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CAP/Ponsin belongs to the SoHo family of adaptor

molecules that includes ArgBP2 and Vinexin. These

proteins possess an N-terminal sorbin homology (SoHo)

domain and three C-terminal SH3 domains that bind

to diverse signaling molecules involved in a variety of

cellular processes. Here, we show that CAP binds to the

cytoskeletal proteins paxillin and vinculin. CAP localizes

to cell–extracellular matrix (ECM) adhesion sites, and

this process requires binding to vinculin. Overexpression

of CAP induces the aggregation of paxillin, vinculin and

actin at cell–ECM adhesion sites. Moreover, CAP inhibits

adhesion-dependent processes such as cell spreading

and focal adhesion turnover, whereas a CAP mutant

that is unable to localize to cell–ECM adhesion sites is

incapable of exerting these effects. Finally, depletion of

CAP by siRNA-mediated knockdown leads to enhanced

cell spreading, migration and the activation of the PAK/

MEK/ERK pathway in REF52 cells. Taken together, these

results indicate that CAP is a cytoskeletal adaptor protein

involved in modulating adhesion-mediated signaling

events that lead to cell migration.
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Introduction

Cell adhesion and motility are integrated processes that play

crucial roles in a variety of physiological and pathophysio-

logical functions (Webb et al, 2002; Ridley et al, 2003;

Playford and Schaller, 2004; Raftopoulou and Hall, 2004).

During embryonic development, cells migrate to the appro-

priate locations for terminal differentiation and tissue

morphogenesis. In adults, cell motility is essential for homeo-

static processes like wound healing and immune responses.

Aberrant cell migration can lead to pathological conditions

that include vascular or chronic inflammatory diseases,

tumor invasion and metastasis.

The organization of the actin cytoskeleton and cell–extra-

cellular matrix (ECM) adhesions are coordinately regulated

during cell adhesion and migration. Integrins are the major

transmembrane receptors for the ECM, and mediate the

formation of cell adhesion structures by recruiting a char-

acteristic set of proteins to their cytoplasmic regions (Hynes,

2002). More than 50 proteins have been found in cell–ECM

adhesions, including scaffolding molecules, small GTPases,

and enzymes such as kinases, phosphatases and pro-

teases (Zamir and Geiger, 2001). While structural proteins

like vinculin, talin and actinin function as physical links

to the actin cytoskeleton, signaling molecules such as focal

adhesion kinase (FAK) and paxillin transduce the stimuli

from ECM to effectors that regulate adhesion formation and

reorganize the actin cytoskeleton (Ridley et al, 2003).

The ERK/MAPK pathway regulates cell motility through its

modulation of adhesion turnover (Huang et al, 2004; Webb

et al, 2004). Activation of ERK at the cell periphery is required

for adhesion disassembly, which favors cell spreading

and migration in several cell types. Conversely, blockade of

the pathway with the MEK inhibitors PD98059 and U0126,

as well as with expression of dominant-negative mutants

of MEK1 or ERK, inhibit cell migration induced by ECM.

Two downstream effectors of ERK, calpain 2 and MLCK, are

important for adhesion turnover (Huang et al, 2004). Calpain

2 is a calcium-dependent protease that is phosphorylated

and activated by ERK at focal adhesion sites. This

leads to the cleavage of FAK and other components of focal

adhesions, and subsequent adhesion turnover (Carragher

et al, 2003). At focal adhesions and at leading edge of

migrating cells, ERK also phosphorylates and activates

MLCK, which in turn phosphorylates MLC, leading to the

severing and disassembly of focal adhesions (Klemke et al,

1997; Fincham et al, 2000; Webb et al, 2004). Disassembly of

adhesions occurs at the cell rear and at the base of lamelli-

podia protrusions, allowing cells to continuously form for-

ward protrusions at the leading edge and detach from the

substrate at the trailing edge (Webb et al, 2002).

CAP, together with ArgBP2 and Vinexin (encoded by the

genes SORBS1, SORBS2 and SORBS3, respectively), belong to

the SoHo family of adaptor proteins that are involved in the

regulation of diverse cellular processes, including glucose

transport, transcriptional activation and ubiquitination

(Kioka et al, 2002). These proteins all have a sorbin peptide

homology (SoHo) domain in the N-terminus, and three

tandem SH3 domains in the C-terminus. We demonstrate
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here that CAP functions as a negative regulator of cell spread-

ing and migration, suggesting an important role for CAP in the

regulation of adhesion dynamics required for cell motility.

Results

CAP is localized at cell–ECM adhesions

The SORBS1 gene that encodes CAP is expressed in numerous

tissues (Wang et al, 1997; Ribon et al, 1998b; Kawabe et al,

1999; Kioka et al, 1999; Mandai et al, 1999; Lebre et al, 2001),

and undergoes significant alternate splicing as has been

described previously (Lin et al, 2001; Zhang et al, 2003;

Alcazar et al, 2004; Matson et al, 2005). Western blot analysis

with an anti-CAP antibody revealed numerous protein bands

that were expressed at different levels in COS-1, CV-1, HeLa,

NIH/3T3, REF52, and 3T3-L1 cells (Figure 1A).

