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A major locus that is detected through its effect on one phenotype (a primary trait) 
may also affect other quantitative phenotypes or qualitative disease endpoints (sec- 
ondary traits). The pattern of effects of the major locus on a set of primary and 
secondary traits suggests candidate defects for the mutant allele. The effects are 
directly estimable when “measured genotypes” or a tightly linked marker allow 
unambiguous assignment of major locus genotypes. When genotype assignments 
are ambiguous for a major locus detected through its effect on a quantitative pri- 
mary trait, we propose estimators using genotypic probabilities. Making certain 
reasonable assumptions, we demonstrate asymptotic unbiasedness of these geno- 
typic probability estimators of the genotypic means and variances for either the 
quantitative primary or secondary traits, of the covariances between quantitative 
primary and secondary traits, and of prevalences for the secondary qualitative traits. 
An important application of genotypic probability estimators is to define an effect 
of a major locus that cannot be detected upon analysis of the variable; for example, 
major locus effects may be defined for hypertension or blood pressure as second- 
ary traits, but not detected as primary traits. 

Key words: maximum likelihood estimators, likelihood analysis, genotypic probability estimators, 
pleiotropic gene effects, bivariate phenotypes 

INTRODUCTION 

A quantitative phenotype (primary trait), although many steps removed from a 
genetic locus, may exhibit effects of segregation of alleles at the locus. Other quantita- 
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tive traits and/or qualitative disease endpoints (secondary traits) may also exhibit effects 
of the same locus. This pleiotropic gene action reflects the highly integrated state of 
cellular and developmental metabolism. The magnitude of the effect on either a pri- 
mary or secondary trait depends on the trait’s distance from the primary gene action 
and the number of intervening steps influenced by other genes and environmental fac- 
tors. While a correlation observed between two traits (primary or secondary) may result 
from a single pleiotropic locus, the correlation could also result from the same envi- 
ronmental exposure and/or other pleiotropic genetic loci. Attributing the source of the 
correlation may contribute more to understanding the underlying physiology of the 
locus than will a study restricted to the locus and a single primary trait. 

Standard procedures allow estimation of a major locus effect when each individ- 
ual can be unequivocally assigned a genotype, that is, the locus has “measured geno- 
types” [Sing and Davignon, 1985; Boenvinkle et al., 1986a, 1987; Boenvinkle and 
Sing, 1986; Hewett-Emmett et al., 1987; Boerwinkle and Utermann, 19881. Geno- 
types can also be assigned using a genetic marker linked tightly to the locus of interest 
[Leppert et al., 19881. A DNA sequence polymorphism detected by a cloned human 
gene sequence generally defines a marker with recombination below 10 -4, corresponding 
to a distance between the polymorphism and the site of mutation within the locus of a 
few thousand base pairs [Kan and Dozy, 19781. However, since the polymorphism 
defining the marker differs from the hypothesized mutation, it is possible that unaf- 
fected family members may share the identifying marker allele seen in affected family 
members. When this occurs, a genotypic probability that is close to zero or one can be 
used to identify unaffected or affected family members, respectively. The genotypic 
probability equals the relative likelihood of the genetic model conditional on a particu- 
lar genotype for the individual; the parameters of the genetic model are fixed at their 
maximum likelihood estimates including no recombination between the phenotype and 
marker loci. The probabilities therefore consider familial relationships and both phe- 
notype and marker data. Assigning each individual as a heterozygote or homozygote 
based on hidher genotypic probability, Leppert et al. [1986] could estimate the effect 
of the low-density lipoprotein (LDL) receptor locus on the secondary traits, the 
lipid levels. 

