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Abstract 

 

Three critical features of RNA make it a unique challenge for drug discovery: a) it is 

highly negatively charged, increasing non-specific binding and b) it can be highly 

dynamic, adopting different conformations upon binding varying ligands, c) it has solvent 

exposed shallow binding pockets. All these properties represent distinct problems in the 

advancement of RNA-drug discovery. To address this first problem, MATCH was 

developed to rapidly, accurately, and universally parameterizes small molecules for 

docking. MATCH accomplishes this by deconstructing a force field into a set of 

fundamental rules which best replicates existing parameters and permits extension to new 

molecules, yielding near instantaneous parameterization of novel molecules. Using a set 

of 400 small molecules, the MATCH algorithm was rigorously validated by computing 

their hydration free energies. This benchmark also discovered specific chemical groups 

that require additional refinement in the underlying small molecule force field. MATCH is 

not only necessary to study RNA-ligand interactions en masse but will also contribute to 

understanding the charge-charge consequences of ligand binding.  

 

To address RNA flexibility, a method to combine NMR chemical shifts and Molecular 

Dynamics (MD) was developed to generate ensembles representing the dynamic 

landscape of RNA targets. NMR chemical shifts are simple to measure and contain a 

wealth of structural information. To benchmark this technique, a set of 26 RNA structures 

with internal bulges and experimentally determined chemical shift was selected. For each 

system reproduction of chemical shifts was used to select an ensemble of conformations 

from a pool of MD generated structures. Each produced ensemble was consistent with 

conformations determined by traditional NMR structural restraints of NOE and RDCs. To 

demonstrate the utility of this method a large pool of structures (~350,000) was used to 

generate an ensemble that best agreed with the experimental chemical shifts for a 

prominent RNA target – the ribosomal decoding site. The conformations within this 



xiv 

ensemble were found on favorable areas of the free energy landscape, independently 

indicating the validity of these structures. In addition, the selected conformations were 

similar to many experimentally solved structures.  

 

Finally to address the solvent exposed binding pocket of RNA and its flexible ligands, a 

new docking approach for RNA was developed, which performs an enhanced sampling 

technique by fragmenting the ligand and independently optimizing the conformation of 

each fragment. To properly benchmark this novel algorithm, a large set of 230 nucleic 

acid-ligand complexes was compiled. Compared to previous sets this one has 89 

complexes with experimental binding affinities, which is 50% more then previous sets 

with at most 60 complexes. Utilizing this large set of this enhanced sampling technique 

was compared to ICM – a leading docking program. ICM produced native-like 

conformations 45% of the time, while our approach yields native-like conformations 55% 

of the time. Demonstrating the effectiveness of this novel sampling procedure.  
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CHAPTER 1 

Introduction 

 

1.1 RNA as a Therapeutic Target 

1.1.1 The Role of RNA in Cellular Function 

For most of the past century RNA was largely viewed a simple carrier of information 

between stable DNA and functional proteins.  The past couple of decades have revealed a 

paradigm shift in the importance and function of RNA since the discovery of catalytic 

and functional RNA(1,2). Although only 2-3% of RNA is translated into protein up to 

96% is transcribed into so called non-coding RNAs (ncRNAs) (3-5). Like their protein 

counterparts, RNA is capable of folding into complex tertiary structures to perform a 

variety of functions. It is now understood that ncRNAs carry out a wide range of roles 

such as protein synthesis(6-8), self-splicing intron removal(1,9-12), pre-mRNA 

splicing(13-15) and telomere maintenance(16,17), illustrating the breadth of RNA 

functions beyond the original singular role of messenger initially given to RNA. Given 

the ubiquity and importance of RNA in cellular function, research in drug design and 

discovery has begun to consider RNA a possible drug target. 

1.1.2 RNA Targeted Therapies  

Identifying small molecules which will inhibit disease-state enzymes has long been a 

problem in traditional drug design: a study by the FDA on approved small molecule 

drugs found only 207 proteins, 50% of which are G-protein coupled receptors(18-24). 

Although this may be an underestimate of the possible total percentage of the proteome 

that is be druggable, the numbers are striking especially given that there are over 1500 

proteins currently known to be directly linked to genetic disease and hundreds of 

thousands of proteins are translated in human cells(24). There are two common ways that 
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a protein may be considered ‘undruggable’. First, it can be part of a large family of 

proteins with very similar substrates and binding pockets. A classic case of this is 

kinases, which are involved in many cancers: only recently has there been any success in 

targeting them(25). Second, many proteins perform their function by binding to other 

proteins, lacking catalytic function. Developing inhibitors to prevent two proteins from 

binding at the protein-protein interface by small molecules has not yet been shown to be 

feasible(26). New avenues need to be developed to treat the wide variety of diseases with 

known biological mechanisms yet contain ‘undruggable’ protein targets. One such 

avenue is the use of potential RNA targets. 

 

Drugs have already developed which target RNA, the most established of which targets 

the ribosomal decoding site (A-site), which is located on the 30S ribosome and is 

responsible for correctly matching a cognate tRNA to the current mRNA codon in the 

acceptor site(6-8,27). Many FDA-approved antibiotics bind to the A-site, disrupting the 

translational fidelity and resulting in the incorporation of incorrect amino acid residues 

and subsequent cell death(28,29). In addition A-site has served as a paradigm for 

developing novel RNA inhibitors and has possibly the largest number of known binders 

out of any RNA(30-41). In addition to A-site, antiviral therapies have been in 

development to treat HIV-1 by targeting the transactivation response (TAR) element 

(42,43), which permits transcription of the HIV-1 genome. Additional HIV-1 RNA 

targets are the rev response element (RRE)(44), which is the recognition site for the Rev 

protein responsible for transporting the HIV genome to the cytoplasm of the cell, and the 

dimerization initiation site (DIS)(45-47), which is the key recognition site for HIV 

genome dimerization prior to viral maturation. 

1.1.3 Structural Basis of RNA-ligand interactions  

Unlike proteins, RNA has a high degree of flexibility, adopting radically different states 

upon binding proteins or ligands. Some of these changes are quite drastic: for example 

HIV-1 TAR adopts different conformations depending on the small molecule it is bound 

to. Its interhelical bend can change from 5º to 47º: a massive helix orientation 

change(Figure 1.1) (48-53). A-site consists of a S2S1 bulge with two adenines (A1492 

and A1493) on one strand and A1408 on the other. The free state is thought to have either 
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one or both A1492 and A1493 in a flipped in conformation but upon binding of 

aminoglyocides such as paromomycin, both adenines flip out with paromomycin 

occupying the space previously by A1492 and A1493(29,54-60).  

Two possible mechanisms can describe a binding event: induced fit or conformational 

capture. Induced fit occurs when a conformational change takes place in a receptor on 

coming into contact with a ligand, allowing the ligand to bind to the modified receptor. In 

contrast, conformational capture occurs when the receptor samples a wide number of 

states and the ligand can bind to one or a subsection of the total number of states. Induced 

fit and conformational capture mechanisms are not mutually exclusive: each binding 

event may have some aspects of induced fit and some of conformational capture. It is 

critical for drug design development to try and understand which type of binding event is 

dominant to tailor drugs to a given system. For example if the mechanism is believed to 

be induced fit then when performing computational docking it would be beneficial to use 

one conformation of the receptor and then allow flexibility in the receptor to find ligands 

 
Figure 1.1: TAR structures vary significantly in RNA conformation (inter-helical bend angle ranges 
from 5º to 47º). The large structural rearrangements observed for TAR are likely governed by a 
conformational selection mechanism(61).  
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that bind the receptor. On the other hand, if the mechanism were conformational capture 

then docking against an ensemble of rigid structures would be favorable. There is great 

interest in identifying whether RNA-small molecule binding is primarily induced fit or 

conformational capture. In the most well-studied systems: Asite, HIV-1 TAR, and HIV-1 

RRE, it is thought that the mechanism is primarily conformational capture(30,62-65).  

 

For HIV-1 TAR, recent work performed by Al-Hashimi and colleagues have further 

verified that RNA has a conformational capture ligand binding mechanism. Using a 

combination of NMR and MD, the authors generated a dynamic ensemble of structures 

for HIV-1 TAR and docked a small molecule library against it(66-68). Multiple binders 

were identified which later were confirmed using florescence, NMR titrations and in vivo 

inhibition of live HIV-1 viral replication (68). The general method for generating these 

dynamic ensembles using a combination of NMR data and MD simulations will be 

discussed in detail in section (1.4.1).  

1.1.4 RNA-Small Molecule Interactions 

RNA like proteins can fold into complex tertiary structures, which contain features that 

allow them to be targeted with small molecules. Common features of RNA tertiary 

structure is double helices, bulges, internal loops, and junctions that can generate 

accessible binding pockets where it is possible to form interactions with other RNAs(69), 

proteins(70) and small molecules(71). Many RNA-binding small molecules contain 

elements of nucleobases themselves, with pyrimidine- and purine-like rings and sugars. 

Because of the likeness to nucleic acids, binding interactions share many of the traits of 

RNA tertiary structure. There are three interactions that are thought to play a key role in 

the binding of small molecules to RNA: hydrogen bonds, electrostatics and ring 

stacking(72,73) (Figure 1.2). 

 

Hydrogen Bonding of Ligands to RNA 
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Hydrogen bonds can be formed on either face of the nucelobase or with the phosphate 

backbone. For nucleobase hydrogen bonding, riboswitches employ Watson-Crick and 

non-canonical base pairing interactions to produce extremely high affinity with their 

respective ligands. It is typical for a riboswitch ligand to have every hydrogen bond 

donor and acceptor occupied with a hydrogen bond with the riboswitch(74-76). For 

example the C74U mutation of the guanine riboswitch binds 2,6-diaminopurine with 

extremely high affinity (-9 kcal/mol binding energy)(76,77). Upon binding, eight out the 

nine hydrogen bond donors and acceptors are occupied in hydrogen bonds with the 

riboswitch. On the other hand a U47C mutation allows the binding of hypoxanthine, 

which has five out of its six hydrogen bonds occupied which is 3 less than 2,6-

diaminopurine with a much weaker affinity (-6 kcal/mol)(78). Lastly, benzimidazole 

 
Figure 1.2: Examples of the different interactions between RNA and small molecules. Top-

left, stacking or π-π interactions in the TPP riboswitch. Top-right and Bottom left, electrostatic 

charge-charge interactions in both decoding site and the lysine riboswitch. Bottom-right, 

hydrogen bonding in the preQ1 riboswitch(72).  



 6 

cannot bind to the C74U mutation at all as it only forms two hydrogen bonds with the 

riboswitch and lacks specificity(76). This demonstrates that binding is highly dependent 

on the number of hydrogen bonds generated between the ligand and receptor.  

 

Electrostatic Interactions in RNA-Ligand Binding 

Due the large negative charge present the RNA phosphate backbone, RNA ligands tend 

to have an abundance of positive charge, thus electrostatic interactions play a critical role 

in small molecule-RNA binding. Aminoglycosides, which are sugars covered in NH3 

groups tend to form a large number of charge-charge interactions with the RNA 

backbone phosphates and surrounding water molecules(58,79-81). In addition, like in 

proteins that are ATP dependent, the TPP riboswitch uses Mg2+ ions to coordinate 

binding(82). Furthermore, as Mg2+ ion binding sites are common in RNA, it has been 

demonstrated that some aminoglycosides compete for Mg2+ binding sites(83-85).  

 

Ring Stacking in Ligand-RNA Binding 

Stacking or π-π interactions play a critical role in the stability of RNA and DNA 

helices(86-89). Because of the abundance of aromatic groups in nucleic acids, strong 

small molecule binding often forms stacking interactions with unpaired residues or a full 

base pair. This is extremely common in riboswitches. All the classes of the SAM 

riboswitches employ a pocket where the adenine base can perfectly stack with two other 

bases riboswitches(90-92). There is also significant π-π stacking of acetylpromazine 

upon binding to TAR with anthracene-like stacking with the U25, G26 and U40 in the 

S3S0 bulge of its binding pocket(50).  

1.1.5 Prokaryotic Ribosomal Decoding Site 

The ribosomal decoding site, located in the 16S rRNA of the 30S subunit, maintains 

translational fidelity by ensuring that the correct aminoacyl-tRNA anticodon base pairs to 

its associated mRNA codon. Residues A1492 and A493 which are universally conserved, 

enable the decoding site to recognize canonical pairing with cognate tRNA by coming in 

close contact with the first two anticodon-codon base pairs, determining the overall shape 

of the minor groove in addition to the pattern of hydrogen bond acceptors. During the 

process of proofreading both adenosines, located in an asymmetric internal loop, flip out 
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and remain so if contacts to the mRNA-tRNA minihelix are properly formed indicating 

correct base pairing(7,93,94). In the presence of the antibiotics such as paromomycin 

A1492 and A1493 adopt a stable flipped out state, significantly reducing the energetic 

cost of forming contacts with the anticodon-codon complex leading to recognition of 

mismatched tRNA-codon pairs, and high mutation rates during translation(27,54)(Figure 

1.3). The prokaryotic ribosomal decoding site is an ideal model system to study RNA-

ligand interactions. In addition to the large number of both structural information from 

NMR and X-ray crystallography of both the free and bound states, the prokaryotic 

ribomal decoding site is the only RNA target that has FDA approved drugs targeting it. 

 

 Although the bound pose of inhibitors to decoding site has been thoroughly studied and 

there is consensus that both A1492 and A1493 are flipped out, it is less clear what the 

ground state of the free state is. There are multiple structures available with conflicting 

conformations: the NMR structure 1A3M has both A1492 and A1493 flipped in, with 

A1493 forming hydrogen bonds with A1408. The three X-ray constructs contain a very 

diverse set of conformations: 3BNL has A1492 base paired to A1408 and A1493 flipped 

in, 1TOE has A1493 base paired to A1408 and A1492 flipped out, and lastly 3LOA has 

A1493 based paired to A1408 and A1492 flipped out. Likewise, conformations found in 

 
Figure 1.3: Left panel: The proposed mechanism for decoding site. Right panel, upon drug binding 

decoding mechanism no longer functions properly do to A1492 and A1493 force into the solvent. 
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the ribosome also differ but generally follow a trend of both A1492 and A1493 flipped in 

with different hydrogen bond patterns with A1408. While nearly all structures have both 

A1492 and A1493 in an anti conformation, 3ZVO places A1493 in a syn conformation. 

In addition biophysical studies show that in the free state, A1492 is looped inside, likely 

base-pairing with A1408, while A1493 is partially flipped out and flexible(95).  

Additional work is required to examine which of these states is the dominant state in 

solution if any. It is possible that some of these structures are artifacts of either crystal 

packing or lack of density. Investigation of the dominant state of the ribosomal decoding 

site will be performed in Chapter 4 using a combination of NMR data and MD 

simulations. 

1.2 Methods of Discovering RNA-Ligand Binding  

The most common techniques for discovering small molecules that bind to proteins use 

high throughput screening methods, which typically rely on biomolecule enzymatic 

activity. However, most RNAs that are interesting as drug targets are not enzymatically 

active(96-99). Other methods such as monitoring 2-aminopurine fluorescence can be 

used, which, when solvent exposed or not forming a stacking interaction, greatly 

increases its fluorescent properties. Strategies using 2-aminopurine will commonly 

substitute 2-aminopurine for a single stranded residue and, upon binding of a small 

molecule, if the nucleotide is extruded, a sharp increase in fluorescence should be 

observed(95,100-103). In addition, it is also possible to attach fluorescein or pyrene to the 

2’ position of the ribose sugar(104-108).  So far few studies have utilized high-

throughput screening technology for indentifying novel small molecule RNA binders. 

The only reported high-throughput screens have focused on well-characterized RNA 

targets such as TAR(109,110) and A-site(111,112) with rather limited numbers of 

molecules tested. 

 

In contrast to experimental high-throughput screens, computational docking provides a 

means to rapidly screen millions of small molecules against RNA targets. The major 

constraint for computational docking is the use of 3D structures of the RNA target, which 

can greatly limit which RNAs can be targeted. Docking a potential small molecule drug 

into the binding pocket of a RNA target is effectively two separate steps. The first step is 
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sampling both the different possible binding location on the RNA and the internal 

degrees of freedom of the small molecule. There are multiple methods to accomplishing 

this step, including Monte Carlo(113-115), Genetic Algorithms(116-118) and fragment 

based approaches(119,120). The second step is scoring, or approximation of binding 

affinity between the small molecule and receptor. There are many approaches to this: 

either a) force field-based using a molecule mechanics energy function(119,121), b) 

empirically-based using a system of equations to approximate proper binding(122,123), 

or c) knowledge-based, building a set of parameters from training on known complexes 

that can be applied to new systems(124,125). Generally determining intermolecular 

interactions such as hydrogen bonding, electrostatic interactions, Van der Waals contacts, 

and solvent effects are used, in addition to small molecule properties.  

 

Computational docking has yielded quite a few successes in protein-ligand drug 

discovery(126,127). There has been notable drug leads discovered for a host of different 

targets such as DNA gyrase(128), tyrosine phosphatase(129), dihydrodipicolinate 

reductase(130) and HIV-1 integrase(131,132). In the docking studies for HIV-1 integrase, 

the lead compounds discovered led to the development of FDA approved drug Isentress. 

Jorgensen and colleagues, in addition to discovering novel inhibitors to HIV-1 reverse 

transcriptase using computational docking, were able to iteratively refine them into sub-

nanomolar affinity using free energy perturbation calculations(133-136). Computational 

docking in combination with large virtual libraries(137) have radically altered how drug 

design is performed for generating novel protein-small molecule inhibitors. 

 

Compared to the success of computational docking for proteins, RNA has had much less 

success(138). There are two general approaches to designing RNA docking programs, 

first is to take existing docking software for proteins and modulate its scoring function to 

better target RNA. Programs such as Autodock(113), ICM(115), GOLD(121), Glide(139-

141), DOCK 6.0(142) and Surflex-dock(143) have been benchmarked and found to be 

able to place ligand generally in native-like conformation ranging from 35% of the time 

to 75%. (144-146). In addition, there are newer programs that are built solely for RNA 

such as Ribodock(147) and MORDOR(148). For all of these programs, the benchmarking 
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complex sets are usually less than 60 complexes, which is very small compared to the 

excellent protein-ligand sets out there such as Database (LPDB)(149), Mother of all 

Databases (MOAD)(150) or The Community Structure−Activity Resource (CSAR)(151-

153) which can have over 200 high quality complexes. Generally as a whole the 

validation and success rates for RNA-ligand interactions are inferior to those found for 

proteins, of which is due to the insufficient amount of experimental data available. 

Regardless, there have still been some successes by computational docking. Howes and 

colleagues docked over one million compounds to the ribosomal A-site using Ribodock 

and found 34 compounds that bound, confirmed using FRET and some validated using 

NMR(154). James and colleagues, using the program DOCK and ICM, screened HIV-1 

TAR against 181,000 small molecules where they identified acetylpromazine that binds 

TAR with a Kd

 

of 270 µM and inhibits TAR-Tat mediated HIV transcription in-vitro(97). 

In addition MORDOR was used to screen 5750 small molecules against the human 

telomerase RNA and determined 48 compounds that bound, confirming binding using 

saturation transfer NMR experiments(155). 

 

Although there has been some success using computational docking to determine novel 

RNA binders, there is much room for improvement. To successfully model RNA-ligand 

binding it is necessary to properly account for the uniqueness of RNA compared to 

proteins. First, RNA has a high degree of flexibility, adopting radically different states on 

protein or ligand binding and, as such, it is unreasonable to represent an RNA drug target 

as a single structure in computational drug discovery. Second, RNA has shallow and 

solvent-exposed binding pockets where potential ligands can bind. Third, RNA ligands 

tend to be flexible themselves, sometimes with greater than ten rotatable 

bonds(73,142,147). The high degree of flexibility of both the RNA and their ligands, in 

addition to the shallow binding pockets makes it very difficult to find global minimum 

energy poses(73). Dealing with the high degree of flexibility in RNA is investigated in 

Chapter 4 while both the shallow binding and flexibility of the small molecules are dealt 

with in Chapter 5. 
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1.3 Nuclear Magnetic Resonance 

1.3.1 NMR Chemical Shifts 

Chemical shifts are sensitive to a wide variety of structural and electronic properties of 

biopolymers. The chemical shift-structure relationship has been well described in 

proteins and is routinely used to determine secondary as well as tertiary structure(156-

159). Recent advances in the prediction of chemical shifts based on large databases of 

protein structures have permitted the determination of full 3D structures utilizing 

exclusively chemical shifts as an experimental restraint(160,161). For nucleic acids, this 

relationship is still in the early stages of development, with 1H chemical shifts used to 

predict secondary and tertiary RNA structure. Due to the inherent nature of nucleic acids, 

proton chemical shifts are largely affected by ring current and magnetic anisotropy 

effects(162,163). These effects have been implemented in programs such as 

SHIFTS(164) and NUCHEMICS(165). These programs have been shown to discriminate 

between native and non-native structures(166,167). Additionally, Summers and 

colleagues found that 1H chemical shifts were able to discriminate between different 

base-pair triplets, non-canonical base-pairs and terminal base pairs(167). This work has 

demonstrated that it is possible to use NMR chemical shifts to inform tertiary RNA 

structure and this will be explored further in Chapter 4. 

1.3.2 NMR Residual Dipolar Couplings  

Theory 

A dipolar coupling occurs between two permanent dipoles, where the local magnetic field 

of one nucleus perturbs the magnetic field of a neighboring nucleus. Considering a 

carbon and hydrogen bond, the dipolar interaction between the carbon and hydrogen 

modulates the effective magnetic field at the carbon nucleus. The effective magnetic field 

experienced by the carbon nucleus is a summation of the static external magnetic field 

and the much smaller magnetic field generated by the hydrogen nuclei it is bound to. 

Because the hydrogen can be either parallel or anti-parallel to the magnetic field, the 

proton-induced magnetic field experienced by the carbon nucleus varies with the 

orientation relative to the static external magnetic field. This is due either to internal 
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dynamics or overall molecular tumbling, and the average strength over all the molecules 

in a NMR. 

 

           (1.1) 

 

Equation 1.1 describes the magnitude of a dipolar coupling between nuclei i and j, where 

µ0 is the magnetic permittivity of a 

vacuum, h is Planck’s constant, 

rij(168-170) is the distance 

between the two nuclei, and γ is 

the gyromagnetic ratio. The 

angular brackets denote a time 

average over all angles sampled by 

the inter-nuclear bond vector.  

 

Given that the sample behaves 

isotropically, random molecule 

tumbling will reduce the angular 

term to zero. Thus, dipolar 

couplings cannot be observed 

under normal solution conditions. However, if an alignment media is introduced, 

permitting the molecule to be partially aligned to the magnetic field, the angular value 

will no longer result in an average of zero, and the carbon nucleus will experience a net 

magnetic field from the hydrogen it is bonded to in addition to the external magnetic 

field(172). As a result, the carbon resonance frequency will be split, one adding to the 

external magnetic field and one subtracting from it. The magnitude of the split is the 

‘residual dipolar coupling’ (RDC)(173,174).  The splitting in peaks generated through 

dipolar coupling (D) and bond scalar couplings (J) both effectively increase or decrease 

the magnetic field. By subtracting the J component the dipolar coupling term can be 

measured. Although RDCs do not provide information about motional timescales beyond 
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Figure 1.4: Description of RDCs. A) Changes in 
orientation alter the local magnetic field. B) The 
orientation of the internuclear bond vector relative to the 
external magnetic field. C) RDCs are calculated by 
measuring the splitting in peaks (black resonances) 
observed upon partial alignment (green resonances) (171). 
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being within the sub-millisecond regime, they are exquisitely sensitive to the 

orientational distribution sampled by the bond vector and, therefore, the 3D choreography 

of the motion(175-177)(Figure 1.4C). 

 

Alignment Methods 

The magnitude of RDCs depends on the degree of alignment achieved in solution, 

accomplished by dissolving an alignment media into the NMR sample. A specific level of 

alignment must be achieved in order to detect the RDC: alignment levels of less then 1 in 

105 molecules is insufficient to accurately measure compared to NMR linewidths. 

Conversely, it is possible to have too much alignment: alignment levels where 1 in 100 

molecules are aligned give rise to extensive dipolar couplings, compromising the spectral 

resolution required for large molecule. The ideal amount of alignment typically occurs 

when 1 in 1000 molecules is completely aligned(172,178). Many alignment medias are 

commercially available that can be used to align nucleic acids. Since nucleic acids are 

highly negatively charged, it is beneficial for the alignment media to take advantage of 

this property. In addition nucleic acids also require high ionic strength conditions to 

remain stable. The most common ordering medium that can satisfy both of these 

constraints is filamentous Pf1 bacteriophage, which is negatively charged thus allowing 

alignment via electrostatics and sterics(179-181). The typical concentration of phage used 

to align an NMR sample is typically 10-20 mg/mL but can vary based on the shape and 

length of the target nucleic acid.  

1.4 Combining NMR and Computational Methods to Identify RNA Therapeutics 

1.4.1 RNA Dynamic Ensembles for Computational Docking 

RNA is inherently flexible, and can adopt radically different conformations upon binding 

of proteins or small molecules. For drug discovery protocols RNA’s dynamic nature can 

be modeled by generating an ensemble of structures to represent highly populated states. 

For HIV-1 TAR(Figure 1.5) this has shown to be useful in both modeling the bound state 

RNA but also discovering new inhibitors(66,67). These dynamic ensembles can be 

generated by measuring experimental observables with NMR and then using a pool of 

conformations produced by MD to back-predict the observables. This approach has been 
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successful because NMR and MD are complementary on both spatial and temporal 

scales, which can overcome the shortcomings of either. MD can fill in the shortage of 

structural information from NMR data and NMR can provide validation for the MD 

conformations. There have been several studies that have used both NMR and MD in the 

study of protein dynamics(182-185) with great success. Recently, there has also been an 

effort to apply a similar technique to RNA; however, RNA is more challenging due to the 

tendency of RNA dynamics to couple overall tumbling and the internal motions. 

Nevertheless there has been some success combining RNA and MD for the study of 

nucleic acid dynamics(66,186-190).  

 

The basic premise of the algorithm now known as sample and select (SAS) is to generate 

a set of conformations for an RNA of interest by running an extended MD simulation. To 

initiate the SAS selection, an N-membered subset of structures is randomly selected from 

a total pool of M structures. One then searches to increase the agreement of the N-

membered subset of structures with the NMR observable data. This is done using 

simulated annealing stages following the Metropolis criteria for acceptance of new 

subsets. 

