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Abstract 

In this thesis, we developed a new time-dependent neutron transport method 

for nuclear reactor kinetics using method of characteristics (MOC) with angular flux time 

derivative propagation. In contrast to conventional time integration methods which use 

local finite difference approximations to treat the time derivative, the new method 

solves for the spatially-dependent angular flux time derivative by propagation along 

characteristics in the spatial domain. This results in the angular flux time derivative 

being recast in terms of the neutron source time derivatives, and thus the new method 

is called Source Derivative Propagation (SDP). We developed three SDP methods using 

different approximations. 

When the angular flux is stored using conventional time integration techniques, 

the memory requirements for large reactor problems are prohibitively large. As a result, 

most time-dependent neutron transport codes for nuclear reactor kinetics either 

approximate the angular flux time derivative (e.g. an isotropic assumption) or limit the 

size and resolution of their models. SDP circumvents this obstacle because it only 

requires the storage of the neutron source, which requires substantially less memory. 

In the SDP methods, we approximate the source derivatives to a user-selected 

order of accuracy using backward differences. This is analogous to the backward 

differentiation formula (BDF), and our results confirmed that the high-order source 

derivative approximations reproduced the high-order angular flux derivative 

approximation of equivalent order BDF. 

We assessed the SDP methods by comparison to conventional time-dependent 

MOC methods. This included both a reference method (RBDC) which stored the angular 

flux and an efficient but approximate method that assumed that the time derivative was 
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isotropic (IBDC). RBDC was the benchmark for accuracy, while IBDC was the benchmark 

for computational efficiency. 

We performed error analysis for the SDP methods as well as RBDC and IBDC. The 

error analysis informed the refinement of the SDP methods, and clarified the 

circumstances in which the SDP methods are expected to be accurate. 

We tested the SDP methods using the neutron transport computer code 

DeCART. DeCART was used to model three reactor transients based on the TWIGL and 

C5G7 benchmark problems. A fine time step reference solution was generated using 

RBDC. The SDP methods converged to the reference solution when the time step was 

refined and the order of the time derivative approximation increased. We also assessed 

the order of convergence for the SDP methods. For slow transients, the methods 

exhibited the expected theoretical order of convergence, but for transients driven by a 

step change the order of convergence was reduced. 

In addition, we observed that the SDP methods accurately replicated the RBDC 

solution when the same time step and BDF order was used. This indicates that the 

propagated angular flux time derivative of SDP was accurately reproducing the local 

finite differenced time derivative of RBDC, regardless of the order of the method. The 

SDP methods were orders of magnitude more accurate than the IBDC methods. 

We assessed the efficiency of the SDP methods by comparing the run-time and 

memory requirements of SDP with the RBDC and IBDC methods. The first-order SDP 

methods required about 50—100% more run-time than the first-order IBDC methods, 

but they required less run-time than the first-order RBDC methods. However, the high-

order SDP methods did not increase the run-time relative to the first-order SDP; this is in 

contrast to the high-order RBDC methods. 

The SDP methods required about 10% more memory than the IBDC methods of 

the same order. However, both the SDP and IBDC methods required about two orders of 

magnitude less memory than the RBDC methods. This is because storing the angular flux 

for RBDC completely dominates the memory requirements for time-dependent MOC. 

The difference was especially pronounced for the high-order RBDC methods. 
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Our results demonstrate that for the problems tested, the SDP methods can 

accurately solve the time-dependent transport equation for nuclear reactor kinetics 

while avoiding a prohibitive increase in memory requirements. In addition, SDP methods 

are capable of approximating the angular flux time derivative to high-order accuracy 

using backward differences without substantially increasing the memory or 

computational requirements. Finally, we observed that the SDP methods of various 

order were able to replicate the solution of the RBDC methods when the same time step 

size and order was used, indicating that the SDP approach to time derivative 

propagation accurately replicated the local finite difference approximation of RBDC. 
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Chapter 1  

Introduction 

Nuclear engineering is the application of nuclear and other sciences to design or 

study systems of employing ionizing radiation or radioactive material, such as nuclear 

reactors, radiation detectors, and nuclear medical devices. Nuclear reactor physics is a 

discipline within nuclear engineering which concerns the study of neutrons, fission, and 

the controlled nuclear chain reaction in a nuclear reactor. Nuclear reactor kinetics is a 

further subdivision of reactor physics which specifically concerns time-dependent 

phenomena over time scales of seconds or shorter. The accurate understanding and 

prediction of such phenomena is paramount to the safe and economic operation of 

nuclear reactors. 

The neutron transport equation describes the motion of neutrons and their 

interaction with matter. The solution of the transport equation provides the neutron 

flux which is used to calculate nuclear reaction rates within a reactor. However, the 

transport equation generally does not permit analytical solutions, and it is 

computationally expensive to solve using numerical methods. The study and solution of 

approximations to the transport equation has been a predominant pursuit of reactor 

physicists, and the steady increase in computational power available over time has 

permitted steadily higher fidelity representations of the transport equation. 

We are in the midst of a transition in the state-of-the art for reactor kinetics. 

Until recently, reactor transients have been principally modeled using the diffusion 

approximation to the transport equation [Sut96]. While diffusion methods are 

computationally efficient, there is growing interest in reactor designs and fuels for 

which diffusion may not be sufficiently accurate. Consequently, there is interest in the 

direct use of neutron transport methods for nuclear reactor kinetics [Gol01, Pau03, 
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Cho05, Tay09, Seu11, Tal13, Tsu13], and this is increasingly practical due to the steady 

advances in computational power. 

Method of Characteristics (MOC) [Ask72, Hal80] is a popular method for solving 

the steady-state neutron transport equation, especially for small, assembly-level 

models. Its popularity stems from its ability to resolve complex geometry without spatial 

homogenization. As with other transport methods, it has been extended to solve the 

time-dependent transport equation as well. 

Most reactor kinetics methods in neutron transport and diffusion treat time 

dependence by discretizing the equations in time and applying a conventional time 

integration method to approximate the time derivative (e.g. Backward Euler, Theta 

Method, Runge-Kutta, etc.). In this case, the spatial and angular dependence are treated 

using the same approach that would be employed to solve the steady-state transport 

equation (e.g. PN, SN, MOC, etc.). The result is that the time-dependent transport 

problem is reduced to a series of pseudo-steady-state problems at discrete points in 

time coupled to previous time points through the update of state variables and the 

treatment of the time derivatives. This approach is used in many time-dependent 

neutron transport codes, including the three-dimensional whole core neutron transport 

code DeCART [Joo04, Cho05, Hur08] which was used in this work. 

One obstacle with this approach is that it implies that the angular flux should be 

stored from one or more previous time steps in order to represent the angular flux time 

derivative. Although the angular flux is the fundamental solution of the transport 

equation, the scalar flux is often the desired solution in practice. The scalar flux is the 

integral of the angular flux over all angles in space, and it is required because it is used 

to calculate reaction rates. Thus in steady-state transport the angular flux is not 

generally stored; it is instead numerically integrated as it is generated to calculate the 

scalar flux. Storing the angular flux for large reactor models requires staggering amounts 

of memory that can exceed the capabilities of even leading-class supercomputers. As a 

result, time-dependent neutron transport codes are either very limited in the size or 
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resolution of the reactor transients they can model, or they employ low-order angular 

or spatial approximations to treat the angular flux time derivative. 

While the practice of discretizing the transport equation and diffusion equation 

in time and applying a time integration method has become so common that it is taken 

for granted, there has been some recent interest in the use of MOC to treat the time 

derivative as well as the spatial derivatives. This is possible because MOC is a general 

mathematical technique to rewrite multi-dimensional partial differential equations as 

ordinary differential equations in one dimension along characteristic curves in the 

domain. In steady-state neutron transport, these characteristics represent neutron flight 

paths in space which effectively couple the spatial regions and allow for the solution of 

the neutron flux distribution. When MOC is applied to the time derivative as well, the 

neutron flight paths are defined in time as well as space. Analogous space-time 

approaches have been applied using other transport methods as well. 

While there are advantages to this space-time MOC (STC) approach, including 

enhanced accuracy due to the direct treatment of neutron time-of-flight and 

preservation of causality, it results in a drastic increase in the computational and 

memory requirements relative to the conventional approach of time-discretized MOC 

(TDC). This is because STC requires the evaluation of many discrete characteristics in 

space-time for every spatial characteristic that occurs in TDC. As a result, STC has not 

been developed into a practical reactor kinetics method for large, multi-dimensional 

problems. 

However, STC can be made into a practical algorithm for reactor kinetics with 

limited approximations. In order to solve steady-state MOC (SSC) or TDC, the designer 

must make some assumptions about the spatial variation of the source term, cross 

sections, and angular flux time derivative terms (e.g. they are spatially flat or vary 

linearly within small regions). If similar assumptions are made in the time domain for the 

STC, the many discrete characteristic equations in space-time can be analytically 

integrated into a single function. If this function is employed in a similar way to the 

characteristic equations in TDC, the result is an analytically-integrated space-time MOC 
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(ASTC) [Hof13a] approach that can reduce the computational and memory burden of 

STC to a level comparable to SSC while circumventing the angular flux storage issue of 

TDC. ASTC is one of the new time-dependent MOC methods developed for this thesis. 

In the course of analyzing ASTC, we devised an alternate but fully equivalent 

derivation based on the propagation of the angular flux time derivative along 

characteristics in space, avoiding the definition of characteristics in space-time required 

for ASTC. While the space-time characteristic derivation of ASTC provides some 

qualitative insights, it is cumbersome and circuitous. By contrast, the alternate 

derivation is straightforward, more general, and provides clearer identification of the 

leading error terms. These error terms provide both an improved understanding of the 

limitations of the new method as well as a basis for refinement. In light of the 

advantages of the alternate derivation, it will be the focus of this thesis. 

The alternate derivation introduces a new class of time-dependent MOC 

methods based on angular flux time derivative propagation (TDP) along characteristics, 

avoiding the need to store the angular flux for the time derivative. While there may be 

alternate ways to define the equation for the angular flux time derivative along the 

characteristic, we focused on a method that effectively recasts the angular flux time 

derivative in terms of the propagated effects of neutron source derivatives; 

consequently, we call methods of this type Source Derivative Propagation (SDP). The 

SDP methods are the focus of this thesis, where we derive, analyze, and test several of 

these methods with favorable mathematical forms for neutron transport-based nuclear 

reactor kinetics.  

We implemented several SDP methods in the neutron transport code DeCART 

for numerical testing along with conventional time-dependent MOC methods for 

reference. We modeled several reactor transients using these methods to assess the 

performance of SDP under different circumstances. The accuracy and performance of 

the methods were assessed in light of error analysis, and the numerical results 

demonstrated the advantages and limitations of SDP. Based on the results of this work, 

we close by recommending opportunities for further research in this area. 
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1.1 Outline 

The remainder of this chapter is an outline of following chapters. This outline 

provides a brief summary of the content of each chapter. 

Chapter 2. Overview of Neutron Transport and Time Integration Methods 

In Chapter 2 we provide an overview of deterministic neutron transport methods 

that may be applied to the reactor kinetics problem, including MOC. We discuss time-

dependent neutron transport computer codes that have used each method and 

consider the methods’ advantages and disadvantages. 

In Chapter 2 we also discuss various time integration methods that have been 

applied to nuclear reactor kinetics. This discussion includes multi-step methods, multi-

stage methods, and space-time methods; the latter being the class of methods which 

employ the same technique to treat the temporal derivative as is employed for the 

spatial derivative. We also discuss options for approximating the angular dependence of 

the angular flux time derivative to limit the memory expense of storing angular fluxes. 

Finally, we will briefly discuss the treatment of the delayed neutron precursor 

equations. This includes the direct solution of the equation using a conventional time 

integration technique and the use of analytical precursor integration. 

Chapter 3. Derivation of Steady-State MOC (SSC) 

In Chapter 3 we will present a derivation of SSC including a careful examination 

of each of the approximations to the neutron transport equation. This derivation is 

typical of MOC applications for reactor physics. Since MOC has been widely used for 

steady-state transport, the primary purpose of this chapter is to provide background in 

MOC conventions and establish the nomenclature that will be built upon for time-

dependent methods in subsequent chapters.  

This derivation also provides an important baseline for reactor transient 

modeling. Reactor transients generally begin from a steady-state critical configuration, 

so this method is used to initialize the time-dependent MOC methods. Further, the 

time-dependent MOC methods described in later chapters are ultimately transient fixed 
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source problems that are solved using a similar algorithm to SSC. The chapter closes 

with an overview of the SSC algorithm. 

Chapter 4. Derivation of Time-Dependent MOC with BDF (BDC) 

In Chapter 4 we present a derivation for two conventional time-dependent MOC 

methods: one which stores the angular flux for the angular flux time derivative and will 

serve as a reference solution (RBDC), and another which assumes that the angular flux 

time derivative is isotropic (IBDC), which is a popular and efficient approximation. The 

BDC methods are similar to previous and recent developments in time-dependent 

transport for reactor kinetics and represent the state-of-the-art in time-dependent 

MOC. Both have been implemented in the computer code DeCART and are used for 

benchmarking the accuracy and efficiency of SDP methods described in Chapter 5. 

For both derivations, the backward difference formula (BDF) [But08] is used for 

time integration. We selected BDF because the first-order version is equivalent to the 

popular Backward Euler method, and the high-order BDF methods correspond closely 

with the high-order SDP methods derived in the Chapter 5.  

Chapter 5. Derivation of Time-Dependent MOC with SDP 

In Chapter 5 we derive several new time-dependent MOC methods that use 

Source Derivative Propagation (SDP). These methods are the focus of this thesis. The 

chapter begins with a review of the motivation for this work and briefly explains the 

relationship between the SDP methods and the ASTC method. The derivation of ASTC is 

provided in Appendix B. 

The first two SDP methods differ in their treatment of the leading error term that 

arises in the derivation. The first method (TSDP) truncates the error term, while the 

second method (ISDP) approximates it as isotropic. TSDP is of interest because it is 

equivalent to ASTC, while ISDP is expected to be more accurate without substantially 

increasing computational expense. 

TSDP and ISDP are derived using the assumption that the macroscopic cross 

sections are changing slowly. While this assumption is reasonable throughout most of 

the time and space domain of reactor kinetics, there may be important situations where 
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it is not applicable. The third method we derived (ISCDP) avoids this approximation, 

which results in the angular flux time derivative being a function of both neutron source 

derivatives and cross section derivatives. ISCDP is more computationally expensive than 

TSDP and ISDP, but it is expected to be more accurate when cross sections are changing 

quickly. 

For the SDP methods, we approximate the source and cross section time 

derivatives to a user-selected order of accuracy using backward differences. Although 

this is not formally BDF, it is closely related; in Chapter 8 we observe that the solutions 

for SDP methods with a particular order source approximation correspond closely to 

RBDC solutions with BDF of the same order and time step. 

The SDP methods (TSDP, ISDP, and ISCDP) propagate the angular flux time 

derivative along characteristics, and they require the approximation of an angular flux 

second time derivative term (e.g. by truncation or as isotropic). An alternate approach 

to treat this term is to propagate the second time derivative of the angular flux as well, 

resulting in a second-derivative SDP (2SDP) method. This concept can be extended to an 

arbitrarily-high derivative propagation method (NSDP). In light of this, the first-

derivative SDP methods explored in this thesis can be understood as the first members 

of a family of arbitrarily-high derivative methods. While the higher derivative methods 

are not practical, they are useful for understanding the SDP methods, and thus we 

derive 2SDP and NSDP in this chapter. 

We close Chapter 5 with a summary of the algorithm for the SDP methods, 

comparing and contrasting these methods with the BDC methods in Chapter 4. Finally, 

we discuss the implications of the SDP methods for time-dependent transport. 

Chapter 6. Error Analysis of the Angular Flux Time Derivative Approximations 

In Chapter 6 we provide error analysis for the time-dependent MOC methods 

used in this thesis (i.e. RBDC, IBDC, TSDP, ISDP, and ISCDP). The purpose of this chapter 

is to identify the leading error terms for each method and understand the scaling of 

these terms. Because the BDC and SDP methods differ primarily in their treatment of 

the angular flux time derivative, this chapter focuses on the error in the approximations 
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for the angular flux time derivative rather than the error in the angular flux itself. These 

results provide insight into the limitations of the SDP methods. 

Chapter 7. Overview of DeCART and Implementation of MOC Methods 

The time-dependent MOC methods were implemented in the computer code 

DeCART. Chapter 7 provides an overview of the neutron transport code DeCART, 

including an explanation of the important features used in this research. The most 

important feature is the acceleration of the MOC source solution using coarse mesh 

finite difference (CMFD) neutron diffusion, which is explained in detail. After the 

relationship between CMFD and MOC is explained, the chapter provides a detailed 

description of the MOC algorithm in DeCART as it relates to the steady-state and time-

dependent MOC methods derived in the preceding chapters. 

Chapter 8. Test Problems and Numerical Results 

In Chapter 8 we present three numerical test problems that were used to 

empirically evaluate the accuracy and efficiency of the SDP methods derived in Chapter 

5. The SDP methods were tested by comparison to the BDC methods derived in Chapter 

4. RBDC was used to generate the reference solutions, while IBDC was used as a 

benchmark for efficiency. 

The first two transients are based on the TWIGL reactor [Yas65] and are widely 

used to test new reactor kinetics methods. The first transient is driven by a linear 

reduction in the thermal absorption cross section, which results in a slow exponential 

power increase. The second transient is driven by a step change in that cross section, 

which results in a faster transient. 

The third transient is based on the C5G7 benchmark problem [Lew01]. The C5G7 

problem includes a more realistic representation of the heterogeneous fuel assemblies, 

and includes a mix of uranium and mixed oxide fuel. The C5G7 transient is driven by 

ejecting a control rod drive which results in a fast exponential power increase. The C5G7 

transient is more challenging than the TWIGL transients because of the larger spatial 

gradients and faster power increase. 
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The accuracy of the SDP methods was evaluated for each transient by comparing 

the SDP results to a reference solution generated using RBDC with a fine time step. As 

the time step was reduced and the order of the source derivative approximation 

increased, the SDP methods converged to the reference solution. We also assessed the 

order of the convergence by evaluating the error in the solution as a function of time 

step size.  

In addition, the SDP methods were compared to RBDC methods of the same 

order and time step size to assess whether the propagated angular flux time derivative 

accurately represented the finite-difference angular flux time derivative used by RBDC.  

For all three transients, the SDP methods accurately replicated the RBDC solution with 

the same time step. The IBDC method was also assessed this way, and was found less 

accurate than the SDP methods for all cases. 

Finally, we assessed the efficiency of the SDP methods in comparison to RBDC 

and IBDC by comparing the run-time and total memory required for the test problems. 

The SDP methods required more run-time than the IBDC methods but less than the 

RBDC methods. The memory requirements for SDP were slightly greater than for IBDC, 

but two orders of magnitude less than for RBDC. 

Chapter 9. Summary, Conclusions, and Recommendations for Future Work 

In Chapter 9 we provide a summary of the work performed for this thesis and 

summarize the conclusions identified in the preceding chapters. We also review the 

limitations and disadvantages of the SDP methods. In light of the results, we suggest 

opportunities for future research in this area. 
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Chapter 2  

Overview of Neutron Transport and Time Integration Methods 

The development of the new time-dependent Method of Characteristics (MOC) 

formulations in this thesis is best understood in the context of previous and recent 

experience in time-dependent neutron transport methods, particularly those applied to 

nuclear reactor kinetics. This chapter will begin with a discussion of the Boltzmann 

transport equation which is used to understand the behavior of neutrons in nuclear 

reactors. After this discussion, the chapter will provide an overview of deterministic 

neutron transport methods applied to solve time-dependent problems. 

Neutron transport methods are classified based on how they treat the angular 

and spatial dependence of the neutron flux. For time-dependent neutron transport, 

there is some flexibility regarding the treatment of the neutron flux time derivative. In 

light of this, we provide an overview of time integration methods that may be applied to 

neutron transport. This discussion will be limited to implicit time integration methods 

because the time-dependent neutron transport equation is “stiff” and explicit methods 

require prohibitively small time steps. This section will focus on two classes of time 

integration methods: linear multi-step methods and multi-stage methods. This section 

will also provide a brief overview of work in space-time transport methods, which have 

not yet been used to solve large, 3D reactor kinetics problems. In space-time transport 

methods, the time derivative is treated using the same technique as the spatial 

derivatives. 

One of the unique challenges introduced by time-dependent neutron transport 

is the need to store one or more previous angular fluxes to represent the angular flux 

time derivative. For large reactor problems, storing the angular flux requires excessive 

memory which can exceed the capabilities of even leading class supercomputers. To 

avoid this issue, steady-state neutron transport codes for reactor physics will avoid 
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storing the angular flux by numerically integrating the scalar flux as the angular flux is 

generated. In light of this we provide a brief overview of techniques for addressing this 

issue. 

Finally, the chapter ends with a discussion on the treatment of the delayed 

neutron precursor equation. This includes both the direct solution of the delayed 

neutron precursor equation with a time integration method and the solution of the 

precursor equations using analytic precursor integration. 

Before beginning the chapter, we note that while stochastic neutron transport 

methods can be applied to reactor kinetics, they are generally much more 

computationally expensive and memory-intensive than deterministic methods. 

Considering this and the fact that their implementation is substantially different from 

deterministic methods, a review of time-dependent stochastic transport methods will 

not be provided in this thesis. 

2.1 Neutron Transport Methods 

2.1.1 The Boltzmann Transport Equation 

Neutron transport methods are used to solve the steady-state or time-

dependent Boltzmann transport equation. The time-dependent form of the Boltzmann 

transport equation can be written as: 

 

 

    

           

  

                                   

             

2.1 

where the total neutron source is: 
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2.2 

and where    is the delayed neutron source which is discussed in detail in a later 

section.  

The solution of the neutron transport equation is the neutron angular flux (or 

fluence rate)           , which is the neutron path-length-rate (or total path length 

traveled in unit time) in a unit volume around position   in unit solid angle around   in 

unit energy interval around   at time  . Although the angular flux is the fundamental 

solution of the transport equation, we are often more interested in the neutron scalar 

flux         , which is the angular flux integrated over all angles: 

                       

  

  2.3 

 Predicting the neutron flux distribution within a reactor is one of the major 

concerns of nuclear reactor physics because the neutron flux is used with the 

macroscopic cross sections to determine nuclear reaction rates of interest. These 

reaction rates provide crucial information about the reactor such as where heat is 

generated, what actinides are transmuted, and how structural materials are damaged. 

The macroscopic neutron cross sections (e.g.   ,   , or   ) are material 

properties which represent the probability per unit path length that a neutron within 

the material will interact with a nucleus with a specific nuclear reaction. For example, 

the fission cross section corresponds to fission events, the scattering cross section to 
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scattering events, and the total cross section to all events. The cross sections are 

generally assumed a known quantity in nuclear reactor physics1.  

When fission occurs, a small number neutrons are released. For the transport 

equation we use the mean number of neutron emitted per fission  . Some fission 

neutrons are promptly emitted, while others are delayed because they are produced 

through the decay of fission products. We typically define a delayed neutron fraction    

which is the fraction the total fission neutrons that are delayed. The prompt neutrons 

and delayed neutrons are emitted with a different distribution of energies (   and    

respectively). While these parameters are not formally cross sections, they are material 

dependent and often handled like cross sections in neutron transport computer codes. 

The fission spectra are also considered a known quantity. 

The time-dependent neutron transport equation is also a function of the neutron 

velocity   which is an energy-dependent scalar quantity in this formulation. While the 

Latin character “v” looks similar to the Greek character “nu” (i.e. the mean number of 

neutrons emitted per fission), in this thesis the neutron velocity will only occur in 

equations in the denominator of time derivative terms (e.g. 
 

 

  

  
) while the mean 

number of neutrons emitted per fission will exclusively appear in the numerator of the 

fission source (i.e.     ). 

The total neutron source   includes neutrons from fission and scattering events, 

and delayed neutrons. The delayed neutron source    will be discussed in detail later in 

this chapter. Because we use an analytic precursor integration method in this work, this 

term is assumed to be known in Equation 2.2. 

The time-dependent transport equation can be rewritten as the steady-state 

transport equation with minor modifications. First, the angular flux time derivative is by 

definition zero. Second, the delayed neutrons can be combined with the prompt 

                                                      
1
 Formally, the neutron cross sections are a function of the temperature distribution of materials which 

may not be known because the temperature distribution is an indirect function of the neutron flux. In this 
case, an initial guess for the cross sections is employed and they are updated iteratively until the solution 
converges. 
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neutrons because the delayed neutrons will be in equilibrium. Finally, the neutron 

fission source is divided by the eigenvalue      to ensure a critical system. 

Techniques for solving the neutron transport equation are typically classified 

based on their treatment of the angular variables and in some cases the spatial variable. 

In the following sections we review several common techniques for solving the neutron 

transport equation. 

2.1.2 Spherical Harmonics (PN) 

In the spherical harmonics method (PN) the angular variable is expanded in terms 

of spherical harmonics functions, which are in turn described by Legendre polynomials. 

The series of spherical harmonic functions is infinite, and in practice it is necessary to 

truncate the series after a finite number of terms; if the series is truncated after N+1 

terms, the approximation is referred to as a PN method. The PN method does not specify 

how the spatial derivatives are treated, but finite difference approximations are 

common. 

The spherical harmonics functions are given by: 
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where the associated Legendre functions are: 
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with the Legendre polynomials given for    : 

       
 

    

  

   
                 2.6 

and where the angular variable    for polar angle is   and azimuthal angle   is: 

                             2.7 

and       . 



15 
 

For PN methods, the angular flux is approximated using a truncated expansion in 

terms of the spherical harmonics functions: 

                
        

 

    

 

   

  
      2.8 

where   
 are the    moments of the neutron flux, and thus the angular flux is 

expanded into        terms.  

To derive the        equations for PN, we multiply Equation 2.1 by each 

complex conjugate of the spherical harmonics functions (i.e.   
     where       

   ). Then we integrate the resulting equation over all directions in the unit sphere. 

Finally, we apply Equation 2.8 to each of the        equations. 

This results in a complex system of first-order partial differential equations. As   

goes to  , the PN solution converges to the neutron transport solution. However, it is 

impractical to solve the PN equations for high   because as   increases, the number of 

unknowns grows quadratically. As a result, high-order PN methods are not as widely 

used in reactor physics as the discrete ordinates methods described later in this chapter. 

On the other hand, low-order PN methods are widespread in reactor physics, 

especially P1 methods. These methods are attractive because of their simple structure 

and low solution cost. One convenient feature of P1 methods is that the zeroth and first 

moments of the angular flux are the neutron scalar flux and the neutron currents, which 

are useful quantities. However, for some problems the P1 method is not sufficiently 

accurate. This is also true of the diffusion method and simplified spherical harmonics 

methods which are described briefly later in this section. 

PN methods may be adapted to solve time-dependent neutron transport 

problems. Simple time integration techniques like backward Euler have been preferred 

for transient PN methods because of the cost and complexity of the transport method. 

The work of McClarren et al. provides recent examples of time-dependent PN methods 

[McC07a, McC07b]. These methods used Backward Euler or a second-order semi-

implicit Runge-Kutta method to treat the time derivative. The papers explored the use 
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of Riemann solvers for time-dependent PN, building on previous work in time-dependent 

PN methods by Brunner and Holloway [Bru05].  

2.1.2.1 Diffusion and Simplified Spherical Harmonics (SPN) 

Neutron diffusion theory has long been the workhorse of nuclear reactor physics 

as well as nuclear reactor kinetics [Sut96]. Diffusion theory can be derived from the P1 

equations with an approximation called Fick’s Law. Here the neutron current   (the first 

moment of the angular flux) is approximated using the gradient of neutron scalar flux   

(the zeroth moment of the angular flux): 

           
 

           
           2.9 

This permits the elimination of the equations for the first moment of the angular 

flux, resulting in equations only in terms of the scalar flux. Although diffusion theory is 

formally an approximation to the P1 equations, it is often distinguished from neutron 

transport methods because it is inaccurate for problems involving strong absorbers or 

streaming pathways. However, for many problems in reactor physics, diffusion theory is 

sufficiently accurate. 

Simplified spherical harmonics (SPN) is also an approximation to the PN method. 

While the formal derivation is more complex, the equations can be “derived” by 

observing the relationship between the diffusion operator in the 1D and 3D P1 equations 

(i.e. 
 

  

 

    

 

  
 vs.  

 

    
 ) and applying an analogous replacement to the diffusion 

operator in the 1D PN equations which results in the 3D SPN equations. In 1D 

geometries, SPN and PN are equivalent. Although early derivations were suspect [Gel61, 

Smi97], the SPN method has since been shown to have a valid mathematical foundation.  

The SPN method can be understood as a “super diffusion method.” It has a 

similar mathematical structure, and for problems where diffusion is accurate, SPN 

methods are more accurate. However, like diffusion and P1 methods, the SPN methods 

may be inaccurate for problems with strong absorbers and streaming.  
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Nonetheless, diffusion and SPN methods have been extensively used for nuclear 

reactor kinetics. A wide range of time integration techniques and approaches to 

addressing the delayed neutron precursor equations have been applied to these 

methods. As a result, much of the literature on time-dependent diffusion and SPN 

methods is applicable to time-dependent transport methods. Sutton and Aviles [Sut96] 

provided an excellent overview of contemporary research in time-dependent neutron 

diffusion for nuclear reactor kinetics. 

2.1.3 Discrete Ordinates (SN) 

In the discrete ordinates method (SN), the angular domain is discretized into a 

finite number of directions  . Each of these directions    has an angular weight    

which corresponds to the surface area on the unit sphere represented by that direction. 

For rectangular Cartesian geometries, neutrons travel in these directions only; in effect, 

neutrons that would travel in other directions are forced to travel along the discrete 

ordinates, a process which is accounted for with the angular weights. The SN method 

does not specify the treatment of the spatial derivatives, and finite difference 

approximations are common. 

A set of discrete ordinates and angular weights is called an angular quadrature 

set. The definition of an angular quadrature set is important to the accuracy of the SN 

method. For 1D geometries    , but for higher dimensionality    . 

After the applying the SN approximation, the transport equation is replaced by   

equations for each unique direction   : 

 

 

    

          

  

                                  

            

2.10 

where the directions are coupled through the source term, which includes scattering 

and fission. 

The SN equations are typically much easier to implement and solve than PN 

equations of comparable accuracy. As the number of angles increases, the SN solution 
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converges to the transport solution. However, low-order SN methods may be inaccurate 

in problems with optically-thin streaming paths. 

SN methods have been extended to treat time-dependent transport problems. 

Because of the computational expense of the SN equations, simple time integration 

methods such as Backward Euler have been preferred. In an early example, Goluoglu 

and Dodds used the 3D SN computer code TORT to calculate the shape function for a 

time-dependent quasistatic-based reactor kinetics method [Gol01]. This method 

employed Backward Euler to approximate time derivatives. 

Later in an unrelated work, Pautz and Birkhofer incorporated time dependence 

into the 2D SN computer code DORT [Pau03] and later TORT [Seu11]. Both 

implementations used Backward Euler to treat the time derivatives. In recognition of 

the large memory requirements of storing the previous angular flux to represent the 

angular flux time derivative, Pautz and Birkhofer explored the option of approximating 

the previous angular flux using a low-order spherical harmonics expansion. However, 

they observed that this method was insufficiently accurate and concluded that all the 

angular fluxes needed to be stored [Pau03]. 

The Los Alamos SN computer code PARTISN [Alc11] can model transient 

problems. PARTISN uses the Theta method to treat the angular flux time derivative. 

A transient method has been incorporated into the SN computer code Denovo by 

Banfield et. al. [Ban12]. This implementation also uses Backward Euler to treat the 

angular flux time derivative. However, because of the considerable memory 

requirements of storing the angular flux, Denovo approximates the previous angular flux 

in the time derivative using the scalar flux. Banfield et. al. justify this approximation by 

comparison to the time-dependent MOC computer code DeCART [Cho05], but DeCART 

approximates both angular fluxes in the time derivative using the scalar flux, not just the 

previous angular flux. Based on our previous work, we concluded that this is an 

important distinction [Hof13b]. 

Also, there has been limited use of SN methods for space-time transport. This is 

discussed in the time integration section of this chapter. 
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2.1.4 Collision Probability Method (CPM) 

The Collision Probability Method (CPM) is an integral neutron transport method. 

Unlike SN and PN methods, CPM solves the integral form of the neutron transport 

equation rather than the differential form. The formal derivation of CPM with a realistic 

treatment of spatial heterogeneities is complex and beyond the scope of this chapter. 

However, the integral transport equation can be solved succinctly with some 

approximations, and this solution provides some insight into the application of CPM. 

Integrating the transport equation over all angles gives the integral transport equation: 

 

 
 

    

           

  
  

  

                                    

  

               

2.11 

If the neutron source and angular flux time derivative are both assumed to be 

isotropic, they can be written in terms of an isotropic transient source: 

                                   

  

              2.12 

where the isotropic transient source is defined in terms of the neutron scalar flux: 

 

                      
 

    

           

  
  

  

      
       

  
                        

 

 

 
 

  
                         

 

 

 
         

  

 
 

      

         

  
  

2.13 
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If we also assume that the total cross section is spatially invariant near   we can 

solve Equation 2.12 for the scalar flux2: 

           
                 

       
  

               2.14 

This is the solution to the integral transport equation with isotropic sources and 

spatially-invariant cross sections. Thus the spatially-dependent scalar flux at any given 

position is a function of the neutron source at every other position in the problem. A 

similar equation is derived in CPM. In practice it is necessary to limit the effective range 

of sources to some number of neutron mean-free-paths. 

Unlike PN and SN, CPM methods imply the use of certain types of spatial 

discretizations. In CPM, the problem is customarily divided into “flat source” regions 

where the scalar flux, neutron source, and cross sections are assumed to be spatially 

invariant. Sets of parallel and equally-spaced “rays” are defined over the problem 

geometry at various angles; these angles are analogous to discrete ordinates. Equation 

2.14 is used to define “collision probabilities”, which are the likelihood that a neutron 

from a source in a particular flat source region will have its first collision within another 

region along a ray.  

The collision probabilities are used to construct a system of linear equations for 

the scalar flux in each region in terms of the neutron source in nearby regions (where 

the distance is limited to some number of mean-free-paths). Since the neutron source is 

a function of the scalar flux, the customary approach is to use some initial guess for the 

scalar flux and iteratively update the source with each new scalar flux solution until the 

solutions have converged. 

One of the major advantages of CPM is that is allows for complex geometries 

(e.g. cylinders) without homogenization; this is in contrast to most PN and SN 

                                                      

2
 CPM methods typically define fine material regions where the cross section is spatially invariant, but this 

introduces complexities to the derivation that are beyond the scope of this chapter. 
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implementations. This simply requires a sophisticated geometric treatment for 

determining the intercepts of the rays with the boundaries of spatial regions. 

However, CPM has some significant disadvantages. First, it requires the 

assumption that the neutron source is isotropic. This is a reasonable approximation for 

the fission source, which is relatively isotropic, and it may be an acceptable 

approximation for the scattering source if transport-corrected scattering is employed. 

However, for time-dependent transport, approximating the angular flux time derivative 

as isotropic may be too inaccurate.  

Another disadvantage of CPM is that it requires forming large systems of 

equations which requires large allocations of memory. As a result of these 

shortcomings, while CPM has been widely used for small, assembly-level steady-state 

neutron transport [Lou99, Smi00, Jon00], it may not be practical for time-dependent 

neutron transport for large problems. While we are not aware of any time-dependent 

CPM methods that employ conventional time integration techniques (e.g. Backward 

Euler), CPM has been used for 1D space-time neutron transport; this work is discussed 

in Section 2.2.5 . 

2.1.5 Method of Characteristics (MOC) 

Method of Characteristics (MOC) is a neutron transport method that has 

similarities to SN and CPM. Like SN, MOC treats the angular dependence of the neutron 

flux by defining discrete ordinates along which neutrons travel. Like CPM, MOC allows 

for complex geometries and defines rays (which are called “characteristics” in MOC) 

along which the neutron flux is propagated. Thus MOC implies some details about both 

the angular treatment and spatial discretization. 

MOC uses a general mathematical technique called method of characteristics 

which is used to rewrite a multi-dimensional partial differential equation (PDE) as a 1D 

ordinary differential equation (ODE) along a characteristic curve3. The resulting ODE is 

often easier to solve than the original PDE. Appendix A provides a general derivation of 

                                                      

3
 In neutron transport for rectangular Cartesian geometries, these “characteristic curves” are straight lines 

in space. 
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MOC. The MOC solution along the characteristic may either be used alone to provide 

insight into the nature of the PDE or be combined with solutions along other 

characteristics to form an approximation to the solution of the PDE. 

For the time-dependent 3D neutron transport equation, we use MOC to rewrite 

the spatial derivatives as a single spatial derivative along a characteristic: 

               
 

  
              2.15 

where   is the index of a characteristic which is uniquely specified by a discrete ordinate 

   and an arbitrary starting position    while   is the spatial coordinate along that 

characteristic which is related to the starting position by         . 

By applying Equation 2.15 to Equation 2.1, the neutron transport equation is 

rewritten as a characteristic equation: 

 

 

    

             

  

  
             

  
                      

               

2.16 

This is the equation for the angular flux along a characteristic. As with CPM, the 

geometry is customarily discretized into fine regions where the spatial dependence of 

the cross sections and neutron source may be approximated. We also define 

“segments” as the portion of a characteristic within a region. If the source and cross 

section are assumed to be spatially-invariant within regions and the angular flux time 

derivative is assumed to be spatially-flat along each segment, the characteristic 

equation can be solved using the integrating factor: 
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2.17 

where   is the index of the region that corresponds to the position   along characteristic 

 , and   
    is the position where the characteristic enters the region. 

Equation 2.17 is used to propagate the angular flux along the characteristic and 

to calculate the segment-wise average angular flux. The latter is used for all of the 

segments within a region to numerically integrate the scalar fluxes by region. 

While MOC could be used to form a linear system of equations which was solved 

in a manner similar to CPM, instead the angular flux is propagated along the 

characteristics sequentially using a sweeping routine. This provides some advantages in 

terms of parallelizability and avoids the need to create and solve a large system of 

equations. Because of these advantages, MOC has been widely used for many years for 

steady-state neutron transport for small, assembly-level problems [Hal80, Jon00, 

Smi00]. More recently, due to increases in computing power MOC has been used for 

large, steady-state reactor-level problems as well [Joo04, Col13]. There have also been 

several MOC computer codes with transient capability [Cho05, Hur08, Tay09, Tsu13, 

Tal13]. 

The primary disadvantage in using MOC for time-dependent transport is the 

necessity of storing angular fluxes for each segment to represent the angular flux time 

derivative. Since there are many segments in a large problem, this can entail 

prohibitively large memory requirements. A common resolution to these issues has 

been to assume that the angular flux time derivative is isotropic and approximate it 

using the scalar flux [Cho05, Hur08, Tsu13, Tal13]. While this approximation is 

computationally efficient, it may be inaccurate for problems where the angular 

distribution of the flux is changing quickly. We, among others, have empirically 



24 
 

investigated the accuracy of this approximation [Tsu13, Tal13, Hof13b]. The results 

suggest that this approximation is reasonably accurate for small problems, but we have 

been unable to test large problems due to the high memory requirements of storing the 

angular flux for the reference solution. Other researchers have simply stored the 

angular flux and thus limited their practical problem size [Tay09]. 