Upon inferring a major locus from likelihood analysis in the absence of a tightly 
linked marker, genotypes can he assigned using genotypic probabilities computed using 
familial relationships and the primary trait data, an approach called the ‘‘unmeasured 
genotype” or biometrical approach [Boerwinkle et al., 1986a; Sing et al., 19881. 
Odenheimer [ 19851 tested the accuracy of genotype assignments using this approach 
for single locus genetic models and different pedigree configurations (nuclear families 
through large multigeneration pedigrees) using computer simulation. He assigned the 
carrier and noncarrier genotypes to individuals whose probability was above and below 
a given cutpoint, respectively. Sensitivity and specificity were defined as the propor- 
tion of individuals with a correctly assigned genotype among carriers and noncarriers, 
respectively. He found that when the genotypic means differed by at least three within 
genotype standard deviations, the inheritance was dominant, and when data were avail- 
able on at least a five-member nuclear family (two parents and three offspring), both 
sensitivity and specificity exceeded .90 for a wide range of cutpoints. When the geno- 
typic means differed by only two within genotype standard deviations, no cutpoint 
gave both sensitivity and specificity over .70 for any pedigree configuration consid- 
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ered, indicating that at least 30% of carriers would be classified as noncarriers or at 
least 30% of noncaniers would be classified as carriers. Therefore, the unmeasured 
genotype approach classifies individuals as carriers or noncarriers of a rare allele with 
reasonable accuracy only for dominant traits with genotypic means that differ by at 
least three within genotype standard deviations. However, for recessive traits and/or 
traits with means closer than three within genotype standard deviations, the unmeas- 
ured genotype approach misclassifies many individuals. A modified strategy of elimi- 
nating individuals with intermediate probabilities would reduce the sample size. How- 
ever, either misclassification or elimination of individuals may produce biased estimates 
that could diminish large effects or exaggerate small effects of the locus. 

Genotypes can be assigned unequivocally for major loci with measured geno- 
types, a tightly-linked marker, or nonoverlapping phenotypes within genotypes. How- 
ever, for the majority of major loci of interest, we cannot accurately assign genotypes 
to individuals. With this in mind, we define estimators that use the genotypic proba- 
bilities from the unmeasured genotype approach as weighting factors. Intuitively, the 
genotypic probability estimators (GPEs) partially assign an individual to a given geno- 
type. Thus, an individual with genotypic probabilities of .85, .14, and .01 for geno- 
types dd, Dd, and DD would contribute 85% of an observation to genotype dd, 14% to 
genotype Dd, and 1% to genotype DD. 

In the present paper, we consider the effect on a quantitative or qualitative sec- 
ondary trait of a major locus identified through a large effect on a quantitative primary 
trait. The designations as primary and secondary depend on the application and do not 
imply any specific causal relationships. We define the GPEs of the genotypic frequen- 
cies, means, and variances of primary or secondary traits, covariances between a pri- 
mary and secondary trait, and prevalences of secondary traits. We then present 
applications of the GPEs to studies of apolipoprotein B [Hasstedt et al., 19871, 
intraerythrocytic sodium level [Hasstedt et al., 1988a1, and sodium-lithium counter- 
transport [Hasstedt et al., 1988bl. Finally, we state and discuss the assumptions made 
when deriving the expected values of the estimators. 

THE GENOTYPIC PROBABILITY ESTIMATORS 

Suppose that xi, i = 1, 2, . . . , n, represents a set of quantitative observations 
for the primary trait for which major locus inheritance was demonstrated using likeli- 
hood analysis and that observations yi, i = 1, 2, . . . , n (quantitative) and zi, i = 
1, 2, . . . , n (dichotomous) are secondary traits available for the same sample. X ,  Y ,  
and Z represent the corresponding random variables. Suppose further that genotypic 
probabilities of the J genotypes, @,, 

J 

j =  1 
c @, = 1, 

have been computed as the relative likelihood conditional on individual i having geno- 
typej with the parameters fixed at their maximum likelihood estimates for the primary 
trait X .  MLE is used for both maximum likelihood estimators and estimates, and GPE 
is used for both genotypic probability estimators and estimates. 
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Genotypic Frequencies 
If genotypes were unambiguously assigned, the genotypic frequency would be 

estimated as the number of sample members assigned the genotype divided by the 
sample size; for ambiguously assigned genotypes, we estimate the numerator by sum- 
ming the portion of each individual assigned the genotype. Therefore, the GPE of the 
frequency of genotype j equals 

n 
f ;  = x Pij/n. 

i =  1 

We can demonstrate that the GPEA. equals the MLE of the genotypic frequency,&. 

Genotypic Means 
If genotypes were unambiguously assigned, the genotypic mean would be esti- 

mated as the sum of trait values for sample members assigned the genotype divided by 
the number assigned the genotype; for ambiguously assigned genotypes, we estimate 
the numerator as the sum of each trait value weighted by the portion of the individual 
assigned the genotype and the denominator as the sum of the portion of each individual 
assigned the genotype. Therefore, the GPE of the mean of the secondary trait variable 
Y for genotype j equals 

n 

j =  1 

where f i j  = n $. The weighted sum of ( I j  over the genotypes equals the sample 
mean, that is, 

since 

J 

j =  1 
c p i j =  1. 