1.4.2 Automated Ligand Parameterization  

A key feature for performing large-scale computational docking screens is the 

parameterization of small molecules. Unlike proteins or nucleic acids, which are 

biopolymers composed of a set number of amino acids or nucleic acids with set atomic 

 
Figure 1.5: The dynamic ensemble generated for HIV-1 TAR using a combination of NMR and MD 

and was used to dock against (66). 
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parameters and charges, each small molecule needs to be independently parameterized. 

For this reason many docking protocols have adopted parameterization schemes built on 

organic molecule force fields that were optimized independently of the biomolecular 

force fields. Each force field has adopted a different strategy to optimize the bonded and 

nonbonded parameters and attempted to reproduce experimental data or quantum 

mechanical properties of model compounds. Therefore, it is unlikely that the combination 

of a particular biomolecular force field with an arbitrary ligand force field to yield 

properly balanced intermolecular interactions(191). Rather, it is crucial that the small 

molecule parameters follow a parameterization similar scheme to that which was used to 

develop the biomolecular force field. Methods for deconstructing a force field into a set 

of fundamental rules which best replicates existing parameters and permits extension to 

new molecules yielding near instantaneous parameterization of novel molecules will be 

discussed in Chapter 2. In addition, extensive validation of this method and how it 

compares to other procedures will be examined in Chapter 3. 
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CHAPTER 2 

MATCH: An Atom-Typing Toolset for Molecular Mechanics Force Fields 

 

2.1 Introduction 

The increasing availability of computing resources is reshaping the researcher’s approach 

in the utilization of molecular simulations for the modeling of proteins, nucleic acids, 

their ligands and inhibitors. It is now feasible, with the growth of large libraries of drug-

like compounds, to investigate receptor-ligand binding poses and other properties using 

molecular mechanics force fields in a high throughput manner(1). A significant barrier in 

this process, however, is the accurate generation of explicit inter- and intra-molecular 

parameters for novel potential drugs that are consistent with the biomolecular force field 

utilized in modeling the other components of the system(2, 3). Modern force fields such 

as CHARMM(4, 5), AMBER(6, 7) and OPLS(8) rely on empirical parameters and have 

been developed to yield accurate modeling of conformational changes and non-covalent 

interaction energies for protein and nucleic acids(9, 10). However, these force fields do 

not contain all the required parameters to represent drug-like molecules for studying 

receptor-ligand interactions.  

 

Developers of the biomolecular force fields have adopted different strategies to optimize 

the bonded and nonbonded parameters and attempt to reproduce experimental data or 

quantum mechanical properties of model compounds. Therefore, it is unlikely that the 

combination of a particular biomolecular force field with an arbitrary ligand force field 

would yield properly balanced intermolecular interactions. Rather, it is crucial that the 

small molecule parameters follow a similar parameterization scheme to that which was 

used to develop the biomolecular force field(11). The most straightforward parameters 

that can be generalized to novel compounds are those associated with the intra-molecular 

energy terms (e.g. equilibrium values and force constants for bond lengths and angles as 
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well as optimal torsion angles and the respective barrier heights). Similarly, van der 

Waals parameters, the atomic radii ri and energy well-depth εi, are often successfully 

transferred among analogous atom types(12). While small changes in these parameters 

might significantly impact the energy, they are not particularly sensitive to the bonded 

environment of the molecule. In contrast, the partial charges that are associated with each 

atom are the primary components in the electrostatic energy terms and are significantly 

challenging to transfer from one molecule to another due to their dependence on both 

bonded and nonbonded chemical environment.  

 

Two main strategies have been suggested for generating partial charge assignments that 

are compatible with current biomolecular force fields. In one fixed-charge strategy, 

charges are adopted for an entire molecule, often based on ab initio calculations or 

parameterized methods that mimic these charge distributions. A restrained electrostatic 

potential (RESP) charge fitting procedure is advised for assigning partial charges to novel 

ligands in a manner that is consistent with the Generalized AMBER force field 

(GAFF)(3). Antechamber(13), an auxiliary program in the AMBER molecular modeling 

suite of programs that uses coordinate and connectivity information to assign atom and 

bond types for ligands based on atom and bond type definition tables, can generate 

charges using RESP, AM1 Mulliken, AM1-BCC, CM2 or Gasteiger charge methods.  

 

In an alternative other fixed-charge strategy, used by the CHARMM and OPLS family of 

force fields, charge distributions of a molecule are built-up from charges assigned to the 

component fragments of the molecule. Halgren(14), in developing the MMFF94 force 

field, proposed bond charge increment “rules” in which optimal charges are determined 

for fragments of molecules and these fragments are then pieced together to construct 

charge distributions for novel compounds. Several programs exist to assign atom types 

and atomic partial charges based on the bonded environment of the atom. These 

automated assignment programs convert a three-dimensional structure file into a 

representation of the bonded environment, such as a connectivity table of atoms and 

bonds. Patterns within this connectivity table are identified as fragments for which atom-

types and partial charges are associated. These programs differ in how the bonded 
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environment is determined, how the specific "rules" are defined for matching the 

fragments in the new molecule with those of "known" fragments, and how the partial 

charges are distributed throughout the molecule. For example, the molecular modeling 

package IMPACT(15) accepts a PDB file format and automatically assigns atom types 

and parameters for a wide range of organic molecules that are consistent with the 

OPLS_2003 force field. For the entire molecule, the partial atomic charges are assigned 

by distributing any formal ionic charges over one or more atoms and then adding 

contributions from the bond charge increment (BCI) parameters associated with the 

chemical bonds. PRODRG(16, 17), through its web interface, generates molecular 

topologies from a coordinate file and assigns partial charge distributions from a 

molecule’s constitutive fragments for use with the GROMOS force field(18). 

 

Recent developments in the CHARMM community have led to the generation of small 

molecule parameters in a novel force field denoted CHARMM General Force Field 

(CGENFF). Although a notable step in the right direction, the chemical space covered by 

the ~400 molecules in CGENFF is limited and still requires manual efforts to extend it to 

new molecules. Our preliminary goal with this work was to develop a publicly available 

solution for generating parameters for novel molecules that are consistent with the 

CHARMM parameterization scheme. We were interested not only in creating a way to 

process molecules en masse within CHARMM, but also to develop a tool to investigate 

the merits of different types of parameterization choices and strategies. We developed a 

general approach that extracts rules for both charging and parameterization based on a 

library of topology and parameter files for an existing biomolecular force field. This 

scheme then allows for the fragments comprising existing parameters to be applied or 

extrapolated to novel molecules in a fashion consistent with the parameterization strategy 

or philosophy within a given biomolecular force field. We have focused our efforts on 

CHARMM; however, this approach and the MATCH toolset that we have developed can 

be used to extract rules for charging and parameterization based on any biomolecular 

force field. 
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A fundamental feature of the MATCH algorithm is the representation of molecular 

structures as mathematical graphs. Chemoinformatics has benefited greatly from the 

representation of chemical structure as graphs, such as in ring identification and 

characterizing chemical connectivity(19). In particular, structure and substructure 

searching of chemical databases, such as those performed on inventory or patent 

databases, automated retrosynthetic analyses, property prediction, quantitative structure-

activity/toxicity/property relationship analyses, visualization, and similarity/diversity 

analyses are applications with chemical pattern recognition solutions(20-23)The unique 

chemical environment defining an atom type can also be depicted in graph form, enabling 

a chemical characteristic comparison between a library of known atom type definitions 

and atoms in a novel compound. Furthermore, additional operations are vastly simplified 

while functioning within a graph reference frame, including: quantification of the 

similarity of chemical environment between atom types within a given force field, atomic 

ring identification, and identification of atoms requiring improper angles to enforce 

accurate geometry. Much of the next section will be devoted to discussing the 

implementation of mathematical graphs within MATCH. 

 

At present, we will demonstrate the utility of MATCH and discuss the primary 

components comprising the software package. MATCH supports every force field 

currently implemented in CHARMM36 (i.e., force fields specific for proteins, nucleic 

acids, lipids, carbohydrates, ethers and model small molecules). Here, we demonstrate 

two primary functions of the MATCH toolset. First, we show how MATCH is used to 

extract fragment-based atom types and associated bond charge increment rules. More 

specifically, we discuss how MATCH constructs libraries that contain definitions for the 

chemical environments described by the force field topology files for a given force field 

as well as the schemes for assigning partial charges to these atom type definitions. 

Second, we show how MATCH is used to generate force-field specific MATCH libraries. 

These libraries are shown to be self-consistent with existing CHARMM force fields by 

their ability to reproduce atomic charges contained in the force field that was used to 

infer the rules. In addition, the viability of parameter substitution to determine missing 

parameters and thereby enabling complete parameterization will be demonstrated through 
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a leave-one-out substitution study. Our benchmark for the transferability of rules learned 

from a force field will be the charging and parameterization of the molecules in other 

existing force fields. We then directly compare computed values to existing ones and 

measure how well the results are correlated. This exhaustive exercise, using each existing 

CHARMM force field to charge and parameterize the other, demonstrates the ability of 

the methods implemented in MATCH in generalizing a force field representation. 

Finally, the parameterization of one million small molecules from the PubChem 

database(24) with the implementation of the CGENFF-based libraries within MATCH 

illustrates the scope and potential of MATCH in real world usage.  

2.2 MATCH Strategies and Components  

MATCH is a suite of tools that has been developed for constructing molecular fragment-

based libraries and BCI rules to be utilized for 

the extension of a given biomolecular force 

field. There are two distinct applications of the 

MATCH toolkit: i) the utilization of atom-type 

molecular fragment and BCI rule libraries in 

the charging and parameterization of novel 

molecules and ii) the tools required to assemble 

these libraries as well as the generation of rules 

to allow substitution of parameters to assist in 

the parameterization of new molecules. The 

procedure in which MATCH extends a force 

field to a novel molecule is displayed in Figure 

2.1. Development of the MATCH libraries of 

fragments for atom typing and bond increment 

rules are illustrated in Figures 2.2 and 2.3 

respectively. Here, we explore the ability of 

MATCH, with some expert intervention, to 

effectively construct force field specific 

MATCH libraries, which is to “learn” atom 

type definitions and bond charge increment rules from multiple CHARMM force fields. 

 
Figure 2.1. Overview of the MATCH algorithm. 
All major algorithm components discussed in 
the paper appear in bold. 
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We also investigate the ability of MATCH to use these libraries and the substitution rules 

to parameterize molecules in different force fields. 

2.2.1 Molecular graphs 

Molecular graphs are assembled using the supplied connectivity information (CONECT 

lines in a PDB file, a CHARMM RTF file, a bond list for MOL2, MOL, and SDF, etc) or 

predicted using the atomic coordinates and 

bonding rules based on atomic radii. As 

described by Downs and coworkers(25) , 

molecular graphs are constructed as 

labeled, directed, connected graphs, where 

each atom is represented by a vertex and 

stores information about itself including 

element, number of bonds, ring 

membership, and pointers to neighboring 

atoms. For small molecules (less then 10 

atoms) a graph represents the entire 

molecule; however, due to the 

computational expense of constructing 

these graphs for larger molecules, a 

limitation was imposed such that atoms 

greater than 10 bonds away are not 

included in the definitions of the chemical 

environment of a given atom. This limitation was arbitrarily set to 10 as a compromise 

between accuracy and efficiency. In fact, the chemical space characterization of all atom 

types in this study does not extend further than 3 to 4 bonds away (see atom type 

declarations in MATCH). The molecular graph is then expanded following a breadth-first 

algorithm(26). Starting from one atom, each atom to which it is bonded in then added to 

the tree; atoms to which they are bonded and are not yet included in the tree are then 

added and so on until all atoms in the molecule are either represented in the tree or 10 

bonds away. The end result is a branched data structure that allows for tree comparisons 

and other operations, which are crucial to the workings of MATCH. The process is 

      
Figure 2.2. Overview of the process of developing 
atom type molecular fragments for a given force 
field, which is the basis of MATCH’s atom typing 
engine. 
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repeated for each atom as the head vertex. While a bond is not normally considered 

directional, an artificial directionality is imposed by this representation and is harnessed 

in algorithms that will be discussed later. For clarity, atoms occurring higher in the depth 

of the tree are considered the parent, while bonded atoms that are added beneath are 

considered to be children. The only exception to this definition is in cyclic compounds, 

where two connected atoms may be positioned such that they are at the same depth. In 

this case the first atom to be traversed is considered to be the parent of the other.  

 

Calculating whether one molecular 

graph is similar enough to another to be 

considered a “match” is a fundamental 

process in atom typing. The procedure to 

do this is straightforward: For two 

graphs to be considered a match, each 

node of the smaller graph (i.e., the atom 

type fragment) must exist within the 

larger graph (i.e., the molecular graph within the new molecule with the current atom 

being the head node) with the same connectivity. The proceduFre is analogous to a 

typical tree data-structure comparison in which the comparison is initiated at the head 

nodes. Confirming a match is a two-step process: first, features such as ring membership, 

aromaticity, etc, of the nodes of the smaller graph must be contained in the nodes of the 

larger graph. Second, the element and number of bonds of each node must be consistent. 

This process continues until the smaller graph has all of its nodes matched or until one 

node is unable to be matched to a node in the other graph. Occasionally, there are two 

possible matches for a node; when this occurs, the children of both potential matches are 

compared to the node’s children in a recursive manner until a difference is identified or 

the graphs are found to be identical.  

2.2.2 Ring Detection 

Identification of ring membership is crucial in the atom typing process of MATCH due to 

the specificity of atom types that are only found in rings. Ring discovery has received 

considerable attention in the literature because of its computational demands(19). Much 

 
Figure 2.3. Overview of the process of extracting the 
bond charge increment rules for a given force field. 
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of the algorithmic development in this area has focused on the identification of subsets of 

rings that have particular meaning in some applications, for example in the analysis of 

synthetic pathways(27). In this situation, exhaustive enumeration of rings is required for 

accurate atom typing due to the fact that atom types are ring specific. The algorithm 

developed here relies heavily on the use of molecular graphs discussed earlier and is 

based on the works described by Tiernan(28) on mathematical graph circuit detection. 

The elements of our ring detection algorithm are as follows: each heavy atom with more 

than one bond is considered in turn unless the atom has already been detected as being 

part of a ring. The ring detection algorithm is a breadth-first search(26) that traverses the 

molecular graph of the atom being considered. During each iteration of the search, each 

current path is extended to new 

heavy atoms, the path that is 

currently the closest in level to the 

starting point will always be 

selected to be followed first (see 

Figure 2.4). Upon reaching the start 

atom with the path containing more 

than two atoms, successful 

termination is reached and all atoms 

that were traversed along the path 

are marked with ring membership. Failed termination is reached when each path covers 

more than 50% of the molecule and is more than 50% away (by depth) from the start, 

making it impossible to successfully return to the starting point.  

 

This algorithm is very fast, requiring only one atom in a ring to be searched. It also 

prevents duplicate identification of rings. While other ring detection algorithms have 

been shown to be more efficient(19), this algorithm was selected because of its reliance 

on molecular graphs. In fact, most of the computational efforts in MATCH are for the 

construction of the molecular graph and the typing, charging and parameterization of 

novel molecules. Therefore, ring detection is not the computational bottleneck of 

 
Figure 2.4. Depiction of the usage of the molecule graphs to 
our advantage in determining rings. 
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MATCH and, thus, the decision to implement this ring detection algorithm does not 

hinder the performance.  

 2.2.3 Molecular Fragment-based Atom Typing 

Converting molecules into mathematical graph form enables the direct comparison of the 

local chemical environment of one atom to another and the quantitative evaluation of the 

similarity between the two structures. Continuing with this ideology, the chemical space 

that defines an atom type can be represented as a molecular fragment. We define a 

molecular fragment as a group of connected atomic nodes that contain the required 

atomic features that describe the chemical space of the atom type (i.e., atomic element, 

number of bonds, ring membership, etc). These molecular fragments have the same 

properties as the graphs that are built for actual molecules and thus can be compared in a 

similar procedure. Adopting this philosophy of representing distinct chemical space as a 

molecular fragment reduces the atom typing process to one of tree comparison, in which 

the largest molecular fragment that completely matches an atom’s molecular graph is 

assigned to that atom. The library of atom type molecular fragments is preserved in super 

smiles string format with similarities to the implementation by Bone et al(29).  

 

In super smiles string notation, each atom is represented by its chemical element plus its 

number of bonds. More specific information is appended to the end of the string. 

Examples of super smiles format are displayed in Table 1. The “!” attribute denotes no 

ring membership whereas the “%” attribute indicates ring membership and is followed by 

the ring size and aromaticity. Connectivity between atoms is denoted by parentheses, 

where atoms within a parenthesis are bound and considered to be children to the one 

outside. The decision to describe atom type molecular fragments in this representation is 

to allow for effortless management of MATCH atom type force field libraries. It is a 

straightforward process to modify or add new atom types to an existing library or to 

create entirely new ones. In this study, we demonstrate how atom types in the CHARMM 

force fields can be represented by molecular fragments. Certainly, this strategy can be 

extended to represent other biomolecular force fields.  
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Smiles String Atoms Matched 

* Any Atom 

C.4 Carbon atoms with 4 bonds 

!N.3 Aliphatic Nitrogens atoms with 3 bonds 

O Any Oxygen atom 

[^C] Not a Carbon atom 

S.2% Sulfur ring atoms with 2 bonds 

C.3%6,6 Carbons atoms with 3 bonds in 2 6 

N.3%6A Nitrogen atoms with 3 bonds in a 6 membered aromatic ring 

C.4%5N Carbon atoms with 4 bonds in a 5 membered non-aromatic ring 

Table 2.1. Examples of the syntax of the super smiles strings used to represent atoms within MATCH 
encoded molecular fragments. 

 

2.2.4 Bond Charge Increment Rules 

Inspection of atomic charges in commonly used force fields suggest that they often 

follow bond charge increment rules(5). Bond increments are a description of the 

magnitude and direction of charge of the covalent bonding of two atoms. Decomposing 

the atomic charges of a molecule into these increments yields a set of generalized rules 

based on the type of the atoms in the bond. Once these rules are identified they can be 

extended and applied to new molecules. 

 

Development of bond charge increment rules has been implemented in the past for other 

force fields such as in MMFF94. In their approach they globally optimized a set of rules 

through an iterative process that best fit the training set(14). While this is a valid 

approach and was considered when investigating charging rules in MATCH, it was 

discarded due to the inability to precisely reproduce the training charges in force fields 

such as CGENFF (data not shown). In addition, our goal is consistency: to preserve the 

charging rules found in the protein and nucleic acid force fields as much as possible. Our 
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approach is consistent with our fragment-based atom typing procedure and accurately 

reproduces partial charge assignments in all CHARMM force fields. 

  

Empirical force fields generally reuse atom types for bonded parameter assignments 

despite slightly different charge distributions. For example, in the CHARMM protein 

force field most methylenes transfer -0.09 electron units of charge from each of the two 

aliphatic hydrogens onto the adjacent carbon; however, for methylenes adjacent to a 

primary ammonium this increment is -0.05 electron units, despite the fact that identical 

atom types are used to describe the respective carbon and hydrogen atoms. This 

discrepancy is dealt with in MATCH by conducting a secondary level of atom typing. 

During the development of BCI from a force field, if there are multiple solutions exist for 

a given pair of bonded atom types, the most frequently used BCI is stored as the default 

increment rule and the infrequent ones are stored separately as refining increment rules. 

These refining increments are associated with a molecular fragment as found in the atom 

typing process. This fragment is the description of the chemical environment that is 

correlated with the divergent increment rule. During the charging procedure MATCH 

considers the refining increment rules and checks to see that the corresponding chemical 

environment matches the current local connectivity of the molecule: if so, the refining 

increment rule is applied instead of the default rule.  

 

The simplest case to describe the magnitude and direction of charge in the covalent 

bonding of two atoms involves a terminal atom, that is, one of the atoms has only one 

covalent bond. In a neutral system, it is straightforward to determine the bond increment 

between a terminal atom and its bonding partner: it must be the terminal atom’s assigned 

atomic charge balanced by an equal and opposite signed charge assigned to its bonding 

partner. For example, most aliphatic hydrogen atoms bound to aliphatic carbons have a 

charge of 0.09 in the CHARMM force field, and this yields charge increments of +0.09 

and -0.09 to the hydrogen and carbon atoms, respectively. Unfortunately, as the number 

of bonds increase it becomes increasingly difficult to deconvolute the charge relationship 

in each bond. The solution we adopted is to disassemble a molecule by removing 

terminal atoms and subtracting their respective bond charge increments. Returning to the 
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example of the aliphatic hydrogen atoms, the procedure would involve removing the 

terminal hydrogen atoms and subtracting the charge from the BCI (i.e., subtracting -0.09 

e-) from the remaining carbon atom. This process effectively nullifies the bond between 

the hydrogen and carbon and reduces the number of bonds in which the carbon atom 

participates. If the carbon atom is a methyl carbon, it would now be rendered a terminal 

atom with a charge reduced by -0.27 e- charge. This iterative procedure of nullifying 

bonds and adjusting the charges allows the parameterization of a large portion of the 

BCIs. However, atom types that are exclusively contained in rings fail to yield BCIs 

through this method. Thus, two follow-up algorithms have been implemented to deal with 

ring atom types. The first algorithm is used for rings with “symmetry” points in which 

one atom is bonded to two atoms with the same type. In this case it is possible to break 

the ring at this “symmetry” point and establish the bond charge increment rules by 

assuming that each of the bonds contributes exactly half of the charge of the atom bonded 

to both of them. The second algorithm is used for rings in which no symmetry exists for 

any ring atom; in this case, a previously determined BCIs is used to break the ring. If all 

the charge is accounted for by existing rules then it is accepted as the correct increment. 

Using the methods described above it is possible to delineate the vast majority of bond 

charge increment rules for a given force field. The minority of compounds in a force field 

whose BCIs can not be deconvoluted with these methods can be examined on a case-by-

case basis. In these situations, it is usually possible to take existing increment rules and 

apply them to these molecules checking to see if all the charge is accounted for. 

2.2.5 Parameter Generation 

For a molecule to be successfully represented by a force field, it requires intramolecular 

parameters for the bond, angle and dihedral energy contributions and intermolecular 

parameters: atomic partial charges and van der Waals parameters describing the 

nonbonded energy contributions. Assignment of atomic charges was covered in the 

previous section; we will now discuss generation of the remaining parameters. Producing 

all required bond parameters for a novel compound in MATCH is trivially accomplished 

by removing duplicates from the list of bonded atom types that was already acquired 

during the process of assigning atomic partial charges and by identifying the 

corresponding parameters for these bonded atom types in the parameter file. To produce 
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the required angle parameters, each bond is traversed and the neighboring bonded atom is 

added to each side, growing out a bond into an angle. The same procedure is repeated 

with angles to obtain all required dihedral angles. The required parameters are then added 

to the new compound’s own parameter file. Parameters that do not exist in the parent 

force field parameter file are generated via substitution of the best-fit parameter. 

 

No force field contains parameters of all chemical space; therefore, means to 

“interpolate” within or “extrapolate” beyond the parameterized chemical space are 

necessary. Our solution is to identify existing parameters that “best fit” the required 

parameter through a form of parameter substitution. Upon examination of atom types in a 

given force field it is apparent that some types are more similar than others. For example, 

investigating the CHARMM36 protein force field, it is evident that a correlation exists 

between atom types. CT1, an aliphatic carbon bonded to one hydrogen, shares many of 

the same bond, angle, and dihedral parameters as CT2, also an aliphatic carbon but 

bonded to two hydrogen atoms. This is unlikely coincidental: atom types that share a 

similar chemical space should also have similar bonded parameters. From careful 

analysis of the chemical space of atom types basic rules can be derived. First, aliphatic 

types behave more similarly to other aliphatic types then they do to atoms that have ring 

membership. Second, the number of bonds a type has also affects how similar parameters 

are to each other: types that share the same number of bonds have more similar angle and 

dihedral parameters. Keeping these basic observations in mind, it is possible to create a 

score describing how one type is related to another based on comparison of the molecular 

fragment representations used for typing.  The use of this substitution method vastly 

increases the number of molecules that can be assimilated into the working force field. A 

brief overview of how the relatedness between types is built is: the molecular fragment of 

each atom type is compared and the overlap between the two is computed. Special 

penalties are put in place to distinguish the score of atom types only found in rings from 

atom types that are only found in aliphatic chains and the reverse case. These scores are 

preserved in text format that may also be altered by users if desired. 
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Substitution is available during both the atom charging and parameter generation stages 

in MATCH. In both cases the procedure is equivalent. For example, if there is a bond 

between atom type A and B, but the corresponding bonded parameters do not exist in the 

force field parameter file, the relation matrix will be queried. Each existing bond 

parameter is scored in the simple fashion of how closely its first atom type is related to A 

and how closely its second is related to B; the reverse is also considered. The relatedness 

is 1 if the atom types are the same and is 0 if the two atom types have neither the same 

element nor the same bond number; the summation of the relatedness of each pair is the 

score. The bond parameters with the highest score are selected as the substitution 

parameters for this new pair of bonded atom types. 

2.2.6 Program Organization 

MATCH supports a wide variety of molecular formats, (PDB, MOL2, MOL, SDF, RTF) 

and exports CHARMM formatted PDBs for files supplied in non-PDB formats. The core 

algorithms of the MATCH toolset have been implemented in Perl. Perl was chosen to 

maximize portability. MATCH is a small package that utilizes PerlChemistry, another 

package for more general applications of identifying similar connectivity between 

molecules, renaming atoms given a chemical environment (e.g., the naming convention 

used in RESP(7)), or averaging charges over atoms with identical connectivity. 

PerlChemistry is a set of Perl packages that provides object representations such as atom, 

bond and molecule. This distinction was planned so PerlChemistry can exist 

independently from MATCH and allows users to have access to the molecular graph API. 

Several examples of applications of molecular graphs are provided as part of the 

distribution. 

 

The key properties of the MATCH package are contained in a single Perl package called 

MATCHer.pm, which allows users to write additional scripts to facilitate any of the 

algorithms discussed in this paper in the context of other force fields. The default script, 

MATCH.pl, provides the core functions of atom typing, charging and parameter 

determination that are associated with the processes depicted in Figure 2.1. All the 

MATCH force field libraries discussed in this paper are included in the current version of 
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the MATCH package. The MATCH package is supplied together with basic usage 

instructions and can be downloaded at brooks.chem.lsa.umich.edu/software. 

