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Abstract. We consider a public utility that offers its service at two different times. Ca-
pacity in place can be used in both periods. We study the effects of a change from uniform
pricing throughout the day to peak-load pricing, when the utility is constrained to operate
with a fixed rate of return on capital. We show that there are plausible circumstances in
which the introduction of peak-load pricing reduces the price of the service both in peak
and off-peak times. We show further that peak-load pricing can lead either to greater
or to smaller capacity than uniform pricing. We are able to find simple expressions that
determine the size and direction of each of these effects. We also provide a straightforward
criterion for determining whether a particular individual gains or loses from peak-load
pricing. Some of the results are extended under different assumptions about preferences,
technology and market structure.

Peak-Load Pricing—With and Without Constrained Rate of Return

Ted Bergstrom
Jeffrey K. MacKie-Mason

Consider a public utility that provides its product at two different times, morning and
afternoon. Capacity in place can be used in both periods, but the amount consumed in
either period must be no larger than capacity. Assume that demand will be greater in the
afternoon than in the morning if the same price is charged in both periods. Accordingly,
let us define the afternoon to be the peak and morning the off-peak demand period. The
product might be electricity, or telephone service.

Suppose that in the past, the utility charged the same price in the morning as in the
afternoon. This might be because time-of-day metering was too expensive, or it might be
that government regulations prohibited differential pricing. What will happen to prices if
the utility is now able to peak-load price? Will equilibrium capacity increase or decrease?
Which consumers will gain and which will lose? We will answer these three questions
for a utility that is constrained to operate with a fixed rate of return on capital. Such
a constraint might be enforced by a regulatory commission, or it might be a competitive
rate of return enforced by the threat of entry. We also briefly examine the case in which
the utility services are provided by an unconstrained profit-maximizing monopolist.

Economists like to write and discuss papers with “surprising results”. We have two
such results, and finding these results was the spur that led us to write this paper. In the
process of explaining and generalizing the result, we worked out the comparative statics of
peak-load pricing in a neat and decisive way. It is these explicit comparative statics that
we regard as the main contribution of this paper.

Our first surprise is this. Suppose that a utility is constrained to make a fixed rate
of return on capacity and is not able to charge different prices in the two periods. If this
utility is now allowed to charge different prices, what will happen to prices in the peak
and off-peak periods? The “straightman” in each of us is supposed to reply, “The off-peak
price will fall and the peak price will rise.” We show that under some reasonable (and
easily expressed) conditions on demand the utility will actually reduce prices both in the
peak and in the off-peak period.

Our second surprise is to show that industry capacity may increase with the introduc-
tion of time-of-day pricing. We derive a simple condition that determines when capacity
will increase or decrease. Our answer to the welfare question offers no surprises, but we
are able to provide a simple criterion for determining whether an individual has positive
or negative willingness to pay for having time-of-day pricing.

Bergstrom’s research was supported by a grant from the National Science Foundation. MacKie-Mason
gratefully acknowledges financial support from the MIT Center for Energy Policy Research. Excerpts from
this paper will appear in “Some Simple Analytics of Peak-Load Pricing” Rand Journal, Spring, 1991.



elegaut analysns of peak-load pricing under severa.l alternative assumptmns about market
structure and regulation. They too have a surprise: under certain assumptions about
elasticities of demand and the regulatory rule, a utility will charge a higher price in the
off-peak than in the peak period. Our analysis differs from that of Bailey and White in
three important respects. One is that we focus attention on the comparative statics of
moving from uniform to peak-load pricing, while Bailey and White study only time-of-day
prices without comparing those prices to uniform prices. The second difference is that we
allow the possibility that there may be substitutability or complementarity between peak
and off-peak consumption; Bailcy and White confine their attention to the case where
demand in each period depends only on the price in that period. The third difference
is that we do not impose a particular regulatory criterion, or even require that prices be
optimal according to any objective function. Our results hold for any prices that satisfy a
rate-of-return constraint.

The first section presents our model. The next three sections answer the questions:
what happens to prices, what happens to capacity, and who benefits when the utility moves
to peak-load prices? The next two sections relate our analysis to the existing literature.
We consider in Section 5 the possibility that the off-peak price will be higher than the peak
price, as in Bailey and White. Price reversals can occur in our model, and our comparative
static results still hold. In Scction 6 we treat the case of independent demands, which has
often been assumed in previous papers. We then extend our results to more general
specifications of the production technology. In Section 8 we briefly examine the results
when the firm is an unconstrained profit-maximizing monopolist. The concluding section
relates our theoretical results to some of the empirical literature on time-of-day demands
for electricity and local telephone calling.

-~

1. The Basic Model o,

Technology

A public utility produces zps units of its product in the morning and z4 units in the
afternoon. The larger of these two quantities can not exceed “capacity,” which we denote
by K. In the long run, the amount of capacity can be varied at constant unit cost, r > 0.2
In addition to capacity costs, the utility faces “user costs” of u4 per unit of output in
the afternoon, and up per unit of output in the morning. Long-run total costs of a firm
with capacity K that produces z 4 in the afternoon and zp in the morning are therefore
rK + ugzpq + upgzp. We allow user costs to differ by time of day, but assume that

r+uy>upy.

' Related work includes Baumol and Bradford (1970); Bailey (1972, 1973); Klevorick (1971). The
literature is surveyed by Brown and Sibley (1986).

2 We consider more general production techunologies in Section 7.

Let par and p4 denote the prices charged in the morning and the afternoon and let 4 and
7 4 denote total consumption in the morning and in the afternoon. Assume that prefercnces
are weakly separable between utility services and other goods, and that preferences over
utility services are homothetic. Specifically, the utility function of each consumer, i, is of
the form,

Uiy, f(zhy 7ly))

where y' is i’s consumption of “other goods”. Although the functions U; may be different
for different consumers, we assume that the aggregator functions f(x',,z%) are the same
for all consumers and that they are homothetic, twice differentiable, and strictly quasi-
concave. The assumption of homothetic separability with identical aggregators greatly
simplifies analysis because it ensures that the ratio of aggregate demand for afternoon
consumption to aggregate demand for morning consmmption is determined by the ratio of
afternoon price to morning price. As it happens, this assumption is common in the em-
pirical literature on peak-load pricing. * Alternatively, instead of assuming homotheticity,
we could, like Bailey and White, assume that demand in each period is independent of
price in the other period. We explore this alternative later in the paper.