We can demonstrate that GPE (I; is an asymptotically unbiased estimator of pj, that 
is, lim E (kj) = p;. The variance of bj is bounded between .&Inj and .&Inj 
+ (1 - jj) p?nj, where o& is the variance within genotypes. In addition, sub- 
stituting xi for yi in Equation (2), the GPE equals the MLE of the genotypic mean for 
the primary trait variable X .  

Variance Within Genotypes 
If genotypes were unambiguously assigned, the variance within genotypes would 

be estimated as the sum of the squared deviations for sample members assigned the 
genotype divided by the number assigned the genotype; for ambiguously assigned geno- 
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types, we estimate the numerator as the sum of the squared deviations weighted by the 
portion of the individual assigned the genotype and the denominator as the sum of the 
portion of each individual assigned the genotype. Therefore, the GPE of the variance 
of the secondary trait variable Y within major locus genotype j equals 

and the GPE of the common variance within major locus genotypes equals 

We can demonstrate that both estimators underestimate D&, but are asympototically 
unbiased. In addition, substituting xi and bxj for yi and bj, respectively, in Equa- 
tions (4), the GPE equals the MLE of the within genotype variance of the primary trait 
variable X .  

Variance Due to the Major Locus 
The GPE of the variance for secondary trait Y due to the major locus is 

We can demonstrate that GPE 6% overestimates 02, but is asymptotically unbiased. 
As an alternative to the GPE, an ad hoc estimator of the proportion of variance of 

the secondary trait Y due to the major locus equals the product of the proportion of the 
variance of Y accounted for by the primary trait X (the squared correlation between X 
and Y) multiplied by the proportion of the variance of X due to the major locus [Sing et 
al., 19861. We assume a constant expected slope of Y to X (that is, the relationship 
between X and Y is independent of the genotype for the primary trait X )  when demon- 
strating asymptotic unbiasedness of the GPEs. We can demonstrate that this assumption 
also leads to equivalence of the ad hoc estimator and the parameter estimated. 

Covariance Within Genotypes 

If genotypes were unambiguously assigned, the covariance within genotypes would 
be estimated as the sum of the product of deviations for sample members assigned the 
genotype divided by the number assigned the genotype; for ambiguously assigned geno- 
types, we estimate the numerator as the sum of each deviation product weighted by the 
portion of the individual assigned the genotype and the denominator as the sum of the 
portion of each individual assigned the genotype. Therefore, the GPE of the covari- 
ance between primary trait X and secondary trait Y within major locus genotypej equals 
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and the GPE of the common covariance within genotypes equals 

where bXj is the MLE of the mean of primary trait variable X for genotype j .  We can 
demonstrate that both estimators are asymptotically unbiased estimators of ywg . 

Covariance Due to the Major Locus 

the major locus is 
The GPE of the covariance between primary trait X and secondary trait Y due to 

We can demonstrate that this estimator is an asymptotically unbiased estimator of yd. 

Prevalences 
If genotypes were unambiguously assigned, the genotypic prevalence would be 

estimated as the number of affected sample members assigned the genotype divided 
by the number assigned the genotype; for ambiguously assigned genotypes, we esti- 
mate the numerator by summing the portion of all affected individuals assigned the 
genotype and the denominator by summing the portion of all individuals assigned the 
genotype. Therefore, the GPE of the disease prevalence for qualitative secondary trait 
Z for genotype j is 

where zi equals 1 if individual i is affected and 0 otherwise. The weighted sum of +j 

across genotypes equals the sample proportion, that is, 

We can demonstrate that GPE 6, is an asymptotically unbiased estimator of +j with 
variance bounded by (1 - +;)/n; and (bj (1 -6 +$nj. 

EXAMPLES 

To estimate the effect of a major locus on a quantitative secondary trait, we can 
compute GPEs of its genotype-specific means, the GPE of the proportion of its vari- 
ance due to the major locus, or the GPE of its correlation with the primary trait due to 
the locus. To estimate the effect of a major locus on a qualitative secondary trait, we 
can compute GPEs of the genotype-specific prevalences or GPEs of genotypic fre- 
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quencies within disease subgroups. To assess the fit of the genetic model, we can com- 
pute GPEs of the genotypic frequencies within age and sex groups. We demonstrate 
these applications of the GPEs for three unmeasured loci inferred by likelihood analy- 
sis. In each of these examples, the primary and secondary traits are thought to be related 
metabolically. We also present ad hoc estimates of the proportion of variance due to 
the major locus; differences between the GPE and ad hoc estimates are attributable to 
the violation of the constant expected slope assumption. 

