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Major depressive and bipolar disorders are serious ill-

nesses that affect millions of people. Growing evidence

implicates glutamate signalling in depression, though the

molecular mechanism by which glutamate signalling reg-

ulates depression-related behaviour remains unknown. In

this study, we provide evidence suggesting that tyrosine

phosphorylation of the NMDA receptor, an ionotropic

glutamate receptor, contributes to depression-related be-

haviour. The NR2A subunit of the NMDA receptor is

tyrosine-phosphorylated, with Tyr 1325 as its one of the

major phosphorylation site. We have generated mice ex-

pressing mutant NR2A with a Tyr-1325-Phe mutation to

prevent the phosphorylation of this site in vivo. The

homozygous knock-in mice show antidepressant-like be-

haviour in the tail suspension test and in the forced swim

test. In the striatum of the knock-in mice, DARPP-32

phosphorylation at Thr 34, which is important for the

regulation of depression-related behaviour, is increased.

We also show that the Tyr 1325 phosphorylation site is

required for Src-induced potentiation of the NMDA recep-

tor channel in the striatum. These data argue that Tyr 1325

phosphorylation regulates NMDA receptor channel prop-

erties and the NMDA receptor-mediated downstream

signalling to modulate depression-related behaviour.
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Introduction

Depression is a severe neuropsychiatric disorder that features

a combination of depressed mood feelings, such as sadness,

hopelessness, helplessness, and/or worthlessness. The life-

time risk for major depressive disorder and bipolar disorders

in the United States is B10% as defined by DSM IV.

Challenges of establishing the molecular mechanisms under-

lying depression and of discovering improved therapeutic

agents to treat depression are important (Zarate et al,

2006). The serotonergic, noradrenergic, and dopaminergic

systems have received great attention in studies related to

mood disorders (Sanacora et al, 2008). In addition to these

systems, the glutamatergic pathway, a major mediator of

excitatory synaptic transmission in the mammalian brain,

has been the focus of the pathophysiological study of mood

disorders (Orrego and Villanueva, 1993; Sanacora et al,

2008). The agents that act on the glutamatergic pathway

are promising candidates for the treatment of mood disorders

(Sanacora et al, 2008). In rodents, treatment with competitive

N-methyl-D-aspartate (NMDA) subtype of ionotropic gluta-

mate receptor (NMDA receptor) antagonists produced anti-

depressant-like effects in several behavioural tasks,

including the forced swim test (Trullas and Skolnick, 1990).

Genetic evidence for the involvement of the glutamatergic

pathway in emotional regulation has been obtained by analys-

ing mice with genetically engineered NMDA receptor genes

(Mohn et al, 1999; Miyamoto et al, 2001; Boyce-Rustay and

Holmes, 2006). Although these previous findings suggest the

involvement of the NMDA receptor in depression-related beha-

viour, the underlying molecular mechanism remains unclear.

A number of neuronal functions such as synaptic plasticity

are rapidly and reversibly regulated in response to external

factors. Phosphorylation reaction is a key process in the

regulation of various neuronal functions because it can

rapidly and reversibly change the function of cellular

proteins, including NMDA receptor subunits. The NMDA

receptor is crucial for development, synaptic plasticity, and
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neuronal excitotoxicity (Choi, 1988; McDonald and Johnston,

1990; Collingridge and Bliss, 1995). The NMDA receptor is

composed of NR1 (GluRz) and NR2 (GluRe) subunits: the

NR1 subunit is essential for the function of NMDAR channels,

whereas NR2 subunits (NR2A (GluRe1), NR2B (GluRe2),

NR2C (GluRe3), and NR2D (GluRe4)) determine the charac-

teristics of NMDAR channels by forming different hetero-

meric configurations with the NR1 subunit (Kutsuwada et al,

1992; Monyer et al, 1992; Ishii et al, 1993; Cull-Candy et al,

2001). The NR1 and NR2 subunits contain phosphorylation

sites that seem to have key roles in regulating NMDA receptor

localization and channel activity, as well as downstream

signalling via NMDA receptor-associated proteins (Kornau

et al, 1997; Husi et al, 2000; Scannevin and Huganir, 2000;

Nakazawa et al, 2001, 2006; Sheng and Kim, 2002; Salter

and Kalia, 2004; Chen and Roche, 2007; Okabe, 2007).

Biochemical studies have found that non-receptor tyrosine

kinases, Src and Fyn, phosphorylate NR2A and NR2B (Yang

and Leonard, 2001; Salter and Kalia, 2004; Nakazawa et al,

2001, 2006; Chen and Roche, 2007). NR2A and NR2B contain

several tyrosine phosphorylation sites (Yang and Leonard,

2001; Salter and Kalia, 2004; Nakazawa et al, 2001, 2006;

Chen and Roche, 2007). Tyr 1472 phosphorylation, the prin-

cipal tyrosine phosphorylation event on NR2B, regulates

amygdaloid synaptic plasticity, and fear-related learning

(Nakazawa et al, 2006), however, the role of Tyr 1325 phos-

phorylation on NR2A remains unknown.

In this study, we investigated the role of Tyr 1325 phos-

phorylation on NR2A with knock-in mice in which Tyr 1325

of NR2A is mutated to phenylalanine. Using biochemical,

genetic, and electrophysiological approaches with the knock-

in mice, we provide evidence of a critical involvement of

Tyr 1325 phosphorylation in depression-related behaviour.

Results

Tyr 1325 as one of the principal Src family

kinase-mediated phosphorylation sites

The NR2A subunit of the NMDA receptor contains 25 tyrosine

residues in the intracellular C-terminal region. To determine

the Src family kinase-mediated NR2A phosphorylation sites,

we constructed GST fusion proteins containing truncated

segments of the NR2A C-terminal region (termed GST–C1,

GST–C2, and GST–C3) (Figure 1A). These fusion proteins

were phosphorylated by baculovirally expressed Fyn in the

presence of [g-32P]ATP. The phosphorylated proteins were

subjected to tryptic phosphopeptide mapping. As shown in

Figure 1B, highly phosphorylated peptides P1–P7 were gen-

erated from the phosphorylated GST–fusion proteins. To

identify the tyrosine residue in most prominently phosphory-

lated P7 peptide, we constructed Y1325F (conversion of

Tyr 1325 to Phe 1325)–GST–C2 protein by site-directed muta-

genesis, and performed the in vitro phosphorylation assay as

above. Conversion of Tyr 1325 to Phe 1325 resulted in

generation of a tryptic phosphopeptide map that lacked

phosphopeptide P7, suggesting that Tyr 1325 was most

prominently phosphorylated by Fyn in vitro (Figure 1B).