Let “other goods™ be the numeraire and let aggregate demands for morning and after-
noon use of the utility be functions, x 4(pa, psm) and zp(pa, par). At an interior maximum,
an optimizing consumer will choose a consumption bundle such that her marginal rate of
substitution between afternoon and morning consumption equals the price ratio, p/pas.
We define the price ratio as p = pa/pas. Since the functions f are homothetic and strictly
quasi-concave, it must be that person i’s marginal rate of substitution between afternoon
and morning consumption is determined by the ratio, z¥, /:c‘,‘,, and is a strictly monotone
decreasing function of this ratio. Then for all 7,

- -

v i H _ fl(‘tM’ A) -I—)é—
MRS(xy, /x}y) = fl("Mr"‘A) Topm’ ®

Strict quasi-concavity of f implies that as the ratio zly /2% ranges from 0 to infin-
ity, MRS(z}y /= A) decreases monotonically over a real interval, R,. Since the function,
MRS(TM/.’EA), is monotonic, it has an inverse. That is, for any price ratio, pa/py € R,
there is a unique ratio ah, /2, such that MRS(x 81/7%) = pa/par. Indeed, since all lmh
viduals have the same aggregator function, f, and all face the same price ratio, py/pag, it
must be that 1';\/1;‘,, is the same for all . Therefore the ratio, 4(pa, par)/Ta(Pa,par), is
determined by the price ratio py/pas. These facts allow us to make the following definition.

Definition. Define the function, x(p), with domain R, to be the function that is implicitly
determined by the equation MRS(x(p)) = p. That is, x(p) is the ratio of demand for
afternoon consumption to dewand for morning consumption, when their price ratio is p.

3 Sce, e.q., Parks and Weitzel (1984); Caves et al. (1984), and Hausman et al. (1979).



We will also want to apply standard definitions of expenditure shares and elasticity of
substitution to the aggregator function, f.

Definition. Let the expenditure shares of afternoon and morning consumption be respec-
tively
a= —PATA  and gy = —PMTM
PMITM +PATA PMTM +PATA

Definition. Denote the elasticity of substitution between afternoon and morning con-
sumption by a(p) = —dIn x(p)/dIn p.

Notice that since MRS(p) is a monotone decreasing function and x(p) is its inverse
function, it must be that x(p) is monotone decreasing. Therefore o(p) > 0 for all p.

We assume that if prices are the same in both periods, demand in the afternoon will
exceed demand in the morning. This assumption is expressed in our notation as x(1) > 1.
The assumption that the afternoon is the peak-load period at uniform prices does not
exclude the possibility that at some prices morning demand might be higher.

Pareto Efficiency

Where marginal costs are well-defined, a necessary condition for Pareto efficiency is that
consumers’ marginal rates of substitution between morning and afternoon consumption
equal the ratio of marginal costs. So long as demand in the afternoon exceeds demand in
the morning, an additional bit of service can be provided in the morning without changing
capacity while an extra bit provided in the afternoon requires-a corresponding increase
in capacity. Therefore the marginal cost of utility service in the morning is up and the
marginal cost of utility service in the afternoon is r + u4 where r is the “rental cost”
of capacity. Let p* = -'-ﬁ‘ If the ratio of afternoon price to morning price is p*, then
afternoon demand will equal or exceed morning demand if and only if x(p*) > 1. Therefore
if x(p*) 2 1, Pareto efficiency requires that p = p*. Since, by assumption, ug +r > upm,
it must be that p* > 1.

There is a second possibility. It might be that x(p*) < 1. Then at a price ratio of p*,
demand in the morning would exceed demand in the afternoon and so if these demands

were met, the ratio of marginal costs would be not 33—"’—', but rather —£4—. In this case
M up+r ?

Pareto cfficiency will require that the amount of utility service supplied in the morning
equals the amount supplied in the afternoon. When this is the case, each consumer’s
marginal rate of substitution between morning and afternoon consumption will be p**,
where x(p**) = 1. Given our maintained assumption that x(1) > 1, it follows from the
continuity and monotonicity of the function x that if x(p*) < 1, then there exists such a
p" a.lld 1 < p'. <p‘-

Thus, with no metering costs, Pareto efficiency requires either that demand in the two
periods is equalized or that p = p* = (r + u4)/upm. The former case applies if x(p*) <1
and the latter if x(p*) > 1.

A Constrained Rate of Return and Equilibrium

In the next several sections, we assume that the public utility is constrained to operate at
a fixed rate of return on capital. This constraint might be enforced by a regulatory agency,
or it might be an equilibrium rate of return that is enforced by potential competition. The
capital base on which the utility is allowed to earn this rate of return is proportional to its
capacity. Let cx denote the return per unit of capacity that will yield the allowable rate
of return on capital. If the regulatory agency seeks a Pareto optimal outcome, it will set
ck = r. But it might, for various reasons, allow a rate of return cx > rAd

The constraint on the rate of return is expressed by:
pATA +PMETM —uaZTa —umTM = ck K. (2)
We assume that the utility produces to meet demand in each period. This means that the
prices and quantities chosen must satisfy equation (1). We also assume that the utility uses
its full capacity at least some time during the day, so that when z4 > 7y, it must be that

z4 = K. These assumptions restrict the set of possible equilibria to a “one-dimensional
continuum” determined by the parameter p. That is to say:

Lemma 1. For any p € R, such that x(p) > 1, there is exactly one set of equilibrium
prices and quantities, pa, pm, T4, and zu, that satisfies equation (2) and equates capacity

to peak-load demand.

Proof. In equation (2), substitute z 4 for K, substitute pppy for p4, divide both sides by
zpm, and rearrange. The resulting expression is

T T
pm(p=2 +1) = (ck +ua) =2 +up. 3)
M M
But z4/zp = x(p). It follows from equation (3) that

_ (ex +ua)x(p) +um

PM

1+ px(p)
Therefore we see that p uniquely determines pp. Since ps = ppm, both prices are
determined by their ratio. Then quantities are determined by z4 = z(pa,pm) and

zm =zm(pa,pm). 1

In consequence of Lemma 1, we can study the comparative statics effects of moving
from uniform pricing to peak-load pricing by studying the derivatives of equilibrium prices
and quantities with respect to the variable p. Exactly what the utility will do when it is
allowed to use time-of-day pricing will depend on the kind of regulation or market structure
that applies in the industry. Because the rate-of-return constraint in equation (2) allows

4 See, e.g., Averch and Johnson (1962).



us to determine the equilibrinm price relations (Lemma 1), we do not need to specify a
particular constrained objective function for the utility. Our results hold for a number of
different supply-side specifications. For example, both an Averch-Johnson regulator—who
allows the firm to maximize profits subject to a maximum rate of return—and a Ramsey
regulator—who requires a declining-cost firm to maximize welfare subject to a minimum
rate of return—are special cases of our analysis.