Apolipoprotein 6 

A codominant major locus with two alleles accounted for 43.2% of the variance 
in apolipoprotein B (apoB) level, a primary trait, as measured on 331 members of 36 
pedigrees [Hasstedt et al., 19871. MLEs of the genotypic means equaled 110.5, 141.9, 
and 208.1 mg/dl. As the primary protein constituent of low-density lipoprotein (LDL), 
apoB showed the expected high correlation with LDL cholesterol, a secondary trait ( r  
= .62, P < .01). GPEs of the genotypic means of LDL cholesterol equaled 118.8, 
141 .O, and 191.5 mg/dl. The GPE of the variance due to the apoB locus was estimated 
to be 14% of the variance in LDL cholesterol, somewhat lower than the ad hoc esti- 
mate of 17% obtained by multiplying .432 (the proportion of the variance of apoB due 
to the major locus) by .384 (correlation .62 squared). Using either estimate, the unmeas- 
ured locus determining apoB levels explained more of the variability in LDL choles- 
terol level than did the LDL receptor locus (2.5%) [unpublished data] or the apoE 
locus (4.4%) [Boenvinkle and Sing, 19861. 

lntraerythrocytic Sodium 
A major locus accounted for 29.0% of the variance in intraerythrocytic sodium 

(RBC Na) level after adjustment and natural logarithm transformation in a sample of 
1,800 normotensive members of 64 pedigrees [Hasstedt et al., 1988al. Homozygotes 
for each of the four alleles in the genetic model expressed a different mean; heterozy- 
gotes expressed the lower of the two means associated with homozygotes for their two 
alleles. MLEs of the four genotypic means of the standardized natural logarithm- 
transformedRBCNalevelsequaled - 2.60, - 0.21,1.37, and4.39instandarddeviation 
units. GPEs of the means in the original scale (mmole/liter RBC) equaled 4.32, 6.67, 
9.06, and 12.19. Here we are using transformed RBC Na levels as a primary trait and 
untransformed RBC Na levels as a secondary trait. 

RBC Na level is higher in hypertensive patients than in controls [Hilton, 19861. 
Hypertensive members of our sample were removed before analysis because hyperten- 
sive medication affects RBC Na level. However, pedigrees ascertained through hyper- 
tensive probands might have a higher frequency of the alleles that elevate RBC Na 
level. GPEs of the summed frequency of the three genotypes for high RBC Na ranged 
from 0.135 to 0.170 in pedigrees ascertained through a hypertensive proband and from 
0.061 to 0.103 in pedigrees ascertained through a normotensive proband [Hasstedt et 
al., 1988al. Therefore, the GPEs provided evidence that when the proband is hyper- 
tensive, rather than normotensive, there is increased susceptibility for hypertension 
among normotensive relatives. 

Various sodium transport systems regulate the sodium concentration in the cell, 
producing a correlation between transport variables (secondary traits) and RBC Na. 
Estimated correlations with RBC Na in normotensives were -0.43 (P  < .OOl) for the 
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number of ouabain binding sites, - 0.08 (P < .OOl) for sodium-potassium cotransport, 
and - 0.04 (P  < .05) for sodium-lithium countertransport. GPEs of the correlation with 
RBC Na due to the major locus equaled - 0.12 for the number of ouabain-binding sites, 
- 0.05 for sodium-potassium cotransport, and - 0.02 for sodium-lithium countertrans- 
port [Hasstedt et al., 1988al. Since the correlation with RBC Na due to the major locus 
is close to zero for all these secondary traits, the GPEs failed to implicate genes affecting 
the number of ouabain-binding sites, sodium-potassium cotransport, or sodium-lithium 
countertransport as responsible for the effect on RBC Na level. 

