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Abstract 
Non-random Sister Chromatid Segregation During Stem Cell Division in 

Drosophila Melanogaster Testis 
 

Adult stem cells undergo asymmetric cell division to self-renew and to 

produce differentiated cells throughout the life of an organism. This increases the 

risk of replicative senescence or neoplastic transformation due to mutations that 

accumulate over many rounds of DNA replication. The immortal strand 

hypothesis proposes that stem cells reduce the accumulation of replication-

induced mutations by retaining all the older template DNA strands. In addition, 

other models have also been proposed in which stem cells non-randomly 

segregate only a subset of chromosomes for different reasons, such as retention 

of epigenetic memories. However, the mechanism and the biological relevance of 

these chromosome asymmetries remain elusive. This is primarily due to the lack 

of model systems in which chromosome asymmetries can be assessed in the 

context of other asymmetries, such as cell fate. 

The Drosophila melanogaster testis is one of the few well-characterized 

model systems that enable a detailed study of the regulation of stem cells. To 

elaborate, unlike many other model systems Drosophila male germline stem cells 

(GSCs) can be unambiguously identified at single-cell resolution. Further, GSCs 

divide asymmetrically giving rise to a stem cell and a differentiating cell, which 

can be readily identified in vivo enabling unambiguous identification of both 
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asymmetric stem cell division and any other potential asymmetries such as 

nonrandom sister chromatid segregation. 

In this thesis, I describe work where I first showed that the bulk of 

chromosomes are not segregated asymmetrically in dividing Drosophila GSCs, 

suggesting that GSCs do not retain all the older template DNA strands to 

maintain their genomic integrity. However, these initial results did not exclude the 

possibility that GSCs might be non-randomly segregating individual 

chromosomes. In order to unambiguously study the segregation patterns of 

individual chromosomes, I adapted the CO-FISH (chromosome orientation 

fluorescence in situ hybridization) protocol, which allows strand-specific 

identification of sister chromatids. Using this method, I found that sister 

chromatids of X and Y chromosomes, but not autosomes, are segregated non-

randomly during asymmetric divisions of GSCs. These results provide the first 

direct evidence that sister chromatids of certain chromosomes can be 

distinguished and segregated non-randomly during asymmetric stem cell 

divisions. Further, in this work I also showed that centrosomal proteins, nuclear 

envelope proteins, and methyltransferase are all required for non-random sister 

chromatid segregation of X and Y chromosomes. This study establishes the first 

genetically tractable experimental model system to study chromosome strand 

segregation pattern with unprecedented resolution during cell division. Finally, 

this work suggests that non-random sister chromatid segregation in 

asymmetrically dividing stem cells is potentially an evolutionarily conserved 

mechanism that is critical for diversification of cell fates—thus establishing a new 
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paradigm for understanding stem cell regulation.  
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Chapter 1 

Introduction and Outline 

 
1.1 An overview of stem cell asymmetric division 

Stem cells are essential contributors to tissue development, homeostasis, 

and repair. Throughout the life of an organism, stem cells are required to 

proliferate and supply differentiated but short-lived cells such as blood, skin, 

intestinal epithelium, and sperm cells (Morrison and Kimble, 2006). The main 

function of adult stem cells is to generate identical copies of themselves (self-

renewal) as well as to produce various differentiated cells that give rise to tissue 

(Morrison and Kimble, 2006). Many stem cells are known to achieve this function 

through asymmetric cell division—i.e., one of the daughter cells adopts the fate of 

its mother, whereas the other adopts a more committed fate (Morrison and 

Spradling, 2008).  Drosophila melanogaster has emerged as an extremely 

powerful and tractable model system for identifying and analyzing complex 

behavior of stem cells. Specifically, the gonad of Drosophila melanogaster is an 

excellent system to study mechanisms regulating stem cell function as it is one of 

the very few systems where stem cells are easily identifiable and their division is 

well characterized (Davies and Fuller, 2008; Yamashita et al., 2010). Drosophila 

model systems have played key instructional roles in understanding of many 

mammalian stem cell systems (Losick et al., 2011) due to the striking similarities 
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between invertebrate and vertebrate stem cell systems. 

 Studies in several model systems have suggested two distinct mechanisms 

by which asymmetric cell division is achieved. The first mechanism involves 

extrinsic fate determinants provided by the stem cell niche (the microenvironment 

that instructs stem cell identity) and relies on the asymmetric placement of 

daughter cells within or outside of the niche (Knoblich, 2008). Alternatively, the 

second mechanism involves intrinsic fate determinants and relies on the 

asymmetric partitioning of fate determinants to the daughter cells (Knoblich, 2008). 

In addition to these asymmetries, which are clearly related to their function and 

fate, a series of studies have suggested other types of asymmetries during stem 

cell division. These include non-random segregation of sister chromatids (Charville 

and Rando, 2013; Yennek and Tajbakhsh, 2013), midbody (Ettinger et al., 2011), 

and protein aggregates (Rujano et al., 2006). However, the relevance of these 

asymmetries is yet to be established.  

In recent times, non-random sister chromatid segregation has been studied 

extensively in many stem cell model systems (Yamashita, 2013b; Yennek and 

Tajbakhsh, 2013). It has been suggested that the sister chromatids might be 

distinguished and segregated non-randomly in certain asymmetrically dividing 

stem cells (Yamashita, 2013b; Yennek and Tajbakhsh, 2013). During the cell 

cycle, cells replicate their genome and subsequently segregate sister chromatids 

into the two daughter cells. DNA replication is generally a very precise process 

and the replicated copy is expected to be an exact copy of the original template. 

However, one of the strands acts as the template for the other, thus replication-
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induced errors only occur on the newly synthesized strand, while the template 

strand remains unchanged. Further, since DNA methylation and histone 

modifications do not necessarily occur simultaneously with the DNA replication, 

sister chromatids can be different from each other in their epigenetic marks. These 

mechanisms can potentially impose asymmetries in genome and/or epigenome 

during cell divisions.  

 

1.2 Models of non-random sister chromatid segregation during stem cell 

division 

Non-random sister chromatid segregation during stem cell division has 

been intensely studied in recent years in a broad range of stem cell populations. 

There are two major models of non-random sister chromatid segregation – 

Immortal Strand Hypothesis (ISH) and Silent Sister Hypothesis (SSH). ISH 

proposes that stem cells retain older template DNA strands of all the 

chromosomes to limit replication-induced errors (Cairns, 1975; Cairns, 2006). This 

idea is termed the Immortal Strand Hypothesis (ISH) since stem cells would inherit 

the template strand for many cell cycles (essentially forever), making the template 

strand ‘immortal’ (Figure 1.1A). However, the validity of this hypothesis remains 

untested, as there is only limited data to compare the number of mutations in stem 

cells and differentiated cells (Rossi et al., 2007). Moreover, retaining older 

template strands would not prevent non-replication-based mutations that can be 

caused by other naturally occurring DNA damaging events, such as environmental 

factors and cellular stresses. Although this hypothesis has been widely studied, 
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the interpretation of some of these studies remains controversial, owing to the 

complexities of the different model systems employed and the differences in 

techniques used (Yamashita, 2013a; Yennek and Tajbakhsh, 2013).  

Silent Sister Hypothesis (SSH) proposes that stem cells might non-

randomly segregate sister chromatids of only a subset of chromosomes, perhaps 

to retain epigenetic memories (Klar, 1994; Klar, 2007; Lansdorp, 2007)(Figure 

1.1B). However, it remains a mystery as to how distinct epigenetic information is 

placed on two sister chromatids during replication (or perhaps during the 

subsequent G2 phase) and how information is segregated during division leading 

to distinct cell fates. For example, it is well known that haploid fission yeast 

controls mating type by differentially marking only one DNA strand at the mating-

type locus mat1, thereby producing non-equivalent sister chromatids of 

chromosome II (the mat1 locus is on chromosome II) (Klar, 1987). This study 

provides a clear example of where the difference between sister chromatids 

correlates with fate determination. Recently, it has been suggested that homologs 

of chromosome 7 are non-randomly segregated during mouse Embryonic Stem 

(ES) cell division (Armakolas and Klar, 2006), where the maternal sister chromatid 

which contains the Watson strand as a template always co-segregated with the 

paternal sister chromatid that contains the Watson strand as a template. The 

relationship between the segregation pattern of chromosome 7 and cell fates has 

not been addressed. However, more recent work using the chromosome-oriented 

fluorescence in situ hybridization (CO-FISH) method (see below) did not confirm 

this observation (Sauer et al., 2013). Some of the difficulties involved in answering 
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these questions can be overcome by using simpler model systems and more 

sophisticated techniques as described next. 

 

1.3 Challenges in addressing sister chromatid segregation 

Addressing sister chromatid segregation patterns in a stem cell population 

can be very challenging due to multiple factors (Yamashita, 2013b). First, stem cell 

populations available for experiments are often a heterogeneous mixture of stem 

and differentiating cells and cellular markers to specifically identify stem cells are 

often lacking. Second, direct evidence regarding the mode of stem cell divisions 

(symmetric versus asymmetric) over extended cell generations is limited. Third, it 

is challenging to unequivocally identify daughter cells after cell division in most 

model systems. As explained later in this chapter and in further detail in Chapters 

2 and 3, Drosophila male germline stem cells (GSC) provide an ideal model 

system to study sister chromatid segregation overcoming all of the problems listed 

above. Brielfy, 1) GSCs can be identified unambiguously at single-cell resolution, 

2) GSC division is always asymmetric (Sheng and Matunis, 2011; Yamashita et 

al., 2003), 3) Pairs consisting of stem cells and differentiating cells can be easily 

identified in the GSC system, and, finally, 4) GSC cell cycle characteristics, such 

as cell cycle length and S-phase duration, are well established. 

In addition to the complexities of the model systems, previous studies have 

been limited by the low resolution of the techniques used to detect different sister 

chromatid segregation patterns. Below, I briefly describe these techniques and 

discuss their strengths and limitations.  
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Figure 1.1 Hypotheses that explain nonrandom sister chromatid segregation. 
A) The immortal strand hypothesis proposes that the template copy of the sister 
chromatids with fewer replication-induced mutations may be retained in the stem 
cells. B) An alternative hypothesis to explain nonrandom sister chromatid 
segregation. Distinct epigenetic information is transmitted to daughter cells 
through nonrandom sister chromatid segregation (Images from (Yamashita, 
2013b)) 
 
1.3.1 Pulse-Chase assay 

In a majority of studies, nucleotide analogs such as 5-bromo-2’-

deoxyuridine (BrdU) have been used to label and distinguish two sister 

chromatids. In a pulse–chase experiment, nucleotide analogs are used to label the 

newly synthesized DNA strands during asymmetric division of stem cells, and the 
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segregation of BrdU-labeled chromatids is monitored during the chase period 

(Figure 1.2A). If stem cells were indeed segregating all the template DNA strands, 

the differentiated cell would inherit all the BrdU-labeled chromatids. In contrast, if 

sister chromatids were randomly segregated, both the stem cell and the 

differentiating daughter cell would inherit BrdU-labeled chromatids (Yadlapalli et 

al., 2011). Alternatively, BrdU can also be administered for extended periods to 

label the nascent DNA when stem cells or their precursors are dividing 

symmetrically, so that immortal template strands, if they exist, will be labeled. In 

this scenario, if cells follow the ISH model, the labeled DNA will continue to be 

inherited by stem cells despite undergoing many rounds of cell divisions during the 

label-free chase period (Figure 1.2B). Such DNA-labeling experiments, which 

support the ISH results, have been reported in small and large intestinal cells 

(Potten et al., 2002; Quyn et al., 2010), neural stem cells (Karpowicz et al., 2005), 

skeletal muscle satellite cells (Conboy et al., 2007; Shinin et al., 2006), mammary 

epithelial cells (Smith, 2005) and others. However, experiments using the same 

technique which involve for instance mouse hematopoietic stem cells (Kiel et al., 

2007), epidermal basal cells (Sotiropoulou et al., 2008), hair follicle stem cells 

(Waghmare et al., 2008), neocortical precursor cells (Fei and Huttner, 2009) 

showed that stem cells randomly segregated the template strands. It should be 

noted that because BrdU is incorporated into the newly synthesized DNA of all the 

chromosomes, one can only address non-random sister chromatid segregation 

that applies to the whole set of the chromosomes. The non-random segregation of 

a small subset of chromosomes cannot be detected by this method. 
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Figure 1.2  Pulse–chase assay to study sister chromatid segregation during 
stem cell division. A) In an asymmetrically dividing stem cell, new DNA strands 
are labeled with a nucleotide analog during the S phase of one cell cycle. 
Inheritance of all the label by the differentiating cell in the second cell cycle would 
indicate that stem cells inherit ‘immortal’ strands. If the label is inherited 
symmetrically, it would suggest the cells do not follow the ISH model. B) All stem 
cell DNA strands are labeled through administration of nucleotide analogs over 
multiple generations when the stem cells or their precursors are dividing 
symmetrically. If immortal template strands exist, they would become labeled. 
During the following label-free chase period, stem cells would retain the labeled 
strands even after many cell divisions if they follow the ISH model. However, if 
they do not, the label would be quickly diluted and lost from the stem cells.  
 
1.3.2 Multi-isotope imaging mass spectrometry 

Multi-isotope imaging mass spectrometry (MIMS) is a novel technique to 
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image stable isotopes (such as (15)N-thymidine)� in cells with a new type of 

secondary ion mass spectrometer (Steinhauser et al., 2012). This method is 

essentially the same as the use of nucleotide analogs because the isotope would 

label all the chromosomes. However, this has a strong advantage over the use of 

nucleotide analogs, because isotopes are non-toxic and their concentration within 

the cell can be precisely measured by mass spectrometry. Using this technique, 

Steinhauser and colleagues showed that stem cells in the mouse small intestine 

do not follow the ISH model (Steinhauser et al., 2012). Specifically, they 

administered (15)N-thymidine to mice from gestation until post-natal week 8, but 

found no (15)N label retention by dividing small intestinal crypt cells after a four-

week chase. Additionally, when they administered (15)N-thymidine pulse-chase to 

adult mice, they observed that proliferating crypt cells dilute the (15)N label, 

consistent with random strand segregation. 

 

1.3.3 Strand-seq technique 

A novel sequencing technique, called strand-seq, which sequences only the 

parental template strands of all the chromosomes from single cells has recently 

been developed to study sister chromatid segregation during cell division 

(Falconer et al., 2012). Briefly, in this technique newly synthesized strands are 

labeled with BrdU, the genome is fragmented and a paired-end library is 

constructed. Prior to PCR amplification, the nascent BrdU-labeled strand is nicked 

so that it is not amplified during the subsequent PCR step. As a result, only the 

original intact template strand is selectively amplified, resulting in directional library 
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fragments. The library fragments are then sequenced and the resulting paired 

short sequencing reads are used to identify the original template strands that have 

been inherited from the parental cell. (Figure 1.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 Strand-seq technique to study sister chromatid segregation in 
single cells A) When DNA is replicated in the presence of BrdU, only the newly-
formed DNA (black lines) is substituted with BrdU while the original template 
strands remain un-substituted. Nicks are created at the sites of BrdU 
incorporation. A modified Illumina library construction protocol can be used to 
exclude the nicked BrdU-positive strands from the final amplification step. B) The 
resultant library fragments maintain the genomic directionality of the DNA strands 
such that read 1 of a paired-end read is always from the template strand while 
read 3 is from the complementary strand (gray). These reads can be aligned to the 
reference genome to clearly show the template strands that were inherited by that 
cell for each chromosome. C) The output for a single mouse embryonic stem cell 
library clearly shows the Watson and Crick template strands that were inherited by 
that cell for chromosomes 15-19��(Images from (Falconer et al., 2012).) 
 
This technique allows the detection of non-random sister chromatid segregation at 

single chromosome resolution, without being limited by the availability of suitable 

A 

B 

C 
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probe sequences (a requirement for CO-FISH technique, described below). Using 

this technique, it has been shown that in mouse embryonic stem (ES) cells, 

chromosome 7 is randomly segregated (Falconer et al., 2012). 