In this thesis we describe a new class of time-dependent MOC formulations 

which avoids the need to make this approximation. In this class of methods, an equation 

for the angular flux time derivative along the characteristic is defined, which is used to 

propagate the angular flux time derivative along the characteristic in addition to the 

angular flux; hence the class is called MOC with Angular Flux Time Derivative 

Propagation (TDP). This thesis focuses on a subset of these methods which effectively 

recasts the angular flux time derivative in terms of the propagated effects of source 

derivatives and is thus called the Source Derivative Propagation (SDP) method. We 

originally developed an equivalent but less general SDP method based on an 

approximate space-time MOC method [Hof13a].  

We assessed the accuracy of the SDP methods by comparison to a conventional 

time-dependent MOC method that approximates the angular flux  time derivative locally 

using a backward difference approximation. We refer to this approach as backward 

difference time-dependent MOC (BDC). We employed two difference BDC methods: a 

reference BDC method that stored the angular flux for the time derivative (RBDC), and 

an efficient BDC method assumes that the angular flux time derivative is isotropic 

(IBDC). When a first-order backward difference approximation is used, RBDC is 

equivalent to Talamo’s Method II [Tal13], while IBDC is equivalent to the isotropic 

approximations used for DeCART’s original transient method [Cho05], Tsujita’s isotropic 

method [Tsu13], and Talamo’s Method I [Tal13]. 

Several researchers have investigated the use of space-time MOC for low 

dimensionality space-time transport, and this is described in detail in Section 2.2.5 . 
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2.1.5.1 Method of Characteristic Direction Probability (CDP) 

The MOC equations can be used to form a linear system of equations for the 

angular fluxes in a manner similar to CPM; this is called the Method of Characteristic 

Direction Probabilities (CDP) [Hon99, Liu13]. This method is the subject of current 

research because CDP provides some advantages relative to MOC. In particular, solving 

the system of linear equations for the angular fluxes in CDP is often faster than 

evaluating the angular fluxes sequentially using MOC sweeps. However, when the 

computational expense of setting up the system of equations is included, CDP may be 

slower. To our knowledge, no one has implemented a time-dependent CDP method, but 

it would face the same obstacles as conventional time-dependent MOC. The SDP 

methods described in this thesis could be applied to CDP as well. 

2.2 Implicit Time Integration Methods 

In this section we will provide a brief overview of implicit time-integration 

methods that have been used for nuclear reactor kinetics. Because time-dependent 

neutron transport has only recently been applied to nuclear reactor kinetics, some of 

the following methods have only been applied to time-dependent diffusion. However, 

all methods in this section are applicable to time-dependent neutron transport methods 

in general. 

For illustration, each of the methods in this section will be applied to the 

following basic ODE: 

 
     

  
            2.18 

The time integration methods described in this section are implicit, in contrast to 

explicit methods. The practical distinction between explicit and implicit methods is that 

for explicit methods the function in Equation 2.18        is evaluated at a previous 

point in time (i.e.     ), while for implicit methods the function is evaluated at the 

present time (i.e.     ). As a result, for explicit methods it is generally possible to 

algebraically isolate the solution variable      . For implicit methods this is not possible, 

and it is typically necessary to solve a linear equation. 
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Although implicit methods have a higher computational cost than explicit 

methods, they are preferable for solving stiff differential equations like the time-

dependent neutron transport equation. Stiffness occurs when differential equations 

feature multiple time-dependent phenomena with very different time scales (e.g. the 

inverse neutron velocity and the delayed neutron precursor decay constants in the time-

dependent neutron transport equation). Explicit methods are often unstable for stiff 

equations except when we employ unacceptably small time steps which resolve the 

faster time scale. Implicit methods may be stable for much larger time steps and are 

thus more computationally efficient. 

With the exception of the space-time transport methods discussed at the end of 

this section, the time integration methods in this chapter can be understood as either 

linear multi-step methods, multi-stage methods, or both. Figure 2-1 provides a graphical 

representation of the relationship between the implicit time integration methods 

described in this section. The dashed lines indicate methods that are not discussed in 

this chapter, including general linear methods (GLM), which is the unification of 

multistep and multistage methods. The textbook “Numerical Methods for Ordinary 

Differential Equations” by J. C. Butcher provides thorough examination of GLM [But08]. 

 

 

Figure 2-1. The implicit time integration methods described in this chapter 
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Linear multi-step methods approximate Equation 2.18 using a linear combination 

of the solution variable   and the function   evaluated at one or more previous points in 

time. In other words, they approximate Equation 2.18 with an equation of the form: 

        

 

   

                

 

   

  2.19 

where    is the time at which we are solving the equation and for succinctness we 

define         . As a result, multi-step methods seek to achieve high-order 

representation of the ODE by storing additional data from previous points in time. 

By contrast, multi-stage methods achieve high-order representation of the ODE 

by evaluating the equation at points in time that are intermediate to the current and 

previous solution, and then discarding that data when the solution is determined. 

Runge-Kutta methods are a major class of multi-stage methods. 

An S-stage Runge-Kutta method produces a solution to the differential equation 

using: 

         
 

   
     

 

   

  2.20 

where the time step size            , and    are coefficients calculated for the 

Runge-Kutta method using: 

                    

 

   

              2.21 

and where the coefficients     ,   , and    are specified in a tableau (e.g. Table 2-1). 
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Table 2-1. A tableau for an arbitrary Runge-Kutta method 
 

                    

                    

          

                        

            

 

These coefficients are unique to each Runge-Kutta method and are generated as 

needed. Depending on which and how many coefficients are defined in the tableau, one 

or more equations (i.e. Equation 2.21) will be solved sequentially or simultaneously to 

model one time step with a Runge-Kutta method. Thus linear multi-step methods 

generally require more memory while multi-stage methods require greater 

computational expense. 

2.2.1 Backward Euler Method 

The Backward Euler method (or the implicit Euler method) is a first-order, 

implicit time integration method. It is one of the most basic time integration methods, 

and it is widely used because it is easy to implement and has good stability properties. It 

provides a natural starting point for new reactor kinetics methods. 

For the Backward Euler method, the time-dependent equation is evaluated at 

time    and the time derivative is approximated using a backward difference: 

 
       

   
           2.22 

To understand why the Backward Euler method is first-order accurate in time, 

consider the backward Taylor series expansion of      near   : 
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We can algebraically isolate  
   

  
: 
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If we apply Equation 2.24 to Equation 2.18, we recover the Backward Euler 

method with a truncated error term: 
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where the truncated error term is in brackets. The leading error term scales with the 

time step size, and so Backward Euler is said to be first-order accurate in time. 

Many high-order, implicit time integration methods are closely related to the 

Backward Euler method because either (a) with the correct selection of a parameter the 

high-order method becomes equivalent to Backward Euler, or (b) Backward Euler is the 

first-order version of the high-order method. In either case, with the correct input 

selection, a high-order method can reproduce the results of Backward Euler.  

Many time-dependent neutron diffusion and neutron transport codes use the 

Backward Euler method [Gel01, Pau03, McC07a, Tay09, Ban12, Tsu13, Tal13]. 

2.2.2 Theta Method 

The Theta method is a variable-order, implicit, linear multi-step method. In the 

Theta method, either the user or a computer code determines a theta parameter which 

can range from zero to one: 

 
       

   
                              2.26 

There are several special cases for theta. When theta is one, the Theta method is 

identical to Backward Euler. When theta is zero, the result is identical to the Forward 

Euler method (i.e. the Euler method or the Explicit Euler method). When theta is one-

half, the result is identical to the second-order accurate Trapezoidal Rule: 

 
       

   
 

 

 
                         2.27 
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We can also illustrate why the Trapezoidal Rule is second-order accurate in time 

using the Taylor series expansion. We begin with Equation 2.25, but we approximate the 

second derivative using a backward difference: 
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When this is applied to the second derivative in Equation 2.25, we recover the 

Trapezoidal Rule: 
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where now the leading error term is proportional to the square of the time step and 

thus the method is said to be second-order accurate in time4. 

Compared to the Backward Euler method, the Theta method requires that one 

additional quantity is stored from the previous point in time (i.e.             ). This is 

typical of linear multi-step methods, where higher-order accuracy is achieved by 

retaining additional data from previous points in time. 

The Theta method has been used in several neutron diffusion and transport 

computer codes [Cho05, Alc11]. While the implementation of the Theta method is 

straightforward, explicitly calculating and storing the function          may be 

cumbersome because some methods do not explicitly construct this term. Further, this 

term is angularly-dependent, and storing this value further increases the memory 

requirements.  

2.2.3 Backward Differentiation Formula (BDF) 

The Backward Differentiation Formula (BDF) or Gear’s method is a variable-

order, implicit linear multi-step method. In BDF, the time derivative is approximated as a 

linear function of the solution at one or more previous points in time: 

                                                      
4
 If we repeat this process and use backward differences to approximate the other higher derivatives (e.g. 

    

   , etc.), we derive the Implicit Adams methods. Backward Euler and the Trapezoidal Rule are 

equivalent to the first- and second-order accurate Implicit Adams methods. The Implicit Adams methods 
were not considered for this work because they are not stable for stiff equations beyond second order. 
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           2.30 

where      is the order of the BDF method and   is the coefficient for each solution 

from the current and previous points in time. 

The coefficients for BDF are derived using the backward Taylor series expansion 

in Equation 2.23. As for the Trapezoidal Rule, the high-order derivatives are 

approximated using backward difference; unlike the Trapezoidal Rule, the backward 

differences are repeated until the high-order derivative is approximated in terms of the 

solution variable rather than the first derivative. For example, for a constant time step 

   the second derivative is approximated as: 
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By truncating the Taylor series expansion to the desired order of accuracy, the 

corresponding BDF method is derived. For example, for second-order BDF (BDF2) with a 

constant time step we apply Equation 2.31 to Equation 2.25: 
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where the error term is again in brackets and the leading error is second-order. Higher-

order methods are derived in a similar fashion. The coefficients are dependent on the 

previous time step sizes. 

BDF methods up to sixth-order are potentially stable for stiff equations, but 

methods beyond sixth-order are unstable. The first-order BDF method (BDF1) is 

equivalent to Backward Euler. 

Like the Theta method, BDF achieves high-order representation of the time 

derivative by storing additional data from previous points in time. However, whereas 

the Theta method stores the first derivative of the solution from the previous time step, 

BDF stores the solution from many previous points in time. The memory requirements 
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for BDF and the Theta method are equal for the same order of accuracy5, but BDF can 

be used to achieve higher accuracy methods. Also, BDF methods are generally less 

computationally expensive than the Theta method because they do not require 

explicitly constructing the function         . By contrast, BDF methods are easy and 

inexpensive to implement because they only require calculating the   coefficients and 

retaining the earlier neutron fluxes for additional time steps. 

Unlike the Theta method, BDF methods of order two and higher are not self-

starting. On the first time step (i.e. solving for   ) there is only one previous solution (i.e. 

  , the steady-state solution). As a practical matter, we address this issue by using low-

order BDF methods and allowing the order to ascend sequentially as more data is 

available. 

BDF methods have not been widely used for nuclear reactor spatial kinetics. 

Ginestar et al. [Gin98] used BDF to solve the time-dependent neutron diffusion equation  

for both a constant time step as well as an adaptive time step algorithm using the step-

doubling method [Cro96]. Garcia et al. [Gar05] used a publically-available ODE solver 

FCVODE to solve the time-dependent diffusion equation. This solver employed BDF, 

although Garcia did not discuss the accuracy of the method relative to any other time 

integrators as the paper was more focused on parallelization. More recently, Shim et al. 

[Shi11] implemented BDF in the neutron diffusion code RENUS. This implementation 

included a sophisticated adaptive time stepping algorithm based on a comparison of the 

BDF-N and BDF-N+1 methods.  

BDF methods have not been employed for neutron transport prior to the work 

described in this thesis. This is likely because of the excessive memory expense of 

storing the angular flux from one previous point in time (e.g. for Backward Euler). This 

expense increases linearly with the order of the BDF method. However, if low-order 

angular approximations to the angular flux time derivative are employed, the memory 

                                                      

5
 This is also true when comparing a particular order BDF method to the Implicit Adams method of the 

same order. The Theta method is a specialized subset of the Implicit Adams method. 
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requirements of high-order BDF are limited while the time integration may still be 

accurate. 

 The BDF method was used in this research for two reasons. First, BDF1 is 

equivalent to Backward Euler, which is well understood and has favorable stability 

properties. Thus we used BDF1 with a fine time step to establish reference solutions for 

reactor transients. Second, although higher-order BDF methods require excessive 

memory to store additional angular fluxes, in this work we developed a new time-

dependent transport method which effectively recasts the angular flux time derivative 

in terms of the neutron source time derivative. When we approximate the source time 

derivatives to high-order accuracy using backward differences, the solution is closely-

related to the solution of the transport equation using the same order BDF to 

approximate the angular flux time derivative. 

2.2.4 Runge-Kutta Methods 

Runge-Kutta is a class of multi-stage time integration methods. Different Runge-

Kutta methods are specified by their unique tableaus (e.g. Table 2-1 and Table 2-2), 

where higher-order methods typically have more stages and correspondingly larger 

tableaus. For explicit Runge-Kutta methods, the tableau is a lower-triangular matrix, 

e.g.: 

 

Table 2-2. A tableau for an arbitrary explicit Runge-Kutta method 
 

       

            

                

          

                        

                 

 

This allows the evaluation of each stage sequentially. Explicit Runge-Kutta is 

efficient because it entails a linear increase in computational requirements with the 
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number of stages. These methods are popular for solving time-dependent differential 

equations where explicit methods are appropriate, especially when advanced features 

are incorporated into the method such as lower-order embedded methods for adaptive 

time stepping or error monitoring. 

However, the time-dependent neutron transport equation is a stiff differential 

equation. When explicit methods are applied to stiff equations, very small time steps 

are necessary to maintain stability. Consequently, implicit methods are preferred for 

stiff equations. For implicit Runge-Kutta methods (e.g. Table 2-1), the   stages are 

implicitly coupled and must be solved simultaneously. This results in a super-linear 

increase in computing requirements with the number of stages, which rapidly becomes 

more expensive than linear multi-step methods of the same order. In addition, for 

neutron transport methods that are not conventionally solved by setting up a system of 

equations (e.g. MOC) this requires a substantial modification of the solution procedure. 

Because of these disadvantages, implicit Runge-Kutta methods are not as widely-used 

for the solution of stiff differential equations as linear multi-step methods.  

Implicit Runge-Kutta methods have been used occasionally for neutron diffusion-

based reactor kinetics. In a recent example, Aboanber and Hamada [Abo08] 

implemented a fourth-order accurate Rosenbrock Runge-Kutta method in the neutron 

diffusion computer code TGRK. Rodrigues de Lima et al. [Rod09] used the same fourth-

order Rosenbrock Runge-Kutta method for time-dependent neutron diffusion. 

Runge-Kutta methods have been used rarely for neutron transport, and only for 

low dimensionality problems. Yang and Jevremovic [Yan10] used a Rosenbrock Runge-

Kutta method for time-dependent MOC in 1D, but the equations are substantially more 

complex than other time-dependent MOC methods due to the implicit coupling 

between stages along characteristics. Further, unlike conventional MOC methods, the 

equations were solved by constructing a linear system of equations representing the 

characteristics rather than using MOC sweeps. 
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2.2.5 Space-Time Transport Methods 

Space-time transport methods are an accurate but expensive alternative to 

linear multi-step methods and multi-stage methods for neutron transport. Whereas in 

linear multi-step methods and multi-stage methods the time dependence is treated by 

discretizing the equation in time and approximating the time derivative using a finite 

differencing technique, in space-time methods the transport equation is allowed to vary 

continuously in time over short intervals. This allows for explicit tracking of the neutron 

time-of-flight and ensures the preservation of causality. 

In space-time transport methods, the technique that is used to treat the spatial 

derivatives (e.g. CPM or MOC) is also used to treat the time derivative. For example, 

whereas in steady-state MOC the characteristics are defined to traverse the spatial 

dimensions, in space-time MOC the characteristics traverse space and time. The solution 

to the space-time transport equation for a particular transport method is similar in form 

to the steady-state solution, but for space-time transport methods neutrons are tracked 

within an additional dimension which requires the evaluation of many more equations. 

Space-time transport methods typically track neutron transport along discrete 

ordinates (e.g. SN, CPM, or MOC, but not PN). There are two significant differences 

between transport in the spatial dimensions and the temporal dimension. First, whereas 

neutrons travel both directions along an ordinate in space (e.g. forward and backward), 

the neutrons only travel forward in time. Second, while there is a large degree of 

freedom to specify the discrete ordinates in space, the angles in the space-time plane 

are defined by the neutron velocity; when the widely-used multi-group approximation6 

is employed, these angles are fixed by the energy group structure. 

While space-time transport methods are in principle very accurate, they are 

substantially more computationally expensive and memory intensive than linear multi-

step methods and multi-stage methods. Further, for most problems in nuclear reactor 

kinetics, the error from not explicitly tracking the neutron time-of-flight is very small. 

                                                      
6
 The multi-group approximation is discussed in Chapter 3. 
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This is demonstrated by observing that the neutron mean-free-path is much smaller 

than the distance that a neutron can travel within one time step.  

Consequently, space-time transport methods have not been employed to solve 

large multi-dimensional nuclear reactor kinetics problems. However, space-time 

transport methods have been used for 1D reactor kinetics and 3D radiative transport for 

non-reactor geometries. Space-time SN methods were used to understand ray effects in 

papers by Zerr and Baker [Zer11] and Barbarina et al. [Bar12]. Keller and Lee [Kel98] 

developed a space-time CPM method in 1D for nuclear reactor kinetics. Pandya and 

Adams [Pan09] developed a 3D space-time MOC method for radiative transfer, while 

Tsujita et al. [Tsu12] implemented a 1D space-time MOC method for reactor kinetics. 

To limit the computational and memory expense of space-time neutron 

transport, we developed a space-time MOC method that employed approximations in 

the space-time planes [Hof13a]. These approximations brought the computational 

expense of the new method in line with conventional time-dependent MOC methods 

using linear multi-step methods. However, while studying this Analytically-integrated 

Space-Time MOC method (ASTC), we discovered that ASTC represented a subset of a 

more general class of methods based on Angular Flux Time Derivative Propagation 

(TDP). ASTC is derived in Appendix B, while the TDP methods are the focus of this thesis. 

2.3 Approximations to Angular Dependence of the Angular Flux Time 

Derivative 

Storing the angular flux from one or more previous points in time to represent 

the angular flux time derivative is prohibitively memory-intensive for large reactor 

problems. Several researchers have investigated options for approximating the angular-

dependence of the angular flux time derivative to reduce the memory requirements of 

time-dependent neutron transport. The following sections summarize some options for 

addressing this problem. 

2.3.1 Low-Order Angular Approximations 

A common resolution to the angular flux storage problem is to use a low-order 

angular approximation to the angular flux time derivative. The most popular 
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approximation [Cho05, Tsu13, Tal13] has been to assume that the angular flux time 

derivative is isotropic and approximate it with the scalar flux: 
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Storing the scalar flux from previous points in time requires substantially less 

memory than the angular flux. This approximation is very efficient and is attractive 

when combined with the isotropic source approximation7. However, this approximation 

results in an error term which is proportional to the time derivative of the first moment 

of the angular flux (i.e. the time derivative of the neutron current)8, and thus it may not 

be adequate for some transients. 

This approximation can be generalized as approximating the angular flux time 

derivative using a low-order spherical harmonics expansion: 
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Although this approximation is slightly more memory- and computationally-

expensive than the isotropic approximation, it better preserves the angular dependence 

of the time derivative. For low-order expansions, it requires less memory than storing 

the angular flux. This approximation is more attractive if the spherical harmonics 

expansion of the angular flux is being calculated in any case (e.g. because PN is the 

neutron transport method or spherical harmonics are used to expand the scattering 

source); if the spherical harmonics expansion of the angular flux is not otherwise being 

calculated, this adds an additional computation expense to the approximation.  

A third option is to approximate the angular flux time derivative using the time 

derivative of the angular flux on a coarser spatial mesh, e.g.: 
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7
 This approximation is described in Chapter 3. 

8
 This is demonstrated in Chapter 6. 
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where     is the average angular flux for a region   in which the spatial position   lies. 

This approximation may be more or less accurate than the previous approximation 

depending on the coarseness of the mesh and the number of flux moments used to 

approximate the time derivative. 

Prior to developing the new method described in this thesis, we tested each of 

these three options [Hof13b]. While these approximations were reasonably accurate for 

small reactor kinetics problems, we sought to develop a new time-dependent neutron 

transport method that would circumvent the angular flux storage problem. This new 

method is briefly described in Section 2.3.3 . 

2.3.1.1 Asymmetric Approximations of the Angular Flux Time Derivative 

It is noteworthy that some researchers have considered or directly used the low-

order angular approximations listed above (e.g. the scalar flux or spherical harmonics 

approximation) but only applied the approximation to the previous term in the finite-

differenced angular flux time derivative [Pau03, Tay09, Ban12]. In other words, they 

have used an asymmetric angular flux time derivative approximation like: 
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With simple error analysis we showed that this results in an error term which is 

proportional to the error in the angular flux approximation; this is in contrast to when all 

terms in the time derivative are similarly approximated, which results in an error term 

proportional to the first time derivative of the error in the angular flux approximation 

[Hof13b]. In addition, the asymmetric approximation of the angular flux time derivative 

results in an inconsistent equation. As a result, it is preferable to use the same 

approximation with all terms in the time derivative if possible. 

2.3.2 On-the-Fly Angular Flux Recalculation 

An alternative to storing the angular flux from one or more previous points in 

time is to recalculate the angular flux as needed and discard the value when it is no 

longer required. This necessitates storing the required parameters from the previous 
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point in time (e.g. cross sections, boundary conditions, and neutron sources). Storing 

these parameters may require less memory than storing the angular flux. This is the 

conceptual basis for the on-the-fly method, which was recently developed for MOC by 

Tsujita et al. [Tsu13]. 

However, this introduces a new problem. Suppose that Backward Euler is used to 

approximate the time derivative, i.e.: 

 
      

  
 

             

  
  2.37 

where the spatial, angular, and energy dependence of the angular flux is suppressed for 

brevity. 

For the on-the-fly method with Backward Euler, to approximate the time 

derivative at time   ,         is recalculated on-the-fly using data at time     . 

However, if Backward Euler is used for time     , then         is a function of        , 

so that angular flux         should also be recalculated on-the-fly. This dependency 

continues back to the beginning of the transient. In principle the on-the-fly method 

could be used to solve the time-dependent transport equation without storing the 

angular flux and without approximating the angular dependence of the angular flux time 

derivative, but this results in a linear increase in the computational and memory 

requirements with the number of time steps. With enough time steps, the on-the-fly 

method will require more memory than storing the angular flux. 

As a compromise to limit this expense, Tsujita proposed limiting the number   

of previous angular fluxes that are recalculated on-the-fly. For the earliest angular flux 

that is recalculated        , the isotropic approximation to the angular flux time 

derivative is applied. Although this introduces some error, the error is mitigated because 

with each successive previous angular flux that is recalculated on-the-fly, the error term 

is again divided by the neutron velocity. For example, if the isotropic approximation is 

applied to        , the error term in       is proportional to 
 

    
. Since the neutron 

velocity is large, the error rapidly decreases with  , and so the user can adjust   to 
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achieve the desired accuracy. When    , the method is equivalent to the familiar 

isotropic approximation. 

Tsujita implemented an on-the-fly method in an MOC-based neutron transport 

code, which was referred to as an “on-flight” method. Tsujita tested the on-flight 

method for a few transients and concluded that the isotropic approximation was 

reasonably accurate, and that with higher   the on-flight method becomes more 

accurate. 

2.3.3 Analytically-Integrated Space-Time Characteristics  

In this thesis, we develop a new time-dependent MOC method that circumvents 

the angular flux storage issue by propagating the angular flux time derivative along 

characteristics. In steady-state MOC, the angular flux is propagated along characteristics 

in space. The angular flux at any point along a characteristic can be written as a function 

of the neutron sources along that characteristic which are attenuated by the intervening 

materials. In the new method for time-dependent MOC, we devise equations for 

propagating the first time derivative of the angular flux along characteristics in terms of 

the first time derivatives of the neutron sources along the characteristic which are 

similarly attenuated by intervening materials. This is the basis for Angular Flux Time 

Derivative Propagation (TDP) methods. This thesis focuses on a subset of these methods 

which can recast the angular flux time derivative in terms of the propagated effects of 

source-derivatives, which are hence called Source Derivative Propagation (SDP) 

methods. 

A limited form of SDP methods was originally developed using space-time MOC 

with approximations to the space-time characteristic in the time domain. This method 

was called analytically-integrated space-time characteristics (ASTC) [Hof13a]. However, 

this thesis presents a more general form of SDP methods. These methods are presented 

and analyzed in detail in the following chapters. 

The SDP methods have similar memory requirements as the on-flight methods 

developed by Tsujita. The SDP methods also have a similar leading error term, which will 

be proportional to some power of the inverse velocity. When Backward Euler is 
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employed for on-flight with     and SDP methods, they have similar computational 

expense. The primary advantage of SDP methods over on-flight methods is that SDP 

methods can accommodate high-order approximations for the time derivatives (e.g. 

using backward differences) without a substantial increase in computational or memory 

expense. By contrast, when the time derivatives are approximated to high-order 

accuracy using the on-flight method, the computational and memory requirements 

increase linearly with the order of accuracy. 

2.4 Delayed Neutron Precursor Equation 

When fission occurs a few neutrons are released. Most of these neutrons are 

emitted promptly, but some neutrons are delayed. These delayed neutrons are released 

when certain fission products (i.e. delayed neutron precursor nuclides) decay by 

neutron emission. For steady-state neutron transport, the delayed neutrons are in 

equilibrium and do not require explicit treatment. However, for time-dependent 

problems the delayed neutrons are important. 

The buildup and decay of the delayed neutron precursor concentration    for the 

precursor   is described by the differential equation: 

 
      

  
                 2.38 

where   is the total neutron fission source,    is the fractional delayed neutron 

precursor yield,    is the decay constant, and the spatial, angular, and energy 

dependences have been suppressed for brevity.  

The total delayed neutron source    is the sum of the decay rates of the isotopes 

multiplied by the delayed neutron spectrum     : 

                   

 

  2.39 

While in principle we could explicitly track the buildup and decay of the dozens 

of unique delayed neutron precursors, this is not done in practice in reactor kinetics. 

This is because the precursor yields and decay constants are not accurately known, and 
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this explicit treatment is computationally expensive. Instead, we define a small number 

of artificial delayed neutron precursor groups. These groups combine many delayed 

neutron precursors with similar decay constants. The group parameters (i.e. yields and 

decay constants) are more easily measured experimentally than those of the individual 

isotopes. 

The delayed neutron precursor group equation is similar to Equation 2.38: 

 
      

  
                 2.40 

where   is the index for the delayed neutron group. 

Equation 2.40 is generally solved by one of two ways in time-dependent neutron 

transport. The first approach is to discretize the precursor equation in time and treat the 

time derivative using a conventional time integration technique. In this approach, the 

precursor equation is solved in conjunction with the transport equation. The second 

option is to make some assumption about the temporal variation of the neutron fission 

source (e.g. it is linear in time). This allows the precursor equations to be eliminated 

from the transport equation. In the following section we will derive each of these 

approaches. 

2.4.1 Solution by Time Integration 

The solution of the delayed neutron precursor equation by time integration is 

straightforward. The equation is discretized in time and a time integration technique is 

applied. If Backward Euler is used, the precursor equation becomes: 

 
               

  
                   2.41 

The equation is solved by isolating the delayed neutron precursor concentration: 

         
        

        

  
 
     

  2.42 

Equation 2.42 is coupled to the neutron transport equation by the fission source, 

which is a function of the angular flux. Similarly, the neutron transport equation is 



43 
 

dependent upon the precursor group concentrations through the delayed neutron 

source term. As a result, the solutions to the delayed neutron precursor equations are 

implicitly coupled to the solutions for the neutron transport equation, and the two must 

be solved simultaneously.  

2.4.2 Analytical Precursor Integration 

Analytical precursor integration is a common technique to avoid explicitly solving 

the delayed neutron precursor equations simultaneously with the neutron transport 

equation. By assuming that the fission source has a known temporal variation, the 

dependency of the neutron transport equation on the delayed neutron precursor 

concentration can be eliminated. In this section we derive analytical precursor 

integration with a quadratic fission source. 

With a linear approximation, the fission source near time    is: 

  

              
       

   

      

       

   
  

       

   
  

2.43 

where          and            . 

We apply this approximation Equation 2.40: 
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Next we apply the integrating factor           to each side: 
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We solve this equation by integrating both sides over the time step: 
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which evaluates to: 
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With some algebra we isolate the new delayed precursor group concentration in 

terms of the previous delayed neutron precursor concentration and the new and 

previous fission sources: 

 

                
      

 
  

  
      

         

     
 

              
         

     
    

2.48 

In analytical precursor integration, Equation 2.48 is used to eliminate the 

dependence of the delayed neutron source on the new delayed neutron precursor 

concentration.  

2.5 Summary 

This chapter provides a summary of neutron transport and time integration 

methods relevant to time-dependent neutron transport for nuclear reactor kinetics. This 
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is the context in which new time-dependent neutron transport methods were 

developed.  

In the following chapters, we present several neutron transport methods based 

on MOC using BDF for time integration. Chapter 3 provides a steady-state MOC method 

which is used to initialize the transient problem and provide context for typical MOC 

conventions. Chapter 4 provides a conventional time-dependent MOC method that uses 

a finite difference technique to treat the angular flux time derivative. Finally, Chapter 5 

provides the new time-dependent MOC method developed for this thesis. 
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Chapter 3  

Steady-State MOC (SSC) Derivation 

Method of Characteristics (MOC) has been widely used to solve the steady-state 

neutron transport equation for 2D assembly models [Hal80, Jon00, Smi00]. More 

recently, Steady-State Method of Characteristics (SSC) has been applied to solving larger 

3D problems, either using 3D MOC or as a part of coupled 2D/1D formulations [Joo04, 

Col13, Tal13]. SSC methods have been used to perform criticality eigenvalue 

calculations, drive depletion models, and initialize reactor transients. This chapter 

provides a derivation of SSC in 3D for a criticality eigenvalue model which is 

representative of typical applications of MOC to reactor physics. In this work, the SSC 

method is used to initialize reactor transients which are modeled using the time-

dependent MOC methods in the following chapters. 

Although this derivation is formally for 3D MOC, one of the convenient features 

of characteristic methods is that if we carefully define our characteristic transform for 

any given dimensionality, the characteristic equations will be essentially identical 

regardless of the dimension; the only difference will be the definition of some quantities 

and the transform. Thus the equations in this derivation can also be easily adapted to 

problems in 1D and 2D with minor modifications.  

This derivation begins with the steady-state Boltzmann transport equation. We 

will then discuss each of the approximations applied to the transport equation and 

illustrate how the transport equation changes with each approximation. When the 

characteristic transform is applied, the resulting differential equation is called the SSC 

characteristic equation. Finally, we show how the characteristic equation is solved and 

how the solutions are used in SSC. 

3.1 Steady-State Boltzmann Transport Equation 

The Boltzmann transport equation in steady-state can be written as: 
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                                       3.1 

where the source   includes fission and scattering: 

 

         
      

      
                           

  

 

 

                                  

  

 

 

  

3.2 

where 

   position vector            

   [unit] direction of flight vector                            

   azimuthal angle 

        cosine of the polar angle 

   neutron kinetic energy 

   neutron angular flux 

    macroscopic total cross section 

   total neutron source 

   total fission neutron energy distribution 

      k-eigenvalue 

   number of neutrons released per fission  

    macroscopic fission cross section 

                 macroscopic differential scattering cross section. 

3.2 Approximations to the Neutron Transport Equation for SSC 

We employ several approximations to solve the steady-state neutron transport 

equation using MOC. In this section we discuss and incorporate each approximation to 

the Boltzmann equation in turn. 

3.2.1 Multi-group Approximation 

To treat the energy dependence, we will apply the widely-used multi-group 

approximation. We discretize the energy domain into   discrete groups, where the 
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upper and lower boundaries for group   are    and     . It is customary to associate 

the lower group numbers with higher energies because neutrons are produced by 

fission at high energies and lose energy  by scattering.  

If we integrate Equation 2.1 over an arbitrary energy group  , the result is the 

steady-state, multi-group neutron transport equation: 

                                    3.3 

where the multi-group source is: 

 

          
     

      
                      

  

 

    

                             

  

   

3.4 

The full steady-state transport equation is represented by   equations 

representing   energy groups. These equations are coupled through the production of 

fission neutrons and the scattering process. 

3.2.2 Isotropic Source Approximation 

The computational efficiency of MOC is substantially improved if we 

approximate the source terms as isotropic. This approximation is frequently applied to 

the fission source in reactor physics because it is nearly isotropic: 

 

  
     

      
                      

  

 

 

    

   
     

      
                

 

    

  

3.5 

where the scalar flux   is defined as the integral of the angular flux over all angles by: 

                     

  

  3.6 
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However, the scattering source may exhibit significant anisotropy. Many MOC 

methods employ an approximation called transport-corrected scattering to maintain the 

computational benefits of an isotropic source while preserving the first-order 

anisotropy. This approximation is easy to implement because it only requires replacing 

the total cross section with the transport cross section and the differential scattering 

cross section with the transport-corrected scattering cross section. We define the 

transport cross section in terms of the total cross section and the first moment of the 

differential scattering cross section: 

                                               

  

  3.7 

and the transport-corrected scattering cross section is defined in terms of the zeroth 

and first moment of the differential scattering cross section: 

        
       

               

                        
   3.8 

When these approximations are applied to the steady-state multi-group neutron 

transport equation, the source may be treated as isotropic: 

                                   3.9 

where the angular integral of the scattering source has been resolved: 

       
 

  
  

     

    
                       

            

 

    

  3.10 

3.2.3 Discrete Ordinates Approximation 

Next we will discretize the angular domain into     directions described by   

azimuthal angles    and   polar angles   . Each azimuthal and polar angle has a 

corresponding angular weight    and    which reflects the area on the unit sphere that 

the discrete ordinate      represents. A set of angular directions and weights is called a 

quadrature set. The optimization of quadrature sets is a field of active research and 

beyond the scope of this thesis.  
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With this approximation, we rewrite the steady-state neutron transport 

equation in terms of the discrete ordinates: 

                                         3.11 

3.2.4 Characteristic Transform 

Next we use MOC to rewrite the partial differential equation as an ordinary 

differential equation along a characteristic9 in the spatial domain. Here we begin with 

the definition of the characteristic as informed by the definition of the total derivative 

with respect to partial derivatives, e.g.: 
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Thus if we define the characteristic using: 

 

  

  
      

       

  

  
      

        

  

  
    

3.13 

where   is the dimension along the characteristic, then we can rewrite the steady-state, 

multi-group, neutron transport equation as an ordinary differential equation along a 

characteristic uniquely defined by an arbitrary position    and a discrete ordinate     : 

 

                  

  
                                 

               

3.14 

For succinctness we will introduce the index   for each unique characteristic: 

 
   

    

  
      

      
       

      3.15 

where             . 

                                                      
9
 Characteristics are also occasionally called “rays” or “tracks” in literature on MOC for reactor physics. 
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Equation 3.15 is the characteristic equation for SSC. When we apply MOC to 

neutron transport we span the spatial domain with many unique characteristics at 

different angles and positions in space. Each characteristic is representative of the 

volume of space around that characteristic, and by carefully recombining the solutions 

to all of the characteristics we can solve the neutron transport equation over the spatial 

and angular domain. 

3.2.5 Spatial Discretization and Step Characteristics 

Equation 3.15 can be analytically solved if we make approximations to the spatial 

dependence of the source and transport cross section along the characteristic. Since the 

spatial variation of these quantities is complex, we will discretize our problem domain 

into many fine spatial regions  . Figure 3-1 shows an example spatial meshing for a 

single pin cell. One of the significant advantages of MOC over other neutron transport 

methods is that MOC can easily accommodate curved surfaces without homogenization. 

 

 

Figure 3-1. Example region meshing for a pin cell in MOC [Hur08] 
 

When we span the spatial domain with characteristics, we define a segment as 

the portion of a characteristic within a region. Since all of a characteristic lies within one 

region or another, the characteristic can be thought of as a series of segments. Figure 

3-2 displays many characteristics at a particular angle within a discretized pin cell. By 

approximating the spatial dependence of the source and cross section within each 

region, we can analytically solve the characteristic equation for each segment. 
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Figure 3-2. Example pin cell meshing with characteristics [adapted from Hur08] 
 

For the source approximation, we will use the “step characteristics” method: the 

source is assumed to be spatially-invariant within the region: 

   
       

   3.16 

where the region   corresponds to the spatial position   along characteristic  . 

Step characteristics is popular for MOC because it is very computationally-

efficient. An alternative is to allow the source to have some low-order spatial variation 

within the region, e.g. “linear characteristics,” which assumes that the source varies 

linearly in space. While this might allow us to use larger spatial regions, calculating the 

spatial distribution of the source within the region adds substantial cost and complexity 

to the method. 

Further, in order to analytically solve the characteristic equation it is necessary 

to assume that the transport cross section is also spatially-invariant within the region: 

      
          

   3.17 

This approximation is a bounding criterion for determining how large spatial 

regions can be, and it limits the advantage of employing linear characteristics. 

When these approximations are applied to the characteristic equation, the result 

is the step characteristic equation for steady-state neutron transport: 

 
   

    

  
      

   
       

   3.18 
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3.2.6 Other Assumptions and Approximations 

There are a few other common assumptions implicit in this derivation and the 

use of the Boltzmann transport equation which deserve mentioning. First, we have 

assumed that the reactor is in a steady-state, equilibrium, critical condition. This 

describes the state of a nuclear reactor throughout most of the operating cycle, where 

the neutron flux, material composition, reaction rates, and other properties are 

changing very slowly. The solution of this equation is representative of a “snapshot” of 

the reactor at a particular moment. These assumptions are not necessarily valid 

immediately after a perturbation (e.g. control rod movement or a change in the 

incoming coolant properties), at which point more formal treatment of time-

dependence is necessary. 

Based on the assumed steady-state condition, we can ignore the angular flux 

time derivative because it is negligible. Similarly, we can also ignore the time 

dependence of the quantities in the transport equation because they are changing very 

slowly. Also, we can ignore the distinction between prompt and delayed fission 

neutrons because the delayed neutrons are in equilibrium. 

There are also some assumptions inherent in the use of the Boltzmann transport 

equation for reactor physics. First, we note that the interaction of an individual neutron 

with matter is inherently stochastic, but the neutron transport equation is strictly 

deterministic; the use of the transport equation requires that there are enough 

neutrons in the domain of interest such that the transport equation describes their 

mean behavior and statistical fluctuations are not important. It also requires that there 

are not so many neutrons that they change the medium over short time scales (e.g. by 

rapidly changing the material composition or properties). Finally, we have assumed that 

the material composing the problem are isotropic. 

3.3 Solution of the Step Characteristic Equation 

The step characteristic equation can be analytically solved along a segment, e.g. 

using an integrating factor of       
      

    : 
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where   
    is the incoming position10 of the segment along   where characteristic   

enters region  . 

We integrate the equation along the segment: 
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which evaluates to: 
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where     
      

    
    . 

