
Modeling Dual-Task Concurrency and Effort in

QN-ACTR and IMPRINT

by

Christopher Jason Best

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Yili Liu, Chair
Assistant Professor Victoria Booth
John F. Locket III, US Army Research Laboratory
Professor Nadine B. Sarter

It is enough for a Psychohistorian, as
such, to know his Biostatistics and his
Neurochemical Electromathematics.

—Asimov, Second Foundation

c© Christopher Jason Best 2013
All Rights Reserved

for the best family

ii

ACKNOWLEDGEMENTS

I would like to thank Yili Liu for his advice, guidance, and enduring patience; Vic-

toria Booth, Bernard Martin, and Nadine Sarter for their invaluable feedback, com-

ments, and questions; likewise John Lockett and for his professional mentorship and

dietary, fitness, and gardening advice; Chuck Woolley for being chiefly responsible

for my professional and academic career since 2006; Chris Konrad, Eyvind Claxton,

Mint, and Candy Ellis for their expert and swift technical and non-technical sup-

port; mom for flashcards and frozen leftovers; dad for science magazines and making

cognitive ergonomics sound impressive; kin and lliby for being the objects of looking

up; the jokers for facilitating both academic and leisurely pursuits; tilly, Double C,

Ganish and the Sunshine Colts, Fred, Denny, Ralu, and BDC for something else to

do; the University of Michigan and the city of Ann Arbor for making me feel big and

small at the same time;

and KL and the monster for Everything

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

CHAPTER

I. Introduction . 1

1.1 QN . 4
1.2 ACT-R . 7

1.2.1 Declarative Module . 8
1.2.2 Procedural Module . 8
1.2.3 Goal Module . 10
1.2.4 Vision Module . 10
1.2.5 Device Module . 12
1.2.6 Motor Module . 12
1.2.7 Speech Module . 13
1.2.8 Temporal Module . 13

1.3 QN-ACTR . 13
1.4 IMPRINT . 14

1.4.1 IMPRINT model structure . 15
1.4.2 Workload management . 17

1.5 Soar . 18
1.5.1 Problem state representation . 19
1.5.2 Productions . 19
1.5.3 Input and Output (IO) . 22
1.5.4 Learning . 22
1.5.5 Using Soar in cognitive models . 22

1.6 EPIC . 24

II. IMPRINT and Workload Management with Soar 26

2.1 Workload management extension theory . 27
2.2 Extending IMPRINT . 29

2.2.1 Plugin capability . 29
2.2.2 Soar plugin . 30

2.3 Soar agent . 36
2.3.1 Release decision subgoal . 36
2.3.2 Expire decision subgoal . 37
2.3.3 Resume decision subgoal . 37

iv

2.3.4 Response selection . 38
2.4 UAV Study . 38

2.4.1 Release decision . 40
2.4.2 Resume decision . 42
2.4.3 Expire decision . 42

2.5 Results . 43
2.6 Conclusion . 44

III. Modeling concurrency on addition and targeting tasks in QN-ACTR and
IMPRINT . 46

3.1 QN-ACTR additions . 46
3.2 Tasks . 47

3.2.1 Targeting task . 47
3.2.2 Addition task . 48

3.3 QN-ACTR task models . 49
3.3.1 Addition model . 49
3.3.2 Targeting models . 57
3.3.3 Concurrency model . 73

3.4 IMPRINT task models . 74
3.5 Method . 76

3.5.1 Scoring . 77
3.5.2 Procedure . 77
3.5.3 Apparatus . 78
3.5.4 Data collection . 79

3.6 Results . 79
3.6.1 Empirical results . 79
3.6.2 QN-ACTR Model validity . 80
3.6.3 IMPRINT . 83

3.7 Discussion . 85
3.7.1 Effect of speed . 85
3.7.2 Execution time . 87
3.7.3 Concurrency . 89
3.7.4 Behavioral modeling . 92
3.7.5 Application to IMPRINT . 94

3.8 Conclusion . 96

IV. The effect of effort on dual-task performance and concurrency 99

4.1 Tasks . 100
4.1.1 Targeting task . 101
4.1.2 Addition task . 101

4.2 QN-ACTR models . 101
4.2.1 Addition model . 101
4.2.2 Targeting model . 102

4.3 Method . 103
4.3.1 Scoring . 104
4.3.2 Procedure . 104
4.3.3 Apparatus . 105
4.3.4 Data collection . 105

4.4 Results . 106
4.4.1 Single tasks . 106
4.4.2 Dual tasks . 106
4.4.3 Model validity . 107

v

4.5 Discussion . 111
4.5.1 Single task incentivization . 111
4.5.2 Dual task performance . 112
4.5.3 Concurrency predictions . 115