We analyzed the subcellular localization of endogenous CAP

in CV-1 and REF52 cells due to the high expression of the

protein in these cell lines. CAP has been shown to localize at

cell–cell and cell–matrix junctional complex regions in mouse

mammary tumor MTD-1A cells and rat 3Y1 fibroblasts (Mandai

et al, 1999). Similarly, immunofluorescence microscopy de-

monstrated that CAP co-localized with paxillin at cell–ECM

adhesion sites in both CV-1 and REF52 cells (Figure 1B).

Moreover, this colocalization is more striking at the peripheral

adhesion sites compared to central ones. Double staining of the

cells with an anti-CAP antibody and phalloidin revealed that

CAP is localized at the ends of actin stress fibers, where F-actin

is attached to cell adhesion structures (Figure 1C).

CAP interacts with paxillin and vinculin

Since we showed that endogenous CAP co-localizes with

paxillin (Figure 1B), co-immunoprecipitation experi-

ments were performed to further explore whether these

proteins directly interact. CV-1 cell lysates were subjected to

immunoprecipitation with an anti-CAP antibody or control

rabbit IgG, followed by Western blot analysis. As shown in

Figure 2A, paxillin was specifically co-immunoprecipitated

with CAP. Consistent with our previous studies, endogenous

vinculin also co-precipitated with CAP.

Paxillin has five leucine-rich motifs (LD repeats) in its

N-terminal half, and four LIM domains in the C-terminal half

of the molecule, which targets paxillin to focal adhesions. A

short, proline-rich region in paxillin spanning amino acids

48–57 (PPPVPPPP), which lies between the first and second

LD repeats, has been predicted as a potential binding

motif for SH3-domain containing proteins (Brown and

Turner, 2004). To delineate the CAP-binding site on paxillin,

we generated paxillin mutants with either a truncation at

the C-terminus to delete all the LIM domains (DLIM), or an

internal deletion to remove the short proline-rich region at

the N-terminal domain (DPro). GFP-tagged wild-type (WT) or

mutant paxillin constructs were co-transfected into COS-1

cells with empty vector or myc-tagged CAP. Cells were

lysed and immunoprecipitated with anti-myc antibodies. As

shown in Figure 2B, both WT and DLIM GFP-paxillin co-

immunoprecipitated with myc-CAP, whereas the DPro
mutant of paxillin failed to bind, indicating that the proline-

rich region mediates paxillin interaction with CAP, most

likely through the SH3 domains of CAP.

Next, we set out to determine which SH3 domain(s) in CAP

is responsible for this interaction. GST-fusion proteins contain-

ing all three SH3 domains (GST-ABC) or each individual SH3

domain of CAP were incubated with fibroblast cell lysates, and

the precipitates were analyzed by Western blotting. Paxillin

was pulled down by GST-SH3A and SH3B of CAP, but not GST-

SH3C or GSTalone (Figure 2C). Alternatively, FLAG-tagged WT

and mutant (DPro) paxillin were in vitro translated, and

incubated with the same GST-CAP SH3 domain fusion proteins,

to demonstrate direct binding of WT, but not the DPro mutant

to CAP SH3 domains (Supplementary Figure 1). Previous

studies have shown that the first two SH3 domains of CAP

are also responsible for the interaction of the protein with

vinculin (Mandai et al, 1999). We confirmed and extended

these findings, showing that vinculin was precipitated by SH3B

and to a much lesser extent, SH3A (Figure 2C).

To verify the specificity of binding of the SH3 domains of

CAP to paxillin and vinculin, we introduced point mutations

into CAP to disrupt the function of each SH3 domain.

Tryptophan residues at position 536, 610 or 716 in the SH3

domains were mutated to phenylalanine (WF mutants).
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Figure 1 Expression and subcellular localization of endogenous
CAP. (A) Western blot of CAP protein levels in various cell lines.
(B, C) Immunofluorescence of CAP (red) in CV-1 and REF52 cells,
(B) co-stained with paxillin (green) to demonstrate colocalization
of CAP with paxillin at cell–ECM adhesions; (C) co-stained with
phalloidin (green) to show the localization of CAP at the ends of
actin stress fibers.
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These residues are highly conserved in most SH3 domains

and are required for binding to proline-rich sequences (Lim

and Richards, 1994). Myc-tagged WT or WF mutants of CAP

were co-transfected into COS-1 cells with GFP-paxillin and

vinculin. Cell lysates were immunoprecipitated with an anti-

myc antibody, and analyzed by Western blotting. As shown

in Figure 2D, GFP-paxillin was co-precipitated with WT myc-

CAP, as well as with CAP bearing a mutation in its third

SH3 domain. In contrast, W/F substitutions in the first or

second SH3 domain decreased the binding to paxillin. The co-

precipitation of CAP with vinculin exhibited a similar pattern;

mutants of the first and the second SH3 domains of CAP

exhibited dramatically decreased binding to vinculin. W/F

substitutions were also created in both the first and second

SH3 domains together (W536/610F). This compound mutant

(referred to as W2F) was completely unable to interact with

either paxillin or vinculin. Taken together, these data demon-

strated that the first two SH3 domains of CAP are required for

its interaction with both paxillin and vinculin.