Similarly, phosphorylated tyrosines in other phosphopeptides

were examined by introducing YF mutations in the GST–C1

and GST–C2 proteins. We found that Tyr 943, Tyr 1105,

Tyr 1118, Tyr 1187, Tyr 1246, and Tyr 1267 were also phos-

phorylated in vitro (data not shown). As Tyr 1325 was most

strongly phosphorylated in vitro, we examined whether

Tyr 1325 was phosphorylated in cells (Figure 1C). HEK

293T cells were transfected with expression plasmids encod-

ing wild-type or Y1325F mutant forms of the NR2A subunit

along with a plasmid encoding Src YF, a constitutively active

Figure 1 Identification of Tyr 1325 as one of the principal Src
family kinase-mediated phosphorylation sites of the NR2A subunit.
(A) Schematic diagram of GST fusion proteins containing the
intracellular C-terminal region of the NR2A subunit. (B) Two-
dimensional tryptic phosphopeptide maps of GST–C1, GST–C2,
GST–C2–Y1325F, and GST–C3. The dot in each map shows the
origin of electrophoresis. Note that P7 (Tyr 1325) was most promi-
nently phosphorylated in vitro. (C) Identification of Tyr 1325 as one
of the principal phosphorylation sites in HEK 293T cells. HEK293T
cells were transfected with combinations of expression plasmids for
the NR2A subunit, NR2AY1325F mutants, and active Src (SrcYF) or
inactive Src (SrcKM). NR2A immunoprecipitates from cell lysates
were subjected to immunoblotting using the anti-pY antibody
(4G10) (top), followed by a re-blot using the anti-NR2A antibody
(middle). The expression levels of Src were confirmed by immuno-
blotting (bottom). *Po0.001, n¼ 4, Student’s t-test. Note that all
lanes are from the same gel, but lanes originally present between
lanes 2 and 3 have been omitted for brevity.
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form of Src. Immunoblotting of NR2A immunoprecipitates

with the 4G10 anti-phosphotyrosine antibody revealed that

Y1325F mutation significantly decreased the tyrosine phos-

phorylation level of the NR2A subunits (n¼ 4; *Po0.001,

Student’s t test; Figure 1C). The data suggest that Tyr 1325

was one of the principal Src-mediated phosphorylation sites

in HEK 293T cells as well as in vitro.

Point mutation of Tyr 1325 on NR2A blocks

Src-mediated potentiation of NMDA receptor currents

We next addressed the biological significance of Tyr 1325

phosphorylation. As NR2A phosphorylation by Src is sug-

gested to potentiate NMDA receptor currents (Wang and

Salter, 1994; Kohr and Seeburg, 1996; Yu et al, 1997), we

examined the effect of null phosphorylation at Tyr 1325 by

introducing Y1325F mutation in NR2A. Heteromeric NMDA

receptor channels consisting of NR1 and wild-type NR2A or

Y1325F mutant (Y1325F–NR2A) were transiently expressed

in HEK 293T cells and NMDA-evoked whole cell currents

were recorded. The current mediated by the NMDA receptor

channel with wild-type NR2A subunits was potentiated by

the application of the Src protein through patch pipette

(Figure 2A). In contrast, the current mediated by the NMDA

receptor channel with Y1325F–NR2A subunits was minimally

potentiated by the Src protein (Figure 2A). To confirm the

lack of Src-dependent NMDA receptor potentiation by Y1325F

mutation, we examined the effect on Ca2þ influx. HEK293T

cells were transfected with expression plasmids encoding

NR1 and wild-type (WT) or Y1325F mutant forms of NR2A

together with or without active Src. After that the cells were

loaded with fura2/AM and stimulated using NMDA. As

shown in Figure 2B, a marked increase of Ca2þ concentration

was observed in cells expressing NR1/WT–NR2A and active

Src after NMDA stimulation, as compared with that in cells

expressing NR1/WT–NR2A alone. In contrast, the level of

increase in Ca2þ in cells expressing NR1/Y1325F–NR2A and

active Src was virtually identical to that in cells expressing

NR1/Y1325F–NR2A alone (Figure 2B). These data suggest

that Tyr 1325 phosphorylation is required for Src-mediated

potentiation of NMDA receptor currents to modulate Ca2þ

signalling downstream of NMDA receptors.

Generation of NR2A Y1325F knock-in mice

To examine the physiological role of NR2A Tyr 1325 phos-

phorylation, we generated mutant mice in which Tyr 1325

was substituted with Phe 1325 by a knock-in technique

(Figure 3A). The success of these procedures was confirmed

by Southern blot and PCR analysis (data not shown). We

confirmed the absence of Tyr 1325 phosphorylation in

homozygous knock-in mice (YF/YF mice) by immunoblot

analysis using the anti-pY1325 antibody that specifically

recognizes NR2A phosphorylated at Tyr 1325 (Figure 3B
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Figure 2 Point mutation at Tyr 1325 on the NR2A subunit blocks Src-mediated potentiation of recombinant NMDA receptor currents in HEK
293T cells. (A) Application of Src differentially potentiated NMDA-activated currents mediated by recombinant NR1–wild-type (WT) NR2A
channels (upper), but not those mediated by recombinant NR1–Y1325F NR2A channels (lower). Peak currents evoked by NMDA applications
(100 mM NMDA and 10mM glycine: 0.5 s) at 30-s intervals were normalized to the first responses at 3 min after establishing whole-cell
configuration (time: 0 min; holding potential: �60 mV). Src (30 U/ml) was added to the internal pipette solution. WT NR2A (control), n¼ 5;
WT NR2A (þ Src), n¼ 6; Y1325F NR2A (control), n¼ 4; Y1325F NR2A (þ Src), n¼ 5. Representative averaged whole-cell currents evoked at
�60 mV by the NMDA application are shown in the left panel and the traces recorded at 3 min (grey) and 20 min (black) are superimposed.
Scale bars: 0.2 s; 100 pA. (B) Src-dependent increment of free calcium levels in cells expressing NR1/wild-type NR2A, but not NR1/Y1325F–
NR2A channel. Intracellular free calcium levels, before and after NMDA stimulation in fura-2/AM-loaded cells, were monitored by spectro-
fluorometry. Increase in the ratio of the fluorescence intensities at excitation wavelengths of 340 nm (Fex340) and 380 nm (Fex380) after NMDA
stimulation are shown (n¼ 4, *Po0.05, Student’s t-test). NS: not significant.
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and Supplementary Figure 1). The expression level of NR2A

in YF/YF mice was virtually identical to that in wild-type

littermates (WT/WT mice) (Figure 3B). In YF/YF mice, the

level of NR2A tyrosine phosphorylation was significantly

reduced as compared with that in WT/WT mice (n¼ 3;

*Po0.001, Student’s t test; Figure 3C), indicating that

Tyr 1325 was one the major phosphorylation sites in vivo as

well as in vitro (Figure 1). YF/YF mice were born according to

Mendelian genetics and appeared healthy (data not shown).