4.6 Conclusion . 117

V. Conclusion . 118

5.1 Summary of models and their roles . 119
5.2 Scientific contributions and Future work . 120

APPENDICES . 123

BIBLIOGRAPHY . 168

vi

LIST OF FIGURES

Figure

1.1 QN-MHP network structure. Reproduced from Liu et al. (2006) 6

1.2 Motor module subnetwork in QN-ACTR . 14

1.3 Example IMPRINT task network . 16

2.1 Possible actions taken for a scheduled task component 28

2.2 Empirical partial and complete task omission. From Schulte and Donath (2011) . . 43

2.3 Modeled partial and complete task omission . 43

3.1 Production graph of the low-difficulty, low-speed targeting model 58

3.2 Low-speed, low-difficulty targeting task network in IMPRINT 75

3.3 Experiment task interface . 78

3.4 Execution times by difficulty in single-task addition problems 81

3.5 Execution times by difficulty and speed in single-task targeting condition 82

3.6 Execution times by addition and targeting difficulty in dual-task performance . . . 83

3.7 Targeting error rate in single task conditions . 84

3.8 Targeting error rate in dual task conditions . 85

3.9 Concurrency by speed, difficulty, and addend range 86

3.10 IMPRINT dual task completion times by speed, difficulty, and addend range . . . 88

3.11 IMPRINT concurrency by speed, difficulty, and addend range 89

3.12 Targeting task execution time distributions . 90

3.13 Addition task execution time distributions . 91

3.14 Addition subtask execution times in dual-task conditions 93

3.15 Subtask completion order in a dual-task condition 94

vii

3.16 First target hit time vs. addition task completion time in dual-task conditions . . . 95

3.17 Comparison of IMPRINT predicted dual task completion times using AWS and the
Soar-based extension in dual-task conditions . 96

3.18 Comparison of IMPRINT predicted concurrency values using AWS and the Soar-
based extension in dual-task conditions . 97

4.1 Execution times by difficulty and incentive in single-task addition problems 108

4.2 Execution times by incentive in the single-task targeting problem 109

4.3 Addition task execution times by difficulty and incentive in dual-task conditions . . 110

4.4 Targeting task execution times by difficulty and incentive in dual-task conditions . 111

4.5 Score by difficulty and incentive in dual-task conditions 112

4.6 Concurrency by difficulty and incentive in dual-task conditions 113

viii

LIST OF TABLES

Table

3.1 Base levels for addition task declarative memory chunks 53

3.2 Experiment 1 Design . 77

3.3 IMPRINT simulated addition task completion times 83

3.4 IMPRINT simulated target task completion times 87

4.1 Experiment 2 Design . 104

ix

CHAPTER I

Introduction

Because of the exceedingly complex nature of human cognition, a unified model

explaining all aspects of cognition remains a distant goal. However, many cognitive

architectures have been developed to successfully predict observable phenomena and

to model cognitive mechanisms at many levels: from the physical laws, anatomical

organization, and differential equations that predict action potentials in neurons, to

high-level psychological models describing the effects of affect on decision making.

Increasingly, modern engineering methods and computer technology are providing

opportunities to develop functional simulations of cognition based on psychological

and ergonomic literature. Along with the software implementation of the types of

models that, historically, were purely mathematical and descriptive, comes the oppor-

tunity and challenge to integrate the theories at several levels. A particular difficulty

is the requirement to understand both the psychological aspects of the cognitive the-

ories themselves and the technical details of their software implementations. Fluency

in programming languages is becoming as vital to academic study of cognitive er-

gonomics as the scientific language of the psychologist, and the task of maintaining a

quality code base is as necessary to the continued development of a cognitive model

as documenting the theory and rigorous validation of the model itself. Our research

1

2

is based on the integration of several existing cognitive architectures and their use in

modeling concurrency in multi-task performance. The integration of these systems

required the development of a task management theory and the engineering task of

establishing communication between the systems.

We investigated a widely used task performance simulation tool to identify poten-

tial improvements and surveyed cognitive architectures and theories that could be

used to enhance the software. We found that a feature which suppressed task com-

ponent execution in high-workload conditions was insufficient to accurately model

subtask conflict. We formalize a theoretical architecture for moderating task execu-

tion based on cognitive state and implement the architecture in a software extension

to the simulation tool. The architecture is divided into one component which enumer-

ates the possible actions that can be taken at decision points during the simulation

and another which selects an action from among those provided based on the system

state. The latter component can be easily modified to implement and test theories

of task management during multi-task performance. We validate a basic, workload

threshold-based implementation by comparing simulated performance to an empir-

ical study that identified qualitatively distinct load-shedding strategies adopted by

Unmanned Aerial Vehicle (UAV) operators (chapter II).