Vinculin recruits CAP to cell–ECM adhesions

Since the W2F mutant of CAP is unable to bind to either

paxillin or vinculin, we examined its localization by immuno-

fluorescence microscopy. Myc-tagged WT CAP or its W2F

mutant were transiently transfected into CV-1 cells, which

were then co-stained with anti-paxillin and anti-myc anti-

bodies (Figure 3A). WT myc-CAP co-localized with paxillin at

cell–ECM adhesion sites, whereas the W2F mutant exhibited

plasma membrane localization along with a diffused fibrillar

distribution throughout the cytoplasm. These results indicate
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Figure 2 The first two SH3 domains of CAP mediate its interaction
with both paxillin and vinculin. (A) Co-immunoprecipitation of
endogenous paxillin and vinculin with CAP in CV-1 cells. (B) CAP
interacts with paxillin through a proline-rich region. COS-1 cells
were co-transfected with empty vector or myc-CAP and GFP-paxillin
WT, DLIM or DPro constructs. Cells were lysed and immunopreci-
pitated with anti-myc antibody, and the coprecipitated paxillin was
detected by Western blot analysis. (C) Paxillin and vinculin bind to
the first two SH3 domains of CAP. GST-fusion proteins containing
all three SH3 domains (GST-CAP SH3 ABC) or each individual
SH3 domain of CAP were used to pull down paxillin and vinculin
from fibroblast lysates. GSTalone was used as a control. The bottom
panel shows the loading of the GST fusion proteins. (D) Point
mutations in CAP SH3 domains diminished its binding to paxillin
and vinculin. COS-1 cells were co-transfected with GFP-paxillin,
vinculin and WT or mutants of myc-CAP. Lysates were immuno-
precipitated with anti-myc antibody, and co-precipitated GFP-
paxillin and vinculin were detected by Western blot.
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Figure 3 Vinculin recruits CAP to cell–ECM adhesions. (A) CV-1
cells were transiently transfected with myc-tagged WT CAP or
the W2F mutant, and co-stained with anti-paxillin (green) and
anti-myc (red) antibodies. (B) WT (vinculinþ /þ ) or vinculin-
null (vinculin�/�) MEFs were transfected with GFP-CAP, and
stained with anti-paxillin antibody. (C) REF52 cells were transfected
with scrambled control siRNA or paxillin siRNA, lysed and sub-
jected to Western blotting for paxillin expression; actin was used as
a loading control. Paxillin siRNA transfected cells were co-stained
with anti-paxillin (green) and anti-CAP (red) antibodies.
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that the first two SH3 domains are required for the localiza-

tion of CAP to cell–ECM adhesions.

While both paxillin and vinculin interact with the SH3

domains of CAP, which protein anchors CAP to cell–ECM

adhesions remains unknown. We examined the localization

of CAP in vinculin-null fibroblasts. WT or vinculin-null

mouse embryonic fibroblasts (MEFs) were transfected with

GFP-CAP, and stained with an anti-paxillin antibody. As

expected, GFP-CAP co-localized with paxillin at cell–ECM

adhesions in WT (vinculinþ /þ ) fibroblasts. In contrast,

in vinculin-null cells (vinculin�/�), GFP-CAP showed a

diffused and fibrillar distribution with slight accumulation

at cell–ECM adhesions (Figure 3B). Paxillin localization

remained at cell–ECM adhesions regardless of vinculin

expression. On the other hand, siRNA-mediated knockdown

of paxillin in REF52 cells did not affect the focal adhesion

localization of CAP. As shown in Figure 3C, CAP remains

at cell–ECM adhesion sites regardless of the presence of

paxillin. Vinculin localization did not change in paxillin

knockdown cells (data not shown). These results indicate

that vinculin is more crucial for the recruitment of CAP to

cell–ECM adhesion sites.

CAP induces actin, paxillin and vinculin aggregation

at cell–ECM adhesions

Next, we investigated the function of CAP in the organization

of focal adhesions and the actin cytoskeleton. COS-1 cells

were transfected with the myc-tagged WT or W2F mutant of

CAP followed by immunofluorescence staining with an anti-

myc antibody and phalloidin to visualize myc-CAP and actin.

Overexpression of WT CAP induced a coalescence of F-actin

into short aggregates. CAP co-localized with actin at these

aggregates (Figure 4A). In contrast, the W2F mutant failed to

induce actin aggregation at cell–ECM adhesions, but did

co-localize well with actin at the plasma membrane and in

cortical stress fibers (Figure 4A). These data suggest that CAP

re-organizes F-actin at cell–ECM adhesions.

The effect of CAP on adhesion structures was similarly

evaluated by co-staining COS-1 cells overexpressed myc-CAP

with an anti-paxillin antibody. As shown in Figure 4B, over-

expression of WT CAP induced the aggregation of paxillin

and the enlargement of cell–ECM adhesion structures.

Conversely, the W2F mutant was without effect. Vinculin

staining showed a similar pattern (data not shown).