2.3 Methods 

2.3.1 Constructing Force Field-Specific MATCH Libraries via MATCH 

Force field-specific MATCH libraries were constructed via MATCH based on the 

CHARMM36 topology files: top_all22_prot, top_all27_na, top_all35_carb, 

top_all35_ethers, top_all36_cgenff and top_all36_lipid. For each force field the 

molecular fragments for each atom type were constructed through an iterative 

optimization procedure. Using a given force field the goal is to correctly assign types for 

all the atoms within the force field. The main concern in this process is to avoid 

mistyping by incorrectly making one type cover the space of another. To avoid this, atom 

types were grouped together by the atom element and bond number and were developed 

simultaneously. That is, each time there was a modification of a fragment, each atom that 

was of the group’s element and number of bonds was typed and if there were fewer 

mistypings this change was accepted. This was repeated until there were no mistypings. 

Most aliphatic atom types have rather distinct chemical space and, thus, required a few 

rounds of optimization. On the other hand, it was more difficult to create the optimal set 

of fragments for atom types that are exclusively based in rings and, thus, these atom types 

required multiple rounds of optimization. The Perl script TestBuildTypeStrings.t that is 

required for this optimization is provided in the MATCH package distribution for future 

optimizations and development of atom-type fragments for new force fields. Another 

challenge in this optimization scheme is keeping the atom-type fragments as general as 

possible while preserving their unique chemical environment. 

 

For each force field that contained residue patches, each patch was applied if it increased 

the chemical space of the set (i.e., added new atom types or bond increment rules) or was 

necessary to correct polymer connectivity. By default, the NTER and CTER patches were 

applied to the protein force field residues and the 5TER and 3TER patches were applied 

to the nucleic acid force field residues. With the exception of CGENFF, all molecules in 

the topology files were included in the process of constructing the force field-specific 
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MATCH libraries. In total, 53 of the 415 molecules in the CGENFF topology file were 

eventually excluded because the required number of refinement increments was too large 

(i.e., did not obey any of the default bond increment rules), of the typing of atoms could 

not be performed by fragments (atom types CG2DC1 and CG2DC2). A list of the 

CGENFF excluded molecules appears in the supplementary material. 

 

Bond increments were extracted from each force field topology file in an automated 

fashion as discussed in the previous section and can be run in MATCH using 

GenerateBondIncrementRules.pl. Refinement bond increments were added to fix obvious 

exceptions to the BCIs, e.g., where the default BCIs could not reproduce the charge 

distributions in the molecules, and were usually small in number, with exception of 

CGENFF. In addition to the compounds that were excluded when constructing the 

CGENFF-specific MATCH libraries, several other compounds in the CGENFF topology 

file do not obey clear bond increment rules. With additional refinement rules, however, it 

was possible to reliably reproduce charges for these compounds. 

2.3.2 Extrapolating and Interpolating Force Field Parameters via MATCH Libraries 

Both the self-validation and cross-validation of atomic charge was conducted with the 

same procedure (TestIncrements.pl). To assess the ability of the MATCH libraries to 

extrapolate and interpolate to new contexts, MATCH libraries of force field A were used 

to assign charges to the atoms of each molecule in force field B. Molecular graphs of 

each molecule in B were constructed and each molecule object was duplicated, but with 

all atom types and charges removed.  Each molecule copy was then typed using the 

MATCH libraries based on force field A’s atom type molecular fragments. If any of the 

atoms could not be typed, the algorithm proceeded to the next molecule. Upon successful 

completion of the atom type assignments, BCIs were applied to assign atomic charges. 

The differences between the original and assigned charges for atoms in molecules that 

were successfully charged were computed. For the self-validation analyses, A and B were 

the same force field. A similar procedure is in place for comparing the atomic parameters 

of one force field compared to another and is performed using TestParameters.pl. 

Analysis was also completed on atoms that could be completely charged/parameterized 

regardless of whether its entire molecule could be (Table S1 and S2). 
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2.3.3 High-Throughput Small Molecule Parameterization  

PubChem small molecules were obtained from the PubChem database in MOL2 format. 

Since submission of molecules is random and we are interested in the chemical space that 

can be covered using MATCH we took the first million of the ~26 million molecules that 

met the following criteria: molecular weight <600 Da and contained exclusively elements 

H, C, N, O, F, P, S, Cl, Br, and/or I. Molecules that fit these criteria were processed by 

MATCH using the CGENFF force field-based MATCH libraries. If force field generation 

was successful, the molecule was minimized in CHARMM using steepest descent 

minimization for 100 steps with nonbonded cutoffs that are defined in the protein force 

field. Finally, the RMSD between the minimized structure and original structure was 

calculated. 

 

2.4 Results and Discussion 

2.4.1 Recapitulating Bond Charge Increment Rules 

This novel suite of MATCH tools includes facilities to aid in developing force field-

specific MATCH libraries that are learned from a given biomolecular force field, and to 

generate sets of parameters for novel compounds that are consistent with this force field 

in a short amount of time. Here, we explore the ability of MATCH with some expert 

intervention to effectively construct force field specific MATCH libraries, which is to 

“learn” atom type definitions and bond charge increment rules from multiple CHARMM 

force fields. We also investigate the ability of MATCH to use these libraries and the 

substitution rules to parameterize molecules in different force fields. Figure 2.5 

summarizes the results for the MATCH-assigned partial charges for each atom compared 

to that in the original CHARMM topology file. The plots along the diagonal in Figure 

2.6 represent the results for the self-consistency study in which MATCH re-predicts the 

properties of the force field on which the MATCH libraries were based.  The off-diagonal 

plots represent the results from the cross validation study in which MATCH interpolates 

and extrapolates parameters and atom type assignments from a different force field.  
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First, the results from the self-consistency study demonstrate that MATCH successfully 

recapitulates the atomic charges in the CHARMM topology files. It would be difficult to 

get such excellent agreement without also perfectly capturing the correct atom types. 

Most of the correlations have an R2 ~1.00 with the exception of the carbohydrate force 

field and CGENFF. In the carbohydrate force field there is a small discrepancy for the 

increments between atom types: CC2O3 and OC2D3, which exists in both D-Psicose and 

ketose. In the original topology file, the assigned charges for these atoms are quite 

 
Figure 2.5. The x-axis denotes the reference force fields while the y-axis is the force field libraries within 
MATCH. The numbers in the top left corners of each graph indicate the number of molecules that were 
successfully charged using a given MATCH library.  
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different from each other even though the chemical environment appears identical, 

leading MATCH to learn radically different bond increment rules. This makes it 

impossible to create a refining bond increment rule to assign different increments in each 

case as the application requires a unique chemical environment to discriminate. As 

mentioned in the Methods section, CGENFF molecules whose partial charge assignments 

were clearly not consistent with bond increment rules were omitted from the “learning” 

phase in which the CGENFF-based MATCH libraries were constructed. Consequently, 

charges for these molecules are not reproduced exactly, but are still of very high quality 

such that the overall R2 is 0.997. 

 

Second, the cross-validation study illustrates how MATCH libraries can be extended to 

generate parameters for novel compounds. Starting with the protein force field, which 

contains only atom types and bond increment rules designed for the amino acids, the 

rules are successfully generalized out to a significantly larger chemical space. This is 

illustrated primarily in typing and charging CGENFF molecules with the top_all22_prot 

force field, in which over 59% of the molecules in CGENFF were successfully processed 

in MATCH. The R2 correlation between the MATCH-assigned atomic charges and those 

found in the CGENFF topology file is 0.941. The average unsigned error is 0.024 

electron units while the percentage unsigned error is 15.99%. While the ability of the 

MATCH libraries based on the CHARMM protein topology file to be successfully 

extended to other small molecules is very promising, it is worth considering why certain 

CGENFF molecules were unable to be processed in MATCH. The most significant 

contributor is the lack of necessary atom types for atoms of elements that are not included 

in the protein force field. Almost 19% of CGENFF, that is 64 molecules, contain 

elements P, F, Cl, Br, I, and these elements are not present in the protein force field. The 

remaining CGENFF molecules that could not be processed with MATCH failed because 

it was not possible to construct a substitution for a necessary bond increment rule to 

complete the atomic charges. While the substitution rules can be further generalized, the 

quality of both atomic charges and parameters will suffer. 

 



 50 

The MATCH libraries based on the protein force field successfully processed all of the 

molecules contained in the carbohydrate and ether force fields. The R2 correlation 

between the MATCH-assigned and original atomic charges was 0.998 and 0.985 for the 

carbohydrate and ether force fields respectively. The average percentage error for 

molecules in the carbohydrate force field was 2.58% while that for molecules in the ether 

force field was 14.21%. The high quality of these results is not surprising since both of 

these force fields represent a narrow chemical space and it is mostly covered by the 

chemical space found in the side chains of the amino acids. However, the MATCH 

libraries based on the protein force field had more limited success in extending coverage 

to the nucleic acid and the lipid force fields. Only adenine and cytidine in the nucleic acid 

force field were successfully parameterized with MATCH: though the R2 correlation and 

average unsigned error between the computed and existing charges is excellent at 0.970 

and 0.035 electron unit respectively. None of the molecules in the lipid force field were 

successfully parameterized with MATCH because every lipid molecule has a phosphate 

head group and the protein force field does not contain any atom types for phosphorus.  

 

CGENFF is the most chemically diverse force field; this is partly due to the inclusion of 

the model compounds from each of the other force fields. This diversity suggests that a 

large portion of the chemical space of the other force fields could be covered when 

generating molecular fragments for the atom types and the bond increment rules based on 

CGENFF. This hypothesis is supported by the results of typing and charging molecules 

from the other force fields with the MATCH libraries developed from CGENFF. 

MATCH was able to successfully parameterize all compounds from the other force fields 

and reproduced the partial atomic charges very reliably. In fact, for the charges assigned 

to the 7570 atoms there is an average unsigned error of 0.0013 charge units, an average 

percentage error of 1.02%, and an R2 correlation with the existing charges of 0.999 This 

level of agreement has profound implications for further development of MATCH. As 

mentioned earlier, there are model compounds from each of the other force fields within 

CGENFF. These compounds have lead to accurate generation of the bond charge 

increment rules that are shared with all the other force fields, suggesting that extending 

the chemical space can be accomplished by adding few model compounds that represent 
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the desired novel chemical connectivity. For example, a huge library of novel scaffolds 

can be parameterized by performing quantum chemical optimizations on the simplest 

representations of new connectivity and then extracting the necessary bond increments to 

develop the rules necessary to parameterize the entire set. 

 

The lipid force field is the second largest in terms of the number of atoms next to 

CGENFF and is the only other force field that has the atom types and bond increments 

that are necessary to type and parameterize some of the protein force field. Using the 

lipid force field libraries within MATCH, 50% of the protein force field could be 

parameterized with an average percentage error for atomic charges of 6.19% and an R2 of 

0.985. The majority of the error comes from attempting to parameterize phenylalanine 

without aromatic atom types. It is interesting that there is an overlap of chemical space 

between the head groups of lipids and amino acid backbone and side chains. For the 

carbohydrate force field near complete parameterization was possible, with an average 

percentage error of 2.98% and an R2 of 0.994. This agreement is excellent and further 

illustrates the power of extrapolating the bond increment rules. Lipids contain no ring-

specific atom types and yet are still able to correctly recapitulate the atomic charges of 

the carbohydrate force field, which are primarily sugar rings. With the lipid-force field-

based MATCH libraries, all but one molecule in the ether force field could be 

parameterized. The error of 27% and R2 of 0.97 indicates that the atomic charges were 

not computed flawlessly. Most of the error stems from the lack of an atom type that is 

specific for ether chemical space; the closest one that exists is for an ester oxygen. 

Similarly, only 40.4% of the CGENFF molecules were successfully parameterized with 

the lipid-based MATCH libraries, with an average percentage error of 27% and an R2 of 

0.963 for atomic charges. As with the protein force field, attempts to parameterize 

aromatic rings lead to error. However, the largest errors come for ribose atoms. C3’ has 

some of the largest error with an original charge of 0.01 and a computed charge of 0.16 a 

percentage error of 1600%. This further reiterates the need for a quality control method, 

or cut off where parameter substitutions may be too unreliable. 
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The CHARMM nucleic acid, carbohydrate and ether force fields cover significantly less 

chemical space than the protein and CGENFF force fields and, thus, far fewer 

compounds were successfully processed with 

the MATCH libraries based on these force 

fields. For example, the nucleic acid force 

field-based MATCH libraries were able to type 

and parameterize ~36% of the molecules within 

the CGENFF force field and 11 molecules in 

the carbohydrate force field.  However, the 

partial charge assignments for the successfully 

processed molecules is very high; with R2 of 

0.996 and 0.934 for the carbohydrate and 

CGENFF molecules respectively and with an 

average percentage error of 5.02% and 28.53% 

respectively. In addition the nucleic acid force 

field was also able to parameterize 6 of the 

ether molecules with an average percentage 

error of 11.7% and R2 of 0.990. The decrease in 

coverage as compared to the protein and 

CGENFF force fields is not surprising as the 

nucleic acid force field does not supply as 

many aliphatic atom types. In fact, all of the 

aliphatic groups in the nucleic acid based 

MATCH libraries come from select patches 

that modulate the purine and pyrimidine 

groups. Similarly, the carbohydrate force field 

although interesting for the parameterization of 

5 and 6 membered sugar rings has a very 

narrow chemical space. The MATCH libraries 

based on the carbohydrate force field could 

only parameterize 59 out of the 336 CGENFF 

 
Figure 2.6. A) The correlation between the 
solvation energy calculated using the 
charges and parameters found in the 
CGENFF topology and parameter files 
compared to the solvation energy calculated 
using the MATCH computed protein 
charges and parameters. There are two 
distinct outliers, for which MATCH 
computed the incorrect formal charge. 
Removing these outliers yields an average 
error of 2.2 kcal/mole. B) The correlation 
between the solvation energy calculated 
using the charges and parameters found in 
the protein topology and parameter files 
compared to the MATCH computed 
CGENFF charges and parameters. Excellent 
agreement is achieved in this test: an 
average unsigned error of 0.6 kcal/mole.  
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molecules and all the ether molecules. Similarly, the ether force field much like the 

carbohydrate force field is very specific and contains simple aliphatic and ring ether 

molecules and the associated MATCH libraries were only able to type and parameterize 

21 of the CGENFF molecules. The R2 correlation for the atomic charges is 0.999 and the 

average percentage error is 0.52%, though all but one molecule had charges that were 

exactly reproduced.  

 

To quantify the relationship between the percentage unsigned error in charge with 

physical properties of a molecule we calculated the solvation energy using the implicit 

solvent model: Generalized Born using Molecular Volume (GBMV)(30) of both the 

CGENFF and protein molecules with their original charge/parameters and their MATCH 

generated parameters. Figure 2.6A displays the correlation of solvation energy for 

CGENFF molecules using their topological charges and parameters compared to the ones 

calculated using the protein MATCH libraries. As mentioned prior there was a 15.99% 

percentage unsigned error when calculating the atomic charges of the molecules found in 

CGENFF using the protein MATCH libraries, yet there remains a very strong correlation 

(R2 = 0.993) of between the solvation energy calculated using both 

charging/parameterization schemes. It should be noted that there were two outliners 

GUAN and PHEO, in both cases the protein force field lacked the necessary chemical 

space to correctly calculate the formal charge. These were the first instances of observing 

this type of malfunction and appear to be very rare. When removing these the average 

difference in solvation energy is 2.2 Kcal/mole. In Figure 2.6B the reverse case is 

examined which is the calculation of the solvation energy of protein molecules with their 

native CHARMM charge and parameters compared to the CGENFF MATCH scheme of 

parameters. In this case the cross validation study yielded and 6%, as expected the 

average difference in solvation energy is around 0.6 kcal/mole with and R2 of 0.998, 

which is very promising.  

2.4.2 Cross Validation of Parameters  

The quality of the parameters that are generated through this cross validation study are 

further investigated for the case in which the MATCH libraries from the protein force 

field are used to parameterize the CGENFF molecules. This combination requires the 
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most extensive extrapolation of parameters from the MATCH libraries and, thus, should 

give a realistic scenario of our parameterization procedure (Figure 2.7). The R2 

correlation between the predicted and actual van der Waals well-depth (ε) and radius 

(Rmin) parameters are 0.788 and 0.956 

respectively. It is not entirely 

surprising that there is a minor 

decrease in the correlation for the well-

depth parameters due to the fact that a 

large proportion of CGENFF 

molecules use the new aliphatic carbon 

van der Waals parameters 

(top_all22_prot_aliphatic_c27.str) that 

are not found in the older protein force 

field. The quality of the parameters is 

quite high for the equilibrium bond 

length and force constants with an R2 

correlation of 0.977 and 0.870 

respectively and average unsigned 

error of 0.723% and 5.43% 

respectively. The quality of the angle 

parameters show a deterioration with 

an R2 for equilibrium angle and force 

constant of 0.568 and 0.410 

respectively and average unsigned errors of 1.87% and 20.9% respectively. The low error 

for equilibrium angles with the much higher error in the force constant suggest that the 

geometry is being reproduced but the rigidity of the angles is not reproduced with the 

same level of accuracy. For dihedral parameters it is more difficult to evaluate how 

similar two sets of dihedrals are to each other due to the possibility of multiple 

declarations of the same dihedral with different multiplicity values. Thus, we investigated 

how often there was the same number of declarations as this would be the major 

contributor to differences in behavior of the dihedrals. 94.6% of the dihedrals shared the 

 
Figure 2.7. Quality of the CGENFF force field 
parameters that were extrapolated from the protein force 
field libraries in MATCH.  
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same number of declarations and of these 87% had the same multiplicity and 85% had 

the same multiplicity and identical optimum angles. These results demonstrate that a 

large number of dihedral angles are correctly represented as taking part in the same 

number of declarations with the same multiplicity impart the shape of the energy 

landscape with the force constants giving the height the energy barriers. 

2.4.3 Parameter Substitution  

To demonstrate that our atom-type substitution procedure is able to yield accurate results, 

we systematically removed one of the bond, angle or dihedral parameters within the 

CGENFF parameter file or a bond increment rule from the CGENFF-based MATCH 

libraries and identified the “best fit” or 

“nearest neighbor” parameter given the 

remaining parameters. Figure 2.8 

summarizes the results for this leave-one-

out substitution study on bond, angle, 

dihedral parameters and bond charge 

increment rules. Substitutions are not 

applicable to van der Waals parameters 

since CGENFF includes van der Waals 

parameters for each atom type. For 

equilibrium bond lengths and angles there 

is good agreement between the original 

and the substituted parameters with an R2 

of 0.945 and 0.559, respectively, and 

average percentage errors of 1.62% and 

2.37%, respectively. This ability to 

accurately preserve the geometry of a 

novel molecule without prior knowledge 

of the parameters is critical. The results 

for substitutions involving the bond and 

angle force constants display a decrease in accuracy with an R2 of 0.508 and 0.385, 

respectively. However, correctly computing the force constants is of less importance than 

 
Figure 2.8. Quality of the parameter that was predicted 
from the “best fit” to the remaining parameters in the 
leave one out substitution study. 
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the equilibrium values as they impact the flexibility of the molecule, but not its lowest 

energy conformation. In many high-throughput drug design scenarios, a rough estimate 

of the force constants suffice in producing a reasonable parameter set for modeling the 

structure of a novel molecule. As mentioned in the previous section, there is a difficulty 

in assessing similarity in dihedral parameters. We examined whether the substituted 

dihedral had the same number of declarations as the original value: 88% of the time the 

substituted dihedral shares the same number of declarations as the original. Of these 88%, 

95% had the same multiplicity value and 92% had the same multiplicity and identical 

optimum angles. Lastly, the bond-increment substitution is promising with an R2 of 0.760 

and average unsigned error of 0.055 electron units.  Not all parameters will be generated 

by substitutions, rather just the minority that are not explicitly defined in a given force 

field. This leave-one-out study along with the results from our cross-validation studies 

demonstrate that the atom type substitution strategy greatly increases the chemical space 

that a force field can cover by extrapolation or interpolation without a significant 

sacrifice in accuracy.  

2.4.4 PubChem Database Screen  

CGENFF is the most diverse CHARMM force field and provides the most extensive 

coverage of chemical space. As observed in the previous section it encompasses the 

chemical space that is spanned by all of the other CHARMM force fields. Here, we 

assess the ability of the CGENFF-specific MATCH libraries to generate topology and 

parameter files for one million drug-like molecules within the PubChem database and 

estimate the upper limit of the extensibility of these MATCH libraries. The overall 

success rate is 84.14%, where success is defined as MATCH’s ability to generate 

CHARMM rtf and param files and CHARMM’s ability to minimize the energy of the 

molecule. MATCH required only ~2 seconds to process each compound and so ensures 

that MATCH can be incorporated into high-throughput drug design strategies. 

Additionally, each molecule has only to be processed once to be included in any number 

of molecular mechanics simulations. Furthermore, as illustrated by the results 

summarized in Figure 2.9, the quality of the final minimized structures is very high. 

After energy minimization, 88% of the molecules are within 0.149 Å RMSD and 99% of 

the molecules are within 0.249 Å RMSD of their initial pdb structure, suggesting that the 
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MATCH parameterization based on the CGENFF libraries yield similar lowest energy 

conformations. Although these are encouraging results, it is important to investigate why 

some molecules were not successfully 

processed by MATCH. First, there is an 

innate hierarchy for the CGENFF atom 

types such that a molecular fragment 

exists for each element containing the 

element with a set number of bonds and 

thus atom typing for each of the 

compounds taken from PubChem is 

guaranteed. However, due to the large 

number of types, there are many 

combinations that do not have known 

bond charge increment rules and no satisfactory substitution increment rule is identified 

to estimate the partial charge distributions. It is possible to vastly increase the 

combination of allowed bond increments by allowing a less strict substitution routine of 

unknown increments. However, this generally leads to overall lower quality results 

(results not shown). A more practical approach is to increase the chemical space of the 

bond increment rules by indentifying distinct model compounds or fragments that lie 

outside of the chemical space encompassed by the CGENFF libraries, determine the 

associated charge distributions from quantum chemical calculations(2) and then construct 

the additional bond charge increment rules. Future goals are to census the entire 

PubChem database for drug-like molecules and look for the chemical space that is 

prevalent yet is not included in the CGENFF-specific MATCH libraries. Learning the 

BCIs and parameters for a select number of new chemical groups will greatly expand the 

total chemical space covered by MATCH. 

 

2.5 Conclusion 

We have presented a library of functions and data structures, collectively called MATCH 

that is designed to facilitate the automated selection of appropriate atom types, partial 

charges, and molecular parameters for common molecular mechanics force fields. The 

 
Figure 2.9. Quality of the minimized structures for the 
PubChem drug-like molecules that were successfully 
processed using the CGENFF libraries within MATCH to 
generate their respective topology and parameter files.  
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toolset is customizable and extensible, such that it can act both as a solution for 

extrapolating and interpolating from the known chemical space to novel molecules and as 

a tool to study the effects of specific parameter choices and parameterization strategies. 

Through cross validation studies we have shown that it is possible to accurately replicate 

atomic charges and parameters using rules derived from another force field. This strategy 

has significant potential; however, the ability of MATCH to successfully generate the 

new parameter and topology files and the quality of the results are directly dependent on 

the chemical diversity that exists in the original force field topology file that is used to 

generate the force-field specific MATCH libraries.  Given the ability of the CGENFF-

derived MATCH libraries to construct physically meaningful parameters and partial 

charge assignments for 84% of the randomly selected drug-like compounds in the 

PubChem Database, MATCH with its current CHARMM-based libraries is a promising 

tool for high-throughput drug design applications based on the biomolecular CHARMM 

force field.  

 

Future work will focus on the development of an automated procedure for generating the 

molecular fragments of atom types and the development of a measure of the quality of 

both the atomic charges and parameters to understand when a substitution of a parameter 

or a bond increment is likely to be too detrimental to be included. In this study we 

actively participated in defining the molecular fragments to ensure that the simplest 

representation of an atom type was generated. Automated procedures were investigated, 

but ultimately they produced suboptimal results compared with strategies that 

incorporated expert knowledge. With further research, the automated fragment generation 

feature will enable the MATCH strategy to be even more generalizable and facilitate the 

seamless integration of additional force field topology files into force-field specific 

MATCH libraries.  

 

This work has been published in the Journal of Computational Chemistry. The idea was 

conceived by Yesselman, J.D., Brooks, C.L., III and Price D.J. The analysis was 

performed by Yesselman, J.D. and was assisted by Knight, J.L.  
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CHAPTER 3 

Assessing The Quality Of Absolute Hydration Free Energies  

Among CHARMM-Compatible Ligand Parameterization Schemes  

 

3.1 Introduction 

In molecular mechanics simulations, ligand parameterization procedures are traditionally 

computationally intensive and can represent a bottleneck in structure-based drug design. 

Thus, it is imperative that information about well-parameterized compounds be leveraged 

to describe novel compounds under investigation and that rapid optimization strategies be 

developed that are transferable across a wide variety of functional groups. Several 

publically-available resources exist that generate topology and parameter files for a 

molecule of interest so that further molecular modeling may be performed in combination 

with established macromolecular force fields.  

 

Automated ligand parameterization tools assume that the bonded parameters (i.e. force 

constants and equilibrium bond lengths, angles and torsions) and van der Waals 

parameters are relatively independent of the environment and so it is straightforward to 

assign these parameters for a novel compound given an extensive database of parameters 

for known compounds. To devise partial charges for each atom in a novel molecule there 

are two distinct strategies used. The first strategy, employed by the ligand 

parameterization program Antechamber, uses a restrained electrostatic potential to 

generate charges for the entire molecule concurrently, often based on ab initio 

calculations or parameterized methods that mimic these charge distributions. In contrast, 

tools such as MATCH, ParamChem and SwissParam use a fragment-based approach, 

where charge distributions of a molecule are built-up from charges that are assigned to 

the component fragments of the molecule. Halgren, in developing the MMFF94 force 

field, first proposed bond charge increment “rules” in which optimal charges are 
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determined for fragments of molecules and these fragments are then pieced together to 

construct charge distributions for novel compounds(1).  

 

All three fragment-based approaches mentioned above have become available recently 

for generating CHARMM-compatible ligand parameters and charge distributions. In our 

lab, the toolset of program libraries collectively titled Multipurpose Atom-Typer for 

CHARMM (MATCH) has been released.(2) The MATCH program itself was developed 

to learn atom-type definitions and bond charge increment rules from an arbitrary force 

field and MATCH libraries have been constructed by inferring atom-type definitions, 

parameters and bond charge increment rules from the CHARMM Generalized Force 

Field (CGENFF) topology and parameter files.(3) MATCH parameters and a topology 

file for a given ligand can be obtained by uploading a small molecule PDB, mol, mol2 or 

sdf files via a web-interface (http://brooks.chem.lsa.umich.edu/software) or, alternatively, 

the MATCH source code and libraries can be downloaded and further customized for 

local use. In their on-going work to develop CGENFF, the Mackerell lab devised 

ParamChem, using a strategy similar to ours, which generates topology and parameter 

files for novel molecules given general rules based on CGENFF. These ParamChem 

topology and parameter files can be obtained by uploading a small molecule mol2 file to 

the ParamChem web-based facility (http://www.paramchem.org). The molecular 

modeling group at the Swiss Institute of Bioinformatics recently released SwissParam, a 

web interface (http://www.swissparam.ch) that generates CHARMM or GROMACS-

compatible parameter and topology files in which the van der Waals parameters are 

assigned from the closest atom type in CHARMM22 and the remaining parameters and 

partial charges are derived from the Merck Molecular Force Field (MMFF).(1, 4) While 

it is assumed that there may be some noise present by combining information from 

CHARMM22 and MMFF, this strategy takes advantage of the breadth of the chemical 

space covered by MMFF that is not explicitly represented in CGENFF. 