In another vein of our research, we model dual-task performance using a recently

developed combination of two architectures, and analyze simulations in detail to

examine how well the models predict task concurrency. Our primary view of concur-

rency is a quantification in terms of the execution times of the individual tasks that

make up the dual-task. Given two distinct tasks that are presented to a participant

simultaneously, we call the dual-task execution time the time between the start of the

tasks and the completion of the task that is finished last. If two tasks are performed

3

serially, that is, with no concurrency, the dual-task execution time is equal to the

sum of the execution times of the two tasks. At the opposite end of the spectrum,

the two tasks have no conflict and are performed with perfect concurrency. In this

case, the dual-task execution time will be equal to the larger of the two single-task

execution times.

Based on these basic assumptions of concurrency, we quantify dual-task concur-

rency and study the empirical results of human performance on a dual-task consisting

of mental addition and a targeting task. We develop models of the two tasks, simu-

late performance of the single and dual tasks, and validate the predictions using the

empirical data. We examine the model’s predictions in terms of a numeric concur-

rency metric as well as the details of subtask interleaving and conflict. In our first

experiment we vary the difficulty of the tasks with three independent variables and

discuss their effects on task execution time, accuracy, and concurrency in both em-

pirical and modeled data. We also simulate performance on the experimental tasks

using the task management theory described above and compare the execution time

and concurrency predictions with the empirical data as well as data simulated with

the tool’s built-in workload management feature (chapter III).

We generalize the concurrency metric to define concurrency for repeated task

iterations of two tasks without synchronized start times and, again, compare QN-

ACTR predicted execution time and concurrency values with empirically collected

data. In this experiment we remove two task-related independent variables and

introduce an incentive variable and offer an empirical result concerning the source of

dual-task performance improvement under incentivization. We model the effect of

effort by modifying the QN-ACTR models and compare the predicted effects with

the empirical data (chapter IV).

4

In this chapter, we introduce the architectures that we use in our work either in

their entirety, with modifications, or as theoretic inspiration.

1.1 QN

The Queueing Networks (QN) system was developed by Liu (1996) as a mathe-

matical model of the cognitive processes that occur during reaction-time tasks. It

was integrated with the Model Human Processor (MHP) (Card et al., 1986) and

implemented as a computation model capable of simulating task performance in

the discrete-event simulation software ProModel (Liu et al., 2006). The resulting

QN-MHP system adopted the basic assumptions and parameters of the MHP model

and further divided the processing stages based on neuroscience and psychological

findings. The software implementation of QN-MHP introduced the capability to vi-

sually display the flow of information in real time as a simulation runs. QN-MHP

has been used to study the workload of many tasks including driving (Wu and Liu,

2007), transcription typing (Wu and Liu, 2008), and spatial and verbal tasks (Liu,

1997). The QN modeling approach assumes that cognitive resources and regional

brain functions can be represented by a network structure of servers. The structure

is biologically inspired and determined by the Psychology and Cognitive Modeling

literature. The network structure and server tasks as implemented in QN-MHP are

shown in Figure 1.1. The network consists of three major subnetworks: percep-

tual, cognitive, and motor. The perceptual subnetwork models the reception and

processing of information through the visual and auditory sensory modalities. Four

servers represent each modality: one for common processing; two for location and

recognition, which process in parallel; and one to integrate the resulting information.

The cognitive subnetwork is responsible for receiving information from the percep-

5

tual subnetwork and processing it in the context of the agent’s goals and memory.

Faculties represented by cognitive servers include long-term declarative and spatial

memory, which models the storage of facts and other learned information; procedural

memory, which stores information about performing learned tasks; a goal initiation

server, and others. The motor subnetwork models the transformation of cognitive

intent to motor commands to the agent’s body parts. The motor subnetwork re-

ceives information almost directly from the perceptual subnetwork, as well as from

the procedural memory server and others from the cognitive subnetwork. In addition

to sending information to end effectors to produce movement, the motor subnetwork

relays information back to the cognitive subnetwork as motor feedback.

To simulate a task in QN-MHP, a task analysis must be performed and an

NGOMSL-style (Kieras, 1996) description of the task produced and converted to

a task description sheet that can be read by the software. This type of task descrip-

tion consists of declaring a goal and a sequence of actions that accomplish the goal.

Kieras (1996) provides an example of a description of deleting a file on a computer:

Method for goal: delete a file

Step 1. Recall that command verb is "ERASE"

Step 2. Think of directory name and file name and

retain as first filespec.

Step 4. Accomplish goal: enter and execute a command.

Step 6. Return with goal accomplished.

For a QN-MHP model, the task must be specified using a predefined set of oper-

ators (Liu et al., 2006).