To determine whether CAP induced a redistribution of

paxillin and vinculin to actin cytoskeletal structures, cell

lysates were separated into Triton X-100 soluble and insoluble

fractions. The amounts of vinculin and paxillin were deter-

mined by Western blotting of the detergent insoluble fraction,

which contains the cytoskeleton and cell–ECM adhesion

complexes. As shown in Figure 4C, overexpression of WT

CAP, but not the W2F mutant, increased the amount of

vinculin and paxillin in the Triton X-100-insoluble fraction

by approximately two-fold.
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Figure 4 CAP induces actin, paxillin and vinculin aggregation at cell–ECM adhesions. (A, B) COS-1 cells were transfected with myc-tagged WT
CAP or the W2F mutant, and co-stained with (A) phalloidin (green) and anti-myc (red) antibody, or (B) anti-paxillin (green) and anti-myc (red)
antibodies. Arrows indicate actin aggregates at the ends of stress fibers. (C) COS-1 cells were transfected with either empty vector, myc-tagged
WT CAP or the W2F mutant. Triton-soluble (TS) and -insoluble (TIS) fractions were separated as described in Materials and methods. Equal
amount of proteins were loaded on a SDS–PAGE gel, and the levels of vinculin and paxillin in each fraction were detected byWestern blot. Actin
was blotted as a loading control. The graphs on the bottom show the quantitation of the percentage of vinculin or paxillin in triton-insoluble
fractions from six experiments. The data represent mean7s.e. *Po0.05.
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CAP impairs focal adhesion turnover

The enlarged cell–ECM adhesion structures induced by over-

expression of CAP suggest a role for CAP in modulating

adhesion turnover. It has previously been shown that treat-

ment of cells with nocodazole, followed by a washout period

that allows the disrupted microtubules to regrow, induces the

transient disassembly of cell–ECM adhesions (Ezratty et al,

2005). We utilized this assay to study the effect of CAP

expression on adhesion turnover under these conditions.

CV-1 cells were transiently transfected with myc-CAP,

serum starved and treated with nocodazole for 4 h.

Nocodazole was then washed out and cells were fixed at

different time points for immunofluorescence microscopy.

Cell–ECM adhesions were visualized by staining with an

anti-paxillin antibody. As shown in Figure 5A, cell–ECM

adhesions in untransfected cells were stabilized by nocoda-

zole treatment, and then underwent disassembly for up to

60min after nocodazole washout (indicated by asterisks).

Overexpression of myc-CAP prevented the turnover of adhe-

sions (indicated by arrows). In contrast, the W2F mutant

failed to stabilize cell–ECM adhesions in this assay

(Figure 5B). These data suggest that CAP inhibits cell–ECM

adhesion disassembly, and further that the focal adhesion

localization of CAP is important for its role in regulating focal

adhesion turnover.

CAP negatively regulates cell spreading and migration

Since regulated assembly and disassembly of focal adhesions

is fundamental to several adhesion dependent processes,

we decided to investigate the involvement of CAP in the

regulation of cell spreading and migration. COS-1 cells

were transiently transfected with GFP, GFP-CAP WT or W2F

mutant, and subsequently re-plated on fibronectin for

10, 20 or 40min. Over 90% of cells were transfected when

examined by fluorescence microscopy (data not shown).

Overexpression of WT CAP inhibited cell spreading on fibro-

nectin at each time point (Figure 6A). At 20min after plating

on fibronectin, 58% of the GFP transfected cells spread,

whereas only 34% of GFP-CAP transfected cells exhibited

spread morphology (Figure 6B). The W2F mutant of CAP
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Figure 5 Overexpression of WT CAP, not the W2F mutant, impairs focal adhesion turnover. CV-1 cells on coverslips were transfected with
myc-CAP (A) or myc-CAP W2F mutant (B). Cells were starved overnight, and then left untreated, or treated with 10mM nocodazole for 4 h.
Nocodazole was then washed out and cells were fixed at the indicated time points, and co-stained with anti-paxillin (green) and anti-myc (red)
antibodies. In (A), cells expressing myc-CAP are indicated by arrows, and the ones not transfected are indicated by asterisks.
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only exhibited a mild inhibitory effect at early time points

(10 and 20min), indicating that localization to cell–ECM

adhesions is important for the ability of CAP to regulate

cell spreading.

We further investigated the effect of reducing CAP expres-

sion on cell spreading and motility by siRNA-mediated

knockdown in REF52 fibroblasts. Western blot analysis

demonstrated efficient (490%) depletion of CAP protein

by treatment of cells with siRNA, compared to the control

scrambled siRNA (Figure 7A). Three days after transfection of

oligos, when efficient knockdown was observed, cells were

collected and plated on fibronectin. At 20min after plating,

24% of control cells spread. In contrast, 62% of cells that

were deficient in CAP spread at the same time point

(Figure 7B). Taken together these data suggest that CAP

expression negatively regulates cell spreading on fibronectin.

To explore the role of CAP in cell motility, modified Boyden

chamber migration assays were performed. Control or CAP

knockdown cells were allowed to migrate towards 10mg/ml

fibronectin for 5 h. Migrated cells were stained with methy-

lene blue, photographed and quantitated. As shown in

Figure 7C, CAP-deficient cells migrated nearly three-fold

more efficiently than did control cells, suggesting that CAP

functions to negatively influence cell motility.