Sodium-Lithium Countertransport 
A codominant major locus with two alleles accounted for 34.4% of the variance in 

sodium-lithium countertransport (SLC) level in a sample of 1,880 members of 89 pedi- 
grees [Hasstedt et al., 1988bl. In the analysis, equation y = 6/P[(x/6 + 1)'- 11 
transformed the standardized levels of SLC (x in the equation) by a power (P)  to obtain 
a variable y with an approximate normal distribution within genotypes [MacLean et 
al., 19761. TheMLEsofthegenotypicmeansoftransformedSLCequaled - 0.27, - 0.08, 
and 2.24 in units of standard deviates. If the relationship between the moments of x 
and y, assuming y is normally distributed, were known, we could transform the geno- 
typic means to the original scale. In the absence of this relationship, GPEs of the geno- 
typic means in the original scale (mmole/liter RBC/hr) were computed to equal 0.245, 
0.286, and 0.530. Here we are using the transformed SLC as a primary trait and 
untransformed SLC as a secondary trait. 

If SLC is a preclinical marker of essential hypertension [Canessa et al., 19801, 
the SLC major locus may be a hypertension susceptibility locus. Using SLC as the 
primary trait and hypertension as the secondary trait, the GPEs of hypertension preva- 
lence equaled 0.04 and 0.09 in men aged 30 to 49 years, 0.23 and 0.36 in men aged 50 
years and older, and 0.38 and 0.82 in women aged 50 years and older, in low and high 
homozygotes, respectively [Hasstedt et al., 1988bl. Therefore, the homozygote that 
expressed elevated SLC also had increased prevalence of hypertension. 

Although the biological basis is unknown, SLC correlates with weight and tri- 
glyceride levels (.27 and .35, respectively [Hunt et al., 19861). GPEs of the variances 
due to the SLC major locus were 1.93 and 4.02% of the variance of secondary traits 
weight and triglyceride levels, respectively [Hasstedt et al., 1988bl. Using the correla- 
tion computed on a different sample, the corresponding ad hoc estimates equal 2.5% 
for weight and 4.2% for triglyceride, both larger than the corresponding GPE. 

High values of SLC occur less frequently in juveniles than in adults, suggesting 
delayed expression of elevated levels [Williams et al., 19831. Similar GPEs of the 
genotypic frequencies within different age groups refute this suggestion and support 
the fit of the genetic model [Hasstedt et al., 1988bl. 

THE ASSUMPTIONS 

The assumptions made to demonstrate asymptotic unbiasedness of the GPEs are 
1) the observations are independent and identically distributed (iid), 2) the variance 
and correlation within genotypes are each constant across genotypes, 3) the primary 
phenotype for which major locus inheritance has been demonstrated and the secondary 
phenotype are described by a mixture of bivariate normal distributions, 4) the parame- 



Estimation of Genetic Model Parameters 327 

ters of the major locus model have been estimated by maximum likelihood in a large 
sample, and 5 )  the expected slope of the primary to the secondary trait is constant 
across the genotypes. These assumptions are not used in computing the GPEs, but 
only in demonstrating asymptotic unbiasedness. Each of these assumptions is described 
and discussed below. 

Independent and Identically Distributed (iid) Observations 
The likelihood of a major locus model on a primary quantitative trait contains for 

each pedigree member M a sum over all genotypes of a genotype-specific probability 
[Elston and Stewart, 19711. M’s genotype-specific probability is the product of two 
terms: 1) M ’ s  probability of genotypej and 2) the probability of M’s phenotype condi- 
tional on genotypej. If the sample does not include M’s parents, M’s probability of 
genotype j equals the corresponding population genotypic frequency, f j ;  if M is an 
offspring of pedigree members, M’s probability of genotype j depends on M ’ s  parent’s 
genotypes, inducing dependence in the observations. Upon assuming iid observations, 
M’s probability of genotype j equals f j  for all pedigree members regardless of the 
inclusion of M’s parents in the sample. Since M’s genotype-specific probability depends 
only on M’s genotype, each sum in the likelihood is independent of all others. There- 
fore, by assuming iid observations, we ignore the dependence between pedigree mem- 
bers due to the major locus; if the model includes polygenic inheritance, we also ignore 
that source of dependence between observations. 