 

1.3.4 Chromosome-Oriented Fluorescence In-situ Hybridization 

Chromosome-Oriented Fluorescence In-situ Hybridization (COFISH) 

technique allows the unambiguous identification of the two sister chromatids –  

one which contains the Watson strand as a template and the other which contains 

the Crick strand as a template (Bailey et al., 2004; Falconer et al., 2010). In the 

CO-FISH protocol, cells are allowed to replicate once in the presence of BrdU. 

Following BrdU incorporation, cells complete mitosis in a BrdU-free medium, such 

that the sister chromatids are segregated into stem cell and daughter cell. The 

BrdU-containing strands are removed by treatment with ultraviolet irradiation and 

exonuclease III. The remaining template strands can be identified using 

differentially labeled strand-specific probes (Figure 1.4). This technique has been 

used to follow the segregation patterns of sister chromatids in mouse colon 

epithelial cells in vivo. The authors observed significant non-random sister 

chromatid segregation in the differentiating cells but not in the Lgr5+ stem cells in  

the colon crypts (Falconer et al., 2010).  
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Figure 1.4 CO-FISH to identify sister chromatids of individual chromosomes. 
A) Schematic illustration of the CO-FISH protocol. Cy3–(AATAC)6 and Cy5– 
(GTATT)6 probes which are used to identify the sister chromatids of Drosophila Y 
chromosome are shown as an example. Upon DNA replication in the presence of 
BrdU, only newly synthesized strands will contain BrdU. After fixation and 
irradiation with UV, the BrdU-containing strands specifically will be nicked. 
Treatment with exonuclease III is used to remove the nicked strand, leaving the 
template strand intact. Upon hybridization of the CO-FISH probe, sister chromatids 
that contain (AATAC)6 as a template versus (GTATT)6 as a template can be 
distinguished. C, Crick strand and W, Watson strand are shown in black; C’ and 
W’ indicate newly synthesized strands after replication shown in grey. Green, 
differentiated cells; yellow, stem cells. B) Expected probabilities of CO-FISH signal 
pattern based on random segregation. In the case of sex chromosomes, if there is 
no bias in sister chromatid segregation, we expect that a stem cell inherits a red 
(Cy3-based) signal and a differentiated cell a blue (Cy5- based) signal in 50% of 
the cases, and the opposite, i.e. a blue signal in the stem cell and a red signal in 
the differentiated cell, in the other 50%. For autosomes, two signals per cell 
(originating from paternal and maternal chromosomes) are expected. If there is no 
bias or coordination between homologous chromosomes, stem cells would inherit 
either two red signals, a blue and a red signal or two blue signals with the 
probability of 25%, 50%, 25%, respectively. A skewed pattern would suggest the 
presence of biased segregation (see Figure 3.12). 
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Another study applied CO-FISH to mouse muscle satellite stem cells and reported 

that stem cells retain the template strands with a strong bias, thus supporting the 

ISH model (Rocheteau et al., 2012). It should be noted that these studies used 

probes that are targeted to centromeric and telomeric repeats that are present on 

all the chromosomes, and thus it was impossible to detect any non-random sister 

chromatid segregation that applies to only a small subset of the chromosomes.  

 

1.4 Description of the Drosophila melanogaster male germline stem cell 

system 

I used Drosophila melanogaster male germline stem cells (GSCs) as the 

model system in this work as it is one of the few well-characterized model systems 

that enable a detailed study of the regulation of stem cells. Here, I briefly describe 

the system architecture, and signaling pathways. At the apical tip of the testis, 

approximately 8–10 GSCs lie in a rosette around a cluster of post-mitotic support 

cells called hub cells, which represents a major component of the GSC niche 

(Davies and Fuller, 2008; Yamashita et al., 2010). Drosophila male GSCs always 

divide asymmetrically by keeping one daughter attached to the hub which retains 

stem cell identity and displacing the other away from the hub which starts 

differentiation (Gonialblast (GB)) (Yamashita et al., 2003)(Figure 1.4). GBs further 

undergo four mitotic divisions with incomplete cytokinesis, producing clusters of 16 

interconnected spermatogonia, which produce spermatocytes that then commit to 

meiosis and ultimately differentiate into sperm. The testicular niche also contains a 

second stem cell type called cyst stem cells (CySCs). The function of CySCs, 
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together with the hub cells, is to create a niche for GSCs (Voog et al., 2008) 

(Figure 1.5). A pair of CySCs encapsulates a GSC and provides essential signals 

for GSC identity (Leatherman and Dinardo, 2008; Leatherman and Dinardo, 2010). 

Similar to GSCs, CySCs also divide asymmetrically to generate a continuous 

supply of non-mitotic somatic support cells called cyst cells, which encapsulate 

and escort differentiating germ cells (Cheng et al., 2011). A pair of cyst cells 

envelops each GB and its progeny, providing signals that mediate differentiation. 

GSCs and CySCs are physically attached to the hub cells by adherens junctions 

consisting of Drosophila epithelial (DE)-cadherin and �-catenin/Armadillo, which 

are concentrated at the cell cortex adjacent to the hub (Yamashita et al., 2003). 

Indeed, cell adhesion between GSCs and hub cells, as well as between CySCs 

and hub cells, has been demonstrated to be required for stem cell maintenance 

(Voog et al., 2008).  

 

1.4.1 Signaling pathways in GSC niche 

The hub supports self-renewal of GSCs and CySCs by secreting a short-

range signaling ligand, unpaired (Upd), which activates the Janus kinase–signal 

transducer and activator of transcription (JAK–STAT) pathway in neighboring cells 

(Kiger et al., 2001; Leatherman and Dinardo, 2008; Tulina and Matunis, 2001). 

GSCs and CySCs mutant for stat92E (STAT) or hop (JAK; encoded by the 

hopscotch gene) lose their ability to self-renew and instead differentiate. In 

addition, overexpression of Upd in early germ cells (GSCs or spermatogonia) or in 

early somatic cells (CySCs or cyst cells) causes overproliferation of 
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undifferentiated, stem-like cells and results in tumor formation. 

 

Figure 1.5 Drosophila male germline stem cell system. At the apical tip of the 
testis, germline stem cells (GSCs), and cyst stem cells (CySCs) are physically 
attached to the hub cells via an DE-cadherin-based adherens junction. GSCs 
divide asymmetrically where one of the daughters maintains stem cell identity and 
the other initiates differentiation as a gonialblast (GB). GBs further undergo four 
synchronous divisions with incomplete cytokinesis, producing clusters of 16 
interconnected spermatogonia, which give rise to spermatocytes and ultimately to 
sperm. A pair of CySCs encapsulates a GSC and provides essential signals for 
GSC identity. CySCs divide asymmetrically to self-renew and produce somatic 
support cells called cyst cells. A pair of cyst cells envelop each GB and its 
progeny, providing signals mediating differentiation.  
 
Currently, the direct downstream targets of the JAK–STAT pathway that specify 

GSC identity are not well studied, although candidate genes have been described 

through microarray analysis (Terry et al., 2006). Recent studies have 

demonstrated that the transcriptional repressor zinc finger-homeodomain 

transcription factor 1 (zfh-1) is a critical downstream target of the JAK–STAT 

pathway in CySCs (Leatherman and Dinardo, 2008). Strikingly, overexpression of 
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Zfh-1 or forced expression of constitutively active JAK in CySCs resulted in 

overproliferation of not only CySCs but also GSCs. In contrast, ectopic expression 

of an active form of JAK tyrosine kinase in the germline did not cause massive 

proliferation of GSCs or CySCs (Leatherman and Dinardo, 2008). Furthermore, 

GSCs mutant for STAT can be maintained as long as CySCs have active Zfh-1, 

demonstrating CySCs as a critical component of the GSC niche (Leatherman and 

Dinardo, 2010). GSCs were suggested to require STAT activity only to correctly 

orient toward and to adhere to the hub cells. Zfh-1 appears to instruct GSC self-

renewal via TGF-�-dpp/gbb signaling (Leatherman and Dinardo, 2010). 

Decapentaplegic (dpp) and glass bottom boat (gbb) are normally expressed in hub 

cells and CySCs, which ultimately lead to shutoff of Bam (Bag-of-marbles, a 

master regulator of differentiation) in germline, contributing to GSC self-renewal 

(Kawase et al., 2004; Chen et al., 2003; McKearin et al., 1995). However, 

interestingly, overexpression of dpp does not cause GSC tumors but leads to 

spermatogonial overproliferation (Kawase et al., 2004; Schulz et al., 2004; 

Shivdasani and Ingham, 2003), implying that there is an additional factor(s) 

downstream of Zfh-1 that function with TGF-� signaling to confer GSC identity. 

 

1.4.2 Orientation of the spindle by the positioning of centrosomes 

GSCs divide asymmetrically by orienting the mitotic spindle perpendicular 

to the hub–GSC interface. Adherens junctions concentrated at the GSC cortex 

adjacent to the hub, along with ademomatous polyposis coli 2 (APC2), provide a 

polarity cue toward which GSCs orient throughout the cell cycle (Inaba et al., 



� ��

2010; Yamashita et al., 2003). In G1, the single centrosome in each GSC localizes 

near the cell cortex where the cell attaches to the hub. When the duplicated 

centrosomes are separated, one of the centrosomes stays next to the hub while 

the other migrates to the opposite side of the cell (Figure 1.6). This stereotyped 

position of the centrosomes in turn orients the mitotic spindle perpendicular to the 

GSC–hub interface, leading to asymmetric division. Interestingly, the mother 

centrosome normally remains adjacent to the hub and is inherited by the GSC, 

whereas the newly duplicated centrosome migrates to the opposite side of the cell 

and is inherited by the GB (Yamashita et al., 2007) (Figure 1.5). This suggests that 

male GSCs retain the original (very old) centriole for a long time probably from the 

time the GSC population first arose during development. Indeed, centrosomes 

marked by a transient expression of a centriolar marker green fluorescent protein-

pericentrin/AKAP450 (GFP-PACT) during early development were retained in 

GSCs even in adult stage (Yamashita et al., 2007).  

The higher capacity of the mother centrosome to anchor astral microtubules 

may be the underlying cellular mechanism by which GSCs inherit the mother 

centrosome during division. In GSCs, centrosomes are separated unusually early, 

right after duplication, rather than at the G2/M transition: the mother centrosome 

appears to retain robust astral microtubules throughout the cell cycle, whereas the 

daughter centrosome migrating to the opposite side of the cell has few associated 

astral microtubules until late in G2, near the onset of mitosis. Consistently, 

positions of mother and daughter centrosomes as well as spindle orientation were 

randomized in GSCs mutant for centrosomin (cnn), which have severely impaired 
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astral microtubules as a result of defective pericentriolar material (Megraw and 

Kaufman, 2000; Megraw et al., 2002; Megraw et al., 1999; Vaizel-Ohayon and 

Schejter, 1999). In Chapters 3 and 4, I discuss the role of mother centrosome in 

non-random sister chromatid segregation during GSC division. 

Figure 1.6 Asymmetric cell division in Drosophila male germline stem cells. 
GSCs always orient their spindle perpendicular to the hub. This stereotypical 
orientation of mitotic spindle is prepared by the precisely controlled positioning of 
the centrosomes during interphase. Specifically, the mother centrosome (red) 
normally remains adjacent to the hub and is inherited by the GSC, where as the 
daughter centrosome (purple) migrates to the opposite side of the cell and is 
inherited by the gonialblast (GB) 

 

The above results suggest that male GSCs have adopted cellular 

mechanisms that maintain stereotypical centrosome position and orient the mitotic 

spindle to tightly regulate the asymmetric outcome of stem cell divisions within the 

niche. Interestingly, a recent study demonstrated that mutants of DSas-4, a core 

component of centriole, normally orient mitotic spindle in male GSCs, despite the 

complete lack of centrioles (and thus centrosomes) (Riparbelli and Callaini, 2011). 

It has also been recently shown that the spectrosome is located at the apical side 

of the GSC anchoring the spindle pole in DSas-4 mutant male GSCs (Yuan H et 

al., 2012), which is reminiscent of spindle orientation mechanism in female GSCs 
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(Deng and Lin, 1997), suggesting that a parallel mechanism might compensate the 

loss of the centrosomes during asymmetric stem cell division.           

                                                 

1.4.3 Effect of aging on centrosome and spindle orientation 

A decrease in stem cell number or activity may lead to tissue degeneration 

associated with age and disease. Indeed, age-dependent decrease in Upd 

expression in the hub has been reported to contribute to GSC loss with advanced 

age (Boyle et al., 2007). Stem cell intrinsic and extrinsic changes appear to be 

general characteristics of stem cell aging, as is observed in mammalian stem cells 

(Conboy et al., 2003; Molofsky et al., 2006; Rossi et al., 2005). In addition, 

changes in stem cell orientation with respect to the niche, which precedes the 

decrease in GSC number, contribute to the decline in spermatogenesis: before the 

decrease in GSC number becomes significant, GSCs already slow down their 

proliferation due to increased centrosome mis-orientation (Cheng et al., 2008). 

GSCs containing mis-oriented centrosomes accumulate progressively with age 

and these GSCs are arrested or delayed in the cell cycle and do not undergo 

mitosis. As a result, as Drosophila males age, a significant fraction of GSCs 

becomes arrested. Strikingly, this cell cycle arrest appears to be transient and 

GSCs re-enter the cell cycle upon correction of centrosome orientation. The latter 

implies that a novel checkpoint mechanism exists that blocks progression into 

mitosis unless a centrosome is properly situated next to the attachment to the hub. 

Remarkably, many of the mis-oriented GSCs originate from the de-

differentiation of spermatogonia, a mechanism thought to be responsible for 
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maintaining the stem cell population over extended periods of time (Brawley and 

Matunis, 2004; Kai and Spradling, 2004). Throughout Drosophila adulthood, 

individual GSCs are lost at a certain rate (Wallenfang et al., 2006; Xie and 

Spradling, 1998). De-differentiation of partially differentiated spermatogonia to 

replace lost stem cells may be especially important in the male germline, because 

mis-oriented spindles, or symmetric stem cell division, are rarely observed in wild-

type GSCs. Such de-differentiated GSCs show a high incidence of mis-oriented 

centrosomes and undergo cell cycle arrest until proper centrosome orientation 

toward the hub is reestablished, increasing the average cell cycle length of GSCs, 

even if none of them are permanently arrested (i.e., quiescent). This observation 

might be correlated to the fact that germ cells that commit to differentiation do not 

inherit the ‘very old’ centrosome and that de-differentiated GSCs have lost their 

‘very old’ centrosome once they have committed to differentiation (Cheng et al., 

2008). In Chapters 3 and 4, I revisit this issue of whether there are any differences 

between original GSCs and de-differentiated GSCs. 

 

1.5 Outline of the thesis 

This thesis explores asymmetries in sister chromatid segregation patterns 

during GSC division to elucidate the mechanisms and biological relevance of non-

random sister chromatid segregation.  

In Chapter 2, I describe my studies of sister chromatid segregation during 

Drosophila male GSC division wherein I used the pulse-chase strategy to follow 

the segregation of old vs. new strands through multiple rounds of GSC division. 
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Specifically, I used BrdU to label newly synthesized strands and followed the 

segregation of BrdU-labeled chromatids during the label-free chase period. During 

the chase period, I observed that in a majority of cases (95% at 24 hour chase 

period), the label was equally distributed to stem cell - daughter pairs until the 

label is finally diluted to undetectable levels. This finding strongly argues against 

the immortal strand hypothesis in male GSCs (Yadlapalli et al., 2011).  

In Chapter 3, I describe my follow-up work where I adapted the CO-FISH 

technique combined with chromosome-specific probes to study sister chromatid 

segregation at single chromosome resolution. Using this method, I found that 

sister chromatids of sex chromosomes, but not autosomes, are non-randomly 

segregated during GSC divisions (Yadlapalli and Yamashita, 2013). These results 

provide the first direct evidence that sister chromatids of certain chromosomes (not 

the entire genome) can be distinguished and segregated non-randomly during 

asymmetric stem cell divisions. Such chromosome-specific non-random 

segregation cannot be detected by pulse-chase experiments using BrdU, raising 

the possibility that chromosome-specific non-random segregation might have 

remained unresolved in many systems studied to date. Later on, I also discuss my 

findings that shed light on the complex mechanisms involved in this fascinating 

process of non-random sister chromatid segregation. This study offers the first 

genetically tractable experimental model system to study chromosome strand 

segregation pattern at single chromosome strand resolution. These studies may 

open up an exciting new venue of research to understand stem cell self-

renewal/differentiation through asymmetric chromosome segregation. 
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This chapter is revised from the content published as: 

Yadlapalli S, Yamashita YM (2013) DNA asymmetry in stem cells – immortal or 

mortal?, Journal of Cell Science. 2013 Sep 15;126(Pt 18):4069-4076 

Yadlapalli S, Yamashita YM (2012) Spindle positioning in the stem cell niche. 