To further confirm the results obtained from siRNA-

mediated knockdown experiments, we isolated CAP-deficient

primary MEFs from E13 embryos (Liesnewski et al, sub-

mitted). Western blot analysis confirmed the deletion of

CAP in the knockout cell lines. As shown in Supplementary

Figure 2A, CAP null MEF cells exhibited improved spreading

on fibronectin, demonstrating that loss of CAP is sufficient

to induce spreading of primary fibroblasts.

Depletion of CAP enhances fibronectin-mediated

ERK activation

Integrin engagement to ECM is known to activate several

signaling molecules involved in cell migration including ERK,

PAK and FAK. Thus, we tested whether CAP regulates these

pathways by examining adhesion-mediated signaling in CAP-

deficient REF52 cells. A significant increase in ERK phosphor-

ylation was observed upon re-plating cells onto fibronectin in

CAP-deficient compared to control cells (Figure 8A). Elevated

ERK phosphorylation was also observed in CAP-deficient

MEF cells (Supplementary Figure 2B). These data suggest

that CAP negatively regulates activation of the MAP kinase

pathway during adhesion to fibronectin.

We further explored the upstream signaling events

that may lead to this enhanced activation of ERK.

Phosphorylation of MEK was also significantly increased in

CAP knockdown compared to control cells (Figure 8A).

Adhesion to the ECM has been reported to activate the

Ras-Raf-MEK-ERK signaling pathway. One way this

occurs is through the phosphorylation of FAK at Tyr925,

which recruits Grb2 and SOS to activate Ras, leading to the

activation of ERK (Schlaepfer et al, 1994). However, no

significant differences were observed in phosphorylation of
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indicated times. A representative field of each time points was
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Figure 7 Knockdown of CAP in REF52 fibroblasts promotes cell
spreading and migration. (A) Cells were transfected with scrambled
control siRNA or CAP siRNA, lysed and subjected to Western
blotting for CAP expression; g-tubulin was used as a loading
control. (B) Cells were plated on fibronectin-coated plates for
20min, photographed and the percentage of spread cells was
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cells counted from three filters, where the number of control cells
was set to 100%. The data represent mean7s.e.
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FAK at Tyr397 (autophosphorylation site) or Tyr925 (Grb2

binding site) between control and CAP knockdown cells

(Figure 8A).

Numerous studies have also demonstrated that phosphor-

ylation of PAK plays an important role in adhesion-induced

activation of Raf and MEK. Interestingly, siRNA-mediated

knockdown of CAP resulted in a marked increase of PAK

phosphorylation (Figure 8A). Taken together, these data

suggested that CAP negatively regulates adhesion induced

ERK activation through the PAK/MEK/ERK pathway.

Finally, to further verify the role of ERK in the regulation of

cell motility by CAP, we examined the effect of CAP depletion

on cell migration in the presence of the MEK inhibitor

U0126. Modified Boyden chamber assays were performed as

described above. As shown in Figure 8B, U0126 inhibited the

increase in REF52 cell migration induced by CAP knockdown,

confirming that changes in the MAP kinase pathway are

required for the regulation of cell motility by CAP.

Discussion

The SoHo family of proteins is comprised of CAP, Vinexin and

ArgBP2. These proteins exhibit a similar architecture,

with three C-terminal SH3 domains and a region of similarity

to the peptide sorbin (SoHo domain) in the N-terminus

(Kioka et al, 2002). The SoHo proteins interact with different

cytoskeletal or signaling molecules (Wang et al, 1997; Ribon

et al, 1998b; Kawabe et al, 1999; Kioka et al, 1999; Mandai

et al, 1999; Baumann et al, 2000; Soubeyran et al, 2003;

Zhang et al, 2003; Haglund et al, 2004; Cestra et al, 2005),

and have been implicated in a variety of cellular processes

including insulin-stimulated glucose transport (Baumann

et al, 2000). We demonstrate here that CAP localizes at

cell–ECM adhesions, and plays a crucial role in regulating

several adhesion-dependent events.

CAP colocalizes with and binds to the cytoskeletal proteins

paxillin and vinculin, both of which are known to play

important roles in adhesion dynamics and cell motility. The

interactions, which occur at cell–ECM adhesions, require the

first two SH3 domains of CAP and the proline-rich motifs of

paxillin and vinculin. At the same time, vinculin can bind

directly to paxillin LD motifs (Brown and Turner, 2004).

Deletion of the paxillin proline-rich motif, which presumably

is not required for vinculin binding, resulted in the complete

loss of CAP association, indicating that the CAP–paxillin

interaction is not bridged through the binding of these

proteins to vinculin. Moreover, CAP directly binds to paxillin

in vitro, demonstrating that this interaction is not mediated

through other proteins that may associate with the proline-

rich motif of paxillin such as Src (Weng et al, 1993).

While both paxillin and vinculin interact with CAP, studies

using vinculin-null fibroblasts and paxillin-depleted REF52

cells demonstrate that vinculin, rather than paxillin, is pri-

marily responsible for recruiting CAP to focal adhesions.