 

Several studies have investigated the quality of automated parameterization tools by 

generating parameters for a diverse set of small organic molecules and computing their 

hydration free energies.(5) Mobley et al. used Antechamber, the AMBER facility that 
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generates ligand parameter and topology files using the General Amber Force Field 

(GAFF). Given the GAFF parameters and utilizing implicit solvent simulations, Mobley 

et al. computed the absolute hydration free energies for 499 small organic molecules and 

found that they agreed with those obtained from experiment to within ~2 kcal/mol(6). In 

a subsequent study, Mobley et al. found improved agreement between the calculated and 

experimental hydration free energies using the TIP3P water model in explicit solvent 

simulations for the same database of compounds, with RMS errors of 1.2 kcal/mol.(7) In 

our recent study, where we optimized the surface tension coefficients for scaling the 

surface area term in the nonpolar contribution, most implicit solvent models 

demonstrated reasonable agreement with experimental hydration free energies with an 

average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81.  

 

Shivakumar et al. recently investigated a database of 239 small molecules; all but 18 of 

which were contained in the database that was studied by Mobley et al.(6, 7) In their 

study, they evaluated the quality of hydration free energies that were computed for 

different force field parameters combined with implicit and explicit solvent.(8, 9) 

Originally, calculated hydration free energy estimates for these 239 compounds were 

obtained using GAFF and CHARMm-MSI ligand parameters combined with charge 

assignments from ChelpG, RESP or AM1-BCC protocols. Overall, ligands modeled 

using the GAFF charge strategy in explicit TIP3P solvent environment provided the best 

agreement for the calculated hydration free energies compared with experimental values; 

specifically, GAFF parameters yielded an R2 of 0.87 while the CHARMm-MSI/AM1-

BCC parameters resulted in an R2 of 0.76.(8) In a more recent study, Shivakumar et al. 

computed hydration free energies from explicit solvent simulations using the OPLS-AA 

force field and charge parameterization scheme and achieved even better agreement with 

experiment (R2=0.94).(9) 

 

In this work, we compare the ability of MATCH, ParamChem, SwissParam and GAFF, 

to generate parameters for a diverse set of small molecules and to reproduce their 

respective experimental absolute hydration free energies. Given MATCH’s ability to 

learn atom-type definitions and bond charge increment rules, we also evaluate the quality 
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of alternative MATCH libraries that are constructed from non-CGENFF CHARMM 

topology and parameter files. This analysis allows us to assess the value that is associated 

with enhancing the breadth and quality of the parameters that are already included in a 

given force field in terms of its ability to be used to extend to novel chemical contexts.   

3.2 Theory 

3.2.1 Overview Of Implicit Solvent Models 

The specifics of each implicit solvent model are already fully documented in the original 

papers and, in our recent study, we have highlighted the fundamental differences among 

the implicit solvent models that are investigated here.(10) GBMV2 and GBSW models 

decompose the total hydration free energy into an electrostatic component and a nonpolar 

component and they employ variations of the Generalized Born model to approximate the 

electrostatic contribution to the solvation free energy. The GB formalism originally 

proposed by Still and coworkers is described by the equation(11): 
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where rij is the distance between the charges qi and qj, em and esolv are the dielectric 

constants assigned to the solute molecule and solvent respectively, N is the number of 

solute atoms, ai is the effective Born radius for atom i and k has a value of 4 in the work 

of Still et al.(11) and typically is set between 2 and 10.(12) The effective Born radius of 

each solute atom reflects the degree of its burial within the molecule and becomes the key 

parameter for the calculation of the electrostatic contribution to the solvation free energy. 

The effective Born radius for atom i can be calculated from the atomic electrostatic self-

solvation energy in the Born equation(13) (Eq 1): 

€ 

α i = −
1
2
1
εm

−
1
εsolv

% 

& 
' 

( 

) 
* 
qi
2

Gelec,i
GB                (2) 

The primary advantage of GB models lies in their ability to estimate the Born radii by 

alternative, computationally-efficient means. Here, we focus primarily on volume-based 

GB models where the Coulomb Field Approximation (CFA), which approximates the 

electric displacement around an atom by the Coulomb field, is used to estimate the 

magnitude of the Born radius:  
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where Ri is the intrinsic radius of atom i (the Born radius in the absence of all other 

atoms) which is often set equal to the van der Waals radius and where the second term is 

the Coulomb field integral which is computed over the volume of the solute excluding the 

sphere of radius Ri around atom i. Different flavors of GB models employ alternative 

approaches to calculating and scaling this integral and some include higher order 

correction terms to account for limitations in the CFA that arise from off-center charges 

and non-spherical volumes of many systems.  

 

GBMV2(14, 15) is a five-parameter analytical Generalized Born Molecular Volume 

model in which the molecular volume is constructed from a superposition of atomic 

functions. GBMV2 includes an empirical correction term, DG1
elec, to the Coulomb field 

approximation, DG0elec, based on a measure for the deviation from the ideal spherical 

shape such that:  
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where the effective Born radii are estimated from: 
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In this formalism, A4 is related to the Coulomb Field term in Eq. 3 and A7 to the 

correction term, such that: 
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The fundamental advantage of this analytical approach over the grid representation is that 

forces are readily expressed.  

 

Generalized Born with a smooth SWitching function model, or GBSW(16), alleviates the 

numerical instability of solvent force calculations arising from discontinuities in the 



 67 

dielectric boundary by using a simple polynomial switching function to smooth the 

dielectric boundary. In the original GBSW formalism, a van der Waals surface 

representation replaces the more expensive molecular surface representation in GBMV. 

In GBSW, the two parameters C0 and C1 in Eq. 5 (with S=1 and D=0) are obtained for 

various smoothing lengths, 2w, to reproduce the exact self-solvation free energies from 

Poisson theory using a van der Waals definition of the dielectric boundary. With the 

smooth switching function, the Coulomb term is described by: 
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and the correction term is described by: 
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where V(r,{ra}) is the solute interior volume and is defined by:  
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and where the atomic volume exclusion function, Hi(r), is given by: 
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where {RPB} are the set of atomic radii that are used to define the dielectric boundary in 

the PB calculations. 

 

The GBMV2 and GBSW implicit solvent models approximate nonpolar contributions to 

the total hydration free energy using a solvent-accessible surface area term. In traditional 

MM-PBSA and MM-GBSA methods, the total molecular solvent-accessible surface area, 

SASA, is used and the nonpolar contribution is described by: 

€ 

ΔGnp = γSASA + β               (12) 

 where g and b are the surface tension parameter and off-set values respectively.  
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In this study, we also consider the Fast Analytical Continuum Treatment of Solvation 

model, FACTS(17), that was recently developed by Caflisch and coworkers.(17, 18) This 

empirical strategy is significantly different from the above GB models in that it does not 

assume the Coulomb Field approximation and does not require the dielectric boundary 

between the solvent and solute to be defined. Instead FACTS is based on the analytical 

evaluation of the volume, Ai, and spatial symmetry, Bi, of the solvent that is displaced 

from around solute atom i. These two measures are combined in empirically 

parameterized equations to approximate the self-electrostatic energies: 

€ 
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FACTS = a0 +

a1
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where ao and a1 are determined by using the limiting cases of a fully buried and fully 

exposed atom respectively. The other parameters: b1, b2, a2, a3 and Rsphere (which defines 

the solute volume considered in calculating Ai and Bi) are optimized for each van der 

Waals radius. The self-electrostatic energies then provide the effective Born radii via Eq. 

2. Similarly, the solvent-accessible surface area is approximated by: 
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and its corresponding parameters are optimized to reproduce exact SASA values. Since 

the FACTS model only requires the vectors between neighboring atom centers it is 

significantly faster than the corresponding families of GBMV and GBSW calculations 

and has been documented to be only four times slower than vacuum calculations.(17) 

 

3.3 Methods 

3.3.1 Small Molecule Database 

A large database of 499 small neutral organic compounds has been studied 

previously.(10) The original database was made available from Mobley et al.(7) which in 

turn was compiled from molecules from Rizzo et al.(19), Guthrie(20) and their earlier 

studies.(21, 22) Five duplicate compounds were identified in the original database of 504 

compounds and were removed. This database contains a wide variety of chemical 

environments that are commonly encountered in drug design applications, including 

saturated and unsaturated hydrocarbons, aromatic and heterocyclic rings, halides and 
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polar functional groups. Checkmol(23) was used to classify the functional groups that are 

represented in each molecule.  

3.3.2 Small Molecule Parameterization 

AMBER GAFF(5)/AM1-BCC(24, 25) parameters and partial charges for all compounds 

in the database were obtained directly from the supplementary materials provided by 

Mobley et al.(7) and the AMBER prmtop files were converted to the corresponding 

CHARMM topology and parameter files using the conversion tool AMBER2CHARMM 

as described previously.(10) Sets of ParamChem and SwissParam parameters and partial 

charges were obtained by uploading the 499 mol2 files to the ParamChem 

(http://www.paramchem.org) and SwissParam (http://www.swissparam.ch) interactive 

websites, respectively. A MATCH library designated MATCH(cgenff_c36a) was 

constructed based on the CGENFF topology and parameter files in the c36a release of 

CHARMM  (toppar/all36_cgenff.rtf and toppar/all36_cgenff.prm respectively). Another 

MATCH library designated MATCH(cgenff) was constructed from the CGENFF 

topology and parameter files in the c36b release which included updated parameters for 

several compounds. A third MATCH library designated MATCH(combined) was 

constructed from the union of five non-CGENFF CHARMM force field topology and 

parameter files, specifically, the force fields for proteins (toppar/all22_prot), nucleic 

acids (toppar/all27_na), carbohydrates (toppar/all35_carb), ethers (toppar/all35_ethers) 

and lipids (toppar/all36_lipid). To construct this MATCH(combined) library, a consistent 

atom type convention had to be developed in order to incorporate information from the 

individual CHARMM topology and parameter files. In most cases, individual force fields 

had the same parameter assignments for a given atom type definition. However, in the 

few cases in which two force fields assigned different parameters for a given atom type 

definition information from the more recently developed force field was incorporated into 

the MATCH(combined) library. Sets of MATCH parameters and partial charges for the 

ligands in the small molecule dataset were subsequently obtained based on these 

MATCH libraries. 
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3.3.3 Molecular Dynamics Simulations And Analysis 

Simulation trajectories were generated for each MATCH(cgenff_c36a) molecule in both 

vacuum and the GBMV2 implicit solvent environment. No cutoffs were used; covalent 

bonds involving hydrogen atoms were constrained using the SHAKE(26) algorithm and 

the time step was 1.5 fs. The temperature was maintained near 298 K by coupling all 

heavy atoms to a Langevin heat bath using a frictional coefficient of 10 ps-1. Simulation 

trajectories were 10.5 ns in length. Snapshots were saved every 5 ps throughout the last 

10 ns for subsequent free energy analysis with each combination of parameterization 

scheme and implicit solvent model. Simulation trajectories were generated and energy 

evaluations associated with the GBSW and FACTS implicit solvent models were 

obtained using the CHARMM molecular dynamics package c36b6.(27, 28) Simulations 

were analyzed by the Bennett Acceptance Ratio method (BAR)(29) using a modified 

version of pyMBAR.(30) All simulations and calculations were performed on dual 2.66 

GHz Intel Quad Core Xeon CPUs. 

 

The GBMV2 model used a Lebedev angular integration grid with grid size of 38, 

geometric cross-term in the Still equation and k=8 in Eq. 1; the multiplicative factor, S, 

and shift, D, of ai in Eq. 5 were 0.9085 and -0.102 respectively. For the GBSW 

calculations, the half smoothing length, w, was 0.3 Å; the grid spacing in the lookup table 

was 1.5 Å and the optimized default values for the coefficients for the Coulomb Field 

approximation and correction terms were used (i.e. Co and C1 in Eq. 5). The GBMV2 and 

GBSW intrinsic radii were assigned from the van der Waals radii. Default FACTS 

parameters were employed with infinite nonbonded cutoffs. FACTS parameters were 

used that had been optimized for a solute dielectric constant of 1. van der Waals radii 

which had not been investigated in the original FACTS study had their FACTS 

parameters estimated by interpolation or extrapolation from the optimized FACTS 

parameters using the “tavw” option in CHARMM. To be consistent with the FACTS 

parameterization strategy, polar hydrogens were assigned van der Waals radii of 1.0 Å.  

 

For each implicit solvent model the nonpolar surface tension coefficient, g, was 

systematically varied between 0.0 and 0.07 kcal/(mol·Å2). The optimal surface tension 
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coefficient was identified for each combination of parameterization scheme and implicit 

solvent model to be the value of g that minimized the average unsigned error for the 

compounds that were included in the CHARMM CGENFF topology file.  

3.4 Results & Discussion 

3.4.1 Coverage Of Automated Parameter Generation Schemes 

Of the 499 compounds in the full dataset for which GAFF parameters and AM1-BCC 

charges were already available, parameters and atomic charges were successfully 

generated for 491 and 468 compounds by MATCH(cgenff_c36a) and ParamChem, 

respectively. Parameter and topology files for an additional 22 compounds were 

generated by ParamChem, but with error messages, so these compounds were omitted 

from further consideration. ParamChem successfully generated parameters for five 

compounds for which MATCH(cgenff_c36a) failed while MATCH(cgenff_c36a) 

successfully generated parameter files for eight compounds for which ParamChem failed. 

In total, 460 compounds were successfully processed by both parameterization schemes. 

SwissParam parameter and topology files were generated for all 460 compounds, except 

for ammonia and methane. GAFF parameter and topology files were available for all 460 

compounds, but trajectory analyses failed for N,N-dimethyl-p-nitrobenzamide. For ease 

of comparison across the parameterization schemes, this study focuses on the 457 

compounds that were successfully processed by these four parameterization schemes. 

This dataset encompasses 82 compounds that are explicitly included in the CHARMM 

CGENFF topology file and 375 compounds for which parameters and atomic charges 

needed to be extrapolated and interpolated from known parameters. In essence, the 82 

compounds were part of the training set for developing the MATCH libraries and 

ParamChem rules while the 375 compounds can be considered to be a test set. During 

this course of this analysis, an updated version of CGENFF was released (CHARMM 

version c36b), so results are reported for the MATCH libraries constructed from the latest 

version of CGENFF (MATCH(cgenff)). 

 

For each parameterization scheme and implicit solvent model, the optimal nonpolar 

surface tension parameter, g, was identified as the value that yielded the lowest average 
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unsigned error (AUE) in the absolute hydration free energies among the 82 compounds 

that are included in the CHARMM CGENFF topology file. Given these optimal values 

for g, the measures of model quality are summarized in Table 3.1.  

3.4.2 Recapitulating Charge Distributions for CGENFF Compounds 

The set of 82 molecules found in CGENFF were included in the training sets used by 

both MATCH(cgenff) and ParamChem to devise the underlying bond charge increment 

(BCI) rules in their respective parameterization strategies. Comparing the predicted 

partial charges that are based on these BCI rules with the original charges in the 

CGENFF topology file provides an estimate of the error that is specifically associated 

with the process of learning and re-applying the rules. Of the 1038 atoms in the 82 

CGENFF molecules in this dataset, MATCH(cgenff) and ParamChem reproduce the 

CGENFF partial charge assignments within 0.005 e- for 1022 and 997 atoms, 

respectively. For the remaining atoms, the partial charge differences are quite small and 

are less than 0.03 e- and 0.06 e- for MATCH(cgenff) and ParamChem, respectively. 

Deviations in the MATCH(cgenff) parameters are primarily due to the decision to keep 

the learned rules more general rather than permit highly specific definitions that while 

they would exactly reproduce the CGENFF charges they would likely be less 

transferable. In most cases, the local environment for atom type definitions was 1-2 

bonds while the refinement rules for assigning bond-charge increments was 2-3 bonds 

from a given atom. The largest deviations between MATCH(cgenff) and the original 

CGENFF topology file arises from the inability of MATCH(cgenff) to reproduce partial 

charge distribution in CGENFF amines. For example, the H41 and H42 atoms in cytosine 

derivatives modeled in CGENFF have identical bond connectivity but different chemical 

environments due to the three-dimensional shape of the molecule. In this case, in 

CGENFF the H41 and H42 atoms are assigned partial charges of 0.37 e- and 0.32 e-, 

respectively, whereas MATCH(cgenff), which is based on bond connectivity alone, 

assigns partial charges of 0.345 e- to both hydrogen atoms, i.e., the average of 0.37 e- and 

0.32 e-.  

 

However, while the changes in the partial charge assignments are relatively small, they 

do affect the estimated hydration energies. Figure 3.1 depicts the partial charge 
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assignments and estimated hydration free energies for the three compounds that have 

deviations in molecular dipoles for ParamChem relative to the CGENFF compounds that 

are greater than 0.1 D. Note: there were no MATCH(cgenff) compounds whose dipoles 

differed from CGENFF by more than 0.1 D. The ParamChem partial charge distribution 

for chloroethane improves the quality of the estimated hydration free energy relative to 

the corresponding CGENFF estimate value while the partial charge distributions for 

pyrrole and fluorobenzene degrade the estimate.  

3.4.3 Overall Quality of Absolute Hydration Free Energy Estimates for Different 

Parameterization Schemes 

The quality of the hydration free energies of the compounds in the small molecule dataset 

is summarized in Table 3.1 and provides a direct measure of the ability of the automated 

parameterization schemes to characterize the chemical space of a given compound as 

well as the quality of the parameters in the CGENFF topology file. MATCH(cgenff) and 

ParamChem parameters modeled with GBMV2 and GBSW implicit solvent models 

demonstrate good agreement with experimental hydration free energies across the 82 

CGENFF compounds with AUEs of 0.94 to 0.99 kcal/mol and R2 values between 0.81 

and 0.85. Over half of the CGENFF compounds (57-62%) have hydration free energies 

that are correctly predicted within 1 kcal/mol of their experimental values. Most of the 

 
Figure 3.1. Schematic of the compounds whose partial charge distributions in ParamChem resulted in a 
molecular dipole difference of more than 0.01 Debye compared to the partial charge assignments in 
CGENFF. For clarity, only atoms whose ParamChem charges were more than 0.01 e- from CGENFF are 
labeled. Note: MATCH(cgenff) charges essentially reproduce the CGENFF charges for these compounds 
so are not labeled. 
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compounds (90-93%) have hydration free energies that are correctly predicted within 2 

kcal/mol and almost all of the compounds (99-100%) have hydration free energies that 

are correctly predicted within 3 kcal/mol. Given that these compounds are the ones from 

which the libraries and databases of atom-typing definitions and bond-charge increment 

rules are derived, these results can be seen as the upper bound of the quality that can 

currently be expected from either MATCH(cgenff) or ParamChem automated 

parameterization strategies. 

 
Parameterization 

scheme: 
MATCH(cgenff) ParamChem GAFF SwissParam 

Implicit solvent 

model: 
GBMV2 GBSW GBMV2 GBSW GBMV2 GBSW GBMV2 GBSW 

CGENFF         

Opt g 0.0075 0.01 0.0075 0.01 0.0075 0.02 0.01 0.015 

<|Error|> 0.97 0.94 0.99 0.96 0.88 0.95 1.12 0.99 

<Error> -0.10 -0.06 -0.11 -0.07 0.15 -0.04 0.32 0.10 

R2 0.846 0.816 0.841 0.808 0.870 0.841 0.815 0.801 

% |Error|:         

<3 kcal/mol 100 99 100 99 99 98 93 96 

<2 kcal/mol 90 93 90 93 90 90 77 84 

<1 kcal/mol 60 62 57 60 65 61 55 61 

         

non-CGENFF         

<|Error|> 1.47 1.43 1.51 1.49 1.24 1.33 1.49 1.16 

<Error> 0.31 0.23 0.03 0.01 0.35 0.07 0.24 0.05 

R2 0.688 0.669 0.634 0.633 0.758 0.701 0.721 0.744 

% |Error|:         

<3 kcal/mol 92 90 90 89 95 97 88 94 

<2 kcal/mol 74 74 73 71 84 78 72 79 

<1 kcal/mol 41 43 45 41 48 43 48 54 

Table 3.1. Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions 
for trajectories analyzed using the GBMV2 and GBSW implicit solvent models and different 
parameterization schemes. 
 

The overall quality of hydration free energy estimates using the MATCH and 

ParamChem parameterization schemes are comparable to those obtained when the small 

molecules are modeled with AMBER/GAFF parameters and AM1-BCC charges (AUEs 

of 0.88 to 0.95 kcal/mol and R2 values of 0.84-0.87) and SwissParam (AUEs of 0.99-1.12 

kcal/mol and R2 values of 0.80-0.82). The percentage of compounds whose hydration 
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free energies were correctly predicted within 1 kcal/mol of the experimental values by 

SwissParam is comparable to the other parameterization strategies. However, the results 

for correct predictions within 2 and 3 kcal/mol were slightly degraded to 77-84% and 93-

96% respectively. 

3.4.4 Extending Parameterization Schemes to Novel Contexts  

For the remaining 375 compounds that are not included in the CHARMM CGENFF 

topology file, the quality of the hydration free energies of these compounds is a more 

direct measure of the ability of MATCH or ParamChem to extend their respective atom-

typing and parameterization schemes to novel contexts. MATCH(cgenff) and 

ParamChem parameters modeled with GBMV2 and GBSW implicit solvent models 

demonstrate reasonable agreement with experimental hydration free energies across these 

375 compounds with AUEs between 1.4 and 1.5 kcal/mol and R2 values between 0.63 

and 0.69. For this dataset, slightly less than half (41-45%) of the compounds have 

hydration free energies that are correctly predicted within 1 kcal/mol of their 

experimental values. About three-quarters of the compounds (71-74%) have hydration 

free energies that are correctly predicted within 2 kcal/mol and about ninety percent (89-

92%) have hydration free energies that are correctly predicted within 3 kcal/mol. 

 

Interestingly, just as the quality of the MATCH(cgenff) and ParamChem estimates of the 

hydration free energies of the compounds in the CGENFF training set was higher by ~0.5 

kcal/mol compared with estimates for the non-CGENFF test set compounds, the quality 

of the estimates based on the GAFF/AM1-BCC parameterization scheme was ~0.4 

kcal/mol higher for the CGENFF compounds than the non-CGENFF compounds. The 

AUEs for the 375 test compounds modeled by GAFF/AM1-BCC are 1.2-1.3 kcal/mol 

while the R2 values are 0.70-0.76. Since AM1 charges are assigned de novo for each 

molecule and BCC corrections were parameterized with an extensive training set of 2775 

compounds that spanned the functional space represented in the CGENFF and non-

CGENFF sets, the CGENFF training set/test set designations should not be applicable for 

AM1-BCC parameterization scheme. Thus, the poorer estimates of the hydration free 

energies for the test compounds over the training set compounds suggest that the 

compounds in the test set are inherently more challenging to model than those in 
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CGENFF. The SwissParam parameters also yielded a slight degradation (~0.2-0.4 

kcal/mol) in the quality of the hydration free estimates for the test set relative to the 

training set of compounds. The AUEs for the 375 compounds modeled with SwissParam 

are 1.2-1.5 kcal/mol and had the largest R2 values of any parameterization scheme of 

0.72-0.74.  

3.4.5 Targeting Chemical Classes for Further Parameter Optimization 

Across the 82 CGENFF compounds, a subset of the full CGENFF training set, as well as 

the test set of 375 compounds, the AUEs for the majority of the chemical classes are less 

than 1.5 kcal/mol. Figure 3.2 summarizes the AUEs of the compounds within each 

chemical class designation for each of the parameterization schemes with the GBMV2 

implicit solvent model. Figure 3.3 focuses on specific chemical classes that may be 

targeted in for further parameterization efforts. These parameterization efforts can be 

viewed as increasing the breadth of compounds that are reliably covered by these 

automated rules or increasing the depth of the meaningful coverage of a particular region 

of chemical space.  

 
Figure 3.2. Average unsigned errors of hydration free energies by chemical class for four different 
parameterization schemes in the GBMV2 implicit solvent model for the A) 82 molecules that are in 
CGENFF and B) the 375 compounds that are not included in CGENFF. 

First, Figure 3.3A highlights the AUEs for the four chemical classes of compounds that 

have errors in their respective hydration free energy estimates that are more than 1 
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kcal/mol larger for the non-CGENFF compounds relative to the CGENFF compounds: 

iodo-, carboxylic acid amides (ca_amide), chloro-alkyl, ether-aryl compounds. The low 

AUEs in the context of CGENFF compounds and high AUEs in the context of non-

CGENFF compounds for MATCH(cgenff) and ParamChem suggest that the learned rules 

in MATCH(cgenff) and ParamChem for these contexts are not sufficiently transferable to 

accurately model the chemical space associated with these groups. For example, the rules 

for iodine-containing compounds are severely limited in MATCH(cgenff) because the 

CGENFF topology file only contains iodobenzene. Thus, it is not surprising that the AUE 

for the iodo- compounds is so large when there are exclusively aliphatic iodo- 

compounds in the non-CGENFF test set. While there is extensive coverage of the 

carboxylic acid amide chemical class in CGENFF topology file with examples of 

primary, secondary and tertiary amides, the three compounds in the ca_amide group that 

perform particularly poorly are ones in which the amide is a substituent on a ring and 

there are no examples of this type in the CGENFF dataset.  