With some algebra we isolate the solution of the equation along the segment, 

which is the spatially-dependent segment-wise angular flux: 

   
         

          
      

       
  

         
      

    

     
    3.22 

This is the solution to the step characteristics equation. In SSC, this equation is 

used for two purposes: (1) to propagate the angular flux from segment to segment 

along each characteristic, and (2) to numerically integrate the region-wise scalar flux. 

3.3.1 Angular Flux Propagation Along the Characteristic 

To solve Equation 3.22 we assumed that we knew the incoming angular flux at 

the beginning of the segment     
   . We can make this assumption because the incoming 

angular at the problem boundary will be specified by the boundary condition, and we 

                                                      
10

 Note that if the geometry includes curved surfaces, it is possible for a characteristic to enter a region 
more than once. In practice this occurs very rarely, and although this special case may complicate the 
implementation of MOC, it does not present a difficulty from a theoretical standpoint. To avoid excessive 

complexity we will avoid the formal addition of another index to cover this special case (e.g.   
     

). 
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will calculate the outgoing angular flux for each segment. Since we will evaluate the 

segments sequentially starting at the problem boundary, we will use the outgoing 

angular flux from the previous segment as the incoming angular flux for the next 

segment. Calculating the outgoing angular flux is simply a matter of evaluating Equation 

3.22 at the end of the segment: 

   
    

               
          

      
   

  
         

      

     
    3.23 

where       is the length of the segment for characteristic   in region  . 

3.3.2 Numerical Integration of the Region-wise Scalar Flux 

While the fundamental solution of SSC is the segment-wise angular flux, we 

prefer not to store these values because it would require excessive memory. Instead, we 

will numerically integrate the region-wise scalar fluxes by weighting and summing the 

segment-wise average angular fluxes by region as we generate them. 

Thus for each segment—in addition to calculating the outgoing angular flux—we 

will calculate the segment-wise average angular flux. This is just the spatially-dependent 

segment-wise angular flux averaged over the segment length: 
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The region-wise scalar flux is calculated using the segment-wise average angular 

fluxes for each segment in a region at every angle. Figure 3-3 provides a 2D example for 

seven segments within a single region where the spacing between characteristics is    . 
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Figure 3-3. Characteristic segments in an example region [adapted from Hur08].  
 

To calculate the region-wise scalar flux, we first need to calculate the region-wise 

average angular fluxes for each angle, which is the volume-weighted average of the 

segment-wise average angular fluxes for every segment in a region at a particular angle. 

The volume11 that each segment represents is a function of the segment length and the 

spacing between the characteristics. Using Figure 3-3 as an example, the represented 

volume of each characteristic is the product of the segment length and the 

characteristic spacing interval: 

                3.25 

The region-wise average angular flux is the volume-weighted sum of each of the 

segment-wise average angular fluxes for each segment within the region: 

        
  

    
       

   

     
   

  3.26 

The region-wise scalar flux is numerically integrated from the region-wise 

average angular fluxes using the angular weighting factors corresponding to the 

quadrature set: 

                                                      
11

 Or area for 2D problems. 
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   3.27 

Thus in SSC the storage of the angular flux throughout the spatial domain is 

avoided by numerically integrating the angular flux as it is generated to calculate the 

scalar flux. When every segment has been evaluated, the scalar fluxes are integrated. 

3.4 Summary of SSC Algorithm 

MOC methods are an iterative, sweeping process. Using an initial estimate of the 

scalar flux, the source is calculated. This source is used with Equation 3.23 to propagate 

the angular flux along each characteristic at each energy group and with Equation 3.27 

to calculate a new scalar flux for each region. Once the scalar flux has been calculated, 

the convergence criteria are checked (e.g. by comparing the scalar flux, fission source, 

total source, etc.), and if the convergence criteria are not satisfied, another iteration is 

performed. If an eigenvalue calculation is being performed, the eigenvalue is calculated 

to balance the neutron production and loss terms. If the eigenvalue has not converged, 

another iteration is performed. This process is summarized in Figure 3-4. Some technical 

details are suppressed for clarity (e.g. inner loops for upscattering, etc.). 

 

 

Figure 3-4. Nested algorithm for steady-state eigenvalue MOC 



58 
 

In Chapter 7 we provide details on the computer code DeCART which was used 

to test the new methods developed in this work. SSC is used to initialize the time-

dependent MOC methods described in Chapters 4 and 5 for numerical test problems in 

Chapter 8. 
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Chapter 4  

Time-Dependent MOC with BDF (BDC) Derivation 

The typical approach to solving the time-dependent neutron transport equation 

is to discretize the equation in time and apply a time integration technique to treat the 

time derivative. Although there are many time integration methods available, they 

generally result in one or more equations of similar form to the steady-state transport 

equation but with a transient fixed source term resulting from a finite difference 

approximation of the time derivative. This is true of the backward differentiation 

formula (BDF), which is the time integration technique used in this chapter. When BDF is 

applied to the time-dependent transport equation solved using Method of 

Characteristics (MOC), the resulting equation is solved using a similar approach to the 

Steady-State Method of Characteristics (SSC). 

This chapter follows a similar structure to the previous chapter, providing a 

derivation for Time-Dependent MOC with BDF (BDC). We will begin by introducing all of 

the approximations applied to the time-dependent neutron transport equation. To 

facilitate comparison between the different MOC methods, in this chapter and other 

chapters we will discuss and apply each approximation in a deliberate order. We will 

first consider approximations that are also applied to SSC. Then we will introduce 

approximations that are common to all of the time-dependent MOC methods. Finally, 

we will detail approximations specific to BDC. 

When the BDC characteristic equations have been derived, this chapter will 

branch to consider two options for the treatment of the angular flux terms in the 

angular flux time derivative: an accurate reference method where the angular flux time 

derivative is approximated using segment-wise angular fluxes (RBDC), and an efficient 

low-order method that assumes the angular flux time derivative is isotropic (IBDC). The 

latter approximation uses the scalar flux in place of the angular flux to treat the angular 



60 
 

flux time derivative. The relationship between the BDC methods and the other methods 

investigated in this thesis is graphically-represented in Figure 4-1. This figure shows all 

of the methods begin with the same equation and shared approximations, but different 

approximations are used to treat the spatial and temporal derivatives. 

 

 

Figure 4-1. Relationship between the time-dependent MOC methods in this thesis 
 

After the derivations there is a brief discussion on the application of the BDC 

equations to solve time-dependent neutron transport. This section places emphasis on 

the similarity of the BDC algorithm to the SSC algorithm. 

4.1 Time-Dependent Boltzmann Transport Equation 

The time-dependent Boltzmann transport equation can be written as: 
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4.1 

where the source   includes fission, scattering, and delayed neutrons: 

 

                
       

  
                               

  

 

 

                                      

  

 

 

 
         

  
  

4.2 

and where the delayed neutron source    is the total contribution of the delayed 

neutron precursors12: 

                              

 

  4.3 

where   is the index for each delayed neutron precursor, and where the delayed 

neutron precursor concentration is described by the differential equation: 

 
        

  
   

             

    
               

  

   
 

 

            4.4 

 and where the variables are defined as for SSC in the previous chapter except: 

   time 

   neutron velocity 

    prompt neutron fission spectrum 

                                                      
12

 Delayed neutrons are emitted when certain fission products decay into a daughter nuclei with 
excitation energy in excess of the neutron binding energy. These daughters may emit neutrons which 
were delayed by the radioactive decay of the parent fission product. While the term “precursor” may be 
used to indicate the parent irrespective of whether it decays by neutron emission, since we are concerned 
about reactor kinetics, we will define “precursor” to only include those daughters that actually emit 
neutrons. 
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   total delayed neutron fraction 

    total delayed neutron source 

      delayed neutron spectrum for precursor   

    decay constant for delayed neutron precursor   

    delayed neutron precursor concentration for   

    delayed neutron precursor yield for precursor  . 

4.2 Approximations to the Neutron Transport Equation for BDC 

We employ several approximations to solve the time-dependent neutron 

transport equation using MOC. Many of these approximations are similar or identical to 

those applied to SSC, except that they now must address the angular flux time 

derivative, delayed neutron source, and delayed neutron precursor differential 

equation. In this section we discuss each approximation to the time-dependent 

Boltzmann transport equation and illustrate how it is applied. We will first discuss 

approximations that are analogous to the approximations we applied in SSC. Then we 

will detail the approximations that are applied to this and the other time-dependent 

MOC methods in this work. Finally, we will cover the approximations that are unique to 

BDC methods. 

4.2.1 Multi-group Approximation 

The multi-group approximation is widely used in reactor kinetics. In general, the 

same neutron energy groups structures are applicable to time-dependent neutron 

transport as steady-state neutron transport, but we now also require group-averaged 

neutron velocities: 
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where the multi-group source is: 
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4.6 

and where the delayed neutron source is: 

                              

 

  4.7 

and where the fission source in the precursor equations is also converted to multi-group 

form: 

 
        

  
                              

  

 

    

            4.8 

4.2.2 Isotropic Source Approximation 

As in SSC, we will apply the isotropic source approximation to BDC. This includes 

assuming that the fission source is isotropic and applying the transport-corrected 

scattering approximation so that the scattering source is isotropic: 
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where the multi-group total source is: 
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By assuming that the fission source is isotropic, we eliminate the angular integral 

in the delayed neutron precursor equation: 
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            4.11 

4.2.3 Discrete Ordinates Approximation 

We will also use the discrete ordinates approximation for BDC. In general, the 

same quadrature sets that are used for SSC are applicable to BDC. The time-dependent 

transport equation with the discrete ordinates approximation is simply: 

 

 

  

             

  

                                        

          

4.12 

4.2.4 Delayed Neutron Group Approximation 

Next we apply the delayed neutron group approximation which was discussed in 

Chapter 2: 

                              

 

  4.13 

where   is the index for the delayed neutron groups, and the precursor equations are 

also given in terms of the delayed neutron groups: 

 
        

  
                       

 

    

            4.14 

4.2.5 Characteristic Transform 

Next we perform the characteristic transform to rewrite the spatial derivatives 

as a single derivative along a characteristic. As with SSC—but in contrast to space-time 

neutron transport methods—this transform is defined with respect to the spatial 

dimensions only; as a result the time derivative will remain in our characteristic 

equation. 

The definition of the characteristic is unchanged from SSC: 
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4.15 

where again the spatial dimension along the characteristic is  . 

When we apply the characteristic transform to the time-dependent neutron 

transport equation, the result is similar to the steady-state neutron transport equation 

but with an angular flux time derivative along the characteristic: 

 

 

  

                    

  

  
                    

  

                                     

                 

4.16 

For succinctness we will introduce the index   for each unique characteristic: 
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where             .  

4.2.6 Spatial Discretization and Step Characteristics 

As in SSC, we discretize our spatial domain into fine spatial regions. Within these 

regions we assume that there is no spatial dependence of the transport cross section 

and the neutron source; this approximation is called step characteristics. 

When these approximations are applied to the characteristic equation, the result 

is similar to the steady-state step characteristic equation but with time dependence: 

 
 

  

   
      

  
  

   
      

  
      

      
         

      4.18 

where   is the index for the spatial regions. 
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4.2.7 Time Discretization 

Next we discretize the time-dependent step characteristic equation in time. The 

equation is evaluated at time   : 
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The transient will be modeled by solving the time-discretized equation at 

discrete time points separated by time steps     which may vary in duration. For 

succinctness we will indicate the time using the index  : 
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4.2.8 Approximation of Angular Flux Time Derivative with BDF 

We approximate the angular flux time derivative using BDF as the time 

integration method. BDF is a variable-order, implicit, linear multi-step method for time 

integration suitable for solving stiff differential equations. The first-order BDF is 

equivalent to backward Euler method. BDF is derived in Chapter 2. 

In BDF, the time derivative is approximated using the weighted sum of the 

solution variable at the current time point along with one or more previous time points, 

i.e.: 

 
   

      

  
      

        

    

   

  4.21 

where the coefficients    depend upon the order of the BDF method and size of the 

time steps between each time point.  

Since BDF is an implicit method, time    corresponds to the time at which we are 

solving the transport equation. Previous time points (e.g.             ) correspond to 

earlier points at which the transport equation was solved.  

The number of coefficients and neutron fluxes that are used for BDF depends on 

the desired order of accuracy; the number of previous fluxes that needs to be stored is 
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equal to the order of accuracy. For example, for first-order BDF (i.e. BDF1) only one 

previous flux is required: 
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where    
 

   
 and    

  

   
 for BDF1. 

When BDF is applied to the time-discretized neutron transport equation, the 

angular flux time derivative is replaced by the weighted sum of angular fluxes from 

previous points in time: 

 
 

  
     

        

    

   

  
   

      

  
      

     
         

     4.23 

where we have avoided combining the first angular flux term in the summation with the 

transport term because of the approximation described in the following section. 

4.2.9 Approximation of the Spatial Dependence of the Time Derivative Terms 

Formally, the angular flux terms in the time derivative should be represented by 

the spatially-dependent segment-wise angular flux, which is the solution variable for 

MOC. Since the MOC equations describe the spatially-dependent angular flux, we could 

in principle store enough data to exactly represent the spatial dependence. However, 

we show in Appendix C that this requires storing in memory segment-wise quantities for 

every previous time step, resulting in a linear increase in the memory requirements of 

the method with the number of time steps modeled. 

In fact for existing computers, just storing a single value for the angular flux at 

each segment (e.g. the segment-wise average angular flux) for one previous point in 

time is already prohibitively memory-intensive for large reactor models; maintaining 

even low-order approximations of the spatial dependence of the angular flux requires 

even more memory. In light of this, as a practical necessity we will approximate the 

angular flux terms at previous points in time in the angular flux time derivative with the 

segment-wise average angular flux. 
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Although we might elect to only approximate the previous terms in the time 

derivative while treating the new angular flux term implicitly (as many time-dependent 

neutron transport codes have done) in doing so we would needlessly introduce 

additional error and ensure that the approximation of the angular flux time derivative is 

not consistent. Taking that into account, we approximate all terms in the time derivative 

using the segment-wise average angular flux: 

      
        

    

   

       
       

    

   

  4.24 

where    
      is the segment-wise average angular flux for characteristic   within region 

  at time   . 

With this approximation, the characteristic equation recovers a form similar to 

the SSC but with an additional source term based on the angular flux time derivative: 
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4.2.10 Analytic Precursor Integration 

Next we apply the second-order (quadratic) analytic precursor integration 

technique to treat the delayed neutrons [Hur08, Joo98]. The analytic precursor 

technique is derived in Chapter 2. The delayed neutron source is rewritten in terms of 

the integrated delayed neutron source from previous time steps      
     and the fission 

source at the current time step: 

     
          

              
  

    
   

    
 

  
   

  

   4.26 

where the cumulative source and coefficients for quadratic precursor integration are 

defined as: 
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After applying the quadratic analytic precursor integration approximation, the 

source can be rewritten without dependence on the precursor concentration at the 

present time step: 

 

  
    

 

  
       

           
      

  
    
   

    
 

  
     

      
       

  
    

 

    

 
     

    

  
  

4.28 

4.2.11 Other Assumptions and Approximations 

There are a few other assumptions and approximations in BDC that warrant 

mentioning. First, as in SSC, we have assumed that the Boltzmann equation adequately 

represents the behavior of the neutrons; there is neither so few neutrons in the domain 

that statistical variations are important nor so many that they significantly alter the 

material composition. 

In SSC, we assumed that the problem was in a critical, steady-state 

configuration; in BDC, we assume that the transient begins from a critical configuration. 

Even if the model specifications should result in a critical reactor, simulation may not be 
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exactly critical due to errors in the model. Thus the initial critical condition is enforced 

by dividing the neutron source through by the steady-state  -eigenvalue throughout the 

transient. This is a common practice in nuclear reactor kinetics. 

We assumed that the transients begin from a critical configuration because this 

is representative of the transients of interest for reactor kinetics. If the transient begins 

from a dynamic or non-critical state, the methods would require modification. 

We have also assumed that the delayed neutron precursors are not mobile; 

rather the delayed neutrons are produced at the sight of the fission event. The effects of 

mobile delayed neutron precursors cannot be accurately captured in the neutron 

transport equation. As a result, this assumption is essentially universally applied for 

reactor kinetics for solid fuel reactor systems. 

We assumed that the delayed neutron group parameters are independent of 

position. This is generally a reasonable assumption for problems where there is one 

principal fissioning isotope. While it was not formally necessary for the derivation, it 

simplifies the notation and is applicable for the test problems considered in this work. 

We should also note that one of the consequences of using a conventional time 

integration method to represent the angular flux time derivative is that we cannot 

capture neutron time-of-flight. In principal, with these methods (e.g. backward Euler, 

BDF, Runge-Kutta, etc.)  a neutron source in one part of the domain can influence the 

angular flux in another part of the domain that is outside of the range of a neutron over 

the duration of the time step. In practice this is not a problem in reactor kinetics for 

typical time steps because the range of even the slowest neutrons is many neutron 

mean free paths, so the impact of this approximation is limited. Neutron time-of-flight 

could be preserved for neutron transport if space-time transport methods are used, but 

they are even more computationally- and memory-intensive than BDC. 

4.3 Solution of the Step Characteristic Equation - RBDC 

In this chapter, we provide derivations for two BDC methods: a reference 

method where the segment-wise angular flux is used for the angular flux time derivative 

(RBDC) and a low-order approximate method where the region-wise scalar flux is used 
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for the angular flux time derivative (IBDC). While the derivations for these two methods 

have been identical up to this point, it is now necessary to differentiate between the 

two. We will first provide the derivation for RBDC. 

As for SSC, the RBDC step characteristic equation can be analytically solved along 

the segment using an integrating factor of       
        

    : 
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The solution of the equation along the segment is the spatially-dependent 

segment-wise angular flux at time   : 

 

  
           

            
        

    

    
    

 

  
      

       

    

   

  
         

        
    

     
      

4.30 

where     
        

      
    . 

The solution to the RBDC equation is similar to the solution of the SSC equation, 

except that delayed neutrons are treated separately from prompt neutrons and the 

angular flux time derivative functions as an additional source term. As in SSC, this 

equation is used to propagate the angular flux along the characteristic from segment to 

segment, and to numerically integrate the region-wise scalar flux. In addition, the 

segment-wise average angular flux is stored for use treating the angular flux time 

derivative on subsequent time steps. In the following sections, we derive the equations 

for these quantities. 

4.3.1 Angular Flux Propagation Along the Characteristic - RBDC 

When we solved Equation 3.22, we assumed that we knew the incoming angular 

flux at the beginning of the segment     
     . We can make this assumption for a general 

segment because we will propagate the angular fluxes along characteristics. This entails 

calculating the outgoing angular flux for each segment to serve as the incoming angular 

flux for the following segment. 
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To calculate the outgoing angular flux, we evaluate Equation 3.22 at the end of 

the segment: 
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This result is very similar to the analogous equation for SSC, but with the time 

derivative approximation as an additional source. Note that the time derivative includes 

the segment-wise average angular flux at time   ; this is calculated in the next section. 

4.3.2 Numerical Integration of the Region-wise Scalar Flux - RBDC 

We also use Equation 3.22 to calculate the segment-wise average angular flux. 

As in SSC, this will be used to numerically integrate the region-wise scalar flux. In 

addition, the segment-wise average angular flux was used in the previous section to 

calculate the outgoing angular flux. Finally, keep in mind that we will need to store the 

segment-wise average angular flux for one or more time steps for use in representing 

the time derivative; as mentioned previously, this requires extremely large amounts of 

memory and is the primary disadvantage to RBDC. 

To calculate the segment-wise average angular flux, we integrate the spatially-

dependent segment-wise angular flux averaged over the segment length: 

 

   
           

      
  

   

     
    

 

     
     

      
       

    

   

  
         

        

     
        

 

  
  

   

     
    

 

     
     

      
       

    

   

  

4.32 

However, Equation 4.32 gives the segment-wise average angular flux in terms of 

itself because the segment-wise average angular flux was used to represent the angular 

flux time derivative. With some algebra we can isolate the segment-wise average 

angular flux at time   : 
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4.33 

Note that, whereas the BDF sums in Equation 4.33 begin at the index 0, the sums 

in Equation 4.33 begin at the index 1 and thus only include the angular flux from 

previous points in time. 

The region-wise scalar flux is calculated by numerically integrating the segment-

wise average angular fluxes over space and angle as in SSC (Equations 3.26 and 3.27): 

   
          

  

    
                

            

  4.34 

where the only difference between the time-dependent and steady-state equations for 

integrating the scalar flux is the presence of the time index. 

4.4 Solution of the Step Characteristic Equation - IBDC 

In this chapter we also solve the BDC equations using the scalar flux 

approximation. We begin by further approximating the angular flux time derivative in 

terms of the region-wise scalar flux: 

       
       

    

   

  
    

     

  

    

   

  4.35 

We should note that once this approximation is applied, the solution is no longer 

expected to converge to the Boltzmann transport equation as the angular, spatial, and 

temporal discretizations are refined. This approximation avoids the requirement of 

storing the segment-wise average angular flux. The resulting equation can be solved 

using the integrating factor       
    : 
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The solution of the equation along the segment is the spatially-dependent 

segment-wise angular flux for IBDC: 

 

  
           

            
        

    

    
    

 

  
 

    
     

  

    

   

  
         

        
    

     
      

4.37 

In IBDC Equation 4.37 is used to propagate the angular flux along characteristics 

and to calculate the segment-wise average angular flux for numerical integration into 

the region-wise scalar flux. This illustrates an obvious difficulty; Equation 4.37 is used to 

calculate the scalar flux at time   , but it assumes that the scalar flux is known to 

represent the angular flux time derivative. While it is possible to algebraically eliminate 

this dependency in a manner analogous to Equation 4.33 for RBDC, it requires a 

substantial modification of the MOC algorithm.  

On the other hand, to start the iterations for MOC at each time step we require 

an estimate of the scalar flux at time    to calculate an initial estimate of the total 

neutron source; if we use this estimate to provide an initial guess for the angular flux 

time derivative, then we have enough information to solve Equation 4.37. Further, this 

estimate provides a substantial computational benefit; we can combine the time 

derivative term with the total source   into a single isotropic source defined on the 

region-wise mesh, i.e.: 
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The resulting equation is identical in form to the characteristic equation of SSC, 

so we could use the steady-state algorithm with minimal modification. In light of this, 

we will adopt this approach and assume that an estimate of the scalar flux at the end of 
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the current time step is known and used to calculate the time derivative. MOC is an 

iterative process, and for each additional iteration we will use the scalar flux from the 

previous iteration as an estimate. Details on the calculation of the initial estimate of the 

scalar flux are provided in Chapter 7. 

4.4.1 Angular Flux Propagation Along the Characteristic - IBDC 

Equation 4.38 is used to propagate the angular flux along the characteristic by 

evaluating it at the end of the segment: 
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4.4.2 Numerical Integration of the Region-wise Scalar Flux - IBDC 

We also use Equation 4.38 to calculate the region-wise scalar flux. The region-

wise scalar flux is based on the segment-wise average angular flux: 
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As for RBDC, the region-wise scalar flux is calculated by numerically integrating 

the segment-wise average angular flux over volume and angle using Equation 4.34.  

4.5 Summary of BDC and Algorithm 

The algorithm for a single time step of BDC is similar to the algorithm for SSC. 

BDC begins from a steady-state solution which was determined using SSC. Some 

perturbation in the problem domain occurs (e.g. a material or temperature changes, 

which changes the cross sections in part of the problem), which causes the neutron 

angular flux to change over time. 

For each time step, an initial estimate of the scalar flux at the end of the time 

step is determined (details for the calculation of the estimate using the computer code 

DeCART are provided in Chapter 7), and the scalar flux is used to estimate the source 

and the angular flux time derivative if IBDC is used. With the source estimate, the 

relevant equations are used to propagate the angular flux along characteristics from the 
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problem boundary inward and to calculate the region-wise scalar flux. This process 

repeats until the solution has converged. If the current time is less than the end time of 

the transient, the method advances one time step and repeats the process. This 

algorithm is depicted in Figure 4-2. 

 

 

Figure 4-2. Nested algorithm for time-dependent MOC with BDF 
 

We will analyze the error in the treatment of the time derivative for RBDC and 

IBDC in Chapter 6 and numerically test these methods in Chapter 8. Details of the 

implementation of the MOC methods in the computer code DeCART are provided in 

Chapter 7. 
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Chapter 5  

Derivation of Time-Dependent MOC with  

Source-Derivative Propagation 

5.1 Introduction 

In Chapter 4, the time-dependent neutron transport equation was solved using 

method of characteristics (MOC) to treat the spatial derivatives and the backward 

difference formula (BDF) to treat the time derivatives. This time-dependent MOC 

method with BDF (BDC) method represents a conventional approach to solving the 

time-dependent neutron transport equation for nuclear reactor kinetics. However, it 

has a significant disadvantage in that storing the angular flux to represent the angular 

flux time derivative for the reference method (RBDC) requires excessive memory and 

limits the size and resolution of reactor kinetics problems that can be modeled. Chapter 

4 also presents an approximate method (IBDC) which has modest memory 

requirements, but the isotropic approximation may not always be appropriate. 

Because of these issues, we developed a new time-dependent MOC method. 

This method circumvents the angular flux storage through angular flux time derivative 

propagation (TDP) along the characteristics in space rather than using a local finite 

difference approximation for the derivative. To accomplish this, we derive a 

characteristic equation for the angular flux time derivative which is used alongside the 

characteristic equation for the angular flux to propagate both the angular flux and its 

time derivative along the characteristic. In much the same way that the angular flux 

equation in steady-state MOC (SSC) gives the angular flux in terms of the propagated 

effects of the neutron source terms along a characteristic, this TDP method gives the 

angular flux time derivative in terms of the propagated effects of the source time 

derivatives along a characteristic; this TDP method is thus called Source Derivative 
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Propagation (SDP). It requires substantially less memory to represent the source time 

derivatives than the angular flux time derivatives. 

While one might identify other TDP methods that define the characteristic 

equation for the angular flux time derivative differently, this thesis will focus on SDP and 

other closely-related methods because they have favorable mathematical properties. 

For this method, we take a time derivative of the characteristic equation for the angular 

flux. This gives an equation for the angular flux time derivative in terms of the time 

derivative of the incoming angular flux, the source time derivative, and the second time 

derivative of the angular flux. If we approximate the second time derivative of the 

angular flux, we can calculate the first time derivative of the angular flux along the 

characteristic in terms of the first source derivatives along the characteristic.  

The treatment of the second time derivative of the angular flux is an important 

consideration. While we could store the angular flux at previous points in time, this 

would require excessive memory and eliminate a major advantage of SDP. Instead we 

focus on two options for treating the second derivative of the angular flux in SDP: (1) 

truncating the second derivative (TSDP), or (2) assuming that it is isotropic (ISDP). Both 

approximations result in methods which require comparable memory and 

computational requirements to IBDC but are expected to better capture the angular 

dependence of the angular flux time derivative. Derivations of TSDP and ISDP are 

provided in this chapter.  

The relationship between the SDP methods and the other time-dependent MOC 

methods in this thesis is represented graphically in Figure 5-1. This figure illustrates that 

all of the time-dependent MOC methods begin with the Boltzmann transport equation 

and apply a common set of assumptions. The methods differ in their treatment of the 

spatial and temporal derivatives. The figure also foreshadows some of the SDP methods 

that will be developed in this chapter. 
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Figure 5-1. Relationship between SDP and other time-dependent MOC methods 
 
 

The derivation for TSDP and ISDP use the assumption that the cross sections are 

changing slowly during the transient to drastically simplify the derivation. While this 

assumption is valid throughout most of the time and space domain within reactor 

transients, it is crucially invalid near regions were material compositions are changing 

(e.g. near moving control rods or voiding moderator). To address this limitation, we also 

developed a version of SDP which allows the cross sections to change linearly in time, 

which is called Source & Cross Section Derivative Propagation (SCDP). This method is 

slightly more complex than SDP, but it is only required when cross sections are changing 

quickly. Like SDP, SCDP results in a second angular flux derivative term which can either 

be truncated or assumed to be isotropic (ISCDP), but we will focus on the latter. 
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A General Formulation for Arbitrary Nth Source-Derivative Propagation 

An alternative technique is to treat the second time derivative of the angular flux 

by also propagating it along the characteristic. If we define this equation using the 

approach taken for SDP, the result is a method of Second Source Derivative Propagation 

(2SDP). However, the characteristic equations for 2SDP gain a third derivative of the 

angular flux which requires similar consideration (e.g. a truncated or isotropic 

approximation). SDP and 2SDP can be understood as the first two members of a family 

of SDP methods which could be expanded to an arbitrarily-high number of source-

derivatives. In this chapter, we will show how 2SDP is derived and provide characteristic 

equations for an arbitrary Nth source derivative propagation (NSDP) method. Figure 5-2 

illustrates the relationship between SDP, 2SDP, and NSDP as a family of TDP methods. 

While these higher-derivative methods have unfavorable qualities for implementation 

as reactor kinetics methods, we present their derivation because they provide insight 

into the topic of SDP. 

 

 

Figure 5-2. Relationship between SDP, 2SDP, and NSDP as a family of TDP methods 
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5.1.1 Chapter Overview 

The derivations for the various SDP methods are the primary focus of this 

chapter. Before we begin the derivations, we will briefly discuss the history of the 

development of the TDP methods. Specifically, we explain the relationship between 

TSDP and the analytically-integrated space-time characteristic (ASTC) method we 

developed previously. Figure 5-1 illustrates this relationship. 

As with Chapters 3 and 4, we begin the derivations by addressing the 

approximations to the time-dependent Boltzmann equation for these methods. Since 

many of the approximations are identical to those in the Chapter 4, we will briefly 

review those and then skip immediately to the time-discretized, multi-group, step 

characteristic equation with analytically integrated delayed neutron precursors. 

Next we discuss two new approximations used for the SDP methods. The first 

concerns the derivation of the characteristic equation for the angular flux time 

derivative, while the second regards the treatment of the source time derivatives using 

backward differences. The latter is closely related to BDF, which is one reason why we 

use BDF for time integration for the BDC methods described in Chapter 4. 

After we establish the approximations, we derive the solutions to the 

characteristic equation for TSDP and ISDP. While these two methods are only a narrow 

subset of TDP methods, they are the primary focus of this dissertation because they are 

efficient and accurate throughout most of the space and time domain of the reactor 

transients we modeled. 

Next we derive the characteristic equations for ISCDP. This derivation is similar 

to that of ISDP, but it permits the cross sections to vary over the time step. This method 

is slightly more computationally-expensive than the SDP methods, but it may be 

important when cross sections are changing quickly. When cross sections are not 

changing, this method is identical to ISDP, and the ISDP algorithm can be used for time 

steps and in parts of the reactor where cross sections are not changing quickly to 

enhance computational efficiency. 

In the next section we build on the derivation for SDP to derive the characteristic 

equations for 2DSP, which are similar to SDP but involve the propagation of the second 
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time derivative of the angular flux in addition to the first. Still higher derivative methods 

can be derived by repeating the process, resulting in systematic changes to the 

characteristic equations. Based on these systematic changes, we provide characteristic 

equations for an arbitrary Nth derivative SDP method.  

Finally, this chapter will provide a summary of the implementation of the 

propagated source methods, paying special attention to how the method differs from 

the BDC methods in the Chapter 4. 

5.2 History of TDP Development and Relationship with ASTC 

The TDP concept was discovered while analyzing a time-dependent MOC 

methods based on space-time MOC, where the characteristics are defined not only in 

space but also time. Space-time transport methods are generally more computationally 

and memory intensive than time-discretized transport methods that store the angular 

flux (e.g. RBDC). In light of the memory issues of RBDC, a space-time method would 

seem a step in the wrong direction, but when further approximations are applied in the 

time domain the method is drastically simplified. This approximation allows the many 

discrete space-time characteristics to be replaced by a single function which represents 

the space-time characteristics within a time step. This function can be solved to 

determine the angular flux along a spatial segment at the end of the time step, which 

corresponds to the spatial segments employed by BDC and propagated source-

derivative methods. Consequently, the method simplifies to one that is comparable to 

IBDC in computational and memory requirements. 

This Analytically-integrated Space-Time Characteristic (ASTC) method provides 

several advantages. First, it provides a basis for the propagation of the angular flux time 

derivative in space along characteristics, avoiding the need to store the angular flux to 

represent the time derivative. Second, it recasts the angular flux time derivative in 

terms of source time derivatives, which can be represented to a high order using 

backward differences in time without requiring excessive memory. We derive the ASTC 

method in Appendix B. 
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While investigating ASTC to understand its error, an equivalent derivation was 

identified which does not require the definition of characteristics in space-time. There 

are several advantages to this derivation: (a) it is much less complex than the space-time 

derivation, (b) it is more general than the space-time derivation, (c) it clearly identifies 

the leading error terms, and (d) the error terms suggest options for refinement. TSDP is 

the equivalent derivation to ASTC, while ISDP is similar but with a correction term. For 

the reasons listed above, the SDP methods are the focus of this chapter rather than 

ASTC. 

5.3 Approximations to the Boltzmann Transport Equation for SDP 

5.3.1 Approximations Shared with BDC 

The derivation of SDP begins with the time-dependent Boltzmann transport 

equation and applies many of the approximations that were used when deriving BDC in 

Chapter 4. These include: the multi-group approximation, the isotropic source 

approximation, the discrete ordinates approximation, the delayed neutron group 

approximation, the spatial characteristic transform, step characteristics, and analytic 

precursor integration. After these approximations are applied, the result is the time-

discretized, multi-group, step characteristics equation with analytic precursor 

integration: 

 
 

  

   
      

  
  

   
      

  
      

     
         

     5.1 

where the source includes fission, scattering, and analytically-integrated precursors: 

   
    

 

  
       

           
      

  
    
   

    
 

  
     

      
       

  
     

     
    

  

 

    

  5.2 

As in Chapter 4, we assumed that the transient is beginning from a steady-state, 

critical configuration. This is representative of the transients of interest in nuclear 

reactor kinetics, and if this is not true the SDP methods will require modification. 
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5.3.2 Propagation of the Angular Flux Time Derivative  

First, we will derive a characteristic equation for the spatially-dependent 

segment-wise angular flux time derivative in terms of the angular flux time derivative at 

the incoming position and the source time derivative along the segment. To derive this 

equation, we will assume that the angular flux time derivative is known, and group it 

with the neutron source: 

 
   

      

  
      

     
         

    
 

  

   
      

  
  5.3 

Next we apply the integrating factor       
        

    :  

 
 

  
       

        
      

           
    

 

  

   
      

  
       

        
      5.4 

We can partially solve for the segment-wise angular flux by integration: 

 

 
 

  
       

         
      

           

 

  
   

     
    

 

  

   
       

  
       

         
       

 

  
   

  

5.5 

The integral can be evaluated for every term except for the time derivative: 

 

  
            

        
         

     

   
    

      
        

      

     
     

 

  
 

   
       

  
      

         
       

 

  
   

  
5.6 

where     
        

      
    . 

With some algebra the spatially-dependent segment-wise angular flux is isolated 

giving an equation for the angular flux along the segment: 
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5.7 

This is a partial solution of the BDC equations; if we approximate the angular flux 

time derivative in Equation 5.7 with the segment-wise average angular flux or the 

region-wise scalar flux the result will be the solution to the RBDC or IBDC equations 

respectively. If the angular flux is not changing, the result is identical to SSC. 

In contrast to BDC, to derive the characteristic equation for the angular flux time 

derivative, we will take a time derivative of Equation 5.7 with the assumption that the 

transport cross section is changing slowly with time near time    (i.e. 
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5.8 

This results in an equation for the spatially-dependent segment-wise angular flux 

time derivative which will be used for the SDP methods. The angular flux time derivative 

is given in terms of the incoming angular flux time derivative at the beginning of the 

segment, a source time derivative within the region, and a second angular flux time 

derivative. Note that if this approximation is not valid, the solution of this method will 

not converge to the solution of the Boltzmann equation in the limit as the time step 

goes to zero. 

For each segment, the incoming angular flux time derivative is calculated using 

the outgoing angular flux time derivative from the previous segment as calculated using 

                                                      

13
In Section 5.6 we derive SDP while assuming that the transport cross section varies linearly in time (i.e. 

SCDP), which results in a minor modification to the characteristic equations. 
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Equation 5.8. The source time derivative is approximated using backward differences in 

time, which is described in the following section. Two options for the treatment of the 

second angular flux derivative are described in the following sections: (1) truncating the 

term (TSDP) or (2) assuming the term is isotropic (ISDP). In both cases, the net result is 

that the angular flux time derivative is effectively represented by a source time 

derivative or a modified source time derivative whose effects are propagated in space 

along the characteristics. 

To derive the SDP characteristic equation for the angular flux, we apply Equation 

5.8 to Equation 5.3: 

 

   
      

  
      

     
      

   
    

 

  

     
     

  
       

        
    

 
 

  

   
   

  
 

         
        

    

     
    

 
       

        
    

  
 

 
    

       

   
      

         
       

 

  
   

  

5.9 

In the following sections we approximate the source time derivative and angular 

flux second derivative. Then we can solve Equation 5.9, and the solution will be used to 

propagate the angular flux along the characteristic. 

5.3.3 Approximation of Source Time Derivative with Backward Differences 

We can approximate the source time derivative to a varying order of accuracy 

using backward differences. These approximations are derived in an analogous fashion 

to BDF, using a Taylor series expansion of the source in time: 

   
        

    
   

  

   
   

  
 

   
 

  

    
   

   
 

   
 

  

    
   

   
    5.10 

Using algebra we isolate the first source derivative, which we are approximating: 
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    5.11 

We approximate the first derivative of the source to the desired accuracy by 

truncating the expansion at the corresponding order and approximating the remaining 

derivatives using backward differences in terms of lower derivatives of the source. For 

example, we approximate the second derivative using backward difference in terms of 

the first derivatives: 

 

    
   

   
 

   
   

  
 

   
     

  
   

 

  
      

     

   
 

  
        

     

     

   

 
  

      
     

   
 

 
  

        
     

        
  

5.12 

We apply the equations for the higher derivatives (e.g. Equation 5.12) to 

Equation 5.11, which results in an equation for the first time derivative of the source in 

terms of the source at previous points in time. For example, if a constant time step is 

assumed, the second order approximation is: 

 
   

   

  
 

 
   

       
      

 
   

     

   
      

    5.13 

While the coefficients for the source derivative approximation with backward 

differences are identical to those that arise in BDF for the same order and time step size, 

it is an oversimplification that this is BDF. Nonetheless, for many of the test problems 

considered in this research, SDP methods using backward differences for the source 

derivative closely reproduce the results of BDC methods using BDF of the same order 

and time step size.  

The source derivative approximation can be written as the weighted sum of the 

neutron source at previous points in time in an analogous fashion to BDF: 

 
   

   

  
      

     

   

   

  5.14 
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Applying Equation 5.14 to Equation 5.9 gives the SDP step characteristic 

equation prior to the treatment of the second time derivative of the angular flux: 

 

   
      

  
      

     
      

   
    

 

  

     
     

  
       

        
    

 
 

  
     

     

   

   

 
         

        
    

     
    

 
       

        
    

  
 

 
    

       

   
      

         
       

 

  
   

  

5.15 

In the following sections, this equation will be solved two different ways: by 

truncating the angular flux second derivative (TSDP) and by approximating the angular 

flux second derivative with the scalar flux (ISDP). Both approximations introduce an 

error term which will prevent the methods from converging to the solution of the 

Boltzmann equation in the limit as the time step goes to zero; however, for large time 

steps this error is expected to be small due to division by the neutron velocity. 