Wiley Interdiscip Rev Dev Biol. 2012 Mar-Apr;1(2):215-30 
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Chapter 2 

Drosophila Male Germline Stem Cells do not Follow the  

Immortal Strand Model 

 

This chapter presents the content published as: 

Yadlapalli S, Cheng J, Yamashita YM. (2011) Drosophila male germline stem cells 

do not asymmetrically segregate chromosome strands. Journal of Cell Science 

2011 Mar 15;124 (Pt 6):933-9 

 

2.1 Summary 

Adult stem cells continuously supply differentiated cells throughout the life 

of organisms. This increases the risk of replicative senescence or neoplastic 

transformation due to mutations that accumulate over many rounds of DNA 

replication. The immortal strand hypothesis proposes that stem cells reduce the 

accumulation of replication-induced mutations by retaining the older template DNA 

strands. Other models have also been proposed in which stem cells 

asymmetrically segregate chromosome strands for other reasons, such as 

retention of epigenetic memories. Recently, the idea has emerged that the mother 

centrosome, which is stereotypically retained within some asymmetrically dividing 

stem cells, might be utilized as a means of asymmetrically segregating 
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chromosome strands. We have tested this hypothesis in germline stem cells 

(GSCs) from Drosophila melanogaster testis, which undergo asymmetric divisions 

marked by the asymmetric segregation of centrosomes and the acquisition of 

distinct daughter cell fates (stem cell self-renewal versus differentiation). Using 5-

bromo-2-deoxyuridine labeling combined with direct visualization of GSC-

gonialblast (differentiating daughter) pairs, we directly scored the outcome of 

chromosome strand segregation. Our data show that male GSCs in the Drosophila 

testis do not follow the immortal strand model despite asymmetrically segregating 

centrosomes. 

 

2.2 Introduction 

 Adult stem cells have the ability to produce new stem cells (self-renewal) as 

well as differentiated progeny throughout the life of an organism (Morrison and 

Kimble, 2006). Given the long-term demands on self-renewing stem cells to 

maintain tissue homeostasis by supplying differentiated cells continuously, stem 

cells are probably the cell population most challenged by the risk of replicative 

senescence and transformation through accumulation of DNA mutations (Blasco, 

2007; Rando, 2007; Ruzankina et al., 2008). How stem cells avoid the potentially 

deleterious effects of DNA mutations resulting from repeated cell cycles is poorly 

understood. The ‘immortal strand hypothesis’ (ISH) has been proposed as a 

mechanism by which adult stem cells might limit accumulation of mutations arising 

from errors during DNA replication (Cairns, 1975). According to the ISH, adult 

stem cells might retain older (‘immortal’) DNA strands during asymmetric cell 
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divisions, thereby excluding all replication-induced mutations into the 

differentiating daughters. 

This hypothesis has been intensively studied in recent years in a broad 

range of stem cell populations. Supporting evidence for immortal strand 

segregation comes from studies of cells in the small and large intestine (Potten et 

al., 2002; Quyn et al., 2010), neural stem cells (Karpowicz et al., 2005), mammary 

epithelial cells (Smith, 2005), fibroblasts (Merok et al., 2002), skeletal muscle 

satellite cells (Conboy et al., 2007), human lung cancer cells (Pine et al., 2010) 

and female germline stem cells  in the Drosophila ovaries (Karpowicz et al., 2009). 

Other studies using similar techniques have failed to observe evidence for 

asymmetric chromosome strand segregation in mouse hematopoietic stem cells 

(Kiel et al., 2007), epidermal basal cells (Sotiropoulou et al., 2008), hair follicle 

stem cells (Waghmare et al., 2008) and neocortical precursor cells (Fei and 

Huttner, 2009). These results suggest that asymmetric chromosome strand 

segregation occurs in some cells but that this is not a general strategy used by 

most stem cells. 

Recently, Falconer et al. observed extreme asymmetry in chromosome 

strand segregation in colon crypt epithelial cells (Falconer et al., 2010). However, 

judging from position in the crypt, such asymmetry was observed in differentiating 

cells as well as in stem cells, suggesting that there might be a reason(s) why a cell 

(not necessarily a stem cell) must segregate particular chromosome strands other 

than to exclude replication-induced mutations (Armakolas and Klar, 2006; 

Armakolas et al., 2010). The authors proposed that cells asymmetrically segregate 
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other information such as epigenetic memories by asymmetric segregation of 

chromosome strands (Falconer et al., 2010; Lansdorp, 2007). 

Assessing asymmetric chromosome strand segregation has been 

challenging in many systems. The populations that have been studied have often 

been heterogeneous mixtures of stem and progenitor cells, leaving ambiguity 

about which cells exhibit evidence of asymmetric segregation. This problem is 

compounded by the fact that, in most experiments, only a small percentage of 

cells exhibit evidence of asymmetric strand segregation, raising questions 

regarding the biological significance of the observation and the extent to which it 

might have been influenced by technical artifacts. In most systems, it is also 

unclear whether stem cells divide asymmetrically, divide symmetrically, or switch 

between these two modes, which complicates the interpretation of DNA label 

segregation patterns. Finally, the fates of daughter cells have been uncertain in 

most studies, making it impossible to correlate asymmetries in fates with 

chromosome strand segregation. For these reasons, many studies that have 

provided evidence in support of the ISH also have alternative explanations 

(Lansdorp, 2007; Rando, 2007; Yennek and Tajbakhsh, 2013). 

The Drosophila melanogaster male germline stem cell (GSC) system 

provides an ideal model system to test the ISH, overcoming most of problems 

listed above. First, Drosophila male GSCs can be identified at single-cell resolution 

by combining cellular markers and tissue anatomy. At the apical tip of the testis, 

approximately nine GSCs physically attach, via adherens junctions (Yamashita et 

al., 2003; Yamashita et al., 2010), to a cluster of somatic cells called the hub, 
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which is the major component of the stem cell niche (Kiger et al., 2001; Tulina and 

Matunis, 2001). Therefore, GSCs can be unambiguously identified by their 

attachment to the hub as well as their expression of germ cell markers such as 

Vasa (Hay et al., 1988; Yamashita et al., 2003) (Figure 2.3A,B). Second, GSCs 

always divide asymmetrically by orienting the mitotic spindle perpendicular to the 

hub so that one daughter remains attached to the hub and maintains GSC identity, 

whereas the other is displaced away from the hub and becomes a differentiating 

gonialblast (GB) (Yamashita et al., 2003). Because of the stereotypical mitotic 

spindle orientation, the fates of daughter cells (GSC versus GB) can be easily 

predicted during GSC anaphase and telophase, when segregation of chromosome 

strands can be unambiguously assessed.  

We have shown that the stereotypical orientation of the spindle is 

determined by the precisely controlled positioning of the centrosomes during 

interphase. The mother centrosome normally remains adjacent to the hub and is 

inherited by the GSC, whereas the daughter centrosome migrates to the opposite 

side of the cell and is inherited by the GB (Figure 1.5) (Yamashita et al., 2007). 

Recently, it has been hypothesized that the asymmetric segregation of 

centrosomes by stem cells might be the mechanism by which chromosome 

strands are asymmetrically segregated. It was proposed that the mother 

centrosome anchors the immortal strand during repeated cell divisions, retaining 

the immortal strand within stem cells (Tajbakhsh and Gonzalez, 2009). 

We decided to test this hypothesis in Drosophila male GSCs as they are 

known to always divide asymmetrically by the asymmetric segregation of 
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centrosomes and in which stem cells and their daughters can be unambiguously 

identified. In this study, using 5-bromo-2-deoxyuridine (BrdU) pulse-labeling, 

combined with direct visualization of GSC–GB pairs and anaphase/telophase 

GSCs, we show that Drosophila male GSCs do not follow the immortal strand 

model.  

 

2.3 Results 

2.3.1 Establishing GSCs as a model system to test the ISH 

In this study, we adopted a pulse-chase strategy to label newly synthesized 

DNA strands with BrdU by feeding flies BrdU and monitoring the segregation of 

BrdU-labeled chromosomes during the chase period (see Materials and Methods). 

With this strategy, the semi-conservative replication of DNA will cause BrdU to be 

segregated to both daughter cells in the first division during the chase period, 

irrespective of whether GSCs act in accordance with the ISH (Figure 2.1). If GSCs 

retain the immortal strands, we would expect to observe asymmetric BrdU 

segregation in the second division, with the GB inheriting all the BrdU-labeled, 

newly replicated strands (Figure 2.1, second division, immortal strand 

segregation). This would be true irrespective of how many times a GSC has 

replicated its DNA in the presence of BrdU because the immortal strands would 

never be labeled by BrdU and would always be retained within the GSC (Figure 

2.2). In contrast, if GSCs randomly segregate their chromosome strands, BrdU 

would be segregated to both daughter cells in the second division (Figure 2.1, 

second division, random strand segregation).  
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Figure 2.1 Model of DNA strand segregation during the BrdU-pulse and 
chase period. The first division in the chase period will be symmetric irrespective 
of segregation mode, whereas the second division can be used to distinguish 
between the two different models. The model is based on six chromosomes in the 
Drosophila cell, neglecting the contribution of the very small fourth chromosomes. 

Figure 2.2 Model of BrdU segregation pattern based on ISH, if cells undergo 
multiple rounds of DNA replication in the presence of BrdU. Multiple rounds of 
DNA replication in the presence of BrdU would not prevent the detection of 
immortal strand segregation.  
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Importantly, asymmetric segregation of the BrdU label would sometimes be 

observed by chance as a result of random segregation. With random chromosome 

strand segregation, the BrdU label would be diluted stochastically over time (on 

average, by half with each round of division). 

Normally, all GSCs divide regularly but asynchronously in the Drosophila 

testis. On the basis of our previous studies, it was calculated that each GSC 

divides approximately every 12–16 hours. About 3–4% of total GSCs are in 

mitosis, and each mitosis lasts about 30 minutes according to live time-lapse 

observation, leading to a calculated cell cycle time of 12–16 hours (Cheng et al., 

2008; Yamashita et al., 2003). When GSC centrosomes were labeled by transient 

expression of a centriolar marker, PACT, tagged with GFP (GFP–PACT), the very 

first GSCs that completed the second round of centrosome duplication appeared 

after 12 hours. Such GSCs considerably increased at 16–18 hours, suggesting 

that the GSC cell cycle time (more accurately the time from G1–S transition to the 

next G1–S transition) exceeds 12 hours (Yamashita et al., 2007). When newly 

eclosed flies were fed BrdU-containing food, ~90% of GSCs were labeled after 16 

hours and ~95% after 24 hours (Figure 2.3 A-C). This is consistent with our 

calculated GSC cell cycle time of 12–16 hours, considering the facts that flies 

might not begin feeding immediately, that GSCs do not incorporate BrdU 

immediately upon transfer to BrdU-containing food, and that many GSCs are in G2 

(rather than G1–S) at any given time. Mitotic indices of GSCs in the presence 

(13.6%, 25 mitoses/184 testis) and absence (13.2%, 24 mitoses/189 testis) of 

BrdU were similar, showing that the BrdU feeding scheme used here did not 
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perturb cell cycle progression. It should be noted that BrdU incorporation into 

GSCs plateaued at around 95%. This is presumably due to the fact that ~5% of 

GSCs from young flies have mis-oriented centrosomes, a condition that is known 

to delay cell cycle progression (Cheng et al., 2008). To maximize the BrdU-labeled 

GSC population to start the chase period, we decided to employ 24-hour feeding 

in subsequent experiments (Figure 2.3D). 

In prior studies of the ISH, it was often not possible to definitively identify 

daughter cells that arose from a single cell division. To overcome this problem, we 

strictly limited our scoring to cases where twin daughters of a stem cell division 

could be unambiguously identified. First, we scored BrdU segregation in GSCs in 

anaphase/telophase, when two segregating nuclei were visible within a single cell. 

However, GSCs in anaphase or telophase are extremely rare. Only 3–4% of total 

GSCs are in mitosis, and only ~10% of mitotic GSCs are in anaphase/telophase 

(i.e. only about 0.3–0.4% of total GSCs), making it challenging to obtain enough 

samples for statistical analysis. Therefore, we took advantage of Pavarotti–GFP 

(Pav–GFP), the Drosophila homolog of mammalian kinesin-like protein MKLP1 

tagged with GFP (Minestrini et al., 2003). Pav–GFP localizes to the plus ends of 

microtubules during anaphase and telophase, decorating the spindle midzone 

(Figure 2.5A) and enabling us to recognize GSCs during these periods. Pav–GFP 

then translocates to the contractile ring during cytokinesis and stays on the 

midbody ring after cytokinesis (Figure 2.5B), enabling us to identify a GSC–GB 

pair resulting from a GSC division and to score the BrdU segregation pattern in 

post-mitotic (pre-abscission) cells. Because it turned out that ~50% of GSCs were 
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still connected to GBs with the Pav–GFP-marked midbody, usage of Pav–GFP 

allowed us to score 100 times more cells than we otherwise could have by scoring 

only anaphase/telophase cells. 

 

Figure 2.3 Experimental schemes to address the ISH in male GSCs. A,B) 
Examples of BrdU staining in GSCs (encircled by dotted lines) from flies cultured 
in the absence (A) or presence (B) of BrdU for 24 hours. Red, Fas III and BrdU; 
blue, Vasa (germ cells); * indicates the hub. C) Outcome of BrdU incorporation 
experiment with varying pulse periods. Data is shown as the frequency (%) of 
BrdU-positive GSCs/total GSCs (mean ± s.d.). 300–400 cells were scored for each 
data point. D) The experimental scheme: newly eclosed flies were starved for 12 
hours, followed by a 24-hour pulse period. They were then transferred to normal 
media for the indicated time.  
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2.3.2 GSCs do not follow the immortal strand model   

 Once we established the experimental system to test the ISH as described 

above, we proceeded to analyze the BrdU segregation pattern. Flies were fed with 

BrdU for 24 hours, followed by a chase period (fed food without BrdU for 18, 24, 

36, 48, 60 or 72 hours) (Figure 2.3D). By this feeding scheme, it is possible that a 

small population of GSCs underwent two rounds of DNA replication in the 

presence of BrdU. However, as mentioned above, this would not prevent us from 

detecting immortal strand segregation (Figure 2.2). Testes were subjected to 

immunofluorescence staining to detect BrdU in combination with a germ cell 

marker (Vasa), a hub cell marker (Fasciclin III; FasIII), and Pav–GFP. We 

analyzed GSC–GB pairs that were connected by the contractile ring/midbody ring 

as well as GSCs in anaphase and telophase, all of which are easily identifiable 

using Pav–GFP localization. Throughout the chase period, we observed a high 

frequency of GSC–GB pairs in which both cells inherited BrdU-labeled 

chromosome strands, until eventually most GSCs diluted out the BrdU label 

(Figure 2.5A, Figure 2.6). Consistent with this result, in the majority of anaphase 

and telophase GSCs, BrdU was segregated to both daughter cells (Figure 2.5B; 

84% were symmetric, 25 anaphase/telophase GSCs scored). These data suggest 

that, male GSCs do not follow the immortal strand model.  

Drosophila cells have only six large chromosomes: XX or XY 

chromosomes, a pair of second chromosomes, and a pair of third chromosomes, 

neglecting a pair of very small fourth chromosomes that constitute less than 3% of 

the genome (5 Mb of 180 Mb) (Adams et al., 2000; Locke and Mcdermid, 1993). 
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Figure 2.4 Pavarotti-GFP to identify GSC-GB pairs. A.B) Localization of Pav–
GFP in male GSCs during telophase (A) and after mitosis (B). Red, Fas III; green, 
Pav–GFP; blue, Vasa (germ cells); light blue, DAPI; * indicates the hub; 
arrowheads point to Pav–GFP-marked contractile ring/midbody. 
 