 

The chloro_alkyl group in the CGENFF dataset is limited to three compounds: 

111_trichloroethane, chloroethane and 11_dichloroethane. This coverage is insufficient to 

characterize the bond charge increments of the wide variety of aliphatic halide 

compounds in the nonCGENFF dataset. Unlike compounds in the iodo- and ca_amide 

groups in which both MATCH(cgenff) and ParamChem yield similar errors in their 

respective hydration free energies, several compounds in the chloro_alkyl group are 

modeled differently by MATCH(cgenff) compared with ParamChem. For example, 

MATCH(cgenff) yields poor hydration free energies for molecules that contain chloro 

groups on opposite sides of the molecule (e.g., 1,4-dichlorobutane, bis-2-chloroethylether 

and 1,1,2,2,-tetrachloroethane) whereas the high AUE for the chloro_alkyl group for 

ParamChem results from molecules that have three fluorine atoms bound to the same 

aliphatic carbon (e.g., isoflurane, halothane, 1_chloro_222_trifluoroethane). Thus, the 

degradation in hydration free energies for these latter molecules likely results from a less 

than ideal bond charge increment for fluoride rather than there inherently being a 

problem with modeling compounds containing chlorine. Finally, the degradation 

observed in the ether-aryl class of compounds is dominated by the error in modeling N,N-
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dimethyl-p-methoxybenzamide which suggests that the issue lies in the poor 

parameterization of the amide (as observed with the ca_amide group) rather than the 

ether functionality itself. Thus, while no specific parameterization efforts are required to 

improve the quality of the ether-aryl group, the larger errors for compounds in the iodo-, 

ca_amide and chloro_alkyl groups clearly suggest that subsequent generations of 

MATCH libraries and ParamChem rules would benefit from a broader template of well-

parameterized training compounds for these chemical classes.  

 

Second, examining the classes of compounds for which the AUEs differ significantly 

between force fields can be informative for identifying possible strategies for improving 

the parameterization of a particular functional group. Figure 3.3B highlights the AUEs in 

the chemical classes whose errors deviate by more than 1 kcal/mol between the 

MATCH(cgenff) and the ParamChem parameterization schemes. The AUE for the fluoro 

compounds in the CGENFF set are similar for MATCH(cgenff) and ParamChem. 

However, as depicted in Figure 3.1, the partial charge distribution for fluorobenzene 

modeled by ParamChem is significantly different from that modeled by MATCH(cgenff) 

and CGENFF itself. The underlying differences in the bond charge increment rules leads 

to larger differences when modeling the non-CGENFF compounds and the average error 

for ParamChem is about 1 kcal/mol larger than for MATCH(cgenff). In fact, ParamChem 

has the most difficulty producing accurate hydration free energies for molecules with 

multiple fluorine atoms bound to the same aliphatic carbon. Thus, it is likely that 

additional refinement rules within the ParamChem parameterization scheme could 

ameliorate the hydration free energies for this class. 
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Figure 3.3. Average unsigned errors of hydration free energies for specific chemical classes for (top panel) 
CGENFF molecules and (bottom panel) non-CGENFF compounds. Classes in which A) both 
MATCH(cgenff) and ParamChem have AUEs for the non-CGENFF set more than 1 kcal/mol worse than 
the CGENFF set; B) MATCH(cgenff) performs 1 kcal/mol better or worse than ParamChem; C) 
SwissParam performs more than 1 kcal/mol poorer than the other force fields; and D) both 
MATCH(cgenff) and ParamChem perform more than 1 kcal/mol poorer than either SwissParam or 
GAFF/AM1-BCC. 

Next, given the systematically poorer results for the alcohols, aldehydes, bromo- and 

ether alkyl groups modeled by SwissParam compared to the other force fields (see 

Figure 3.3C), further parameterization of these specific groups by the SwissParam 

developers would likely further strengthen SwissParam’s performance. In fact, the 

aldehyde compounds yield the highest error for any group modeled by SwissParam with 

AUEs of 3.12 kcal/mol for CGENFF molecules and 2.56 kcal/mol for non-CGENFF 

molecules. In general, in these compounds, the partial charges assigned by SwissParam to 

the functional groups are systematically larger in magnitude than the corresponding 

charges modeled by MATCH(cgenff), ParamChem and GAFF. Schematics for 

compounds with the largest differences and the partial charge assignments across the 

force fields are presented in the Supplementary Materials.  

 

Finally, the ca_ester, alkene and thioether classes of compounds are the only three classes 

that demonstrate a systematic degradation in the AUE for MATCH/ParamChem models 

compared to SwissParam and GAFF/AM1-BCC for the CGENFF molecules (see Figure 

3.3D). These groups have AUEs of 2.6, 2.2 and 1.8 kcal/mol respectively in 

MATCH(cgenff) and ParamChem. The decrease in the quality of the esters (ca_ester) and 
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alkenes for both MATCH(cgenff) and ParamChem is correlated with a systematic 

increase in the magnitude of the CGENFF partial charges of the respective functional 

groups compared with those assigned by SwissParam and GAFF parameterization 

schemes. For example, MATCH(cgenff) and ParamChem assign an average of 0.90 e- to 

the carboxyl carbon of the esters which is ~50% larger than the corresponding partial 

charges assigned by SwissParam and GAFF. Similarly, the hydrogen atoms at the end of 

conjugated alkenes have partial charges of 0.21 e- in MATCH(cgenff) and ParamChem 

compared with 0.10-0.15 e- in SwissParam and GAFF. The thioether class in CGENFF 

only has one member: methylethylsulfide. In this case, the CGENFF assigned partial 

charge of the sulfur atom is -0.1 e- while SwissParam and GAFF assign partial charges of 

-0.46 and -0.30 e-, respectively, which contributes to the increase in the molecular dipole 

from 0.24 to 0.43 D. Thus, the CGENFF parameters for these three chemical classes 

could be targeted for further improvement to more reliably reproduce experimental 

hydration free energies. Of course, given the differences in the parameterization 

philosophies across these force fields, simply adopting the GAFF or SwissParam partial 

charges for these compounds in order to reproduce hydration free energies estimated with 

an implicit solvent model cannot guarantee that these parameters will transfer 

appropriately to simulations in more realistic biomolecular contexts. 

3.4.6 FACTS Implicit Solvent Model 

FACTS is a recently developed implicit solvent model in which the Born radii are 

parameterized so that the electrostatic component of the hydration free energy is 

estimated from pairwise interactions alone. Specifically, in the FACTS parameterization, 

the DGelec is estimated from the density of neighboring atoms and their symmetrical 

arrangement around the atom in question. This parameterization scheme greatly increases 

the computational efficiency of the calculations; in fact, the original study reported that 

the computational expense was only four times that of the corresponding vacuum 

calculations. However, this strategy requires a higher degree of parameterization than 

other Generalized Born implicit solvent models.  

 

Table 3.2 summarizes the measures of model quality for the four parameterization 

schemes when the solvent environment is represented by FACTS. In this study, it is clear 
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that regardless of the ligand parameterization scheme, the FACTS implicit solvent model 

exhibits a slight, but systematic, degradation in the quality of the hydration free energies 

relative to either GBMV2 or GBSW implicit solvent models. The AUEs tend to be about 

0.2-0.3 kcal/mol higher for the FACTS models than either GBMV2 or GBSW models 

while the R2 values tend to be lower by 0.1 to 0.15. Thus, these results suggest that 

modeling with FACTS, especially in contexts where computational resources are limited, 

is a viable alternative to the more costly, though more accurate, implicit solvent models. 

Furthermore, many atom types in this work rely on interpolations and extrapolations from 

the values for FACTS parameterized radii; thus, the quality of the FACTS model will 

also likely improve as more van der Waals radii are specifically parameterized and made 

available to the community. These results also suggest that the FACTS implicit solvent 

model is transferable across these CHARMM-compatible force fields.  
Parameterization 

scheme: 
MATCH(cgenff) ParamChem GAFF SwissParam 

CGENFF     

Opt g 0.0025 0.0025 0.0025 0.005 

<|Error|> 1.22 1.25 1.20 1.20 

<Error> 0.04 0.01 0.30 0.17 

R2 0.680 0.672 0.757 0.694 

% |Error|:     

<3 kcal/mol 96 96 94 94 

<2 kcal/mol 85 85 82 77 

<1 kcal/mol 49 49 55 62 

     

non-CGENFF     

<|Error|> 1.59 1.74 1.42 1.50 

<Error> 0.29 0.08 0.52 0.00 

R2 0.566 0.482 0.628 0.508 

% |Error|:     

<3 kcal/mol 87 86 90 86 

<2 kcal/mol 70 67 74 72 

<1 kcal/mol 42 38 51 57 

Table 3.2. Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions 
for trajectories analyzed using the FACTS implicit solvent model for different parameterization schemes. 

3.4.7 Combining Force Fields in CHARMM 

The development of CGENFF in CHARMM attempts to create general atom types and 

parameters for model compounds and fragments that may be important in biomolecular 
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simulations. This philosophy stands in contrast to that for previous CHARMM force 

fields where atom types and parameters were optimized for very specific chemical space 

within the biomolecules that were being simulated, e.g., proteins, nucleic acids, lipids. 

Using the automated approach of MATCH, we explored the ability of the union of the 

non-CGENFF “context-specific” CHARMM force fields to extrapolate their parameters 

to model the chemical diversity in the small molecule dataset.  
Parameterization 

scheme: 
MATCH(cgenff) MATCH(combined) 

Implicit solvent 

model: 
GBMV2 GBSW FACTS GBMV2 GBSW FACTS 

CGENFF       

Opt γ 0.0075 0.0075 0.0025 0.005 0.005 0.000 

<|Error|> 1.00 0.94 1.24 1.00 1.00 1.24 

<Error> -0.06 -0.21 0.14 -0.25 -0.06 -0.11 

R2 0.835 0.805 0.660 0.820 0.752 0.645 

% |Error|:       

<3 kcal/mol 100 99 96 95 97 90 

<2 kcal/mol 89 89 85 90 88 85 

<1 kcal/mol 56 62 49 59 60 47 

       

non-

CGENFF 
   

   

<|Error|> 1.52 1.46 1.71 1.34 1.29 1.57 

<Error> 0.17 -0.19 0.36 -0.39 -0.15 -0.16 

R2 0.665 0.671 0.547 0.715 0.730 0.593 

% |Error|:       

<3 kcal/mol 92 90 86 91 95 91 

<2 kcal/mol 73 74 67 81 82 72 

<1 kcal/mol 40 35 38 49 43 37 

Table 3.3: Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions 
for trajectories analyzed using the GBMV2, GBSW and FACTS implicit solvent models for the 
MATCH(cgenff) and MATCH(combined) libraries for the 73 CGENFF, and 277 non-CGENFF 
compounds for which MATCH(combined) libraries successfully generated topology and parameter files. 
 

From the resulting MATCH(combined) libraries, topology and parameter files were 

successfully generated for 73 of the CGENFF compounds and 277 of the non-CGENFF 

compounds in the dataset. It was not clear, though, how meaningful subsequent hydration 

free energy calculations would be for this parameterization scheme. Since each of these 

CHARMM force fields was optimized individually, there was the potential that 
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combining them might produce non-physical results, particularly for compounds that 

would encompass chemical space that overlapped with two or more CHARMM force 

fields, i.e., where rules were learned from different force fields. Table 3.3 summarizes 

the measures of model quality obtained for these compounds in each of the implicit 

solvent models and shows that, for the compounds that it could parameterize from the 

MATCH(combined) libraries, that the compounds are modeled at a comparable level of 

quality to that observed from the MATCH(cgenff) library. For the set of 73 CGENFF 

molecules the combined force field achieved virtually the same quality as 

MATCH(cgenff) and, interestingly, for the more challenging test set of 277 compounds, 

the MATCH(combined) parameters exhibited a slight but systematic improvement over 

the MATCH(cgenff) parameters with AUEs of 1.3-1.7 kcal/mol and R2 values of 0.55 to 

0.73. Thus, even though the non-CGENFF CHARMM force field parameters are 

optimized for specific chemical environments, the high quality of results is likely a 

product of the consistency of the overall philosophy governing the developing of 

CHARMM force fields and the coherence of the optimization procedures. 
 

Examining the differences in hydration free energy estimates by chemical class may 

again be useful to determine if there is any chemical space that could be optimized in 

CGENFF. The comparison between AUEs by chemical class for MATCH(cgenff) and 

MATCH(combined) is summarized in Figure 3.4. The three chemical groups with the 

largest improvement in hydration free energy estimates compared to those produced 

using the charges from MATCH(cgenff) are the amines, aldehydes and thiols with 

improvements on average of 1.1, 0.8 and 0.7 kcal/mol respectively. For the amines, 

increases in the partial charge on the nitrogen were responsible for the cases where the 

combined MATCH force field significantly outperformed the MATCH(cgenff) force 

field. For example, in triethylamine the partial charge on the amine nitrogen atom 

changes from -0.63 e- in MATCH(cgenff) to -0.84 e- in MATCH(combined) and is 

compensated by increases in the partial charges assigned to the adjacent carbon atoms  
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Figure 3.4. Average unsigned errors of hydration free energies by chemical class for the MATCH(cgenff) 
and MATCH(combined) parameterization schemes in the GBMV2 implicit solvent model for the A) 73 
molecules that are in CGENFF and B) the 277 compounds that are not included in CGENFF. 
 

from 0.03 e- to 0.10 e- and, thus, an increase in the N-C dipole. By contrast, the 

differences in the partial charge distributions of the thiol compounds results in a 

reduction in the S-C dipole and an improvement in the hydration free energy estimates. 

Similarly, the difference in the performance for the aldehyde group is dominated by three 

compounds, i.e., E-but-2-enal, E-hex-2-enal, and E-oct-2-enal in which the C=O dipole is 

systematically smaller in the MATCH(combined) parameterization. Thus, these three 

chemical classes that could be revisited in the CGENFF force field development and/or 

the MATCH(cgenff) libraries could be modified to incorporate the amine, aldehyde and 

thiol parameters and charge assignment rules.  

 

3.5 Conclusion 

We have recently developed MATCH, an Atom-Typing Toolset for Molecular 

Mechanics Force Fields, in our lab. This toolset is designed to construct force field-

specific libraries containing parameters and bond charge increment rules that can be 

learned from the topology and parameter file for a given force field. Once constructed, 

the MATCH library can be used to assign parameters for an arbitrary compound provided 
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that the chemical space represented in the compound was covered in the original force 

field.  

 

We present a comparison of absolute hydration free energies that have been calculated 

for an extensive database of small neutral molecules using MATCH libraries constructed 

from CGENFF (MATCH(cgenff)) and a variety of CHARMM-compatible force fields in 

GBMV2, GBSW, and FACTS implicit solvent models. Of the 499 small molecules, 

topology and parameter files for 460 compounds were successfully generated from the 

ParamChem webserver and from the MATCH toolset libraries MATCH(cgenff), which 

were constructed from CGENFF. MATCH(cgenff) and ParamChem reproduce the partial 

charge distributions for most of the compounds in the dataset that were part of CGENFF.  

 

Given optimized surface tension coefficients for scaling the surface area term in the 

nonpolar contribution, these automated parameterization schemes and GBMV2 and 

GBSW demonstrate reasonable agreement with experimental hydration free energies 

(average unsigned errors=0.9-1.5 kcal/mol and R2=0.63-0.87). The FACTS 

parameterization yielded hydration free energies that were slightly poorer than the 

GBMV2 and GBSW estimates, though at a fraction of the computational expense. 

Antechamber parameters (GAFF with AM1-BCC partial charges) resulted in marginally 

more accurate estimates than the current generation of MATCH, ParamChem and 

SwissParam parameterization strategies.  

 

This study highlights the importance of having sufficient coverage of chemical space 

within the underlying databases of these automated schemes and the benefit of targeting 

specific functional groups for parameterization efforts in order to maximize both the 

breadth and depth of the parameterized space. By analyzing the quality of hydration free 

energies associated with different chemical classes, it was clear that (i) MATCH(cgenff) 

and ParamChem would benefit from further specificity in their learned rules associated 

with the iodo-, amides attached to rings, and chloro-alkyl groups; (ii) ParamChem 

accuracy would improve with additional refinement rules for modeling fluorine-

containing compounds; (iii) SwissParam could leverage parameters from other force 
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fields to improve how alcohols, aldehydes, bromo- and ether alkyls are modeled to better 

reproduce experimental hydration free energies; (iv) and parameters in CGENFF for 

esters, thioethers and alkenes would need to be revisited to reproduce the quality of 

hydration free energy estimates that are observed with GAFF/AM1-BCC and 

SwissParam. Finally, modeling with MATCH libraries that were derived from the non-

CGENFF CHARMM topology and parameter files indicates that amine, aldehyde, and 

thiol parameters in MATCH(cgenff) could be improved by incorporating parameters 

from the context-specific force fields in CHARMM.  

 

The overall success of these automated strategies for parameterizing arbitrary compounds 

indicates that a critical step forward has been taken towards making biomolecular 

simulations more readily accessible for a wide range of applications involving small 

molecules.  The quality of the hydration free energies given these CHARMM-compatible 

force fields and implicit solvent models is promising and sets the stage for a systematic 

evaluation of the quality of protein-ligand binding affinities. 

 

This work has been published in the Journal of Computational Chemistry. The idea was 

conceived by Yesselman, J.D., Knight, J.L, Brooks, C.L., III. Parameterization of small 

molecules by MATCH and ParamChem were performed by Yesselman, J.D. 

Parameterization of small molecules by SwissParam and AnteChamber, along with the 

free energy perturbation simulations. The analysis of the hydration free energy 

computations was done by both by Yesselman, J.D. and Knight, J.L. 

 

3.6 References 

1. Halgren TA. Merck molecular force field. II. MMFF94 van der Waals and 
electrostatic parameters for intermolecular interactions. J Comput Chem. 
1998;17(5-6):520-52. 

 
2. Yesselman JD, Price DJ, Knight JL, Brooks CL, III. MATCH: An Atom-Typing 

Toolset for Molecular Mechanics Force Fields. J Comput Chem. 2011;33(2):189-
202. 

 
3. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. 

CHARMM General Force Field: A Force Field for Drug-Like Molecules 



 87 

Compatible with the CHARMM All-Atom Additive Biological Force Fields. J 
Comput Chem. 2010;31(4):671-90. 

 
4. Halgren TA. MMFF VII. Characterization of MMFF94, MMFF94s, and other 

widely available force fields for conformational energies and for intermolecular-
interaction energies and geometries. J Comput Chem. 1999;20(7):730-48. 

 
5. Wang J, Wolf R, Caldwell J, Kollman P, Case D. Development and testing of a 

general amber force field. J Comput Chem. 2004;25(9):1157-74. 
 
6. Mobley DL, Dill KA, Chodera JD. Treating entropy and conformational changes 

in implicit solvent Simulations of small molecules. J Phys Chem B. 
2008;112(3):938-46. 

 
7. Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA. Small Molecule 

Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge 
Atomistic Simulations. J Chem Theory Comput. 2009;5(2):350-8. 

 
8. Shivakumar D, Deng Y, Roux B. Computations of Absolute Solvation Free 

Energies of Small Molecules Using Explicit and Implicit Solvent Model. J Chem 
Theory Comput. 2009;5(4):919-30. 

 
9. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction 

of Absolute Solvation Free Energies using Molecular Dynamics Free Energy 
Perturbation and the OPLS Force Field. J Chem Theory Comput. 2010;6(5):1509-
19. 

 
10. Knight JL, Brooks CL, III. Surveying implicit solvent models for estimating small 

molecule absolute hydration free energies. J Comput Chem. 2011;32(13):2909-
23. 

 
11. Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of 

solvation for molecular mechanics and dynamics. J Am Chem Soc. 
1990;112:6127-9. 

 
12. Feig M, Brooks CL, III. Recent advances in the development and application of 

implicit solvent models in biomolecule simulations. Curr Opin Struct Biol. 
2004;14(2):217-24. 

 
13. Born M. Volumes and hydration warmth of ions. Z Phys. 1920;1:45-8. 
 
14. Lee M, Feig M, Salsbury F, Brooks CL, III. New analytic approximation to the 

standard molecular volume definition and its application to generalized Born 
calculations. J Comput Chem. 2003;24(11):1348-56. 

 



 88 

15. Lee MS, Salsbury F, Brooks CL, III. Novel generalized Born methods. J Chem 
Phys. 2002;116(24):10606-14. 

 
16. Im W, Lee M, Brooks CL, III. Generalized born model with a simple smoothing 

function. J Comput Chem. 2003;24(14):1691-702. 
 
17. Haberthuer U, Caflisch A. FACTS: Fast analytical continuum treatment of 

solvation. J Comput Chem. 2008;29(5):701-15. 
 
 
18. Haberthur U, Majeux N, Werner P, Caflisch A. Efficient evaluation of the 

effective dielectric function of a macromolecule in aqueous solution. J Comput 
Chem. 2003;24(15):1936-49. 

 
19. Rizzo R, Aynechi T, Case D, Kuntz I. Estimation of absolute free energies of 

hydration using continuum methods: Accuracy of partial, charge models and 
optimization of nonpolar contributions. J Chem Theory Comput. 2006;2(1):128-
39. 

 
20. Guthrie JP. A Blind Challenge for Computational Solvation Free Energies: 

Introduction and Overview. J Phys Chem B. 2009;113(14):4501-7. 
 
21. Mobley D, Dumont E, Chodera J, Dill K. Comparison of charge models for fixed-

charge force fields: small-molecule hydration free energies in explicit solvent. J 
Phys Chem B. 2007;111(9):2242-54. 

 
22. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, et al. 

Predicting small-molecule solvation free energies: An informal blind test for 
computational chemistry. J Med Chem. 2008;51(4):769-79. 

 
23. Haider N. Functionality Pattern Matching as an Efficient Complementary 

Structure/Reaction Search Tool: an Open-Source Approach. Molecules. 
2010;15(8):5079-92. 

 
24. Jakalian A, Bush B, Jack D, Bayly C. Fast, efficient generation of high-quality 

atomic Charges. AM1-BCC model: I. Method. J Comput Chem. 2000;21(2):132-
46. 
 

25. Jakalian A, Jack D, Bayly C. Fast, efficient generation of high-quality atomic 
charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 
2002;23(16):1623-41. 

 
26. van Gunsteren WF, Berendsen, H.J.C. Algorithms for macromolecular dynamics 

and constrained dynamics. Mol Phys. 1977;34:1311-27. 
 



 89 

27. Brooks BR, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. 
Karplus. CHARMM: A Program for Macromolecular Energy, Minimization, and 
Dynamics Calculations. J Comput Chem. 1983;4:187-217. 

 
28. Brooks BR, Brooks CL, III, Mackerell AD, Jr., Nilsson L, Petrella RJ, Roux B, et 

al. CHARMM: the biomolecular simulation program. J Comput Chem. 
2009;30(10):1545-614. 

 
29. Bennett CH. Efficient Estimation of Free-Energy Differences from Monte-Carlo 

Data. J Comput Phys. 1976;22(2):245-68. 
 
30. Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple 

equilibrium states. J Chem Phys. 2008;129(12):124105. 
 



 90 

CHAPTER 4 

Using NMR Data to Generate Dynamic RNA Ensembles 

 

4.1 Introduction 

Dynamics play a critical role in functional RNAs(1-5). Unlike proteins, RNA has a high 

degree of flexibility, adopting radically different states upon binding of proteins or 

ligands(6-8). Due to RNA’s structural plasticity, it is unreasonable to represent an RNA 

drug target as a single structure in computational drug discovery applications. Difficulty 

in representing extensive RNA dynamics has contributed to less optimal results in virtual 

screening efforts as compared to protein targets. What is required is the determination of 

conformational ensembles that capture highly-populated states in vitro, and such dynamic 

representations of RNA have already yielded better binders in virtual screening efforts(1)  

 

In the past several years, techniques to create dynamic structural ensembles to use in 

computational docking have been developed using a combination of NMR data and 

molecular dynamics (MD)(9-13). Using MD to generate a pool of potential 

conformations, NMR observables such as spin relaxation order parameters or residual 

dipolar couplings (RDCs) can be back-predicted using ensemble averaging to optimize a 

set of conformers from the pool. Recently, Al-Hashimi and colleagues applied the sample 

and select (SAS) method using RDCs to produce an ensemble for the HIV-1 

transactivation RNA (TAR) element. This ensemble was then combined with 

computational docking to find multiple novel binders to TAR that include compounds 

that inhibit HIV-1 replication in vivo(1,13). This is a great leap forward for computational 

RNA drug design. Understanding the success of SAS and applying it to other systems is 

critical to improving our success in RNA drug design.  
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Two major questions remain to be answered: first, can this approach be applied to other 

RNA systems and second, can other NMR observables be used? Although RDCs can be 

sensitive reporters of structure and dynamics, RDCs primarily report on global aspects of 

structure, and may not provide adequate information about local structure. In contrast. 

NMR chemical shifts report on the local electronic environment and are sensitive to 

stacking, hydrogen bonding, dihedral angles and other electrostatic effects. In proteins, 

chemical shifts are widely used in 3D structure determination and more recently in 

determining ensembles.  

 

Recently, 1H chemical shifts in nucleic acids have been shown to discriminate between 

native and non-native structures using programs such as SHIFTS(14) and 

NUCHEMICS(15,16). Additionally, Summers and colleagues showed that 1H chemical 

shifts can be used to discriminate between different base-pair triplets, non-canonical 

base-pairs and terminal base pairs(17). Chemical shifts presents many potential benefits 

in ensemble determination: first, chemical shifts are significantly easier to measure then 

RDCs and second, chemical shifts have the ability to report of more local effects such as 

base orientation in internal bulges and junctions: the common locations for protein and 

ligand binding sites in RNA(18-20).  

 

To investigate the utility of chemical shifts in the production of dynamic structural 

ensembles for the internal bulges of RNA, we ran molecular dynamics on 26 NMR 

structures with known chemical shifts from the Biological Magnetic Resonance Bank 

(BMRB)(21) to produce structure pools, and then used SAS selections employing only 

chemical shift data to construct ensembles. We test the CS generated ensembles using 

independent data, including Nuclear Overhauser Effect (NOEs) and RDCs. We then use 

this CS SAS approach to determine ensembles for the ribosomal decoding site, or A-site 

– the most well studied RNA drug target.  

 

A-site is located in the small 30S subunit and is responsible for verifying that the mRNA 

codon and tRNA anticodon are perfectly complementary to ensure correct amino acid 

incorporation and error free translation (22,23). Upon formation of a canonical mini-helix 
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between mRNA and its cognate tRNA, two internal loop adenines A1492 and A1493 flip 

out of the A-site and form tertiary interactions with the phosphate backbone of the codon-

anticodon helix, which in turn signals acceptance of the tRNA through mechanisms that 

are not fully understood(24,25). However, for near or non-cognate tRNAs, the non-

canonical helix forms a distorted structure, and A1492 and A1493 do not flip out, thus 

rejecting the tRNA. Many antibiotics such as paramomycin bind to the A-site, and induce 

the flipping out of A1492 and A1493(26-30). This leads to loss of proofreading and 

incorporation of incorrect amino acids and bacterial death.  