Because the likelihood function differs for every pedigree structure, obtaining 
MLEs requires maximizing the likelihood numerically. By assuming iid observations, 
we can obtain analytical MLEs by taking derivatives of the likelihood function. 

equals a ratio with denominator the complete like- 
lihood and with numerator the likelihood excluding all genotypes for individual i other 
than genotype j .  Assuming iid observations, p i j  equals f j  multiplied by the pene- 
trance divided by the sum over all genotypes for that individual, since probabilities for 
other pedigree members cancel. Although the assumption of iid observations is obvi- 
ously violated in this application, the equations are intractable without it. The only 
way to insure independence is to restrict the estimation to unrelated individuals with 
the resulting reduction in sample size. In a sample that includes related individuals, 
the GPEs need to be interpreted with caution since two familial phenotypes may both 
occur within a pedigree by chance alone, but have a large effect on the GPE if both are 
expressed in multiple family members. 

Common Variance and Correlation 

A common variance within major locus genotypes has been routinely assumed 
since the first implementation of the mixed model [Morton and MacLean, 19741. When 
a positively skewed variable is transformed to approximate normality prior to analy- 
sis, the assumption of a common variance for the transformed variable corresponds to 
a larger variance for larger means in the original scale. 

Likewise, a common correlation within major locus genotypes was assumed in 
the implementation of a bivariate mixed model [Morton et al., 19831. However, the 
correlation between total serum cholesterol and triglyceride varied with the genotype 
at the apoE locus [Boerwinkle et al., 1987; Boerwinkle and Utermann, 19881. When 
the genotype is unmeasured, using genotype-specific GPEs of the variances and corre- 

A genotypic probability 
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lations will provide more tests of the validity of the assumption. However, since con- 
stant within genotype variances and correlations were assumed in demonstrating 
asymptotic unbiasedness, significant differences may result in biased estimates. 

Bivariate Normal Mixture 
We assume random variables X and Y are distributed as a bivariate normal den- 

sity within each major locus genotype. Random variable 2 assumes the values zero 
and one for values of Y below and above a threshold, respectively. Departures from 
normality generally affect estimation procedures little. 

Maximum Likelihood Estimation in a Large Sample 
We assume MLEs have been obtained for the parametersf,, pxj, and uxwg in a large 

sample. Since MLEs are consistent and asymptotically unbiased [Edwards, 19721, in 
a large sample they approximately equal their parameter values. In deriving the expec- 
tations of the GPEs, the parameters 6, pxj, and uxwg are substituted for their 
MLEs, with the justification that n,  the sample size, is large. 

Constant Expected Slope 
We assume that the expected slope of Y to X does not depend on genotype. In 

other words, the two variables are directly related through their levels, rather than 
indirectly through the genotypic or environmental effects. Someone with a high level 
of the primary trait X will tend to have a high (or low for negative correlation) level of 
the secondary trait Y ,  regardless of whether the high level of X is due to the major 
locus, other genetic factors, or environmental factors. One consequence of this assump- 
tion is that the dominance relationships between the genotypes will be the same for all 
primary and secondary traits affected by the major locus. 

DISCUSSION 

Estimation of the effect of a genetic locus on a variable is straightforward when 
genotypes at the locus can be unambiguously assigned [Sing and Davignon, 1985; 
Boenvinkle and Utermann, 19881. When genotypes cannot be unambiguously assigned 
and the major locus was revealed using likelihood analysis of a quantitative phenotype 
(primary trait), we propose GPEs to estimate the effect of the locus on secondary traits 
(other quantitative phenotypes or qualitative disease endpoints). We demonstrated asymp- 
totic unbiasedness of the GPEs. However, the demonstration required many assump- 
tions and the effect of violating those assumptions has yet to be explored. Estimates 
obtained using ambiguous genotype assignments probably reflect the ambiguity to some 
degree. Nevertheless, while recognizing the limitations of the GPEs, the estimates they 
produce may provide useful information about the nature of the genetic variability 
revealed through its effect on secondary traits. In particular, this approach can add 
insight about traits like hypertension and blood pressure for which single locus inheri- 
tance cannot be demonstrated [Sing et al., 19881. 

The GPE approach consists of two stages; estimates for the primary trait are obtained 
in a univariate analysis, then estimates for the secondary trait are computed using geno- 
typic probabilities. In a similar two-stage approach, Sing et al. [ 19861 and Boenvinkle 
et al. [1986b] assumed major locus and polygenic inheritance, respectively, first esti- 
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mated the genetic percentage of the variance in the primary trait, then multiplied the 
estimate by the percentage of variability in the secondary trait accounted for by vari- 
ability in the primary trait to obtain an estimate of the genetic percentage of the vari- 
ance in the secondary trait. In their applications, the same individuals were not measured 
for both the primary and secondary traits. 