Normally we would expect the utility to move relative prices in the direction that would
tend to equalize demands in the two periods. But, as Bailey and White point out, under
some circumstances a profit-constrained monopolist will choose to make peak-period prices
lower than off-peak prices. Qur comparative statics results can be applied to cither case.
When the ratio of peak to off-peak prices is increased, we will say that prices have moved
toward peak-load pricing. Bailey and White call the other situation a price reversal; we
discuss reversals in Section 5. Even in the “normal” case, an increase in the ratio of peak
to off-peak price does not necessarily imply an increase in the peak-period price. In the
next section, we show just when it happens that the equilibrium prices in both periods fall
as p rises.

2. Does Peak-Load Pricing Make Peak Prices Rise or Fall?

With time-of-day pricing, it is possible to allocate capacity more efficiently betwcen morn-
ing and afternoon use. Since the rate of return on capacity is fixed, this gain in efficiency
may lead to a decline in the equilibriumn prices in both periods. To see how this works, it
helps to think about two special cases that are easy enough to “solve in one’s head.”

Two Easy Cases

In each of these special cases, we assume that user costs are zero and the allowable rate of
return on capacity is cy.

First consider the extreme case of easy substitution between morning and afternoon
consumption where utility is linear in both periods’ consumption but afternoon consump-
tion is “twice as good as” morning consumption. Then the aggregator function for utility
services is:

J(xarzm) =214 +2zM.

If there is a uniform price p in both periods, the only demand for utility services will be
in the afternoon. The zero-profit constraint requires that the entire cost of capacity be
repaid by afternoon usage, so that p = c¢ic. On the other hand, peak-load pricing would
equalize morning and aftcrnoon demands. This happens when py = 2ppr. At these prices,
consumers are indifferent between using the service in the morning and afternoon, and
consumption in both periods can be set equal to capacity. In effect, peak-load pricing
allows the firm to secll its entire capacity twice, once in the morning and once in the
afternoon. The profit constraint is satisfied when ps + py = cx. Since pg = 2py, it
mmst be that with peak-load pricing, pa = 2¢ /3, and ppg = cn /3. Moving from uniform
pricing to peak-load pricing results in lower prices in both periods.
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Now consider the opposite extreme-a case of perfect complements, where, at any price,
consumers always want to consume cxactly twice as much in the afternoon as in the
morning. Let

f(Ta,2ar) = min{z 4,220}

At any price, consumers will choose z4/7p = 2. No matter what prices it chooses, the
utility can sell all of its capacity in the afternoon and only half of its capacity in the
morning. Therefore the zero profit condition will be satisfied for any pair of prices, p4 and
Pum, for which pg 4+ par/2 = cx would satisfy the profit constraint. In this example, raising
the price of peak use relative to the price of off-peak use requires an increase in the price
of peak use.

The Case of Zero User Costs

More generally, assuming that w4 = up = 0 and that full capacity is used in the afternoon,
equation (2) simplifies to par 4 + parrpyr = cxTa. Multiply both sides of this equation
by 84/z 4 to obtain py = 04c). It follows that an increase in the price ratio p will make
afternoon consumption go up or down depending on whether the expenditure share 84 is
an increasing or decrcasing function of p. A familiar result from production theory is that
8,4 is an increasing (decreasing) function of p if and only if the elasticity of substitution
o is less than (greater than) one. Therefore as p is increased, the price of afternoon
consumption will 1ise if 0 < 1, fall if 6 > 1, and stay constant if o = 1.

A General Answer

Let us define the ratio of net return on morning sales to price of morning consumption as®

Ly = (prr ~unt)/pm =1 —upg [pag.

Lemma 2, which is proved in the appendix, has explicit formulae for the change in price
in cach period as the price ratio, p, is changed.

Lemma 2. Assumc technology is as described above and that profits are constrained as
in equation (2). Let preferences be weakly separable between utility services and other
goods and lct the aggregator functions for utility services be linearly homogencous and the
same for all consumers. Then for all p such that \(p) > 1,

dlupy

dinp = 0r(1 = Lyga(p)) (4)

In much of the discusston below, we umphaitly assume that Ly > 0. But our equations apply whether
Lag is positive or negative Thus it is possible to consuder cases where regulators require the utility to set
the moruing price below variable user cost  Wenders (1976) shows that a profit-maximizing utility with
a r('gulaled rate of return on installed capital may set the ofl-peak price below nmrgin;cl cost in order to
encourage the expansion of capital intensive base-load capacity



and

dlnpy _ dinpy
dlnp = dlnp

1 = (64 + Lmo(p)bu). (8)

From equation (4), it is apparent that the sign of dp 4 /dp is the same as that of 1— L y0.
From equation (5), we see that dpas/dp is always negative. Therefore Lemma 2 allows us
to claim:

Theorem 1. Under the assumptions of Lemma 2, moving toward peak-load pricing re-
sults in: (a) lower prices in both peak and off-peak times if the elasticity of substitution
between peak and off-peak consumption is greater than pp/(py — upg), (b) higher prices
in peak times and lower prices in off-peak times if the elasticity of substitution is less than

pm/(Pm — un).

3. Does Peak-Load Pricing Increase or Decrease Industry Capacity?

It may seem reasonable to expect that peak-load pricing will reduce the demand for ca-
pacity by utilities (see, e.g., Berlin et al. (1974); Nemetz and Hankey (1989); Caves et al.
(1984)). But it isn’t necessarily so. There are two forces at work here. Peak-load pricing
allows more efficient use of capacity, since less capacity is idle off-peak. This means that
less capacity is required to generate a given amount of the composite commodity, util-
ity services. On the other hand utility services become cheaper, which tends to increase
the demand for utility services. It turns out that which effect exerts the stronger force
on e_quilibrium capacity depends in a simple way on the elasticity of demand for utility
services.