 

Despite being one of the most intensely studied RNAs there are still conflicting reports 

regarding the conformation of the adenine residues in the unbound A-site. In particular, it 

remains unclear whether in the unbound state, A1492 and A1493 are both flipped in, 

possibly hydrogen bonding to A1408, or if one or the two residues adopt a partially 

flipped out conformation. Clearly, a detailed understanding of the A-site binding site is 

critical for applying virtual screening in the development of antibiotics.  

4.2 Materials and Methods 

4.2.1 Simulation Protocol for BMRB structures 

In total, MD simulations were performed on 26 NMR structures from the BRMB to build 

conformational pools to perform SAS. Each construct was subjected to 100 steps of 

steepest descent minimization and subsequently solvated with TIP3 and charge-

neutralized using sodium counter ions. Simulations were run using CHARMM36 with the 

newly updated nucleic acid force field(31,32). Short dynamics runs were utilized to 

equilibrate the system to the final temperature of 300K. A Nosé-Hoover 

thermostat(33,34) was utilized to maintain a constant temperature of 300K. In addition a 

2 fs timestep was employed using the shake algorithm (cite). Atom positions were saved 

every 2 ps. Simulation length varied from 5 – 190 ns, see Appendix A1.1 for full details. 

4.2.2 NMR Sample Preparation and Data Analysis 

We employed a modified domain elongation strategy, appending the well-characterized 

Stem-I helix from HIV-1 TAR(35-38) to the ribosomal decoding site construct to remove 

coupling of internal and global dynamics, improve alignment for RDC measurement, and 
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increase stability of the bulge and UU base pair (Figure 4.5). The 13C/15N labeled A-site 

construct was prepared by in vitro transcription using T7 RNA polymerase as described 

previously(39). Briefly, transcription buffer conditions were optimized in small scale 50 

µL reactions and the final conditions were scaled to a 10 mL reaction and run for 20 

hours at 37 °C. Inorganic phosphate precipitates were removed by centrifugation and 

filtration and the supernatant concentrated to approximately 1 mL and run on a 20% 

denaturing PAGE gel. The desired product was cut from the band and the RNA 

electroeluted using the Elutrap (Whatman). Residual polyacrylamide and other trace 

contaminants were removed by ethanol precipitation. The RNA pellet was resuspended in 

ddH2O and annealed at 95 °C for 5 minutes, followed by repeated buffer exchange into 

NMR buffer (25 mM NaCl, 15 mM Sodium Phosphate pH 6.4, 0.1 mM EDTA) using an 

Ultra-4 amicon (Millipore Corp.). The final RNA concentration was ~0.3 mM with 10% 

D2O (v/v). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Table 4.1: A table of measured RDCs. Flexible residues, shown  
    in italics, were excluded from order tensor analysis. 
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Chemical shifts were measured using 2D C-H or N-H HSQC experiments. For RDC 

measurements, nucleobase and sugar 1H-13C splittings were measured from the difference 

between the upfield and downfield components of the 1H-13C doublet along the 1H 

component using the narrow transverse relaxation-optimized spectroscopy (TROSY) 

component in the 13C dimension as implemented in the 2D 1H-13C S3 CT-heteronuclear 

single quantum correlation (HSQC) experiments. For RDC measurements, 

15!mg/ml Pf1 phage solution (Asla Biotech) (40-43) in NMR buffer with 10% D2O was 

added to RNA. RNA concentration in Pf1 phage was 0.2 mM. Idealized A-form 

structures were constructed using Insight II (Molecular Simulations, Inc.) correcting the 

propeller twist angles from +15° to -15° using an in-house program, as previously 

described. 

4.2.3 Preparation of Ribosomal Decoding Site Database 

Utilizing the RNA Frabase 2.0 web-server(44), all structures containing the minimal 

secondary structure of the ribosomal decoding site were gathered. Although over 150 

structures were found, a large percentage of these structures were co-crystallized with 

antibiotic or with mRNA and tRNA, all of which can radically alter the conformation of 

A1492 and A1493(24,45). For example, on addition of mRNA and tRNA, A1492 and 

A1493 flip out of the helix to form tertiary interactions if there is complementary pairing 

between the mRNA-tRNA minihelix. Likewise, antibiotics that bind to the ribosomal 

decoding site can also displace A1492 and A1493, forcing them into an extruded 

conformation. In addition, some ribosome structures also contained A1913 from the 50S 

ribosome, which forms interactions with the decoding site after tRNA acceptance(46). In 

total, 10 unique conformations for the decoding site were identified and analyzed. 

4.2.4 Simulation Protocol for the Ribosomal Decoding Site Construct 

The 2QBF pdb was used for the starting structure for the MD simulation as it had a high 

resolution (3.30Å) and had a conformation of A1493 flipped out and A1492 base paired 

to A1408, which represents our best understanding of the decoding site ground state. The 

pdb was modified to include the cUUCGg tetraloop for increased stability and Stem-I of 
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HIV-1 TAR was added below the bulge to recapitulate the experimentally used construct 

in Section 4.2.3. The UUCG structure was taken from pdb 1A3M and the Stem-I of TAR 

was generated through the Nucleic Acid Builder server (http://structure.usc.edu/make-

na/server.html). Monte Carlo simulations were performed to maximize structural 

alignment when attaching pdbs together. The construct was then subjected to 100 steps of 

steepest descent minimization and subsequently solvated with TIP3 and charge 

neutralized using sodium counterions. Simulations were run using CHARMM36 with the 

newly updated nucleic acid forcefield(31,32). As the 3D construct was a hybridization of 

three pdbs, 0.5 ns of equilibrium dynamics were performed with harmonic restraints to 

allow the structure to relax. A Nosé-Hoover(33,34) thermostat was utilized to maintain a 

constant temperature of 300K. In addition a 2 fs timestep was employed, using the shake 

algorithm. Two separate 100 ns simulations starting with different initial velocities. Atom 

positions were saved every 2 ps producing 100,000 total structures.  

4.2.5 SAS Protocol  

To initiate the SAS selection, an N-membered subset of structures was randomly selected 

from a total pool of M structures and an initial χ2-value was generated using Equation 1, 

where L is the total number of data points used in the selection. NUCHEMICS was used 

to compute 1H chemical shifts for each structure in the pool. The prediction alignment 

software PALES(48) was used to compute RDCs for each structure in the pool. χ2 

minimization was used to identify potential structures: one of the N-membered structures 

was randomly chosen and replaced by a random structure from the conformational pool. 

The ‘move’ from step k to k!+!1 was then accepted if χ2
 (k+1)!<! χ2

 (k). If χ2
 (k+1)!>! χ2

 (k), the 

move was accepted with a probability P!=!exp((χ2
 (k)!- χ2

 (k+1))/Teff), where Teff is an 

effective temperature that is linearly decreased in a simulated annealing scheme. For the 

RDC SAS selection, before the χ2 is calculated a scaling factor is applied that best 

correlates the current N-member computed RDCs to the measured RDCs in order to 

alleviate PALES’ shortcoming in computing the precise degree of alignment at a given 

concentration of Pf1 phage.  
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                                  (4.1)
 

 

4.3 Results and Discussion 

4.3.1 BMRB Analysis of Bulged Residues 

Analysis of SAS Selections for BMRB Structures 

Recently there have been multiple attempts to use 1H chemical shifts to aid in structure 

prediction in RNA. Al-Hashimi and colleagues demonstrated that NUCHEMICS 

predicted 1H chemical shifts were able to discriminate between native like conformations 

and conformations that were deformed in high temperature windows of replica exchange 

simulations for four different structures(40). Additionally, Wijmenga and colleagues in a 

similar study were able to generate high quality 3D structures of helical RNA with 

chemical shifts alone(16). These studies indicate that NUCEHMICS predicted 1H 

chemical shifts have some resolving power for both secondary and tertiary structure, 

however it remains unclear how well 1H chemical shifts can be used to define the local 

conformation of bulges. Understanding the dynamics and dominant conformations of 

internal bulges is critical to illuminating their potential binding modes for both small 

molecules and proteins. In addition, it can be very difficult to determine whether a bulge 

in an RNA is flipped in our out based on NOE methods, which are biased to distances of 

closer approach, and which are complicated by potential dynamics. Thus for 26 NMR 

structures with BMRB deposited chemical shifts, we generated a pool of conformations 

using molecular dynamics and back predicted 1H chemical shifts for each structure using 

NUCHEMICS. For each structure pool, we generated SAS selected ensembles that best 

reproduced the experimental 1H chemical shifts of only the internal bulge residues. For 

detailed analysis of the distribution of bulged residues, how well chemical shifts are 

correlated with physical properties and the correlation of NUCHEMICS computed 

chemical shifts compared to experiment see Appendix A1.2-1.5. 

 

Starting at an ensemble size of N=1, the ensemble size would be increased until the SAS 

selected ensemble had an RMSD to the experimentally determined chemical shifts equal 

€ 

χ2 = L−1 (xi
calc − xi

meas)2
i

L

∑
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to or lower then 0.16 ppm or a size of N=20 was reached. This value was selected, as it is 

the error calculated by Wijmenga and colleagues when optimizing NUCHEMICS on 

their training data set(15). As the error in the measurement of experimental chemical shift 

is quite low, the error in prediction is the dominant source of error and increasing the size 

of the ensemble past the N that satisfies this limit would only be adding noise to the 

generated ensemble. All but five systems reached the NUCHEMICS threshold of error 

(Table 4.2).  Other then 1LPW, which contains a modified pseudouridine nucleotide 

which was modeled as uridine in the MD simulations, all the other structures are all large 

bulges with multiple residues on each strand and extensive non-canonical pseudo base 

pairs. It is possible that the conformation that would have satisfied the chemical shifts 

was never sampled due to the large possible conformational space.  

 

Of the remaining systems that were satisfied below the NUCHEMICS error threshold the 

majority of the systems were satisfied with an ensemble size of N=1. While this could 

imply that the structures are mostly static, dynamics are still present in the degeneracy of 

the 1H chemical shifts. In most systems there were multiple conformations that were 

below 0.16 ppm RMSD from the experimental chemical shifts. For systems that 

contained S1S0 bulges, the distribution of degenerate conformations was consistent with 

fluctuations around a dominant single state.  In contrast, 1N8X, 1OW9, 1ZC5 and 2L3E 

contain larger internal bulges but still fit to N=1 ensembles. Here the degeneracy in 

selection cluster into a few dominant states instead of a single like the S1S0 bulges. 
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Calculating the predicted 1H chemical shifts from the NMR structure ensembles refined 

from NOE and RDC constraints has a substantially higher RMSD to the experimentally 

determined chemical shifts compared to the SAS selected ensemble. One possible reason 

for this discrepancy is SAS selected structures differ greatly from the NOE/RDC refined 

structures. If these structures due differ it is critical to assess the differences between 

them, especially do they still satisfy the known NOE constraints? Thus it is critical to 

access the similarity between the structures submitted to the Protein DataBank(47) and 

the structures selected by SAS. 

 

One of the most surprising findings from this survey of chemical shift SAS selections is 

that structures selected have high similarity to the NOE/RDC refined structures, with 

RMSDs ranging from 0.396 to 5.626 Å (Table 4.2). This result may seem counter 

intuitive as the NOE/RDC refined ensembles have substantially higher chemical shift 

RMSD to their respective experimental chemical shifts. Structures such as 1LMV and 

2FDT have chemical shift RMSDs of 0.951 and 0.561 ppm respectively, for their internal 

bulges; upon performing a SAS selection RMSDs improve significantly to 0.142 and 

 
  Table 4.2. A summary of the results of performing SAS selections of all 26 NMR structures with  
  internal bulges from the BMRB. 
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0.103 ppm, respectively. Of course it is important to confirm that the SAS-selected 

structures resemble the experimentally determined NMR structures. With a few 

exceptions, SAS selection produces conformations that are surprisingly similar to the 

original NMR structure. The clear outlier is 2QH3, which has a single flipped out uridine. 

The SAS-selected conformation also is flipped out, but since there are few contacts with 

other residues the uridine is free to move unrestrained yielding an abnormally high 

RMSD. The other structures that have high spatial RMSD are 1R7Z, and 3L3E, which 

are both S6S0 bulges and have large degrees of freedom. These results highlight a clear 

issue in the SAS selection of large internal loops: if the experimentally determined 

structures do not agree with the experimental chemical shifts but the SAS selected ones 

do but are very similar to the NOE/RDC refined structures where is the difference? In 

each case it is not possible to give the exact reason but the general trend seems to be that 

slight changes in stacking and base tilt seem to be predominately the changes that are 

observed. This likely relates to the local effects that chemical shifts are subject to and the 

imperfections in the NUCHEMICS prediction method.  

 

Lastly, for structures that have submitted NOE constraints, we examined whether the 

SAS selected structures satisfied the inter-residue constraints of the internal bulge (Table 

4.2). This is an additional way to validate the ensemble of structures selected: although 

some of the structures match the NOE/RDC refined structure, these ensembles represent 

a range of dynamics and some differ greatly from the NOE/RDC refined structure. For 

structures where N=1 satisfied, all degenerate structures were weighted equally for the 

contribution to average distance for NOE. For structures with N > 1, a SAS selection was 

run 1000 times to generate a distribution of structures and the frequency that a specific 

conformation was selected was used as a weight. Table 4.2 gives a summary of the 

results of the NOE analysis. Generally good agreement was observed despite not 

including any NOE information in the SAS selection. It should be noted that the 

experimentally solved structures for 1R7W, 2JWV and 2L3E did not meet all the 

observed NOEs with 3, 2 and 1 violations respectively. In the SAS selection 2QH3 

performed quite poorly compared to the other structures with only 2/11 NOEs satisfied. 

2QH3 is a curious case as only one structure was below the NUCHEMICS error 
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threshold and the SAS-selected structure has a single-bulged Uridine completely flipped 

out into solution whereas the experimentally determined structure has the uridine flipped 

out but still forming contacts with the minor groove. These contacts are quickly lost in 

the MD simulation and thus do not satisfy the NOE constraints. It seems odd that the 

solution NMR structure could be stable in that conformation. No RDCs corroborating this 

conformation have been reported. 

 

Surveying SAS-selected ensembles for 26 NMR structures from the BMRB reveals the 

inherent strength of the use of chemical shifts to select realistic dynamic ensembles to 

understand the dynamic nature of a given system. Although the dataset is limited to only 

proton chemical shifts this sparse information proved sufficient to exhibit discrimination 

power: once carbon chemical shift prediction methods are developed, techniques such as 

SAS will be able to produce even higher quality ensembles. In addition, improving the 

ability to predict 1H chemical shifts and lowering the 0.16 ppm threshold will also enable 

higher quality structures to be generated. Using these structures as a benchmark, it is 

clear that using chemical shifts as input for SAS methods to produce dynamic ensembles 

is possible. In the following section, we apply this technique to the ribosomal decoding 

site to attempt to give insights into the inherent dynamics of this system. 

4.3.2 Analysis of Experimental Ribosomal Decoding Site Conformations 

Survey of Bulge Conformations of Experimentally Solved Structures 

A wealth of structural information exists for the ribosomal decoding site in both isolated 

constructs studied by NMR and X-ray crystallography and within crystallographic 

structures of the entire ribosome. To understand the breath of structure diversity of 

conformations we performed a comprehensive survey of all structures of the A-site and 

characterized their conformations. Figure 4.1 summarizes all non-redundant 

conformations of the ribosomal decoding site produced from this survey. Surprisingly, 

the isolated constructs (1A3M, 1TOE, 3LOA, 3BNL) have bulge conformations that are 

radically different from one other: for example, the NMR structure 1A3M has both 

A1492 and A1493 flipped in, with A1493 forming hydrogen bonds with A1408. The 

three X-ray constructs contain a very diverse set of conformations: 3BNL has A1492 

base paired to A1408 and A1493 flipped in, 1TOE has A1493 base paired to A1408 and 
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A1492 flipped out, and lastly 3LOA has A1493 based paired to A1408 and A1492 

flipped out. Likewise, conformations found in the ribosome also differ but generally 

follow a trend of both A1492 and A1493 flipped in with different hydrogen bond patterns 

with A1408. While nearly all structures have both A1492 and A1493 in an anti 

conformation, 3ZVO places A1493 in a syn conformation. Lastly, in both 1J5E and 

1FKA, it appears that A1493 is partially interacting with C1407, which is consistent with 

the transition to the excited state discussed later. 

 

NMR Construct Design and Assignment 

An elongation strategy was employed similar to successful constructs for HIV-1 TAR 

previously studied(2-5,35). This strategy is useful to help decouple the overall tumbling 

of the system from the internal interhelical motions. 

Unfortunately yields were not high enough to 

perform RDCs, thus we attempted a new strategy, 

taking the Stem-I helix from HIV-1 TAR and using it 

to extend our A-site construct. HIV-1 TAR’s Stem-I 

helix was selected as it has been extensively studied 

in the Al-Hashimi group by NMR, allowing for 

comparison to previous spectra for ease in 

assignment (Figure 4.2). In addition to elongating A-

site for better alignment for RDCs it will further 

stabilize the bulge and UU base pair. The chemical shifts had excellent agreement to A-

 
    Figure 4.1: A summary of the diverse conformations of A92 and A93 that have been experimentally 
    determined by NMR and X-ray crystallography. A93 always appears below A92. 

 
Figure 4.2: A-site construct design 
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site and HIV-1 TAR constructs, demonstrating that the structure had the expected 

secondary structure and did not perturb the structure or dynamics of the bulge region 

(Appendix for chemical shift overlays).  

 

RDC Analysis 

RDCs report on the orientation of a bond vector with respect to the magnetic field and 

report on sub-millisecond motions, providing an alternate dataset to use for dynamic 

ensemble construction. RDCs were measured for nucleobase C5H5, C6H6, C8H8, C2H2, 

and ribose C1’H1’ bond vectors. Assuming the helical elements form idealized A-form 

helices, the measured RDCs were used to determined the best-fit order tensors for both 

helices using singular value decomposition, implemented by the in-house written 

program RAMAH. The final RNA 

conformer was assembled by 

rotating each domain into the 

principal axis system (PAS) of 

each best-fit order tensor and 

assembling the two helices. The 

order tensor has inherent 4n-1 

degeneracy, where n is equal to the 

number of helical domains. The 

degeneracy, conserving the 

chirality of the molecule, is 180° 

about each axis (Sxx+180°, 

Syy+180°, SZZ+180°), resulting in 

four potential orientations of the 

single stranded domain with 

respect to the reference helix. Non-

rotated, Syy+180°, and Sxx+180° 

were ruled out due to steric clashes 

with Stem I, leaving only the 

Szz+180 (Figure 4.3A). The order tensor was validated by correlating the predicted 

 
Figure 4.3: A-site RDCs and order tensor analysis A) Helical 
orientation determined from order tensor analysis. B) RDCs as 
a function of secondary structure. Colors correspond to 
secondary structure bellow. C) Back-calculated RDC values 
computed compared to measured RDCs shows excellent 
agreement. 
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RDCs with the measured, which showed excellent agreement (Figure 4.3C), with an R2 

of 0.95 and a RMSD of 4.16 Hz. 

 
 
Due to the fact that RDCs are time-averaged over sub-ms timescales, they are sensitive 

reporters of dynamics as well as orientation and generally will be attenuated in a manner 

dependent on the motional amplitudes(49-51). The analysis of the RDCs agrees with our 

previous model of the ribosomal decoding site’s dynamics(52). Both U1406 and U1495, 

which form a UU base pair have reduced C6H6 values of 16.0 Hz and 14.4 Hz 

respectively, indicating that the base pair is not as stable as a Watson-Crick base pair 

which have RDC values between 25-30 Hz. More importantly A1493 also has reduced 

C2H2 and C8H8 RDCs of 18.3 Hz and 14.2 Hz, suggesting that A1493 is more dynamic 

and does not form a stable base pair to A1408. These data are consistent with 

fluorescence experiments showing A1493 is less stacked than A1492. In comparison, 

A1492 has a C8H8 RDC value of 23.5 Hz and a C2H2 value of 27.1 Hz, which is similar 

to RDC values for base paired adenines. These measured RDCs present additional 

evidence to the model of A1492 base pairing with A1408 while A1493 transiently enters 

and leaves the helix. It should be noted that A1493 RDCs values are not consistent with it 

being highly dynamic, where one might expect near-zero RDCs. In addition both A1492 

and A1493 have significantly reduced C1’H1’ RDCS, with 5.6 Hz and -1.7 Hz 

respectively compared to base-paired C1’H1’ RDCs, which are ~25 Hz. Although the 

significance of these reduced values is unclear, it may imply that the sugar pucker 

conformation does not have a stable C3’-endo conformation, typical of A-form RNA. 

The interhelical bend (θ) and twist (ξ) angles were computed using an in-house program. 

The interhelical bend was found to be ~11°, which is to be expected since previous 

structures have shown it to be coaxially stacked. The interhelical twist is also quite small 

 
 Figure 4.4: Summary of order tensor parameters 
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at ~7°. The relatively high ϑint and low interhelical bend angle suggest that interhelical 

motions are rather limited. 

 

4.3.3 Analysis of Umbrella Sampled Conformations  

In a recent study in order to study the free energy changes associated with the motions of 

A1492/3, an exhaustive umbrella sampling procedure was conducted using a progress 

variable called the center-of-mass pseudo-dihedral angle (CPD) for both A1492 and 

A1493. Umbrella sampling has been found to be an efficient progress variable for 

examining base flipping in other nucleic acid systems. A two-dimensional umbrella 

sampling protocol was performed to explore the conformational space of both A1492 and 

A1493 base flipping conformations and generate a 2D free energy landscape of A-site 

models with respect to these progress variables. A major feature determined from this 

study was that the energetic barrier for the A1493 nucleobase to flip out is greatly 

reduced relative to A1492, consistent with previous fluorescence data and experimentally 

determined structures(52). In all, four 2D free energy landscapes were generated 

producing approximately 322,000 structures. The exhaustive sampling within this dataset 

generates an ideal pool of structures to determine which structures best fit the NMR 

chemical shifts and RDCs.  
 
Sample and Select A-site Structures by 1H Chemical Shifts  

Using NUCHEMICS, proton chemical shifts were predicted for each of the structures in 

the pool. Since only A1492, A1493, and A1408 conformations were significantly altered 

in the umbrella sampling simulations, the chemical shifts for these residues alone were 

used as experimental data. The procedure used to generate the pdbs initially moves both 

A1492 and A1493 into their desired initial conformations using a biasing potential, which 

occasionally breaks the G1491-C1408 or the G1494-C1407 base pair due to steric 

clashes. Because only chemical shifts of A1492, A1493, and A1408 were used in the 

SAS selection, structures in which this occurs were removed prior to the selection of 

structures that best matches the chemical shifts. 

 

An ensemble size of N=1 was able to satisfy the threshold of 0.16 ppm (the expected 

error in NUCHEMICS prediction). All structures that met this requirement or were below 
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this cutoff were examined. 277 structures out of 322,000, or 0.08% of the total pool, were 

below this cutoff. Analysis of the distribution of structures is displayed in Figure 4.5B 

where surprisingly one can see matches the favorable area found on the free energy in 

Figure 4.5A. To further investigate how well the chemical shift selected distribution 

coincides with the free energy, the distribution was compared in Figure 4.8C. The 

majority of the conformational space examined in the free energy distribution is located 

in 6 – 11 kcal/mol which can be seen clearly in Figure 4.5A represented as yellow to red. 

However, the distribution generated from the conformations with a low RMSD to the 

experimental chemical shifts are primarily found in lower free energy areas 2 – 6 

kcal/mol. This was despite the fact that the chemical shift prediction has no knowledge of 

what is energetically favorable to a molecular mechanics force field.  
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Figure 4.5D and E display the composition of the conformers for both A1492 and A1493 

flip and chi angles respectively. Although approximately 50% of the conformations in the 

pool have A1493 in a syn conformation only 47 of the conformations selected by the 

chemical shifts are in the syn conformation or about 17%. This is interesting as all but 

one structure (3ZVO) has A1493 in an anti conformation, but since it understood that 

A1493 is able to completely flip out of the helix it is possible that a fraction of the time it 

rotates about its chi bond and reenters the helix in a syn conformation. Since chemical 

shifts report on the local interactions of the nuclei environments, which is largely 

influenced by stacking interactions, it may be difficult to distinguish syn vs anti 

conformations using only proton chemical shifts. In contrast to A1493, A1492 has one 

 
Figure 4.5. Chemical Shift SAS for A-site A) Relative free energy as a function of flip angle of A1492 and 
A1493. B) Distribution of the flip angles of A1492 and A1493 that were selected by chemical shift SAS. C) 
Distribution of free energy of conformations selected by chemical shift SAS compared to the total 
distribution. D) Distribution of flip angle and chi angle of A1493 of selected conformations. E) Distribution 
of flip angle and chi angle of A1492 of selected conformations. 
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relatively dominant state. Chemical shift selected conformations show A1492 in an anti 

and flipped in state nearly 99% of the time.  

 

Conformations of the experimentally determined decoding sites and from the chemical 

shift selected pool with the closest RMSD were compared (Figure 4.9). For each 

experimental structure excluding 3LOA, a conformation from the chemical shift selected 

pool matched with an RMSD equal or less then 1.5Å, corroborating that selected 

conformations agree with existing experimental data. Only 3LOA shows significant 

deviation from the selected distribution of conformations with the closest having an 

RMSD of 3.31Å. This finding is not entirely surprising: 3LOA diverges significantly 

from the model of the decoding site, with A1492 in a flipped out conformation with 

A1493 flipped in and base paired to A1408. It should also be noted that A1492 in 3LOA 

forms crystal-packing interactions with another unit cell in the crystal, so its 

conformation may be dependent on how it was crystallized and could explain why its 

conformation is not well represented in the selected conformations and the other 

experimental structures. To see how closely they reproduce the proton chemical shifts, 

the chemical shifts with NUCHEMICS were predicted from each of the experimentally 

determined structures (Figure 4.6). If each of the structures already produced the 

chemical shifts that are within 0.16 ppm, RMSD this analysis would not be very 

interesting. There appears to be no correlation between the prediction quality of the 

 
Figure 4.6. Closest structure by RMSD to each of the experimental A-site structures. Black is the 
experimental structures, while orange is the closest structure selected by chemical shifts. A93 always 
appears below A92. 



 108 

chemical shifts produced by the experimentally determined 

structure and how close a structure that does match the 

chemical shifts is to each structure. This could be because 

chemical shifts are governed by local conformations, so 

slight changes in base orientation may have dramatic 

consequences in chemical shifts predicted. This work 

highlights the importance of sampling. While initially it 

would seem each experimental structure is a poor match to 

the chemical shifts, structures that have similar orientations 

may still agree with the chemical shifts.  