Histological analysis with Nissl-stained coronal sections

of central nervous system structures from YF/YF mice did

not show any gross abnormalities in cytoarchitecture

(Figure 3D). These findings suggest that Tyr 1325 phosphor-

ylation may be relevant to the NMDAR function in mature

brain.

Impaired Src-induced potentiation of NMDA receptor-

mediated excitatory postsynaptic currents in medium

spiny neurons in acute slices from YF/YF mice

To examine the effect of Tyr 1325 phosphorylation on NMDA

receptor-mediated excitatory postsynaptic currents (EPSCs)

in vivo, we performed electrophysiological experiments on

medium spiny neurons. Two glass micropipettes were placed

in the cerebral cortex or in the underlying white matter to

stimulate the corticostriatal axons. Stimulus pulses (duration:

0.1 ms; intensity: 0–80 V) were then applied between the

pipettes to evoke EPSCs in medium spiny neurons.

Application of the Src protein through a patch pipette poten-

tiated the NMDA receptor-mediated EPSCs in WT/WT slices

(Figure 4). In contrast, NMDA receptor-mediated EPSCs were

not significantly changed by the Src protein in YF/YF slices

(Figure 4). These results suggest that Tyr 1325 phosphoryla-

tion is required for Src-induced potentiation of the NMDA

receptor-mediated EPSCs in medium spiny neurons, which is

consistent with findings from recombinantly expressed

NMDA receptor in HEK 293T cells (Figure 2).

Antidepressant-like phenotypes in the forced swim test

and the tail suspension test in YF/YF mice

We performed a battery of behavioural tests to examine

sensory and motor functions as well as cognition and anxiety

of YF/YF mice. The tests revealed that YF/YF mice were less

immobile than WT/WT mice in the tail suspension test

(Figure 5A and B), one of the most widely used models for

assessing antidepressant-like activity in mice (Cryan et al,

2005). YF/YF mice also showed significantly less immobility

than WT/WT mice in the forced swim test (Figure 5C and D),

another test for assessing antidepressant-like activity (Petit-

Demouliere et al, 2005). Given that, the higher the mobility,

mice are less depressive (Cryan et al, 2005; Petit-Demouliere

et al, 2005), we postulated that YF/YF mice were less

susceptible to depression than WT/WT mice. Alternatively,

the reduced immobility of YF/YF mice in these tests might

have been caused by the increase in spontaneous activity

(Crawley, 2007). To check this possibility, we performed the

open field test to measure spontaneous locomotor activity of

YF/YF mice (Figure 5E). The results showed that there were

Figure 3 Generation of mice with a mutation of Tyr 1325 phosphor-
ylation site on NR2A. (A) Schematic representations of the struc-
tures of wild-type, targeting vector, and targeted and Neo-targeted
NR2A alleles. TK, thymidine kinase gene; neo, neomycin resistance
gene. (B) Absence of Tyr 1325 phosphorylation in homozygous YF/
YF mice. Equal amounts of brain lysates from WT/WT and YF/YF
mice were probed with the anti-pY1325 antibody followed by a
re-blot using the anti-NR2A antibody. (C) NR2A tyrosine-phosphor-
ylation in YF/YF mice. Equal amounts of NR2A immunoprecipitates
from striatal lysates of WT/WT and YF/YF mice were probed with
the anti-phosphotyrosine (4G10) antibody followed by a re-blot
with the anti-NR2A antibody. A representative blot is shown on
the left (*Po0.01, n¼ 3, Student’s t-test). (D) Nissl-stained coronal
sections of central nervous system structures including striatum
from WT/WT and YF/YF mice. Cpu: Caudata-putamen.

Figure 4 Src-induced potentiation of NMDA receptor-mediated
EPSCs is abolished in medium spiny neurons in acute striatal slices
from YF/YF mice. (A) Examples of NMDA receptor-mediated
EPSCs. (B) Src-dependent change in the peak amplitude of NMDA
receptor-mediated EPSCs in medium spiny neurons from WT/WT
and YF/YF mice. WT/WT, n¼ 15; YF/YF, n¼ 11; *P¼ 0.036, paired
t-test.
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no significant differences between WT/WT and YF/YF mice

in the number of rearing (measure the number of beam

breaks) (WT/WT, 47.9±4.10, n¼ 13; YF/YF, 51.5±4.49,

n¼ 13; F(1,24)¼ 0.35, P¼ 0.56, one-way ANOVA) and the

total distance travelled during the test (WT/WT,

3435±191 cm, n¼ 13; YF/YF, 3400±182 cm, n¼ 13;

F(1,24)¼ 0.018, P¼ 0.89, one-way ANOVA), suggesting that

spontaneous activity was virtually normal in YF/YF mice. As

alteration in fearfulness can also affect the performance in

the tests for depression (Crawley, 2007), we also analysed

the anxiety-related behaviour. We did not detect any signifi-

cant abnormality in YF/YF mice in the open field test

(the time spent in the centre, WT/WT, 13.0±1.78%,

n¼ 13; YF/YF, 10.2±1.10%, n¼ 13; F(1,24)¼ 1.83, P¼ 0.19,

one-way ANOVA; Figure 5E), the light–dark emergence test

(the time spent in the lighted area: WT/WT, 40.9±3.15%,

n¼ 13; YF/YF, 42.6±4.14%, n¼ 13; F(1,24)¼ 0.11, P¼ 0.74,

one-way ANOVA; the number of transitions: WT/WT,

24.9±2.10, n¼ 13; YF/YF, 21.7±2.96, n¼ 13; F(1,24)¼ 0.79,

P¼ 0.38, one-way ANOVA; Figure 5F), the social interaction

test (the number of social interactions: WT/WT, 14.5±1.7,

n¼ 11; YF/YF, 14.5±0.8, n¼ 11; F(1,20)¼ 0.002, P¼ 0.96,

one-way ANOVA; the social interaction time, WT/WT,

12.7±2.06%, n¼ 11; YF/YF, 16.4±2.66, n¼ 11; F(1,20)¼ 1.18,

P¼ 0.28, one-way ANOVA; Figure 5G), and the elevated

plus maze test in YF/YF mice (the time on open arms:

WT/WT, 15.68±1.48%, n¼ 13; YF/YF, 16.45±2.85%,

n¼ 13; F(1,24)¼ 0.06, P¼ 0.81, one-way ANOVA; the number

of entries into open arms: WT/WT, 28.2±2.02, n¼ 13; YF/YF,

30.7±2.76, n¼ 13; F(1,24)¼ 0.55, P¼ 0.47, one-way ANOVA;

the number of head dips: WT/WT, 42.5±7.69, n¼ 10; YF/YF,

43.5±9.89, n¼ 10; F(1,18)¼ 0.006, P¼ 0.94, one-way ANOVA;