The weakly separable functional form that we have assumed for utility allows us to
define a composite commodity, z, such that the quantity of = is f (zm,74) and the “price”
p of the composite commodity is just equal to the value of the expenditure function,

=e yPA) = 1 .
p=e(pM,pa) SR PMTM +paza (6)

Since the equilibrium conditions determine p,4 and pum as functions of p, we can define

p(p) = e(pm(p), pa(p)). (7
Applying standard results from duality theory, we find that

dlnp(p) , dlnpy dinpy
dinp 4, T 0 ®)
Substituting from equations (4) and (5) into equation (8) we find that:
dlnp(p)
“dup - =Lmo(p)(1 - 64). 9)

From equation (9) we are able to conclude the following:
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Lemma 3. Under the assumptions of Lemma 2, if demand in the afternoon exceeds
demand in the morning at the price ratio p = pa/pm, then moving toward peak-load
pricing must lower the price of the composite good.

This result is not surprising, since an increase in p tends to equalize demand in the morn-
ing and afternoon, thus allowing more “efficient” production of the composite commodity.
But whether a reduction in its price results in an increase or a decrease in expenditure on
the commodity depends on the magnitude of the elasticity of demand.

Let total demand for the composite commodity, =, be D;(p) where p is the price of
the composite commodity. Denote the price elasticity for the composite commodity by
n. Total revenue, paz 4 + pazp, from the sales of utility services is equal to pD,.(p).
Therefore when x(p) > 1, so that K = z 4, we can write

paK

Oy = ————. 10

* 7 p(e)Da(p(p)) (10)
Logarithmically differentiating both sides of (10) and making substitutions, we are able to
prove the following (see the appendix):

Lemma 4. Under the assumptions of Lemma 2,

dinK

From Lemmas 3 and 4, we deduce:

Theorem 2. Under the assumptions of Lemma 2, moving toward peak-load pricing will
lower the price of the composite good, utility services, and will increase or decrease the
equilibrium capacity depending on whether the absolute value of the price elasticity of
demand for the composite good is greater or smaller than py /(py — um).

In case upy = ug = 0, it is pretty easy to interpret this result. Since the composite
price p falls when prices move toward peak-load pricing, total consumer expenditures must
increase if the aggregate elasticity is greater than one. But the rate of return on capacity
is constrained to stay constant, and since user costs are zero it must be that in equilibrium
the extra consumer expenditures are spent on more capacity. If instead user costs are
positive, then lowering the morning price increases off-peak utilization of the capacity
which increases the total off-peak user costs. Only when the demand elasticity is large
enough relative to the user cost effect (—1 > 1/Lps) will an increase in total expenditure
require a higher equilibrium capacity.



4. Who Gains and Who Loses From Peak-Load Pricing?

In the last section we showed that when preferences over time of use are homothetic
and identical, moving from uniform pricing toward time-of-day pricing will reduce the cost
of the composite good, “utility services”, for every consumer. All consumers benefit from
the change. Now suppose that preferences differ between individuals. "If the prices of
morning and afternoon consumption both fall as the system is moved toward peak-load
pricing, then of course all consumers will benefit. But if the price of afternoon consumption
rises and the price of morning consumption falls, then those for whom an especially large
proportion of consumption is in the afternoon might be worse off.

To analyze these effects, we allow different consumers to have different aggregator
functions, fi(zm,z4). We assume utility functions are of the form, Ui(y’, f(zm,z4)),
and that the functions f*(zar,z4) are homogeneous of degree one. We also assume that
the ratio x of total afteynoon demand to total morning demand is determined by the ratio
g of the afternoon prjce to the morning price.® Then, just as in the earlier sections, we
igpn: define the elastigify of substitution to be a(p) = —dIn x(p)/dIn p.

i'» The response of tfig.equilibrium prices pas and p4 to changes in p is still described by
equations (4) and (5) This makes it easy to figure out whether a consumer is a net gainer
from the price chang{f, Since the aggregator functions f; are assumed to be homothetic,
8ll we need to do to ﬁ’]d out whether 1 is a gainer or a loser is to see whether the unit cost
ta ¢ of producing onef,fimit of the aggregate fi(z4,zm) has gone up or down. This cost is
measured by the expgnditure function,

 pip) =$i(pm(p),palp)) = | min. _ {pu(p)zm +Ppa(P)z4}-

| (zm,za
iy
From standard dualiﬁx results,

dInp;(p) _ i dlnpy i dinpy
dlnp =04 dlnp O dlnp ’ (12)

where 9;'1 and 9'}‘,, are the afternoon’s and morning’s shares of i’s expenditures on utility
services. Substituting from equations (4) and (5) into (12) and rearranging terms, we find
that dlnpi(p)
np'(p .
— =0p(1 - Ly) — 0y 13
dinp M(1 —o(p)Lm) — Oy (13)

From equation (13) we can see the following:

Lemma 5. If preferences are as modelled in this section and technology and market
structure are as modelled in Section 1, then a movement toward peak-load pricing will
benefit consumer ¢ if

[
M 51— a(p)Lu (14)
Om _

6 If, for example, utility takes the quasi-linear form, U;(v*, f*(zas,24)) = ¥* + f*(za1, % 4), this assump-
tion will be satisfied.
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and will make consumer i worse off if the inequality is reversed.

Lemma 5 gives us an exact description of who gains and who loses from peak-load
pricing. From Lemma 5, we can also deduce some simple rules of thumb for determining
losers and gainers. In particular, we have
Theorem 3. Under the conditions of Lemma 5, a move toward peak-load pricing will:
(a) yield a Pareto improvement if oLy > 1;

(b) benefit customer i for any substitution elasticity o if i has a higher than average off-peak
expenditure share (8}, > 0p) and if Ly > 0.
5. Price Reversals

We have so far assumed that if a public utility is enabled to use time-of-day pricing, it will
increase the ratio of peak to off-peak price. Bailey and White (1974) show that $his isn’t

necessarily so. In one of their cases, an Averch-Johnson monopolist sets prices in the twioni:

periods, but is constrained to a fixed rate of return, ck, on capacity. The rate, ¢, exceeds -
the market rate of return on capital. They show that if demand in each perjod depends .
only on the price in that period, the monopolist may choose to charge a lower price for
peak-load use than it does for off-peak use.

This also happens in our case of homothetically separable consumers. Since the Averch-
Johnson monopolist is constrained to make no more than the rate of return cx on his
investment, and since cx exceeds the market rate of return, the monopolist’s abjective
is equivalent to maximizing his capacity subject to his rate of return on capacity being
at least cx. (Like Bailey and White, we assume that the monopolist does not include
“useless” capital in its rate base.)