5.4 Solution of the Step Characteristic Equation with Truncated Second 

Derivative 

For TSDP, we will assume that the angular flux second derivative term is small: 

 

       
        

    

  
 

    
       

   
      

         
       

 

  
   

    5.16 

While the second derivative of the angular flux itself may not necessarily be 

small, in the characteristic equation for the angular flux (e.g. Equation 5.15) this term is 

divided by the square of the neutron velocity, which is large and limits the impact of this 

approximation. 

This allows us to rewrite the equation for the spatially-dependent angular flux 

time derivative in terms of known quantities: 
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      5.17 

When Equation 5.16 is applied to Equation 5.9, the result is identical to the step 

characteristic equation that occurs in ASTC: 

 

   
      

  
      

     
      

   
    

 

  

     
     

  
       

        
    

 
 

  
     

     

   

   

 
         

        
    

     
      

5.18 

As with the other MOC methods, this differential equation is solved using an 

integrating factor       
        

    , which eliminates some of the exponentials on the right-

hand side of Equation 5.18: 

 

 

  
       

        
      

       

   
         

        
     

 

  

     
     

  

 
 

  
     

     

   

   

 
      

        
      

     
      

5.19 

Equation 5.19 is solved by integrating over the segment to position  : 

 

 
 

  
  

     
         

    
  

           

 

  
   

    
         

         
     

 

  

     
     

  

 

  
   

 
 

  
     

     

   

   

 
      

         
      

     
         

5.20 
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which evaluates to: 

 

  
            

        
         

     

   
    

      
        

      

     
     

 

  

     
     

  
     

    

 
 

  
     

     

   

   

 
      

        
      

      
    

  

 
 

  
     

     

   

   

 
    

   

     
      

5.21 

With some algebra, Equation 5.21 can be rewritten as the spatially-dependent 

segment-wise angular flux for a segment using TSDP: 

 

  
            

      
    

   

  
 

     
     

  
  

    
     

     
   

   

   

         
        

    

    
    

 

  
 

    
     

     
   

   

   

  
         

        
    

     
      

5.22 

This is the solution to the TSDP characteristic equation. As with the other MOC 

methods, it is used to propagate the angular flux along characteristics in space and to 

integrate the region-wise scalar flux with the segment-wise average angular fluxes.  

5.4.1 Angular Flux Propagation Along the Characteristic - TSDP 

We know the incoming angular flux at the beginning of a segment because we 

calculated the outgoing angular flux for the previous segment. This is found by 

evaluating Equation 5.22 at the end of the segment: 

 

  
      

          

      
      

     

  
 

     
     

  
  

    
     

     
   

   

   

         
        

    
    

 

  
 

    
     

     
   

   

   

  
         

        

     
      

5.23 
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5.4.2 Numerical Integration of the Region-wise Scalar Flux - TSDP 

In order to numerically integrate the region-wise scalar flux, we will calculate the 

segment-wise average angular flux. This is calculated by integrating the segment-wise 

spatially-dependent angular flux over the segment: 

 

   
           

      
     

  
 

     
     

  
  

    
     

     
   

   

   

  
  

   

     
    

 

  
 

    
     

      
    

 

   

   

 
 

     
     

     
     

  
  

         
        

     
        

  
  

   

     
   

 
 

  
 

    
     

      
    

 

   

   

 
 

     
     

     
     

  
  

5.24 

The region-wise scalar flux is calculated by numerically integrating the segment-

wise average angular fluxes over space and angle as in SSC: 

   
          

  

    
                

            

  5.25 

5.4.3 Propagation of the Angular Flux Time Derivative on Characteristic - 

TSDP 

We propagate the angular flux along the characteristic so that the incoming 

angular flux for every segment will be known. We will similarly propagate the angular 

flux time derivative along the characteristic. This simply involves evaluating Equation 

5.17 at the end of the segment: 

 
   

      
          

  
 

     
     

  
       

        
      

     

   

   

 
         

        

     
      5.26 

This equation is identical to the equation for the outgoing angular flux time 

derivative that arises in ASTC. Since Equations 5.23, 5.24, and 5.26 are identical for TSDP 

and ASTC, the two methods are equivalent. 
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5.5 Solution of the Step Characteristic Equation for SDP with Isotropic 

Correction 

In the previous section we assumed that the angular flux second derivative term 

in the characteristic equation was small so that it could be truncated. As we will see in 

Chapter 6, there may be conditions where TSDP is less accurate than IBDC (e.g. when 

the angular distribution of the neutron flux is changing slowly but the change in the 

scalar flux is accelerating or decelerating quickly, or equivalently  
  

  
 is small but 

   

   
 is 

large). 

To ensure that SDP is systematically more accurate than IBDC, we will also 

consider an SDP method where the angular flux second derivative is approximated as 

isotropic using the region-wise scalar flux: 

 

       
        

    

  
 

    
       

   
      

         
       

 

  
   

 
       

        
    

    

    
   

   
       

         
       

 

  
   

  

5.27 

which allows us to evaluate the integral over the segment: 

 

       
        

    

  
 

    
       

   
      

         
       

 

  
   

 
 

    

    
   

   
 

         
        

    

     
      

5.28 

However, now we require an approximation for the scalar flux second derivative. 

To remain consistent with our work so far, we will approximate the second derivative 

using backward differences: 

 
    

   

   
      

     

     

   

  5.29 
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where the coefficients    are derived in a similar fashion to the coefficients for the first 

derivative. The coefficients are a function of the time step size of the current and 

previous time steps, and they have the dimension of inverse-time squared (i.e.    ). 

This allows us to rewrite the equation for the spatially-dependent angular flux 

time derivative with the scalar flux second derivative as an additional source-derivative 

term: 

 

   
      

  
 

     
     

  
       

        
    

       
     

   

   

  
    

     

    

     

   

  
         

        
    

     
      

5.30 

When Equation 5.30 is applied to Equation 5.9, the result is the step 

characteristic equation for ISDP: 

 

   
      

  
      

     
      

   
    

 

  

     
     

  
 

      
        

    

 
 

  
      

     

   

   

  
    

     

    

     

   

  
         

        
    

     
      

5.31 

This differential equation only differs from the equivalent equation for TSDP by 

the presence of the scalar flux second derivative source term. To simplify the 

characteristic equation, we will define a transient source term which encompasses the 

source derivative and the scalar flux second derivative: 

     
    

 

     
         

     

   

   

  
    

     

    

     

   

   5.32 

where the 0 subscript is to distinguish this transient fixed source term from those that 

are used for methods derived later in the chapter. 

This allows us to write the ISDP characteristic equation more succinctly: 
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5.33 

The process to solve this equation is similar to TSDP; an integrating factor is 

applied, the equation is integrated over the segment length, and after some algebra the 

solution is the spatially-dependent segment-wise angular flux: 

 

  
            

      
    

   

  
 
     

     

  
     

            
        

    

    
    

    
   

  
  

         
        

    

     
      

5.34 

This is the solution to the ISDP characteristic equation. It is used to propagate 

the angular flux along characteristics in space and to numerically integrate the region-

wise scalar flux using the segment-wise average angular fluxes. In addition, Equation 

5.30 will be used to propagate the angular flux time derivative along the characteristics. 

5.5.1 Angular Flux Propagation Along the Characteristic - ISDP 

To propagate the angular flux along the characteristic, we will calculate the 

outgoing angular flux for each segment. This is calculated by evaluating Equation 5.34 at 

the end of the segment: 

 

  
      

          

      
      

     

  
 
     

     

  
     

            
        

    
    

    
   

  
  

         
        

     
      

5.35 

5.5.2 Numerical Integration of the Region-wise Scalar Flux - ISDP 

We calculate the segment-wise average angular flux in order to obtain the 

region-wise scalar flux. This is calculated by integrating the segment-wise spatially-

dependent angular flux over the segment: 
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5.36 

The region-wise scalar flux is calculated by numerically integrating the segment-wise 

average angular fluxes over space and angle using Equation 5.25. 

5.5.3  Propagation of the Angular Flux Time Derivative on Characteristic - ISDP 

To propagate the angular flux time derivative along the characteristic we 

evaluated Equation 5.30 at the end of the segment: 

 
   

      
          

  
 

     
     

  
       

        
     

             
        

   5.37 

5.6 Solution of Characteristic Equation with Cross Section Derivative 

Propagation  

The previous derivations for SDP have assumed that the transport cross section 

changes slowly in time so its time derivative can be neglected. This is a common 

assumption in time-dependent transport methods because it is true throughout most of 

the space and time domain. The exception is near volumes in which the material 

composition changes quickly during the transient, such as a control rod guide tube or 

voiding moderator. 

This approximation is also a matter of practicality. Allowing the cross sections to 

vary in space and/or time substantially complicates the solution of the transport 

equation. For MOC or collision probability methods (CPM) the resulting differential or 

integral equation is not analytically solvable without the flat cross section 

approximation. To accommodate this approximation, the regions are typically just 

defined to be fine enough that the approximation is acceptable. 
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Nonetheless, to understand the implications of allowing the transport cross 

section to vary in time, we have developed the Source and Cross Section Derivative 

Propagation (SCDP) method. 

We begin with the characteristic equation prior to time-discretization without 

resolving the angular flux time derivative integral, which is similar to Equation 5.9: 

 

  
           

             
         

       
     

         
         

    

     
    

 

 
       

         
    

  
 

   
       

  
      

          
       

 

  
   

  

5.38 

where for clarity we will temporarily use parentheses exclusively to indicate functional 

dependence and square brackets to clarify arithmetic order precedence. 

We assume that the transport cross section varies linearly with time near the 

present point in time   : 

      
          

            
      

     

  
  5.39 

We take a time derivative of Equation 5.38: 

 

   
      

  
 

 

  
     

             
         

     

 
 

  
   

     
         

         
    

     
    

  

 
 

  
 
 

      
         

    

  
 

   
       

  
      

          
       

 

  
   

   

5.40 

We evaluate each of the derivatives using the chain rule: 
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5.41 

and: 

 

 

  

 
 
 
 
 

  
    

 
 
 
 
   

       
            

      
     

  
      

    

     
            

      
     

   
 
 
 

 
 
 
 
 

 
   

    

  
 
         

         
    

     
    

 

   
    

      
    

  
 
         

         
    

     
     

 

 
  

    

     
    

      
    

  
     

           
         

      

5.42 

and: 

 

 

  
 
       

         
    

  
 

   
       

  
 

     
          

    
   

 

  
   

 

  
      

    

  

     
    

  
       

         
     

   
       

  
      

          
       

 

  
   

 
       

         
    

  
 

    
       

   
      

            
       

 

  
   

 
      

    

  

       
         

    

  
 

   
       

  
      

          
          

       

 

  
   

  

5.43 
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We evaluate all of the terms at time    and apply the results to Equation 5.40: 

 

   
      

  
  

     
     

  
      

    
      

   

  
     

      
  

   

     
            

        
    

  
   

   

  
 

  
   

     
   

      
   

  
  

         
        

    

     
    

 
      

   

  

    
   

  
       

        
     

   
       

  
      

         
       

 

  
   

 
       

        
    

  
 

    
       

   
      

        
       

 

  
   

 
      

   

  

       
        

    

  

  
   

       

  
      

          
         

       

 

  
   

  

5.44 

where we have returned to our convention of using a mix of brackets and parentheses 

to indicate arithmetic order precedence. 

Equation 5.44 is used in SCDP to propagate the angular flux time derivative along 

the characteristic. When we substitute it into Equation 5.38 we get the characteristic 

equation for SCDP: 
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5.45 

The solution to this characteristic equation is: 
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5.46 

We need to address the second derivative terms. While we can truncate these 

terms as we did for TDSP, assuming that the angular flux time derivatives are isotropic 

imposes only a minor computational and memory expense but is expected to provide 

enhanced accuracy. As a result, we will only consider the SCDP method with an isotropic 

correction (ISCDP). 

After applying the isotropic approximation to approximate the time derivatives, 

we can evaluate all of the integrals in Equations 5.44 and 5.46. The first integral 

evaluates to: 
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5.47 

The second integral evaluates to: 

 

       
        

    

  
 

    
       

   
      

        
       

 

  
   

 
 

    

    
   

   
 

         
        

    

     
      

5.48 

The third integral evaluates to: 

 

      
   

  

       
        

    

  
 

   
       

  
        

         
       

 

  
   

 
      

   

  

   
   

  

 

       
     

   
         

        
    

     
      

5.49 

When we apply the integrals to Equation 5.44 along with backward differences 

to approximate the time derivatives, the resulting characteristic equation for the 

angular flux time derivative is:  

 

   
      

  
  

     
     

  
      

        
           

        
    

     
    

         
        

    

     
      

5.50 

where the two new transient fixed source terms are defined as: 
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5.51 

With the same assumptions, the resulting characteristic equation for the angular 

flux is: 

 

  
            

      
    

   

  
 
     

     

  
     

     
     

    
 

   
    

    

        
        

        
    

    
   

     
     

  
         

        
    

     
      

5.52 

This illustrates that the computational impact of ISCDP is minor relative to the 

SDP methods. The angular flux time derivative equation has gained a linear term and 

the angular flux equation has gained a quadratic term. It is also noteworthy that when 

the cross section derivative goes to zero, the ISCDP equations become equivalent to the 

ISDP equations.  

5.6.1 Angular Flux Propagation Along the Characteristic – ISCDP 

To propagate the angular flux along the characteristic, we evaluate Equation 

5.52 at the end of the segment: 

 

  
                

      
     

  
 
     

     

  
     

     
      

   
    

           
        

    
    

    
   

     
     

  
         

        

     
      

5.53 
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5.6.2 Numerical Integration of the Region-wise Scalar Flux – ISCDP 

We calculate the segment-wise average angular flux to numerically integrate the 

region-wise scalar flux. The average angular flux is calculated by integrating over the 

segment-wise angular flux: 

 

   
           

      
     

  
 
     

     

  
     

     
      

   
    

   
 

  
   

     
   

 
    

   

     
    

  

  
         

        

     
     

  
   

     
    

    
   

     
    

  

  

5.54 

The region-wise scalar flux is calculated by numerically integrating the segment-

wise average angular flux over space and angle using Equation 5.25. 

5.6.3 Propagation of the Angular Flux Time Derivative on Characteristic - 

ISCDP 

To propagate the angular flux time derivative along the characteristic, we 

evaluate Equation 5.50 at the end of the segment: 

 
   

          

  
  

     
     

  
          

           
        

     
    

         
        

     
      5.55 

5.7 Derivation for Second Source Derivative Propagation (2SDP) 

In the previous derivations, the characteristic equation for the angular flux time 

derivative is given in terms of the first derivative of the source. However, through 

repeated differentiation, we can define characteristic equations for higher time 

derivatives of the angular flux. In this section we will derive the characteristic equation 

for a second-order source expansion (2SDP). 

We begin by taking another time derivative of Equation 5.8 while assuming that 

the transport cross section is changing slowly, providing an equation for the second 

angular flux time derivative: 
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5.56 

We substitute Equation 5.56 into Equation 5.8: 

 

   
      

  
 

     
     

  
       

        
     

   
   

  
 

         
        

    

     
    

 
       

        
    

  
  

      
     

   
 

    
   

   
 

      
         

      

     
    

 

  
   

 
 

  
 

    
        

   
      

          
        

  

  
   

      

5.57 

We can evaluate the integral for the second derivative terms, resulting in an 

equation for the angular flux time derivative in terms of the first and second derivatives 

of the incoming angular flux and the source along with the third derivative of the 

angular flux: 

 

   
      

  
 

     
     

  
       

        
     

   
   

  
 

         
        

    

     
    

  
      

     

   
 

 

     
   

    
   

   
 

    
   

  
       

        
    

 
 

     
     

    
   

   
 

         
        

    

     
    

 
       

        
    

  
 

  
    

        

   
      

          
        

  

  
   

   

 

  
   

  

5.58 
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For 2SDP, Equation 5.56 is used to propagate the second derivative of the 

angular flux along the characteristic in addition to Equation 5.58 which is used to 

propagate the first derivative of the angular flux. 

When we substitute Equation 5.58 into Equation 5.3, the result is the 

characteristic equation for 2SDP: 

 

   
      

  
      

     
      

   
    

 

  

     
     

  
 

      
        

    

 
 

  

   
   

  
 

         
        

    

     
    

  
      

     

   
 

 

     
   

    
   

   
 

    
   

  
 

       
        

    

 
 

     
     

 

    
   

   
 

         
        

    

     
    

 
       

        
    

  
   

    
        

   
      

          
        

  

  
   

   

 

  
   

  

5.59 

This differential equation is solved along a segment like other MOC methods: 
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5.60 

For 2SDP, Equation 5.60 is employed to propagate the angular flux along 

characteristics. It is also used to calculate the segment-wise average angular flux. 

Also, it is noteworthy that if the third derivative term is truncated (i.e. T2SDP), 

the resulting equation is identical to that of ASTC when the source is assumed to vary 

quadratically in time; this further reinforces the general relationship between the 

propagated source methods and the ASTC methods.  

While we might consider approximating the second source derivative using 

backward differences, this requires at minimum the source at two previous points in 

time. As a result, 2SDP using backward differences would not be self-starting.  

5.8 Characteristic Equations for Nth Derivative Propagation (NSDP) 

This approach can be extended to still higher derivatives, which results in 

systematic changes to the characteristic equation for each derivative. We can determine 

these equations by inspection of the equations for the linear, quadratic, cubic, etc. 

methods. The equations can be written succinctly using summation syntax. 
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For an     source derivative propagation (NSDP) method, the characteristic 

equation for the segment-wise angular flux in terms of the derivatives of the incoming 

angular flux and neutron source is: 

 

  
          

            
                

        
        

         
    

  
         

        
    

     
      

  

  
 

   

       
        

    

  
      

      

     
      

        
           

     

  

5.61 

where the       on the integral and differential indicates       nested integrals 

over the segment, and where the coefficients are: 

 

     
          

 

  
 
  

  
 

 

 
      

     

   
   

  

     
    

 

 
 

  
 

   
    

   

   

 

   

 

 

   

  

     
      

  

     
     

 

 
    

   

   

 

   

  

5.62 

Note that when   is zero, the result is the BDC characteristic equation before the 

angular flux time derivative is approximated. 

Similarly, the equation for the     angular flux time derivative for an     order 

source expansion is: 

 

    
      

   
  

      
     

   
 

     
        

  
        

        
      

    
   

   
 

     
   

  
 

  
         

        
    

     
      

  

  
 

     

       
        

    

  
        

      

     
      

        
             

       

  

5.63 

where the coefficients are: 
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5.64 

Together, these equations can replicate the characteristic equations     source 

derivative propagation methods. However, higher derivative methods are of only 

theoretical value because they face the same non-self-starting limitation as 2SDP. 

Nonetheless, we can see that the angular flux time derivative can be understood in 

terms of the neutron source time derivatives. However, the effect of each higher source 

time derivative is mitigated by subsequent divisions by the neutron velocity.  

5.9 Summary, Algorithm, and Discussion of SDP Methods 

The algorithm for a single time step for the SDP methods is similar to that of 

BDC. One major difference is that the SDP methods require approximations for the 

source derivatives rather than the angular flux derivative. This is performed when the 

source terms are being constructed, and it has a limited impact on the total run-time 

because most of the computational expense is incurred while evaluating quantities 

along the characteristics. Although the solutions to the SDP method characteristic 

equations look formidable, many terms are isotropic and defined at the region level 

rather than the segment level. This allows us to pre-calculate groups of terms while the 

source is being constructed which drastically simplifies the characteristic equations and 

reduces the number of arithmetic operations per segment; as a consequence, TSDP and 

ISDP are about twice as fast as RBDC even though the latter has deceivingly simpler 

equations. The difference is even more pronounced when high-order backward 

differences or BDF methods are used to estimate the time derivatives. 
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Another difference is that the SDP methods evaluate equations to propagate 

angular flux derivatives along the characteristics. While these equations are relatively 

simple when we only propagate the first derivatives, they quickly become complex as 

additional higher derivatives are propagated. As a result, the higher derivative methods 

are expected to rapidly escalate in computational expense. In addition, the higher 

derivative methods are not self-starting. As a result, we only investigated first-

derivative-based SDP methods. 

Otherwise, the SDP and SCDP algorithms are essentially identical to that of the 

BDC methods; the methods iteratively estimate the scalar flux, use the scalar flux to 

calculate sources, and propagate angular fluxes along characteristics to update the 

scalar flux. This process repeats until convergence, at which point the method advances 

one time step. The algorithm for the SDP methods is summarized in Figure 5-3; the 

algorithm for SCDP is similar, but involves the calculation and use of the cross section 

time derivative as well. 

 

 

Figure 5-3. Nested algorithm of time-dependent MOC with SDP methods 
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The SDP methods are expected to accurately solve the time-dependent transport 

equation without necessitating the storage of the angular flux to represent the angular 

flux time derivative. Although the SDP methods require the truncation or approximation 

of a higher angular flux time derivative term, the impact of this approximation is 

mitigated by the repeated division of these terms by the neutron velocity. Like IBDC, the 

SDP methods will not converge to the solution of the time-dependent Boltzmann 

equation as the time step is reduced to zero; the SDP methods may nonetheless be 

accurate for transients reasonably large time steps. 

A secondary benefit of the SDP methods is that they recast the angular flux time 

derivative in terms of a source derivative. The source derivatives can be approximated 

to high-order accuracy using backward differences with limited computational and 

memory expense; this stands in contrast to methods for approximating the angular flux 

time derivative to a high-order accuracy, which are computationally- and/or memory-

intensive. 

We analyze SDP and SCDP methods in Chapter 6 and numerically test these 

methods in Chapter 8. We provide the details of their implementation in DeCART in 

Chapter 7. 
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Chapter 6  

Error Analysis of Angular Flux Time Derivative Approximations 

6.1 Introduction 

In this chapter, we will provide brief, simplified error analyses for the angular 

flux time derivative options used in the time-dependent Method of Characteristics 

(MOC) methods is in this thesis. The purpose of this chapter is to identify the sources of 

error that explain the differences between the methods. This chapter will focus on the 

angular flux time derivatives specifically rather than the solutions for the angular flux 

(which are a function of the time derivative) to limit complexity. Specifically, we will 

derive an equation for each method for the angular flux time derivative that clearly 

identifies the leading error terms in time, space, and angle.  

The purpose of this chapter is not to provide a detailed account of all of the 

sources of error introduced by MOC when solving the transport equation, but only to 

provide insight into the sources of error that are introduced by our treatment of the 

angular flux time derivative. To limit the complexity of this chapter, we will ignore the 

sources of error inherent in the approximations used by MOC (e.g. angular error 

resulting from the use of discrete ordinates, energy error from the use of the multi-

group approximation, spatial error from the use of the flat source approximation, etc.). 

Further, since the error accumulates as we advance along segments and over time 

steps, we will limit the analysis to the first segment and time step to limit the 

complexity. Finally, we assumed that the methods begin from a critical, steady-state 

configuration because this is representative of the reactor transients of interest. 

We will rely on Taylor series expansions for this error analysis. First, this chapter 

will review the Taylor series expansion to illustrate how it can be used to understand the 

error in the approximation of a time derivative for a differential equation.  
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All of the time-dependent MOC methods in this work can approximate time 

derivatives to high-order accuracy using backward differences. However, rather than 

discussing high-order approximations in the context of each time-dependent MOC 

method, we will discuss the use of backward differences to approximate time 

derivatives more generally. With the understanding that this concept applies to each of 

the time-dependent MOC methods, we can limit the analysis for each unique method to 

the first-order backward difference method. 

We will begin the error analysis sections with the reference time-dependent 

MOC method (RBDC) derived in Chapter 4. This method stores the segment-wise 

average angular flux to represent the angular flux time derivative, which require 

extensive memory. Following RBDC we will analyze the time-dependent MOC method 

with an isotropic approximation for the time derivative (IBDC), which was also derived in 

Chapter 4. This method is computationally- and memory-efficient, but it introduces a 

new angular and spatial error term. 

Finally we will evaluate the three new angular flux time derivative propagation 

(TDP) methods tested in this work. The first is the Source Derivative Propagation 

method with a Truncated second-derivative term (TSDP), the second is the Source 

Derivative Propagation method with an isotropic second-derivative term (ISDP), and the 

third is the Source and Cross Section Derivative Propagation method with Isotropic 

Correction (ISCDP). These methods were derived in Chapter 5. The error analysis for the 

latter methods builds upon previous methods.  

6.2 Review of Taylor Series Expansions for Error Analysis 

Taylor series expansions are a useful tool for understanding the error that is 

introduced when finite differences are used to approximate derivatives. In this section 

we will limit our consideration to time derivatives because we treat spatial dependence 

using MOC in this work. We begin with the assumption that the variable in question   is 

continuously differentiable and continuous near a point in time   . The variable near 

that point in time can be represented by an infinite series of higher derivatives: 
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  6.1 

In practice it is usually necessary to truncate a Taylor series expansion at some 

derivative, resulting in truncation error that scales with that derivative. For example, if 

we truncate the series at the third derivative, the approximation includes an error term 

that scales with the third power of the time: 

                  
      

  
 

       

  

       

   
        6.2 

where the   notation indicates the order of the leading error term. 

Backward Euler is a simple method for time integration. In this method, the time 

derivative is approximated using a backward difference: 

 
   

  
 

       

  
  6.3 

where the subscripts indicate the time (e.g.         ) and the time step is defined as 

           . 

We can show that Backward Euler is first-order accurate in time using the Taylor 

series expansion near   : 

            
   

  
 

   
 

  

    

   
      

    6.4 

Using algebra we isolate the first derivative: 

 
   

  
 

       

   
 

   
  

    

   
      

    6.5 

We see that the first term on the right hand side is the approximation used for 

Backward Euler, while the following terms are the error. Since the leading error term is 

proportional to the time step, Backward Euler is first-order accurate in time. 

6.3 High-Order Accurate Approximations using Backward Differences 

We can approximate derivatives to high-order accuracy by using backward 

differences to approximate higher derivatives. This is the basis for the time integration 
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method called the Backward Differentiation Formula (BDF). We approximate the higher 

derivatives using successive backward differences in terms of lower derivatives. For 

example, we approximate the second derivative in terms of the backward difference of 

the first derivatives, and then we approximate the first derivatives in terms of the 

solution variable: 

 
    

   
 

   
  

 
     

  
   

 

       
   

 
         

     

   
  6.6 

When we apply this to the higher derivatives for the Taylor series expansion, we 

can derive a time integration method with accuracy to the selected order. For example, 

to derive the second-order accurate BDF method, we substitute Equation 6.6 into 

Equation 6.5: 

 

   

  
 

       

  
 

 

 
 
       

  
 

         

  
        

 

 
 

         
 
 

    

  
         

6.7 

where we have assumed a constant time step for simplicity (i.e.             ). 

Higher-order methods are derived similarly by eliminating additional higher 

derivatives. Although BDF methods may be derived to arbitrary order, only methods 

with orders six and lower have good stability properties. A discussion of BDF stability is 

beyond the scope of this thesis. The leading temporal error for BDF order N is given by: 

               
   

      

      

     
           6.8 

where we should also note that high-order methods can be less accurate than low-order 

methods if the time step is very large.  

We can assess the temporal order of convergence by defining a reference 

solution and calculating the “error” in an approximate solution as a function of the time 

step size. For an     order method the error should scale with the     power of the 

time step size, which is difficult to identify on a plot. If we take a logarithm of the error 

equation (or plot the error on a log-log plot), the error will scale linearly with slope  : 
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   6.9 

where       is the error as a function of time step size. We will use this observation in 

Chapter 8 to determine the order of convergence to the reference solution for high-

order time integration methods. 

All of the methods in this thesis may be employed with a user-selected order of 

accuracy by using backward differences to approximate the time derivatives. However, 

for succinctness, we will perform the method-specific error analysis using the first-order 

backward difference method: 

 
   

    

  
 

  
       

      

  
        6.10 

where   is the angular flux,   is the index for the characteristic,   is the spatial position 

along the characteristic, and the energy group index is suppressed for clarity. As a 

reminder, note that the characteristic index contains an embedded angular definition 

(i.e.           where   and   are the indices for the azimuthal and polar angles). This 

will serve as the starting point for the analysis in subsequent sections. Our goal is to 

derive an equation for the angular flux time derivative for each method that clearly 

identifies the error terms. Error Analysis for RBDC 

The first method we consider is RBDC, which is the reference MOC solution. In 

this method, we approximate the angular flux time derivative at the segment-wise 

average angular flux: 

 
   

    

  
 

     
       

   

  
  6.11 

where      
  indicates the segment-wise average angular flux for characteristic   in 

region   at time    when   is within  . 

Our goal is to rewrite Equation 6.10 in terms of the approximation expressed in 

Equation 6.11 plus any error terms. We note that the segment-wise average angular flux 

is related to the spatially-dependent angular flux by the integral: 
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    6.12 

where we have arbitrarily defined the incoming position of the characteristic in the 

region to be     in this chapter for succinctness, and    is the length of the segment. 

We can relate the segment-wise angular flux to the segment-wise average 

angular flux using a simple difference: 

   
          

    
      6.13 

Figure 6-1 shows the relationship between the angular flux, average angular flux, 

and the difference for a representative segment at steady-state. This segment is 

characterized by a strong incoming angular flux relative to the source, resulting in a 

solution that is dominated by a negative exponential function. The reverse situation has 

a        shape.  

 

 

Figure 6-1. Angular flux for a representative segment 
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        6.14 

The error introduced by this approximation is related to how the difference is 

changing in time; if the difference is constant, the approximation introduces no 

additional error. 

If we assume that a transient begins from a steady-state condition, we can 

derive the time-dependent MOC angular flux for an arbitrary time step which is shown 

in Appendix C. However, these equations are complex, and using the first time step as 

an example is adequate for this chapter. 

To evaluate the new error term, we will rewrite it in terms of the angular fluxes 

and average angular fluxes for the first time step (  ) and steady-state (  ): 
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We will substitute the equations for the angular flux terms in parentheses. The 

steady-state angular flux was derived in Chapter 3 and is: 

   
       

        
   

  
 

  
        

     6.16 

while the steady-state average angular flux is: 

    
     

     
  

 

  
   

      
   

  
   

  
  

 

  
   6.17 

The angular flux at the end of the first time step is derived in Appendix C by using 

Backward Euler and using Equation 6.16 for the segment-wise angular flux: 

 

  
       

         
   

  
  

 
   

  
 

  
 

   
 

        
   

 
 

   
   

     
  

 

  
   

    
        

  

   
    

 
   

6.18 

which results in a segment-wise average angular flux of: 
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6.19 

where: 

    
    

  
 

   
  6.20 

If we substitute Equations 6.16—6.19 into Equation 6.14, we find that the error 

introduced by the RBDC1 approximation is: 

 

   
    

  
 

     
       

 

  

 
 

  
 
 
 
 

  
         

   

  
  

 
   

  
 

  
 

   
 

        
   

 
 

   
   

     
  

 

  
   

    
        

  

   
    

 
    

        
  

 
  

 

  
        

    

 

   
     

  
  

 
   

  
 

  
 

   
 

 

  
       

   

   
   

 

 
 

   
   

     
  

 

  
   

    
    

       
     

      
      

    

    
    

    
    

   
 

    
     

  
 

  
   

      
   

  
   

  
  

 

  
 
         

6.21 

We note that all of the spatially-dependent terms are described using 

exponential functions. We can expand all the exponential functions using truncated 

power series: 
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6.22 

With this expansion, many terms cancel and we can identify the leading linear 

spatial error term: 

 

   
    

  
 

     
       

 

  
 

 

  
  

  
 

   
 

   
        

   
  

 

   
 

   
        

        

               

6.23 

where: 

    
    

  
 

   
  6.24 

We can rewrite the leading error term using Taylor series expansions in terms of 

the source and incoming angular flux: 

 

   
    

  
 

     
       

 

  
   

   
 

  
 

 

  
   

      
   

 

   

   
    

  
        

                     

6.25 

This demonstrates that the error in the RBDC1 approximation is proportional to 

the position along the segment in the region; as the segment length goes to zero, the 

error also goes to zero. This is consistent with other sources of error in MOC when step 

characteristics is used (i.e. the flat source and flat cross section approximation). It is also 

clear that the method is more accurate when the angular flux is relatively flat across the 

segment (i.e. 
  

 

   
    

      ) for both time steps. 

We can determine the error that the approximation to the angular flux time 

derivative contributes to the error to the angular flux by substituting Equation 6.21 into 

Equation 5.7: 
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6.26 

where    
       

     
 is the angular flux calculated using RBDC1 (i.e. Equation 4.30) and 

we have expanded the       error using Equation 6.8: 

       
  

  

     
 

   
         6.27 

To remain consistent with our treatment of exponentials in this chapter, we 

approximate the exponentials using a truncated Taylor series and evaluate the integral: 

 

  
          

       
     

 
   

  

     
 

   

 
  

 
 
   

 

  
 

 

  
   

      
   

 

   

   
    

  
       

                         

6.28 

This illustrates that the leading spatial error term for RBDC is linear and 

proportional to the leading temporal error, which is related to the order of BDF used to 

approximate the time derivative. The quadratic spatial error term is related to the 

“flatness” of the angular flux time derivative along the segment, which is the basic 

assumption of RBDC. 

Although this chapter focuses on the first-order temporal methods (e.g. RBDC1, 

IBDC1, etc.), we will provide one example of a high-order method. If BDFN was used to 

approximate the angular flux time derivative for RBDC, the       error term in Equation 

6.25 would be replaced with an        error term based on Equation 6.8: 
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 We can substitute Equation 6.29 into Equation 5.7 to identify the error for 

RBDCN: 

 

  
          

       
     

 
    

       

       
 

     

 
  

 
 
   

 

  
 

 

  
   

      
   

 

   

   
    

  
       

                            

6.30 

Thus we see that the principal difference in the error between RBDC1 and 

RBDCN lies in the leading temporal error term. When the time step is small, the higher-

order BDF methods are more accurate than the lower-order BDF methods because the 

temporal error term is smaller. However, the high-order methods are often suspect 

because they may introduce instability under some circumstances. In Chapter 8 we will 

use RBDC1 with a very small time step to generate reference solutions for this reason, 

but it is worth bearing in mind that the high-order methods may nonetheless be more 

accurate than the reference solution. Expressed as an equation, this condition would be: 

 
      

  

     
 

   
 

    

       

       
 

     
  6.31 

where       is the fine time step used to generate the reference solution and    is a 

larger time step for an    order solution. 

6.4 Error Analysis for IBDC 

In IBDC, the segment-wise angular flux time derivative is approximated using the 

region-wise scalar flux time derivative for the region where the segment lies: 

 
   

    

  
 

  
    

   

    
  6.32 

 This approximation introduces additional spatial and angular error. However, 

error analysis for IBDC is more difficult than for RBDC because the scalar flux is defined 

on a different spatial mesh than the segment-wise angular flux. In MOC, we calculate 

the region-wise scalar flux by numerically integrating the segment-wise average angular 
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fluxes over angle and space within the region. We will use this process to understand 

the error, building on the result from the previous section. 

The first step to calculating the scalar flux is to find the region-wise angular flux. 

The region-wise angular flux is calculated by integrating the segment-wise average 

angular flux over space for every segment within a region at the same angle:  

        
        

   

   

           
 

   

  6.33 

where the weighting factor      is based on the fractional volume represented by the 

segment within the region and depends on the specific geometry and dimensionality. 

Figure 6-2 shows seven characteristic segments within a region at the same 

angle (    ). The segments are separated by an angle-dependent ray spacing of    . 

The angular flux along each segment is assumed to be representative of a band of space 

around the segment with a half-width of 
   

 
.  

 

Figure 6-2. Example of characteristic segments within a region [adapted from Hur08] 
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When we approximated the angular flux time derivative using the segment-wise 

average angular flux, we introduced an error that was proportional to the position along 

the segment  . When we integrate in space perpendicular to the segment within the 

region to calculate the region-wise angular flux, we expect to introduce an error that is 

proportional to some effective width of the region     . Deriving this width in a general 

fashion is complex because regions are not regularly-shaped, and the segments are not 

of constant length. Note that this error is not diminished by reducing the ray spacing 

interval, but it is diminished as the regions become smaller. A more detailed 

investigation of this error is beyond the scope of this chapter, and we will be satisfied 

designating this error as        : 

 
   

    

  
 

       
         

 

  
                            6.34 

The next step to determine the region-wise scalar flux is to integrate the region-

wise angular flux over angle: 

   
          

   

  

             
 

   

  6.35 

If we ignore the error resulting from the use of a finite number of discrete 

ordinates (which is inherent in MOC), we can relate the region-wise scalar flux to the 

region-wise angular flux using spherical harmonics expansions: 

        
  

  
 

  
 

        
 

  
           

 
      

 

    

 

   

  6.36 

where   
  are the neutron currents for region   at time   ,        are the moments of the 

angular flux order two and higher, and   
 
 are the spherical harmonics functions for 

order two and higher. The scalar flux and neutron current are the first two moments of 

the angular flux, and we have separated these terms from the summation so we can 

relate the scalar flux and angular flux to understand the error. 
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If we apply Equation 6.36 to Equation 6.34, we can see that the scalar flux 

approximation introduces an error term proportional to region-wise neutron currents: 

 

   
    

  
 

  
    

 

    
 

     

  
  

  
    

 

  
      

 
                    

               

6.37 

If we use a Taylor series expansion of the region-wise neutron current in time: 

   
    

    
   

 

  
         6.38 

we can rewrite Equation 6.37 in terms of the neutron current time derivative, with the 

new error terms for IBDC in brackets: 

 

   
    

  
 

  
    

 

    
  

     

  
 
   

 

  
     

 
                     

               

6.39 

Equation 6.39 identifies the new error terms that results from the isotropic 

approximation of the angular flux time derivative using the region-wise scalar flux. As 

the regions become smaller, the         error term diminishes, and the primary new 

source of error is proportional to the time derivative of the neutron current and other 

high order moments of the angular flux.  

This analysis indicates that, when the regions are sufficiently small, the scalar 

flux approximation is accurate provided that the angular dependence of the neutron 

flux is changing slowly. This explains why IBDC methods have been observed to be 

accurate for many transients [Tsu13, Hof13b, Tal13]. This is also observed in Chapter 8.  

The error in the angular flux solution for IBDC can be determined by substituting 

Equation 6.39 into Equation 5.7: 

 

  
          

       
     

 
 

 
 
     

  
 
   

 

  
     

 
                

  

 

     
 

   
 

                               

6.40 
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Like RBDC, the leading spatial error term for IBDC is linear and contains the 

leading temporal error term. However, it also contains an error term based on the 

neutron current time derivative and region size, and these error terms will not diminish 

as the time step is refined. 

6.5 Error Analysis for TSDP 

The error analysis for the SDP methods is more straightforward because the 

error terms are evident in the derivation. For TSDP, the angular flux time derivative is 

approximated using Equation 5.17: 

 
   

    

  
 

   
    

  
    

   
  

    
   

  
 
      

  

  
    6.41 

where   
  is the total neutron source and   

  is the macroscopic transport cross section. 

Equation 6.41 is derived by starting with the partially-integrated characteristic 

equation for time-dependent neutron transport before the angular flux time derivative 

is approximated: 

   
       

        
     

  
      

  

  
   

    
  

 
 

   
     

  
   

   
   

 

 

  6.42 

The equation for the time-dependent angular flux is derived by taking a 

derivative of Equation 6.42 with respect to time: 
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6.43 

where the terms in square brackets are truncated for TSDP. 