This means that the probability that one cell would inherit all BrdU-labeled 

chromosome strands by chance would not be negligible, even if chromosome 

strands were randomly segregated. To quantify this probability, we performed 

mathematical modeling (see Materials and Methods). In a randomly segregating 

cell in which all six chromosomes contain a BrdU-labeled strands (i.e. during the 

second division in the chase period), the probability that all of the BrdU-positive 

chromosome strands would be inherited by the same daughter cell by chance was 

3.125%, assuming that a single BrdU-positive chromosome strand is detectable 

(Figure 2.1). The BrdU label is diluted over successive rounds of division during 

the chase period so the probability that a single cell inherits all the BrdU labeled-

chromosome strands is expected to increase, because each cell would contain 

fewer labeled chromosome strands as a result of random segregation in earlier 

cell cycles. In the fourth round of division during the chase period, the frequency of 

A 

B’ 

A’ A” 

B B” 
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asymmetric BrdU segregation by chance would reach a maximum of ~50% (Figure 

2.7A). It should be noted that when the mathematical modeling was performed on 

the basis of eight chromosomes, as in Karpowicz et al. (Karpowicz et al., 2009), 

the outcome was similar to the outcome with six chromosomes in that cells 

exhibited considerable frequency of apparent asymmetric chromosome strand 

segregation with a peak that was delayed only by ~0.5 cell cycles compared to the 

modeling with six chromosomes (Figure 2.7C), although the probability of 

asymmetric segregation in the second division was much lower (0.78125%) than 

in the six-chromosome modeling. 

As predicted by our modeling (Figure 2.1, Figure 2.7A), we observed that, 

indeed, some GSCs appeared to exhibit asymmetric BrdU segregation (Figure 

2.5C,D, Figure 2.6). However, the pattern of asymmetric segregation in these 

cases was random; in some cases a BrdU-negative GSC was connected with a 

BrdU-positive GB (Figure 2.5C), and in other cases a BrdU-positive GSC was 

paired with BrdU-negative GB (Figure 2.5D). This is inconsistent with the ISH and 

suggests that such asymmetry is a consequence of random segregation of BrdU 

labeling. As predicted, as the chase period proceeded, we observed a higher 

incidence of asymmetric BrdU segregation, again random with respect to the cell 

(GSC or GB) that inherited the BrdU label (~20% of total GSC–GB pairs at 48 

hours of chase, Figure 2.6). This frequency of asymmetric BrdU segregation 

(~20%) was lower than would be expected by chance after four rounds of division  

(~50%). This might be due to sister chromatid exchange between BrdU-positive 
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and BrdU-negative chromosome strands, which would cause a mixing and 

redistribution of BrdU-labeled chromatin to both strands. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 Drosophila male GSCs do not follow the immortal strand model. 
A–D) Examples of BrdU segregation in anaphase/telophase or post-mitotic GSCs 
after 24 hour pulse (BrdU) and 48 hour chase (without BrdU). (A) Symmetric BrdU 
segregation in a post-mitotic GSC-GB pair (encircled by dotted lines). (B) 
Symmetric BrdU segregation in a telophase GSC. (C) Asymmetric BrdU 
segregation (BrdU-negative GSC, BrdU-positive GB) in a post-mitotic GSC. (D) 
Asymmetric BrdU segregation (BrdU-positive GSC, BrdU-negative GB) in an 
anaphase GSC. Red, Fas III and BrdU; green, Pav–GFP; blue, Vasa (germ cells); 
* indicates the hub; arrowheads point to Pav–GFP-marked contractile 
ring/midbody (A,C) or spindle midzone (B,D).  

 

We have shown that GSCs can be generated via de-differentiation of 

spermatogonia (Cheng et al., 2008). If this occurred during the time course of our 

�

24 hour pulse  
48 hour chase 
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experiments, GSCs with their immortal strand labeled with BrdU could have been 

generated, possibly interfering with our interpretation of the data. If this was the 

case and if GSCs followed the ISH, GSCs derived from a de-differentiation 

process would retain BrdU-labeled strands for multiple cell cycles (theoretically 

forever). However, BrdU label was completely diluted out by 120 hours of chase 

period (0% BrdU-positive GSCs, 187 GSCs scored), suggesting that any GSCs 

(whether derived from de-differentiation or not) do not retain BrdU-labeled 

chromosome strands. Taken together, these data demonstrate that male GSCs do 

not retain template DNA strands, as predicted by the ISH and other models of non-

random chromosome strand segregation. 

Figure 2.6 Summary of BrdU segregation pattern during chase period. 
Through out the chase period, majority of GSC-GB pairs showed symmetric BrdU 
label distribution. As predicted by the modeling, the percentage of asymmetric 
looking pairs increases with time, reaches a peak around 48 hrs and then 
decreases until BrdU label eventually dilutes out. N, number of GSC-GB 
pairs/anaphase-telophase GSCs scored.   
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Figure 2.7 Model of BrdU segregation pattern during the chase period, based 
on the random segregation model. A) Simulation of BrdU segregation pattern in 
cells with six chromosomes (Drosophila). Apparent asymmetric segregation 
reaches ~50% in the fourth cell cycle, as a result of random segregation. B) 
Simulated frequencies of asymmetric BrdU segregation in cells with different 
number of chromosomes. C# indicates the number of chromosomes per cell. C) 
Simulation of BrdU segregation pattern comparing cells with six chromosomes to 
those with eight chromosomes, to consider the contribution of the fourth pair of 
chromosomes. 
 
2.4 Discussion 

Our results demonstrate that chromosome strands are not segregated 

asymmetrically in Drosophila male GSCs. We employed direct visualization of 

segregating chromosomes in dividing and post-mitotic GSCs rather than by 

inferring chromosome strand segregation patterns based on the kinetics of BrdU 

dilution. This is the first study to test the ISH using direct visualization of DNA label 
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segregation in a stem cell population that can be definitively identified and that is 

known to divide asymmetrically.  

 
Our study illuminates a few crucial pitfalls that can be encountered when 

addressing the ISH. For example, we observed a high incidence of asymmetric 

BrdU segregation as the chase period increased. This is predicted to occur as 

GSCs dilute BrdU-labeled chromosome strands in the previous cycles as a result 

of random segregation, increasing the probability that remaining BrdU-labeled 

chromosome strands are ‘co-segregated’ into one cell by chance. This highlights 

the value of using two distinct DNA labels (such as IdU and CldU) (Conboy et al., 

2007; Kiel et al., 2007) to identify cells that have divided twice (but not more). This 

is particularly important when the system contains heterogeneous cells with 

varying cell cycle times: some cells might undergo more cell cycles (and thus have 

higher chance of asymmetric segregation of DNA label) than others at the time of 

sampling. 

Although mouse and human cells have many more chromosomes (40 and 

46, respectively) than Drosophila cells (six major chromosomes and two small 

chromosomes), these cells, if segregating chromosome strands randomly, would 

need less than three cell cycles (46/23<6) to dilute the BrdU label to the point of 

being comparable with Drosophila cells. Mouse and human cells could, therefore, 

display some asymmetric label segregation during the chasing period despite 

random chromosome strand segregation (Figure 2.7B). 

Our study also illustrates the importance of identifying cell fate after cell 

division. We commonly observed asymmetric segregation of BrdU after ~48 hours 
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of chase; however, because we could definitively distinguish stem cells from 

differentiating cells, we were able to confirm that the segregation was random with 

respect to cell identity (i.e. GSC and GB were equally likely to inherit the BrdU-

labeled DNA). In other studies that lacked definitive markers of cell identity, the 

cells that inherited the non-labeled strands (or labeled strands, depending on the 

methods of labeling) might have been assumed to be stem cells, and such results 

might have been interpreted to support the ISH. The randomness observed in our 

study indicates that GSCs do not use asymmetric strand segregation as a 

mechanism to protect the stem cell genome. 

In recent years, the finding that some stem cell populations preferentially 

retain mother centrosomes during division (Wang et al., 2009; Yamashita et al., 

2007) raised the possibility that this could provide a mechanism for the retention of 

template DNA strands (Tajbakhsh and Gonzalez, 2009). However, our present 

study clearly demonstrates that this is not necessarily the case. That is, in male 

GSCs that consistently asymmetrically segregate the mother centrosome, the 

chromosome strands are randomly segregated. It remains possible that 

centrosomes are asymmetrically segregated to segregate fate determinants such 

as protein and RNA (Fuentealba et al., 2008; Lambert and Nagy, 2002) or other 

factors such as damaged proteins (Rujano et al., 2006). Thus, it remains possible 

that chromosome strands are asymmetrically segregated in some cells, but stem 

cells that asymmetrically segregate centrosomes do not necessarily 

asymmetrically segregate chromosome strands. 
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2.5 Materials and Methods 

2.5.1 Fly husbandry, strains and BrdU feeding 

All fly stocks were raised on the Bloomington Standard Media at 25°C 

unless otherwise noted. Young adult Ubi-Pavarotti–GFP (Minestrini et al., 2003) 

flies were used. For BrdU labeling, day-0 adult Ubi-Pavarotti–GFP flies were fed 

BrdU-containing food (1 mg/ml final concentration, apple juice and 0.7% agar). To 

facilitate feeding upon transfer to BrdU-containing food, we first starved flies in 

vials with water and 0.7% agar for ~12 hours. The BrdU-fed flies were either 

dissected or transferred to normal food for chase experiments. 

To accurately interpret the data, we calculated the approximate time that 

BrdU was retained in the body of the flies after BrdU administration was 

discontinued, because retained BrdU might be incorporated into the newly 

replicating DNA strands during the chase period and complicate interpretation of 

the results. When flies were fed with BrdU-containing food for ~12 hours and then 

administered normal food (without BrdU) for 2 or 4 hours, the percentage of BrdU-

positive GSCs did not increase during the chase period (48.7±9.7% at 12 hours, 

48.9±2.2% at 14 hours, and 51.7±5.9% at 16 hours), demonstrating that BrdU is 

not retained in the body for more than 2 hours at such high levels that it could be 

incorporated into replicating DNA. 

 

2.5.2 Immunofluorescence staining 

 Samples were fixed for 30–60 minutes with 4% formaldehyde in PBS, 

permeabilized for 30 minutes in PBST (0.1% Triton X-100 in PBS), treated with 
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DNaseI in 1× DNaseI buffer (Invitrogen), incubated with anti-BrdU antibody for 2 

hours, and incubated with primary antibodies overnight at 4°C. Samples were then 

washed with PBST (20 minutes, three times), incubated overnight at 4°C with 

Alexa-Fluor-546 and -647 conjugated secondary antibodies (1:200; Molecular 

Probes), and washed again with PBST (20 minutes, three times). Samples were 

then mounted in VECTASHIELD (H-1200, Vector Laboratory) and imaged using a 

Leica SP5 confocal microscope. The following primary antibodies were used: 

mouse anti-fasciclin III (1:20; developed by C. Goodman and obtained from the 

Developmental Studies Hybridoma Bank), rabbit anti-threonine 3-phosphorylated 

histone H3 (1:200; Upstate), goat anti-Vasa (1:100; dC-13, Santa Cruz 

Biotechnology), rabbit anti-Vasa (1:100; d-260, Santa Cruz Biotechnology), and 

mouse anti-BrdU (1: 200; BU-33, Sigma). 

 

2.5.3 Simulation based on a random segregation model 

Although Drosophila melanogaster diploid cells have eight chromosomes, 

the simulation of a random segregation model on male GSC division was 

performed with six BrdU-detectable chromosomes, since the 4th chromosome pair 

is negligible due to their small size.  To simulate BrdU detainment in a GSC at cell 

cycle number N during the chase period, we used Np ,0  to represent the probability 

of a GSC containing zero BrdU-positive chromosomes, Np ,1  to represent the 

probability of a GSC containing one BrdU-positive chromosome, and so on, up to 

Np ,6  (the probability of GSC containing all six BrdU-positive chromosomes).  After 

one division at cell cycle number N+1, the probability of a GSC containing k BrdU-
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positive chromosomes can be denoted as 1, +Nkp , which can be calculated based 

on the assumption that each individual chromosome segregates independently 

from one another. 
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Chapter 3 

Chromosome-specific Non-random Sister Chromatid Segregation 

in Drosophila Male Germline Stem Cells 

This chapter presents the content published as: 

Yadlapalli S, Yamashita YM. (2013) Chromosome-specific nonrandom sister 

chromatid segregation during stem-cell division. Nature. 2013 Jun 

13;498(7453):251-4. 

 

3.1 Summary 

Adult stem cells undergo asymmetric cell division to self-renew and give 

rise to differentiated cells that comprise mature tissue. We developed the CO-

FISH (chromosome orientation fluorescence in situ hybridization) technique with 

single chromosome resolution and show that sister chromatids of X and Y 

chromosomes, but not autosomes, are segregated non-randomly during 

asymmetric divisions of Drosophila male germline stem cells (GSCs). This 

provides the first direct evidence that sister chromatids of certain chromosomes 

can be distinguished and segregated non-randomly during asymmetric stem cell 

divisions. We further show that the centrosome, SUN-KASH nuclear envelope 

proteins, and Dnmt2 are required for non-random sister chromatid segregation. 

Moreover, we show that sister chromatid segregation is randomized in GSC 

overproliferation and de-differentiated GSCs. We propose that non-random sister 
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chromatid segregation may serve to transmit distinctive information carried on two 

sister chromatids in asymmetrically dividing stem cells. 

 

3.2 Introduction  

 Adult stem cells from diverse systems are known to divide asymmetrically 

to produce one stem cell and one differentiating cell, maintaining tissue 

homeostasis (Morrison and Kimble, 2006). The Drosophila male germline stem 

cell (GSC) system is an excellent model system for the study of asymmetric stem 

cell division. GSCs can be identified at single-cell resolution at the apical tip of the 

testis, where they attach to a cluster of somatic hub cells, a major component of 

the stem cell niche. GSCs divide asymmetrically by orienting the mitotic spindle 

perpendicular to the hub; the daughter that remains attached to the hub retains 

GSC identity, whereas the daughter that is displaced from the hub starts 

differentiation as a gonialblast (GB) (Yamashita et al., 2003).  

The immortal strand hypothesis proposes that stem cells retain a template 

copy of genomic DNA to avoid replication-induced mutations(Cairns, 1975; Potten 

et al., 2002; Rando, 2007). It was also proposed that certain cells may segregate 

sister chromatids non-randomly to transmit distinct epigenetic information(Falconer 

et al., 2010; Lansdorp, 2007). However, it remains unclear how sister chromatids 

are distinguished and segregated non-randomly and what purpose non-random 

sister chromatid segregation may serve.  
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3.3 Results 

3.3.1 Sister chromatids of X and Y chromosomes are segregated non-

randomly during Drosophila male GSC divisions. 

To examine the pattern of sister chromatid segregation at single 

chromosome resolution, we adapted the CO-FISH (chromosome orientation 

fluorescence in situ hybridization) protocol, which allows strand-specific 

identification of sister chromatids (Bailey et al., 2004; Falconer et al., 2010) 

combined with chromosome-specific probes that are available for Drosophila 

chromosomes (Abad et al., 1992; Brutlag et al., 1978; Carmena et al., 1993; Lohe 

et al., 1993; Makunin et al., 1999) (Figure 3.1a). In our CO-FISH protocol, cells in 

testes are allowed to replicate once in the presence of BrdU; as a result, each 

sister chromatid contains a BrdU-negative template strand and a BrdU-positive 

newly synthesized strand (Figure 3.1b). Following BrdU incorporation, cells are 

allowed to complete mitosis in BrdU-free media, such that the sister chromatids 

are segregated into the GSC-GB pair. Based on previous studies that determined 

the GSC cycle length to be 12–16 hours (Yadlapalli et al., 2011), we fed flies with 

BrdU for approximately 10 hours, followed by a period in non-BrdU media (~10 

hours). The testes are then dissected, fixed, and treated with ultraviolet (UV) 

irradiation, which creates nicks preferentially on the BrdU-containing 

strands(Cecchini et al., 2005). When these cells are treated with exonuclease III, 

only the template strand is left intact, whereas the BrdU-containing strands are 

removed (Figure 3.1b). The remaining template strands can be identified using 

differentially labelled CO-FISH probes, e.g., Cy3-(AATAC)6 and Cy5-(GTATT)6 for 
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the Y chromosome (Figure 3.1a). With these probes, it can be determined which 

cell inherited which sister chromatid.  