Interestingly, a recent study indicated that the adhesion

targeting of another SoHo family member, Vinexinb, is also

mediated by vinculin (Chen et al, 2005).

The N-terminal region of CAP also binds to actin

(Supplementary Figure 3). This may explain the fibrillar

localization of the W2F mutant and the localization of CAP

in vinculin-null cells. Although the W2F mutant does

not localize to focal adhesions or affect their stability, it

may retain some function in organizing actin fibers, since

this mutant form of CAP can still interact with actin. In

this regard, overexpression of the W2F mutant in COS-1

cells induces the formation of cortical actin stress fibers

(Figure 4A), and mildly inhibits cell spreading (Figure 6).

The direct interaction between CAP and F-actin, and the

biological functions of this interaction require more study.

The enlarged focal adhesions caused by ectopic expression

of CAP are reminiscent of those found in FAK-null fibroblasts,

which exhibit decreased migration and spreading (Ilic et al,

1995). Similarly, we show here by several criteria that

CAP functions as a negative regulator of cell spreading

and migration (Figures 6 and 7; Supplementary Figure 2).

While overexpression of CAP impeded spreading of COS-1

cells on fibronectin, spreading of REF52 fibroblasts was

enhanced by siRNA-mediated knockdown of endogenous
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Figure 8 CAP regulates adhesion-dependent ERK signaling.
(A) Knockdown of CAP in REF52 cells enhanced fibronectin-stimu-
lated PAK/MEK/ERK phosphorylation. Cells were kept in suspen-
sion or plated on fibronectin for the indicated times. Lysates were
separated by SDS–PAGE and subjected to Western blot analysis
with the indicated antibodies. (B) Inhibition of ERK decreased cell
migration in CAP knockdown REF52 cells. Modified Boyden cham-
ber assays were performed in the absence or presence of 10mM
U0126. The data represent mean7s.e.
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CAP. Knockdown of CAP in REF52 cells also resulted in

increased migration in a chemotaxis assay with fibronectin

as stimulus.

We further note that in both REF52 cells depleted of CAP

and CAP-null MEF cells, there was a significant increase in

adhesion-stimulated ERK activation. This is in agreement

with increased cell motility observed in these cells, since

ERK is known to promote cell spreading and migration by

facilitating focal adhesion turnover (Huang et al, 2004;

Webb et al, 2004). In this regard, overexpression of WT

CAP was able to block microtubule-induced cell–ECM adhe-

sion disassembly during a nocodazole washout experiment

(Figure 5). These data reveal a unique function of CAP in

the stabilization of adhesion complexes and the resultant

prevention ;of cell migration, likely through attenuation of

ERK activity. Indeed, the specific MEK inhibitor U0126

diminished the effect of CAP depletion on cell migration

(Figure 8B), confirming the involvement of ERK MAPK

cascade in this function of CAP.

Integrin engagement initiates multiple signaling cascades

that lead to ERK activation. Adhesion stimulates the auto-

phosphorylation of FAK at Tyr397, creating a binding site for

the SH2 domain of c-Src. This leads to enhanced phosphor-

ylation of FAK at other sites, including Tyr925, which creates a

binding site for Grb2, and linkage to the ERK/MAPK pathway

(Mitra et al, 2005). Additionally, several studies have sug-

gested an important role for PAK in anchorage-dependent

signal transduction leading to activation of the ERK/MAPK

pathway (Frost et al, 1997; Howe and Juliano, 2000; del Pozo

et al, 2000). Adhesion to fibronectin induces PAK1-dependent

phosphorylation of MEK1 on S298, a phosphorylation event

necessary for activation of MEK1 and MAPK (Slack-Davis

et al, 2003). PAK has also been reported to phosphorylate

Raf-1 on S338, increasing its catalytic activity (King et al, 1998;

Sun et al, 2000). We show here that depletion of CAP resulted

in a dramatic increase in adhesion-induced PAK phosphory-

lation, while FAK activity was unaffected (Figure 8A).

Recent studies indicate that the MEK scaffolding proteins

MP1 and p14 regulate adhesion-dependent ERK activation

through a PAK1-dependent pathway (Pullikuth et al, 2005).

Furthermore, both MP1 and p14 transiently inhibit Rho/

ROCK function, which are necessary for adhesion turnover

and cell spreading. Rho family small GTPases play critical

roles in the regulation of cytoskeleton dynamics and cell

motility (Raftopoulou and Hall, 2004). While Rho activity is

required to induce actin–myosin contractility during cell

migration, Rho may also negatively regulate cell migration

by inducing excessive contractile forces and focal adhesions

(Cox et al, 2001). Moreover, PAK has been suggested to serve

an adaptor function in stimulating the transition of Rho focal

adhesions to Cdc42/Rac focal adhesions to facilitate direc-

tional motility (Brown et al, 2002). Interestingly, we observed

that endogenous CAP co-localizes better with focal adhesions

at cell periphery. Therefore, CAP may be involved in the

spatial-temporal regulation of Rho activity through the PAK

and/or ERK pathways. It will be interesting to determine

whether CAP affects all or only a subset of these pathways.