The source time derivative is approximated using backward differences, which 

results in a time-dependent error. For consistency with the earlier section in this 

chapter, we will assume a first-order backward difference approximation: 

 

   
    

  
 

   
    

  
     

   
  

    
   

  
 
      

  

  
  

    
    

 

  
     

      
 

 

  
 
      

  

  
  

 
 

  
 
    

  

 
  

   
     

  
   

   
   

 

 

 
    

  

 
 

   
     

  

 

  
    

      

 

 

 
    

  

 
 

    
     

   
   

   
   

 

 

         

6.44 

The first two error terms depend upon the time-dependence of the transport 

cross section. In practice, the cross sections change slowly during transients except near 
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regions where material compositions are changing rapidly (e.g. near moving control rods 

or voiding moderator). 

To resolve the time derivatives in the first two terms, we rewrite the exponential 

functions as power series: 

 

  
    

 

  
     

      
    

 

  
     

           

  
 

 

  
 
      

  

  
     

 
 

  
 

      
   

   
    

       

  
    

6.45 

which allows us to identify the spatial dependence of the first two error terms: 

 

   
    

  
 

   
    

  
     

   
  

    
   

  
 
      

  

  
  

    
    

   
 

  
    

 
  

 

   
 

  

 
 

  
 
    

  

 
  

   
     

  
   

   
   

 

 

 
    

  

 
 

   
     

  

 

  
    

   
    

 

 

 
    

  

 
 

    
     

   
   

   
   

 

 

               

6.46 

Thus we see that the leading parts of the first two error terms are proportional 

to the time derivative of the cross section and scale with the length along the segment. 

When the cross section is changing slowly or the regions are very small, these error 

terms diminish. 

The remaining three error terms are more difficult to resolve because they 

require evaluating the integral of angular flux time derivatives. We will evaluate each 

sequentially. We rewrite the exponential function in the time derivative using a power 

series: 
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To resolve the integral, we approximate the angular flux time derivative using 

the segment-wise average angular flux and a power series for the exponential function: 

 

 
   

     

  
   

   
   

 

 

   
    

 

  
            

              

 

 

 
    

 

  
         

6.48 

We follow a similar approach for the second term: 

 

    
  

 
 

   
     

  

 

  
    

      

 

 

  
    

        

 
 

   
    

 

  
       

 

  
     

              

 

 

  
    

        

 
  

    
 

  

   
 

  

  

 
       

 
  

  

    
 

  

   
 

  
        

6.49 

We do the same for the third term: 

 

    
  

 
 

    
     

   
   

   
   

 

 

  
      

 
   

     
 

   
                   

 

 

 
 

 

     
 

   
        

6.50 

We apply Equations 6.48—6.50 to Equation 6.46 to derive the final error 

equation for TSDP: 
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6.51 

TSDP approximations resulted in three error terms which are proportional to the 

cross section time derivative and one error term which is proportional to the second 

derivative of the angular flux. All four error terms diminish as the segment length is 

reduced, and the leading spatial error term is first-order in space. If the cross sections 

are changing slowly, the remaining error term is proportional to the second derivative of 

the angular flux. The error in the second derivative term is diminished by division by the 

neutron velocity, which is large even for thermal neutrons. This is an essential feature 

for this method to be reasonably accurate. 

Based on this analysis, we expect TSDP to do well when the cross sections are 

changing slowly and when the angular flux is not accelerating or decelerating quickly. 

One implication of this analysis is that there could be conditions where IBDC is more 

accurate than TSDP; specifically, when the angular distribution of the flux is not 

changing quickly, but the total amplitude is accelerating or decelerating quickly. 

However, we have not observed this for any test transient, including those presented in 

Chapter 8. Nonetheless, recognition of this possibility informs the approximations used 

in ISDP and ISCDP, which are analyzed in the following sections. 

The error in the angular flux that results from TSDP is determined by substituting 

Equation 6.51 into Equation 5.7: 
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6.52 

where we have expanded the       term in terms of the second derivative of the 

source. We evaluate the integral making use of the power series expansion of the 

exponentials: 

 

  
          

       
     

 
 

 
 
  

 
   

    
   

 

  
 

 

 

     
 

   
 

  

 

    
 

   
 

 
  

 

   
 

  
   

  
 

 

    
 

  
                   

6.53 

Like RBDC and IBDC, the leading spatial error term is proportional to the leading 

temporal error term. However, in the case of TSDP the leading temporal error term 

resulting from the time derivative is quadratic in space14. Finally, we note that the 

second derivative terms are divided by the velocity twice, which substantially reduces 

the impact of this approximation. 

6.6 Error Analysis of ISDP 

The derivation for ISDP is similar to TSDP, but it approximates the second angular 

flux derivative term using the neutron scalar flux: 

 
   

    

  
 

   
    

  
    

    
 

  
 

  
    

   

  
 

  
     

      
   

    
             

     6.54 

                                                      
14

 Note that the use of the flat source approximation introduces a linear spatial error for all of the MOC 
methods in this work. In the parametric evaluation in Chapter 8 we observed that the spatial error for 
RBDC, IBDC, and TSDP scaled the same way, which indicates that this linear spatial error is dominant. 
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To simplify this analysis, we will build on Equation 6.51. We add the scalar flux 

time derivative term within the brackets and subtract the same term outside of the 

brackets: 

 

   
    

  
 

   
    

  
     

    
  

    
   

  
 

  
     

      
   

        
      

  

  
  

    
    

   
 

  
    

 
  

 

   
 

  
 

  

  

   
 

  

    
 

  
 

 

 

     
 

   

 
  

     
      

   

       
      

  

  
                 

6.55 

As in the previous section, we approximate the exponential functions in the 

brackets using a power series: 

 

   
    

  
 

   
    

  
     

    
  

    
   

  
 

  
     

      
   

        
      

  

  
  

    
    

   
 

  
    

 
  

 

   
 

  
 

  

  

   
 

  

    
 

  
 

 

 

     
 

   

  
  

     
      

   

      
               

6.56 

Next we approximate the second derivative of the angular flux with backward 

differences: 

 
     

 

   
 

   
      

       
   

   
        6.57 

We approximate the segment-wise angular fluxes using the region-wise angular 

flux as we did for IBDC: 

 
     

 

   
 

       
          

           
   

   
                6.58 

Finally we approximate the region-wise angular fluxes using the region-wise 

scalar fluxes with Equation 6.38. If we apply Equations 6.57, 6.58, and 6.38 to Equation 

6.56, the result is the final error equation for ISDP: 
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6.59 

As a result, the second angular flux time derivative error term in TSDP has been 

replaced by the second derivative of the neutron current, while the cross section 

derivative error terms are unchanged. This relaxes the condition for the accuracy of the 

method; instead of requiring that the angular flux is not accelerating quickly, it requires 

that the angular distribution of the flux is not accelerating quickly. On this basis we 

expect ISDP to be more accurate than TSDP, and for ISDP to be more accurate than IBDC 

except potentially when cross sections are changing quickly. This is confirmed in Chapter 

8, where ISDP is uniformly more accurate than IBDC. 

The error in the angular flux that results from ISDP is determined by substituting 

Equation 6.59 into Equation 5.7: 

 

  
          

       
     

 
 

 
 
  

 
   

    
   

 

  
 

 

 

  

  
 
    

 

   
 

  

 
 
    

 

   
 

 

 

    
 

   
  

 
  

 

   
 

  
   

  
 

 

    
 

  
       

 
               

                

6.60 

Like TSDP, the leading spatial error term is quadratic, and the leading temporal 

error term is quadratic in space. However, the angular flux second derivative error term 

has been replaced by a neutron current second derivative and an angular flux third 

derivative which is the result of the time derivative approximation. 

6.7 Error Analysis of ISCDP 

The error analysis for ISCDP proceeds in a similar fashion to TSDP. The 

approximation for the angular flux time derivative for ISCDP is: 
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6.61 

We derive this equation by taking the time derivative of the partially integrated 

characteristic equation for the angular flux: 

 

   
    

  
 

   
    

  
     

   
   

 

  
 
      

  

  
     

    
 

  
     

   

   
 

 

  
 
      

  

  
   

 

  
 
    

  

 
  

   
     

  
   

   
   

 

 

 
    

  

 
 

   
     

  

 

  
    

      

 

 

 
    

  

 
 

    
     

   
   

   
   

 

 

  

6.62 

To evaluate the cross section derivative terms, we rewrite the cross section using 

a Taylor series expansion: 
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This allows us to evaluate the cross section time derivatives at time   : 

 

   
    

  
  

   
    

  
  

   
 

  
   

     
  

 

  
        

  

  
   

 

  
 

  
 

  
 

   
 

  
  

      
  

  
   

   
 

  

     
  

 
 

   
     

  
   

   
   

 

 

 
   

 

  

    
  

 
 

   
     

  
    

     

 

 

 
    

  

 
 

    
     

   
   

   
   

 

 

  

6.64 

Next we approximate the angular flux time derivatives using the segment-wise 

average angular fluxes as for RBDC, which introduce a linear spatial error term: 
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This allows us to resolve the integrals and results in a quadratic spatial error: 

  

   
    

  
  

   
    

  
  

   
 

  
   

     
  

 

  
  

 

  
  

    
 

  
       

  

  
   

 

  
 

   
 

  
 
  

 

  
  

 

  
  

    
 

  
  

 

 

     
 

   
  

      
  

  
          

6.66 

Next we approximate the segment-wise angular flux time derivatives in terms of 

the region-wise scalar flux, introducing error terms based on the neutron current 

derivatives: 

 

   
    

  
  

   
    

  
  

   
 

  
   

     
  

 

  
  

 

    
  

   
 

  
       

  

  
   

 

  
 

   
 

  
 
  

 

  
  

 

    
  

   
 

  
  

 

   

    
 

   
   

      
  

  
  

   
   

 

  

   

    
  

 
   

 

  
     

  

  
   

 

  

   

    
  

 
   

 

  
 

 

 

   

   
 
    

 

     
      

  

  
  

     
 
                        

6.67 

We approximate the time derivatives using backward differences: 

 

   
    

  
  

   
    

  
  

  
    

   

  
   

     
  

 

  
  

  
    

   

    
    

       
  

  
  

    
   

  
 

  
    

   

  
 
  

 

  
  

  
    

   

    
    

 

 
  

     
      

   

      
  

      
  

  
  

   
   

 

  

   

    
  

 
   

 

  
     

  

  
   

 

  

   

    
  

 
   

 

  
 

   

   
 
    

 

     
      

  

  
       

 
       

                       

6.68 
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Finally, we expand the exponentials in the bracketed error term to produce a 

final ISCDP error equation that is analogous to the equation for ISDP: 

 

   
    

  
  

   
    

  
  

  
    

   

  
   

     
  

 

  
  

  
    

   

    
    

       
  

  
  

    
   

  
 

  
    

   

  
 
  

 

  
  

  
    

   

    
    

 

 
  

     
      

   

      
  

      
  

  
  

  
   

   
   

    
 

   
 

  

 

   
 

  

   
 

  
      

 
               

               

6.69 

As for ISDP, there is a linear error term for ISCDP that is proportional to the 

second derivative of the neutron current; this is the result of approximating the second 

derivative of the angular flux with the scalar flux. However, in contrast to TSDP and 

ISDP, the two cross section derivative error terms proportional to the incoming angular 

flux and the neutron source have been eliminated. In addition, the cross section 

derivative error term in TSDP and ISDP that is proportional to the angular flux time 

derivative is now proportional to the neutron current time derivative. As a result, we 

expect ISCDP to be more accurate than TSDP and ISDP. Further, unlike TSDP and ISDP, 

ISCDP is expected to still be accurate when the cross sections are changing quickly. 

However, in Chapter 8 we observe that the difference between ISDP and ISCDP is 

negligible, indicating that the assumption of slowly-changing cross sections is 

reasonable for the transients we tested. 

The error in the angular flux that results from ISCDP is determined by 

substituting Equation 6.69 into Equation 5.7: 
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6.70 

The error equation for ISCDP is more complex than TSDP and ISDP, but now 

every error term is proportional to a second temporal derivative or higher. Like TSDP 

and ISDP, the leading spatial error term is quadratic, and the leading temporal error 

term is also quadratic in space. 

6.8 Summary and Conclusions 

In this chapter we identified the leading error terms for the angular flux time 

derivative approximations for each time-dependent MOC method. All of the methods 

had similar temporal error which was determined by the order of the approximation for 

the time derivatives. One noteworthy difference between the BDC and SDP methods 

was that the spatial error was linear for BDC and quadratic for SDP. However, based on 

the parametric study in Chapter 8, it appears that the linear spatial error that results 

from the flat source approximation dominates the spatial error for all methods.  

The methods that approximated the segment-wise angular flux time derivatives 

with the region-wise scalar flux introduced a new spatially-dependent error term which 

reflects the fact that the scalar flux is defined on a different mesh than the angular flux. 

However, this error term becomes small if the regions are small. Further, the scalar flux 

approximation preserves the zeroth moment of the angular flux and relaxes the criteria 

for accuracy; if the angular dependence of the neutron flux is changing slowly, the 

approximation is accurate. 

This observation was leveraged in the development of the ISDP method. The 

original SDP method, TSDP, incurs an error term which is proportional to the second 
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derivative of the angular flux. In ISDP, this term is approximated using the second 

derivative of the scalar flux, which reduces the error. 

The other major sources of error in TSDP and ISDP are the result of  neglecting 

the time derivatives of the cross sections. ISCDP addresses these error terms by 

incorporating the cross section derivatives into the angular flux time derivative 

equation. As a result, ISCDP is expected to be the most accurate of the new SDP 

methods. We confirm these trends with the numerical experiments in Chapter 8. 
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Chapter 7  

Overview of DeCART and Implementation of MOC Methods 

7.1 Introduction 

This chapter provides background on the computer code DeCART [Joo04, Cho05, 

Hur08] and the implementation of the time-dependent method of characteristics (MOC) 

methods in DeCART for this thesis. DeCART is a three-dimensional (3D) whole core 

neutron transport code for light water reactor analysis. This chapter will first provide an 

overview of DeCART, including a summary of the important features used in this work. It 

will then discuss in more detail the use of coarse mesh finite difference (CMFD) based 

diffusion to accelerate source convergence in DeCART. Finally, it will discuss the steady-

state and transient MOC algorithms with more detail than provided in Chapters 3—5. 

7.2 Overview of DeCART 

DeCART models 3D reactor problems using a coupled 2D/1D approach. Most of 

the spatial heterogeneity within a light water reactor is in the planar dimension, and in 

these dimensions DeCART uses 2D MOC to resolve the fine spatial details of the nuclear 

fuel assemblies. By contrast, there is greater uniformity in the axial dimension, so 

DeCART uses a neutron diffusion-based nodal expansion method (NEM) for this 

dimension. Since this thesis exclusively considers 2D problems, NEM is not employed in 

this work. 

The 2D/1D model in DeCART is coupled using a 3D diffusion-based coarse mesh 

finite difference (CMFD) method. CMFD and MOC operate synergistically in DeCART: 

CMFD is used to accelerate the neutron source convergence in MOC, and MOC provides 

the radial neutron currents for CMFD’s coarse mesh cells to generate correction factors 

that preserve the MOC current using neutron diffusion. CMFD is roughly an order of 

magnitude less computationally-expensive than MOC, and it can significantly accelerate 
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the convergence of the neutron flux. As a result, CMFD has been commonly used to 

accelerate neutron transport methods [Col13]. 

DeCART solves the neutron transport equation by alternating between CMFD 

and MOC. CMFD is used to calculate coarse-mesh (cell-wise) neutron scalar flux, which 

provides an initial estimate of the neutron source term for MOC. MOC is used to 

calculate the fine-mesh (region-wise) scalar flux as well as the neutron currents for the 

CMFD cells. CMFD then incorporates a current-correction factor so that it preserves the 

MOC currents at the cell boundaries. CMFD is used to recalculate the coarse-mesh 

scalar flux, and the change in the coarse mesh scalar flux is used to update the neutron 

source term for MOC. This process repeats until the solution converges. 

In this work, DeCART is used to solve two types of problems: criticality 

eigenvalue problems and transient problems. In criticality eigenvalue problems, the 

neutron fission source is modified by an eigenvalue which ensures that the fission 

source is balanced by the neutron loss terms. By contrast, transient problems evaluate 

the change in the neutron flux distribution over time beginning from a critical 

configuration as a result of some perturbation. 

The MOC algorithm is similar for these two problems. The primary difference 

between MOC for the steady-state and transient problem is the incorporation of the 

angular flux time derivative in the latter. The time-dependent MOC methods employed 

in this thesis use different approaches to approximating the time derivative, but they 

incorporate the time derivative in a fashion that does not result in a large departure 

from steady-state MOC conventions. 

7.3 CMFD Acceleration and MOC Coupling 

To accelerate the convergence of the neutron transport-based MOC model, 

DeCART forms an equivalent neutron diffusion-based model using CMFD. The CMFD 

model uses Cartesian spatial “cells” which are coarser than irregularly shaped MOC 

“regions” and typically correspond to a single homogenized pin cell. Figure 7-1 shows a 

comparison of the MOC regions and a corresponding CMFD cell. 
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Figure 7-1. Comparison of MOC regions and CMFD cells [adapted from Hur08] 
 

In order to make the CMFD model equivalent to the MOC model, DeCART 

homogenizes the MOC region-wise cross sections for the CMFD cells using scalar flux 

weighting: 

     
  

       
   

 
   

    
   7.1 

where   is the index for the CMFD cells,   is the index for the MOC regions,    is the 

macroscopic cross section in question, and   is the volume of the cell or region. 

The homogenized cross sections are used to solve a 2D or 3D spatially-

discretized diffusion equation. Here we will use a 1D equation for simplicity: 

 
  
     

  

  
     

   
  

  
 

    
       

    
 

  

         
    

 

    

  7.2 

where     is the neutron current at each cell face as calculated by MOC,    is the width 

of the cell,    is the removal cross section, and the other quantities are defined in the 

previous chapters. 

To avoid storing the MOC neutron currents, corrective factors    are defined that 

preserve the neutron currents in terms of the CMFD scalar fluxes: 

 

  
       

     
      

      
     

      
    

  
       

     
      

      
     

      
    

7.3 
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where    is the coupling coefficient determined using finite differences in terms of the 

standard diffusion coefficient: 

    
   

   
     

 

   
      

    
  7.4 

and   is the diffusion coefficient: 

   
  

 

      
   7.5 

For the first CMFD iteration before the MOC neutron currents are known, the 

corrective factor is assumed to be zero. This is equivalent to CMFD without a correction 

factor. 

This permits us to rewrite Equation 7.2 with only the scalar fluxes as unknowns: 

 

 

  
     

     
      

      
     

      
      

     
      

  

    
     

      
        

   
 

 
  

 

    
       

    
 

  

         
    

 

    

  

7.6 

In DeCART, this multi-group linear system is solved using source iteration while a 

Krylov subspace method is used for within group solutions. Once the cell-wise scalar flux 

is determined, it is used to update the region-wise scalar flux: 

    
       

 
  

       

  
   

  
     7.7 

where   is the iteration index, and       corresponds to the intermediate scalar flux 

solution after the CMFD update but before MOC iterations. 

The updated region-wise scalar fluxes are used to calculate the region-wise 

neutron source for MOC. An MOC iteration is then performed, which results in an 

updated region-wise scalar flux and cell-wise neutron currents. If the solution has not 

converged, the cell-wise neutron current corrective factor is recalculated, and another 

CMFD/MOC iteration is performed. Convergence is evaluated based on several 
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measures including the convergence of the eigenvalue, the residual, the fission source, 

the fuel temperature, and the transient residual. This process is summarized in Figure 

7-2. 

 

 

Figure 7-2. Simplified representation of DeCART CMFD/MOC algorithm 
 

The process is similar for time-dependent problems, except that delayed 

neutrons are incorporated using analytic precursor integration, the time derivative is 

incorporated as a transient fixed source term, and the fission source is divided by the 

steady-state eigenvalue to ensure an initially-critical system. The time-dependent 

equations are used to model a single time step, and CMFD/MOC iterate until the 

solution at the end of the time step has converged. Then the process continues with 

advancing time steps until the end of the transient. 
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7.4 MOC Initialization and Algorithm 

MOC is used to derive 1D transport equations for the angular flux along 

characteristics with different angles and positions in the problem domain. These 1D 

equations are used both to solve for the angular flux distribution along the 

characteristics as well as to numerically integrate the scalar flux within fine mesh 

regions. The MOC equations were derived in Chapters 3—5 and the time-dependent 

MOC equations were analyzed in Chapter 6. In this section we will discuss the setup of 

the MOC algorithm and application of the MOC equations in DeCART. Note that this 

section does not outline all of the capabilities of DeCART; rather, we describe only the 

capabilities used in this work. 

7.4.1 Spatial Discretization and Initialization 

The spatial discretization of the MOC regions in DeCART is based on a user input. 

DeCART defines the MOC spatial meshing within the confines of the CMFD Cartesian 

spatial meshing as shown in Figure 7-1. While DeCART is able to model a variety of 

arbitrary geometric shapes, the test problems in this work used either subdivided the 

CMFD cell using square regions (e.g. the TWIGL transients) or circular regions centered 

in the CMFD cell (e.g. the C5G7 transient). The circular regions are typically used to 

represent nuclear fuel pins, guide tubes, or similar structures, and they may be 

subdivided using radial divisions. Figure 7-3 provides an example of the C5G7 spatial 

meshing for a CMFD cell with 32 MOC regions. 

 

 

Figure 7-3. MOC spatial meshing used for C5G7 problem [adapted from NEA03] 
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The positions and angles of the characteristics are also based on a user input. 

The user specifies the number of azimuthal and polar angles modeled as well as the 

desired spacing between parallel characteristics. However, if the specifications for the 

angles and characteristic spacing were allowed to be completely arbitrary, the memory 

requirements for storing the geometric data representing the characteristics would be 

enormous; this is similar to the memory problem that arises when we need to store the 

angular flux to represent the time derivative for MOC. To avoid this issue, DeCART and 

many other MOC computer codes define the characteristics in terms of reusable 

characteristic modules15. These modules have a repeating pattern of characteristics that 

are reproduced in every instance of a module so that the geometric information only 

needs to be stored once. Figure 7-4 provides an example of a cell-based characteristic 

module for a single pin-cell with characteristics at one angle. 

  

 

Figure 7-4. Characteristic module for a pin cell [adapted from Hur08] 
 

The characteristic modules are defined such that the characteristics in one 

module are continuous with the characteristics in the adjacent modules at the same 

angle. This allows the angular flux to be propagated continuously across the module 

boundaries. Figure 7-5 shows a single characteristic that spans several characteristic 

                                                      

15
 These are often referred to as “ray tracing modules”, where the term “ray” is synonymous with 

characteristic. 
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modules. In addition, the characteristics in the module are defined such that 

characteristics at supplementary angles are continuous at module boundaries to treat 

reflecting boundary conditions. 

 

 

Figure 7-5. A characteristic spanning four modules [adapted from Hur08] 
 

7.4.2 Steady-State MOC Algorithm 

With the MOC geometry and characteristics defined, DeCART can begin the 

iterative process of CMFD and MOC to solve the neutron transport equation. As 

described in the previous section, CMFD is used first to solve for the scalar flux 

distribution on the coarse cell-wise mesh. The cell-wise scalar flux is used to update the 

region-wise scalar flux using Equation 7.7. This scalar flux will be used to calculate the 

fission and scattering neutron sources for each region for each energy group. 

Next DeCART begins the inner loop of region-wise source convergence. Starting 

with the fast neutrons, DeCART loops over energy groups. For each energy group, the 
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neutron fission and scattering sources are calculated using the most recent region-wise 

scalar flux.  

Next the one group characteristic tracing algorithm begins by looping over all 

angles and then all characteristics at each angle. For each characteristic, DeCART 

advances segment-by-segment and calculates the outgoing angular flux for the segment 

and the contribution of the angular flux along the segment to the scalar flux in the 

region. Note that DeCART models “long” characteristics which span the entire geometry 

rather than “short” characteristics which only span a characteristic module. Figure 7-6 

shows characteristics in a pin cell for angle Ω. The characteristics are evaluated starting 

with the bottom right corner, and the segments for the first three characteristics are 

numbered.  

 

 

Figure 7-6. First three characteristics evaluated for a module [adapted from Hur08] 
 

We will use Figure 7-6 as an example with the assumption that it represents the 

entire problem domain. Starting with Segment 1, the incoming angular flux is assumed 

to be known from the boundary condition. The segment-wise average angular flux is 

calculated using the known incoming angular flux, the neutron source in the region, and 

the cross section. The precise equation depends on the MOC method employed, and we 

will use the steady-state equation for this example: 
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   7.8 

where   is the index for the characteristic,      
    is the incoming angular flux,   

  is the 

total neutron source,      
  is the macroscopic transport cross section, and       is the 

length of the segment. 

Using a weighting factor based on the area or volume within the region that the 

segment represents and a weighting factor angular quadrature, the contribution of the 

segment-wise average angular flux to the region-wise scalar flux is tallied: 

   
        

 

 

 

 

    
       

   

     
   

  7.9 

where   and   are the indices for the azimuthal and polar components of angle     . 

The outgoing angular flux for Segment 1 is also calculated: 

       
         

          
      

   
  

         
      

     
    7.10 

The outgoing angular flux for Segment 1 serves as the incoming angular flux for 

Segment 2. This process continues, advancing segment-by-segment along a 

characteristic until reaching a problem boundary. If this boundary has a reflecting 

boundary condition, the outgoing angular flux at the boundary is stored as the incoming 

angular flux for the supplementary angle characteristic at the outgoing position. 

Although we described this process for a single direction, DeCART evaluates the 

angular flux along a characteristic in the forward and backward direction at the same 

time. This approach is more computationally efficient because some quantities are 

identical for each direction (e.g. the segment lengths and the exponential terms), and 

this results in those quantities only being looked-up or calculated once. 

At this point, the incoming and outgoing angular fluxes for each segment are still 

stored in memory. The outgoing angular fluxes that correspond to cell boundaries for 
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CMFD are used to calculate the cell-wise currents. These currents will be used to 

generate the correction terms for CMFD.  

When all of the segments on a characteristic have been evaluated, the angular 

fluxes along the characteristic are discarded, and the next characteristic is evaluated 

segment-by-segment. In this example, Segment 3 would be next. Once all of the 

characteristics at all of the angles have been evaluated for a particular energy group, the 

region-wise scalar flux for that energy group is fully integrated. The source is updated 

for this energy group and the process is repeated once to ensure that angular fluxes 

have been fully propagated across all reflecting boundaries for the first iteration. 

At this point DeCART advances to the next energy group and repeats this 

process. This continues until all energy groups have been evaluated. For the low energy 

groups that experience significant neutron upscattering, the process is repeated again 

to capture this effect. Now an MOC iteration is complete. The convergence criteria are 

evaluated, and another CMFD/MOC iteration is performed if necessary. 

7.4.3 Differences for Transient MOC 

The MOC algorithm for the time-dependent problem in DeCART is similar to the 

steady-state problem. The major differences are the incorporation of the angular flux 

time derivative, the treatment of delayed neutrons, and the division of the fission 

source by the eigenvalue to ensure that the initial system is critical. Transients are 

initiated by changing material compositions, cross sections, or other properties (e.g. 

density), which results in an imbalance in the neutron production and loss terms. 

Transients are modeled by solving the time-dependent transport equation for a 

series of user-defined time steps over a user-defined duration. Solving the transport 

equation for each time step is roughly analogous to converging the steady-state 

transport equation, except that the fluxes change relatively little over a time step 

compared to the typical change in the flux from the initial guess to the converged 

steady-state solution. As a result, whereas a steady-state eigenvalue problem may 

require many MOC iterations to converge, during a transient most time steps converge 
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with one or two MOC iterations. As a result, there is limited opportunity for transient-

specific transport acceleration schemes in DeCART. 

The two types of time-dependent MOC methods investigated in this thesis treat 

the angular flux time derivative differently. The more conventional approach (i.e. the 

BDC methods) is to approximate the angular flux time derivative using a local finite 

difference approximation. This results in a new source term for each segment or region 

depending on the mesh where the approximate time derivative is defined. When the 

segment-wise angular flux time derivative is approximated using the region-wise scalar 

flux (i.e. IBDC), the time derivative is fully incorporated into the region-wise neutron 

source. When the segment-wise angular flux time derivative is approximated using the 

segment-wise average angular fluxes (i.e. RDBC), a unique MOC algorithm is required to 

construct the segment-wise time derivative approximations. However, in either case, 

the time derivative is incorporated as a transient source term, and the MOC equations 

are used to calculate the region-wise scalar flux and to propagate the angular flux along 

characteristics in a similar fashion to steady-state MOC. 

The new time-dependent MOC methods developed in this thesis (i.e. the SDP 

methods) treat the segment-wise angular flux time derivative differently. For these 

methods, characteristic equations are defined for the angular flux time derivative along 

the characteristic. These equations are used to propagate the angular flux time 

derivative along with the propagated angular flux. As a result, an additional equation is 

evaluated for each segment. Otherwise the transient MOC algorithm is similar to the 

steady-state algorithm. 

7.5 Summary 

This chapter provided an overview of the computer code DeCART which was 

used to test the new time-dependent MOC methods developed for this thesis. The 

chapter began by providing a summary of DeCART and its major features. The chapter 

then described the use of CMFD to solve the neutron diffusion equations to accelerate 

the convergence of MOC. Finally, the chapter discussed the MOC algorithms. 
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Chapter 8  

Test Problems and Numerical Results 

8.1 Introduction 

In this chapter we present three reactor transient test problems that were used 

to empirically evaluate the accuracy and performance of the new Source Derivative 

Propagation (SDP) methods described in Chapter 5 and analyzed in Chapter 6. This 

chapter focuses on the SDP method with the Truncated second-derivative (TSDP) 

primarily, but results are provided for selected cases of SDP with the Isotropic correction 

(ISDP) and with cross section propagation (ISCDP). The SDP methods were implemented 

in the neutron transport computer code DeCART as described in Chapter 7. 

8.1.1 Approach to Evaluate the Accuracy of SDP 

We assess the accuracy of the SDP methods by comparison to solutions 

generated using a reference method16. The reference method—described in Chapter 

4—uses method of characteristics (MOC) to treat the spatial derivatives and the 

backward differentiation formula (BDF) to treat the time derivative. The reference MOC 

method uses the designation RBDCN, where N corresponds to the order of the BDF 

solution employed. The orders of SDP methods are indicated similarly (e.g. TSDPN). 

The reference method is employed in two different ways. First, we use the first-

order reference method (RBDC1) with a fine time step to generate a primary reference 

solution. This solution is used to verify that the SDP methods converge to the reference 

solution as the time step is decreased and that the high-order SDP methods increase in 

accuracy as the order increases. Second, we will use the RBDC with various orders and 

time step sizes to determine whether the SDP methods reproduce the RBDC solution for 

                                                      
16

 We are not using published reference solutions for these transients because either the problem is new 
and does not have published solutions, or the published solutions were calculated using neutron diffusion 
theory rather than neutron transport. 
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the same order and time step size. In other words, we will compare the solution of 

RBDCN with time step    to SDPN with the same time step; if these results are in good 

agreement, it demonstrates that the SDP methods accurately reproduce the solution 

using the conventional method. 

While the RBDC methods provide a reference solution for assessing accuracy, we 

will also use a time-dependent MOC method with an isotropic approximation for the 

angular flux time derivative (IBDC) to assess the efficiency of the SDP methods. IBDC is 

memory-efficient because it does not require storing any angularly-dependent data, and 

it is computationally-efficient because it does not require any additional arithmetic 

operations at the segment-level as compared to steady-state MOC. This is in contrast to 

RBDC which requires the formation of a unique angular flux time derivative 

approximation for every segment. 

8.1.2 Numerical Test Problems 

In this chapter, we present results from three reactor kinetics test problems. 

These three transients are modeled in two dimensions (2D) because DeCART only 

performs neutron transport in 2D. The models are also necessarily small because of the 

high memory expense of storing the neutron angular flux for RBDC. 

The first two transients are based on the TWIGL reactor model [Yas65]. TWIGL is 

a 2D reactor with large homogenous regions with specified cross sections. Transients 

are driven by changing the cross sections in some regions. Two transient problems are 

specified: a slow transient based on a linear cross section ramp, and a faster transient 

using a step-change in the cross section. The TWIGL transients are still widely used for 

benchmarking early in the development of reactor kinetics methods because of their 

simple modeling requirements. The TWIGL transient is also much less computationally 

expensive than the other transients allowing us to generate many solutions for different 

time step sizes. This includes solutions using RBDC6, which required storing the angular 

flux from six previous points in time. 

The third transient is based on the C5G7 mixed-oxide (MOX) benchmark problem 

[Lew01]. The C5G7 problem is a small pressurized water reactor (PWR) core with 
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conventional UO2 and MOX assemblies. The C5G7 problem geometry is more complex 

than the TWIGL reactor because it explicitly represents the fuel rods and surrounding 

moderator. While the C5G7 benchmark problem only provided details for a steady-state 

calculation, we have defined a C5G7 transient based on an instantaneous control rod 

ejection. This transient does not incorporate thermal-hydraulic feedback which limits 

realism but allows us to focus on the solution of the transport equation. 

8.2 TWIGL Transient Problem 

8.2.1 TWIGL Problem Specification 

The TWIGL reactor is a 2D seed-and-blanket geometry 1.6 m along each side. It is 

surrounded by a vacuum and typically modeled with one-quarter or one-eighth core 

symmetry. The problem geometry is displayed in Figure 8-1. The problem specifies one 

delayed neutron group and cross sections for two energy groups within three different 

material regions: Regions 1 and 2 are seed regions while Region 3 is the blanket region. 

The transient was driven by varying the thermal absorption cross section in Region 1. 

 

 

Figure 8-1. Geometry for the south-east quadrant of TWIGL [adapted from ANL05] 
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Table 8-1 provides both the TWIGL reactor macroscopic cross sections by region 

and the kinetics parameters. The arrows in the table indicate the cross sections that are 

linearly-ramped or step-changed in the TWIGL transients. 

 

Table 8-1. Cross sections and kinetics parameters for the TWIGL Transients 

Region Group, g 
Σa 

(cm-1) 
νΣf 

(cm-1) 
Σt 

(cm-1) 
Σs,g→g 
(cm-1) 

Σs,g→g’ 
(cm-1) 

1 
1 
2 

0.01 
0.15 → 0.1465 

0.007 
0.2 

0.238095 
0.83333 → 0.82983 

0.218095 
0.68333 

0.01 
0.0 

2 
1 
2 

0.01 
0.15 

0.007 
0.2 

0.238095 
0.83333 

0.218095 
0.68333 

0.01 
0.0 

3 
1 
2 

0.008 
0.05 

0.003 
0.06 

0.25641 
0.666667 

0.23841 
0.616667 

0.01 
0.0 

v1 = 1 × 107 cm/s, v2 = 2 × 105 cm/s, χ1 = 1, χ2 = 0, β = 0.0075, λ = 0.08 s-1 

 

We modeled the TWIGL reactor in DeCART using quarter-core symmetry with 

100 square “assemblies” that were 32 cm on each side. These assemblies contained 4×4 

cells that were 2 cm long and contained 25 square flat-source regions each17. The MOC 

ray spacing was 0.02 cm, and the number of azimuthal angles and polar angles in 90° 

were 8 and 4 respectively. The initial core power was normalized to one. 

8.2.2 Steady-State Eigenvalue Solution 

Each of the TWIGL transients begins from an assumed steady-state critical 

condition18. This state is initialized using an eigenvalue problem. We calculated the 

eigenvalue              . This is in good agreement with results reported using the 

computer code VARIANT-K [Rin97] with comparable options (             ) [ANL05]. 

The steady-state power distribution by assembly for the TWIGL reactor is 

provided in Table 8-2. This power distribution is color-coded by magnitude with borders 

to indicate the three regions. The same data is presented in a 3D column plot in Figure 

8-2, although this is color-coded by region. 

 

                                                      

17
 In section 8.1.1.1 we perform a parametric study of the sensitivity of SDP to these input parameters. 

18
 The steady-state results for each transient method are identical regardless of the method in question. 
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Table 8-2. Steady-state power distribution for the SE quadrant TWIGL reactor 

1.21 1.24 1.20 2.31 2.13 1.94 1.69 0.66 0.45 0.19 

1.24 1.27 1.22 2.32 2.12 1.92 1.66 0.65 0.44 0.19 

1.20 1.22 1.16 2.30 2.09 1.86 1.60 0.62 0.43 0.18 

2.31 2.32 2.30 2.15 2.00 1.76 1.50 0.58 0.40 0.17 

2.13 2.12 2.09 2.00 1.85 1.61 1.36 0.52 0.36 0.15 

1.94 1.92 1.86 1.76 1.61 1.38 1.16 0.45 0.30 0.13 

1.69 1.66 1.60 1.50 1.36 1.16 0.97 0.36 0.24 0.10 

0.66 0.65 0.62 0.58 0.52 0.45 0.36 0.28 0.18 0.07 

0.45 0.44 0.43 0.40 0.36 0.30 0.24 0.18 0.11 0.05 

0.19 0.19 0.18 0.17 0.15 0.13 0.10 0.07 0.05 0.02 

 

 

 

Figure 8-2. Steady-state power distribution for SE quadrant of TWIGL reactor 
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8.2.3 Linear Ramp Transient 

The first transient evaluated is the TWIGL linear ramp. In this transient, the 

thermal absorption cross section in Region 1 is linearly decreased from 0.15 cm-1 to 

0.1465 cm-1 over a 0.2 s period. This results in a slow exponential power increase which 

can be accurately modeled with a very large range of time steps, which is useful for 

error scaling. Note that the original specification of the TWIGL ramp transient involved 

modeling the transient out to 0.5 s even though the linear ramp ends at 0.2 s. We 

limited the transient to 0.2 s to limit the computational requirements of the model. 

The reference solution used RBDC1 with 0.01 ms time steps. RBDC1 requires 

approximately 4 GB of RAM to store the angular fluxes for the current and previous 

point in time. A power trace for the TWIGL core is presented in Figure 8-3, with the final 

relative power of 1.980412. The reference solution required approximately 20 hours 

using eight 2.53 GHz Intel Xeon processors on the University of Michigan Center for 

Advanced Computing (CAC) network. 

 

 

Figure 8-3. Relative core power for the ramp transient reference solution 
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In the following subsections we used RBDC to evaluate the performance of the 

SDP methods. In the first subsection we provided a brief parametric study for the TSDP1 

to confirm that the method converges toward the RBDC1 solution as the input 

parameters are refined and that the accuracy of TSDP1 is not unduly sensitive to the 

input parameters. The next three subsections focused on the accuracy of the time 

integration of the SDP methods. The fifth subsection concerned the ability of the SDP 

method to capture the spatial variation of the solution. The last subsection compared 

the computational and memory requirements of the methods. 

8.2.3.1 Input Parameter Sensitivity Evaluation 

In this section we evaluated the sensitivity of the SDP methods to the input 

parameters to confirm that the SDP methods converge to the RBDC solution as the 

parameters are refined. Here the parameters of interest represent the angular and 

spatial meshing for MOC; the sensitivity of the methods to the temporal meshing is 

evaluated in detail in later sections. To minimize the sensitivity of the methods to the 

source convergence, in this section all of the methods performed two MOC iterations at 

every time step regardless of the source convergence19. 