The simulation of a task often requires interaction with an external environment

from which perceptual information can be extracted, and to which motor commands

can be applied. For example, to model a driving task, a driving simulator would

be connected to the model. Visual information about lane deviation and other cars

6

Perceptual Subnetwork Cognitive Subnetwork Motor Subnetwork
1. Common visual processing
2. Visual recognition
3. Visual location
4. Visual recognition and
location integration
5. Common auditory
processing
6. Auditory recognition
7. Auditory location
8. Auditory recognition and
location integration

A. Visuospatial sketchpad
B. Phonological loop
C. Central executive
D. Long-term procedural
memory
F. Complex cognitive
function
G. Goal initiation
H. Long-term declarative &
spatial memory

V. Sensorimotor integration
W. Motor program retrieval
X. Feedback information
collection
Y. Motor program
assembling and error
detecting
Z. Sending information to
body parts
21-25: Body parts: eye,
mouth, left hand, right hand,
foot

Figure 1.1: QN-MHP network structure. Reproduced from Liu et al. (2006)

7

would be synthesized based on the simulators screen and sent into the perceptual

subnetwork. Motor commands such as rotating the steering wheel, applying pressure

to a pedal, or even setting the agent’s gaze would be sent from the motor subnetwork

and translated into commands to be sent as input to the simulator.

The modeler can view the model in simulation-time as information flows through

the network. This allows a subjective assessment of cognitive workload as the agent

performs a task. QN-MHP supports the study of multiple-task performance by

allowing the definition of multiple tasks, which will send information through the

network concurrently. For any task, single or multiple, we can study reaction times

by calculating the time between the entrance of information through the perceptual

subnetwork and the production of corresponding motor commands. To validate a

model, we compare the distribution of reaction times exhibited by the simulation

and by a participant performing the same task in a laboratory.

The nature of QN is to allow us to assess reaction times and cognitive workload

of a given cognitive process. As a functional simulation model, it retains the robust

mathematical analysis of reaction times, which characterized its original form as a

descriptive model. However, this analysis depends on the manual description of the

cognitive process that it analyzes. It does not attempt to produce or even model the

production of the cognition required to perform a task or to solve a problem.

1.2 ACT-R

Adaptive Control of Thought - Rational (ACT-R) is a cognitive architecture and

theory developed by (Anderson and Lebiere, 1998). The ACT-R theory describes a

collection of modules representing human cognitive, perceptual, and motor faculties,

that interact to produce detailed models of task performance. ACT-R models can

8

accurately predict task metrics such as response time and error. ACT-R is imple-

mented as a free software package in the Lisp programming language and is a heavily

researched topic in the cognitive modeling field.

The ACT-R theory defines a set of modules representing the perceptual, motor,

and cognitive resources used during human task performance. This section introduces

the modules used by our task models.

1.2.1 Declarative Module

The declarative module stores information in units called chunks to represent

declarative memory (DM). Chunks are added to DM either explicitly by a modeler

or automatically when they are cleared from another buffer, and are retrieved by

making requests to the retrieval buffer which specify values of chunk properties or

“slots” which the retrieved chunk must match. The time required to retrieve a chunk

is a function of the chunk activation and is described in chapter III. Like the vision

module, only one request can be made to the declarative module at a time.

1.2.2 Procedural Module

The procedural module manages the definition and execution of the productions

that modelers write to determine behavior based on the state of other modules.

Productions are defined using the (p production-definition) command. Below

is a production definition taken from the high-difficulty targeting model.

(P detect-target-color

=goal >

ISA targeting

state distinguish-target

=visual-location >

ISA visual-location

kind OVAL

- color black

color =color

9

?retrieval >

state free

buffer empty

==>

+retrieval >

ISA response

color =color

=goal >

state decide-whether-to-shoot

)

The production definition consists of a name (detect-target-color), a set of

conditions which appear before the ==>, and a set of actions which appear at the

end. The conditions declare a system state which must be met for the rule to

match. In this example, the contents of the goal buffer (indicated by =goal>) must

be a chunk which is of type targeting, and the value of the state slot must be

distinguish-target. Many ACT-R models maintain the state of the task in a

slot on the goal chunk. The visual location buffer (visual-location) must hold

a chunk of type visual-location and represents an oval. This condition uses a

negative slot test (- color black) to state that the color of the oval cannot be

black. It also uses a variable test to capture the value of the color slot, whatever

it may be (color =color). Finally the production tests that the retrieval buffer is

available (state free) and does not already contain a chunk (buffer empty). This

test enforces the “greedy-polite” policy of the threaded cognition theory described

in chapter III.

If these conditions are met during the production matching phase of the ACT-R

algorithm, the production is a candidate for selection. If the rule is selected due to

being the only matching rule, or through the conflict resolution process, the actions

will be applied during the execution phase. In this example, a request is made to

10

retrieve a chunk from declarative memory (+retrieval>). The request specifies that

the chunk should be of the type response and the value of the color slot should match

the color of the chunk in the visual location buffer. This is achieved by providing the

=color variable matched in the visual location buffer condition to the color slot of

the request. The rule also specifies that the chunk in the goal buffer (=goal>) should

be modified so that the state slot contains the value decide-whether-to-shoot.