 

Sample and Select by RDCs 

To compare directly to the chemical shift SAS, only the 

RDCs of A1492/3 and A1408 were initially used in the RDC SAS selection. It quickly 

became clear that this approach was insufficient to give statistically significant for two 

critical reasons. First, because PALES cannot correctly model the degree of alignment of 

a given structure to the Pfl alignment media, a scaling factor is introduced during the SAS 

selection to scale the predicted RDCs to best match the experimental RDCs. Without a 

frame of reference of some helical RDCs, the dynamical residues in the bulge lose their 

context of being dynamically attenuated and the scaling factor will improperly scale 

predicted RDCs, permitting the inclusion of a variety of inaccurate solutions. To account 

for this discrepancy, RDCs from the C07-G94 base pair as well as the UU base pair 

below were used in the SAS selection for reference points. Secondly, the C1’H1’ RDC 

values of both A1492/3 are inconsistent with stable 3’-endo sugar puckers which are 

typically observed in A-form RNA.  Because of the nature of the umbrella sampled 

conformations, only 2ns were run at each point in the conformational space, they were 

unlikely to sample any sugar pucker other then their starting conformation which was 3’-

endo. Thus both C1’H1’ RDCs were also removed since the sugar pucker dynamics had 

insufficient sampling. 

 

 
Table 4.3 Table of RMSD to 
experimental chemical shifts 
of known experimental 
structures using 
NUCHEMICS. 
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Because the proper ensemble size during RDC SAS selections can vary, selecting an 

ensemble size that yields an RMSD comparable to the experimental RDCs is preferred.  

Unlike the chemical shift analysis which used an ensemble size of N=1, using RDCs an 

ensemble size of N=2 was sufficient to satisfy the RDCs (Figure 4.7). The behavior of 

the relationship between ensemble size and RMSD to the measured RDCs is interesting. 

Initially N=1 and N=2 yield result extremely low RMSDs while N=3 onward yield 

relatively higher RMSDs. This differs from previous work using TAR HIV-1 where 

increasing the ensemble size kept improving the RMSD until N=20 where increasing N 

no longer yielded any additional improvement. The only clear difference between the two 

systems is that A-site is much more rigid then TAR HIV-1 which has a S3S0 bulge 

compared to the S2S1 bulge of A-site. It should also be noted that for N=2 for A-site the 

resulting ensemble is consistent upon repeat runs with more detailed analysis later, while 

N=3 onward the results appear more chaotic following less of a clear trend, this is a 

characteristic of over fitting data and may be responsible for the aberrant results. 

 
Figure 4.7:  RDC SAS results for A-site. A) SAS selection RMSD to measured RDCs as 
a function of ensemble size. B) Correlation between computed RDCs from SAS 
ensemble of 2 to measured RDCs. C) Population exhibited from 1000 SAS selections 
with ensemble size 2. 
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Understanding this behavior will further our understanding of using RDCs to generate 

dynamic ensembles of RNA systems using SAS. 

 

To build up a distribution of conformations that agreed with the measured RDCs, 1000 

SAS selections were run at N=2 yielding a total of 2000 structures in total. Interestingly 

only 17 unique structures were selected in total. These structures can be characterized 

into three clusters, which are displayed in Figure 4.7. These states can describe as 

A1492/3 both flipped in, A1492 flipped in with A1493 partially flipped out and finally 

A1492 flipped in with A1493 completely flipped out. These states have a population of 

67.5%, 29.9% and 4.6% respectively. These 3 states and population reiterate the model of 

having a dominant model of having both A1492 and A1493 in with A1493 transiently 

leaving and reentering the helix.  

 

Comparison between Chemical Shift and RDC Selections 

Ensembles generated from chemical shifts and RDCs SAS selections are highly 

overlapping. For conformation cluster three also appears in the chemical shift selection, 

while cluster one and two have an RMSD of 1.41 and 0.95 Å respectively with 

conformations from the chemical shift selection. This is another independent line of 

evidence of the proposed model for A-site in which A1493 samples flipped in and flipped 

out states. The only real discrepancy between the two selections is the population 

between the flipped in and out states. In the CS SAS ensemble, the flipped in and out 

conformations are 25% and 75% populated, respectively whereas in the RDC SAS, they 

are 95% and 5%, respectively. It should be noted that the RDC sensitivity to motional 

amplitudes is generally weak for low motional amplitudes and only becomes significant 

for extensive motions characterized by order parameters on the order of S2 < 0.6. Thus it 

is possible that the RDCs are more heavily weighted by the more rigid flipped in state 

and that the motions between the flipped in and flipped out state lead to motional 

contributions comparable to measurement uncertainly. By contrast, chemical shifts are 

strongly sensitive to the flipped out state which both alter stacking interactions as well as 

the sugar pucker and glycosidic bond angle χ. It should be reiterated that as displayed in 

the free energy plot in Figure 4.8A the relative free energy between A1493 flipped out in 
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flipped in is around 2 kcal/mol between there respective minimum. This is not a large 

barrier and compared the possible structures in the pool this is still good agreement 

between the two ensembles. 

 

4.3.4 Analysis of MD Simulation for A-site  

Although the RNA ensembles constructed using umbrella sampling data were consistent 

with experimental data and the generalized model of A-site bulge dynamics, the construct 

used differed from that used experimentally. Straight MD simulations were performed to 

determine if using all measured RDCs and chemical shifts altered the generated 

ensembles, although unlikely as the modification occurs two base pairs below the UU 

base pair, far removed from the bulge site. This procedure is in line with previous studies, 

which also used straight MD simulations to produce the conformation pool, to allow 

direct comparison to prior results on HIV-1 TAR. Comparing the ensembles generated 

using either umbrella sampling or the MD simulation also provides a platform to 

determine the effects of sampling within a conformational pool, as the umbrella sampled 

pool is nearly exhaustive while the simulations yield a much smaller amount of sampled 

space, representing the typical range of accessible conformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8:  Transition from initial secondary structure into excited state 
secondary structure, which has U1495, flipped out with A1492 and A1493 
base-paired to A1408 and C1407 respectively. 
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MD simulation reproduce experimentally observed A-site Excited State  

Two 100 ns MD simulations were run using different initial velocities in order to remove 

condition bias from the starting structure. In both simulations, a transition occurred to the 

proposed excited state which was determined by Al-Hashimi and coworkers (53) in 

which U1495 is flipped out and both A1492 and A1493 form base pairs within the helix 

(Figure 4.8). Although this transition was already observed in a previous MD simulation, 

the transition from ground state to excited state was not documented. Starting from a low 

free energy conformation where A1493 is flipped out and A1492 is base paired to A1408, 

A1492 exhibits stochastic movement up and down within the helix as seen in the second 

panel of the Figure 4.8.  At one point A1493 was in the process of flipping in and 

A1492’s movement made space for A1493 to insert into the helix. This arrangement is 

stable for around ~1 nanosecond when U1495 becomes destabilized and loses its 

hydrogen bonding to U1406. UU base pairs are not particularly strong (~2 kcal/mol) and 

may reflect a physiologically relevant event. Afterwards, G1494 points downward and 

allows A1493 to base pair with C1407. This step seems to be counterintuitive, as GC 

base pairs are more stable then AC: it is likely that the G1494-C1407 hydrogen bonds are 

insufficiently strong without stacking interactions from above and below. Lastly, G1494 

forms a relatively stable base pair with U1495. Experimental evidence supporting this 

transition has been observed by NMR by Al-Hashimi and coworkers(53).  
 

The presence of this alternative secondary structure posed serious problems for 

performing both the RDC and chemical shift SAS selections. As noted in the section of 

performing SAS selections with the umbrella sampling data, structures in which base 

pairing broke had to be removed since only a subset of the chemical shifts were being 

used, which were unable to discriminate between the two states. In that case utilizing all 

the chemical shifts did not have this problem but yet the sensitivity of the selection was 

reduced as the majority of the chemical shifts are from base paired regions. Here a similar 

situation existed, with the inclusion of the excited state structures into the conformation 

pool, these conformations were preferred in both the RDC and chemical shift selections. 

When using all the chemical shifts, conformations with the original secondary structure 

were selected, but surprisingly when all the RDCs were used the excited structure was 
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still selected. This may be related to the fact the RDCs report on interhelical motions and 

as discussed earlier A-site is largely coaxially stacked, the excited state is even more 

stacked then the wild type. This work demonstrates the importance of understanding the 

limitations of what the experimental data is capable of discriminating. For this reason all 

structures with the excited state secondary structure were removed. 

 

SAS Selections with MD Pool by Chemical Shifts 

Unlike the in the umbrella sampled pool, N=2 was the minimal ensemble size that 

satisfied an RMSD to the experimental chemical shifts less then 0.16 ppm. In the 

umbrella sampled pool only N=1 was required: 

this increase in required conformations may be 

due to the quality of structures produced in the 

MD simulation compared to the umbrella 

sampling. This result suggests that a major factor 

in the ensemble size may not be completely 

dependent on the system but also the pool of 

structures that is being drawn from and analysis 

of dynamics dependent solely the number of 

conformations required to satisfy a system may 

not be appropriate. The fraction of space sampled 

by the MD is displayed in Figure 4.9. Only a 

fraction of the space was sampled compared to 

the umbrella sampling. In addition, this plot 

displays areas sampled if at least one 

conformation had that given flip angles for both A1492 and A1493. In the umbrella 

sampling pool there are at least 100 conformations per 10° by 10° area, since this pool is 

a combination of 4 separate runs there is likely much more. This exhaustive numeration 

gives many more possible favorable states that may be rarely sampled in the course of 

MD simulations and there may be energetic barriers that keep a structure in a given state 

for extended periods.  

 

 
Figure 4.9.  Coverage of MD simulations 
compared to the umbrella-sampled pool. 
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Given the discrepancy in conformation pool characteristics, performing chemical shift 

SAS using the MD pool highlights the importance of sampling. The distribution produced 

by performing 1000 SAS selections is shown in red in Figure 4.8. This result is very 

interesting since the highest populated distribution features A1493 with a flip angle of 

~0° and A1492 between 0°-60°, which is the most favorable area on the free energy 

surface. Unfortunately, this result differs from the result produced from the umbrella 

sampling ensemble which has A1493 flipped out, and also satisfies the chemical shifts 

with a RMSD much under 0.16 ppm with only one conformation instead of the two 

required using the MD pool. This analysis stresses the importance of generating a pool 

with proper sampling.  

 

SAS Selections with MD Pool by RDCs 

Unlike the chemical shift SAS where the most favorable conformations have A1493 

flipped out in the umbrella sampled distribution, RDC SAS selections built a distribution 

with a predominately flipped in conformations. Like the distribution built from the 

umbrella sampled pool, the conformations selected using the MD pool also were all 

flipped in. N=2 was also sufficient and N=3 onwards did not improve the RMSD to the 

measured RDCs. The only minor difference was the lack of any flipped out 

conformations in the MD selected conformers compared to the 4.6% selected in the 

umbrella sampled pool. 

 

4.4 Conclusion 

Here we have shown the utility of chemical shifts in the generation of dynamic ensembles 

for the bulges of RNAs. We first demonstrated that proton chemical shifts are capable on 

reporting on stacking and the motion of single stranded nucleobases. The utility of 

chemical shifts were demonstrated in the survey of chemical shift SAS selections of 26 

NMR structures that selected out structures that were similar to the NOE/RDC refined 

structures. With larger data sets and the ability to predict carbon and nitrogen shifts, the 

future of RNA structure and dynamics predictions by chemical shifts looks very 

promising. 
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The application of chemical shift SAS to the decoding site generated an ensemble of 

states that was corroborated by both relative free energy calculations and the existing 

experimental structures. This is a proof of principle in generating a dynamic ensemble 

using chemical shifts without a known ensemble to reference to such as in previous work. 

In addition the comparison between RDC SAS and chemical shift SAS illustrates the 

utility of chemical shifts over RDCs in cases where there is little helical motion for 

determining the dynamics of the bulge. The comparison of the SAS distributions 

generated between the umbrella sampled pool and the MD pool of conformations 

highlights the importance of proper sampling over critical degrees of freedom. It is quite 

possible that without proper sampling that skewed distribution could be incorrectly 

accepted. It is imperative that more research be conducted to further understand the 

significance of the different ensemble sizes and what they represent. 
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CHAPTER 5 

Enhanced Sampling Procedure Improves Success Rate for Nucleic Acid–Small 

Molecule Docking 

 

5.1 Introduction  

In recent years, the proposed role of RNA as a simple carrier of information from the 

nucleus to the cytoplasm for translation has been radically overturned. It has been shown 

that non-coding RNAs (ncRNAs) perform a wide range of roles such as protein 

synthesis(1-3), self-splicing intron removal(4,5), pre-mRNA splicing(6-9) and telomere 

maintenance(6,10). All of these cellular processes now have additional potential drug 

targets due to RNAs involvement. In addition RNAs, such as the transactivation response 

element (TAR) from the human immunodeficiency type 1 virus (HIV-1), recruit and bind 

proteins that allow RNA polymerase to copy the HIV-1 genome and thus presents a 

potential drug target as well for the treatment of HIV-1(11,12).  

 

With the emergence of RNA as an important drug target, techniques to discover novel 

ligands against RNAs are critical. Current approaches utilized in protein-ligand small 

molecule discovery are incompatible for RNA. The majority of conventional high-

throughput screening methods rely on biomolecule enzymatic activity – RNA, with few 

exceptions, lacks enzymatic activity(13-18). Computational docking can, in principle, 

provide an alternative avenue to discover novel binders to RNA targets without the 

constraints of enzymatic activity. There have been several attempts to generate novel 

small molecule binders to RNA targets with various levels of success(13,15,17,18). RNA 

poses many new difficulties compared to proteins for computational docking. First, RNA 

has a high degree of flexibility, adopting radically different states on protein or ligand 

binding and, as such, it is unreasonable to represent an RNA drug target as a single 
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structure in computational drug discovery. Second, RNA has shallow and solvent-

exposed binding pockets where potential ligands can bind. Third, RNA ligands tend to be 

flexible themselves, sometimes with greater than ten rotatable bonds(18-20). The high 

degree of flexibility of both the RNA and their ligands, in addition to the shallow binding 

pockets, make it very difficult to find global minimum energy poses. Another difficulty 

in applying computational drug design to RNA is the development of a scoring function 

that can correctly score native-like ligand poses. Multiple attempts have been made to 

update scoring functions unique to RNA or modify functions originally developed for 

proteins(19-21). These updated RNA-specific scoring functions appear to improve the 

success rates of finding native poses; however, the success rate is low compared to 

protein-ligand computational docking(22). In contrast to some other programs, here we 

investigate the use of a novel sampling protocol that uses a simplistic scoring function, to 

rigorously explore conformation space. 

 

There have been many attempts to improve the performances of sampling. Glide(23-25), 

one of the premiere docking programs for proteins, fragments ligands into molecular 

fragments to remove internal degrees of freedom. Glide and other programs(19,26) that 

also fragment their small molecules, have a build up procedure where the largest 

fragment is placed first and each successive fragment is placed so it can connected to the 

previous until the entire molecule is built into a docked pose. These techniques can 

employ clustering to reduce the number of possible conformations considered. Our 

sampling technique follows this concept, also employing ligand fragmentation to deal 

with the difficulties of the internal degrees of freedom of small molecules. What differs 

from previous approaches is that we initially sample all conformations of each fragment 

independently, and with clustering, find hotspots for each fragment. Afterwards, there is a 

reconnection algorithm that attempts to reconnect the fragments back together preserving 

each fragments independent favorable conformation into a favorable pose. This approach 

has similarities to the multiple copy simultaneous search method (MCSS)(27), which 

placed functional groups over the surface of proteins finding hotspot locations for 

different functional groups. This algorithm was later employed in HOOK(28), which 

attempted to find novel protein-ligand binders by connecting the functional groups found 
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by MCSS with a skeleton scaffold into a full small molecule. In addition the Small 

Molecule Growth (SMoG)(29) algorithm also utilized a similar ideal of independently 

indentifying functional group hotspots and later joining them together with a scaffold. 

The fundamental difference between both HOOK and SMoG and our approach is that we 

are docking previous existing small molecules not generating novel ones. But, the 

concept of independent optimization followed by reconnection has been shown to be 

successful and we employ it here for dealing with the large number of rotatable bonds of 

RNA and DNA small molecule binders. 

 

Previous RNA computational docking 

strategies have typically used varying 

benchmarking sets of RNA-ligand 

complexes due to the lack of 

experimentally determined structures. 

Here, we have compiled a much larger set 

of complexes to benchmark and validate 

our new docking algorithm: 230 

complexes in total. By including DNA-

ligand complexes, which share many of 

the same characteristics of RNA-ligand 

complexes, we were able to nearly double 

the dataset. Compared to previous sets, 

which have at most 50 complexes with 

experimental binding affinities, our dataset 

has 89. In addition to demonstrating that 

our new sampling algorithm is effective 

and efficient compared to previous algorithms, we also plan to release this dataset to be 

used to benchmark RNA docking algorithms, similar to either the Ligand Protein 

Database (LPDB)(30), Mother of all Databases (MOAD)(31) or The Community 

Structure−Activity Resource (CSAR)(32-34)  for protein-ligand docking.  

 

!
Figure 5.1: Examples of the various types of 
receptors in the nucleic acid database. Top-left, 
minor groove DNA binder. Top-right, RNA bulge 
binder. Bottom-left, single stranded DNA binder. 
Bottom-right G-!quadruplex binder.  
!
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5.2 Strategies and Components 

5.2.1 Reduced Ligand Topology 

Dividing ligands into fragments that do not contain rotatable bonds, removes the 

requirement to sample the internal degrees of freedom of a small molecule during the 

search phase of computational docking. Fragmenting the ligand also allows for the more 

efficient placement of key chemical groups for favorable ring stacking and hydrogen 

bond interactions, which play a large role in RNA-ligand interactions(18). However, not 

all fragments will contribute equally to the total interaction energy, in previous docking 

algorithms, usually the largest fragment is placed first and the rest of the molecule is built 

onto it using the internal coordinates to rebuild the molecule. This approach can 

unfortunately still lead to suboptimal solutions, particularly when a ligand contains two 

fragments of equal size (number of heavy atoms). Instead of building up a molecule by 

adding each consecutive bonded fragments, in the sampling scheme we explore below, all 

fragments with five or greater heavy atoms are independently scored and are connected to 

produce the core portion of the molecule. The connectivity information for each fragment 

is stored to later build the rest of the molecule.  

 

5.2.2 Enhanced Sampling Procedure 

We devised a simple yet effective solution based on exhaustive sampling to ensure that 

the most favorable energy minimum pose is identified. Exhaustive docking procedures 

have been attempted before, but are prohibitively slow and only exhibit minor pose 

improvements when implemented in protein-ligand docking(35,36). The difference for 

RNA-ligand docking is the search space is much more vast then the usual deep and 

defined pockets found in proteins. The critical quality of the success of an exhaustive 

algorithm is to minimize the computational cost and only evaluate poses that are likely to 

be the top conformations. Our algorithm takes full advantage of this feature and has an 

average runtime of ~10 minutes to find the maximum score of a ligand with a given RNA 

target. A detailed explanation of our sampling procedure follows. 

 

Generating Fragment Hotspot Clusters 
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Initially, a grid with 0.5 Å resolution is generated using a given defined center or the 

center of a known ligand. This grid resolution has been shown to be ideal from previous 

studies(37). At each grid point three scores are calculated: a contact score, a ring stacking 

score and a hydrogen bond score, details of each term are described at great length in 

Section 5.2.3. The contact score is used to determine whether or not to sample at a given 

grid point. If a contact score is less favorable then a cutoff then there is most likely a 

steric clash at that point and it would be computationally wasteful to sample there. 

Typically between 2000 and 4000 points are sampled depending on the size of the 

binding pocket. Each fragment is rotated about its center of mass in 18º increments 

generating 5832 rotations in all. This increment size, 18º, was chosen as a compromise 

between speed and accuracy: previous studies using exhaustive sampling used 10º 

increments, arguing that it is the minimum required to accurately resolve proper 

hydrogen bond geometry(35,36). In our own benchmarks this appears to be a bit over 

cautious and 18º performs just as well as 10º (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Following the production of the rotations, the center of mass of each rotated fragment is 

then moved to each grid point and is scored. Rotating the fragment prior to moving it to 

!
Figure 5.2 Initial exhaustive sampling procedure. A) Red points are all the grid points where 
each fragment is sampled. B) Visualization of the all the possible solutions for a single 
fragment at each grid point. C) After clustering the centroids of each cluster shown, which 
are the top poses for the sampling volume. 
!
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each grid point greatly speeds up the algorithm, as rotations are computationally costly in 

comparison to translations. At each grid point the rotation that yields the maximum 

fragment score (MFS) is recorded. MFS is the theoretical maximum score that a fragment 

can achieve at a specific grid point with the resolution of 0.5 Å and a rotational increment 

of 18º. While saving only the MFS requires successive score evaluations later, storing all 

the scores for each rotation requires enormous amounts of data (several gigabytes) per 

fragment. The MFS from each allowable grid point is then sorted from most favorable to 

least favorable, followed by centroid clustering procedure, where the grid point with the 

most favorable MFS is the first centroid and all grid points within 3 Å are considered part 

of this cluster, the next most favorable grid point outside this cutoff becomes the second 

centroid, and all grid points within 3 Å not already assigned to a previous clusters 

become part of this cluster, continuing until every grid point is assigned a cluster. 

Clustering this way creates a hierarchical grouping of poses to efficiently searching poses, 

as the MFS of the centroid represents the effective maximum score that a given volume 

on the binding surface can produce. This clustering step is critical to the success of this 

approach to reduce search time when fragments are reconnected later. The computational 

cost up to this point has been rather low; the initial sampling for each fragment takes 

approximately 30 seconds to one minute on a 3.2 GHz i7 Intel CPU. This observation 

was key to the further development of our algorithm; it is computationally inexpensive to 

exhaustively determine the most favorable hotspots for fragments to bind.  

 

Building Fragment Connection Graphs  

With all fragment poses organized into clusters it is now possible to apply basic distance 

constraints that will eliminate a large percentage of possible combination of fragment 

poses. The centroid of each fragment cluster is assessed to determine whether cluster A is 

close in space to the centroid of cluster B, to which it should be covalently attached. 

Since the cluster radius is 3 Å, it is impossible for two clusters to be connected if their 

centroid distance is separated by greater than 6 Å plus their bond distance. If fragment A 

was initially bonded to fragment B, then clusters from fragment A are paired with the 

clusters from fragment B within this distance constraint. Once connected, each pair of 

clusters can now be connected to another pair of clusters that share a common fragment 
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between them. Assuming fragment A is also connected to fragment C, then a pair of 

clusters from AC and AB can be joined if the same fragment A cluster is common 

between them. The possibility of steric collisions is assessed for combinations of 

fragment clusters of three or more: if the centroids of two fragments that are not 

covalently bonded to each other are within 4 Å, than that group of clusters is rejected. 

Once one cluster for each fragment are connected, the center of mass of the entire 

molecule is calculated and if it is greater then 5 Å from the center of the grid this 

combination of fragment clusters is rejected in order to prevent generating poses outside 

the selected binding site. This part of the algorithm is the only portion that is highly 

memory intensive and if more then one million partial molecules are generated with more 

fragments to be connected, a pruning stage is included in which partial molecules are 

removed if their total scores are below the average. When all possible combinations of 

fragment clusters are generated, clusters are sorted by the summation of each fragment’s 

MFS. In the next section, the pose will be built back up using the clusters that have the 

potential to yield the highest score first. 

 

Reconnection of Fragments  

Starting with the pair of clusters that together have the highest total MFS, each of the 

poses within each cluster is paired together and is sorted by it’s combined MFS. Again, 

this score represents the upper limit of the potential score, and sorting them in this 

fashion allows the pair to be selected and no further search is required. A repeated theme 

of this algorithm involves taking advantage of the combined MFS of fragments to 

determine whether it is possible to beat the existing best score. At this stage of the 

algorithm, each pair of fragments currently exist in random orientations with respect to 

one other and must be reoriented in order to reassemble the molecule with intact bonding 

geometry. The alignment is performed with a center of mass rotation such that the 

connection atom on each fragment - the atom that bonds to an atom on the other fragment 

– is pointed at the center of mass of the other fragment. Once the two fragments are 

aligned, the distance between the two connecting atoms is calculated and the algorithm 

continues only if the distance is within ±10% of the original distance. A bond vector is 

now defined between the two fragments and each fragment is rotated about this axis in 
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4.5° increments. Only rotations that produce favorable scores are saved and are clustered 

based on the root-mean square deviation (RMSD) of the position of their connection 

points to fragments yet to be connected. These clusters are then paired between the two 

fragments with their scores added and they are sorted from most favorable to least 

favorable. The starting core of the pose, which is the two fragments with the best 

potential score, is now connected. This core could be thought of as the head node in a tree 

data structure, where the edges leading to the next level nodes are fragments that were 

originally bonded to the core two fragments before the molecule was split. In the next 

level of nodes there is a collection of clusters that are close enough to the position of the 

core where it is possible to connect them based on center of mass distance. Again, similar 

to generating the molecular core, each pose in a cluster is aligned using a rotation to best 

optimize the distance between the connecting atom between the new fragment and the 

existing fragment in the core that it is bonded too. This is continued down the fragment 

connection tree until all fragments are connected and a total pose score is determined. 

 

MFS Optimization of Fragment Connection Space 

Summing each fragment’s MFS is a powerful metric to judge whether a partial pose has 

the ability to have an actual score better then current best finished pose. Because 

exhaustively searching the connection space is very computationally intensive, exploiting 

this cutoff makes it feasible to finish a docking run in a realistic amount of time. The 

summation of each fragment’s MFS in a partial pose is unrealistic as each fragment’s 

conformation is optimized to yield the highest score without knowledge that it needs to 

be reconnected. Because of this, when the fragments are connected the score is always 

equal or less favorable. Before a finished pose is generated, no cutoff is used as cluster 

combinations that have the highest summed MFS may not be successfully connected 

based on the rules discussed in the last section. Once the first finished pose is generated 

and the poses are scored with the connected conformation, we now have an actual score 

to compare too. These are the connected fragment scores (CFS) and they can be equal to 

or less favorable than the MFS. The summation of the CFSs for all the fragments 

becomes the cutoff score. Any combination of fragments with a summed MFS less then 

the known most favorable CFS is discarded. 
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Optimization of Flexible Linkers and Chains 

As mentioned previously, this search procedure is a two-step process. First initial 

placement of the core of a molecule is performed, ignoring long flexible chains of carbon 

and/or nitrogen single bonds. These chains are quite common in nucleic acid small 

molecule binders and greatly increase the internal coordinate search space. Here we first 

place the core of the ligand that acts as an anchor to build the flexible chains of a given 

small molecule. 