Figure 5H). In addition, the performance of YF/YF mice in the

Morris water maze test, contextual fear conditioning test,

Figure 5 Reduced depression-related behaviour in YF/YF mice. (A) Percent immobility of WT/WTand YF/YF mice in the tail suspension test.
(B) Summary of immobility in the tail suspension test during the last 4 min of the 6-min test session. WT/WT, n¼ 13; YF/YF, n¼ 11;
F(1,22)¼ 6.00, *P¼ 0.02, one-way ANOVA. (C) Percent immobility of WT/WT and YF/YF mice in the forced swim test. (D) Summary of
immobility in the forced swim test during the last 7 min of the 10-min test session. WT/WT, n¼ 12; YF/YF, n¼ 12; F(1,22)¼ 4.69, *P¼ 0.04, one-
way ANOVA. (E) Normal locomotor activity and anxiety-like behaviour of YF/YF mice in the open field test. WT/WT, n¼ 13; YF/YF, n¼ 12,
P40.05, one-way ANOVA. (F) Normal anxiety-like behaviour of YF/YF mice in the light–dark emergence test. WT/WT, n¼ 13; YF/YF, n¼ 12,
P40.05, one-way ANOVA. (G) Normal behaviour of YF/YF mice in the social interaction test. WT/WT, n¼ 11; YF/YF, n¼ 11, P40.05, one-way
ANOVA. (H) Normal anxiety-like behaviour of YF/YF mice in the elevated plus maze test. The time spent on open arms and the number of
entries into open arms: WT/WT, n¼ 13; YF/YF, n¼ 12, P40.05, one-way ANOVA. Number of head dips: WT/WT, n¼ 10; YF/YF, n¼ 10,
P40.05, one-way ANOVA. NS: not significant.
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auditory fear conditioning test, acoustic startle response test,

pre-pulse inhibition test, tail flick test, and hot plate test

appeared normal (Supplementary Figure 2-4). These results

suggest that YF/YF mice showed reduced susceptibility to

depression, but other general behaviours, such as locomotor

activity, cognitive function, anxiety-related behaviour, startle

response, and pain behaviour are normal.

Increased Tyr 1325 phosphorylation by the forced swim

test and the tail suspension test

We next investigated whether the level of Tyr 1325 phosphor-

ylation in the striatum, one of the brain regions involved in

depression (Petit-Demouliere et al, 2005), was affected by the

forced swim test. At 5 min after the test, the mice were

sacrificed, the striata were dissected out, and the lysates

were prepared. The NR2A immunoprecipitates from these

lysates were then subjected to immunoblotting with the anti-

pY1325 antibody followed by re-blot with the anti-NR2A

antibody. As shown in Figure 6A, the level of Tyr 1325

phosphorylation was increased significantly in the striatum

in mice exposed to the forced swim test compared with

control (n¼ 3; *Po0.05, Student’s t test). Likewise, the

level of Tyr 1325 phosphorylation was also increased in the

striatum in mice exposed to the tail suspension test (n¼ 5;

*Po0.05, Student’s t test; Figure 6B). We also found that Src

was activated by the forced swim test using anti-Src (pY418)

antibody specific to the active form of Src (Figure 6A; n¼ 3;

*Po0.05, Student’s t test). Neither Ser 896 phosphorylation

on NR1 (Figure 6A) nor Tyr 1472 phosphorylation on NR2B

(Figure 6A and B) was affected by the same stimulation.

In addition, the level of Tyr 1325 phosphorylation in the

striatum was not at all affected by the elevated plus maze

and the open field test (Supplementary Figure 5). These data

suggest that Tyr 1325 phosphorylation of NR2A is relevant to

the depression-related behaviour.

Normal monoamine systems in YF/YF mice

Given that depression-related behaviour is affected by mono-

amine systems (Cryan and Mombereau, 2004), we measured

the amounts of monoamines and their metabolites in various

Figure 6 Increased Tyr 1325 phosphorylation during the forced swim test and the tail suspension test. (A) The level of Tyr 1325
phosphorylation in the striatum was increased during the forced swim test. Equal amounts of NR2A immunoprecipitates from lysates of
the forced swim test-exposed mice and control mice were probed using the anti-Tyr 1325 antibody followed by a re-blot with the anti-NR2A
antibody. *Po0.05, n¼ 3, Student’s t-test. The levels of Tyr 1472 phosphorylation on NR2B and Ser 896 phosphorylation on NR1 were
unchanged after the forced swim test. Equal amounts of striatal lysates from the forced swim test-exposed mice and control mice were
subjected to immunoblotting with antibodies against pY1472/NR2B, NR2B, pS896/NR1, NR1, pY418/Src kinases, and Src kinases. (P40.05,
n¼ 3, Student’s t-test). It was noteworthy that Src was activated after the forced swim test. (*Po0.05, n¼ 3, Student’s t test). FST, the forced
swim test. (B) The level of Tyr 1325 phosphorylation in the striatum was increased during the tail suspension test. Equal amounts of NR2A
immunoprecipitates from lysates of the tail suspension test-exposed mice and control mice were probed using the anti-Tyr 1325 antibody
followed by re-blot using the anti-NR2A antibody. (*Po0.05, n¼ 5, Student’s t-test). The level of Tyr 1472 phosphorylation on NR2B was
unchanged by the tail suspension test. (P40.05, n¼ 5, Student’s t-test). TST: the tail suspension test; NS: not significant.
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brain regions, including the hippocampus, hypothalamus,

prefrontal cortex, and striatum of WT/WT and YF/YF mice

(Figure 7A–F and data not shown). We did not detect any

significant abnormalities in the levels of dopamine and

serotonin and their metabolites in any of the brain region

we examined, including the striatum of YF/YF mice (Figure

7A–F and data not shown), suggesting that monoamine

systems are normal in YF/YF mice. In addition, the levels

of glutamate and GABA were also unaltered in the striatum of

YF/YF mice compared with those of WT/WT mice (Figure 7G

and H).

Increased phosphorylation of DARPP-32 at Thr 34

in YF/YF mice

DARPP-32, a dopamine- and cAMP-regulated phosphoprotein

of 32 kDa, is a signal transduction molecule that is highly

enriched in medium spiny neurons of the neostriatum

(Svenningsson et al, 2004). There is a report that DARPP-32

phosphorylation at Thr 34 is involved in the regulation of

depression-related behaviours (Svenningsson et al, 2002).

This led us to examine whether Thr 34 phosphorylation of

DARPP-32 is altered in YF/YF mice. As shown in Figure 8A,

Thr 34 phosphorylation of DARPP-32 was significantly in-

creased in the striatum of YF/YF mice as compared with that

of WT/WT mice (*Po0.05, Student’s t test; Figure 8A).