1.2.3 Goal Module

The goal module represents the intent of the simulated operator and the associated

buffer typically contains a chunk describing the state of task execution. In our

models we store the stage of processing in the state slot of the goal buffer chunk

and use other slots to store task-specific information such as intermediate results

of an addition problem. The standard ACT-R goal module defines one goal buffer

and is therefore not well suited for easily modeling multi-task behavior. However,

extensions to ACT-R implementing Salvucci’s threaded cognition theory (Salvucci

and Taatgen, 2008) introduce addition goal buffers to manage the state of subtasks

separately.

1.2.4 Vision Module

The vision module represents the human visual modality and defines two buffers

corresponding to two distinct visual subsystems. The visual location buffer supports

requests for information about where objects are in the visual plane. Requests to the

buffer describe visual properties of an object to constrain a search for an object that

matches. Searches can be constrained by features conducive to preattentive search

(Anderson and Lebiere, 1998). For example, the detect-target-color production

above could match a chunk in the visual location buffer that was found in response

11

to the following request which searches for an oval with a pixel location with an x

value of 100:

+visual-location >

ISA visual-location

kind OVAL

screen-x 100

If a visual object exists that matches the request it is placed in the visual-location

buffer, replacing any chunk already there. If no match is found, the buffer remains

unchanged and the buffer will be in an error state until a new request is made and

succeeds.

Some details of a visual object are not stored in the visual location buffer and are

not available for inspection unless a request is made to the visual buffer, the other

buffer defined by the vision module. A request to the visual location buffer represents

a preattentive search and a request to the visual buffer typically represents an allo-

cation of visual attention, although it does not correspond directly to eye movements

(Anderson et al., 2004). The primary request made to the visual buffer is of the type

move-attention. The request specifies a screen-location slot whose value must

be a subtype of the visual-location chunk-type. Typically, visual buffer requests

are made using the results of a visual-location request in the screen-location slot.

Visual buffer requests have a default latency of 85 ms before the request results are

available. Requests made while the visual module is busy will fail. Details of the

object such as textual content are stored in the visual buffer chunk. When visual

attention is allocated to a location, the location is said to be attended and the at-

tended state can be used to constrain future visual-location searches. The number of

locations that can be attended at a given time and the time that a location remains

attended are limited and can be specified as model parameters. The visual buffer can

12

be explicitly emptied and the error flags reset with a clear command. Making a clear

request also prevents the module from re-encoding visual objects, which normally

occurs when there is a change in the visual scene at the location of visual attention.

1.2.5 Device Module

The external interfaces that the model interacts with are represented by the device

module. The module defines a basic set of devices such as a keyboard, mouse, and

screen and allows for the definition of custom devices as lisp objects. Parameters

such as the screen pixel density and distance can be defined using the device module.

1.2.6 Motor Module

The motor module represents the model’s hands and supports basic commands

to operate the default devices. Just as custom devices can be defined, custom motor

commands can be defined to interact with them. The default motor actions are based

on EPIC’s Motor Processor (Meyer and Kieras, 1997a) and allow models to perform

movements such as striking keys, and moving a mouse. Movement time for large

movements such as mouse control is governed by Fitts’ Law while smaller movements

such as keystrokes have times calculated based on the movement parameters and have

a minimum execution time. Some parameters such as the Fitts’ Law coefficient for

peck motions and noise in cursor movements can be overridden. Each motor action

consists of three phases: preparation, processing, and execution. The availability of

each phase can be queried by model productions. In the motor module, unlike the

visual module, a new request can be made while the processing or execution phase

are busy as long as the preparation stage is free.

13

1.2.7 Speech Module

The speech module provides basic support for simulating speech and subvocaliza-

tion and is similar to the motor module. Requests of type speak or subvocalize

must contain a string slot whose value is the text that should be spoken or subvocal-

ized. The time required to complete the action is 150 ms per syllable, and the module

assumes one syllable for every three characters in the string. These parameters can

be overridden.

1.2.8 Temporal Module

The temporal module implements a basic capability to estimate time intervals.

The module acts as a timer and is started by making a request of chunktype time.

The request sets or resets a tick counter maintained by the module to 0 and the

module begins the process of updating the tick count. The current tick count is

available in the ticks slot of the chunk in the temporal buffer. The time between tick

count increments is defined by a noisy, autoregressive formula that models prediction

accuracy that decreases with time (Taatgen et al., 2007).

1.3 QN-ACTR

Cao and Liu (2011a) developed a queueing network based implementation of most

of the ACT-R system in the discrete-event simulation software Micro Saint Sharp

(MSS). Just as QN-MHP represented components of MHP as servers in ProModel,

each ACT-R module and buffer is implemented as one or more tasks1 in MSS. For

example, the portion of the task network that implements the motor module is shown

in figure 1.2. Requests to the motor module are passed into the Motor Module
1MSS and IMPRINT use the term task to refer to the atomic unit in a network, while ProModel uses the term

location for the same concept. QN-ACTR and QN-MHP literature uses the term server to refer to a stage of processing
that is implemented as a location or task in ProModel and MSS respectively. When discussing the implementation
of QN-ACTR in MSS we use the term task, which is not to be confused with an experimental task being modeled
using QN-ACTR.