For the TWIGL transients, the three SDP methods are in close agreement, and in 

this section we will only evaluate TSDP1. We assessed the sensitivity of the input 

parameters for TSDP1 to the RBDC1 solution by comparing the total power at the end of 

the transient. The four parameters we investigated included the number of azimuthal 

angles in 90°, the number of polar angles in 90°, the spacing between the characteristics 

(ΔKl), and the number of regions per cell.  

The results of the parametric study are presented in Figure 8-4 with the 

perturbations from the reference parameters above displayed on the x-axis. The first 

feature we note is that TSDP1 accurately replicates the RBDC1 solution for every 

adjustment of input parameters. Second, we note that while IBDC1 under-predicted the 

                                                      
19

 We determined two MOC iterations to be sufficient by performing a scoping calculation with RBDC1 
using a source convergence criteria of 1×10

-7
. The convergence criteria is still used for CMFD, but it only 

has a minor impact on the transient result. 



157 
 

final power for each case, the error for IBDC scales with RBDC and TSDP; this indicates 

that the methods had the same leading error terms in angle and space. In Chapter 6 we 

noted that the leading spatial component of the error for RBDC and IBDC was linear 

(Equations 6.27 and 6.40), but the leading spatial component of the error for the SDP 

methods was quadratic (Equations 6.53, 6.60, and 6.70). Nonetheless, the flat source 

approximation used with every method introduced a linear spatial error which is 

apparently dominant. 

 

  

  

Figure 8-4. Results of parametric study for TSDP1, RBDC1, & IBDC1 
 

8.2.3.2 SDP1 Convergence to Reference Solution as Time Step Decreases 

In this section we assessed whether the SDP1 methods converge to the 

reference solution as the time step size decreases. To limit the sheer amount of data in 

each of the solutions while still being able to compare the results for many different 
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time step sizes, we used the final power for the core at the end of the transient for 

comparison. Specifically, we compared the absolute magnitude of the relative 

difference in the final power: 

         
                      

               
   8.1 

where        is the final power for method   with time step   . The absolute 

magnitude of the error is used because negative values cannot be plotted on a 

logarithmic scale. 

In Figure 8-5 we plotted the error for TSDP1 on a log-log plot as a function of the 

time step size. The time steps varied over three orders of magnitude. We see that the 

error in the TSDP1 solution declines as the time step size decreases, indicating that the 

TSDP1 method is converging to the reference solution.  

 

 

Figure 8-5. Relative error in the final power for TSDP1 as a function of time step size 
 

The slope of the error in Figure 8-5 is indicative of the order of convergence of 

TSDP1 to the reference solution. Based on Equation 6.9 we calculate the slope of the 

error using the equation: 

         
                     

                 
  8.2 

where     is one time step size and       is the next smaller time step size. 
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Using Equation 8.2, we determined that the average slope of the TSDP1 error is 

0.951. This indicates that TSDP1 has first order convergence to the reference solution, 

which is consistent with the expectations for BDF1. This also suggests that the other 

error terms identified in Chapter 6 in Equation 6.53 (e.g. resulting from the neglect of 

the cross section derivatives and the second angular flux time derivative) are very small. 

We observed similar trends for ISDP1 and ISCDP1, which were in very good 

agreement with TSDP1. Plots of the error for ISDP1 and ISCDP1 are visually 

indistinguishable from Figure 8-5. 

8.2.3.3 SDPN Convergence to the Reference Solution as the Order Increases 

Next we evaluated whether the high-order SDP methods converge to the 

reference solution as the order increases, and as the time step size decreases. Again, we 

compared the final power for each of the SDP methods to the reference solution using 

Equation 8.1. In Figure 8-6 the error is plotted on a log-log plot for all of the TSDP 

methods up to order six.  

 

 

Figure 8-6. Relative error in the final power for TSDPN as a function of time step size 
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Here we observed that the error for each high-order TSDP method decreased 

with time step size until each method reaches a transition point after which the error 

briefly increases and stabilizes around 1×10-5. For example, the transition point for 

TSDP4 was 10 ms. Upon closer inspection of the high-order TSDP solutions we noted 

that they were converging downward like RBDC. For each TSDP method, the error 

transition corresponds to the point where the high-order solutions are reporting a final 

power that is smaller than the reference solution (1.980412). The solutions of third-

order and greater TSDP methods all ultimately converge to a final power of 1.980396. 

Thus the apparent increase in error in Figure 8-6 for the high-order methods at the 

transition reflects when the error goes from positive to negative. This is illustrated in 

Figure 8-7, which shows the final power for several TSDP methods as a function of time 

step size. The same trend is observed for the high-order RBDC methods and is illustrated 

in Section 8.2.3.4, confirming that this phenomena is not the result of the SDP methods. 

 

 

Figure 8-7. Final power as a function of time step size for TSDP1-4 
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Thus, the transition appears to correspond to the point that the high-order TSDP 

method becomes more accurate than the reference solution. This can only be confirmed 

with RBDC1 by generating a reference solution with a yet smaller time step, but doing so 

requires prohibitive run-times. However, we note that when the time step for the 

reference solution is adjusted upwards (e.g. to 0.025 ms or 0.05 ms) the transition point 

for each method shift upwards as well, which is consistent with this explanation. 

Further, the possibility that the high-order time integration methods are able to 

accurately replicate the reference solution with very large time steps is not surprising. 

The transient behavior of the TWIGL ramp is characterized by a slow exponential, and it 

is not difficult to model the higher derivatives with backward differences. We will return 

to this topic in Section 8.2.3.4 where we use the assumption that the solution is 

exponential in time with the leading temporal error terms identified in Chapter 6 (e.g. 

Equation 6.27 and 6.30) to predict the transition time steps where the high-order 

methods become more accurate than the reference solution. 

Note that some of the high-order TSDP methods do not have solutions for large 

time step sizes (e.g. the largest time step size for a TSDP4 solution is 50 ms). This is 

because the order of the approximation for the time derivative with backward 

differences is limited by the number of previous data available. As a result, when a high-

order method is specified, DeCART begins the transient with a first-order method and 

ascends in method order as additional data becomes available. Since the transient is 200 

ms long, 50 ms is the largest time step that allows for a fourth-order method to be used 

for at least one time step. 

We can calculate the order of convergence to the reference solution for the 

high-order TSDP methods using Equation 8.2 averaged over all time step sizes. However, 

the error results below the transition are not meaningful, and thus they should be 

discarded from this measurement. Instead, we calculated the error slopes using only the 

data above the transition. The slopes of the TSDP methods are provided in Table 8-3. No 

slope could be calculated for TSDP-6 because the solution with the largest time step (20 

ms) was smaller than the reference solution. 
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Table 8-3. Logarithmic error for TSDP methods discarding data below transition 
Method TSDP1 TSDP2 TSDP3 TSDP4 TSDP5 TSDP6 

Slope 0.95 1.91 2.92 4.09 5.30 no data 

 

As expected, the slopes increased for the higher-order TSDP methods. The slopes 

are close to the BDF order for each method, although there were few data points for the 

TSDP4 and TSDP5. The slopes for the higher-order TSDP methods are smaller for the 

transients with very few time steps because the error from the lower-order methods 

that are used to initialize the high-order method contaminate the final solution. Similar 

trends were observed for ISDP and ISCDP, which were in close agreement with the 

TSDP. Error plots for ISDP and ISCDP are visually indistinguishable from Figure 8-6.  

8.2.3.4 SDPN Comparison to RBDCN for Equal Time Step Size 

In this section we compared the TSDP methods with RBDC methods of the same 

order and time step. Figure 8-8 shows the relative error for the high-order RBDC 

methods plotted as dashed lines with the error for the high-order TSDP methods plotted 

as symbols in the same color as Figure 8-6. The error is nearly identical for each order  

 

 

Figure 8-8. Relative error in the final power for TSDPN and RBDCN as a function of Δt 
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and time step size because the RBDC and TSDP methods are in excellent agreement. 

This also confirms that the “error transition” in Figure 8-6 is not unique to the SDP 

methods. We can estimate when the error transition will occur by comparing the 

leading temporal error term for the reference solution with that of a high-order method 

with a larger time step. Although it is difficult to compare the leading temporal error 

terms for RBDC to TSDP because they are expressed in terms of different quantities, it is 

easier to compare the leading temporal error terms for RBDC methods of different 

orders. The error transition for RBDCN will occur when the leading temporal error term 

for the reference solution is equal to the leading temporal error for RBDCN (i.e. 

Equation 6.31 with              s).  

If we assume that the angular flux is exponential in time, we can estimate the 

higher derivatives of the angular flux using: 

 
      

   
            8.3 

where   is the inverse period of flux. The inverse period was calculated to be 3.415 s-1 

using a final relative power of 1.980412 at 0.2 s. 

The error transition for RBDCN is expected when the following is satisfied: 

 
          

 
   

   

      
    8.4 

where we have applied Equation 8.3 to Equation 6.31 and eliminated the common 

terms on each side. Table 8-4 shows the solution of this equation for each   as well as 

the actual error transition observed in this transient. We note that the actual error 

transition for RBDC2 was very close, and the other methods were reasonably close. The 

actual transitions were lower than expected because the high-order methods are 

initialized using low-order method until enough previous data points are available to 

make a high-order approximation of the time derivative. These initial low-order time 

steps prevent the high-order methods from achieving genuine high-order accuracy, and 

the effect is greatest when there are relatively few time steps in the transient. In any 
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case, this reiterates that the cause of the error transition is that the reference solution is 

less accurate than some of the higher-order solutions. 

 

Table 8-4. Predicted and actual error transition time steps for RBDC and TSDP 
N 2 3 4 5 6 

RBDCN  
Predicted 

3 ms 20 ms 60 ms 120 ms 190 ms 

RBDCN 
Actual 

2.5 ms 8 ms 10 ms 40 ms > 20 ms 

TSDPN 
Actual 

2.5 ms 8 ms 20 ms 40 ms > 20 ms 

 

In Figure 8-8 we compared the TSDPN solutions to the RBDCN solutions 

indirectly by observing that their relative error was approximately the same for each 

order and time step size. To compare the results more directly, we calculated the 

absolute difference in final power for the RBDC and TSDP methods: 

                                  8.5 

where we again use the absolute magnitude of the difference because we will plot the 

result on a log-log plot. 

To reduce the amount of visual clutter, we plotted these results in two graphs. 

Figure 8-9 shows the absolute difference for the odd-order methods while Figure 8-10 

shows the difference for even order methods. Both plots also show the difference for 

IBDC1, which is the popular isotropic approximation for time-dependent MOC. 

The absolute difference in the final power for the RBDC and TSDP methods is in 

the range of 1x10-7 to 1x10-6. Closer observation of the output files for the ramp 

transient has shown that the RBDC and TSDP methods are in excellent agreement 

throughout the transient with occasional deviations. These deviations occur when a 

convergence criterion for one method (e.g. RBDC) falls just above the acceptance 

threshold whereas for the other method (e.g. TSDP) it falls just below. This results in one 

method having an extra iteration which results in an increased discrepancy; this is the 

explanation for the small oscillations in the absolute difference for some methods in 
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Figure 8-9. The absolute difference in peak power for TSDP/IBDC and RBDC with the 
same order and time step size: odd order methods 

 

 

 

Figure 8-10. The absolute difference in peak power for TSDP/IBDC and RBDC with the 
same order and time step size: even order methods 
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Figure 8-9 and Figure 8-10. If the SDP and RBDC methods are hardcoded to use the same 

number of iterations, the discrepancy diminishes; this was demonstrated in the results 

for the TWIGL step change transient. The TSDP and ISDP/ISCDP methods also deviated 

from each other by a similar margin for the same reason. 

The TSDP methods more accurately replicated the RBDC solution to the ramp 

transient than the IBDC methods. The difference in the final power for the IBDC 

methods is about two orders of magnitude larger than the TSDP methods. This primarily 

reflects the error in neglecting the angular-dependence of the angular flux time 

derivative. The error for IBDC is nonetheless very small. 

It is well established [But08] that BDF methods of order 7 and higher are 

unstable, and we have observed this instability for RBDC and SDP methods. While these 

methods are not practically useful, it is noteworthy that the close agreement between 

the SDP and RBDC methods extends to these higher-order methods. Figure 8-11 and 

Figure 8-12 illustrate this agreement for the seventh and eighth order methods 

respectively. 

 

 

Figure 8-11. Time-dependent relative power for RBDC7 and TSDP7 
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Figure 8-12. Time-dependent relative power for RBDC8 and TSDP8 

8.2.3.5 Comparison of SDP and RBDC Spatial Power Distribution 

To this point we have used the total core power at the end of the transient as a 

metric for assessing accuracy. In this subsection we focused on the cell-wise reactor 

power distribution to assess whether the SDP methods are accurately capturing the 

spatial variation in the solution. As a reminder, in our TWIGL geometry the quarter-core 

symmetric south-east quadrant of the reactor is composed of 1600 cells, where the cell 

dimensions are 2 cm × 2 cm. The cells consist of 25 equal size square flat source regions. 

The cell-wise powers were edited to the DeCART output file to seven decimal places. 

In this subsection we used the results of the TWIGL ramp transient with a time 

step size of 1 ms; these results are typical of other time step sizes. For the reference 

solution, we used the RBDC method of the same order as the SDP or IBDC method. In 

other words, to assess the accuracy of SDPN and IBDCN, we used the RBDCN solution. 

Figure 8-13 provides the color-coded cell-wise relative power distribution for 

RBDC1 at time 0.025 s as an example. The peak power is 2.60966 at position (8,13) and 

(13,8) as measured from the center of the core; this position is along the interior face of 

the seed region facing the inner blanket. 
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Figure 8-13. The cell-wise relative power for the reference solution at 0.025 s 
 

We assessed the spatial accuracy using several measures of error: the average 

relative error, the L2 error, the maximum absolute error, the maximum relative error, 

the absolute error for the peak cell, and the relative error for the peak cell. The average 

error for method   is calculated using: 

           
 

 
  

                 

         
 

 

   

  8.6 

where         is the power for method   in cell   at time   and   is the total number of 

cells.  

The L2 error is calculated using an L2 norm of the relative error: 

           
                    

 
 
 

            
 

  8.7 

The maximum absolute error is simply the absolute error in the cell with the 

largest absolute error: 

               
 

                     8.8 
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Similarly, the maximum relative error is the relative error in the cell with the 

largest relative error: 

               
 

 
                 

         
   8.9 

The peak absolute error is the absolute error in the cell that is producing the 

most power in the reference solution: 

                                      8.10 

where the peak cell power is: 

                 
 

             8.11 

Similarly, the peak relative error is the relative error in the cell that is producing 

the most power in the reference solution: 

             
                       

            
  8.12 

Using these definitions, we calculated the time-dependent errors for TSDP1 and 

present the results in Table 8-5. The average and L2 error in the cell-wise power are 

small. They are also comparable in magnitude to the error in the total power at the end 

of the transient, which indicates that the error in the final power is representative of the 

 

Table 8-5. Time-dependent error in the relative cell-wise power for TSDP1 

Time (s)                                                

0.025 4.86E-08 7.46E-08 3.00E-07 9.97E-07 -1.00E-07 -3.83E-08 

0.050 5.03E-08 7.21E-08 3.00E-07 8.00E-07 -1.00E-07 -3.84E-08 

0.075 4.93E-08 7.26E-08 3.00E-07 1.31E-06 -1.00E-07 -3.85E-08 

0.100 5.08E-08 7.15E-08 3.00E-07 2.26E-06 -1.00E-07 -3.86E-08 

0.125 4.69E-08 7.08E-08 3.00E-07 1.14E-06 -1.00E-07 -3.86E-08 

0.150 5.22E-08 7.30E-08 3.00E-07 1.65E-06 -1.00E-07 -3.87E-08 

0.175 5.17E-08 7.37E-08 3.00E-07 1.22E-06 -2.00E-07 -7.76E-08 

0.200 5.37E-08 7.44E-08 3.00E-07 1.45E-06 -1.00E-07 -3.89E-08 
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average error. The error is relatively constant through-out the transient. The error in the 

peak cell is approximately 1×10-7, which was the last decimal edited by DeCART. 

To illustrate the spatial variation of the error, in Figure 8-14 we present a 

pseudo-color plot of the relative error cell-wise relative power at the end of the 

transient for TSDP1 for the southeast quadrant; this is equivalent to evaluating Equation 

8.12 for every cell. We see that the largest relative error is scattered in the outer blanket 

region. This occurred because these cells have a small absolute power, and those 

sporadic erroneous cells only differ in power by ±1×10-7. The largest absolute error 

occurred within the ramped seed region, where the power was slightly over predicted. 

The error is very small near the peak cells, which do not change over the transient. 

 

 

Figure 8-14. Relative error in the relative cell-wise power distribution for TSDP1 
 

We also evaluated the errors for ISDP1 and presented the results in Table 8-6. 

We see that the incorporation of the second derivative approximation had a very minor 

effect on the accuracy of the SDP method, although the accuracy was strictly improved. 

This is because the TSDP1 was already accurate, and the second derivative of the 

angular flux is small for this transient. The spatially-dependent error for ISDP1 is 

essentially indistinguishable from that of TSDP1, so we will not present it graphically.  
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Table 8-6. Time-dependent error in the relative cell-wise power for ISDP1 

Time (s)                                                

0.025 4.71E-08 7.27E-08 3.00E-07 9.97E-07 -1.00E-07 -3.83E-08 

0.050 5.07E-08 7.27E-08 3.00E-07 8.00E-07 -1.00E-07 -3.84E-08 

0.075 5.01E-08 7.21E-08 3.00E-07 1.31E-06 -1.00E-07 -3.85E-08 

0.100 5.03E-08 7.08E-08 3.00E-07 2.26E-06 -1.00E-07 -3.86E-08 

0.125 4.49E-08 7.08E-08 3.00E-07 7.97E-07 -1.00E-07 -3.86E-08 

0.150 5.23E-08 7.31E-08 3.00E-07 1.65E-06 -1.00E-07 -3.87E-08 

0.175 5.20E-08 7.26E-08 3.00E-07 1.22E-06 -1.00E-07 -3.88E-08 

0.200 5.17E-08 7.43E-08 3.00E-07 1.45E-06 -1.00E-07 -3.89E-08 

 

We also calculated the spatial error for ISCDP1, which unlike the SDP methods 

does not assume that the cross section is changing slowly with time. The results are 

displayed in Table 8-7. The results are very similar to ISDP1, indicating that the 

assumption that the cross section is changing slowly for those methods has a limited 

impact. Like ISDP1, the spatially-dependent error for ISCDP1 is visually indistinguishable 

from that of TSDP1. 

 

Table 8-7. Time-dependent error in the relative cell-wise power for ISCDP1 

Time (s)                                                

0.025 4.72E-08 7.32E-08 3.00E-07 9.97E-07 -1.00E-07 -3.83E-08 

0.050 4.91E-08 7.20E-08 3.00E-07 8.00E-07 -1.00E-07 -3.84E-08 

0.075 4.92E-08 7.24E-08 3.00E-07 1.31E-06 -1.00E-07 -3.85E-08 

0.100 5.04E-08 7.15E-08 3.00E-07 2.26E-06 -1.00E-07 -3.86E-08 

0.125 4.51E-08 7.09E-08 3.00E-07 7.97E-07 -1.00E-07 -3.86E-08 

0.150 5.23E-08 7.31E-08 3.00E-07 1.65E-06 -1.00E-07 -3.87E-08 

0.175 5.08E-08 7.25E-08 3.00E-07 1.22E-06 -1.00E-07 -3.88E-08 

0.200 5.24E-08 7.40E-08 3.00E-07 1.45E-06 -1.00E-07 -3.89E-08 

 

Table 8-8 displays the error for IBDC1. The maximum and peak error for IBDC1 is 

an order of magnitude larger than the SDP methods, while the average and L2 errors are 



172 
 

one to two orders of magnitude larger. In addition, unlike the SDP methods, these 

errors systematically increase over the transient, which explains the larger discrepancy 

in accuracy for IBDC observed in the previous section. The errors for IBDC1 are 

nonetheless very small, and the accuracy is probably adequate for many applications. 

 

Table 8-8. Time-dependent error in the relative cell-wise power for IBDC1 
Time (s)                                                

0.025 7.16E-07 5.33E-07 2.70E-06 2.36E-05 2.00E-06 7.66E-07 

0.050 7.81E-07 5.81E-07 2.90E-06 2.36E-05 2.20E-06 8.45E-07 

0.075 8.55E-07 6.30E-07 3.20E-06 2.35E-05 2.30E-06 8.85E-07 

0.100 9.03E-07 6.87E-07 3.50E-06 5.91E-06 2.60E-06 1.00E-06 

0.125 1.02E-06 7.55E-07 3.80E-06 9.22E-06 2.50E-06 9.66E-07 

0.150 1.13E-06 8.33E-07 4.20E-06 2.33E-05 2.70E-06 1.05E-06 

0.175 1.25E-06 9.31E-07 4.70E-06 1.29E-05 3.00E-06 1.16E-06 

0.200 1.39E-06 1.05E-06 5.30E-06 9.15E-06 3.40E-06 1.32E-06 

 

In Figure 8-15 we present the relative error in the cell-wise relative power for 

IBDC1. Note that the scale is an order of magnitude larger than that of Figure 8-14; the 

error for the IBDC and SDP methods cannot be meaningfully compared on the same  

 

 

Figure 8-15. Relative error in the relative cell-wise power distribution for IBDC1 
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scale. The relative error for IBDC1 is greatest at the core periphery where the relative 

power is low. However, there is also substantial error at the interfaces between the 

seed and blanket regions. This includes the peak cells, which are near the interface of 

the seed and internal blanket. This error is likely the result of IBDC’s inability to capture 

the changing angular flux distribution at the material interfaces. However, the error is 

nonetheless relatively small throughout the problem. 

We also evaluated the error for the high-order SDP methods by comparison to 

the RBDC methods of the same order. The errors for the high-order methods are all 

comparable to their low-order counterparts. As an example, we presented the error for 

TSDP6 in Table 8-9. The spatial dependence of the error for the high-order SDP methods 

is similar to the spatial error for the first-order methods. 

 

Table 8-9. Time-dependent error in the relative cell-wise power for TSDP6 
Time (s)                                                

0.025 5.67E-08 7.99E-08 3.00E-07 1.26E-06 -1.00E-07 -3.83E-08 

0.050 5.60E-08 8.14E-08 3.00E-07 7.86E-07 -1.00E-07 -3.84E-08 

0.075 5.51E-08 8.18E-08 3.00E-07 1.14E-06 -1.00E-07 -3.85E-08 

0.100 5.30E-08 8.04E-08 3.00E-07 9.16E-07 -1.00E-07 -3.86E-08 

0.125 5.76E-08 8.12E-08 3.00E-07 1.75E-06 -2.00E-07 -7.73E-08 

0.150 5.56E-08 8.19E-08 3.00E-07 7.54E-07 -2.00E-07 -7.74E-08 

0.175 5.97E-08 8.21E-08 3.00E-07 8.27E-07 -2.00E-07 -7.76E-08 

0.200 5.95E-08 8.28E-08 3.00E-07 3.88E-06 -1.00E-07 -3.89E-08 

 

8.2.3.6 Comparison of Computational and Memory Requirements 

There are substantial differences between the computational and memory 

requirements of the SDP and BDC methods. In this section, we compared the relative 

run-time and memory requirements of the SDP and BDC methods for a representative 

TWIGL ramp transient. These results are representative of the TWIGL step change 

transient in the next section, and thus we did not provide additional run-time and 

memory results for that transient. 
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To assess the relative computational expense of the different MOC methods, we 

compared the run-time for several methods for the ramp transient with a 0.5 ms time 

step using eight Intel Xeon processors. The run-times are compared in Figure 8-16.  

 

 

Figure 8-16. Run-time for a TWIGL ramp transient with a 0.5 ms time step 
 

The IBDC methods represent a baseline for efficient time-dependent MOC 

because they incorporate the time derivative into an isotropic, modified source. This 

allows the IBDC method to use the same MOC equations as steady-state MOC. The SDP 

and RBDC methods all involve additional terms or equations that are evaluated for each 

segment. As a result, the SDP and RBDC methods are necessarily more computationally 

expensive.  

Although the TSDP equations appear more complex than the RBDC equations, it 

is noteworthy that TSDP1 requires roughly two-thirds as much run-time as RBDC-120. 

This is because so many of the TSDP terms are isotropic and can be pre-constructed by 

region before beginning MOC sweeps. As a result, TSDP requires about two-thirds as 

many arithmetic operations as RBDC1 per segment. In fact, the relative run-times 

correlate closely with the number of arithmetic operations performed per segment 

because this dominates the computational expense of DeCART. The run-time for ISDP 

methods and TSDP methods are indistinguishable, and thus TSDP methods are not 

shown in Figure 8-16. 

                                                      
20

 Because the RBDC methods involve very large variables for storing the angular flux, this could 
potentially increase the run-time if the memory is not managed well. We have taken care to avoid this by 
(a) storing the angular fluxes in memory in the order that they are required rather than by region and (b) 
using pointers to avoid moving the angular flux variables in memory at the end of each time step. 
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It is also noteworthy that the high-order representation of the source time 

derivative for TSDP6 does not impact the run-time over TSDP1. By contrast, RBDC6 

increases the run-time over RBDC1 by about 60%. This is because it requires several 

arithmetic operations for every segment to construct the angularly-dependent BDF 

approximation of the time-derivative for RBDC6, but for TSDP6 the high-order isotropic 

source derivative approximation is pre-constructed by region. This is a major advantage 

of having the time derivative defined at the region-level rather than the segment-level. 

We also note that incorporating the cross section derivative using ISCDP 

substantially increased the computation requirements over TSDP and ISDP. However, 

for many transients the cross sections are not changing quickly in most of the space and 

time domain, and we could limit the use of ISCDP to time steps and locations where the 

cross sections have changed substantially and use ISDP otherwise. This would 

substantially reduce the computational requirements without sacrificing accuracy. In 

this case, the run-time for ISCDP will converge toward ISDP as the number of time steps 

and locations that require ISCDP decrease. 

We used the same transient to evaluate the memory requirements for the 

various methods. The memory requirements are plotted in Figure 8-17 in units of GB 

RAM. Note that the vertical scale is logarithmic due to the large difference in memory 

required for the various methods. 

 

 

Figure 8-17. Memory requirements for a TWIGL ramp transient 
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Again, the IBDC method forms a baseline for the memory requirements of time-

dependent MOC. The TSDP methods require somewhat more memory than IBDC 

because they necessitate the storage of the previous neutron sources as well as the 

angular flux along the problem boundary if the problem has non-vacuum boundary 

conditions. This increase in memory is comparable to storing the first moment of the 

neutron flux for each region, and it is small compared to the memory cost of storing the 

angular flux for RBDC. Storing the angular flux increases the memory requirements of 

RBDC over IBDC and TSDP by two orders of magnitude for the TWIGL transients. 

While storing additional previous angular fluxes for high-order representation of 

the angular flux time derivative can substantially improve the accuracy of time-

dependent MOC using RBDC, it linearly increases the memory required to model the 

transient. This is because the storage of the angular flux dominates the memory 

required for the model. By contrast, storing additional previous neutron sources or 

scalar fluxes to improve the accuracy of the time derivative for TSDP and IBDC only has a 

modest impact on the memory requirements of the transient. This is another major 

advantage to using terms defined at the region-level rather than the segment-level to 

represent the time derivative. 

8.2.4 Step Change Transient 

A step change transient is also defined for the TWIGL problem. This transient 

begins with a step change in the thermal absorption cross section in region 1 equal to 

the total change in the linear ramp transient. While the original TWIGL problem 

specified that the transient was to be modeled to 0.5 s, we limited the model to 0.2 s to 

reduce the computational burden.  

The reference solution was generated using RBDC1 with a 0.025 ms time step 

with a final power of 2.105263. Figure 8-18 shows the power trace for the reference. 
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Figure 8-18. Relative core power for the step transient reference solution 
 

The step change transient is faster than the linear ramp transient and should be 

more difficult for the SDP methods. In the following subsections we will assess whether 

the SDP methods converge to the reference solution and whether they replicate the 

RBDC solution for the same order and time step size. We will not discuss the memory 

and run-time requirements for the step change transient, because the results are 

essentially identical to the ramp transient. 

8.2.4.1 SDP1 Convergence to Reference Solution as Time Step Decreases 

In this section we assessed whether the TSDP1 solution converges to the 

reference solution as the time step decreases. We used the reactor power at the end of 

the transient to assess the solution accuracy as for the TWIGL ramp. The relative error in 

the final power is defined using Equation 8.1. Figure 8-19 provides a log-log plot of the 

error as a function of the time step size. Unlike the TWIGL ramp, here we see that the 

solution converges linearly when the time step is below a critical value of about 10 ms; 

above this threshold the solution is inaccurate. This trend was observed for all methods 

(SDP, RBDC, and IBDC), and reflects the inability of large time steps to capture the fast 

step change at the beginning of the transient.  
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Figure 8-19. Relative error in the final power for TSDP1 as a function of Δt 
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indicating first-order convergence to the reference solution. As for the TWIGL ramp, the 

solutions using ISDP1 and ISCDP1 were close to the solution for TSDP1, and error plots 

for ISDP1 and ISCDP1 are visually indistinguishable from Figure 8-19. 
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corresponds to the point where the high-order method becomes more accurate than 

the reference solution. A similar feature was observed for the TWIGL ramp transient. 

 

 

Figure 8-20. Relative error in the final power for TSDPN as a function of Δt 
 

Unlike the TWIGL ramp, for this transient the high-order TSDP methods do not 

converge quickly to the reference with large time steps. Instead, their error closely 

tracks the error of TSDP2. This is because the fast elements of the transient occur in the 

first few time steps. The high-order methods require the solution from many previous 

data points to accurately represent the higher derivatives. As a result, unless the time 

steps are very small, the fast aspect of the transient is over before high-order 

approximations are possible. This limitation affects all BDF methods, including RBDC. 

 We may nonetheless calculate the order of convergence for the high-order 

methods using Equation 8.2. Table 8-10 presents the error slopes when the data with 

time steps above 10 ms and below 1 ms is excluded. This confirms that the error for the 

high-order methods in this region is roughly quadratic. Similar trends were observed for 

ISDP and ISCDP methods. 
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Table 8-10. Logarithmic error slopes for TSDP methods, 1 ms ≤ Δt ≤ 10 ms 
Method TSDP1 TSDP2 TSDP3 TSDP4 TSDP5 TSDP6 

Slope 1.021 1.971 2.730 2.397 2.424 2.694 

 

8.2.4.3 SDPN Comparison to RBDCN For Same Time Step Size 

In this subsection we compared the TSDP methods with RBDC methods of the 

same time step and order. The relative error for the high-order methods is displayed in 

Figure 8-21 with the error for the high-order RBDC methods plotted as dashed lines and 

the error for the high-order TSDP methods plotted as symbols. The error is nearly 

identical for each time step and method because the RBDC and TSDP methods are in 

excellent agreement. This agreement includes the inaccurate behavior for all methods 

with time steps above 10 ms, confirming that this is a feature of the transient rather 

than the SDP methods. 

 

 

Figure 8-21. Relative error in the final power for TSDPN & RBDCN vs Δt 
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We compared the TSDP and RBDC methods directly by calculating the absolute 

difference in final power using Equation 8.5. These results are presented in Figure 8-22 

for the odd-order methods and Figure 8-23 for the even-order methods. 

 

 

Figure 8-22. The absolute difference in peak power for TSDP/IBDC and RBDC with the 
same order and time step size: odd-order methods 

 

 

 

Figure 8-23. The absolute difference in peak power for TSDP/IBDC and RBDC with the 
same order and time step size: even-order methods 
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As for the TWIGL ramp, we see that the TSDP methods accurately capture the 

results of the RBDC methods for the same time step size and order. The discrepancy is 

largest for time steps greater than 10 ms and diminishes slowly as the time step is 

reduced. In contrast to Figure 8-9 and Figure 8-10 for the TWIGL ramp, the absolute 

difference does not oscillate with time step; this is because we forced all methods to use 

the same number of MOC iterations as the RBDC methods. Similar differences were 

observed for ISDP and ISCDP. We also note that the IBDC method did better for the 

TWIGL step change transient than it did for the TWIGL ramp transient; this is because 

the step change transient is characterized by a large amplitude change in contrast the 

slow continuous change for the TWIGL ramp transient. 

8.2.4.4 Comparison of SDP and RBDC Spatial Power Distribution 

Next we assessed the spatial accuracy of the SDP methods by comparing the cell-

wise powers. In this subsection we used the results of the TWIGL step transient with a 1 

ms time step. As for the TWIGL ramp, we calculated several measures of error for each 

cell: the average relative error, the L2 error, the maximum absolute error, the maximum 

relative error, the absolute error for the peak cell, and the relative error for the peak 

cell. These errors are calculated using Equations  8.6—8.12. 

The time-dependent errors for TSDP1 are presented in Table 8-11. The spatial 

errors are even smaller than the errors for the TWIGL ramp transient. There is a general 

trend for the errors to decrease with time which reflects the decay of the higher 

derivatives as the reactor power trace flattens. As the higher derivatives decrease, all of 

the leading error terms in Equation 6.53 diminish as well. The error in the peak cell is 

less than 1×10-7. 
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Table 8-11. Time-dependent error in the relative cell-wise power for TSDP1 

Time (s)                                                

0.025 1.38E-08 2.21E-08 1.00E-07 1.51E-06 0.00E+00 0.00E+00 

0.050 2.62E-09 7.70E-09 1.00E-07 1.23E-06 0.00E+00 0.00E+00 

0.075 4.13E-10 5.62E-09 1.00E-07 1.53E-07 0.00E+00 0.00E+00 

0.100 3.06E-10 4.87E-09 1.00E-07 9.29E-08 0.00E+00 0.00E+00 

0.125 1.06E-10 2.81E-09 1.00E-07 8.51E-08 0.00E+00 0.00E+00 

0.150 2.99E-10 3.98E-09 1.00E-07 1.56E-07 0.00E+00 0.00E+00 

0.175 1.57E-10 3.98E-09 1.00E-07 6.40E-08 0.00E+00 0.00E+00 

0.200 2.88E-10 3.44E-09 1.00E-07 1.86E-07 0.00E+00 0.00E+00 

 

We also analyzed the time-dependent error for ISDP1, which was very similar to 

TSDP1. These results are presented in Table 8-12. Note that the cell-wise powers were 

identical for ISDP1 and RBDC1 at 0.125 s. These results indicate that the impact of 

incorporating the second time derivative of the scalar flux was limited for this transient. 

 

Table 8-12. Time-dependent error in the relative cell-wise power for ISDP1 

Time (s)                                                

0.025 1.49E-08 2.53E-08 1.00E-07 1.51E-06 0.00E+00 0.00E+00 

0.050 2.66E-09 7.70E-09 1.00E-07 1.23E-06 0.00E+00 0.00E+00 

0.075 2.92E-10 3.98E-09 1.00E-07 1.53E-07 0.00E+00 0.00E+00 

0.100 3.06E-10 4.87E-09 1.00E-07 9.29E-08 0.00E+00 0.00E+00 

0.125 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.150 1.96E-10 2.81E-09 1.00E-07 1.56E-07 0.00E+00 0.00E+00 

0.175 2.16E-10 4.87E-09 1.00E-07 6.40E-08 0.00E+00 0.00E+00 

0.200 5.59E-11 1.99E-09 1.00E-07 8.95E-08 0.00E+00 0.00E+00 

 

Table 8-13 includes the time-dependent error results for ISCDP1. As for TSDP1, 

the error was small throughout the transient. At time 0.100 s and 0.125 s, the cell-wise 

powers were identical for ISCDP1 and RBDC1. Nonetheless, the results indicate that the 
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impact of neglecting the cross section time derivative for ISDP1 was limited; TSDP1 was 

nearly as accurate as ISCDP1. 

 

Table 8-13. Time-dependent error in the relative cell-wise power for ISCDP1 

Time (s)                                                

0.025 2.19E-08 3.02E-08 1.00E-07 1.51E-06 0.00E+00 0.00E+00 

0.050 3.04E-09 9.94E-09 1.00E-07 1.23E-06 0.00E+00 0.00E+00 

0.075 1.92E-10 2.81E-09 1.00E-07 1.53E-07 0.00E+00 0.00E+00 

0.100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.125 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

0.150 1.96E-10 2.81E-09 1.00E-07 1.56E-07 0.00E+00 0.00E+00 

0.175 8.00E-11 2.81E-09 1.00E-07 6.40E-08 0.00E+00 0.00E+00 

0.200 5.59E-11 1.99E-09 1.00E-07 8.95E-08 0.00E+00 0.00E+00 

 

We also calculated the spatial error for IBDC1, which is provided in Table 8-14. 

The error is substantially higher than for the SDP methods, but the error is not as high as 

IBDC1 for the TWIGL ramp. This is consistent with our observations for the error in the 

final power, and it indicates that the TWIGL step transient was more forgiving for the 

isotropic approximation. 

 

Table 8-14. Time-dependent error in the relative cell-wise power for IBDC1 
Time (s)                                                

0.025 1.67E-06 1.21E-06 5.40E-06 1.29E-05 3.40E-06 1.32E-06 

0.050 2.04E-07 1.53E-07 6.00E-07 4.30E-06 4.00E-07 1.55E-07 

0.075 5.60E-08 4.63E-08 2.00E-07 3.39E-06 0.00E+00 0.00E+00 

0.100 2.79E-08 3.27E-08 1.00E-07 2.80E-06 0.00E+00 0.00E+00 

0.125 2.12E-08 3.04E-08 1.00E-07 1.97E-06 1.00E-07 3.89E-08 

0.150 3.49E-08 3.09E-08 1.00E-07 9.14E-06 0.00E+00 0.00E+00 

0.175 2.39E-08 3.12E-08 1.00E-07 3.79E-06 0.00E+00 0.00E+00 

0.200 2.46E-08 3.13E-08 1.00E-07 1.77E-06 1.00E-07 3.89E-08 
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We observed similar trends for the high-order SDP methods when compared to 

RBDC methods of the same order. Table 8-15 provides the error results for TSDP6, which 

was representative of the high-order methods. As for the other SDP methods, the error 

TSDP6 was larger earlier in the transient and tended to decrease with time. 

 

Table 8-15. Time-dependent error in the relative cell-wise power for TSDP6 
Time (s)                                                

0.025 1.10E-07 5.06E-08 1.00E-07 3.40E-06 -1.00E-07 -3.89E-08 

0.050 7.87E-09 1.98E-08 1.00E-07 6.73E-07 1.00E-07 3.89E-08 

0.075 2.15E-09 1.01E-08 1.00E-07 4.66E-07 0.00E+00 0.00E+00 

0.100 1.81E-10 4.45E-09 1.00E-07 6.68E-08 0.00E+00 0.00E+00 

0.125 2.62E-10 4.87E-09 1.00E-07 8.18E-08 0.00E+00 0.00E+00 

0.150 5.88E-11 2.81E-09 1.00E-07 4.70E-08 0.00E+00 0.00E+00 

0.175 2.16E-10 3.98E-09 1.00E-07 9.22E-08 0.00E+00 0.00E+00 

0.200 6.40E-10 6.29E-09 1.00E-07 1.76E-07 0.00E+00 0.00E+00 

 

8.2.5 Summary for TWIGL Transients 

The SDP methods accurately reproduced the RBDC solutions for the TWIGL 

transients. The SDP methods converged to the reference solution as the time step 

decreased and the order increased. This is a basic requirement for the SDP methods to 

be effective for solving time-dependent neutron transport. 