Lemma 4, above, tells us how capacity changes with p. Indeed

din K

where Lyy = 1 — upg/py and 7) is the elasticity of demand for the composite commodity,
utility services. Thus, for example, in the case where up = 0, capacity will be a decreasing
function of p if demand for utility services is inelastic. If this is the case, the Averch-
Johnson monopolist who starts out with equal prices in the morning and the afternoon
will want to reduce the ratio, p, of peak to off-peak prices. The underlying reason is
rather simple. We have not allowed the monopolist to increase his rate base by adding
useless capital. The only method available to him for increasing the size of his rate base
is to use his capital “wastefully” by using a “perverse” time-of-day pricing structure. The
inefficient time-of-day pricing structure makes the cost of the composite commodity higher
for consumers, but this does not reduce the monopolist’s revenue when demand is inelastic.

We can combine this observation with Lemma 2 to make a complete catalog of what can
happen if an Averch-Johnson monopolist acquires the ability to use time-of-day pricing.

11



A summary of the results is presented in Table 1. According to Lemma 2, in the simple
case where ups = 0, the off-peak price will always move in the opposite direction from p
and the peak price will move in the same or the opposite direction depending on whether
the elasticity of substitution, o, between morning and afternoon consumption, is smaller or
greater than 1. As we demonstrated above, if n < —1, then the monopolist will increase p,
and the comparative statics results presented in previous sections apply directly. If n > —1,
then p will decrease. Therefore, we see from equation (5) that the price of morning utility
services will increase. From equation (4), we see that if, in addition, o < 1, then the price
of afternoon utility services will also increase, while if o > 1, the price of afternoon utility
services will fall.

Thus, it is possible that the off-peak price will be higher than the peak-period price,
and that both prices will be higher than the uniform price. We have shown that our
surprising result holds even when there is a price reversal, although of course the signs of
the derivatives change.

6. Independent Demands.

In their treatment of peak-load pricing, Bailey and White assume that demand in each
time period depends only on its own price and not on the price in the other period. Qur
model allows the possibility that demand in each period may depend on price in the other
period. Instead we make an alternative simplifying assumption, namely that preferences
over utility consumption in the two periods are homothetically separable with identical
aggregator functions for different people. Neither assumption is strictly more general than
the other. In order for demands in each period to depend only on that period’s price,
it must be that utility functions are linear in consumption of other goods and additively
separable for each period’s utility consumption That is, utility must have the quasilinear
form: U(y',2%,2%) =y’ + fA(-‘M) + fM(zM) Our model assumes that consumers have
utility functions of the form U;(y', f(z},,2%)) where U; does not have to be linear in y;
and where f is homothetic, but does not have to be additively separable.”

The kind of comparative statics analysis that we have done for the case of homothetic

. separability can also be applied to the case of independent demands. Here we sketch the

outlines of how this analysis goes. To simplify the exposition, we confine our attention to
the case where uq = upy = 0. We can prove the following theorem.

Theorem 4. Suppose that demand for utility services in each period depends only on
the price in that period. Assume that uy = up = 0, and that the firm is constrained
to a fixed rate of return, ck on capacity. If the utility moves from equal pricing to time-
of-day pricing by reducing the price of off-peak (morning) consumption, then the price of

7 "Phe intersection of the class of utility functions dealt with by us and by Bailey and White is the class
of utility functions that are linear in consumption of other goods, and additively separable and homothetic
in utility consumption. By Bergson’s theorem (Burk (Bergson), 1936) on homothetic nddmvely separable
functions, this class is exactly the set of utility functions of the form U(y* ,zA,zM) =y +a(xA)’+#(:BM)"
where p < < 1.
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peak (afternoon) consumption will increase if morning demand is inelastic and decrease if
morning demand is elastic.

A reduction in the off-peak price is accompanied by an increase in afternoon price if
and only if morning demand is inelastic. But afternoon demand is assumed to depend only
on the afternoon price, and capacity is equal to the afternoon quantity demanded. If the
demand curve is assumed to slope down, then it must be that a reduction in the off-peak
price leads to a decrease in capacity if morning demand is inelastic. The converse also
holds. Therefore we have:

Theorem 5. Given the assumptions of Theorem 4, if the utility moves from uniform
pricing toward peak-load pricing by reducing the off-peak price, then capacity will decrease
(increase) if morning demand is inelastic (elastic).

7. More General Technologies

Different Types of Plant in Peak and Off-Peak Periods

If a utility company does not use its full capacity in both the morning and the afternoon,
there may be cost advantages in having one type of plant that is used all day and a second
type of plant that is used only for the afternoon peak load. Such an arrangement would
be particularly appealing if it is possible to reduce user costs by building a more expensive
type of plant. Then it may be desirable to employ a high-capacity-cost, low-user-cost plant
for all-day use and a cheaper plant with higher user costs for peak-load use.® ?

There is a nice isomorphism between models of this type and the model we have already
treated. Let us suppose that a utility has access to two kinds of capacity, one of which it
uses all day and one of which it uses only in the afternoon. Then the utility uses Ky = o
units of the first kind of capacity and K4 = 4 — = units of the second type. Let rps
and r4 be the costs per unit of capacity of the two types and let up and uy be the
corresponding user costs. Then total costs to the utility of supplying (za1,z4) are:

TMIM +7a(Ta — M)+ upmzy +uaza =(ratug)za+(ru —ra+um)zy. (15).
Compare this expression to total costs in the model where there is only one kind of capacity.
In this case, total costs are just

(rA+u,1).1:A+uM:tM. (16)

8 This type of technology has been discussed by Turvey (1968), Joskow (1976), and Wenders (1976),
among others.

9 A closely related possibility is that as technological change occurs, a utility company finds itself with
some old capacity with high user costs and some newer capacity with lower user costs. The company may
then choose to use the capacity with high user costs only at peak-load times. We will not explicitly deal
with this case here, but will confine our attention to long-run equilibrium analysis. But certainly it would
be possible to extend our results in this direction.
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Looking at expressions (15) and (16), we see that we could write the costs for (15) in the
form of (16) by defining tips = 7 — ra + uym. Indeed all of our analysis of the previous
sections goes through for this model if the utility is constrained to earn zero profits. If an
above-market rate of return is allowed, all of our previous results apply if the regulator
reinterprets the user cost in the earlier model to be iy, which is the actual user cost plus
the difference between the unit cost of capacity which is used all day and the unit cost of
capacity which is used only in the afternoon, and allows an above-market return that is
proportional to peak-load capacity, K 4.'° In retrospect, it is easy to see why this must
be. In the earlier model the only marginal cost of selling more utility services in off-peak
periods was the user cost. In the current model, the long-run cost of expanding morning
output includes both the user cost and the cost of replacing one kind of capacity with the

other.!!