14

Figure 1.2: Motor module subnetwork in QN-ACTR

task from a subnetwork that is responsible for parsing an ACT-R production and

delegating the actions to the appropriate module tasks. The module computes the

duration of each stage (preparation, initiation, and execution) and stores the times

in the entity. The entity then continues through each stage of processing to simulate

the execution of the motor action.

Cao and Liu (2011a) verified their ACT-R implementation by comparing the sim-

ulations of 20 different models from the ACT-R tutorials and a dual-task study

(Schumacher et al., 2001). QN-ACTR gains the advantages of queueing network

simulations while maintaining the power and accuracy of the ACT-R system. The

network activity can be viewed as a simulation runs in the MSS graphical inter-

face and utilization-based workload values of a single task or a subnetwork can be

automatically computed (Cao and Liu, 2011b). Furthermore, Cao has developed

an interface which allows modelers to describe an experimental task design which

QN-ACTR can present to both a human participant and an ACT-R model. Further

details of the QN-ACTR system are described in chapter III.

1.4 IMPRINT

The Improved Performance Research Integration Tool (IMPRINT) is a software

package developed at the Army Research Laboratory (ARL) Human Research and

Engineering Directorate MANPRINT Methods and Analysis Branch (HRED MMAB)

15

(http://www.arl.army.mil/imprint). It is a performance modeling application

based on the Micro Saint Sharp discrete-event simulation software. IMPRINT pro-

vides tools for modeling mission-level logistics as well as operator-level task and cog-

nitive workload modeling. Our research considers the latter feature set and identifies

potential improvements. We use version 3.5 of the IMPRINT software.

IMPRINT can be used at any stage of the interface or product design process. It

can be used to evaluate an existing system or to assess a system during development,

and can reduce development costs by allowing designers to constrain a system from a

human factors perspective before producing prototypes (Mitchell and Samms, 2009).

1.4.1 IMPRINT model structure

An IMPRINT task model is a network of task components or groups of task

components call functions. In IMPRINT the atomic unit is referred to as simply

a task, but we will continue to use the term task component to distinguish from

an overall task. An example of an IMPRINT model is shown in figure 1.3. The

model represents a simple stimulus-response task in which a character is shown on

screen and a user strikes a corresponding key on a keyboard. The task is divided into

three task components. First the character on the screen is perceived visually in the

perceive-character task component. Second, the location of the corresponding key on

the keyboard is recalled in the lookup-key task component. Finally, the stroke of the

key is modeled in the strike-key task component. For such a simple task we would not

need to use functions. However, functions are useful for representing task hierarchies

in which subtasks are further subdivided into their own components. They are also

useful for developing modular task definitions such as dual task scenarios. Both tasks

could be defined in functions, which in turn are arranged in parallel at the top level

of the network.

http://www.arl.army.mil/imprint

16

Figure 1.3: Example IMPRINT task network

At a global level, a task model can include variables and macros which are defined

in the C# programming language. Variables can be used to store global state and

macros are functions in the C# sense: a block of code which can take parameters,

execute, and return a value.

Each component contains information relating to task performance. This includes:

1. Duration: Specified as a constant value, a random distribution of times, or an

arbitrary expression which can reference model variables and macros.

2. Workload values: IMPRINT defines several resources including cognitive, visual,

speech, and motor. A task component can have a workload value specified

for each resource individually. The IMPRINT workload value scale is based

on the VACP workload scale (McCracken and Aldrich, 1984; Bierbaum et al.,

1989). A reference table is provided for each resource for common tasks such

as reading text (visual), announcing a single word (speech), and pressing a

button (motor). IMPRINT includes a method called the Advanced Workload

System for combining the workload values for individual resources in separate

but concurrent tasks into a single value using a matrix which specifies the extent

to which two resources conflict.

3. Failure probabilities, Taxons, and Crew members: These allow analysts to define

constraints on tasks but we will not make use of them in our work.

17

Task components also have events which fire as an entity progresses through the

stages of its execution. An event is a C# function that an analyst can define that will

be called at the appropriate times during the task simulation. In IMPRINT these

events are referred to as effects. Task events consist of:

1. Release Effect: Called when an entity is scheduled to enter a task. The release

effect returns a boolean value which determines if the entity is allowed to enter

the task.

2. Beginning Effect: Called after an entity is allowed to enter a task and the task

is beginning. This effect can, for example, be used to set global state used to

communicate with other tasks or indicate that the task is running.

3. Launch Effect: Called when the entity is beginning but after the duration of

the task has been computed. The Beginning Effect executes before the task

duration is computed. This can be useful for starting graphical animations that

depend on the task duration time.

