the actual expenditure. The first two methods are

straightforward, but a description of the third method may be in order.

Let us derive the money metric utility function associated with the Cobb-Douglas utility

function u(xi, x2 , x 3 ) = a* xx aXs. For algebraic convenience we impose the normalization

that the exponents sum to 1. The money metric utility function is defined to be the amount

of money that it takes as some prices (p 1, P2, p3) to choose an optimal bundle that has the

same utility as the bundle (xl,x2,X3).

If we let m be the necessary amount of money, we have the equation

x aia2 a (aim a (a 2 m *aa m )as
1 2 3  P2 P3

Solving for m we have

m(p, x) = ai~l a a2a3a8(pixi)a1(p2 X 2 )a2(p 3 x 2 )a3  (3)

(For a different derivation, see Varian (1984), page 129.) Taking logs, we can write this

equation as

lnrm(p, x) = -ai ln a1 - a2 1n a2 - asln as+ aln px1+ a2 1n p2x2 + asn Paa. (4)
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We suppose that the log of the actual expenditure in period t, in et, is equal to the log

of the expenditure minimizing amount, In m(pt, x t ), plus an error term representing the

optimization error. Using equation (4), we have

Ine t = -a 1Iln a1 - a2ln a2 -a 3 lna 3 s+-ai lnptxi + a2lInjpx +a31n p34x + et.

I estimated this equation using the nonlinear least squares routine in MicroTSP, imposing

the restriction that ai + a2 + a3 = 1. The results from the three estimation methods are

in Table 1.

Table 1

Estimated Parameter Values

Method ai a2  a3

Expenditure shares 0.152 0.461 0.387

Regression 0.129 0.358 0.413

Nonlinear Least Squares 0.150 0.472 0.378

The first thing to observe is that the three methods give somewhat different answers.

This is simply a consequence of the fact that the estimates which "fit the data best" depend

on what measure of goodness-of-fit you use. The regression estimates that minimizes the

sum of squared deviations from the observed demands will not in general be the same

as the estimates that minimize the squared difference between money metric utility and

actual expenditure.

It is surprising that the expenditure share method and the money metric method give

very similar estimates, especially since the expenditure share estimate involves a system

of equations while the money metric estimation involves only a single equation. Of course,

ultimately it is a single sum-of-squares that is minimized in the regression technique, so

perhaps this is not so surprising after all.

The computed values of the money metric utility function for each of the different

parameters are given in Table 2, along with the percentage difference between money metric

utility and the actual expenditure for each of the three different estimation methods.

Note that these percent differences are very small, at least for the expenditure share

estimates and the NLS estimates. Using the expenditure share methods the largest differ-

ence is 7.4 %, and the majority of the differences are less than one percent. The average
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difference is 2%. This suggests that the observed aggregate demand behavior is not very

different from optimizing behavior, at least when measured in units of "wasted expendi-

ture."

Similar results hold for the nonlinear least squares estimates. Here the average value of

the error is only 1.9%. The regression estimates do much poorer, resulting in an average

error of about 5%.

It is worth noting that the residuals in all of the estimates are positive in each observa-

tion; this is as it should be if the optimizing model is to make any sense since the minimum

expenditure to achieve a given level of utility must always be less than an arbitrary ex-

penditure.

7. Summary

In the first part of this paper I discussed some ways to measure goodness-of-fit in a non-

parametric context. It appears that the Afriat index is a reasonable measure, and that

it is not difficult to calculate it's sampling distribution by Monte-Carlo methods. This

sampling distribution can be used to test hypotheses in the standard way.

The second part of the paper showed how the money metric utility function can be

used to construct a goodness-of-fit measure. For the data set examined here, it appears

that aggregate consumption behavior is not terribly far from maximizing behavior, at least

in the money-metric norm.
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Table 2

Comparison of Estimation Techniques

Actual (Shares) (Regress) (NLS) (Shares) (Regress) (NLS)
Year Expenditure mi rn2 m3 11- mi/e 11- m2/e 11- m3/e