 

All the possible conformations for flexible chains are built at the initiation of the program. 

At each rotatable bond in the chain, a set number of possible rotations is sampled. For 

example, if there were three fragments with two rotatable bonds, with an increment of 

20°, then there would be one conformation of the first fragment, 18 of the second and 324 

for the third. The conformations are stored in a tree data structure and when a given chain 

needs to be built the head node is aligned so it properly connects to the ligand core with 

the correct bond and angles that are required from its parameter file. This alignment is 

then stored in a homogenous transform and is propagated down the tree when the next 

fragment in the chain is being optimized. Generating all the conformations beforehand 

trades memory for speed, greatly accelerating the procedure for a moderate use of 

memory. This optimization procedure is similar to the exhaustive methods developed for 

protein loop modeling where sampling over small changes in φ and ψ space can greatly 

improve results(38,39). 

 

Optimization of the chains is done in two discrete steps: initially a depth first search is 

performed to find a possible solution, followed by a more thorough solution. This second 

search attempts to find the conformation that yields the most favorable score in the fewest 

visits to nodes in the conformation tree. Using the current best solution as a reference, 

any partial conformation that could not produce a more favorable score, assuming that the 

most favorable possible scores for the remaining fragments is not visited. This greatly 

reduces computational time. 
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5.2.3 Scoring Function 

The focus of many of the leading RNA-ligand docking programs has been the 

development of cutting edge scoring functions to better discriminate native poses from 

non-native ones. Whether it is building better generalized Born models for implicit 

solvation and neutralization of charge, or improving electrostatic models, as both RNA 

and its ligands are highly charged, these are certainly advantageous and bring the field 

closer to using models that better represent the underlying atomic level interactions(19). 

Because of the number of poses that are evaluated in our exhaustive sampling procedure, 

any energy term that could not be represented as a grid-based potential would be too slow 

to be useful. Thus our scoring function has to be as simple as possible while still having a 

high discrimination potential.  

 

Our scoring function has three terms: a contact 

score, a ring stacking score and a hydrogen bond 

score. The contact score is a simplistic van der 

Waals substitute using a Lennard-Jones potential 

(Equation 5.1) with three atom types, aliphatic, 

aromatic and hydrogen bonder, only heavy atoms 

are considered and the contact distance reflects 

the distance between heavy atoms. Each atom 

type combination has a different optimal distance 

between their centers (Figure 5.3). Ideal distances 

were generated by measuring all the contacts in our nucleic acid docking set and fitting 

each pairing of atom types to a Gaussian taking the center as the ideal distance. 

Compared to the aromatic and aliphatic atom types, hydrogen bond donors and acceptor 

types have a shorter ideal distance of 3 Å. This is compared to the 3.4 Å and 3.6 Å for 

aromatic and aliphatic pairings. This is because around 3 Å is the ideal distance for 

hydrogen bonds, this is why there is a separate type for hydrogen bond donors and 

acceptors. If they were lumped in with the others the ideal distance will not permit them 

to be close enough to form a hydrogen bond. 

 

!
 
Figure 5.3: The ideal distance between 
each atom type in the contact scoring 
term, all distances are in Angstroms. 
!
!
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The ring stacking is similar to the term found in Ribodock(20). In Ribodock, both how 

perpendicular a ligand ring is with respect to a receptor ring and the angle separating 

them. Equation 5.2 outlines the equation used in our approach, where θplane is the angle 

between the plane of the ring and the grid point, and r is the distance. 3.6 Å is the average 

distance between a stacking ligand and receptor ring. The first part of the term is a weight 

based on the how parallel the rings are to each other, and the second part is a Gaussian 

centered on the ideal distance between two stacking rings.  
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Lastly, the hydrogen bond potential is modeled as an 8-6 potential based on the distance 

between the acceptor and heavy atom connected to the donor (Equation 5.3). In addition, 

there are angular cutoffs to verify proper geometric conditions for hydrogen bonding. For 

all acceptors, a plane angle is utilized with a cutoff of 40° out of the plane. For 

specifically sp2 oxygen acceptors an angle between the carboxyl carbon, the oxygen atom 

and the heavy atom of the hydrogen donor is also utilized with a 30° cutoff around both 

the 45° and 135° position. These are the optimal angles for hydrogen bonding for Sp2 

oxygen. Similarly donors have a plane angle with a cutoff of 40° and an angle cutoff of 

145° for donor heavy atom, donor and acceptor.  
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5.3 Materials and Methods 

5.3.1 Preparation of Complexes 
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Preparation began with querying the protein databank for all nucleic acid structures 

containing a ligand. Filtering criteria were then applied to remove structures that were not 

appropriate for docking. Criteria for rejection of a complex included: ligands smaller than 

5 heavy atoms or greater than 100; complexes with multiple copies of the same ligand in 

a single binding pocket, i.e. stoichiometry > 1, ligands with elements not standard such as 

platinum or zinc in organic molecules. Each receptor was isolated and minimized for 100 

steps using steepest descents with a harmonic restraint of 10 Newtons on all heavy atoms. 

Three-dimensional coordinates of each ligand were independently downloaded from the 

PDB’s ligand summary resource and were protonated and minimized using the 

ChemAxon software package (http://www.chemaxon.com). MATCH was then employed 

to generate topology and parameter files for each ligand(40,41). Complexes in which it 

was not possible to generate either the topology or parameter files were ultimately 

removed, yielding a total of 230 complexes in total. 

5.4 Results and Discussion 

5.4.1 Analysis of Nucleic Acid Training Dataset 

Previous studies developing docking protocols have also collected a set of RNA-small 

molecule complexes to benchmark and validate their respective algorithms. These sets 

have been small, ranging from 30 to 50 complexes with experimentally determined 

binding affinities. The limited dataset is a direct consequence of the paucity of structural 

data available in the Protein Databank for RNA. In this study we take a different 

approach: in addition to benchmarking and validating the algorithm on complexes with 

known binding affinities, we also prepared all nucleic acid structures including DNA-

ligand complexes, which amounts to 230 complexes, and targeted the ligand poses. The 

addition of DNA into the set complements the RNA, adding almost 100 more complexes. 

The major difference between DNA-binding compounds and RNA-binding compounds is 

that about half bind to the minor groove of DNA helices, which is an uncommon binding 

mode for RNA. However, the overall characteristics of the ligand-receptor complex are 

identical in that both exhibit shallow and solvent exposed binding pockets, have highly 

charged ligands that possess high rotatable bond counts and an abundance of hydrogen 

bond interactions. The set represents a much more rigorous test of ligand placement 

algorithms for researchers. In addition the set also contains 89 complexes with 
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experimentally determined binding affinities, 

almost doubling the next largest set for nucleic 

acid docking validation(19,21,42) (Figure 5.4). 

 

Sets such as the LPDB(30) and MOAD(31) are 

high quality datasets for protein-ligand docking 

that greatly helped to standardize current 

benchmarks. In addition to containing large 

number of complexes with known binding 

affinities, they are both easy to use, easy to 

retrieve via a web interface and contain 

exhaustive characterization of the ligand, receptor 

and complex. Following this model, in addition 

for the use in benchmarking of the current 

algorithm discussed here, we plan to release this 

set to create the first standard for benchmarking 

current and future nucleic acid docking algorithms. 

This dataset contains the same format as 

LPDB(30) and MOAD(31) in the sense that there 

is classification of binding, and of ligand, receptor 

and complex characteristics, and the set will be 

accessible online. We expect this set to foster 

rigor and consistency in benchmarking and 

validation of nucleic acid docking programs so 

that the comparison between differing docking 

programs will become easier and will lead to improvements in design of docking 

algorithms. 

 

5.4.2 Validation of Placement Procedure 

Fragment Size Preference  

!
 
Figure 5.4: Analysis of nucleic acid 
docking set. A) Distribution of Gibbs 
free energy of binding of the subset of 
complexes with experimentally 
determined binding affinities, 89 in total. 
B) Breakdown of receptor types, single 
stranded DNA (SSDNA), DNA, RNA 
and G-quadruplex DNA (GQUAD). C) 
Distribution of binding mode of ligand, 
not mutually exclusive.  
!
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One of the key concepts employed in our approach is that molecular fragments can be 

independently docked into a receptor and then later optimized to restore their original 

connectivity. So here we investigate whether sampling with a spatial resolution of 0.5 Å 

and a rotation increment of 18° yield favorable 

poses that are near the native bounds 

conformations. Furthermore, how does the size 

of the fragment affect its specificity to native-

like conformations? To examine specificity of 

fragments as a function of size (# of heavy 

atoms), the results of the exhaustive sampling 

procedure’s clusters were analyzed. For each 

fragment, the cluster containing the native 

conformation was recorded and the average 

cluster number per fragment size is shown in 

Figure 5.5. A clear trend emerges: as the size of 

the fragment increases, the number of clusters required to find the native conformation 

decreases. For example, cluster zero has the lowest score and each cluster contains, on 

average, 100 to 200 conformations. The fewer the clusters, the exponentially faster the 

procedure will yield a native-like pose, assuming that the native pose is the lowest energy. 

For this reason, fragments below five atoms are not initially searched and are refined in 

the second stage of pose generation. 

 

Validation of Flexible Chain Optimization  

The second distinct part of our procedure is to reattach flexible chains after the core or 

rigid portion of the molecule is placed. Using a bond rotation increment of 40° (nine 

rotations per bond), each flexible chain in each complex was considered in this validation. 

To validate only the flexible chain portion of the placement procedure, the remaining part 

of the molecule was kept in its native conformation. The number of rotations about each 

bond is low compared to other algorithms, which could have been insufficient to 

accurately capture native conformation. This was a major concern, due to the exhaustive 

nature of the sampling; even slightly increasing the number of rotations per bond adds an 

!
Figure 5.5: The average position of a native 
conformation in the spatial clusters 
determined by the exhaustive sampling 
procedure compared to the number of heavy 
atoms in a molecule fragment 
!
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exponential amount of time to the search 

procedure. This in the end turned out not be a 

significant problem as a high level of accuracy 

was achieved (Figure 5.6).  The percentage of 

flexible chains that were within 2.5 Å of their 

native conformation was 79% for all chains. 

For success rates based on number of rotatable 

bonds, chains with 1-2 rotatable bonds was 

84%, 3-4 rotatable bonds was 74% and >4 

rotatable bonds was 73%. The high level of 

accuracy of the 1-2 rotatable bond set was 

expected since there are only two degrees of 

freedom; however, a success rate of 73% for 

flexible chains with >4 rotatable bonds is 

quite surprising. The least successful ligand in 

the >4 category was 2BEE, which has seven 

long flexible chain atoms that form no contacts with its receptor and exposed entirely into 

solvent.  

 

Validation of Initial Core Placement 

Validation of the first stage of the placement algorithm is critical to benchmark 

independently. The second validation stage, which builds the flexible chains until the 

core of the molecule has a high degree of accuracy, assuming the core of the molecule is 

already in its native conformation. In this stage of validation we investigate whether it is 

possible to generate the core or rigid segments of a pose independent of the flexible 

chains. We used our exhaustive docking procedure to reconnect the fragments of the rigid 

portion of each molecule in the dataset (Figure 5.7). It should be noted that the entire 

molecule is not being rebuilt – just the two highest scoring fragments – with the 

assumption that connecting fragments that are in favorable binding poses will yield a 

complete molecule pose that is also favorable. In all, 63% of the complexes generated 

poses within 2.5 Å of the native conformation out of the top five best poses. This is 

!
!
Figure 5.6: Success rate of refining flexible 
segments of ligands when non-flexible 
segments are in their native conformation. 
Black is all flexible chains, blue contains only 
chains with one or two rotatable bonds, red 
contains chains with thee or four and green are 
all chains with more then four rotatable bonds, 
the max is seven. 
!
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extremely good for a set of 230 and is quite striking given that the entire molecule is not 

being used during this stage. The high success rate gives confidence that it is possible to 

dock each fragment independently, rank the most favorable clusters for the fragment to 

bind and then connect the fragments to each other.  

 

Because this set is by far the largest and 

most difficult validation set, it is difficult 

to judge the quality of this success. For 

this reason we also used the ICM docking 

program as a point of comparison, which 

has shown success in the Al-Hashimi lab 

in the past, finding multiple novel small 

molecules that bind to HIV-1 TAR, 

including one that inhibiting HIV-1 

replication in vivo(13). Using ICM we 

generated ten docked poses for each 

complex in the set. Unfortunately only 197 could be processed by ICM, it was unclear 

why specific complexes could not be processed, so we examined only this subset. 

Fortunately, the overall success rate for our own procedure did not change from 63%. To 

make a one-to-one comparison only the atoms that were docked in this stage by our 

algorithm were considered, since ICM’s docking algorithm is not a fragment based 

approach, all atoms were docked at once. This should give ICM an edge in this docking 

stage as it is possible that some poses require the entire molecule to be present to 

correctly position the rigid section of the ligand. ICM successfully docked only 55% 

below 2.5 Å RMSD from the native pose, considering the top five poses produced 

(Figure 5.8). This result should be expected as the extra degrees of freedom from the 

flexible portions of each ligand hinder the success of correctly placing the rigid core. This 

results further validates our approach to independently place the rigid core of the 

molecule before optimizing the flexible chains and linkers. 

 

5.4.3 Success of Full Pose Placement 

!
Figure 5.7: Success rate of refining the rigid 
segments of each ligand compared to their native 
conformation.  
!
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Putting all the refinement sets together yields full ligand docked poses. For the entire set 

of 230 complexes, our procedure produced docked poses with 67% below 3 Å RMSD 

using the top five poses generated. To 

compare to our previous success rate 

of only docking the core of the 

molecule with a success rate of 63% 

below 2.5 Å. This is compared to the 

56% when one considers the entire 

molecule (Figure 5.9A). This drop is 

expected; docking in the flexible parts 

is by far the hardest part. When 

docking the flexible chains starting 

with the native pose, on average we 

successfully placed 79% within 2.5 Å, 

thus some drop off in total accuracy 

makes sense. To again attempt to put these results in context, we can compare to the 

success rate of ICM on the subset of 179 structures. Here ICM had a success rate of 45% 

within 2.5 Å, which experienced an even greater dip in success rate compared to 

considering only the core of the molecule, which was at 55% discussed in the previous 

section. So again it appears that our novel exhaustive strategy is comparable to the results 

of current leading RNA docking programs. If we consider the success for ICM at 3 Å to 

compare to the recent benchmarking study, it achieves 52%. This would put it right under 

Glide’s 55%. So it is definitely still having comparable success rates to other leading 

programs. 

 

There were a couple of classes of ligands that showed differences using our approach 

compared to ICM. The first class is acridine ligands that bind to G-quadruplex. These are 

fused aromatic ring compounds with long flexible linkers to sugar like rings. An example 

is 3ERU. While our approach was able to successfully dock these ligands bellow 2.5 Å 

RMSD from the native, ICM generated poses that were 9-10 Å from the native. The long 

flexible linkers that connect the sugar rings to the aromatic rings are difficult to correctly 

!
!
Figure 5.8: Success rate of refining the rigid segments 
of each ligand compared to their native conformation 
for both our novel algorithm compared to ICM.  
!
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dock, splitting up the ligand and independently placing each fragment yields a huge 

advantage in this case as the linker is trivial to optimize once it is clear where all the rings 

need to be placed. Another class where our approach was yields superior results is with 

berenil-based derivatives that bind to the minor groove of DNA. These ligands consist of 

a series of five or six membered aromatic rings connected by single inflexible bonds. In 

addition to fragmenting rotatable bonds, our algorithm also fragments very large 

fragments where it is possible to segment them by a single bond such as in the case of 

these ligands. This is key to being able to get native like poses as they are very bulky and 

difficult to correctly fit into the minor groove of DNA. Once split, they easily form native 

like contacts with the minor groove generating poses bellow 2.5 Å RMSD, an example of 

this type of binder is 269D. ICM appears to do better then our approach is 

aminoglycosides, these are sugar like compounds with lots of NH3 groups on them. 

These ligands are absolutely covered in hydrogen bond donors and acceptors. Since we 

do not include a solvation term, all hydrogen bonds are attempted to be satisfied and 

situations where part of an aminoglycosides is sitting in solvent does not score well with 

our scoring function. Our scoring function favors burying these rings as deep as possible 

into the RNA leading to incorrectly docked poses. This is an area that we are still looking 

into and considering adding a simple solvation term to counter act situations like this. 

 

!
Figure 5.9 A) A comparison between the success rate between our exhaustive docking procedure and 
ICM on the subset of 179 complexes. B) A comparison in success rate between using the top five poses 
produced by our procedure and the top 10% of structures produced. 
!
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Due to its exhaustive nature it is possible to keep generating poses that are of more 

favorable score then the most favorable poses. Instead of setting the score cutoff to be 

higher then the current highest pose; it can be set to an arbitrary value. To investigate 

whether native like poses were being sampled for some of the complexes that did not 

yield top near-native poses, a score cutoff was set for each complex that was 10% below 

the most favorable pose. If we consider the pose with the best RMSD from these poses 

the success rate within 2.5 Å goes up to 76%, which is a noticeable increase (Figure 

5.9B). This demonstrates that more native-like poses exist in the top 10% of favorable 

poses but are not within the top 5 most favorable poses. A possible explanation for this is 

that the scoring function used is rather simplistic and is not capturing some of the finer 

interactions required to score native-like poses more favorably then near native poses. 

Future work will explore implementing a second level of scoring using a more complex 

scoring function which could select out more native-like poses from the top 10% of poses 

yielding a success rate more similar to 76%. 

 

5.4.4 Comparison to Other Leading Programs 

In a recent paper(42), GOLD, Ribodock, Glide, Autodock4.1 and Surflex-dock were 

benchmarked on a set 56 complexes. The highest success rate (<3.0 Å) using the top five 

poses of 73% was generated by GOLD and Ribodock. None of the other programs did 

better then our 67%. The next highest was Glide with 55%. This suggests that our 

exhaustive sampling strategy already performs as well as some of the best RNA docking 

programs out there, but to directly compare with these results, we ran both our exhaustive 

sampling procedure and ICM on the same 56 structures. The exhaustive sampling 

achieved a success rate of 66%, while ICM yielded a success rate of 57%. Given the 

same set of complexes the exhaustive sampling procedure was able to out perform all but 

GOLD and Ribodock. This set has a much larger fraction of aminoglycosides (26/56) 

then the set of 230 (31/230) complexes used earlier. As discussed earlier, complexes with 

aminoglycosides have a lower success rate with the exhaustive sampler. Out of the 26 

complexes with aminoglycosides only 12 were successively docked below 3.0 Å rmsd 

compared to the 18 and 13 of GOLD and Ribodock respectively. Thus it appears taking 
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steps to improve docking aminoglycosides could radically improve the overall success 

rate, as for other ligand the exhaustive sampler out performed GOLD and was on par with 

Ribodock.  

5.5 Conclusion 

We have demonstrated the ability of using a simplistic scoring function with an 

exhaustive sampling procedure to generate high quality docked poses using a newly 

developed nucleic acid / small molecule set of 230 complexes. This procedure out 

performs ICM, a leading docking program, in a one to one comparison on this complex 

set. Furthermore, the computational cost of running our program, which only needs to be 

done once, was faster then it took ICM to generate 10 poses. The average run time is 

approximately ~10 minutes per ligand once the receptor is prepared. In addition, the 

success rate of 67% within 3 Å RMSD of the native pose using the top five poses 

produced for each complex is comparable to that of the leading RNA docking programs 

benchmarked in a smaller set of 56 complexes. Using this sampling technique in 

conjunction with a second level of scoring could possibly produce even higher success 

rates as investigating the 10% most favorable scoring conformations contained poses that 

were below 2.5 Å 76% of the time. Our approach demonstrates that in addition to 

improving scoring functions, there is still additional way to improve success rates with 

novel enhanced sampling techniques. 
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CHAPTER 6 

Conclusion and Future Directions 

 
6.1 MATCH: An Atom-Typing Toolset for Molecular Mechanics Force Fields  

Here we have constructed a framework called MATCH that can facilitate the automated 

parameterization of atom types, partial charges and molecular parameters for command 

molecular mechanics force fields. This toolset has the ability to deconstruct a force field 

into a set of fundamental rules which best replicates existing parameters and permits 

extension to new molecules yielding near instantaneous parameterization of novel 

molecules. It is customizable and extensible, such that it can act both as a solution for 

extrapolating and interpolating from the known chemical space to novel molecules and as 

a tool to study the effects of specific parameter choices and parameterization strategies. 

Through cross validation studies we have demonstrated that rules derived from one force 

field may be applied to other or to a set of novel molecules. Development of MATCH 

was critical in our ability to study RNA-ligand interactions as it allowed us to seamlessly 

parameterize ligands quickly and efficiently for molecular dynamics simulations and 

computational docking protocols. 

 

Future work will focus on the development of automated procedure for generating 

molecular fragments of atom types. Automated procedures were investigated attempting 

to use genetic programs to evolve an ideal solution for each atom type simultaneously, 

but unfortunately they produced suboptimal solutions compared with the strategies that 

incorporated expert knowledge. In addition instead of substituting in known bond charge 

increments and atomic parameters when they are missing, it would be preferable to have 

some type of model built that would generate new parameters based on similarity in atom 

type. This was also attempted but failed to be significantly better then our substitution 

procedure already outlined. Implementation of automated procedures will allow the 
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MATCH strategy to be even more generalizable and facilitate the seamless integration of 

additional force field topology files into force-field specific MATCH libraries.  

 

6.2 Assessing The Quality Of Absolute Hydration Free Energies Among CHARMM-

Compatible Ligand Parameterization Schemes 

This study highlights the importance of having sufficient coverage of chemical space 

within the underlying databases of these automated schemes and the benefit of targeting 

specific functional groups for parameterization efforts in order to maximize both the 

breadth and depth of the parameterized space. This work demonstrates that MATCH and 

other automated parameterization schemes generate atomic partial charges and 

parameters that are sufficient in quality. This was a critical step in determining whether 

automated parameterization was of high enough quality to be used in molecular dynamics 

simulations and computational docking techniques. 

6.3 Using NMR Data to Generate Dynamic RNA Ensembles 

RNA flexibility plays a critical role in its dynamics and interaction with proteins and 

small molecules. To account for its structural placidity we have employed the use of 1H 

chemical shifts and molecular dynamics to generate dynamic structural ensembles. We 

first demonstrated that chemical shift SAS selections were valid using the set of 26 NMR 

structures which generated conformations similar to the NOE/RDC refined structures. It 

was critical to confirm that using only 1H chemical shift data still generated 

conformations that were physically realistic compared to those generated using 

NOE/RDC. There were some subtle differences, which is related to the resolution of both 
1H chemical shift and the prediction method of NUCHEMICS. With larger data sets and 

the ability to predict carbon and nitrogen shifts, the future of RNA structure and 

dynamics predictions by chemical shifts looks very promising. 

 

The comparison between the chemical shift SAS and the RDC SAS illustrates the utility 

of chemical shifts over RDCs in cases where there is little helical motion for determining 

the dynamics of the bulge. Additional work could be in combining both chemical shifts 

and RDC SAS in try and gain both helical information from the RDCs and local 

dynamical information from the chemical shifts. This is a proof of principle in generating 
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a dynamic ensemble using chemical shifts without a known ensemble to reference for 

RNA. The ensemble generated by the chemical shift SAS for the ribosomal decoding site 

was corroborated by both relative free energy calculations and the existing experimental 

structures which differs from previous work(1). It would also be interesting to investigate 

the structure agreement between the SAS ensemble and the bound conformations for A-

site. In previous studies generating a dynamic ensemble for HIV-1 TAR it was shown 

that some of the conformations resembled bound conformations to different small 

molecules(2). This ensemble was also later shown to select out binders from a large small 

molecule database that were later shown to inhibit HIV-1 replication(3). 

 

This work also investigated the effects of using different conformation pools for SAS 

selections. The pool generated by umbrella sampling produced an ensemble that differed 

from the one generated from the MD pool of conformations. It is quite possible that 

without proper sampling that skewed distribution could be incorrectly accepted. It is 

imperative that more research be conducted to further understand the significance of the 

different ensemble sizes and what they represent.  

6.4 Enhanced Sampling Procedure Improves Success Rate for Nucleic Acid–Small 

Molecule Docking 

RNA binding pockets are solvent exposed and shallow. In addition small molecules that 

bind RNA tend to be flexible with a large number of rotatable bonds(4,5). To address this 

issues we have developed an enhanced sampling procedure that uses a simplistic scoring 

function to generate high quality docked poses using our newly developed nucleic acid / 

small molecule set of 230 complexes. This procedure out performs ICM, a leading 

docking program, in a one to one comparison on this complex set. Furthermore, the 

computational cost is of running our program, which only needs to be done once, was 

faster then it took ICM to generate 10 poses. The average run time is approximately ~10 

minutes per ligand once the receptor is prepared.  

 

In addition, the success rate of 67% within 3 Å RMSD of the native pose using the top 

five poses produced for each complex is comparable to the success rates of the leading 

RNA docking programs benchmarked in smaller set of 56 complexes. Using this 
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sampling technique in conjunction with a second level of scoring could possibly produce 

even higher success rates as investigating the 10% most favorable scoring conformations 

contained poses that were below 2.5 Å 76% of the time. Our approach demonstrates that 

in addition to improving scoring functions, there is still additional way to improve 

success rates with novel enhanced sampling techniques. 
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Appendix 1 

A-site NMR Chemical Shift Spectra 

 
Figure A1.1: NMR resonance assignments of ribosomal decoding site construct (15 mM NaPO4 
pH 6.4, 25 mM NaCl, 0.1 mM EDTA, 298 K). 
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Figure A1.2: An overview of all the residues that in bulges with the BMRB broken up by residue type. It 
is clear that there is a much more broad distribution over flip angle for both Uridine and Cytosine 

 

 
Figure A1.3: The R correlation of each nuclei per residue to calculated stacking energy. Only nuclei with 
10 or more data points were considered. Uridine and Cytosine present the highest correlations, which may 
be due the more uniform sampling of flipped out states 
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Figure A1.4: The R correlation of each nuclei per residue to calculated flip angle. Only nuclei with 10 or 
more data points were considered.  

 
 
Figure A1.5: First panel depicts the R correlation between the experimental proton chemical shifts and 
those computed by NUCHEMICS. Second panel compares the average deviation between predicted and 
experimental by nuclei. Lastly, the third panel displays the average signed difference between the two to 
see if there are any noticeable trends in error, which none appear 
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