4. Ending Effect: Called after an entity has finished its duration of task execution.

Task events are powerful tools for guiding and modifying task execution and we will

describe how we use them in section 2.2

1.4.2 Workload management

Behavior under high workload conditions can be of particular interest to analysts.

When an operator attempts to perform tasks under high workload, the incidence of

errors can increase, some task components may be omitted, or the task may have a

longer duration. We expect a model of human performance and workload to reflect

these errors during task simulation.

18

In IMPRINT, analysts can use a Workload Management Strategies feature to

specify a workload threshold that determines when a simulated operator begins

committing errors. If a new task component is scheduled to begin when the cur-

rent workload is above the predefined threshold, the simulated operator can use one

of five strategies:

A. Perform all tasks, regardless of workload.

B. Do not begin the new task, and do not assign it to any other operator.

C. Perform tasks sequentially, beginning with the current task.

D. Interrupt current task to start new task. Current task resumes given opportu-

nity.

E. Assign new task to a contingency or secondary operator.

The Workload Management Strategies feature in IMPRINT has several limita-

tions. First, the analyst must choose only one strategy that will always be applied

by the operator in high workload conditions. The strategy, therefore, does not de-

pend on the total workload value, the workload values of individual components,

task priority, task duration, or any other state information. Second, strategy appli-

cations can produce invalid task sequences. For example, under strategy B, if a task

is not performed due to high workload, a subsequent and dependent task may be

performed when the workload value decreases despite the omission of the previous

task component.

1.5 Soar

Soar, like ACT-R, is a production system. However, unlike ACT-R, which is

designed specifically to simulate human task performance accurately and in detail,

19

Soar is designed as an artificial intelligence (AI) system and is only loosely inspired

by human cognition to facilitate complex problem-solving. The structure of ACT-R

declarative storage or buffers is strictly specified and the rule actions are constrained

in the way they modify the buffers. Soar, on the other hand, defines no relation

between the contents of its working memory and entities in the real world, and

productions can freely modify any stored information. Our work uses version 9.3.3

of the Soar software.

1.5.1 Problem state representation

Information in Soar is represented by working memory elements (WME) that are

stored in a directed graph. A WME is a triple consisting of an identifier, an attribute

name, and a value. In Soar syntax a WME is written (<id> ^attribute value).

We use this syntax when describing contents of working memory in Soar. The value

of a WME can itself be an identifier, allowing for the construction of a graph of

WMEs including loops. WMEs can be added by productions and have two types of

persistence corresponding to two types of productions.

1.5.2 Productions

Soar is not a simple production system that identifies matching rules, selects one

using a conflict resolution strategy, and applies the rule. Instead, Soar defines the

concept of an operator, which is some action that causes a transition in the problem-

solving space. The basic Soar algorithm is an infinite loop of operator proposals, the

selection of an operator from the set of proposed operators using preferences, and

the application of the operator.

20

Elaboration rules

There are two types of productions in Soar: elaboration rules and operator appli-

cation rules. Elaboration rules, or simply elaborations, are fired whenever their con-

ditions match the current state of working memory. Their actions describe changes

to working memory that are applied when they fire. These changes persist only

as long as the rule that caused them still matches. Elaboration rules are used to

propose operators, declare preferences between operators, and to assert addition

working memory state based on current conditions. As an example, an object in

working memory may have two associated WMEs that describe an addition problem:

(<problem> ^addend1 4)(<problem> ^addend2 8). An elaboration rule could be

written to match this state and compute the sum of the values:

(<p> ^addend1 <value1 >)

(<p> ^addend2 <value2 >)

-->

(<p> ^sum (+ <value1 > <value2 >))

As long as the object retains the two addend attributes, the rule will match and the

object will be elaborated with the sum of the values. If either of the addend attributes

is removed, the rule is retracted and the sum WME is immediately removed.

All matching elaboration rules fire and have their changes applied in parallel.

If additional elaborations match as a result of the changes, they are fired in turn.

This process continues in waves until quiescence, that is, until no more additional

elaboration rules match.

Operators for a problem-solving state are proposed by adding ^operator <o>

to the state object using elaboration rules. Preferences between operators are also

declared with elaboration rules. Operators can be rejected, required, declared best

or worst, or better or worse than another operator. Details on operator preference

21

semantics can be found in Lehman et al. (2006).

Operator application rules

A production is an operator application production if it tests the selected operator

of a state and modifies the state. All other productions are elaboration rules, de-

scribed above. Because an operator transitions between states in the problem-solving

space, the changes to working memory made by operator application rules persist

after the rule no longer matches. A single operator may have multiple application

rules.