We then examined the ERK activity because Thr 34 phosphor-

ylation of DARPP-32 occurs upstream of ERK activation

(Valjent et al, 2005). We observed that the activity of

ERK, evaluated by the anti-phospho-ERK specific antibody,

was significantly higher in YF/YF mice compared with that

in WT/WT mice (*Po0.05, Student’s t test; Figure 8B).

Therefore, we conclude that Thr 34 phosphorylation on

DARPP-32 and the subsequent ERK activity are elevated in

the absence of Tyr 1325 phosphorylation on the NR2A subunit.

Given that Thr34 phosphorylation of DARPP-32 is important

for depression-related behaviour (Svenningsson et al, 2002,

2004), antidepressant-like phenotype of YF/YF mice may be

attributable to increased Thr 34 phosphorylation of DARPP-32.

Decreased calcineurin activity in YF/YF mice

We next addressed the mechanism by which DARPP-32

phosphorylation at Thr 34 was increased in YF/YF mice.

We focused on the Ca2þ/calmodulin-dependent protein

phosphatase calcineurin, as it dephosphorylates Thr 34 of

DARPP-32 downstream of NMDA receptor activation (Nishi

et al, 2005). We analysed calcineurin activity in the striatum

by measuring the free phosphate released from the synthetic

RII phosphopeptide substrate, the most efficient and well-

known peptide substrate of calcineurin (Enz et al, 1994). As

expected, calcineurin activity was significantly decreased

in YF/YF mice as compared with that in WT/WT mice

(*Po0.05, Student’s t test; Figure 8C). These results suggest

that loss of Tyr 1325 phosphorylation downregulates calci-

neurin activity, and the impaired calcineurin activity is

responsible for the increased DARPP-32 phosphorylation at

Thr 34 (Figure 9). Intriguingly, however, we did not detect

any significant reduction in CaMKII activity in YF/YF mice

(Figure 8D), despite the fact that CaMKII activity is also

regulated by Ca2þ (see Discussion).

Discussion

Accumulating evidence indicates that tyrosine phosphoryla-

tion of the NMDA receptor is an important step involved in

the regulation of brain functions such as synaptic plasticity.

The NR2A subunit of the NMDA receptor is abundantly

tyrosine-phosphorylated by the Src family kinases (Tezuka

et al, 1999), and Tyr 1292, Tyr 1325, and Tyr 1387 are reported

Figure 7 Normal amounts of monoamines, their metabolites, and amino acids in the striatum of YF/YF mice. (A–F) Biopsies of the striatum
were obtained from frozen brain sections and monoamines and their metabolites were extracted and analysed. (A) The amount of dopamine
(DA). (B) The amounts of DOPAC and HVA. (C) DA turnover. (D) The amount of serotonin (5-HT). (E) The amount of 5-HIAA. (F) 5-HT
turnover. (G, H) Biopsies of the striatum were obtained from frozen brain sections and amino acids were derivatized with OPA and analysed.
(G) The amount of GABA. (H) The amount of glutamate. No significant differences were observed between WT/WTand YF/YF mice for any of
the measurements (WT/WT, n¼ 6; YF/YF, n¼ 6, P40.05, one-way ANOVA). NS: not significant.
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to be major phosphorylation sites in HEK 293T cells (Yang

and Leonard, 2001). Here we have shown for the first time

that Tyr 1325 is heavily phosphorylated not only in the

cultured heterologous cells but also in the brain. In addition,

we observed that Tyr 943, Tyr 1105, Tyr 1118, Tyr 1187,

Tyr 1246, and Tyr 1267 could be phosphorylated by active

Src (Figure 1 and data not shown). As we discuss below, we

further provided evidence that Tyr 1325, that has been shown

by us and others to be one of the major phosphorylation sites

(Figure 1, Yang and Leonard, 2001), is critically involved in

the regulation of NMDA receptor channel activity and in

depression-related behaviour.

Our finding that mice carrying a mutation at Tyr 1325

phosphorylation site (YF/YF mice) showed reduced depres-

sion-related behaviour (Figure 5A and B) is consistent with

previous studies showing antidepressant-like effects of

NMDA receptor antagonists and reduced depression-related

behaviour in NR2A null knockout mice (Boyce-Rustay and

Holmes, 2006). Although NR2A null knockout mice show

greatly increased locomotor activity in the open field test,

which can confound the performance of the mouse in the

forced swim test and in the tail suspension test (Miyamoto

et al, 2001), YF/YF mice showed normal locomotor activity in

the open field test (Figure 5C). Moreover, in contrast to NR2A

null knockout mice, YF/YF mice showed normal cognitive

functions and anxiety-like behaviours in various tests we

performed (Figure 5 and Supplementary Figure 2–4). These

results suggest that suppression of NR2A expression causes

more general abnormalities in broader ranges of brain func-

tion than Y1325F mutation that produces specific abnormal-

ities in depression-related behaviour. Consistent with this

theory, we did not detect any significant abnormalities in

the induction of long-term potentiation in the CA1 region of

the hippocampus and in the NMDA receptor-mediated signal-

ling in the prefrontal cortex (Supplementary Figure 6 and 7).

The increase in Tyr 1325 phosphorylation in the striatum on

exposure of mice to the forced swim test and the tail suspen-

sion test further supports the idea that Tyr 1325 phosphoryla-

tion is relevant for depression-related behaviour (Figure 6).

In addition, we did not detect significant increases in the level

of tyrosine phosphorylation of the Y1325F-containing NR2A

subunit after the forced swim test (Supplementary Figure 8),

suggesting that phosphorylation sites other than Tyr 1325 in

the NR2A subunit is not relevant for the depression-related

behaviour.

In YF/YF mice, the amounts of monoamines, their meta-

bolites, and GABA levels were observed to be normal

(Figure 7). Furthermore, PKA activity that is regulated by

dopamine receptors was normal in the striatum of YF/YF

mice (Supplementary Figure 9). These results suggest that the

monoamine systems and the GABA system that were shown

to be involved in depression-related behaviour (Cryan and

Mombereau, 2004) were normal in YF/YF mice. Although the

possibility that other neurochemical changes underlie the

behavioural abnormalities observed here cannot be ruled

out, we would like to emphasize that NMDA receptor-

mediated signalling is selectively impaired in YF/YF mice.

Given that NMDA receptor-mediated Thr 34 phosphorylation

of DARPP-32 is important for depression-related behaviour

(Svenningsson et al, 2002, 2004; Nishi et al, 2005), the

antidepressant-like phenotype of YF/YF mice may be attri-

butable partly to increased Thr 34 phosphorylation of DARPP-

32. Although glutamatergic signalling regulates DARPP-32

phosphorylation (Nishi et al, 2005), it is unclear how the

activity of NMDA receptor is involved in the DARPP-32

phosphorylation in vivo. Our result provides the first genetic

evidence for the involvement of tyrosine phosphorylation of

NMDA receptor in DARPP-32 phosphorylation.