Figure 3.1 CO-FISH using Drosophila probes. a) Chromosome-specific probes 
used in this study. b) Schematic diagram of the CO-FISH procedure. Cy3- and 
Cy5-labelled probes for the Y chromosome are shown as an example. Green 
fluorescent protein-labelled PAVAROTTI (PAV–GFP) (midbody/ring canal), SH–
ADD–Venus or anti-ADD antibody (spectrosome) was used to identify GSC–
gonialblast pairs. 

 

Because GSC divisions are not synchronized in in vivo experiments, there 

is variation in the number of S phases and mitoses that each GSC undergoes. 

However, only GSCs that have undergone one S phase and one mitosis are 

relevant to analysis. Therefore, to exclude irrelevant GSC-GB pairs, we limited 

scoring to GSC-GB pairs that contain complementary CO-FISH signals (e.g., GSC 

with red signal and GB with blue, or vice versa). The major probable scenarios are 

summarized in Figure 3.2. For example, if GSCs have undergone S phase in the 

presence of BrdU, but have not undergone mitosis, complementary CO-FISH 

signals will appear in one cell (Figure 3.2a, b) and will be excluded from analysis. 
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If GSCs did not undergo DNA replication during the BrdU labelling period, both 

sister chromatids will be intact after exonuclease III treatment, yielding no CO-

FISH signal. Throughout this study GSC-GB pairs were identified either by Pav-

GFP (Minestrini et al., 2002), which labels the ring canal between the GSC and 

GB, or Adducin-like antibody/ShAdd-Venus (Petrella et al., 2007), which labels the 

spectrosome formed between the GSC and GB.  

Using this method, we examined the pattern of sister chromatid segregation 

during GSC divisions, and found that sister chromatids of the Y chromosome are 

inherited with a strong bias during GSC division: in ~85% of cases, the GSC 

inherited the sister chromatid of the Y chromosome that contains the (GTATT)6 

satellite sequence as a template (and thus hybridizes to the Cy3-(AATAC)6 probe). 

As a result, we observed red signal (Cy3-(AATAC)6) in GSCs and blue signal 

(Cy5-(GTATT)6) in GBs in approximately 85% of the GSC-GB pairs (Figure 3.4a, 

b). Using X chromosome-specific probes, we found that the X chromosome shows 

a similar biased segregation pattern (Figure 3.4c, d). Essentially the same results 

were obtained when the Cy5 probe for the X chromosome was replaced with a 

probe consisting of a second unique X chromosome sequence that is not 

complementary to the Cy3-labelled probe (Figure 3.5). Importantly, non-random 

sister chromatid segregation was observed even at day 5 (~82%:18%; N>30 GSC-

GB pairs for X and Y chromosome CO-FISH), a similar level of bias as that 

observed at day 0, when most of experiments in this study were carried out. This 

result suggests that GSCs have a strong tendency to inherit a particular sister 

chromatid.  
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Figure 3.2 Cell cycle progression during BrdU-feeding and chase period and 
CO-FISH outcomes. a) S phase (+BrdU) with no mitosis results in two 
complementary CO-FISH signals in a GSC. b) An example of CO-FISH image 
resulting from condition described in a). c) S phase (+BrdU)�mitosis�S (no 
BrdU)� mitosis results in complementary CO-FISH signals in the GSC and GB. d) 
S phase (+BrdU)�mitosis�S phase (–BrdU)� mitosis results in GSC or GB 
lacking signal. e) S phase (+BrdU)�mitosis�S phase (+BrdU)�mitosis results in 
one cell containing a single signal and the other cell containing overlapping signals 
(see Figure 3.3 for explanation). Only the case described in c) is relevant to the 
analysis. After optimizing the BrdU pulse-chase period (see main text), we did not 
see many cases of e), which is the result of too long a pulse period. BrdU-positive 
strands are represented by red lines, and BrdU-negative strands by black lines.  
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Two major possible scenarios can explain this. In the first scenario, 

approximately 85% of GSCs inherit the “red strand” (i.e. the sister chromatid that 

hybridizes to Cy3 probes) with near 100% accuracy, whereas approximately 15% 

of GSCs inherit the “blue strand” with near 100% accuracy. This would indicate 

that GSCs maintain immortal strands of the X and Y chromosomes. In the second 

scenario, each GSC inherits the “red strand” with 85% probability and the “blue 

strand” with 15% probability at each division. In this case, sister chromatids of the 

X and Y chromosomes in GSCs are not immortal, and “template strands” are 

switched approximately once in every seven divisions (15%�1/6.7). To distinguish 

between these possibilities, we conducted a long-pulse experiment where flies 

were continuously exposed to BrdU-containing media. The results of this 

experiment (see Figure 3.6, Figure 3.7 for details) clearly indicate that although 

sister chromatids of X and Y chromosomes are segregated with a strong bias, they 

are not immortal.  

 

 
 
 
 
 
 
 
 
 
Figure 3.3 CO-FISH with two BrdU-positive sister chromatids. Exonuclease III 
uses double-stranded DNA as a substrate to remove a nicked strand, yielding 
single-stranded DNA. Single-stranded DNA is not a good substrate for 
exonuclease III, and remains undigested, even if nicked. Therefore, the CO-FISH 
procedure starting with BrdU+/+ chromatids results in partial digestion of each 
strand and overlapping CO-FISH signals.  
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Figure 3.4 Non-random segregation of Y and X chromosome strands during 
GSC divisions. a,b) Representative images of CO-FISH outcome using Y 
chromosome probes. The strand that hybridizes to Cy3-(AATAC)6 probe is 
preferentially inherited by GSCs. Green, Pav-GFP. In all figures the Cy5 signal is 
marked with solid arrowheads and the Cy3 signal with open arrowheads. (*) Hub. 
N, number of GSC-GB pairs scored. Data are shown as mean ± standard 
deviation. c,d) Representative images of CO-FISH outcome using X chromosome 
probes. The strand that hybridizes to the Cy3-X probe is preferentially inherited by 
GSCs. e-g) Representative images of CO-FISH outcome using X and Y probes 
simultaneously. Expected segregation patterns based on co-segregation vs. 
random segregation are shown in the lower panel. 
 

Since both X and Y chromosomes show a similar bias in segregation 

(approximately 85:15), it is possible that they are co-segregated. To address this, 

we performed CO-FISH experiments using X and Y probes simultaneously. The X 

and Y probes were labelled in such a way that GSCs retain the Cy3 signal in 

g 
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~85% of cases. If segregation of X and Y chromosomes is correlated, the 

probability that a GSC inherits two Cy3 signals will be ~85% and that of inheriting 

two Cy5 signals will be ~15%, whereas there will be few instances where a GSC 

inherits one Cy3 and one Cy5 signal. In contrast, if X and Y chromosomes 

segregate independently, the probability of GSCs inheriting two Cy3 signals will be 

72% (85% x 85%), that of two Cy5 signals will be 2% (15% × 15%), and that of 

one Cy3 and one Cy5 signal will be 26% (85% × 15% × 2). In our experiments, the 

observed segregation pattern was very similar to the latter scenario (Figure 3.4e, f, 

g), suggesting that X and Y chromosomes are segregated independently. 

 

 

 

 

 

 

 
 
 
Figure 3.5 CO-FISH using non-complementary probes for the X 
chromosome. CO-FISH analysis was conducted using non-complementary 
probes, which do not anneal to each other. A second Cy5 probe (Cy5-Xprobe2: 
Cy5-TTATTTGATGACCGAAATTTGGAAAAACAGACTCTGCAAAAAAGTGGATA 
TTTACAAA CGAAATTTTCGTTATAACTTGG) was used in combination with the 
Cy3-X probe shown in Figure 3.1a. This combination of non-complementary 
probes yielded a similar pattern of biased segregation. These results exclude the 
possibility that annealing of complementary probes causes experimental artifacts. 
Open arrowheads indicate Cy3-Xprobe; closed arrowheads indicate Cy5-Xprobe2. 
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Figure 3.6 X and Y chromosome strands are not immortal. a) If GSCs maintain 
immortal X and Y strands, those strands would remain BrdU-negative irrespective 
of the number of cell cycles the GSCs undergo in the presence of BrdU 
(“continuous BrdU”). Such BrdU+/- strands would yield a single CO-FISH signal 
(red signal in ~85% of GSCs and blue signal in ~15% of GSCs).  BrdU+/+ strands 
would yield overlapping, red/blue signals (see Figure 3.7). In contrast, if GSCs do 
not maintain immortal X and Y strands, and switch strands stochastically, GSCs 
would eventually lose the BrdU-negative strand. As a result, GSCs would 
increasingly contain overlapping CO-FISH signals. BrdU-negative DNA strands 
are represented by black lines and BrdU-positive DNA strands by red lines. b) 
Frequency of GSC-GB pairs, in which both contain overlapping signals, increases 
during continuous BrdU incorporation, and approaches 100% after 72 hours of 
BrdU feeding. This demonstrates that the X and Y chromosomes are not immortal, 
and favors the possibility that certain strands of X and Y are stochastically 
inherited with a strong bias.� 
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Figure 3.7 Long-pulse CO-FISH Y images. a) An example of Y chromosome 
CO-FISH of a GSC-GB pair in which the original, BrdU-negative strand (with a 
single CO-FISH signal) is lost from the GSC and inherited by the GB. After 48 
hours of BrdU feeding, 19% (N=32 total GSC-GB pairs in which one cell contains 
a single signal and the other contains overlapping signals) showed this pattern. 
Inset: overlapping signals of Cy3 and Cy5 probes in the GSC are shown in 
separate channels. Arrowheads indicate single and overlapping signals; asterisk 
indicates hub. Similar results were obtained for X chromosome CO-FISH after 48 
hours of BrdU feeding; 26% (N=35) of GSC-GB pairs showed a single CO-FISH 
signal in the GB and overlapping signals in the GSC. b) An example of Y 
chromosome CO-FISH in a GSC-GB pair, in which both cells contain overlapping 
signals, indicating that these cells have lost the original, BrdU-negative strand. 
After 72 hours of BrdU feeding, 93% (N=81 total GSC-GB pairs) showed this 
pattern. Arrowheads indicate overlapping signals; asterisk indicates hub. 
 

3.3.2 Autosomes segregate randomly during GSC divisions. 

In contrast to X and Y chromosomes, there are two homologs of the 

autosomes in male cells. Thus, we expect to see two CO-FISH signals in each cell 

after performing the CO-FISH procedure as described above. The CO-FISH 

signals from autosome probes were always juxtaposed (Figure 3.8a-d), consistent 

with previous reports that homologous chromosomes are paired even in non-

meiotic cells in Drosophila (Fung et al., 1998). We observed that autosomes 

(chromosomes II and III) did not show a biased segregation pattern in GSC-GB 

pairs (Figure 3.8a-d). These results indicate that the autosomes segregate 

a b 
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randomly with respect to which copy goes to the GSCs. Again, this is consistent 

with our previous study showing that Drosophila male GSCs do not retain an 

immortal strand for all chromosomes (Yadlapalli et al., 2011).  

 
Figure 3.8 Autosomes are randomly segregated during GSC divisions. a–d, 
Representative images of CO-FISH results using chromosome 2 probes (a, b), 
and chromosome 3 probes (c, d). Lone signals that correspond to the Y 
chromosome are marked with ‘Y’. N, number of GSCs scored.                       
e, f, A representative image showing that the lone signal of the (AACAC)6 probe 
(open arrowheads) is close to the (AATAC)6 signal (blue arrowhead).                       
g, Summary of scoring results using chromosome 2 probes. Paired signals 
segregate randomly (Cy3-Cy3:Cy5-Cy5 = 54.4:45.6), whereas lone signals 
segregate nonrandomly. (Cy3:Cy5 = 87.6:12.4). (AACAC)6 and (AATAC)6 
sequences are on the same strand of the Drosophila Y chromosome. 
 
However, we did observe an interesting pattern: GSCs always inherited two Cy3 

signals or two Cy5 signals, but we never observed a Cy3 and a Cy5 signal in a 

GSC. It should be noted that the repeat sequences used as probes for 

chromosome II and III also exist in the Y chromosome (Makunin et al., 1999). 
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Therefore, we observed a third “lone” signal in addition to the paired autosome 

signals (Figure 3.8a-d). The identity of the lone signal was confirmed as the 

chromosome by combining autosome probes, for example Cy3-(AACAC)6/Cy5-

(GTGTT)6 for chromosome II, and a Y chromosome probe, 488-(AATAC)6. In this 

case, we observed that the 488-(AATAC)6 signal was always close to the lone 

Cy3-(AACAC)6 signal, whereas the paired Cy3-(AACAC)6 signals did not associate 

with 488-(AATAC)6 (Figure 3.8e, e’). The Drosophila genome sequence indicates 

that the (AACAC)6 and (AATAC)6 sequences are on the same strand, and we 

observed that the lone signal labelled with the Cy3-(AACAC)6  probe was 

frequently inherited by GSCs (~87%, Figure 3.8f), irrespective of the segregation 

pattern of the paired autosomal CO-FISH signals. This result further confirms our 

earlier observation that sister chromatids of the Y chromosome are segregated 

non-randomly.  

 

3.3.3 The centrosome and SUN-KASH domain proteins are required for non-

random sister chromatid segregation.  

We have previously shown that the mother centrosome is inherited by the 

GSCs (Yamashita et al., 2007), leading to speculation that the mother centrosome 

might anchor the immortal DNA strands (Tajbakhsh, 2008; Tajbakhsh and 

Gonzalez, 2009). To investigate the role of the centrosome in non-random sister 

chromatid segregation, we examined mutants for centrosomin (cnn), a core 

component of the pericentriolar material (PCM) that we have shown to be required 

for stereotypical centrosome segregation and spindle orientation in GSCs 



� ��

(Yamashita et al., 2003; Yamashita et al., 2007). We found that segregation of 

both X and Y chromosomes is randomized in the cnn mutant (Figure 3.9, Table 

3.1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 cnn, koi, and klar are required for non-random sister chromatid 
segregation. a, b) Representative images of Y chromosome CO-FISH in cnn 
mutant. Open arrowheads indicate the Cy3-(AATAC)6 probe; closed arrowheads 
indicate the Cy5-(GTATT)6 probe; asterisk indicates hub. c, d) Representative 
images of X chromosome CO-FISH in koi mutant. Open arrowheads indicate the 
Cy3-X probe; closed arrowheads indicate the Cy5-X probe; asterisk indicates hub. 
 

However, it is unlikely that the mother centrosome directly anchors specific sister 

chromatids of the X and Y chromosomes throughout the cell cycle, because the 

nuclear envelope separates the chromosomes from the centrosomes during 

interphase in eukaryotic cells. It is well established that the LINC (linker of 

nucleoskeleton and cytoskeleton) complex composed of SUN- and KASH- domain 
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proteins tethers the nucleus to the cytoskeleton via the nuclear envelope 

(Razafsky and Hodzic, 2009). 

Table 3.1 Summary of sister chromatid segregation pattern in cnn, koi and 
klar mutants 
 

Genotype Outcome 
 
 

Y chromosome X chromosome 
cnnmfs3/ cnnHK21 45:55 (n=92) 49:51 (n=94) 

cnnmfs3/+, cnnHK21/+, 85:15 (n=93) 83:17 (n=30) 
koiHRKO80.w/ 

Df(2R)Exel6050 
59:41 (n=59) 54:46 (n=35) 

koiHRKO80.w/+, 
Df(2R)Exel6050/+ 

86:14 (n=56) 86:14 (n=36) 

Klar1/ Df(3L)emc-E12 50:50 (n=38) 54:46 (n=39) 
Klar1/ + 85:15 (n=41) 85:15 (n=34) 

n, number of GSC-GB pairs scored.  