Finally, our studies demonstrated that the localization of

CAP to focal adhesions and its interaction with paxillin and

vinculin are important for its functions. The W2F mutant of

CAP failed to induce the aggregation of cytoskeletal proteins

at cell–ECM adhesions (Figure 4C) and their relocalization

to triton-insoluble fractions. Moreover, this mutant cannot

stabilize focal adhesions (Figure 5B), and failed to block cell

spreading (Figure 6).

Many proteins involved in the regulation of ECM–cell

adhesion dynamics are also involved in the regulation of

cell proliferation, differentiation and survival (Hynes, 2002).

We have previously shown that stable cell lines overexpres-

sing CAP exhibit a reduced growth rate (Ribon et al, 1998a).

Increased CAP expression correlates with the differentiation

of adipocytes (Ribon et al, 1998b) and myoblasts (unpub-

lished data), suggesting a role for CAP in the induction and

maintenance of the differentiated phenotype. Additionally,

CAP protein appears to be downregulated in transformed

COS-1 cells. Therefore, we speculate that CAP may also

function at a convergent point of adhesion and growth factor

signaling pathways in the control of cell proliferation and

differentiation. Current studies are focused on addressing

these potential functions of CAP.

Materials and methods

Antibodies and reagents
CAP (E-20), GFP (FL), Myc (9E10) and PAK (N-20) antibodies were
purchased from Santa Cruz Biotechnology. b-Actin and g-tubulin
antibodies were obtained from Sigma. Vinculin and another CAP
antibody were from Upstate Biotechnology, Inc. Paxillin antibodies
were purchased from BD Biosciences. Phospho-FAK (Tyr397) anti-
bodies were from BioSource. The phospho-FAK (Tyr925), phospho-
PAK1/2, phospho-MEK1/2, phospho-ERK, total MEK1/2 and total
ERK antibodies were from Cell Signaling Technology. The Alexa
Fluor secondary antibodies and phalloidin were from Molecular
Probes. Nocodazole and human plasma fibronectin were purchased
from Sigma. Protein A/G-agarose beads were from Santa Cruz
Biotechnology.

Plasmids and mutagenesis
Myc- and glutathione S-transferase (GST)-tagged CAP constructs
were previously described (Ribon et al, 1998b; Zhang et al, 2003).
GFP-CAP was constructed by subcloning CAP cDNA in frame in the
BamHI/EcoRI sites of the eGFP-C1 vector (BD Biosciences). All
point mutations of CAP were generated using the Stratagene Quick
Change mutagenesis kit, according to the manufacturer’s protocol.
The vinculin cDNA was kindly provided by Dr Eileen D Adamson.
The GFP-paxillin construct was kindly provided by Dr Christopher E
Turner. The GFP-paxillin(DLIM) mutant was generated by inserting
a stop codon before the LIM domains of WT paxillin using PCR. The
GFP-paxillin(DPro) mutant was generated by PCR-mediated internal
deletion. All mutations and cloning products were confirmed by
sequencing.

Cell culture and transient transfection
All cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum, 100U/ml penicillin G
sodium, and 100mg/ml streptomycin sulfate. The vinculin-null
fibroblasts were kindly provided by Dr Eileen DAdamson. To obtain
primary embryonic fibroblasts, WTand CAP-null E13 embryos were
isolated. The head and organs were removed, and the remaining
carcasses were minced and dispersed into single-cell suspensions in
trypsin at 371C for 30min. Afterwards, cells were resuspended in
medium and plated, and experiments were performed within three
passages. COS-1 cells were transfected using FuGene 6 reagent
(Roche), according to the manufacturer’s instructions. Other
transfections were done using Lipofectamine 2000 (Invitrogen).

siRNA knockdown
The expression of CAP in REF52 cells was inhibited using Stealth
RNAi from Invitrogen. REF52 cells were transfected with CAP-
specific siRNA duplexes, or the scrambled oligos as control, using
Lipofectamine 2000, following the manufacturer’s protocol. Two
targeted sequences that were proven to effectively mediate the
silencing of CAP expression are as follows: 50-GCACAGGACCUAAG
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CAGUGUGUCUA-30, and 50-GGUGAUACACAAGUAGAAAUGUCUU-30.
After transfection, cells were cultured for 72 h before subjected to
Western blot, spreading or migration assays. The sequence of the
siRNA oligo used for targeting paxillin is 50-GAAGAGAUUGGA
UCCCGGAACUUCU-30.

Immunoprecipitation and immunoblotting
For immunoprecipitation studies, cells were washed twice with
ice-cold phosphate-buffered saline and were lysed for 30min at
41C with buffer containing 50mM Tris–HCl (pH 8.0), 135mM NaCl,
1% Triton X-100, 1mM EDTA, 1mM sodium pyrophosphate, 1mM
Na3VO4, 10mM NaF, and protease inhibitors (Roche). Clarified
lysates were incubated with the indicated antibodies for 2 h at 41C.
Immune complexes were precipitated with protein A/G-agarose for
1 h at 41C and were washed extensively with lysis buffer before
solubilization in SDS sample buffer. Bound proteins were resolved
by SDS–PAGE and transferred onto nitrocellulose membranes.
Individual proteins were detected with the specific antibodies and
visualized by blotting with horseradish peroxidase-conjugated
secondary antibodies.