Pleiotropic effects have also been estimated from the simultaneous analysis of 
two (or more) traits. In such analyses, both traits contribute information about the inheri- 
tance and the estimates may differ from estimates produced by a univariate analysis of 
the primary variable and from GPEs for the secondary variable. Assuming polygenic 
inheritance, the effects of genes on multiple quantitative traits have been simultaneously 
estimated using factor analysis [Martin and Eaves, 19771, bivariate variance compo- 
nents analysis [Boehnke et al., 19861, and bivariate path analysis [Moll et al., 1978; 
Colletto et a1 1981; Darlu et al., 1982; McGue, 1983; McGue et al., 1983; Vogler, 
1985; Vogler and DeFries, 19851. Another path analytic approach assumed a direct 
effect of one trait on another at the phenotypic level and requires longitudinal data 
[Hanis, 1981; Hanis et al., 19831. While these approaches attribute correlation between 
variables to polygenic and shared environmental factors, none are free of assumptions 
or include a major locus. 

However, a major locus (with or without polygenes) has been included in some 
bivariate analyses, thereby allowing estimation of the effect of the locus on both vari- 
ables. Models have been applied to two quantitative traits [Elston et al., 1975; Morton 
et al., 1983; Williams et al., 19861 and to a quantitative trait and a disease endpoint 
[Morton and MacLean, 1974; Lalouel et al., 19851. Simultaneous analyses of multiple 
traits often have the additional goal of increasing the amount of information to identify 
the major locus. That is the goal when analyzing a linear combination of variables 
constructed prior to analysis [Morton et al., 19781 or maximized in the analysis [Elston 
et al., 19751 or a linear combination of principal components of the variables in an 
approach termed pedigree discriminant analysis [Goldin et al., 19801. 

Although these other approaches may have advantages over GPEs, they assume a 
priori relationships among the traits not required for GPEs. In addition, all of these 
approaches require many of the same assumptions as for the GPE approach and are not, 
in general, practical if estimates are desired for many pairs of traits. 

Another application of GPEs in addition to estimating the effect of a major locus 
on secondary variables is to assess the fit of the genetic model to the primary variable. 
For example, the frequencies predicted by the genetic model for the total sample can 
be compared to GPEs of the frequencies computed within age and sex groups. Since 
the assumption of Hardy-Weinberg equilibrium implies equal frequencies for both sexes 
and all ages, age trends or sex differences in the GPEs of the frequencies suggest lack 
of fit to the genetic model. Similarly, age trends or sex differences in the GPEs of the 
variances or genotypic means may indicate a violation of the assumption of the genetic 
model that these are the same for all ages and sexes. Likewise, different GPEs of the 
variance within genotypes could indicate a violation of the assumption of a common 
variance. 

Statistical tests would enhance the usefulness of the GPE approach. Tests of inter- 
est include the fit of the genetic model to the primary trait, the validity of the assump- 
tions made for the GPE approach, and the significance of the effect of the major locus 
on the secondary trait. Testable assumptions of the GPE approach include a constant 
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expected slope and equality of the within genotype variances and correlations across 
genotypes. Traditional statistical tests cannot be used without demonstrating that the 
distribution theory of analysis of variance applies when individuals are only partially 
assigned to classes. In lieu of using existing distributional theory, one could develop 
randomization tests [Edgington, 19871. Such tests have been applied to estimates of 
pedigree data to assign significance levels and to guide in interpretation [Karlin and 
Williams, 1984; Schwartz et al., 19881. For example, one could permute the geno- 
typic probabilities 1,000 times among the individuals in the study and recompute the 
GPE each time. The significance level equals the proportion of permutations for which 
the GPE exceeds (or is less than) the original GPE. We used this approach to test the 
significance of GPEs of the mean and prevalence of the genotype of interest [Hasstedt 
et al., 1989a; 1989bl. 

From a practical viewpoint, the GPEs have the advantages of simplicity of form 
and application. In form, the GPEs correspond to sample estimators, except that indi- 
viduals are only partially assigned to a given class. Application of the GPE approach 
to many variables requires only a simple computer program and minimal computer 
time once the genotypic probabilities are available. Computer programs such as PAP 
[Hasstedt, 19881 are available to compute the genotypic probabilities as well as to 
perform the major locus analysis. 
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