The high-order SDP methods also accurately reproduced the RBDC methods 

when the same order and time step size was employed. This indicates that the angular 

flux time derivative propagation (TDP) approach using SDP was able to accurately 

reproduce the angular flux time derivative. The SDP methods were also more accurate 

than the IBDC method, although IBDC was nonetheless reasonably accurate. This is 

consistent with the error analysis in Chapter 6, and it suggests that all of the error terms 

for the SDP methods were smaller than the error terms for IBDC. 

The SDP methods were computationally and memory efficient compared to the 

RBDC methods. The RBDC methods required more computing resources and 
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substantially more memory than the SDP methods. The SDP methods did require more 

memory and run-time than the IBDC methods, although the difference was modest and 

the SDP methods were more accurate. 

8.3 C5G7 Benchmark Transient Problem 

8.3.1 C5G7 Benchmark Transient Problem Specification 

The C5G7 benchmark problem [Lew01] was defined to assess the accuracy of 

homogenization approaches to neutron transport. Many neutron transport codes 

homogenize spatial regions (e.g. fuel pins and their surrounding moderator) so that the 

geometry can be represented using regular Cartesian cells, and previous benchmark 

neutron transport problems often simply provided homogenized cross sections. Instead, 

the C5G7 problem specifies cross sections for the fuel and moderator separately, which 

allows users to test the accuracy of homogenization techniques. 

One of the advantages of MOC is that it can treat complex geometries without 

homogenization. Thus, compared to the TWIGL model, the C5G7 problem has a more 

realistic geometry. In addition, the C5G7 problem contains both UO2 and MOX fuel, 

which have different properties. As a result, the C5G7 problem is expected to provide 

more spatial and angular heterogeneity than the TWIGL problem and thus be more 

challenging for approximations to the angular flux time derivative.  

The C5G7 problem is a small reactor core with sixteen fuel assemblies: eight UO2 

assemblies and eight MOX assemblies. The assemblies are 21.42 cm square. The reactor 

is surrounded by a water reflector 21.42 cm thick. Figure 8-24 shows the south-east 

quadrant of the C5G7 reactor. 
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Figure 8-24. Layout of south-east quadrant of C5G7 benchmark by assembly [NEA03] 
 

Each of the assemblies is composed of 17×17 fuel pins or guide tubes which are 

surrounded by moderator. Each pin cell is 1.26 cm square. The fuel pins have a radius of 

0.54 cm and are centered in the pin cell. The layout of the assemblies for the south-east 

quadrant is depicted in Figure 8-25. The pin cell geometry is displayed in Figure 8-26. 

 

 

Figure 8-25. C5G7 fuel assembly layout by pin cell [NEA03] 
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Figure 8-26. C5G7 pin cell layout [NEA03] 
 

The C5G7 problem uses a seven-group cross section library. The seven-group 

library was defined using the collision probability method (CPM) computer code WIMS-

AECL based on a 69-group library. The seven-group library was selected by the designers 

of C5G7 because it was identified as the most challenging group structure investigated. 

The cross sections for the C5G7 transient are provided in Appendix D. 

While the C5G7 problem defines the cross sections for the steady-state problem, 

it does not specify conditions for a transient problem. In order to define a transient 

problem, we have incorporated control rods into the model, and we will eject control 

rods in one assembly to initiate a transient. Because C5G7 is a very small reactor, 

ejecting control rods with realistic cross sections would result in too great of a reactivity 

insertion.  As a compromise, the control rod cross sections were adjusted such that a 

single control rod drive (CRD) would have approximately 1$ reactivity [Tsu13]. In 

addition, although it would typically require 0.1 s for the full ejection of the control rods, 

we are not able to accurately reflect partially-inserted control rods using a 2D DeCART 

model; thus we approximate the ejection as a step change in material composition. 

We placed the control rods in the central UO2 assemblies. Although C5G7 is 

typically modeled with quarter-core symmetry, this would be equivalent to ejecting four 

CRD at once, which introduces an unrealistically-large reactivity. Instead, we model the 

C5G7 transient with using the full core geometry, and we eject the control rods from 

only one assembly. This full core geometry is illustrated in Figure 8-27. 
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Figure 8-27. C5G7 with control rod drives (CRD) & ejected CRD (CRE) [NEA03] 
 

We modeled the C5G7 reactor using a 12 by 12 grid of assemblies: 8 MOX 

assemblies, 4 UO2 assemblies, 4 UO2 assemblies with CRD, and 20 moderator 

“assemblies” that surround the reactor. Each assembly consists of 17 by 17 pin cells. In 

the outer moderator zone, the cells were entirely composed of moderator. In the fuel 

assemblies, the cells were composed of two materials: moderator outside of a radius of 

0.54 cm, and either fuel, fission chamber, guide tube, or control rod inside the radius. 

The cell was divided into 32 regions divided evenly between the outer moderator and 

inner non-moderator material. The spatial discretization of the pin cell is displayed in 

Figure 8-28. The corresponding radii for Figure 8-28 are: r1 = 0.27 cm, r2 = 0.54 cm, and 

r3 = 0.60 cm. The pin pitch is 1.26 cm. For MOC we used a ray spacing of 0.04 cm, and 

we used 8 azimuthal angles and 3 polar angles in 90°.  

 

 

Figure 8-28. Spatial discretization of the pin cell into regions [adapted from NEA03] 
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The C5G7 benchmark problem also does not provide kinetics parameters or 

delayed neutron data. We used representative kinetics parameters for a pressurized 

water reactor [Tsu13]. The delayed neutron spectrum was assumed to be equal to the 

prompt neutron fission spectrum. The neutron energy group structure and velocities are 

provided in Table 8-16, while the delayed neutron precursor group data is provided in 

Table 8-17. 

 

Table 8-16. Neutron energy group structure for C5G7 benchmark 
Energy 

Group 
1 2 3 4 5 6 7 

Etop 20 MeV 1 MeV 500 keV 3 eV 0.625 eV 0.1 eV 0.02 eV 

Ebottom 1 MeV 500 keV 3 eV 0.625 eV 0.1 eV 0.02 eV 10 µeV 

vmidpoint 

(cm/s) 
4.48×109 1.20×109 6.92×108 1.86×106 8.33×105 3.39×105 1.85×105 

 

Table 8-17. Delayed neutron group parameters for C5G7 benchmark 
Delayed 

Group 
1 2 3 4 5 6 

β 2.470×10-4 1.3845×10-3 1.222×10-3 2.6455×10-3 8.320×10-4 1.690×10-4 

λ (s-1) 0.0127 0.0317 0.115 0.311 1.40 3.87 

 

8.3.2 Steady-state Eigenvalue Solution 

The C5G7 transient begins from an assumed steady-state critical condition, 

which is initialized using an eigenvalue problem. We calculated the eigenvalue to be 

              . The power distribution by fuel assembly for the C5G7 reactor at 

steady-state is depicted in Table 8-18. This table is color-coded by the magnitude of the 

power. Figure 8-29 provides the steady-state power distribution by fuel cell for the 

south-east quadrant of the reactor. 
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Table 8-18. Steady-state relative power distribution by assembly 

0.617 0.861 0.861 0.617 

0.861 1.66 1.66 0.861 

0.861 1.66 1.66 0.861 

0.617 0.861 0.861 0.617 

 

 

Figure 8-29. Steady-state power distribution by pin cell in south-east quadrant 
 

8.3.3 Control Rod Ejection Transient 

The C5G7 transient was driven by replacing the control rod material in the guide 

tubes of the south-east, central UO2 assembly with the moderator-filled guide tube 

material. This resulted in the introduction of about 1.25$ of reactivity which causes a 

fast exponential increase in power. The transient was simulated for 0.05 s, over which 

period the power increases by two orders of magnitude from the initial power of one. 
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We generated a reference solution using RBDC1 with a 0.01 ms time step, which 

required about 3.5 days using eight 2.53 GHz Intel Xeon processors and approximately 

30 GB of RAM to store the angular flux. A power trace for the transient is presented in 

Figure 8-30, with a final power of 126.030. 

 

 

Figure 8-30. Relative core power for C5G7 transient reference solution 
 

In the following subsections we used the reference solution to assess the 

accuracy and efficiency of the SDP methods. The first subsection focuses on the ability 

of SDP methods to accurately integrate the total power, while the second subsection 

assesses how well the SDP methods to replicate the RBDC methods of the same order 

and time step. The third subsection evaluates the ability of SDP to capture the relative 

pin power distribution. The fourth subsection evaluates the scalar flux solution at the 

sub-pin level. Finally, the fifth subsection compares the computational and memory 

resources required for each method. 

8.3.3.1 SDP Convergence to the Reference Solution as Time Step Decreases 

In this subsection we evaluated the convergence of the SDP methods to the 

reference solution as the time step size decreases and the order of the source time 
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derivative approximation increases. As for the TWIGL transients, we used the final 

power for the core as a metric for the accuracy of the methods. This was used to 

calculate the relative error in the final power as defined in Equation 8.1. 

Figure 8-31 is a plot of the relative error in the final power for TSPD1 as a 

function of time step size on a log-log graph. The C5G7 transient was amenable to a 

narrower range of time step sizes than the TWIGL transients, and the error was much 

larger for a given time step size due to the larger time derivatives. We calculate the 

order of convergence using Equation 8.2 to be 1.091, indicating linear convergence as 

expected. Similar trends were observed for ISDP1 and ISCDP1. 

 

 

Figure 8-31. Relative error in the final power for TSDP1 
 

Next we evaluated the accuracy of the high-order SDP methods as the order 

increases and the time step size decreases. The relative error in the final power for the 

TSDP methods is presented in Figure 8-32. As expected, as the step size decreases, the 

high-order TSDP methods become increasingly accurate. However, much like the TWIGL 

step change transient, for large time steps the error slope for the high-order methods 

closely tracks the TSDP2 results. This is because the control rod ejection is approximated 
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approximate the time derivatives to high-order accuracy, significant error form low 

order methods is incurred. This is a limitation for all BDF methods including RBDC. For 

more realistic transients, control rod ejections are not step changes, and the high-order 

methods will better capture this element of the transient. 

 

 

Figure 8-32. Relative error in final power for TSDPN as a function of time step size 
 

The order of convergence for the high-order methods is calculated using 

Equation 8.2, and the results are summarized in Table 8-19. This demonstrates that the 

order of convergence to the reference solution is limited for the high-order methods. 

Similar trends were observed for ISDP1 and ISCDP1, and there error plots are visually 

indistinguishable from Figure 8-32. 

 

Table 8-19. Logarithmic error slopes for TSDP methods 
Method TSDP1 TSDP2 TSDP3 TSDP4 TSDP5 TSDP6 

Slope 1.091 1.599 1.111 1.151 1.181 1.223 
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8.3.3.2 SDPN Comparison to RBDCN for Same Time Step Size 

In this subsection we assessed whether the SDPN methods are in good 

agreement with the RBDCN methods of the same order and time step size. Again, we 

used the relative error in the final power at the end of the transient as a metric. 

However, instead of comparing to the fine time step reference solution, we compared 

the SDP methods to the RBDC method of the same order and time step size. However, 

because of the high memory cost of storing the angular fluxes for the C5G7 transient, 

we were only able to generate RBDC methods of a maximum of order three, which 

required approximately 60 GB of RAM. The relative errors for the RBDC methods are 

compared to TSDP in Figure 8-33. We see that while the error is comparable for the 

RBDC methods and the TSDP methods, the agreement is not as close as it was for the 

TWIGL transients. 

 

 

Figure 8-33. Error in the final power for TSDPN and RBDCN as a function of Δt 
 

We compared the RBDCN solutions directly to TSDPN using the absolute 
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emphasis. Here we see that the TSDP and IBDC methods offer comparable agreement to 

RBDC, in spite of the isotropic approximation for the angular flux time derivative in the 

latter. However, we see in the following sections that the SDP methods do a better job 

of representing the spatial solution and are more accurate than IBDC. 

 

 

Figure 8-34. The absolute difference in peak power for TSDP/IBDC and RBDC with the 
same order and time step size 

 

We also compared the absolute difference in power for the ISDPN methods with 

respect to the RBDCN methods of the same time step and order. These results are 

presented in Figure 8-35. Here we see a systematic improvement for the ISDP methods 

over the TSDP methods, with all of the ISDP methods outperforming IBDC1, albeit by a 

narrow margin. This suggests that the incorporation of the second time derivative has a 

small but positive impact on the accuracy of ISDP. 
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Figure 8-35. The absolute difference in peak power for ISDP/IBDC and RBDC with the 
same order and time step size 

 

We also compared the absolute difference in peak power for ISCDPN with 

RBDCN with the same order and time step size. The result is similar to the TSDPN and 

ISDPN methods, with the results being comparable in magnitude to IBDC. 

 

 

Figure 8-36. The absolute difference in peak power for ISCDP/IBDC and RBDC with the 
same order and time step size 
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8.3.3.3 Comparison of SDP and RBDC Spatial Power Distribution 

Next we evaluated the spatial accuracy of the SDP methods by comparing the 

relative pin powers for each cell. We used the results for the C5G7 transient with a 1 ms 

time step, comparing the average relative error, the L2 error, the maximum absolute 

error, the maximum relative error, the absolute error for the peak pin, and the relative 

error for the peak pin. These errors are calculated using Equations 8.6—8.12. For the 

C5G7 transient, pin cells with no fission (e.g. in the moderator of guide tubes) are not 

included in the totals for the average and L2 errors because they produce no power. 

The time-dependent errors for TSDP1 are displayed in Table 8-20. Here we see 

that relative pin powers for TSDP1 were in excellent agreement with those of RBDC1. 

This is in contrast to the observation of the previous subsection, where the agreement 

in the total power was at the fourth significant figure. This suggests that the TSDP1 is 

accurately capturing the angular and spatial distribution of the angular flux time 

derivative, but the magnitude of the time derivative is overestimated. This could be 

explained by the truncation of the second time derivative of the angular flux. 

 

Table 8-20. Time-dependent error in the relative cell-wise power for TSDP1 

Time (s)                                                

0.005 9.33E-07 1.06E-06 4.00E-06 2.81E-06 -3.90E-06 -1.59E-06 

0.010 6.93E-07 7.67E-07 2.90E-06 2.29E-06 -2.90E-06 -1.18E-06 

0.015 5.77E-07 6.33E-07 2.40E-06 1.86E-06 -2.30E-06 -9.35E-07 

0.020 5.12E-07 5.59E-07 2.00E-06 1.73E-06 -2.00E-06 -8.12E-07 

0.025 4.79E-07 5.18E-07 1.90E-06 1.65E-06 -1.90E-06 -7.71E-07 

0.030 4.56E-07 4.91E-07 1.80E-06 1.52E-06 -1.80E-06 -7.31E-07 

0.035 4.41E-07 4.72E-07 1.70E-06 1.44E-06 -1.70E-06 -6.90E-07 

0.040 4.30E-07 4.60E-07 1.70E-06 1.46E-06 -1.70E-06 -6.90E-07 

0.045 4.25E-07 4.53E-07 1.60E-06 1.40E-06 -1.60E-06 -6.49E-07 

0.050 4.16E-07 4.45E-07 1.60E-06 1.41E-06 -1.50E-06 -6.09E-07 

 



199 
 

To illustrate where the error occurs for TSDP1, in Figure 8-37 we plotted the 

relative error in the relative pin power at the end of the transient. We see that the 

largest relative error is at the edge of the reactor at the interface of the MOX and 

moderator assemblies; however these are low power pins, and the absolute error is 

modest. The largest absolute error occurs near the northwest-most ejected control rod, 

which is in the southeast quadrant of the core. The power in the rodded assemblies is 

slightly under predicted, including the assembly with the ejected control rods. 

 

 

Figure 8-37. Relative error in the relative pin power distribution for TSDP1 at 0.05 s 
 

The time-dependent errors for ISDP1 are presented in Table 8-21. We see that 

the errors in the relative pin power are generally slightly lower for ISDP1 than TSDP1. 

When this is coupled with ISDP1’s more accurate prediction of the total power, the 

result is that ISDP1 systematically better predicts the absolute pin powers than TSDP1. 

 



200 
 

Table 8-21. Time-dependent error in the relative cell-wise power for ISDP1 

Time (s)                                                

0.005 6.27E-07 5.60E-07 1.70E-06 3.66E-06 -1.30E-06 -5.30E-07 

0.010 4.70E-07 4.44E-07 1.50E-06 2.32E-06 -1.50E-06 -6.10E-07 

0.015 4.08E-07 3.95E-07 1.40E-06 2.00E-06 -1.40E-06 -5.69E-07 

0.020 3.74E-07 3.66E-07 1.30E-06 1.65E-06 -1.30E-06 -5.28E-07 

0.025 3.56E-07 3.49E-07 1.30E-06 1.62E-06 -1.20E-06 -4.87E-07 

0.030 3.42E-07 3.35E-07 1.30E-06 1.65E-06 -1.20E-06 -4.87E-07 

0.035 3.30E-07 3.25E-07 1.20E-06 1.60E-06 -1.20E-06 -4.87E-07 

0.040 3.28E-07 3.21E-07 1.20E-06 1.60E-06 -1.20E-06 -4.87E-07 

0.045 3.23E-07 3.18E-07 1.20E-06 1.60E-06 -1.10E-06 -4.46E-07 

0.050 3.17E-07 3.12E-07 1.10E-06 1.60E-06 -1.10E-06 -4.46E-07 

 

Figure 8-38 shows the spatially-dependent relative error in the relative pin 

power for ISDP1 at the end of the transient. The error distribution is similar to TSDP1,  

but the error is smaller near the core periphery and in the interior MOX assemblies. In 

general the error is more uniform for ISDP1 than TSDP1. 

 

 

Figure 8-38. Relative error in the relative pin power distribution for ISDP1 at 0.05 s 
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Table 8-22 presents the time-dependent errors for ISCDP1. The spatial error for 

ISCDP1 is small and comparable to ISDP1. In addition, the spatially-dependent relative 

error in the pin power for ISCDP1 is essentially indistinguishable from the that of ISDP1 

presented in Figure 8-38. This confirms that the error resulting from the neglect of the 

cross section derivative is small for this problem. 

 

Table 8-22. Time-dependent error in the relative cell-wise power for ISCDP1 

Time (s)                                                

0.005 6.53E-07 6.55E-07 2.50E-06 2.80E-06 -2.40E-06 -9.78E-07 

0.010 4.98E-07 5.00E-07 1.90E-06 2.01E-06 -1.90E-06 -7.73E-07 

0.015 4.25E-07 4.26E-07 1.60E-06 1.73E-06 -1.60E-06 -6.50E-07 

0.020 3.83E-07 3.83E-07 1.40E-06 1.65E-06 -1.40E-06 -5.69E-07 

0.025 3.61E-07 3.60E-07 1.40E-06 1.60E-06 -1.30E-06 -5.28E-07 

0.030 3.45E-07 3.42E-07 1.30E-06 1.60E-06 -1.30E-06 -5.28E-07 

0.035 3.34E-07 3.30E-07 1.20E-06 1.60E-06 -1.20E-06 -4.87E-07 

0.040 3.30E-07 3.24E-07 1.20E-06 1.60E-06 -1.20E-06 -4.87E-07 

0.045 3.25E-07 3.20E-07 1.20E-06 1.60E-06 -1.10E-06 -4.46E-07 

0.050 3.18E-07 3.14E-07 1.10E-06 1.60E-06 -1.10E-06 -4.46E-07 

 

Table 8-23 presents the time-dependent error for IBDC1. Although IBDC1 offered 

similar accuracy to the SDP methods for the total core power, the spatial error in the 

cell-wise relative pin power is about two order of magnitude greater for IBDC1 than the 

SDP methods. This is true throughout the transient in essentially every error category, 

although the error for IBDC1 is nonetheless very small. 
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Table 8-23. Time-dependent error in the relative cell-wise power for IBDC1 

Time (s)                                                

0.005 4.42E-05 4.43E-05 1.92E-04 2.02E-04 -1.92E-04 -7.83E-05 

0.010 3.35E-05 3.37E-05 1.46E-04 1.53E-04 -1.46E-04 -5.94E-05 

0.015 2.88E-05 2.89E-05 1.25E-04 1.31E-04 -1.25E-04 -5.09E-05 

0.020 2.62E-05 2.63E-05 1.14E-04 1.20E-04 -1.14E-04 -4.64E-05 

0.025 2.49E-05 2.52E-05 1.10E-04 1.12E-04 -1.10E-04 -4.47E-05 

0.030 2.39E-05 2.41E-05 1.05E-04 1.08E-04 -1.05E-04 -4.28E-05 

0.035 2.33E-05 2.35E-05 1.02E-04 1.05E-04 -1.02E-04 -4.15E-05 

0.040 2.28E-05 2.30E-05 1.00E-04 1.03E-04 -1.00E-04 -4.06E-05 

0.045 2.25E-05 2.27E-05 9.85E-05 1.02E-04 -9.85E-05 -4.00E-05 

0.050 2.23E-05 2.25E-05 9.78E-05 1.01E-04 -9.78E-05 -3.97E-05 

 

The spatially-dependent relative error in the pin power for IBDC1 is presented in 

Figure 8-39. Note that the scale for this plot is an order of magnitude larger than the 

scale of Figure 8-37 and Figure 8-39; the SDP and IBDC results cannot be meaningfully 

compared when the scale is the same. Like the SDP methods, IBDC1 has the greatest 

 

 

Figure 8-39. Relative error in the relative pin power distribution for IBDC1 at 0.05 s 
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relative error near the core periphery and within the rodded assemblies. However, for 

IBDC1 the error near the ejected rods is more than double that of the remaining control 

rods. By contrast, the error for the SDP methods near the ejected and remaining control 

rods was comparable. 

8.3.3.4 Comparison of SDP and RBDC Sub-pin Scalar Flux Distribution 

In this subsection we assessed how well the SDP methods replicated the scalar 

flux distribution with respect to the RBDC solution when the same order and time step 

size is used. As in the previous section, we used the results from the transient with a 1 

ms time step. We assessed the accuracy using the same measures of error described by 

Equations 8.6—8.12, although the region-wise neutron scalar fluxes were used instead 

of the cell-wise relative pin powers. As a result, this comparison incorporates the results 

in the moderator regions and reflector, in contrast to the previous section. Although we 

assessed the error for all energy groups, we limit this evaluation to the thermal group 

(7), which was the most important group flux and is representative of the other groups. 

The time-dependent error in the thermal group scalar flux for TSDP1 is 

presented in Table 8-24. Here we see that the error is similar in magnitude to the 

relative error in the total power at the end of the transient. This reconciles the results 

 

Table 8-24. Time-dependent error in the thermal group scalar flux for TSDP1 

Time (s)                                                

0.005 1.08E-04 1.10E-04 4.56E-04 1.14E-04 4.56E-04 1.11E-04 

0.010 1.09E-04 1.11E-04 8.78E-04 1.14E-04 8.78E-04 1.12E-04 

0.015 1.18E-04 1.19E-04 1.58E-03 1.22E-04 1.58E-03 1.20E-04 

0.020 1.29E-04 1.30E-04 2.74E-03 1.33E-04 2.74E-03 1.31E-04 

0.025 1.42E-04 1.43E-04 4.62E-03 1.46E-04 4.62E-03 1.44E-04 

0.030 1.56E-04 1.58E-04 7.62E-03 1.60E-04 7.62E-03 1.58E-04 

0.035 1.71E-04 1.73E-04 1.24E-02 1.75E-04 1.24E-02 1.73E-04 

0.040 1.87E-04 1.89E-04 1.99E-02 1.91E-04 1.99E-02 1.89E-04 

0.045 2.04E-04 2.05E-04 3.16E-02 2.07E-04 3.16E-02 2.05E-04 

0.050 2.21E-04 2.22E-04 4.98E-02 2.24E-04 4.98E-02 2.22E-04 
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from the previous two sections showing that while TSDP1 accurately captures the 

spatial distribution of the solution, there is more error in the magnitude of the solution. 

We also note that the error is evenly distributed throughout which is why the maximum 

relative error is comparable to the average error. The error is nonetheless small 

throughout the transient. 

The time-dependent error in the thermal group scalar flux for ISDP1 is presented 

in Table 8-25. This result is also consistent with the results in the previous two sections, 

and it shows that the incorporation of the scalar flux second derivative improves the 

accuracy of the method. The error for ISCDP1 was similar to IDSP1, confirming that the 

cross section derivative had a small impact on the solution. 

 

Table 8-25. Time-dependent error in the thermal group scalar flux for ISDP1 

Time (s)                                                

0.005 4.42E-05 4.43E-05 1.92E-04 2.02E-04 -1.92E-04 -7.83E-05 

0.010 3.35E-05 3.37E-05 1.46E-04 1.53E-04 -1.46E-04 -5.94E-05 

0.015 2.88E-05 2.89E-05 1.25E-04 1.31E-04 -1.25E-04 -5.09E-05 

0.020 2.62E-05 2.63E-05 1.14E-04 1.20E-04 -1.14E-04 -4.64E-05 

0.025 2.49E-05 2.52E-05 1.10E-04 1.12E-04 -1.10E-04 -4.47E-05 

0.030 2.39E-05 2.41E-05 1.05E-04 1.08E-04 -1.05E-04 -4.28E-05 

0.035 2.33E-05 2.35E-05 1.02E-04 1.05E-04 -1.02E-04 -4.15E-05 

0.040 2.28E-05 2.30E-05 1.00E-04 1.03E-04 -1.00E-04 -4.06E-05 

0.045 2.25E-05 2.27E-05 9.85E-05 1.02E-04 -9.85E-05 -4.00E-05 

0.050 2.23E-05 2.25E-05 9.78E-05 1.01E-04 -9.78E-05 -3.97E-05 

 

Finally we present the time-dependent error in the thermal group scalar flux for 

IBDC1 in Table 8-26. We see that although the error in the relative pin power for IBDC1 

was much greater than the SDP methods, the error in the scalar flux is only slightly 

larger. This is because the error in the region-wise scalar flux is dominated by the error 

in the total magnitude of the solution. It is also noteworthy that the error for IBDC1 was 

more concentrated in the moderator regions than the SDP methods. 
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Table 8-26. Time-dependent error in the thermal group scalar flux for IBDC1 

Time (s)                                                

0.005 2.56E-04 1.69E-04 4.60E-04 6.22E-04 1.77E-04 4.30E-05 

0.010 2.61E-04 1.94E-04 1.10E-03 5.40E-04 7.90E-04 1.01E-04 

0.015 2.82E-04 2.23E-04 2.22E-03 5.20E-04 1.91E-03 1.45E-04 

0.020 3.10E-04 2.56E-04 4.16E-03 5.26E-04 3.87E-03 1.85E-04 

0.025 3.36E-04 2.84E-04 7.36E-03 5.43E-04 6.97E-03 2.17E-04 

0.030 3.50E-04 3.00E-04 1.19E-02 5.48E-04 1.14E-02 2.36E-04 

0.035 3.71E-04 3.22E-04 1.93E-02 5.63E-04 1.86E-02 2.60E-04 

0.040 3.97E-04 3.49E-04 3.13E-02 5.85E-04 3.03E-02 2.88E-04 

0.045 4.32E-04 3.85E-04 5.13E-02 6.18E-04 5.00E-02 3.25E-04 

0.050 4.70E-04 4.23E-04 8.32E-02 6.54E-04 8.14E-02 3.63E-04 

 

8.3.3.5 Comparison of Computational and Memory Requirements 

There are substantial differences in the computational and memory 

requirements of the SDP and BDC methods. In this section we compared the run-time 

and memory required for the C5G7 transient. 

Assessing the run-time for the C5G7 transient was more difficult than expected 

because there was a large amount of fluctuation run-time per time step for each 

method. This was result of using shared machines on the CAC Flux network, and the 

diversity of machines on that network. While reviewing the run-time for all methods 

with all time step sizes, it was observed that every time step size had a result that was 

uncharacteristic of the typical run-times. For example, Figure 8-40 shows the run-times 

for the C5G7 transient with a 1 ms time step. Here the results are typical except for the 

TSDP3 result, which was faster than IBDC1. The SDP and RBDC methods should never be 

faster than IBDC because IBDC has the minimum number of arithmetic operations. 
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Figure 8-40. The run-time for the C5G7 transient with a 1 ms time step 
 

To counteract this in an unbiased way, we calculated the average run-time per 

time step for all of the methods. Figure 8-41 displays this result, which is representative 

of the relative computational requirements for the various methods. As was the case for 

the TWIGL transient, the SDP methods were intermediate in computational expense to 

the RBDC1 and IBDC1 method. The high-order SDP methods had a similar computational 

expense to the first-order SDP methods. 

 

 

Figure 8-41. The average run-time per time step for all C5G7 transient results 
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The C5G7 transient with a 1 ms time step was also used to determine the 

memory required for the various methods. These results are summarized in Figure 8-42. 

Note that the figure uses a log scale because the memory requirements for the RBDC 

methods were two orders of magnitude larger than for the SDP and IBDC methods.  

 

 

Figure 8-42. Memory requirements for the C5G7 transient 
 

8.3.4 C5G7 Summary 

The SDP methods accurately reproduced the RBDC solutions of the C5G7 

transient. As the time steps were refined and the order of the method was increased, 

the SDP methods converged toward the reference solution. 

When the SDP methods were compared to the RBDC methods with the same 

order and time step size, the agreement was good. This agreement included capturing 

the spatial distribution of the power. This indicates that the SDP methods effectively 

captured the angular flux time derivative throughout the space and time domain of the 

transient. In addition, the value of incorporating the isotropic approximation for the 

second derivative was more clear for the C5G7 transient. Consequently, the ISDP 

methods were uniformly more accurate than the IBDC methods, which were 

nonetheless accurate. The difference in accuracy between the SDP methods and IBDC 

was less pronounced for the C5G7 transient than the TWIGL transients. 
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The SDP methods required substantially less memory than the RBDC methods, 

especially when high-order time integration was performed. The SDP methods were also 

more computationally efficient than RBDC, but required somewhat more run-time and 

memory than IBDC. 

8.4 Summary and Conclusion 

We modeled three transients using DeCART to test the new SDP methods. The 

first two transients were based on the TWIGL reactor which includes a relatively simple 

geometry and slow-to-moderately-fast changes in the neutron flux. The third transient 

is based on the C5G7 problem, and it is more challenging because it has greater spatial 

heterogeneity and is a faster transient. 

The SDP methods accurately represented the reference solution for all three 

transients. The SDP methods converged toward the reference solution as the time step 

was refined and the order of the method was increased. For the TWIGL ramp transient, 

the methods exhibited the BDF order of convergence. The other two transients began 

with a step change, which limited the accuracy improvement of the high-order methods. 

The SDP methods also accurately captured the solution using the reference 

method (RBDC) when the same time step and order was employed. This indicates that 

the propagated angular flux using SDP is representative of the local finite differenced 

angular flux time derivative approximation used in RBDC. 

The SDP methods with the isotropic correction were more accurate for all 

transients than IBDC, which is a popular approximate method. In particular, the ISDP 

methods captured the spatial distribution of the power better than the IBDC methods, 

although for the C5G7 transient the SDP methods only did slightly better at capturing 

the total magnitude of the solution. The SDP methods did require slightly more memory 

and computational resources than IBDC, but the SDP methods also required 

substantially less memory than RBDC. Nonetheless the IBDC methods are probably 

adequate for many applications. 
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Chapter 9  

Summary, Conclusions, and Future Work 

9.1 Summary of Work 

In this thesis, we developed a new time-dependent method of characteristics 

(MOC) formulation that treats the angular flux time derivative by propagation along 

characteristics. This is an application of a new concept called angular flux time derivative 

propagation (TDP). While alternate definitions of the angular flux time derivative along 

the characteristic can be made, we focused on a definition that recasts the angular flux 

time derivative in terms of neutron source time derivatives, and hence this method is 

called source derivative propagation (SDP). 

SDP was developed in light of the challenges introduced by conventional time 

integration techniques for time-dependent neutron transport. Specifically, conventional 

techniques treat the time derivative using a local finite difference approximation which 

implies that the angular flux should be stored. Storing the angular flux for reactor 

problems entails prohibitively large memory requirements. We developed the SDP 

methods to circumvent this obstacle because approximating the neutron source time 

derivative requires substantially less memory than directly storing the angular flux. 

A further advantage of this approach is that the source time derivatives can be 

approximated to high-order accuracy using backward differences without requiring 

excessive memory. This is analogous to the Backward Differentiation Formula (BDF), and 

when this technique is conventionally applied to time-dependent neutron transport the 

memory requirements increase linearly with the order of the method.  

We investigated three SDP methods in this thesis. The first method was originally 

derived [Hof13a] using analytically-integrated space-time characteristics (ASTC), 

although we identified an alternate derivation while analyzing ASTC. The alternate 
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derivation was presented in this thesis and was preferred because it is more succinct, it 

clearly identified the leading error terms, and it suggests options for refinement.  

From the alternate derivation, it is clear that ASTC is equivalent to an SDP 

method where the angular flux second-derivative error term is truncated, and thus that 

method is also called truncated SDP (TSDP). An alternative to truncating the error term 

that does not sacrifice the advantages of SDP is to approximate the error term as 

isotropic (ISDP). As expected, ISDP was found to be more accurate than TSDP without 

incurring substantial additional expense. 

TSDP and ISDP were derived using the assumption that the macroscopic cross 

sections are changing slowly. While this approximation is true throughout most of the 

space and time domain of most nuclear reactor transients, there may be important 

cases where it is not applicable. In light of this, we derived an SDP methods which 

allowed the cross sections to vary linearly in time, resulting in a method that propagated 

the angular flux time derivative in terms of the source and cross section derivatives. We 

combined this with the isotropic second derivative approximation to derive the third 

method, ISCDP. 

We assessed the SDP methods by comparison to two conventional time-

dependent MOC methods. These two methods treated the angular flux time derivative 

using a local backward difference and thus they were referred to as backward difference 

time-dependent MOC (BDC). The first method approximated the angular flux time 

derivative using the segment-wise average angular flux. This reference method (RBDC) 

required substantial memory which limited the size of the problems that could be 

modeled, but it served as a reference for accuracy. The second method assumed that 

the angular flux time derivative was isotropic (IBDC). This is a popular approximation for 

time-dependent neutron transport, and it serves as a benchmark for computational 

efficiency. 

We performed error analysis on the BDC and SDP methods to understand the 

leading error terms for their angular flux time derivative approximation. All of the 

methods had similar error scaling in time and space, but the coefficients of the error 



211 
 

terms were different. Based on the error analysis, we identified that there may be 

conditions when TSDP and ISDP are less accurate than IBDC. Specifically, TSDP and ISDP 

could be less accurate than IBDC when the cross sections are changing quickly, although 

ISCDP should be more accurate in this situation. In addition, TSDP may be less accurate 

than IBDC when angular distribution of the neutron flux is changing slowly, but the 

second derivative of the scalar flux is large in magnitude. However, these two conditions 

were considered unlikely because the cross sections generally change slowly, and the 

SDP error terms were divided by the neutron velocity which reduced their magnitude. 

Neither situation was observed in the test problems. 

We empirically evaluated the accuracy of the SDP methods using three test 

transients using the computer code DeCART. The test problems were modeled in 2D due 

to the limitations of the DeCART transport method, and they were limited in size due to 

the memory requirements of storing the angular flux for RBDC.   

The first two transients were based on the TWIGL reactor benchmark [Yas65]. 

The first TWIGL transient was a slow exponential power increase driven by a linear cross 

section ramp. The TWIGL ramp permitted a wide range of time steps and was well-

suited to evaluating the order of accuracy of the new method. The second TWIGL 

transient was driven by a step change and it resulted in a faster, more challenging 

transient. The third transient was based on the C5G7 problem [Lew01] with a control 

rod ejection. This transient was more challenging because it was faster and incorporated 

greater spatial heterogeneity.  

We generated a reference solution for each transient using RBDC with a fine 

time step. We confirmed that the SDP methods converged to the reference solution as 

the time step size was reduced and the order of the source derivative approximation 

was increased. For the TWIGL ramp transient, the SDP methods exhibited the 

theoretical order of convergence, although the order of convergence for high-order 

methods was limited for the TWIGL step change transient and the C5G7 transient 

because of the step change. The high-order methods were nonetheless more accurate 

than the low-order methods when the time steps were not unreasonably large. 
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We also compared the SDP methods with RBDC methods of the same order and 

time step. The SDP and RBDC solutions were in good agreement for all transients, 

indicating that the propagated angular flux derivative of the SDP methods was close to 

the angular flux time derivative approximation used in RBDC. The IBDC methods were 

similarly evaluated, and the agreement between the SDP methods and the RBDC 

methods was at least one order of magnitude better than the agreement between IBDC 

and RBDC, indicating that SDP was more accurate than IBDC. 

Among the SDP methods, ISDP was more accurate than TSDP by most measures 

for most transients, although the difference was small in all cases. ISCDP was also more 

accurate than TSDP and generally more accurate than ISDP, but this difference was 

small as well. This indicates that the TSDP approximation for the angular flux time 

derivative incorporated most of the necessary detail to represent the angular flux time 

derivative for the transients we investigated. 

The efficiency of the SDP methods was assessed by comparing the run-time and 

memory requirements of the SDP methods to the BDC methods. The SDP methods 

required 50-100% more run-time than the IBDC methods, which are the baseline for 

efficiency. However,  the SDP methods were all faster than the RBDC methods. In 

contrast to the RBDC methods, the SDP methods did not require additional run-time 

when high-order derivative approximations were used. 

The SDP methods required about 10% more memory than the IBDC methods. 

This is comparable to the additional memory requirements of storing the neutron 

currents on the transport mesh. Both SDP and IBDC required about two orders of 

magnitude less memory than the RBDC methods, and the discrepancy increased when 

high-order derivative approximations were used. 

9.2 Assessment of SDP Compared to Talamo & Tsujita’s MOC Methods 

Alberto Talamo [Tal13] and Kosuke Tsujita [Tsu13] developed time-dependent 

MOC formulations for reactor kinetics around the same time that SDP was developed. 

These methods are described in Chapter 2, but here we will assess SDP in light of them. 
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Talamo developed three time-dependent MOC formulations. The first two 

methods (methods I and II) are identical to IBDC1 and RBDC1 respectively. The 

equations for method III are equivalent to method I, but used a different numerical 

structure which improves the stability of the method when very small time steps are 

used (e.g. time steps of 1 µs and smaller). However, method III is more computationally 

expensive and requires significant modifications to the MOC algorithm. 

Talamo’s methods are representative of the conventional approach to time-

dependent neutron transport where the time derivative is treated using a finite 

difference approximation. By contrast, the SDP methods treat the angular flux time 

derivative by propagation along characteristics. As we discussed in Chapters 4 and 8, 

RBDC1/method II is in principle accurate but requires excessive memory. IBDC1/method 

I avoids the memory requirement but introduces an approximation which may be 

inaccurate. The SDP methods were designed with these issues in mind, and our results 

suggest that the SDP methods provide improved accuracy over IBDC while avoiding the 

extreme memory requirements of RBDC. 

Tsujita’s on-the-fly (OTF) time-dependent MOC formulation was also motivated 

by the high memory cost of RBDC1 and the uncertain validity of the approximation in 

IBDC1. Like Talamo’s formulations, the OTF method also treats the angular flux time 

derivative using a local finite difference approximation. However, instead of storing or 

approximating the angular flux from previous points in time, it is recalculated on-the-fly 

using data stored from previous time steps (e.g. the neutron sources, macroscopic cross 

sections, etc.). Thus, whereas the SDP methods propagate the angular flux time 

derivatives concurrently with the angular flux, the OTF methods propagate angular 

fluxes from previous points in time concurrently with the angular flux. The OTF method 

solves the equation: 
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where: 
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where       
           

      
 

       
 and     

      is solved by propagating the angular flux 

from the previous time step using Equation 9.1. 