Notice that our results would be formally correct even if it turned out that iy were
negative. But if this were the case, we would have to be careful in interpreting the theorems
since we are accustomed to assuming that marginal costs are nonnegative. As it happens,
a very plausible assumption guarantees that iy > 0. It is reasonable to assume that
¢m > ca, that is for the all-day or base-load technology to have high capacity cost (but
low user cost, so that cpy + up < cq + uag). Then it is sufficient that upy > 0 for

ﬁM =CM—CA+QLM20.

Nonconstant Returns in Provision of Capacity

Our results also extend to cases where there are increasing or decreasing returns to scale
in the provision of capacity. We confine our attention to the case where there is a single
kind of capacity and where user costs are zero and where the firm is constrained to make
zero profits.'?

We write cx(K) to denote the average cost of capacity when capacity is K and we
define ex(K) to be the elasticity of average cost with respect to K. That is, ex(K) =
dlnex(K)/dIn K. Then ex(K) will be positive if there is increasing average cost and
negative if there is decreasing average cost. Assuming that the marginal cost of capacity
is always nonnegative, we must have ¢;(I() > ~1 for all K.

10 If an above-market rate of return is allowed on ali capital, the analysis is complicated because total
capital is unlikely to remain proportional to peak-load capacity as prices change, which is what we need
for the isomorphism.

11 There is another simple isomorphism that is worth pointing out. Formally, in either of these models,
there is no reason to distinguish between capacity costs in the peak period and user costs in the peak period.
Either model would be isomorphic to a model with zero user costs in the afternoon and with afternoon
capacity costs 4 = r4 + upy. Williamson (1966) has noticed this simplification in the modelling of
long-run utility costs.

12 These results apply as well to the case of a firm regulated to earn profits that are a fixed proportion
of capacity costs.
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Given the assumption that user costs are zero and that the average cost of capacity is
now ¢k (K), the equilibrium condition in equation (2) can be rewritten as

T
pat B = (k). (17)
Equation (17) is equivalent to
pa =cx(K)b4. (18)
Logarithmically differentiate to obtain:
dlnps _ dlnd, dn K
dinp ~ dinp T exE) g (19)

Using results and methods from previous sections, we have:

Theorem 6. Under the assumptions of this section,

dln K 149
dinp ~ Moy (20)

It is trivial to show that 1 — nex(K) > 0 is necessary for an equilibrium to exist;
if the inequality is reversed, then the economies of scale in capacity and the demand
responsiveness of the composite good demand would feed on each other to drive equilibrium
output to infinity. Therefore, even when costs are non-constant, the result of Theorem 2
continues to hold: equilibrium capacity will increase or decrease depending on whether the
absolute value of the price elasticity is greater or smaller than one.

The effect of nonconstant costs is to magnify or diminish the equilibrium capacity
change, as the cost elasticity is negative or positive. For instance, if €x < 0 then the
denominator of (20) is less than one, and the change in K is magnified. If demand is
elastic (7 < —1), capacity will increase more the larger are the cost economies (negative
ex)- This is so because the price efficiency gain from peak-load pricing is amplified by
the cost efficiency gain as scale economies are achieved (leading to even lower prices; see
below).

Substitute equation (20) into (19), to find:

Theorem 7. Under the assumptions of Theorem 6,

dlnpy ( 14 ex(K) )
dnp O (1- a(p)i——ne—;(—lﬁ (21)
and
dlnpy = — (64 + 6110(p) 1+ ex(K) (22)
dlnp ATEMIPITZ ne(K) )~

Similar results can be found or the case of nonconstant capacity costs and nonzero user
off-peak user costs up. In particular, we have!®

13 Proof available from the authors on request.
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Theorem 8. Under the assumptions of Theorem 1, with the additional assumption that
unit capacity costs may be a non-constant function of capacity, cx(K), moving towards
peak-load pricing results in

idl% =0m (1 - a(p)%) (23)
%ﬁi =- (GA +9M”(P)I{M+;K((éi))) (24)
iy~ 0 (i) )
where K = exe () (pm —um)zm + PATA (26)

PMTM +PATA

8. An Unconstrained Monopolist

To this point we have considered equilibrium prices and quantities only when the firm
operates under a profit constraint. Some analyses of public utility pricing assume that the
firm is able to behave as an unconstrained monopolist. In this section we examine the
prices and quantities set by an unconstrained monopolist under uniform and peak-load
pricing.' In the simplest case of independent demands and concave profit functions, we
obtain the “normal” result that peak-load pricing leads to an increase in the peak period
price, and a decrease in equilibrium capacity. With more general preferences it is again
possible that both peak and off-peak prices can be lower than the uniform price.

Recall that with a weakly separable utility function, we can define a composite com-
modity, z, equal to f(zum,z4), for which there is a composite price, p(pp,pa), defined at
equation (6). The consumer’s problem can be broken into two stages. In the first stage, the
consumer allocates income between y and z; then in the second stage the consumer chooses
zym and x4 to maximize f(zpm,T4) subject to the expenditure on utility services set in
the first stage. We saw in equation (1) that the second stage allocation of expenditure
between peak and off-peak services implied

fa(zm,24) _ Pa
fi(zm,za) M’

M peak-load pricing by an unconstrained monopolist is a form of third-degree price discrimination. The

_ welfare effects of third-degree price discrimination were first analyzed by Pigou (1932), and have been
recently analyzed under varying conditions by Schmalensee (1981), Varian (1985), Hausman and MacKie-
Mason (1988), and Schwartz (1989). However, none of these authors develop comparative statics for price
or capacity.
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It is convenient to think of the unregulated monopolist as a seller of the composite good,
z, which is produced according to the production function f(za,z4). The monopolist
chooses input levels of the “factors” z s and 4 to maximize profits,

max p(f(zm,z4)) f(zm,24) —umzm — (ua +7)z4.

Taking the ratio of the first-order conditions and using equation (1) we find that the
equilibrium price ratio will be

Pa _uatr

pM um

Then, since we have assumed that uy + r > ujps, we can state the following result.

Theorem 9. Assume that technology is as described above, and that the firm is an
unregulated monopolist. Let preferences be as described in Lemma 2. Then the profit-
maximizing time-of-day prices satisfy pa > pm.