FN-mediated ERK activation
Serum-starved cells were collected by trypsinization, washed, and
then kept in suspension at 371C for 1 h. Afterwards, cells were lysed
immediately or replated onto tissue culture dishes precoated with
fibronectin (BD Biosciences) for the indicated times. For these
studies, cells were lysed in RIPA buffer (above lysis buffer including
0.5% sodium deoxycholate and 0.1% SDS).

GST pull-down assay
GST-CAP fusion proteins were expressed in the Escherichia coli
strain BL21 and purified as described previously (Liu and Brautigan,
2000). Fibroblast cells were lysed as described above for immuno-
precipitation. Lysates were incubated either with GSTalone or with
GST-CAP variants immobilized on glutathione-Sepharose beads
(Amersham Pharmacia) for 1 h at 41C. The beads were washed
extensively with lysis buffer, and the bound proteins were
solubilized in SDS sample buffer and analyzed by immunoblotting.
In a similar assay, FLAG-tagged WT and mutant paxillin were
generated by coupled in vitro transcription/translation (TNT;
Promega), diluted in the lysis buffer, and subjected to the pull-
down assay.

Confocal fluorescence microscopy
Cells were grown on glass coverslips in six-well dishes. Following
the fixation with 10% formalin for 20min, cells were permeabilized
with 0.5% Triton X-100 for 5min and then blocked with 1% bovine
serum albumin, 1% ovalbumin and 2% goat serum for 1 h.
Coverslips were incubated with 2 mg/ml primary and Alexa Fluor
secondary antibodies in blocking solution, and mounted on glass
slides with Vectashield (Vector Laboratories). Cells were imaged
using confocal fluorescence microscope (Olympus IX SLA). Images
were then imported into Photoshop (Adobe Systems, Inc.) for
processing.

Triton X-100 soluble and insoluble fractionation
Cells were washed with cell solubilization buffer (CSB) containing
10mM PIPES, 50mM KCl, 10mM EGTA, 3mM MgCl2, 2M glycerol,
2mM NaF, 1mM Na3VO4 and protease inhibitors, then incubated
for exactly 5min at 41C in CSB containing 1% Triton X-100. This
soluble fraction was collected, and the plates were washed once
with CSB, the remaining cytoskeletal fraction was lysed in
extraction buffer containing 20mM Tris–HCl, 300mM NaCl,
30mM MgCl2, 1mM EGTA, 1mM DTT and protease inhibitors.
The triton-insoluble fraction was passed through a 28-gauge syringe
10 times before protein quantification and Western blot analysis.

Actin co-sedimentation assays
GST-CAP fusion proteins were prepared as previously described
(Liu and Brautigan, 2000), and eluted from the beads with GST
elution buffer (20mM glutathione, 50mM Tris–HCl, pH 8.0, 150mM
NaCl). Fusion proteins were dialyzed against PBS/10% glycerol for
16 h at 41C. Actin co-sedimentation assays were performed using an
Actin Binding Protein Spin-Down Assay Kit (Cytoskeleton, Inc.),
according to the manufacturer’s description. The supernatant and
pellet fractions were analyzed by SDS–PAGE, transferred onto
nitrocellulose membrane and visualized with Ponceau S (Sigma).

Cell spreading assay
Serum-starved cells were collected by trypsinization, washed,
counted and resuspended in DMEM. Cells were kept in suspension
for 1 h, and then 5�105 cells were added to 35-mm tissue culture
dishes that were precoated with fibronectin (BD Biosciences).
Cells were allowed to spread for the indicated times at 371C, chilled
on ice for 10min, and then photographed. Spread cells were
defined as cells with extended processes, lacking a rounded
morphology and not phase-bright, whereas non-spread cells were
rounded and phase-bright under microscope. Three random
microscopic fields were counted per plate, and all experiments
were repeated three times.

Cell motility assay
Cell migration was determined using a modified Boyden chamber
assay. Both sides of the transwell membrane (tissue culture-treated,
6.5-mm diameter, 8-mm pores; Becton Dickinson Labware) were
coated with fibronectin (10mg/ml) for 1 h at 371C. Cells were
starved, trypsinized and washed twice with DMEM. 1�105 cells
were added to the upper chamber, and the lower chamber was filled
with DMEM containing 10mg/ml of fibronectin. When the MEK
inhibitor was used in this assay, cells were treated with 10 mM
of U0126 for 30min before trypsinization, and also added into
both the upper and lower chambers during migration. After
incubation at 371C for 5 h, the membranes were fixed in 10%
formalin, and cells on the upper surface were mechanically
removed with cotton swabs. Migrated cells on the lower side of
membranes were stained with methylene blue and photographed.
Three random microscopic fields were counted per well, and all
experiments were performed in triplicate.

Focal adhesion disassembly assay
Serum-starved CV-1 cells were treated with 10mM nocodazole for
4 h to completely depolymerize microtubules. The drug was washed
out with serum-free medium, and allowed to recover for different
intervals of time. Cells were then fixed in 10% formalin for 20min
and subjected to immunofluorescence microscopy.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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