While this can be done without approximation, it results in linearly increasing 

memory and computational requirements with the number of time steps. To avoid this 

problem, Tsujita truncates the OTF recalculation at some number of previous time steps 

and applies the isotropic approximation at that level. When the OTF method is 

truncated to   previous time steps (i.e. OTFN), the equation for the average angular flux 

for that previous point in time is: 

 

       
           

      
  

     

     
      

  
        

       

       
            

  
         

          

     
          

 

 
  

     

     
      

      
            

       

       
            

  

9.3 

This introduces an error term in the angular flux solution which is proportional to 

  
    . Tsujita found that OTF1 was very accurate and OTF0 (i.e. IBDC1) was reasonably 

accurate for the transients tested. 

OTFN has the same memory requirements as ISCDPN because it requires the 

storage of the same values from previous points in time. However, whereas the OTF 

methods use the extra data to diminish the error of the angular approximation, the SDP 

methods use the additional data to reduce the temporal error through high-order 

derivative approximations.  

Because the OTF1 method requires propagating the angular flux at one previous 

point in time, it has similar computational cost to the SDP1 methods. However, the 

computational expense of the OTFN methods increases linearly with N because it is 
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necessary to propagate additional previous angular fluxes. By contrast, the high-order 

SDPN methods do not increase in computational expense with N.  

While we did not test the OTF methods in this work, it appears that both the OTF 

and SDP methods offer a viable option for accurately solving the time-dependent 

neutron transport equations for reactor kinetics. However, on the basis of this work and 

Tsujita’s results, we concluded that the SDP methods are preferred for three reasons. 

First, the SDP methods are more easily and inexpensively extended to high-order 

accuracy. This is important because the time integration error for all but the shortest 

time steps is larger than the error resulting from the angular approximations. Second, it 

appears that SDP1 methods provide a greater improvement in accuracy over IBDC1 than 

OTF1; in Tsujita’s work, OTF1 reduced the error by about one-half compared to IBDC1, 

while in this work SDP1 reduced the error by at least an order of magnitude. Finally, the 

SDP methods result in a smaller increase in computational expense over IBDC than the 

OTF methods.  

9.3 Disadvantages and Limitations of SDP 

Although the SDP methods accurately modeled the transients in this thesis, we 

can anticipate some disadvantages and limitations to the SDP methods which may limit 

their utility. In this section we will summarize some of these issues. 

9.3.1 Non-convergence to the Solution of the Boltzmann Equation 

It is clear that the SDP methods will not converge to the solution of the time-

dependent Boltzmann equation as the angular, spatial, and temporal discretization. This 

is due to the error terms that result from the assumptions about the time-dependence 

of the cross sections and the approximation of the higher derivative term (e.g. by 

truncation or an isotropic assumption). Although we can identify these error terms and 

qualitatively describe the conditions where the methods will be accurate, it may be 

difficult in practice to state a priori whether the SDP methods will be sufficiently 

accurate for a given transient. IBDC and the OTF method have similar limitations. 

A potential resolution to this problem would be to implement an arbitrary Nth 

derivative propagation method (i.e. as described in Section 5.8) and to simultaneously 
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solve the SDP equations for an Nth derivative method and an N-1th derivative method. 

The two solutions can be compared to assess the error associated with approximating 

the Nth derivative. This concept is analogous to embedded adaptive time stepping 

methods, and it would be substantially more computationally and memory intensive. 

9.3.2 Less Attractive with Higher-Order Spatial Variation of Source 

The SDP methods were investigated because they have a convenient 

mathematical form which allows the time derivatives to be efficiently represented using 

the neutron source time derivative. However, while this work was limited to the step 

characteristics method (where the source is assumed to be spatially-invariant within 

regions), but there is interest in allowing the neutron source to vary spatially within 

regions (e.g. a linear variation). This will result in substantially more complex SDP 

equations, reducing the computational and memory efficiency of the method. On the 

other hand, this may result in a more accurate representation of the angular flux time 

derivative within the region. In any case, this warrants further investigation.  

9.3.3 Less Attractive when High-order Moments are Required for Scattering 

We investigated the SDP methods using transport-corrected scattering, which 

allows the scattering term to be treated as isotropic. However, if higher moments of the 

angular flux are calculated to represent anisotropic scattering, it may be more efficient 

to simply approximate the angular flux time derivative using a PN expansion. On the 

other hand, the high-order moments can also be used with an SDP method to improve 

the approximation of the second derivative of the angular flux. 

9.3.4 Error for IBDC is Modest for Transients in this Thesis 

Although the SDP methods were generally more accurate than IBDC for the 

transients investigated in this thesis, the error for IBDC was nonetheless relatively small. 

When considering that IBDC is more computationally efficient and requires less memory 

than the SDP methods, one may conclude that IBDC offers a better balance of accuracy 

to computational expense than the SDP methods. 
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9.4 Suggested Future Work 

The SDP methods show good promise for generating high-fidelity solutions to 

the time-dependent neutron transport equation for nuclear reactor kinetics. However, 

there are many opportunities for future research. 

9.4.1 More Realistic and/or Challenging Transients 

We were limited in the size of the transients we could model to test the SDP 

methods because of the high memory requirements for the reference solution. This is 

inevitable given the nature of the problem, but it could be overcome to a limited extent 

through parallel decomposition of the reactor model in space. DeCART is capable of 

distributed memory parallel decomposition in space, but only in the axial direction for 

modeling 3D problems. This was not employed in this work because the diffusion-based 

nodal expansion method (NEM) in the axial direction would contaminate the transport 

solution and make it difficult to assess the accuracy of the transport methods. 

The lack of a third dimension and the constrained model size limits the realism of 

the transients we modeled. This is because small problems either incorporate very large 

spatial gradients (e.g. if they have vacuum boundary conditions), or they are relatively 

isotropic (e.g. if they have all reflecting boundary conditions). In addition, as a result of 

neglecting the axial dimension, we were unable to represent partially-inserted control 

rods, and the rod ejection for the C5G7 transient was approximated as a step change. 

However, as a consequence of these limitations, the C5G7 transient was 

particularly challenging. It is promising that the SDP methods performed so well in spite 

of this. Nonetheless, it would be valuable to explore both more realistic transients to 

understand typical SDP performance as well as more challenging transients to 

understand the limits of the SDP methods. 

9.4.2 Alternate Equations for Angular Flux Time Derivative Propagation 

The equation for the angular flux time derivative along the characteristic was 

originally identified using ASTC, and it was investigated because of its favorable 

mathematical properties. However, alternate equations may be derived that also have 
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favorable properties. For example, methods could be derived using finite differencing or 

other spatial methods. 

Similarly, we might also consider alternative methods for source derivative 

approximation. We used backward differences to approximate the source derivatives to 

high-order accuracy because they are easy to implement, but these high-order methods 

are not as useful near step changes. We might consider alternate methods to 

approximate the time derivatives such as Runge-Kutta methods or an exponential 

transform. 

In addition, there may be approximations for the SDP equations that can reduce 

the computational expense without substantially impairing the accuracy. For example, 

we could approximate the angular flux time derivative in the angular flux characteristic 

equation using the segment-wise average angular flux time derivative: 
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where the segment-wise average angular flux time derivative is calculated by integrating 

over the SDP equation along the segment: 
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and the spatially-dependent angular flux time derivative is propagated using the usual 

TSDP, ISDP, or ISCDP equation. This method may even be in better agreement with 

RBDC due to the similar approximation of the spatial dependence of the angular flux 

time derivative. It would entail the same memory requirements and have similar 

computation cost as the SDP methods described in Chapter 5. 

9.4.3 Embedded Adaptive Time Stepping Based on   and  +1 Order Methods 

Since this SDP method is capable of generating variable-order solutions by 

adjusting the number of previous solutions used to approximate the time derivative, this 

could provide the basis for an adaptive time stepping method. Adaptive time stepping is 
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especially attractive for neutron transport because each time step is computationally 

expensive. 

In this concept, the method would generate solutions of order   and    . The 

solutions would be compared, and the error would be used with the theoretical order of 

accuracy to adaptively adjust the time step size. Shim et al. [Shi11] used a similar 

approach in the BDF-based diffusion code RENUS to good effect.  

9.4.4 Hybrid OTF/SDP Method 

Tsujita et al. [Tsu13] developed an on-the-fly (OTF) time-dependent neutron 

transport method which recalculated angular fluxes from previous points in time to 

treat the angular flux time derivative. This method was discussed in Section 9.3.2. It has 

a similar motivation to the SDP methods, and it requires storing the same data (e.g. the 

previous neutron sources, cross sections, and boundary fluxes). Since both methods 

require that the same data is stored from previous points in time, it may be possible to 

develop a hybrid method that uses both concepts to greater effect. 

9.4.5 Applicability of SDP to Other Transport Methods 

The SDP concept could be applied to many of the other neutron transport 

methods described in Chapter 2. The application of the SDP concept to Method of 

Characteristic Direction Probabilities (CDP) is the most straightforward because the 

same equations are used; the equations are just solved using a linear system of 

equations rather than a sweeping procedure. For example, if TSDP1 was applied to CDP 

as implemented in MPACT [Liu13], the propagated angular flux time derivative would be 

solved in terms of transmission probabilities: 
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where the transmission probabilities are given by: 



220 
 

 

         
             

      
         

 
     

        
              

      
        

          
      

         
 
       

9.7 

where   is the number of regions along the characteristic. 

For other transport methods, the application of the concept is more subtle. For 

SN methods, we would derive the angular flux time derivative equation in a similar 

fashion, but likely using finite differences or another spatial discretization technique to 

treat the propagation. For the Collision Probability Method (CPM) we would likely 

rewrite the neutron source derivatives in terms of the neutron scalar flux and solve for 

the new scalar flux as usual. However, these concepts need to be explored in detail to 

understand their applicability. 

9.4.6 Applicability of SDP to the Axial Derivative Approximation for 2D/1D 

When 3D neutron transport is done using a 2D/1D approach (e.g. DeCART), there 

is an angular flux axial derivative 
  

  
 that introduces an analogous memory problem to 

the angular flux time derivative. As for the time derivative, computer codes often use a 

low-order angular and spatial approximation to treat the axial derivative. 

The SDP concept could also be applied to treat the axial derivative in planar 

MOC. This results in an equation for the propagation of the angular flux axial derivative 

along the segment in terms of the source axial derivatives, e.g.: 
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where the axial source derivative could be approximated using finite differences or 

another technique. By combining this approach with SDP for the time derivative, 3D 

time-dependent MOC could be performed using a 2D planar MOC method. This is 

potentially attractive because 2D planar MOC methods are computationally efficient 

and well understood. 
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9.5 Closing Remarks 

The goal of this research was to develop an accurate, time-dependent neutron 

transport method for nuclear reactor kinetics that avoids the memory challenge 

introduced by conventional time integration techniques but provides better accuracy 

than low-order spatial and angular approximations like the isotropic approximation. We 

developed the SDP methods with this goal in mind, and they fulfilled the goal for the 

test transients we numerically tested. The performance of the SDP methods was 

consistent with our expectations from error analysis, and we regard them as an 

favorable prospect for accurate, transport-based nuclear reactor kinetics. 
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Appendix A 

General Method of Characteristics (MOC) Derivation 

A.1 Introduction 

Method of characteristics (MOC) is a general technique for solving partial 

differential equations by converting them into ordinary differential equations along 

characteristic curves in the problem domain. Although the technique may be applied to 

any hyperbolic partial differential equation, we will consider the limited case of a linear 

partial differential equation because it is applicable to MOC for neutron transport. 

A.2 Derivation of MOC for a Linear Differential Equation 

Consider the following linear differential equation: 

       
  

  
       

  

  
         A.1 

with the solution        which is assumed known. 

Consider the surface graph of the function         . We can rewrite Equation 

A.1 as a dot product: 

                         
  

  
 
  

  
        A.2 

We know that  
  

  
 
  

  
     is a normal vector to the surface   at every point. 

This means that the vector         is tangent to the surface at every point, and thus the 

solution is the union of integral curves described by these vectors. These integral curves 

are called characteristic curves, and each may be uniquely defined as the solution of a 

system of ordinary differential equations: 
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A.3 

We rewrite the original partial differential equation in terms of Equation A.3 to 

get the characteristic equation in  : 

 
  

  

  

  
 

  

  

  

  
 

  

  
  A.4 

This is a general form of the MOC transform used in Chapter 3 (Equation 3.12) 

and Chapter 4 (Equation 4.15). The transform is also used with time dependence in 

Appendix B (Equation B.3). 

  



224 
 

Appendix B 

Analytically-integrated Space-Time MOC (ASTC) 

B.1 Introduction 

In this appendix, we provide the derivation for a time-dependent neutron 

transport method that employed Method of Characteristics (MOC) to treat the temporal 

domain in addition to the spatial domain. This Analytically-integrated Space-Time MOC 

(ASTC) method[Hof13] was the stimulation for the discovery of the Source Derivative 

Propagation (SDP) methods that are the focus of this thesis. In particular, ASTC is 

equivalent to the SDP method with a truncated second derivative term (TSDP).  

The derivation of SDP in Chapter 5 supersedes this derivation because it is more 

general, simpler, and more clearly identifies the sources of error in the method. 

However, the ASTC derivation provides some qualitative understanding of the terms in 

the angular flux time derivative characteristic equation. 

This derivation shares many of the approximations that are employed for the 

other time-dependent MOC methods in Chapters 4 and 5. This chapter will begin by 

listing those approximations and then discussing the new approximations for this 

method. This will result in characteristic equations for the angular flux in time and 

space. This is the fundamental approach to deriving a space-time MOC  (STC).  

While STC is in principal very accurate, it is computationally- and memory-

intensive because it requires the explicit modeling of many more characteristics than 

the other time-dependent MOC methods described in this thesis. To avoid this problem 

for ASTC, the time-dependence of the characteristics within space-time regions are 

approximated in a way that allows many characteristics to be modeled with a single 

function. This function is used to solve for the angular flux along spatial segments at the 

end of the time step, which results in a method that is equivalent to TSDP. 
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After the space-time characteristic equation is derived, we demonstrate how it is 

used to solve for the angular flux along spatial segments like other MOC methods. This 

illustrates that the ASTC equations are equivalent to TSDP.  

B.2 Approximations to the Boltzmann Transport Equation for ASTC 

B.2.1 Approximations Shared with BDC 

The derivation of ASTC begins with the time-dependent Boltzmann transport 

equation and applies many of the approximations that were used when deriving BDC in 

Chapter 4. These include: the multi-group approximation, the isotropic source 

approximation, the discrete ordinates approximation, the delayed neutron group 

approximation, and analytic precursor integration. After these approximations are 

applied, the result is the multi-group, step characteristics equation with analytic 

precursor integration: 

 

 

  

             

  

                                        

          

B.1 

where the source is defined as: 

 

        
 

  
               

 

    

               
           

     
        

        
                 

          

  
  

B.2 

B.2.2 Space-Time Characteristic Transformation 

For the ASTC derivation, the MOC transform is defined in space and time: 
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B.3 

where   is the dimension along the space-time characteristic in contrast to the 

dimension   for spatial characteristics. 

This results in a characteristic equation that spans time and space: 
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where   is the index for the space-time characteristics, in contrast to   which was used 

for the spatial characteristics for the other MOC methods.   and   are used for space-

time characteristics because we will eventually translate the method back to spatial 

characteristics. 

B.2.3 Spatial and Temporal Discretization 

Next we will discretize the space and time domain. As we did for the other MOC 

methods, the spatial domain is discretized into narrow regions were we can 

approximate the spatial dependence of the source and cross sections. Similarly, the time 

domain will be discretized into narrow temporal regions which are called “time steps.” 

Together this four dimensional space is referred to as a space-time region. Figure B-1 

shows an example of space-time characteristics for a spatially- and temporally-

discretized pin cell in two spatial dimensions. The spatial characteristics used in the 

other time-dependent MOC methods can be understood as the projection of the space-

time characteristics into a plane in space at a particular time. 
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Figure B-1. Example of space-time characteristics for pin cell [adapted from Hur08] 
 

B.2.4 Approximation of Source and Cross Section Time Dependence 

We can analytically solve Equation B.4 within the space-time regions if we 

approximate the spatial dependence of the neutron source and cross section along the 

characteristics. In the previous chapters we assumed that the source and cross section 

were spatially-invariant along the segment within the narrow region. However, for ASTC 

the characteristics traverse time and space. Other researchers observed that the flat 

source approximation in time is inaccurate[Kel98, Pan11].  

Instead, we will assume that the source varies linearly in time but is flat in space. 

As a result, the variation of the source along the characteristic is based exclusively on its 

changing temporal position. To create an implicit method, we will define the time 

dependence of the source in terms of the source at the end of the time step for each 

region: 

   
       

              
   

   

  
  B.5 

where   is the index for the region,   is the index for the time    which corresponds to 

the end of the time step,   
    is the source at the end of the time step, and       is the 

time corresponding to the position   along the characteristic  . 
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The cross section also requires an approximation. However, since the cross 

section varies slowly in time, we will assume that the cross section is spatially and 

temporally invariant within regions: 

      
          

     B.6 

When we apply these approximations, the characteristic becomes: 

 
   

    

  
      

     
       

              
   

   

  
  B.7 

where the space-time region   corresponds to the position  . 

We note that the time corresponding to the spatial position can be rewritten in 

terms of the time where the characteristic enters the space-time region: 

            
     

 

  
  B.8 

where   
    is the position in   which corresponds to the entry of the characteristic   in 

region  . 

We apply this relation to Equation B.7: 

 
   

    

  
      

     
       

             
     

 

  
 

   
   

  
  B.9 

B.2.5 Approximation of Source Time Derivative with Backward Differences 

We can approximate the source time derivative to a varying order of accuracy 

using backward differences as described in Chapter 5. This allows us to write the source 

time derivative as a weighted sum of the source at previous points in time in an 

analogous fashion to BDF: 
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Applying Equation 5.14 to Equation B.9 gives the space-time characteristic 

equation for the angular flux with a linear source: 
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  B.11 

We solve Equation B.11 for the angular flux distribution along a characteristic 

within a space-time region by using an integrating factor: 

 

  
       

    
           

        
     

 

     
     

     
     

   

   

    
             

     
 

     
     

      
     

   

   

 

  
         

        
    

     
      

B.12 

For a conventional STC method, we would use Equation B.12 to propagate the 

angular fluxes along parallel characteristics within space-time planes and solve for the 

angular or scalar fluxes at the end of the time step. However, this approach is too 

computationally expensive and memory intensive for large reactor kinetics problems, 

and we require another approximation to derive a practical method. 

B.2.6 Approximation of the Time Dependence of the Incoming Angular Flux 

We note that for parallel characteristics in the same space-time region, in the 

only quantities Equation B.12 which differ between the characteristics are the incoming 

angular flux   
    

     and the time corresponding to the entry of the characteristic in 

the space-time region   
   . All of the other quantities are isotropic and defined at the 

region-level. 

In light of this, we will approximate the incoming angular flux in terms of the 

incoming time of the characteristic: 

   
    

         
             

     
     

   

  
  B.13 
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where     
    is the incoming angular flux for a space-time characteristic that enters the 

space-time region at time    (i.e. the end of the time step) and 
     

   

  
 is the time 

derivative of that angular flux. 

When we apply this approximation to Equation B.12, the result is a single 

characteristic equation that can represent any of the segments within a space-time 

region, where the only value that differs between the characteristics is the incoming 

time of the characteristic   
   : 

  

  
          

             
     

     
   

  
        

        
     

 

     
     

     
     

   

   

    
             

     
 

     
     

      
     

   

   

 

  
         

        
    

     
      

B.14 

B.3 Solution of the Characteristic Equations for ASTC 

B.3.1 Translation of Space-Time Characteristics to Spatial Characteristics 

Equation B.14 can be used to solve for the angular flux at any spatial and 

temporal position within the space-time region. However, we only require the angular 

flux at time    so that we can numerically integrate the region-wise scalar flux. This is 

the angular flux along all characteristics that exit the space-time region along the 

temporal boundary at time   .  

The exiting position of these characteristics along the temporal boundary is 

linearly related to the incoming time by the equation: 

              
       B.15 

where   is the position in space where the characteristic   crosses the temporal 

boundary. 

We rewrite Equation B.14 to give the angular flux at time    as a function of  : 
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B.16 

Thus the dependency of the characteristic equation on the space-time dimension 

  has been replaced by the spatial dimension   at time   . This is completely equivalent 

to the definition of the spatial characteristics we defined for the other MOC methods, 

and we can rewrite Equation B.16 in terms of the spatial characteristic  : 

 

  
            

    
 

  
 

     
   

  
 

 

     
        

     

   

   

         
    

    
    

 

     
     

     
     

   

   

  
         

    

     
      

B.17 

where   is the spatial position along the characteristic   at time   . 

This is the solution to the characteristic equation for ASTC, which is identical to 

the solution of the characteristic equation for TSDP in Chapter 5. Consequently, the 

equations for ASTC to propagate the angular flux and to calculate the segment-wise 

average angular flux are also identical. However, we still have to derive the equation to 

propagate the angular flux time derivative. 

B.3.2 Propagation of the Angular Flux Time Derivative for ASTC 

We can estimate the outgoing angular flux time derivative by taking a finite 

difference approximation of the outgoing angular flux for any two space-time 

characteristics using Equation B.14, e.g.: 

 
   

       

  
 

  
          

         

               
  B.18 

Regardless of which space-time characteristics we use, the non-derivative terms 

cancel and the result is:  
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      B.19 

which is identical to Equation 5.26, which is used in TSDP to propagate the angular flux 

time derivative.  

B.4 Summary and Conclusions 

In this appendix we derived the characteristic equations for ASTC, which produce 

an identical method to TSDP. The development of ASTC stimulated the discovery of the 

SDP methods, one of which is equivalent to ASTC. The derivation requires the 

specification of characteristics in space-time and the approximation of the angular flux 

in the space-time plane. The ASTC derivation is less general and more complex than the 

SDP derivation, and thus the latter has been the focus of this thesis. The derivation for 

ASTC was provided for historical reasons and to provide qualitative insight into the SDP 

methods. 
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Appendix C 

Time-Dependent MOC with Spatially-Dependent Angular Fluxes 

C.1 Introduction 

In Chapter 4, when deriving the reference time-dependent MOC method (RBDC), 

we approximated the finite differenced angular flux time derivative in terms of the 

segment-wise average angular flux. However, when we solve for angular fluxes in MOC, 

the segment-wise angular fluxes are spatially-dependent along the segment. As 

demonstrated in Chapter 6, using the segment-wise average angular flux for the time 

derivative introduces some spatial error. We could eliminate this error by using the 

spatially-dependent segment-wise angular flux for the time derivative. However, this is 

impractical because it requires storing a segment-wise quantity for every previous time 

step.  

In this appendix, we derive the “exact” solution for the segment-wise angular 

flux in time-dependent MOC using Backward Euler to approximate the time derivative. 

We will solve for the angular flux at the end of the first two time steps and provide a 

general equation for the angular flux at an arbitrary time step. 

C.2 Approximations to the Boltzmann Transport Equation 

C.2.1 Approximations Shared with BDC 

We begin by making all of the same assumptions that were used for the 

Backward Difference MOC (BDC) methods in Chapter 4 except for the spatial 

approximation of the angular flux time derivative. This includes: the multigroup 

approximation, the isotropic source approximation, the discrete ordinates 

approximation, the delayed neutron group approximation, the spatial characteristic 

transform, step characteristics, time discretization, and analytic precursor integration.  

The resulting characteristic equation is: 
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     C.1 

C.2.2 Backward Euler 

Next we approximate the angular flux time derivative using Backward Euler: 

 
   

      

  
 

  
         

        

   
  C.2 

Note that unlike the BDC chapter, the angular flux terms in the time derivative 

have retained their spatial dependence along the characteristic. When we apply 

Equation C.2 to Equation C.1, we have the characteristic equation for the angular flux 

for time-dependent MOC: 

 
   

      

  
       

    
 

     
   

         
    

  
        

     
  C.3 

C.3 Solution of Time-Dependent MOC for Time Step 1 

To solve the Equation C.3 for any time step, we need to know the spatially-

dependent angular flux from the previous time step   
        . For the first time step, 

the previous angular flux is the steady-state angular flux: 

   
           

          
     

  
   

     
             

       C.4 

where     corresponds to the steady-state solution, and we have arbitrarily defined 

the incoming spatial position as     for succinctness. 

We substitute Equation C.4 into Equation C.3 for    : 

 
   

      

  
       

     
          

         
      

    
  

   

     
           

      C.5 

where: 

      
  

 

     
  C.6 
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We solve the equation using the integrating factor        
    : 

   
           

           
     

  
   

      
              

           
     

         
        C.7 

where we define the coefficients: 

 

    
     

   
    

  
   

     
   

  

      
       

       
             

   
 

      
   

      
   

  

C.8 

This is the “exact” spatially-dependent angular flux at the end of the first time step 

when using Backward Euler. Note that this requires that the following data is stored 

from the steady-state solution: the incoming angular flux for every segment, the region-

wise transport cross section, and the region-wise neutron source. 

C.4 Solution of Time Dependent MOC for Time Step 2 

For the second time step, we repeat this process, substituting Equation C.7 into 

Equation C.3 with    : 

 
   

      

  
       

     
          

         
      

           
          

     
         

         C.9 

where we define the coefficients for an arbitrary time step  : 
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C.10 

where Equations C.10 are applicable to steady-state (i.e. time step  ) if we define 

     
   . 

The solution to Equation C.9 is: 

 

  
           

           
     

   
   

      
              

     

      
      

         
            

     
         

         

C.11 

where: 

 

      
      

 
       

          
           

            
         

            
            

         
            

    

       
          

           
         

           
         

    
  

C.12 

The “exact” solution for the angular flux for the second time step is substantially more 

complex than the solution for the first time step, and it is clear that a pattern is 

emerging. In addition, this solution requires storing the same data as the previous time 

step, plus the following data for    : the segment-wise incoming angular fluxes, the 

region-wise cross sections, the region-wise neutron sources, and    . 

C.5 Solution of Time-Dependent MOC for Time Step N 

If we repeat this process for additional time steps, we can derive the general 

form of the segment-wise angular flux for an arbitrary time step  . The solution is: 
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C.13 

where: 

 

    
        

    
   

   

      
   

  

        
       

                 
              

          
       

   
   

  
     
   

  
   

          
   

       
   

 
   
     

     

  

     
  

 

     
  

      
         

         
   

   
      

         
 

   
     

      
       

C.14 

This illustrates the trend that was observed for the first two time steps: for every 

additional time step that is modeled, it is necessary to store another segment-wise 

incoming angular flux. Consequently, exactly representing the spatial dependence of the 

previous angular fluxes for time-dependent MOC is not practical for large problems 

because the memory requirements are large and increase linearly.  

C.6 Summary 

In this appendix we provided a derivation for the spatially-dependent angular 

flux for time-dependent MOC using Backward Euler without approximating the spatial 

dependence of the angular flux along the segment. This derivation illustrates that the 

memory requirements for such a method increase linearly with the number of time 

steps modeled. As a result, it is a practical necessity to approximate the spatial 

dependence of the angular flux for the time derivative in time-dependent MOC. 
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Appendix D 

Macroscopic Cross Sections for C5G7 Transient 

This appendix provides the macroscopic cross sections for the materials in the 

C5G7 transient [Lew01]. The cross sections are provided in units of cm-1 in the tables 

below.  

 

Table D-1. UO2 fuel-clad macroscopic cross sections 
                            

Group 1 1.7795E-01 8.0248E-03 8.1274E-04 7.2121E-03 2.7815E+00 5.8791E-01 

Group 2 3.2981E-01 3.7174E-03 2.8981E-03 8.1930E-04 2.4744E+00 4.1176E-01 

Group 3 4.8039E-01 2.6769E-02 2.0316E-02 6.4532E-03 2.4338E+00 3.3906E-04 

Group 4 5.5437E-01 9.6236E-02 7.7671E-02 1.8565E-02 2.4338E+00 1.1761E-07 

Group 5 3.1180E-01 3.0020E-02 1.2212E-02 1.7808E-02 2.4338E+00 0.0000E+00 

Group 6 3.9517E-01 1.1126E-01 2.8225E-02 8.3035E-02 2.4338E+00 0.0000E+00 

Group 7 5.6441E-01 2.8278E-01 6.6776E-02 2.1600E-01 2.4338E+00 0.0000E+00 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 1.2754E-01 4.2378E-02 9.4374E-06 5.5163E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 3.2446E-01 1.6314E-03 3.1427E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 3 0.0000E+00 0.0000E+00 4.5094E-01 2.6792E-03 0.0000E+00 0.0000E+00 0.0000E+00 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 4.5257E-01 5.5664E-03 0.0000E+00 0.0000E+00 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 1.2525E-04 2.7140E-01 1.0255E-02 1.0021E-08 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.2968E-03 2.6580E-01 1.6809E-02 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.5458E-03 2.7308E-01 
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Table D-2. 4.3% MOX fuel-clad macroscopic cross sections 
                            

Group 1 1.7873E-01 8.4339E-03 8.0686E-04 7.6270E-03 2.8521E+00 5.8791E-01 

Group 2 3.3085E-01 3.7577E-03 2.8808E-03 8.7690E-04 2.8910E+00 4.1176E-01 

Group 3 4.8377E-01 2.7970E-02 2.2272E-02 5.6984E-03 2.8549E+00 3.3906E-04 

Group 4 5.6692E-01 1.0421E-01 8.1323E-02 2.2887E-02 2.8607E+00 1.1761E-07 

Group 5 4.2623E-01 1.3994E-01 1.2918E-01 1.0764E-02 2.8545E+00 0.0000E+00 

Group 6 6.7900E-01 4.0918E-01 1.7642E-01 2.3276E-01 2.8642E+00 0.0000E+00 

Group 7 6.8285E-01 4.0935E-01 1.6038E-01 2.4897E-01 2.8678E+00 0.0000E+00 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 1.2888E-01 4.1413E-02 8.2290E-06 5.0405E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 3.2545E-01 1.6395E-03 1.5982E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 3 0.0000E+00 0.0000E+00 4.5319E-01 2.6142E-03 0.0000E+00 0.0000E+00 0.0000E+00 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 4.5717E-01 5.5394E-03 0.0000E+00 0.0000E+00 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 1.6046E-04 2.7681E-01 9.3127E-03 9.1656E-09 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.0051E-03 2.5296E-01 1.4850E-02 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4948E-03 2.6501E-01 

 

Table D-3. 7.0% MOX fuel-clad macroscopic cross sections 
                            

Group 1 1.8132E-01 9.0657E-03 8.1124E-04 8.2545E-03 2.8850E+00 5.8791E-01 

Group 2 3.3437E-01 4.2967E-03 2.9711E-03 1.3257E-03 2.9108E+00 4.1176E-01 

Group 3 4.9379E-01 3.2881E-02 2.4459E-02 8.4216E-03 2.8657E+00 3.3906E-04 

Group 4 5.9122E-01 1.2203E-01 8.9157E-02 3.2873E-02 2.8706E+00 1.1761E-07 

Group 5 4.7420E-01 1.8298E-01 1.6702E-01 1.5964E-02 2.8671E+00 0.0000E+00 

Group 6 8.3360E-01 5.6846E-01 2.4467E-01 3.2379E-01 2.8666E+00 0.0000E+00 

Group 7 8.5360E-01 5.8521E-01 2.2241E-01 3.6280E-01 2.8754E+00 0.0000E+00 
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        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 1.3046E-01 4.1792E-02 8.5105E-06 5.1329E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 3.2843E-01 1.6436E-03 2.2017E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 3 0.0000E+00 0.0000E+00 4.5837E-01 2.5331E-03 0.0000E+00 0.0000E+00 0.0000E+00 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 4.6371E-01 5.4766E-03 0.0000E+00 0.0000E+00 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 1.7619E-04 2.8231E-01 8.7289E-03 9.0016E-09 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2760E-03 2.4975E-01 1.3114E-02 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.8645E-03 2.5953E-01 

 

Table D-4. 8.7% MOX fuel-clad macroscopic cross sections 
                            

Group 1 1.8305E-01 9.4862E-03 8.1411E-04 8.6721E-03 2.9043E+00 5.8791E-01 

Group 2 3.3671E-01 4.6556E-03 3.0313E-03 1.6243E-03 2.9180E+00 4.1176E-01 

Group 3 5.0051E-01 3.6240E-02 2.5968E-02 1.0272E-02 2.8699E+00 3.3906E-04 

Group 4 6.0617E-01 1.3272E-01 9.3675E-02 3.9045E-02 2.8749E+00 1.1761E-07 

Group 5 5.0275E-01 2.0840E-01 1.8914E-01 1.9258E-02 2.8718E+00 0.0000E+00 

Group 6 9.2103E-01 6.5870E-01 2.8381E-01 3.7489E-01 2.8675E+00 0.0000E+00 

Group 7 9.5523E-01 6.9017E-01 2.5957E-01 4.3060E-01 2.8781E+00 0.0000E+00 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 1.3150E-01 4.2046E-02 8.6972E-06 5.1938E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 3.3040E-01 1.6463E-03 2.6006E-09 0.0000E+00 0.0000E+00 0.0000E+00 

Group 3 0.0000E+00 0.0000E+00 4.6179E-01 2.4749E-03 0.0000E+00 0.0000E+00 0.0000E+00 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 4.6802E-01 5.4330E-03 0.0000E+00 0.0000E+00 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 1.8597E-04 2.8577E-01 8.3973E-03 8.9280E-09 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.3916E-03 2.4761E-01 1.2322E-02 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.9681E-03 2.5609E-01 
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Table D-5. Fission chamber macroscopic cross sections 
                            

Group 1 1.2603E-01 5.1132E-04 5.1132E-04 4.7900E-09 2.7628E+00 5.8791E-01 

Group 2 2.9316E-01 7.5813E-05 7.5807E-05 5.8256E-09 2.4624E+00 4.1176E-01 

Group 3 2.8425E-01 3.1643E-04 3.1597E-04 4.6372E-07 2.4338E+00 3.3906E-04 

Group 4 2.8102E-01 1.1675E-03 1.1623E-03 5.2441E-06 2.4338E+00 1.1761E-07 

Group 5 3.3446E-01 3.3977E-03 3.3976E-03 1.4539E-07 2.4338E+00 0.0000E+00 

Group 6 5.6564E-01 9.1886E-03 9.1879E-03 7.1497E-07 2.4338E+00 0.0000E+00 

Group 7 1.1721E+00 2.3244E-02 2.3242E-02 2.0804E-06 2.4338E+00 0.0000E+00 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 6.6166E-02 5.9070E-02 2.8334E-04 1.4622E-06 2.0642E-08 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 2.4038E-01 5.2435E-02 2.4990E-04 1.9239E-05 2.9875E-06 4.2140E-07 

Group 3 0.0000E+00 0.0000E+00 1.8343E-01 9.2288E-02 6.9365E-03 1.0790E-03 2.0543E-04 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 7.9077E-02 1.6999E-01 2.5860E-02 4.9256E-03 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 3.7340E-05 9.9757E-02 2.0679E-01 2.4478E-02 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1742E-04 3.1677E-01 2.3876E-01 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.9793E-02 1.0991E+00 

 

Table D-6. Guide tube macroscopic cross sections 
                 

Group 1 1.2603E-01 5.1132E-04 5.1132E-04 

Group 2 2.9316E-01 7.5801E-05 7.5801E-05 

Group 3 2.8424E-01 3.1572E-04 3.1572E-04 

Group 4 2.8096E-01 1.1582E-03 1.1582E-03 

Group 5 3.3444E-01 3.3975E-03 3.3975E-03 

Group 6 5.6564E-01 9.1878E-03 9.1878E-03 

Group 7 1.1722E+00 2.3242E-02 2.3242E-02 
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        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 6.6166E-02 5.9070E-02 2.8334E-04 1.4622E-06 2.0642E-08 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 2.4038E-01 5.2435E-02 2.4990E-04 1.9239E-05 2.9875E-06 4.2140E-07 

Group 3 0.0000E+00 0.0000E+00 1.8330E-01 9.2397E-02 6.9446E-03 1.0803E-03 2.0567E-04 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 7.8851E-02 1.7014E-01 2.5881E-02 4.9297E-03 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 3.7333E-05 9.9737E-02 2.0679E-01 2.4478E-02 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1726E-04 3.1677E-01 2.3877E-01 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.9792E-02 1.0991E+00 

 

 

Table D-7. Moderator macroscopic cross sections 
                 

Group 1 1.5921E-01 6.0105E-04 6.0105E-04 

Group 2 4.1297E-01 1.5793E-05 1.5793E-05 

Group 3 5.9031E-01 3.3716E-04 3.3716E-04 

Group 4 5.8435E-01 1.9406E-03 1.9406E-03 

Group 5 7.1800E-01 5.7416E-03 5.7416E-03 

Group 6 1.2545E+00 1.5001E-02 1.5001E-02 

Group 7 2.6504E+00 3.7239E-02 3.7239E-02 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 4.4478E-02 1.1340E-01 7.2347E-04 3.7499E-06 5.3184E-08 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 2.8233E-01 1.2994E-01 6.2340E-04 4.8002E-05 7.4486E-06 1.0455E-06 

Group 3 0.0000E+00 0.0000E+00 3.4526E-01 2.2457E-01 1.6999E-02 2.6443E-03 5.0344E-04 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 9.1028E-02 4.1551E-01 6.3732E-02 1.2139E-02 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 7.1437E-05 1.3914E-01 5.1182E-01 6.1229E-02 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2157E-03 6.9991E-01 5.3732E-01 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.3244E-01 2.4807E+00 
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Table D-8. Control rod macroscopic cross sections 
                 

Group 1 1.3511E-01 6.3068E-04 6.3068E-04 

Group 2 3.1185E-01 9.0445E-04 9.0445E-04 

Group 3 3.4445E-01 8.6632E-03 8.6632E-03 

Group 4 3.4987E-01 4.0822E-02 4.0822E-02 

Group 5 3.9204E-01 7.2934E-02 7.2934E-02 

Group 6 6.2285E-01 1.0122E-01 1.0122E-01 

Group 7 1.2390E+00 1.3875E-01 1.3875E-01 

 

        To Group 1 To Group 2 To Group 3 To Group 4 To Group 5 To Group 6 To Group 7 

Group 1 7.6606E-02 5.7603E-02 2.6484E-04 1.3288E-06 1.8578E-08 0.0000E+00 0.0000E+00 

Group 2 0.0000E+00 2.6344E-01 4.7260E-02 2.2491E-04 1.7315E-05 2.6888E-06 3.7926E-07 

Group 3 0.0000E+00 0.0000E+00 2.4515E-01 8.3229E-02 6.2501E-03 9.7227E-04 1.8510E-04 

Group 4 0.0000E+00 0.0000E+00 0.0000E+00 1.2804E-01 1.5327E-01 2.3293E-02 4.4367E-03 

Group 5 0.0000E+00 0.0000E+00 0.0000E+00 4.0155E-05 1.1055E-01 1.8649E-01 2.2030E-02 

Group 6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2796E-04 3.0534E-01 2.1537E-01 

Group 7 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.5166E-02 1.0551E+00 
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