We have found that a price reversal is not possible. Yet Bailey and White showed that
price reversals could occur with an unregulated monopolist under their assumptions. The
difference in results is not due to their restriction that demands be independent, since our
result also holds for independent demands. Rather, it is the homotheticity restriction that
rules out a reversal when prices are set by an unconstrained monopolist. With independent
demands, the monopoly prices satisfy the usual inverse-elasticity mark-up on marginal cost.
Since peak-period marginal cost is higher, a necessary condition for a pricing reversal is that
the off-peak demand elasticity be lower. It can be shown, however, that with homothetic
utility and independent demands, the demand elasticities in each period must be identical.
A similar argument shows that a reversal is impossible for interdependent but homothetic
demands as well, because the sums of own and cross-price elasticities are identical for the
two periods.15 16

We next ask whether the peak-period price increases or decreases if the monopolist
changes from uniform to time-of-day pricing. We do this only for the case of homoth-
etic preferences with independent demands and concave profit functions. The result is
straightforward: :

Theorem 10. Assume the conditions of Theorem 9 hold. Assume further that demand
for service in each period depends only on the price in that period, and that the utility’s
profit functions for each period viewed as separate submarkets are concave. Then the

!5 The restrictions on the demand elasticities can be derived by recalling that with homothetic preferences,
the demand ratio is a function of the price ratio, z4/zp = x(p). Demand elasticities are obtained by
logarithmically differentiating, and using the properties of the expenditure function to equate cross-partials.

16 We found that price reversals were possible with homothetic demands for a monopolist with a con-
strained rate of return. In that case, a reversal is possible with equal demand elasticities when the profit
constraint is tight enough, because the firm will substantially lower the peak-period price to increase the
capacity base.
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peak-period price is higher than the uniform price, and the off-peak price is lower than the
uniformn price.

When profits are not concave in price, Nahata, Ostaszewski and Sahoo (1989) have
shown that a third-degree price-discriminating monopolist may cither raise both prices
above the uniform price, or lower both prices, thus returning us to the situation described
in Section 2 for a rate-of-return regulated monopolist. Naturally, in the case when demands
are interdependent, it is also possible that both peak and off-peak prices can either fall or
rise.

Since the demand for peak and off-peak services are independent, the effect of time-
of-day pricing on equilibrium capacity follows directly from the conclusion that the peak
price is higher than the uniform price.

Theorem 11. Under the conditions of Theorem 10, equilibrium capacity falls if an un-
constrained monopolist moves from uniform pricing to time-of-day pricing.

9. Remarks

As public utilities and their regulators decide whether to move towards time-of-use
pricing, they will nced to know the answers to the questions we have posed: what will
happen to the prices in the different periods; what will happen to equilibrium capacity; and
who will benefit, who will lose? We have provided simple results that determine the answers
to these questions when the firm is constrained to earn a fixed rate of return on installed
capital, and faces demands determined by separable and homothetic preferences. We also
extended some of the results to cases in which the firm is an unconstrained monopolist, or
in which demands are nonhomothetic and independent.

Most of the empirical research on time-of-day pricing for residential electricity has
assumed that preferences are separable and homothetic; see, e.g., Caves et al. (1984),
Howrey and Varian (1984), Parks and Weitzel (1984), Caves and Christensen (1980a,
1980b), Atkinson (1979), and Hausman et al. (1979).!7 Thus, our analysis is quite relevant
for the application of the estimated price and substitution clasticitics from this literature
to predict equilibrium prices and capacity from a change to time-of-day pricing.

What does the cmpirical literature say about the critical parameters that we have
identified, in particular the elasticity of substitution between peak and off-peak services
and the demand elasticity for the composite utility services com:modity? In the time-of-
day electricity literature, most estimates of the substitution elasticity are quite low; the
range of 0.10 to 0.14 reported in Caves et al. (1984) is typical. This suggests that our
first surprising result— that the peak-period price may be lower than the uniform price—is
unlikely for residential electricity demand. However, as noted by Acton (1982), through no
fault of the researchers most of the estimates rely on the use of sophisticated econometric

7 Haker et al. (1989) and Hausman and Irimble (1984) do not impose the homotheticity restriction.
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analyses of underidentified experimental data, and thus are somewhat suspect until data
sets with greater price variation are produced. Further, most of the studies have examined
demand over no more than one year. Yet the long-run substitutability of off-peak for peak
demand will depend in large part on changes in the consumer portfolios of electricity-using
appliances, and on technological advances in timne-shifting of demand.

Most of the data sets on which time-of-day clectricity demands have been estimated
have not provided sufficient detail about the household’s income and other expenditures
to estimate the price elasticity of the clectricity composite good (Parks and Weitzel (1984)
discuss this problem). If we look back to studies of electricity demand before time-of-
day pricing we find that the long-run clasticity of demand was typically estimated to be
greater than one in magnitude; Taylor (1977) surveys a number of such studies. Our results
show that if the long-run demand elasticity is greater than one, then equilibrinm capacity
under time-of-day pricing may actually be greater than under uniforin pricing. With more
cfficient pricing and clastic demand for utility services, consumers will want to spend more
on those services; with a constrained rate of return on capacity, equilibrivin may require
that capacity be expanded.

There has been nmnch recent interest in time-of-day pricing for local telephone use.
1

However, there have been few published studies of local telephone time-of-day demand.'®

It is premature to draw conclusions about the long-run elasticity of substitution and the

price clasticity of a houschold’s composite local telephone demand.

Our analysis indicates the importance of having good estimates of a few preference
parameters if we wish to forecast the price, capacity and distributional cffects of peak-load
pricing. There have been few attempts to estimate these parameters for local telephone
usage; many attempts to estimate the substitution elasticity for electricity usage were
hampered by data limitations. Future empirical research in this area should seek to obtain
good estimates of these paramecters. Design of future experiments should also take our
results into account. For instance, most experiments to date have been designed with
the implicit assumption that the peak price would be higher, and the off-peak price lower
than the pre-existing uniform price.'® Should a long-run equilibrium require one of the
different price configurations that we have identified, the elasticity estimates derived from
these experiments will be useful only to the extent that they are good predictors well
outside the range of the experimental design. Such an assumption may be warranted for
electricity demand (although long-run substitution elasticities are likely to be higher than
the mostly short-run elasticities estimated to date), but we have too little evidence to draw
any conclusions yet for local telephone demand.