Figure 8 Increased DARPP-32 phosphorylation at Thr 34 and de-
creased calcineurin activity in YF/YF mice. (A) Increased DARPP-32
phosphorylation at Thr 34 in YF/YF mice. Striata from WT/WT and
YF/YF mice were dissected and homogenized in TNE buffer. Then
striatal lysates from WT/WT and YF/YF mice were subjected to
immunoblotting with the anti-pThr 34 antibody, followed by a
re-blot using the anti-DARPP-32 antibody. A representative blot is
shown on the left (*Po0.05, n¼ 3, Student’s t-test). (B) Increased
ERK activity in YF/YF mice. Striatal lysates from WT/WT and YF/
YF mice were subjected to immunoblotting with the anti-pERK
(pT185 and pY187) antibody followed by re-blot with anti-ERK2
antibody. A representative blot is shown on the left (*Po0.05,
n¼ 3, Student’s t-test). (C) Decreased calcineurin activity in YF/YF
mice. Calcineurin activity in the striatum from WT/WT and YF/YF
mice was analysed by measuring free phosphate released from the
synthetic RII phosphopeptide substrate as described in the Materials
and methods (*Po0.05, n¼ 3, Student’s t-test). (D) Normal CaMKII
activity in YF/YF mice. Striatal lysates from WT/WT and YF/YF
mice were subjected to immunoblotting with the anti-phospho-
CaMKII (pT286) antibody followed by re-blot with anti-CaMKII
antibody. A representative blot is shown on the left (P40.05,
n¼ 3, Student’s t-test). NS: not significant.
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The mechanism by which Src-family kinases are activated

is unknown. As stimulation of metabotropic glutamate re-

ceptors (mGluRs) activates Src to regulate NMDA receptors in

cortical neurons (Heidinger et al, 2002), it is possible that

mGluR activation increases Src-mediated Tyr 1325 phosphor-

ylation. Interestingly, mGluR antagonists have antidepres-

sant-like effects in the forced swim test and the tail

suspension test (Belozertseva et al, 2007), suggesting that

Tyr 1325 phosphorylation on the NR2A subunit may be

relevant to mGluR-mediated regulation of depression-related

behaviour.

We observed that Src-induced potentiation of NMDA

receptor-mediated currents and increase in Ca2þ levels

were abolished in NR1/NR2A–Y1325F channels (Figures 2

and 4). Furthermore, we found that calcineurin activity was

downregulated in the striatum of YF/YF mice (Figure 8),

which is responsible for the decrease in DARPP-32 phosphor-

ylation at Thr 34 (Nishi et al, 2005). Thus, our current results

argue that the Ca2þ influx through the NR2A subunit-con-

taining NMDA receptor channels is decreased in the absence

of Tyr 1325 phosphorylation, resulting in decreased calcineur-

in activity and increased phosphorylation of one of the

calcineurin substrates, DARPP-32 (see Figure 9). In YF/YF

mice, we did not detect a significant reduction in CaMKII

activity (Figure 8D) that is also regulated by Ca2þ influx

through NMDA receptors. Previous studies have established

that calcineurin is much more sensitive to the increase in

Ca2þ concentrations in the post-synaptic cell than CaMKII

(Xia and Storm, 2005; Irvine et al, 2006), suggesting that the

lack of change in CaMKII activity may be explained by the

difference in the sensitivity between CaMKII and calcineurin

towards Ca2þ . Src family kinase-mediated Tyr 1325 phos-

phorylation of the NR2A subunit would induce relatively

low and sustained increase in NMDA receptor-mediated

Figure 9 A proposed model for the role of Tyr 1325 phosphorylation on NR2A subunit in depression-related behaviour. (left) In WT/WT mice,
Src-mediated Tyr 1325 phosphorylation increases the Ca2þ influx through the NR2A subunit-containing NMDA receptor channels, and thereby
activates a Ca2þ -dependent protein phosphatase, calcineurin. Activated calcineurin then de-phosphorylates Thr 34 of DARPP-32, leading to the
generation of active protein phosphatase-1 (PP-1). Consequently, the phosphorylation levels of PP-1 substrates, including ERK, are decreased.
(right) In YF/YF mice, Ca2þ influx through the NR2A subunit-containing NMDA receptor channels is decreased in the absence of Tyr 1325
phosphorylation, resulting in decreased calcineurin activity and increased phosphorylation of Thr 34 on DARPP-32. Phosphorylation of Thr 34
on DARPP-32 converts DARPP-32 into a potent inhibitor of PP-1, and thereby increases the phosphorylation level of PP-1 substrates including
ERK. The antidepressant-like phenotype of YF/YF mice may be attributable partly to the increased Thr 34 phosphorylation of PP-1 substrates
including ERK.
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currents, which is sufficient to activate calcineurin. In con-

trast, larger increase in NMDA receptor-mediated currents

may be required to affect CaMKII activity.

Previous studies illustrate that endogenous Src activity

enhances NMDA receptor-mediated currents by facilitating

NMDA receptor channel gating without affecting the NMDA

receptor single-channel conductance (Wang and Salter, 1994;

Yu et al, 1997). Our data suggest that Tyr 1325 phosphoryla-

tion is responsible for Src-induced facilitation of NMDA

receptor channel gating (Figures 2 and 4). Though the

mechanism behind it is not clear, Tyr 1325 phosphorylation

may lead to conformational change of the NMDA receptor

channel that increases ionic flux. Alternatively, Tyr 1325

phosphorylation may regulate the interaction between the

NMDA receptor and an unidentified protein that regulates the

NMDA receptor channel property. Intriguingly, a previous

report has shown that Tyr 1105, Tyr 1267, and Tyr 1387 sites

are also important for Src-mediated potentiation of NMDA

receptor-mediated currents in HEK293T cells (Zheng et al,

1998). Although our electrophysiological studies reveal com-

plete abolishment of Src-induced potentiation of NMDA-

mediated receptor current in NR1/NR2A–Y1325F channels

(Figure 2), Tyr 1325 phosphorylation, together with the phos-

phorylation on the other sites, may cooperatively regulate

NMDA receptor-mediated currents. The mechanism behind

the possible cooperative action needs to be addressed in

future studies.

In summary, this study demonstrates that NR2A tyrosine

phosphorylation at Tyr 1325 is important for depression-

related behaviour in the tail suspension test and the forced

swim test. The emotion-related phenotype of YF/YF mice was

not probably due to the deficits in general physical activity or

gross abnormalities in brain development and neurological

functions. Therefore, YF/YF mice would serve as a useful

animal model to study the pathogenesis of mood disorders

and to develop therapeutic drugs for the disease.

Materials and methods

Purification of GST fusion proteins
Fusion proteins, GST–C1, GST–C2, GST–C3, and GST–C2–Y1325F
were expressed in Escherichia coli BL21. Purification of GST fusion
proteins was performed as described previously by Nakazawa et al
(2001).