 

Interactions between the centrosome and chromatin via the LINC complex 

are known to play critical roles in various biological processes such as meiotic 

homologous pairing and protection of nuclear structures from the shearing force of 

microtubule-based motors. In Drosophila, two SUN-domain proteins, Klaroid (Koi) 

and Spag4, and two KASH-domain proteins, Klarsicht (Klar) and Msp-300, have 

been identified (Kracklauer et al., 2007; Kracklauer et al., 2010; Mosley-Bishop et 

al., 1999; Patterson et al., 2004; Xie and Fischer, 2008). Although neither koi nor 

klar genes are essential for viability or fertility, sister chromatid segregation of X 

and Y chromosomes was randomized in koi and klar mutants (Figure 3.9, Table 

3.1). Since Spag4 is known to be specifically required in later spermiogenesis 

(Kracklauer et al., 2010) and Msp-300 is known to connect the nuclear envelope to 
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the actin cytoskeleton, rather than microtubules (Xie and Fischer, 2008), we did 

not study mutants of these genes. These data demonstrate that the centrosome 

and the SUN-KASH domain proteins are required for asymmetric segregation of X 

and Y chromosomes, probably via anchorage of the sister chromatids to the 

mother centrosome through the nuclear envelope (Figure 3.12).  

 

3.3.4 Dnmt2 is required for non-random sister chromatid segregation. 

The above results suggest that GSCs have the ability to distinguish two 

sister chromatids that are supposedly identical products of a precise DNA 

replication process. How do cells distinguish between the two sister chromatids? 

We found that sister chromatid segregation of X and Y chromosome was 

randomized in dnmt2 mutants (Figure 3.10, Table 3.2). Dnmt2 is the only gene in 

the Drosophila genome that encodes a potential DNA methyltransferase, although 

it has been suggested that the gene product is an RNA methyltransferase. 

 

Figure 3.10 Dnmt2 is required for non-random sister chromatid segregation. 
a) Characterization of dnmt2G3429 allele. Western blotting using anti-Dnmt2 
antibody demonstrates that dnmt2G3429 is a protein null allele, similar to dnmt2D99, 
a known null allele. b, c) Representative images of CO-FISH analysis of 
dnmt2G3429 mutant testes. Open arrowheads indicate Cy3-(AATAC)6 signal and 
closed arrowheads indicate Cy5-(GTATT)6 signal; asterisk indicates hub. 
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Further analysis using various cross schemes (crosses of homozygous 

mother/father with heterozygous father/mother) revealed that Dnmt2 is required in 

the gametes of the parents and continuously required in the zygote (Table 3.2). 

For example, non-random sister chromatid segregation of the X chromosome 

relies on the gene function of Dnmt2 in the mother (who provides the original X 

chromosome to the individual). Conversely, non-random sister chromatid 

segregation of the Y chromosome relies on the gene function of Dnmt2 in the 

father (who provides the original Y chromosome). Importantly, the segregation 

pattern of X was not affected even when the father was a homozygous mutant 

(dnmt2/dnmt2) and segregation of Y was randomized. Likewise, the segregation of 

Y was not affected when the mother was a homozygous mutant (dnmt2/dnmt2) 

and segregation of X was randomized (Table 3.2). These results suggest the 

striking possibility that the epigenetic information that allows non-random sister 

chromatid segregation in adult stem cells is primed during gametogenesis in the 

parents and maintained through many cell divisions during embryogenesis and 

adult tissue homeostasis.  

 
 
3.3.5 Non-random sister chromatid segregation is perturbed in GSC 

overproliferation. 

 To gain insights into whether non-random sister chromatid segregation is 

controlled by stem cell identity, we investigated whether sister chromatid 

segregation is affected in GSC overproliferation induced by the ectopic expression 

of Upd.  
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Table 3.2 Summary of sister chromatid segregation pattern in dnmt2 
mutants and progeny. 
 
a. Pattern of sister chromatid segregation in dnmt2 mutants. 

Genotype Outcome 
 
 

Y chromosome X chromosome 
dnmt2G3429/ dnmt2G3429 49:51* (n=41) 56:44 (n=43) 

dnmt2G3429/Df(2L)ED775 53:47 (n=36) 51:49 (n=41) 
dnmt2D99/ dnmt2 D99 49:51 (n=45) 46:54 (n=41) 
dnmt2147/ dnmt2147 46:54 (n=35) 59:41 (n=46) 

dnmt2G3429/ dnmt2 D99 56:44 (n=39) 59:41 (n=44) 
dnmt2G3429/ dnmt2147 54:46 (n=37) 42:58 (n=41) 

 
b. Pattern of sister chromatid segregation in progeny of dnmt2 mutants. 

Maternal 
genotype 

Paternal 
genotype 

Progeny 
genotype 

 
 
 
 
 

Outcome  

Y chromosome X 
chromosome 

dnmt2G3429/ 
dnmt2G3429 

dnmt2G3429/ 
+ 

dnmt2G3429/ 
dnmt2G3429 

55:45 (n=40) 61:39 (n=33) 

dnmt2G3429/ + 81:19 (n=32) 45:55 (n=33) 
dnmt2G3429/ 

+ 
dnmt2G3429/ 
dnmt2G3429 

dnmt2G3429/ 
dnmt2G3429 

42:58 (n=52) 51:49 (n=35) 

dnmt2G3429/ + 47:53 (n=32) 82:18 (n=34) 

dnmt2G3429/ 
+ 

dnmt2G3429/ 
+ 

dnmt2G3429/ 
dnmt2G3429 

55:45 (n=40) 53:47 (n=30) 

dnmt2G3429/ + 82:18 (n=28) 83:17 (n=35) 

dnmt2D99/ 
dnmt2D99 

dnmt2D99/ + dnmt2D99/ 
dnmt2D99 

51:49 (n=37) 46:54 (n=35) 

dnmt2D99/ + 82:18 (n=39) 51:49 (n=39) 
dnmt2D99/ + dnmt2D99/ 

dnmt2D99 
dnmt2D99/ 
dnmt2D99 

48:52 (n=46) 50:50 (n=36) 

dnmt2D99/ + 38:62 (n=37) 81:19 (n=36) 
*, Values represent percent segregation of Cy3-labelled strand to GSC: percent 

segregation of Cy3-labelled strand to GB. 
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Upd is a signalling ligand that is normally expressed exclusively in hub cells and 

activates the JAK-STAT pathway in GSCs and cyst stem cells to specify stem cell 

identity(Kiger et al., 2001; Leatherman and Dinardo, 2008; Tulina and Matunis, 

2001). We examined the mode of sister chromatid segregation in GSCs upon 

ectopic expression of Upd. For this experiment we limited our analysis to GSCs 

juxtaposed to hub cells, because GSCs located away from the hub do not have a 

spatial reference point for assessment of the sister chromatid segregation pattern. 

We observed that segregation of both X and Y chromosomes is randomized in 

Upd-expressing testis (Figure 3.11a, b, Table 3.3), suggesting that non-random 

sister chromatid segregation is under the control of stem cell identity. However, it 

is unlikely that non-random sister chromatid segregation determines GSC identity, 

because the mutants defective in non-random segregation described above (cnn, 

koi, klar, dnmt2) do not exhibit GSC overproliferation or depletion.  

 

3.3.6 De-differentiated GSCs do not recover non-random sister chromatid 

segregation. 

Partially differentiated germ cells can revert back to GSC identity to 

replenish the stem cell pool (Brawley and Matunis, 2004; Kai and Spradling, 

2004). These de-differentiated GSCs are apparently functional as stem cells since 

they can produce differentiating spermatogonia and can reconstitute 

spermatogenesis (Brawley and Matunis, 2004; Cheng et al., 2008). When we 

induced de-differentiation by transient expression of Bam, the master regulator of 

differentiation, followed by a recovery period as described previously (Sheng et al., 
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2009), the de-differentiated GSCs displayed random sister chromatid segregation 

(Figure 3.11c, d, Table 3.3). Furthermore, we found that non-random sister 

chromatid segregation was compromised during aging [at day 30, 63:37 for the X 

chromosome (N=35) and 68:32 for the Y chromosome (N=28)], consistent with our 

previous report that de-differentiation increases during aging (Cheng et al., 2008). 

This result suggests that de-differentiated GSCs do not re-establish non-random 

sister chromatid segregation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 Non-random segregation of Y and X chromosomes is disrupted 
in upd overexpression testes and de-differentiated stem cells. a, b) 
Representative images of CO-FISH using the Y probe upon overexpression of 
Upd (nos-gal4>UAS-Upd). N, number of GSC-GB pairs scored. (*) Hub. c, d) 
Representative images of CO-FISH using the Y probe in de-differentiated GSCs. 
Differentiation was induced by heat shock treatment of hs-Bam flies followed by a 
5-day recovery period.  
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Table 3.3 Summary of sister chromatid segregation pattern upon Upd 
overexpression and de-differentiation 
 

Genotype Outcome 
 
 

Y chromosome X chromosome 
nos-gal4>Upd 42:58 (n=43) 56:44 (n=32) 
Upd control* 83:17 (n=36) 83:17 (n=36) 

hs-bam** 46:54 (n=111) 51:49 (n=47) 
 
*: cross siblings of nos-gal4>Upd that do not express Upd (either nos-gal4 only or 
UAS-Upd only)  were used as control 
**; hs-bam flies were subjected to 5 heatshocks (30min for 5 times within 2.5 
days), followed by 5 days recovery. 
n, number of GSC-GB pairs scored.  

 
3.4 Discussion 

This study provides the first evidence that adult stem cells can distinguish 

two sister chromatids, which are supposedly exact copies of each other, and 

segregate them non-randomly to self-renewing vs. differentiating cells. We 

identified molecular components required for non-random sister chromatid 

segregation. Our data point to a model in which sister chromatids are distinctively 

recognized, leading to anchorage of particular strands to the mother centrosome 

through the SUN-KASH proteins (Figure 3.12). It is currently unknown how Dnmt2 

participates in distinguishing two sister chromatids. Whereas some studies 

indicate that Dnmt2 has DNA methyltransferase activity (Kunert et al., 2003; 

Phalke et al., 2009), other studies show that it functions as an RNA 

methyltransferase(Schaefer et al., 2010) and that DNA methylation is detectable 

only at a very low level in the Drosophila genome (Zemach et al., 2010). Yet, our 

data clearly suggest that Dnmt2 functions during gametogenesis in the parents to 
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confer information on the X and Y chromosomes that is inheritable through many 

cell divisions, leading to non-random sister chromatid segregation in the GSCs of 

the offspring. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12 Model of non-random sister chromatid segregation of X and Y 
chromosomes during GSC division. A) Sister chromatid segregation pattern of 
X and Y chromosomes examined by CO-FISH. GSCs inherit the red (Cy3-based) 
signal in a majority of the cases, suggesting that GSCs inherit particular sister 
chromatids of X and Y chromosomes with a striking bias (85%:15%). B) Sister 
chromatid segregation pattern of the autosomes observed in GSCs. GSCs inherit 
two Cy3 signals or two Cy5 signals with equal probability, but never a Cy3 and a 
Cy5 signal, suggesting the existence of a certain type of bias. The CO-FISH 
experiments using the chromosome II probe and chromosome III probe showed 
the same trend. C) Model of non-random sister chromatid segregation of X and Y 
chromosomes. Sister chromatids might be distinctly recognized by the SUN–
KASH components of the LINC complex, resulting in the anchorage of particular 
DNA strands to the mother centrosome that is mediated by microtubule–LINC 
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interactions. 
 

At present it is not clear why X and Y chromosomes are segregated non-

randomly. It is unlikely that non-random sister chromatid segregation serves to 

protect the “immortal strand” to avoid replication-induced mutations, because X 

and Y chromosomes are segregated in a stochastic manner and lose the template 

strand with approximately 15% probability during each division. Furthermore, the 

autosomes are apparently segregated randomly. Therefore, we favour the 

possibility that certain epigenetic information is transmitted distinctively to GSCs 

and GBs. Indeed, many processes involving X and Y chromosomes, such as 

dosage compensation (Conrad and Akhtar, 2011) and male-specific meiotic sex 

chromosome inactivation (Hense et al., 2007), are subject to epigenetic regulation. 

In addition, Stellate, a repetitive sequence that encodes a polypeptide whose 

expression is known to reduce fertility, as well as Suppressor of Stellate [Su(Ste)], 

the piRNA that suppresses Stellate expression, are known to be located on the X 

and Y chromosomes, respectively (Aravin et al., 2001; Tulin et al., 1997). 

Intriguingly, we found that Stellate is de-repressed in mutants of cnn, dnmt2, koi, 

and klar (Figure 3.13). Although determination of whether de-repression of Stellate 

is due to a failure in non-random sister chromatid segregation awaits future 

investigation, the shared outcome of Stellate de-repression in mutants that are 

otherwise unrelated suggests that non-random sister chromatid segregation may 

be responsible for suppression of Stellate. Not surprisingly, we found that the 

mutants in which Stellate is de-repressed show reduced fertility (Figure 3.14).  
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Figure 3.13 Stellate is de-repressed in mutants defective in non-random 
sister chromatid segregation. Representative images of Stellate expression in 
the indicated genotypes are shown. Green, anti-Stellate; blue, DAPI. Stellate 
expression was observed in spermatocyte and/or spermatid stages. In the koi 
mutant, weak Stellate expression was sometimes observed in the heterozygous 
control (albeit at lower frequency and expression level). Bar, 25µm. It is worth 
noting that Stellate was de-repressed in dnmt2 heterozygous animals that have a 
mutant female mother (but not those with a mutant male father), suggesting that 
the X chromosome (which harbors the Stellate gene locus) but not the Y 
chromosome (which harbors the Su(Ste) gene locus) is important for suppression 
of Stellate. 
 

It was previously shown that production of non-equivalent sister chromatids 

as a result of directionality of the DNA replication forks at the mat1 gene locus 

underlies mating-type switching in fission yeast(Dalgaard and Klar, 1999). It was 

also reported that mouse chromosome 7 is non-randomly segregated in embryonic 

stem cells and endoderm cells (Armakolas and Klar, 2006). Combined with these 

findings, the present study strongly indicates that non-random segregation of sister 

chromatid is a mechanism that is widely utilized by diverse systems. Recently, it 
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was shown that old vs. new histones are segregated asymmetrically during GSC 

divisions (Tran et al., 2012). Our study demonstrates that GSCs do not segregate 

old (immortal) DNA strands. Thus the relationship between biased sister chromatid 

segregation and histone segregation remains elusive. In summary, our study 

presents the first evidence of chromosome-specific non-random sister chromatid 

segregation in adult stem cells and provides mechanistic insights into how cells 

segregate sister chromatids non-randomly.  

 

 

 

 

 

Figure 3.14 koi, klar, and dnmt2 mutants show reduced fertility. A single virgin 
male was crossed with three virgin yw females. Every 5 days, the male was 
transferred to a new vial with three new virgin yw females. The number of adult 
flies eclosed from each vial was scored. P-value is shown for statistically 
significant data points (compared to age-matched control). yw is shown as control 
but cross sibling controls also showed similar trend. ND: not determined (since 
statistically significant reduction in fertility was observed in earlier time period). The 
cnn mutant was not tested, because it is known to be sterile due to a defect in 
cytokinesis during meiotic divisions. 
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3.5 Materials and Methods  

3.5.1 Fly husbandry  

All fly stocks were raised on Bloomington Standard Media at 25°C unless 

otherwise noted. The following fly stocks were used: Ubi-Pavarotti-GFP, sh-

adducin-Venus, cnnmfs3/CyO, cnnHK21/CyO, koiHRKO80.w, Df(2R)Exel6050/CyO, 

klar1, Df(3L)emc-E12, P(EP)Mt2G3429 (denoted dnmt2G3429 in the text), dnmt2D99, 

dnmt2149, Df(2L)ED775/CyO, hs-Bam, UAS-Upd/CyO, and nos-gal4. These stocks 

are described in FlyBase.  