18 MacKie-Mason is currently undertaking such a study

19 See Manning et al. (1979) for a detailed discussion of the design of the Los Angeles Electric Rate
Demonstration project, which is typical in this regard.
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Appendix

The results in this appendix are all proved under the assumptions made for Lemma 2
of the text, unless otherwise indicated.

Fact 1. Where o(p) is the (negative of the) elasticity of substitution between =y and z 4,

at the price ratio, p,
dlnéd A

dlnp

= 6n(1 - o(p)).

Proof. The utility function is of the form U;(y', f(zm,z4), where f(zp,z4) is strictly
quasi-concave and homogeneous of degree one. Consumer optimization therefore implies
that: S
3 1
o) _, (A1)
fi(zy,7y)
where p = pa/pm-
Since f is strictly quasi-concave, the slope of an isoquant is uniquely determined by
the ratio z 4/zm. Therefore the equilibrium condition (A.1) uniquely determines the ratio
za/zm = x(p). Evidently

px(p) = paza/pmzm =04/(1 — 04). (A.2)

It follows that 84 = px(p)/(1 + px(p)). Therefore equilibrium values of 4 are uniquely
determined by p, and we can define the function 84(p) accordingly.

Most of the results are more conveniently derived in the form of elasticities, so we work
largely with logarithmic derivatives. From (A.2), it follows that

In8s —In(1 — 84) =lnp+Inx(p). (A.3)

The elasticity of substitution is o(p) = —dInx(p)/dIn(p). Differentiating both sides of
equation (A.3) with respect to In p, we have

dlnGA GA _
dinp (1 +1 -0,4) =1-0(p). (A.49)

Multiply both sides of (A.4) by (1 — 64) and recall that (1 —684) = p to obtain Fact 1. I

Proof of Lemma 2.

If we multiply both sides of text equation (2) by 8,/x 4, we have:

pa= (CK +ua+um %) 0. (A5)
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From the fact that p = 1 — 64, it follows that %‘:9,4 = p(1 — 64). Therefore equation
(A.5) is equivalent to
pa=(ck +ua—ump)a+ump. (A.6)

Differentiating, we have:

dpa _ di,
& = (ck +ua—ump) 0 +um(l—04).

Then multiplying both sides by p/pa and simplifying, we have:

dlnps 0adinfs  um
dinp (ex +ua “MP)pA dinp t o P(1—1064). (A7)
From (A.6) and the definition of Ly, we see that
(cK+u,1—uMp)9—A=1—Mp=l—M=LM. (A.8)
PA pA M

Therefore, using Fact 1 and (A.8).we can simplify (A.7) to

dlnpy
dlnp

Since ¥ p(1 - 64) = (1 — Lp)6m, we can further simplify (A.9) to

= Lubm(1 - o(p)) + M p(1 - ,4). (A.9)
PA

dlnpy
dlnp

= 0m(1 — Lya(p)).

This is the first equation claimed in Lemma 2. The second equation is a trivial consequence
of the first. I

Proof of Lemma 4.

Logarithmically differentiate text equation (10) to get
dlnK _ din84 dlps dlnp dinD;dlnp

dlnp ~ dlnp  dlnp dlnp+ dlnp dlnp (4.10)

_dlné, dlnp,  dlnp
= dnp " dinp Tampt "

Substituting the results of Fact 1, Lemma 2, and text equation (9), yields the result. ]

Proof of Theorem 4.

The constraint on the profit rate can be written as R(pm) = (ckx — pa)ra(pa) where
R(pm) = pmzm(pm). Differentiate both sides of this equation to obtain R'(pm) = [(cx —
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pa)z(pa) — zA(pA))d!f:-. But (cx — pa)z'y(pa) — za(pa) < 0. Therefore ff: is of the
opposite sign from R'(pp). Now R'(ppr) is positive (negative) if demand in the morning
is inelastic (elastic). Therefore ;f:— is negative (positive) if demand in the morning is
inelastic (elastic). It follows that if morning price is reduced, then afternoon price will
increase (decreasc) if morning demand is inelastic (elastic). §

Proof of Theorem 6.

Since we assume that user costs are zero but capacity costs are non-constant, we can
rewrite (A.5) as
Pa = cr(I)04. (A11)
Logarithmically differentiating,

dlupy  dlné, + dineg(K)dinK
dlnp = dlup dlnK dlnp

din K
= Bua(1 = o) + ex(K) G

(A.12)

where the second cquality follows from using Fact 1 and the definition of the cost elasticity,
€x. Then, since p = pa/pag, we know that

dinppyy  dlnpy
dnp ~ dimp D (413)
% dl dn K
npm . din
— = =04 — 00 - —_— A4
dlnp e ':”+£"(A)dlnp ( )

by substituting (A.12). Then we can rewrite text equation (8) as

dlup(p) dlnp, dlan] dlnpy

dlnp ~ A dlnp dnp dlnp
—0,+ Horm (A.15)
dinp

din K
dlnp

= —00p + ex(K)
where the second cquality follows from (A.13) and the third equality from substituting

(A.14).

We now need to find the change in . We can begin with equation (A.10). Substituting
in (A.12) gives

dinK adinK dlnp(p)
dlnp ~ —f"('\)dlnp +(14n) dn
. din K
= —a0pm(1 + 1)+ yex(K) (A.16)
dlnp .

14y
1 - yex(K)

= —aﬂM
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using (A.15) to get the second equality and rearranging to obtain the third

Proof of Theorem 10.

Let the optimal uniform price be p. Suppose that the uniform price is higher than both
optimal time-of-day prices. Since demands are independent, charging instead a uniform
price equal to the time-of-day peak-period price would maximize profits from that service.
With a concave profit function for off-peak services, off-peak profits would also increase
by moving the uniform price closer to the time-of-day optimum. Thus, the uniform price
cannot be higher than the time-of-day peak-period price. Strict inequality is established
by noting that marginal peak-period profit is zero at the optimal peak-period price, but
marginal off-peak profits are negative at that price, so the uniforin price will be set lower
than the peak-period price. A similar argument works for a uniform price below pyy, so
pm <p<pa.l
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Table 1. Summary of Price Results

Change relative to a uniform price

Peak price | Off-peak price | Capacity
1. No price reversal: py > py
a. o< "—A"f"m higher lower
b. o> ;A—’P—_Mm lower lower
c. [nl > ;‘;,P‘_M.‘T higher
2. Price reversal: pg < py
a. 0 < R lower higher
b. o> P—Ml_ﬁ%-; higher higher
c. Inl> ;;ff'.:'— lower
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