Tryptic peptide mapping analysis
Tryptic peptide mapping of GST fusion proteins was performed as
described previously by Nakazawa et al (2001).

Cell culture and transient transfection
The culture of HEK 293T cells and their transient transfection were
performed as described previously by Nakazawa et al (2001).

Preparation of lysate, immunoprecipitation and
immunoblotting
Preparation of lysate from the mouse brain, immunoprecipitation,
and immunoblotting were performed as described previously by
Nakazawa et al (2006). For quantification, the immunoreacted
protein bands were analysed using the NIH image software.

Antibodies
Rabbit polyclonal antibodies against phospho-Tyr 1325 were raised
using a keyhole limpet hemocyanin-conjugated synthetic phospho-
peptide around Tyr 1325 as immunogen. The antibody was purified
from sera of the immunized rabbits by successive affinity
chromatography. The anti-NR2A antibody and anti-pY1472/NR2B
antibodies have been described in previous studies (Tezuka et al,

1999; Nakazawa et al, 2001). Commercially available antibodies
used in this study are: anti-phosphotyrosine (4G10; Upstate
Biotechnology, Waltham, MA, USA); anti-phospho Thr 34 DARPP-
32 (PhosphoSolutions, Aurora, CO, USA); anti-DARPP-32 (Phos-
phoSolutions); anti-phospho ERK (Cell Signaling Technology,
Beverly, MA, USA); anti-ERK2 (Santa Cruz Biotechnology, Santa
Cruz, CA, USA); anti-phospho-Src (Cell Signaling Technology); anti-
Src family (Santa Cruz Biotechnology); anti-phospho-CaMKII
(pT286; Promega, Madison, WI, USA); and anti-CaMKII (Chemicon
International, Temecula, CA, USA) antibodies.

Electrophysiology in HEK293T cells
Cloned cDNAs for the rat NMDA receptor subunits NR1E and
NR2A, inserted into the eukaryotic expression vector pME, were
used to transfect HEK 293T cells as described by Nakazawa et al
(2001). Whole-cell recordings were performed as described pre-
viously by Miwa et al (2008). Cells on coverslips were kept in a
chamber continuously perfused with Ringer’s solution (135 mM
NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 5 mM HEPES (pH 7.2), 10 mM
glucose), which was saturated with 95% O2 and 5% CO2. During
giga-seal formation, single captured cells were lifted from the
bottom of the dishes. After establishing the whole-cell configura-
tion, short pulses of NMDA stimulus solution (100mM NMDA and
10 mM glycine in Ringer’s solution: 0.5 s) were applied to the
recorded cell every 30 s with the local perfusion system (SF-77B
Perfusion Fast-Step, Harvard Apparatus, Hamden, CT, USA). The
patch pipette solution contained: 140 mM CsCl, 1.0 mM MgCl2,
0.1 mM EGTA, 10 mM HEPES (pH 7.2), 4 mM ATP with or without
recombinant Src (30 U/ml) (Upstate Biotechnology). The NMDA
receptor-mediated currents were recorded at a holding potential of
�60 mV. MultiClamp 700A amplifier and Digidata 1322A (Molecular
Devices, Sunnyvale, CA, USA) were used to record and store data
using the pClamp software (Molecular Devices), respectively. All
experiments were performed at 25–281C.

Calcium measurements
Measurements of cytosolic free calcium concentrations using an
acetoxymethyl ester of fura-2 (fura-2/AM; Invitrogen, Carlsbad, CA,
USA) were performed as described previously by Yokoyama et al
(2002). The ratio of increase in Ca2+ concentration, during the 30-s
interval after NMDA stimulation (500 mM) relative to that during
the 30-s interval before the NMDA stimulation in cells expressing
NR1/WT–NR2A (without Src), was assigned the arbitrary value 1.

Generation of YF/YF mice
To construct the targeting vector, a genomic DNA fragment carrying
the carboxy-terminal coding region of the NR2A gene was isolated
from a C57BL/6 genomic library (Stratagene, La Jolla, CA, USA).
The 30 fragment of NR2A contained the Tyr 1325 mutated to
phenylalanine. Embryonic stem cell line E14.1 (129/Ola-derived)
was electroporated with the linearized targeting vector, and positive
clones were identified by PCR and confirmed by Southern blotting
using the outer probe. Positive clones were used to generate
chimeric mice through the aggregation method. The chimeric mice
were crossed to the transgenic mice carrying the CAG–cre transgene
with C57BL/6 background (Sakai and Miyazaki, 1997) to remove
the neo cassette through Cre/lox-P-mediated excision. After
confirmation of the loss of the neo gene by PCR and Southern
blotting, the mice were crossed to C57BL/6J mice to yield
heteromeric F2 mice with a 75% pure C57BL/6J genetic back-
ground. Heterozygous mice were backcrossed successively to
C57BL/6J mice to yield subsequent generations with more pure
C57BL/6J genetic backgrounds. F5–7 heterozygous mice were
crossed to each other to yield homozygous mice and wild-type
littermates. Experiments using animals were carried out in
accordance with the guidelines for animal use issued by the
Committee of Animal Experiments, Institute of Medical Science,
University of Tokyo.

Histology
Histological analyses were performed as described previously
by Nakazawa et al (2006).

Electrophysiology in medium spiny neurons
|in acute striatal slices
Coronal brain slices containing the cortex and the striatum (300 mm
thick) were prepared from WT/WT or YF/YF mice at postnatal day
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16–28 as described previously by Narushima et al (2006). In brief,
mice were decapitated under anaesthesia with 100% CO2, and the
brains were cooled in ice-cold, modified external solution(120 mM
Choline–Cl, 2 mM KCl, 8 mM MgCl2, 28 mM NaHCO3, 1.25 mM
NaHPO4, and 20 mM glucose (bubbling with 95% O2 and 5% CO2)).
Slices were cut using a Leica VT1200 slicer (Wetzlar, Germany).
For recovery, slices were incubated for at least 1 h in the normal
bathing solution(125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM
MgSO4, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 20 mM glucose
(pH 7.4) (bubbling with 95% O2 and 5% CO2)).