 

3.5.2 Combined immunofluorescence staining and CO-FISH 

Newly eclosed adult flies (day 0) were fed food containing BrdU (950 µl 

100% apple juice, 7 µg agar, and 50 µl 100 mg/ml BrdU solution in a 1:1 mixture of 

acetone and DMSO) for ~10 hours. After the feeding period, flies were transferred 

to regular fly food for ~8 hours. Because the average cell cycle length of GSCs is 

12 hours, most GSCs undergo a single S phase followed by mitosis during our 

feeding procedure. GSCs that have undergone more or less than one S phase or 

mitosis were excluded from our analysis by limiting scoring to GSC-GB pairs that 

have complementary CO-FISH signals in the GSC and GB (i.e., red signal in one 

cell, blue signal in the other). Samples were dissected in 1X PBS, fixed for 30-60 

min with 4% formaldehyde in PBS, permeabilized for at least 1 hour in PBST 

(0.1% Triton X-100 in PBS) and incubated with primary antibodies overnight at 

4°C. Samples were then washed with PBST (20 min, three times), incubated 

overnight at 4°C with Alexa-Fluor conjugated secondary antibodies (1:200; 
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Molecular Probes), and washed again with PBST (20 min, three times). Samples 

were fixed for 10 min with 4% formaldehyde followed by three washes in PBST for 

5 min each. Samples were then treated with RNaseA (2 mg/ml in water) for 10 min 

at 37°C, washed with PBST for 5 min, and stained with 100 µl Hoechst 33258 

(Sigma Aldrich) at 2 µg/ml for 15 min at room temperature. The samples were then 

rinsed with 2X SSC, transferred to a tray, and irradiated with ultraviolet light in a 

UV Stratalinker 1800 (calculated dose 5400 J/m2). Nicked BrdU strands were 

digested with 100 µl exonuclease III (New England Biolabs) at 3 U/µl in buffer 

supplied by the manufacturer (50 mM Tris-HCl, 5 mM MgCl2, and 5 mM 

dithiothreitol (DTT), pH 8.0) at 37°C for 10 min. Samples were rinsed once with 

PBST for 5 min and then fixed in 4% formaldehyde in PBS for 2 min and washed 

three times for 5 min each in PBST. To allow gradual transition into 50% 

formamide/2X SSC, samples were incubated for a minimum of 10 min each in 

20% formamide/2X SSC, 40% formamide/2X SSC, and finally in 50% 

formamide/2X SSC. The hybridization mixture consisted of 50% formamide, 2X 

SSC, 10% dextran sulfate, 0.5 µg/ml Cy3-labelled probe, and 0.5 µg/ml Cy-5 

labeled probe. Fluorescence-labelled probes were obtained from Integrated DNA 

Technologies. The hybridization solution was added to the samples and 

hybridization was carried out at 37°C overnight. Using non-complementary pairs of 

probes for the X chromosome, we detected a similar bias in segregation pattern 

(Figure 3.5) excluding the possibility that annealing of complementary probes 

interferes with correct hybridization between the probes and the target sequences. 

Autosome probes were denatured in hybridization solution at 65°C for 3 min prior 
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to hybridization. The samples were never heat-denatured. As a critical control, hub 

cells, which are predominantly quiescent and, thus, do not incorporate BrdU, did 

not show any CO-FISH signal (evident in all images). Following hybridization, 

samples were washed once in 50% formamide/2X SSC, once in 25% 

formamide/2X SSC and finally three times with 2X SSC. Samples were then 

mounted in VECTASHIELD (H-1200, Vector Laboratory) and images were 

recorded using a Leica TCS SP5 confocal microscope with a 63× oil immersion 

objective (NA=1.4) and processed using Adobe Photoshop software. The following 

primary antibodies were used: rabbit anti-Vasa (1:200; Santa Cruz Biotechnology), 

mouse anti-Adducin-like (1:20; developed by H. D. Lipshitz and obtained from the 

Developmental Studies Hybridoma Bank (DSHB), mouse anti-Armadillo (1:20; 

developed by Eric Wieschaus and obtained from DSHB), rabbit anti-Stellate 

(1:1000, a generous gift of Phillip Zamore(Forstemann et al., 2005)). The 

secondary antibodies used were Alexa Fluor 594- and 488-conjugated secondary 

antibodies (1:200; Molecular Probes). 
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Chapter 4 

Conclusions and future directions 

 

  The primary insight from this work is that sister chromatids, which are 

genetically exact copies of each other, are segregated non-randomly during 

asymmetric stem cell division.  This key insight—enabled by my experiments 

performed at a single sister chromatid resolution for the first time—implies that 

potentially all cells might be employing non-random sister chromatid segregation 

during asymmetric cell division to diversify cell fates. In this chapter, I will first 

summarize the results from my studies, and then I will discuss the molecular 

mechanisms and biological relevance of non-random sister chromatid segregation. 

Finally, I will describe possible future directions.   

In the first study, I have combined cell biological analysis of BrdU-labeled 

sister chromatids and mathematical modeling, and concluded that Drosophila 

melanogaster male GSCs are randomly segregating the template strands. 

(Yadlapalli et al., 2011). Throughout the label-free chase period, I observed that 

BrdU label was equally distributed to GSC–GB pairs in a majority of cases (95% 

of the cases at 24 hour chase period), until BrdU is finally diluted to undetectable 

levels (Figure 4.1). This suggests that GSCs do not retain the immortal strands 

for the entire genome. However, these results did not exclude the possibility that 

GSCs might be non-randomly segregating sister chromatids of only a subset of 
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chromosomes.  

In the follow-up study, I adapted the CO-FISH technique and showed that 

sister chromatids of X and Y chromosomes, but not autosomes, are non-

randomly segregated during GSC divisions (Yadlapalli  and  Yamashita,  2013). 

In this study, I used chromosome-specific probes that are available for Drosophila 

to study sister chromatid segregation at single chromosome resolution.  

 

 

 

 

 
 
 
Figure 4.1 Drosophila melanogaster male GSCs do not follow immortal 
strand model. During the chase period, majority of GSC-GB pairs (95% of the 
cases at 24 hour chase period) show symmetric distribution of BrdU label. In a 
very few cases, BrdU label appeared to be asymmetrically segregated to either 
GSC or GB. However, even in such cases, it was apparently random as to which 
cell inherited the BrdU label. 

 

For instance, I used a Cy3-labeled (AATAC)6 probe (red) and the 

complementary Cy5-labeled (GTATT)6 probe (blue) to examine the sister 

chromatid segregation pattern of Y chromosome, because these sequences 

were repeated uniquely on the Y chromosome (Bonaccorsi and Lohe, 1991). 

Using this method, I found that in 85% of GSC divisions, GSCs inherited the sister 

chromatid of the Y chromosome that contains (GTATT)6 repeats as a template 

(and thus hybridize to the Cy3-(AATAC)6 probes) (Yadlapalli and Yamashita, 

2013) (Figure 4.2A). A similar trend (of 85:15) was observed for X chromosome 
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segregation. Despite the comparable segregation bias for both X and Y 

chromosomes, X and Y chromosomes are not co-segregated, suggesting that 

sister chromatids of X and Y chromosomes are segregated independently of each 

other. Interestingly, in spite of the strong bias, I have shown that X and Y 

chromosome template strands in GSCs are not ‘immortal’; instead, each GSC 

appears to switch the template strands once in approximately seven cell divisions 

on average. This type of non-random sister chromatid segregation is novel in that 

both chromosomes (X and Y) show a bias in sister chromatid segregation with 

respect to the cell fate (i.e. stem cell and differentiating cell). Furthermore, this 

provides a clear example of biased segregation that does not lead to retention of 

the immortal strand.  

 

 

 

 

 

 

Figure 4.2 Non-random sister chromatid segregation of X and Y 
chromosomes during GSC division. A) Sister chromatid segregation pattern of 
X and Y chromosomes examined by CO-FISH. GSCs inherit the red (Cy3-based) 
signal in a majority of the cases, suggesting that GSCs inherit particular sister 
chromatids of X and Y chromosomes with a striking bias (85%�15%). B) Sister 
chromatid segregation pattern of the autosomes observed in GSCs. GSCs inherit 
two Cy3 signals or two Cy5 signals with equal probability, but never a Cy3 and a 
Cy5 signal, suggesting the existence of a certain type of bias. 
 

Using CO-FISH with autosome probes, I noticed that GSCs always 
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inherited either two Cy3 signals or two Cy5 signals, but never a Cy3 and a Cy5 

signal. If the paternal and maternal chromosomes behave independently, one 

would expect to observe a distribution of Cy3–Cy3:Cy3–Cy5:Cy5–Cy5 that equals 

to 25%:50%:25% (1:2:1) (Figure 1.3B). However, I observed a distribution pattern 

of 50%:0%:50% (or 1:0:1) (Figure 4.2B) Although it was random with regard to 

which signals (either Cy3–Cy3 or Cy5–Cy5) are inherited by GSCs, this pattern is 

clearly distinct from numbers that would be expected from a ‘truly random’ 

segregation pattern, suggesting the existence of certain bias. This pattern is 

similar to the sister chromatid segregation pattern previously reported in 

Drosophila (Beumer et al., 1998) and mouse ES cells (Armakolas and Klar, 2006). 

Future investigation is required to determine whether these coordinated 

segregations are related with regard to their biological significance and/or 

underlying molecular mechanisms. 

 

4.1 Molecular mechanisms of non-random sister chromatid segregation 

There have been many hypotheses regarding how and for what reasons a 

cell might non-randomly segregate sister chromatids (Lew et al., 2008; Tajbakhsh 

and Gonzalez, 2009). However, the cellular machinery responsible for nonrandom 

sister chromatid segregation remained elusive. My recent work provided insight 

into how cells might mechanistically carry out non-random sister chromatid 

segregation (Yadlapalli and Yamashita, 2013). In this study, I showed that the 

centrosomal component cnn, nuclear envelope components (i.e. SUN–KASH-

domain proteins) and Dnmt2 are required for the non-random segregation of the 



�������� ���
�

sister chromatids of X and Y chromosomes. Although much has yet to be learned 

to fully elucidate the mechanisms that allow non-random sister chromatid 

segregation of X and Y chromosomes, the genes that are required for nonrandom 

sister chromatid segregation allow us to propose the following model. First, the 

mother centrosome is anchored to the adherens junctions at the hub–GSC 

interface throughout the cell cycle  (Yamashita et al., 2007). Through its 

association with microtubules, the mother centrosome is linked to the SUN–KASH-

domain proteins located on the nuclear envelope that form the linker of 

nucleoskeleton and cytoskeleton (LINC) complex (Razafsky and Hodzic, 2009). 

The LINC complex might associate only with a particular sister chromatid to allow 

biased segregation (Hiraoka and Dernburg, 2009; Razafsky and Hodzic, 2009).  

 

 

 

 

 

 

 

 

 

Figure 4.3 Model for non-random sister chromatid segregation. Molecular 
machinery that enables non-random sister chromatid segregation. Based on the 
requirement for cnn, koi, klar, and dnmt2, we propose that specific sister 
chromatids (specified by Dnmt2-dependent modification) of X and Y chromosomes 
are anchored to the SUN-KASH domain proteins, which, in turn, interact with the 
mother centrosome, leading to non-random sister chromatid segregation. 
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I hypothesize that chromosomal components (such as centromeres or other 

regions) and associated proteins (such as kinetochore proteins or other chromatin- 

associated proteins) are distinct between the sister chromatids (Thorpe et al., 

2009), thereby allowing for the selective capture of a particular sister chromatid by 

the mother centrosome (Figure 4.3). 

 
 
4.1.1 Role of centrosome in non-random sister chromatid segregation 

 Centrosomes play a fundamental role in chromosome segregation in 

general as they form spindles that pull chromosomes into two daughter cells. Our 

laboratory has previously shown that the mother centrosome is consistently 

inherited by stem cells during asymmetric GSC division (Yamashita et al., 2007). 

This stereotypic centrosome inheritance is shown to require centrosomin (cnn), a 

major component of pericentriolar material (Megraw et al., 1999), which is 

thought to connect the mother centrosome to the GSC-hub interface. In my 

recent study, I observed that in the cnn mutant, sister chromatids of X and Y 

chromosomes are randomly segregated, even though GSCs segregated 

chromosomes equally into two daughter cells without causing obvious genomic 

instability. This data implies that in the cnn mutant, there is a specific problem in 

distinguishing two sister chromatids of X and Y chromosomes during stem cell 

division. It is tempting to speculate that the two sister chromatids are distinct in 

their ability to organize/bind kinetochore microtubules (Maiato et al. 2004), and 

such sister kinetochores are captured by mother vs. daughter centrosomes that 



�������� ���
�

have been shown to differ in microtubule-organizing activity (Yamashita et al., 

2007).  

 

4.1.2 Role of nuclear envelope proteins in non-random sister chromatid 

segregation 

It is unlikely that specific sister chromatids are directly anchored to the 

mother centrosome throughout the cell cycle, because the nuclear envelope 

separates the chromosomes from the centrosomes in interphase of eukaryotic 

cells. Is it well established that Linker of Nucleoskeleton and Cytoskeleton (LINC) 

complex consisting of SUN-KASH domain proteins on the nuclear envelope 

mediate the interactions between the cytoplasm and nucleus (Razafsky and 

Hodzic, 2009). KASH domain proteins are known to be on the outer nuclear 

membrane and interact with cytoskeleton components such as microtubules and 

actin filaments. Conversely, SUN domain proteins, which directly bind to KASH 

domain proteins, localize on the inner nuclear membrane and connect to 

chromatin(Hiraoka and Dernburg 2009; Razafsky and Hodzic 2009) (Figure 4.4). 

Such linkage between the cytoskeleton and chromosomes via the LINC complex 

is known to be required for multiple processes, such as meiotic homologous 

pairing and protecting the nucleus from the shearing force of cytoskeletons 

(Hiraoka and Dernburg 2009; Razafsky and Hodzic 2009). Thus, the requirement 

of SUN-KASH proteins in nonrandom sister chromatid segregation suggests that 

particular strands of X and Y chromosomes are anchored to the mother 

centrosome through the nuclear envelope during interphase. 
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4.1.3 Role of epigenetics in non-random sister chromatid segregation 

  How can the centrosome and LINC complex capture a particular sister 

chromatid when both of them have identical genetic information? I hypothesize 

that two sister chromatids have distinct epigenetic marks, which in turn is utilized 

to build a platform for distinct capture by the mother vs. daughter centrosomes.  In                       

this regard, the requirement of Dnmt2 in non-random sister chromatid segregation 

is intriguing. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Function of Linker of Nucleoskeleton and Cytoskeleton (LINC) 
complex. In the perinuclear space, evolutionarily conserved SUN (orange oval) 
and KASH (green) domain-containing proteins physically connects the nuclear 
lamina to essential cytoskeletal elements such as the actin and microtubule 
networks. SUN-KASH interactions play essential roles in nuclear migration or 
anchorage at specific locations within cells. (Image from Razafsky and Hodzic 
2009) 
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Dnmt2 is the sole gene in the Drosophila genome that encodes a potential 

DNA methyltransferase (Kunert et al., 2003). However, the function of Dnmt2 in 

Drosophila is highly controversial; some studies suggested that it methylates DNA 

(Kunert et al., 2003; Marhold et al., 2004; Schaefer et al., 2008; Phalke et al., 

2009), while other studies have suggested that it only functions as a tRNA 

methyltransferase (Goll et al., 2006; Schaefer et al., 2010) and that DNA 

methylation is barely detectable in Drosophila (Raddatz et al., 2013; Zemach et al., 

2010). However, bisulfite sequencing studies, which have supported the view that 

Drosophila lacks DNA methylation (Raddatz et al., 2013; Zemach et al., 2010), 

have a few caveats. First, such studies might not be able to detect cell type-

specific methylation, especially if it is rare or only exist in adult tissues, as the 

authors used Drosophila embryos as starting material. Second, bisulfite 

sequencing method cannot detect DNA methylation unless cytosines at particular 

positions are methylated across many cells (typically at least ~50% of 1000-2000 

reads). Due to these uncertainties regarding the molecular function of Dnmt2, it is 

still unclear how Dnmt2 is involved in the non-random sister chromatid segregation 

of X and Y chromosomes. However, it is clear that Dnmt2 confers “epigenetic” 

(non-genetic) information on the X and Y chromosomes starting from the 

gametogenesis of parents. To elaborate, we observed that non-random sister 

chromatid segregation of the Y chromosome specifically relies on the gene 

function of Dnmt2 in the father (who provides the original Y chromosome to the 

individual) and zygotic expression of Dnmt2. Similarly, non-random segregation of 

X chromosome is only dependent on the gene function of Dnmt2 in the mother. 
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Importantly, the segregation pattern of Y was not affected even when the mother 

was a homozygous mutant (dnmt2/dnmt2) and segregation of X was randomized, 

consistent with our previous observation that X and Y chromosomes are indeed 

segregated independently. These results point to the striking possibility that the 

very first X and Y chromosomes that are transmitted from the parents to the 

zygote contain the essential information that allows non-random sister chromatid 

segregation in the GSCs of the progeny.  