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

3,855

4,462

4,470

4,876

5,534
5,872

6,257

6,576

7,285

7,816

8,537

9,048

9,939
10,560

11,019

11,933

12,785

13,914

15,350

17,163

18,581

21,431

24,340

27,471

31,294

35,846

42,530

50,710

61,383

72,478

85,701

102,261

124,104

148,952

180,406

205,088

232,873

263,642

294,808

322,488

353,848

3,568

4,132

4,235

4,637

5,249

5,634

6,088

6,444

7,149

7,713

8,441

8,979

9,881

10,525

10,996

11,915

12,767

13,894

15,319

17,135

18,554

21,380

24,282

27,389

31,124

35,591

42,374

50,507

61,131

72,090

84,969

101,237

122,988

146,795

177,153

199,545

225,046

253,883

281,220

304,152

331,047 I

3,117

3,609

3,755
4,129

4,658

5,057

5,543
5,924

6,585

7,163

7,867

8,436

9,318

10,002

10,517

11,423

12,290

13,414

14,793

16,550

18,038

20,804

23,729

26,961

30,829

35,382

41,812

49,743

60,316

71,506

84,889

101,465

123,047
148,177

179,803

204,941

232,866

263,598

294,461

321,354

351,875

3,600

4,169

4,265

4,666

5,286

5,670

6,120

6,474

7,177

7,740

8,469

9,006

9,904

10,545

11,014

11,930

12,777

13,901

15,325

17,143

18,555

21,376

24,272

27,372

31,082

35,531

42,341

50,503

61,113

72,012

84,822

101,043

122,804

146,525

176,757

198,908

224,161

252,772

279,813

302,408

329,083

0.074

0.074

0.053

0.049

0.052

0.041

0.027

0.020

0.019

0.013

0.011

0.008

0.006

0.003

0.002

0.002

0.001

0.001

0.002

0.002

0.001

0.002

0.002

0.003

0.005

0.007

0.004

0.004

0.004

0.005

0.009

0.010

0.009

0.014

0.018

0.027

0.034

0.037

0.046

0.057

0.064

0.191

0.191

0.160

0.153

0.158

0.139

0.114

0.099

0.096

0.084

0.079

0.068

0.063

0.053

0.046

0.043

0.039

0.036

0.036

0.036

0.029

0.029

0.025

0.019

0.015

0.013

0.017

0.019

0.017

0.013

0.009

0.008

0.009

0.005

0.003

0.001

0.000

0.000

0.001

0.004

0.006

0.066

0.066

0.046

0.043

0.045

0.034

0.022

0.015

0.015

0.010

0.008

0.005

0.004

0.001

0.000

0.000

0.001

0.001

0.002

0.001

0.001

0.003

0.003

0.004

0.007

0.009

0.004

0.004

0.004

0.006

0.010

0.012

0.010

0.016

0.020

0.030

0.037

0.041

0.051

0.062

0.070

Mean 0.020 0.052 0.019
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Table 3
U.S. Aggregate Consumption

(Citibank Economic Database)

Durables Nondurables Services Durables Nondurables Services
Year P1 P2 P3 X1 Z2 X3

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

27.40

28.77

29.95

31.23

31.85

31.57

31.77

32.10

33.38

34.73

36.50

36.92

38.50

38.77

38.88

39.75

40.15

40.35

40,92

41.55

42.33

44.55

46.10

47.80

50.25

51.05

50.83

54.08

61.15

65.88

69.15

72.78

78.25

85.55

93.65

100.00

101.60

102.97

102.35

101.38

100.40

26.88

29.18

27.85

27.73

29.73

29.85

29.38

30.02

30.60

30.95

31.90

32.85

33.17

33.63

34.08

34.58

34.90

35.25

36.10

37.35

38.23

39.98

41.98

44.05

45.92

47.90

53.75

59.58

65.13

67.60

71.03

76.00

83.55

88.85

96.78

100.00

102.50

106.17

108.50

110.13

114.05

16.85

17.77

18.45

18.90

19.40

20.30

21.40

22.18

23.02

24.02

25.02

26.10

26.93

27.80

28.40

29.13

29.85

30.60

31.43

32.60

33.80

35.65

37.70

40.38

43.08

45.58

48.10

51.77

56.38

60.65

65.45

70.30
75.88

83.72

92.30
100.03

106.13

111.60

117.25

122.25

127.42

20.43

22.85

25.05

30.73

29.85

29.23

32.67

32.10

38.88

38.20
39.65

37.17
42.80

43.42

41.90

47.02

51.80

56.85

63.48

68.53

70.63

81.00

86.22

85.67

97.58

111.22

124.72
123.75

135.35

161.45

184.50

205.57
218.95
219.28
239.88
252.65
289.10

335.55
368.70

402.43
413.73

90.88

96.60

94.85

98.22

109.15

114.72

117.83

119.67

124.70

130.78

137.10

141.75

148.47

153.20

157.40

163.82

169.35

179.68

191.85

208.45

216.90

235.00

252.18

270.32

283.27

305.10

339.55

380.90

416.20

451.95

490.45

541.80
613.25

681.35
740.58
771.00
816.70

867.30
913.13

939.35

982.88

50.60
55.48

58.42

63.15

69.03

75.13

82.13

88.05

94.30

101.63

108.55

115.67

125.00

134.00

141.80

151.05

160.63

172.78

185.40

200.30

216.00

236.43

259.43

284.02

310.65

341.27

372.98

411.90

461.23

515.92

582.25
656.10
734.55

831.95
934.70
1026.97
1128.75

1227.63
1347.52

1458.05
1571.22

1 1 1____1__________ I _ _ _ __ _ _
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