Whole-cell recordings were made from medium spiny neurons in
the dorsolateral region of the striatum using an upright microscope
(BX50WI; Olympus Optical, Tokyo, Japan) equipped with an infra-
red CCD camera system (Hamamatsu Photonics, Hamamatsu,
Japan). Medium spiny neurons were identified visually through
their medium-sized, spherical somata as well as their electrophy-
siological properties (Kita et al, 1984). Resistance of the patch
pipette was 2–3 MO when filled with the intracellular solution
60 mM CsCl, 10 mM Cs-gluconate, 20 mM TEA–Cl, 30 mM HEPES,
20 mM BAPTA-K4, 4 mM MgCl2, 4 mM Na2-ATP, 0.4 mM Na2-GTP
(pH 7.3, adjusted with CsOH). Membrane currents were recorded
with an EPC9/2 amplifier (HEKA Electronik, Lambrecht/Pfalz,
Germany) and the pipette access resistance was compensated by
80%. The PULSE software (HEKA Electronik) was used for
stimulation and data acquisition. The signals were filtered at
3 kHz and digitized at 20 kHz. To stimulate corticostriatal axons,
two glass micropipettes filled with the normal saline were placed in
the cerebral cortex or in the underlying white matter. Stimulus
pulses (duration: 0.1 ms; intensity: 0–80 V) were applied between
the pipettes to evoke EPSCs in medium spiny neurons.

For assessing the effect of Src on NMDA receptor-mediated
EPSCs, Src (60 U/ml) was applied intracellularly from the recording
pipette by diffusion. At the holding potential of þ 50 mV, NMDA
receptor-mediated EPSCs were monitored after every 20 s starting
from 2 min after the establishment of whole-cell recording. The bath
solution was supplemented with picrotoxin (100 mM) and NBQX
(10 mM) to block GABAA receptor-mediated inhibitory post-synaptic
currents and AMPA receptor-mediated EPSCs, respectively.

Tail suspension test
Mice (8–10-week-old) were suspended above the floor by fixing the
end of their tail to wire netting. The mice were manually observed
for the presence or absence of immobility during the 6-min test
session. All behavioural experiments were performed blindly.

Forced swim test
Mice (8–10-week-old) were placed in a cylinder filled with water
temperature of which was between 23 and 251C. The mice were
manually observed for the presence or absence of immobility
during the 10-min test session.

Open field test
The apparatus was a square arena (50�50� 33.3 cm (W�D�H))
made of polyvinyl chloride. A mouse was placed in the perimeter
and allowed to explore the apparatus for 15 min. The total distance
travelled in the arena, the time spent in the centre (30�30 cm), and
rearing activity were analysed with a Macintosh computer using
Image OFCR 1.00� and Image OF circle 1.01� (O’Hara & Co. Ltd.,
Tokyo, Japan), a modified software based on the public domain of
NIH Image programme.

Light–dark emergence test
The light–dark box consisted of two compartments: a transparent
polyvinyl chloride box (100 lux) and a black polyvinylchloride box
(both 19�19�19 cm). Two boxes were separated by a vertical
sliding door that remained open (5� 5 cm). The amount of time
spent in the transparent and black boxes was measured for 10 min.

Social interaction test
A male subject mouse was placed in a neutral cage for 30 min, after
which a juvenile (5 weeks of age) conspecific male subject was
introduced. The interaction between the male subject and the
juvenile conspecific male subject was recorded using a video
camera for 3 min. Social interaction was determined as the total
amount of time that the male subject spent on interaction with the
juvenile conspecific male subject.

Elevated plus maze test
The elevated plus maze (EP-3002; O0 Hara & Co. Ltd.) consisted of
two open arms (25� 5 cm) and two enclosed arms of the same size
extending from a central area (5� 5 cm) and elevated 50 cm from
the ground. Mice were placed in the central square of the maze
facing one of the open arms. Mouse behaviour was recorded during
a 10-min test period by means of a Macintosh computer using Image
OFCR 1.00� and Image OF circle 1.01� (O’Hara & Co. Ltd.), a
modified software based on the public domain of NIH Image
programme. The following conventional parameters were recorded:
the number of entries into open or closed arms and the time spent
in open or closed arms. The number of head dips (a behaviour in
which the mouse dips its head into open space and observes the
environment while the body is in an open arm) was also recorded.

Measurement of monoamines and amino acids
Circular tissue punches (1 mm diameter) were taken from 150-mm
thick frozen coronal brain sections obtained from 8-week-old mice
(n¼ 6 per group) and stored at �801C until assayed. Monoamines,
amino acids, and metabolites were extracted by sonication in 0.1 M
perchloric acid containing a mixture of internal standards (200 nM
isoproterenol, 200 mM L-norleucine, and 5mM ethylhomocholine).
Protein contents were measured using a DC Protein Assay Kit (Bio-
Rad, Hercules, CA, USA). The remainder of the sample was
centrifuged for 15 min at 15 000 r.p.m. and the supernatant filtered
through 0.22-mm micropore, polyvinylidene fluoride filters (Milli-
pore Corp. Billerica, MA, USA) by centrifugation (14 000 r.p.m. for
5 min). The filtrate was analysed by high-pressure liquid chromato-
graphy coupled to electrochemical detection (Eicom, Kyoto, Japan).
Briefly, an Eicompak SC-5ODS 3.0�150 mm column was used for
separations, perfused with a mobile phase consisting of citrate
(41.4 mM), sodium acetate (39.2 mM), methanol (17%), sodium
1-octanesulfonate (190 mg/l), and EDTA (5 mg/l), adjusted to pH
3.7 using glacial acetic acid and pumped at a rate of 0.5 ml/min.
The working electrode (WE-3G) potential was set at þ 0.75 V.
Amino acid content was analysed by HPLC using fluorometric
detection. Amino acids were derivatized with o-phthalaldehyde
(OPA) before automated injection into the HPLC column (methods
essentially similar to Murphy and Maidment (1999)) and resolved
using a gradient on a reverse-phase column with sodium acetate
(35 mM, pH 5.9 adjusted using glacial acetic acid), 1% tetrahy-
drofuran, as aqueous solvent. The organic mobile phase consisted
of 70% acetonitrile, 15% methanol, and 35 mM sodium acetate (pH
7.65, adjusted using glacial acetic acid). The flow rate was 0.6 ml/
min. Data were collected and analysed by Ezchrom Elite software
(Scientific Software, Lincolnwood, IL, USA). All analysis informa-
tion, including the retention times, peak heights, concentrations,
and recovery rate of internal standards, were calculated by
comparison to standard curves generated for known concentrations
of external standards that were run daily. Turnover rates were
calculated as follows: dopamine (DA) turnover rate¼ [3,4-dihy-
droxyphenylacetic acid (DOPAC)]þ [homovanillic acid (HVA)]/
[DA]; serotonin (5-HT) turnover rate¼ [5-hydroxyindoleacetic acid
(5-HIAA)]/[5-HT].

Measurement of calcineurin activity
Calcineurin activity was measured by using the synthetic phos-
phorylated RII peptide using a calcineurin assay kit (Biomol,
Plymouth Meeting, PA, USA) following the manufacturer’s instruc-
tions.

Statistical analysis
All data are expressed as mean±s.e.m values. Statistical analysis
was done using Student’s t-test, paired t-test, and one-way ANOVA.
Differences with Po0.05 were considered as significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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