Recently, it was shown that male GSCs segregate old vs. newly 

synthesized histones non-randomly. Specifically, the ‘old’ pool of histone H3 was 

retained in the stem cells, while the newly synthesized histones were segregated 

to the differentiating daughter cells (Tran et al. 2012). Interestingly, the histone 

variant H3.3 was distributed symmetrically during GSC division. The authors of 

this study hypothesized that these different pools (‘old’ vs. ‘new’) could carry 

information that can distinguish sister chromatids. The relationship between non-

random sister chromatid segregation and histone segregation remains to be 

investigated. 

 

4.2 Is non-random sister chromatid segregation important for stem cell 

identity?  

 It is clear from my study that non-random sister chromatid segregation does 

not confer stem cell identity, because mutants that randomize sister chromatid 

segregation do not show any defects in GSC identity (either GSC loss or 

overproliferation). Nevertheless, we found that non-random sister chromatid 
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segregation was compromised in two conditions where GSC identity is affected 

(Yadlapalli and Yamashita, 2013). First, when the stemness factor Upd is 

overexpressed resulting in GSC overproliferation (Kiger et al., 2001; Tulina and 

Matunis, 2001), GSCs no longer show biased sister chromatid segregation of X 

and Y chromosomes. It has been shown previously that when Upd is 

overexpressed, GSCs no longer divide asymmetrically, and both daughters from a 

GSC division retain stem cell identity (Tran et al., 2012). In such cases, these 

daughter cells might not be able to control which side of the dividing cell a certain 

sister chromatid should be segregated. Alternatively, it is possible that both sister 

chromatids retain GSC-specific epigenetic information with Upd overexpression, 

and it does not matter which strand goes to which cell.  

Second, we found that sister chromatid segregation is randomized in de-

differentiated GSCs. It has been shown that partially differentiated spermatogonia 

can revert back to stem cell identity (Brawley and Matunis, 2004; Kai and 

Spradling, 2004). Although de-differentiated GSCs can apparently function 

normally, producing differentiating cells to reconstitute spermatogenesis, 

randomized sister chromatid segregation in these cells may indicate that de-

differentiated GSCs have some defects that have not been detected thus far. Our 

results imply that the sister chromatid that remains in the GSC contains specific 

information, whereas the copy transmitted to the differentiating daughter lacks 

such information, explaining why de-differentiated GSCs cannot regain non-

random segregation—that information is lost forever. Alternatively, the lack of 

proper centrosome orientation or the original mother centrosome might explain 
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randomized sister chromatid segregation, since it has been shown that de-

differentiated GSCs cannot correctly orient the centrosomes (presumably because 

they have lost the original mother centrosome) (Cheng et al., 2008). Here, it is 

interesting to note that koi, klar and dnmt2 mutants which are defective in non-

random sister chromatid segregation do not show increased centrosome mis-

orientation (our unpublished results). This clearly indicates that the centrosome is 

not the only factor that determines sister chromatid segregation; instead, sister 

chromatids themselves contain information dictating the segregation pattern. 

 

4.2.1 Are de-differentiated GSCs as good as original GSCs? 

My recent study not only provided insights into how biased sister chromatid 

segregation might be achieved, but also improved our understanding of the 

potential differences between native vs. de-differentiated GSCs. Thus far, the only 

reported difference between native vs. de-differentiated GSCs is their centrosome 

orientation: native GSCs maintain stereotypical centrosome orientation toward the 

hub cells, whereas de-differentiated GSCs have mis-oriented centrosomes (Cheng 

et al., 2008). Due to centrosome mis-orientation, de-differentiated GSCs have a 

lower division rate compared to native GSCs (Cheng et al., 2008). Other than 

these differences, de-differentiated GSCs have been thought to function “perfectly” 

as GSCs. However, the randomized sister chromatid segregation in de-

differentiated GSCs raises a possibility that de-differentiated GSCs might be 

fundamentally different from native GSCs. A careful characterization of de-

differentiated GSCs will therefore be necessary to determine whether there are 
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any functional differences between the de-differentiated and original GSCs. I 

propose in my future work to investigate the expression of stellate (a polypeptide 

that is de-repressed in mutants in which X and Y chromatid segregation is 

randomized) in de-differentiated GSCs and also to examine whether there is any 

effect on the fertility (explained later in Section 4.5.4).   

 

4.3 Biological relevance of non-random sister chromatid segregation 

At present it is not clear why X and Y chromosomes are segregated non-

randomly. It is unlikely that non-random sister chromatid segregation serves to 

protect the “immortal strand” to avoid replication-induced mutations as our data 

suggests that GSCs do not retain the original template strands of X and Y 

chromosomes forever. We favor the possibility that certain epigenetic information 

is transmitted distinctively to GSCs and GBs, particularly considering the 

involvement of Dnmt2 in this process. Indeed, X and Y chromosomes are 

subjected to many epigenetic regulations, such as dosage compensation (Park 

and Kuroda, 2001; Gelbart and Kuroda, 2009; Conrad and Akhtar, 2011) and 

male-specific meiotic sex chromosome inactivation (Hense et al., 2007), although 

the extent to which sex chromosomes are subject to this type of regulation in 

Drosophila male germ cells remains to be elucidated. Additionally, it is known that 

Drosophila Y chromosome is highly heterochromatic and contains only a few 

known genes required for spermatogenesis, such as axonemal dynein (Piergentili 

and Mencarelli, 2008). It is known that precocious expression of these genes is 

toxic to non-spermatid cells, and gene expression must be tightly suppressed, 
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except during late spermatogenesis (likely including in GSCs). Moreover, 

transposons and polypeptide repeats such as, Gypsy and Stellate, as well as the 

piRNAs that suppress their expression, are known to be located on the X and Y 

chromosomes (Malone et al., 2009). These are some of the examples of potential 

epigenetic regulation specific to X and Y chromosomes. Intriguingly, I found that 

non-random sister chromatid segregation of X and Y chromosomes might be 

involved in the suppression of stellate and its corresponding piRNA expression in 

Drosophila testis (Yadlapalli and Yamashita, 2013). Stellate, which encodes 

polypeptides and whose de-repression is known to reduce fertility, is located on 

the X chromosome, and the piRNAs that suppress stellate expression [Su(ste)] 

are located on the Y chromosome (Aravin et al., 2001; Tulin et al., 1997). I found 

that stellate is de-repressed in all the mutants that are defective in non-random 

sister chromatid segregation. Although my current data do not provide direct 

evidence that randomized sister chromatid segregation is the underlying 

molecular reason for de-repressed stellate expression, these data raise the 

intriguing possibility that non-random sister chromatid segregation might serve to 

transmit an epigenetically modified copy of Su(ste) and/ or stellate, thereby 

contributing to suppression of stellate. To obtain a definitive answer to this 

question, it is important to determine whether the stellate or Su(ste) loci have any 

distinct epigenetic marks, which are segregated asymmetrically during GSC 

division. 

 

 



�������� ���
�

4.4 Summary 

In summary, my study presents the first evidence of chromosome-specific 

non-random sister chromatid segregation in adult stem cells and provides 

mechanistic insight into how cells distinguish sister chromatids and segregate 

them non-randomly. This mechanism may be utilized in many other systems to 

transmit distinct epigenetic information. We have only just started to understand 

how cells might be able to distinguish sister chromatids, and segregate them in a 

nonrandom manner. It will be interesting to see whether the molecular 

mechanisms involved in the non-random sister chromatid segregation of X and Y 

chromosomes in Drosophila male GSCs (involving cnn, SUN–KASH proteins and 

methyltransferase) have similar roles in other systems. What purpose the non-

random segregation of sister chromatids might be serving remains very much an 

open question. Our recent study provides a tantalizing clue that non-random sister 

chromatid segregation might be involved in regulating repression of repetitive 

elements. We foresee exciting research in the future that will help us to improve 

our understanding of how and why stem cells non-randomly segregate their sister 

chromatids. 

 

4.5 Future Directions 

4.5.1 Identify chromosomal sequences on X and Y chromosomes that are 

required for non-random sister chromatid segregation 

Our study suggested that particular template strands of X and Y 

chromosomes might be anchored to the nuclear envelope, which links to the 
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mother centrosome (Yadlapalli and Yamashita, 2013). We hypothesize that 

specific DNA sequences on X and Y chromosomes interact with the SUN domain 

proteins to allow for the anchorage of template DNA strands to the nuclear 

envelope. To address this question, we can use publicly available chromosomal 

duplication kits in which a portion of X chromosome is duplicated onto 3rd 

chromosome (Figure 4.5). We can then conduct CO-FISH on GSCs from such 

flies with a 3rd chromosome probe to see whether the presence of a specific X 

chromosome region allows non-random segregation of the sister chromatids of 3rd 

chromosome. In our recent study with autosomes, we noticed that sister 

chromatids of paternal and maternal homologs of 3rd chromosome are 

coordinated, i.e., maternal sister chromatid which contains the Watson strand as a 

template always co-segregated with the paternal sister chromatid that contains the 

Watson strand as a template. However, it was random as to whether GSCs retain 

sister chromatids with Watson template strands or Crick template strands. If we 

conduct CO-FISH on 3rd chromosome duplication flies and detect any bias with 

which GSCs inherit Watson template strands vs. Crick template strands, then we 

can conclude that the particular sequence of X, which is duplicated, is required for 

the non-random sister chromatid segregation of X chromosome. Once we 

identified the sequences on X chromosome, we can further confirm their 

functionality by removing these sequences from X chromosome and/or adding 

them to autosomes and testing the segregation patterns of the altered 

chromosomes. 

 



�������� ���
�

 

 

 

 

Figure 4.5 Duplication of X chromosome heterochromatic region on 3rd 
chromosome. Fly strains available publicly from Bloomington stock center where 
the BAC clones of heterochromatic region of X chromosome was inserted into an 
attP docking site on chromosome arm 3L. Cytological map showing the 
heterochromatic and peri-centromeric regions of X chromosome is shown on the 
bottom.    
 
 
Another parallel approach that we can take is to identify unique sequences on X 

and Y chromosomes by using bioinformatics analyses and testing whether they 

play any role in non-random sister chromatid segregation. It is reasonable to 

assume that the sequences on X and Y chromosomes that are required for non-

random sister chromatid segregation, if they exist, are unique to sex chromosomes 

as autosomes are shown to be randomly segregated (Yadlapalli and Yamashita, 

2013). To test whether these unique sequences play any role in non-random sister 

chromatid segregation, we can use similar approaches as described above, for 

example, we can delete the sequences from sex chromosomes or add the 

sequences to autosomes and observe sister chromatid segregation pattern. 

      

4.5.2 Identify proteins that interact with the specific DNA sequences 

 Once we identify DNA sequences that are responsible for non-random 

sister chromatid segregation, we can isolate proteins that bind to these sequences 

and also potentially physically interact with the SUN domain proteins (Figure 4.6). 



�������� ���
�

Finding the adaptor proteins will be crucial to improving our understanding of how 

particular template strands are anchored to the nuclear envelope. We can gain 

significant insights into the biological relevance of the phenomenon of non-random 

sister chromatid segregation by examining the mutants of these DNA binding 

proteins: while mutants of Dnmt2, centrosomes, and the LINC complex have a 

broad range of phenotypes, mutants of adaptor proteins that link X/Y 

chromosomes and Koi protein might exhibit phenotype(s) specifically associated 

with randomized sister chromatid segregation.  

 

 

 

 

 

 

 

 

Figure 4.6 Adaptor proteins that link X/Y chromosomes to SUN domain 
proteins. Only one sister chromatid is methylated (“Me”) at certain genomic loci, 
which is recognized by an adopter protein (pink crescent) that links the 
chromosome to the centrosome (mother or daughter) via the LINC complex (SUN-
KASH domain proteins). This helps the mother (or daughter) centrosome retain 
the methylated copy of the sister chromatid in mitosis. 
 

4.5.3 Investigate the role of Dnmt2 in non-random chromatid segregation 

In our recent study, we have shown that methyltransferase enzyme, Dnmt2, 

is required for non-random sister chromatid segregation of X and Y chromosomes 

SUN-KASH
Me Me

Me Me

sister chromatids

Interphase
Anchorage of methylated chromatids to one centrosome

  (mother or daughter) via SUN-KASH domain proteins. 
There may be an adoptor between 

methylated DNA and SUN domain proteins

Mitosis
Methylated sister chromatid will be pulled to 

one spindle pole
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(Yadlapalli and Yamashita, 2013). There has been a lot of debate in the field 

regarding the function of Dnmt2, whether it methylates DNA or tRNA (Goll et al., 

2006; Phalke et al., 2009). Therefore, it will be interesting in future studies to 

explore the identity of the signal generated by Dnmt2 and the mechanism by which 

this signal affects the mitotic spindle to carry out nonrandom chromosome 

segregation. 

 Another interesting question that we would like to address is whether 

Dnmt2 is continuously required in the zygotic stage and/or adult stage to maintain 

the non-random sister chromatid segregation. Our recent study suggested that 

Dnmt2 is required during development for non-random sister chromatid 

segregation in adult GSCs. To test whether Dnmt2 is required continuously during 

the adult stage too, we can examine sister chromatid segregation in Dnmt2 RNAi 

mutants where Dnmt2 is knocked down during adult stage.     

It will be interesting to test whether there is a transgenerational effect on 

sister chromatid segregation. In heterozygous animals (Dnmt2�/+), where non-

random Y chromosome segregation is compromised due to having a mutant father 

(Dnmt2�/�) (Table 3.2), what is the chromosome segregation in their progeny like? 

Half of their sperm carry the wild-type Dnmt2 gene, but their Y chromosomes 

came from GSCs that do not segregate the Y chromosome non-randomly. Can 

they transmit the “correct” information on Y chromosomes, such that their progeny 

(“grandsons” of the original mutant male) segregate the Y chromosome non-

randomly? Alternatively, the Y chromosome may never be able to re-establish the 

correct information. A related fascinating question is what is the nature of the 
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information that is transmitted from the parents to the progeny that is required for 

non-random sister chromatid segregation in the progeny.  

  

4.5.4 Examine the relationship between non-random sister chromatid 

segregation and suppression of transposons 

In our recent study, we have shown that stellate, a polypeptide repeat, is 

de-repressed in mutants where sister chromatid segregation of X and Y 

chromosomes is randomized (Yadlapalli and Yamashita, 2013). This data does not 

provide a clear answer whether stellate de-repression is indeed caused by non-

random sister chromatid segregation. To further investigate the relationship 

between non-random sister chromatid segregation and suppression of 

transposons, we would like to examine the expression of other transposons that 

are located on X and Y chromosomes in the mutants. Specifically, we would like to 

examine the expression pattern of transposon, gypsy, which is present on Y 

chromosome and is usually suppressed by the piRNA gene flamenco located on 

the X chromosome (Aravin et al., 2001). 

We are also interested in examining the expression of stellate in other 

cases where non-random sister chromatid segregation is compromised, for 

example, in GSCs from aged animals and in de-differentiated GSCs. These two 

conditions might be related as we have shown previously that the number of de-

differentiated GSCs increases as the animal ages (Cheng et al., 2008). In any 

case, it is well established that fertility decreases as the fly ages (Cheng et al., 

2008), so it will be interesting to look at stellate expression in such flies.      
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We do not yet know if randomized sister chromatid segregation is indeed 

causing de-repression of stellate or whether de-repression is a byproduct of some 

other defect (pleiotropic effect of mutants). To unambiguously answer this 

question, we need to examine mutants of adaptor proteins, which might exhibit 

phenotype(s) specifically associated with randomized sister chromatid segregation 

(see section 4.5.2 for more details). Another interesting line of investigation is to 

examine the correlation between the timing of Dnmt2 requirement for asymmetric 

chromosome segregation and transposon suppression. 
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