Impasses

The Soar algorithm selects and applies operators to traverse a graph in the prob-

lem state space. The problem state is held in working memory and is defined by

the WME graph constructed by operator application rules. There are some cases in

which an operator cannot be selected or applied and so no traversal between states

in the problem space occurs. This is referred to as an impasse. There are several

reasons an impasse may occur (for details, see Lehman et al. (2006)), but each im-

passe is handled the same way. A new WME is created to represent a new problem

space: to resolve the impasse that occurred in the original problem space. The Soar

software distribution provides rules to aid in the resolution of certain impasse types.

For example, if two or more operators are proposed but the preferences are insuf-

ficient to select one, Soar provides a set of rules to select and apply each eligible

operator in the substate in order to evaluate their effect. Based on the evaluations,

one of the operators is selected in the original state and the impasse is resolved. In

order to resolve impasses in general, productions should be written to detect them

and resolve the cause of the impasse.

22

1.5.3 Input and Output (IO)

Soar defines a special entry in working memory which allows a Soar agent to

interact with an external environment. The ^io link is established on the top state

of working memory and has two sub-links: input and output, which we will refer

to as the input link and output link, respectively. The Soar software supports the

development of external environments in several programming languages including

Java, C++, C#, and Python that communicate with a Soar agent via the Soar

Markup Language (SML), the details of which we omit. These environments can

place arbitrary WMEs on the input link for the agent to test in production conditions.

The agent can place WMEs on the output link, which can then be read by the

environment. A Soar agent typically places WMEs that describe an action it wishes

to take, and the SML client updates the state of the environment accordingly, placing

information describing the updated state on the input link for the agent.

1.5.4 Learning

Soar supports two types of learning called chunking (Laird et al., 1986) and re-

inforcement learning (Nason and Laird, 2005), and recent versions of Soar include

implementations of episodic (Derbinsky and Laird, 2009) and semantic memories

(Wang and Laird, 2007). However, we do not use these features in our work.

1.5.5 Using Soar in cognitive models

We initially investigated the use of Soar to model aspects of problem-solving

cognition, much in the same way that ACT-R is used to model task performance.

However, we decided against this for several reasons. Although Soar takes inspiration

from human cognition, the architectural assumptions are too distant from limitations

of human problem-solving to produce realistic models using standard Soar agents.

23

It may be possible to develop a base set of productions that implement constraints

on the Soar architecture to more closely represent human cognitive faculties in the

same way that ACT-R constrains a general production system to accurately portray

human performance, however, our literature search did not find sufficient evidence

that the task is tractable at this time.

Instead of using Soar directly as a cognitive model, we exploited its strengths as

a rule-based reasoning system to implement a multi-task management framework.

IMPRINT, as described in section 1.4, is used to simulate human performance using

task-network models and features a workload management system designed to re-

strict task execution under high-workload conditions. The feature is, however, very

limited: it contains a strict set of actions to take when it is activated; activation is

based only on the current workload, ignoring all other state; and the workload is

compared to a single, constant threshold value defined by the analyst to activate the

actions. We implemented an IMPRINT plugin that allows an IMPRINT simulation

to communicate with a Soar kernel instance. The plugin maintains a representation

of the simulation state on the Soar input-link and manipulates the execution of tasks

in the simulation based on commands it reads from the output-link.

This allows us to use Soar’s powerful reasoning system to develop models of task

management during multitask behavior based on operator and task state. We im-

plemented these models by separating the agent into two components. The first is

responsible for enumerating the possible task management actions based on the cur-

rent simulation state and conforms to the theory described in section 2.1. This is

accomplished by a set of productions that do not need to be modified to change the

specific choice as a function of the current state. This choice is the responsibility of

the second agent component. Given the set of possible task actions defined by the

24

management theory, this component selects the one action that should be applied.

This reduces the burden on the task modeler to defining the function from state to

action selection and implementing the function as operator preferences in the Soar

agent. The task management models we have implemented are detailed in sections

2.4 and 3.7.5.

1.6 EPIC

Executive-process interactive control (EPIC) is a theoretic framework describing

the performance of cognitive and perceptual-motor tasks. It supports the modeling

of dual-task performance and, similar to Soar and ACT-R, has a computation im-

plementation as a production system. EPIC was developed in the context of early

iterations of ACT-R, Soar, and MHP, and is similar to the current ACT-R imple-

mentation in its detailed models of cognitive and perceptual-motor subsystems. It

is more detailed than ACT-R in some aspects. For example, an efference copy of

motor actions is available to the cognitive system via working memory, a detail that

ACT-R lacks. EPIC also deviates fundamentally from the serial nature of ACT-R’s

production system which allows only one production to fire at a time. EPIC has no

inherent limit on parallelism in the production system, testing all rules for match-

ing conditions and executing all that match. Consistency of the model is enforced

in production definitions and by EPIC’s important concept of executive processes.

These are defined with sets of productions that are matched and executed along with

those that model specific tasks, but do not pertain to executing the tasks themselves.

Instead they are uniform across task models and coordinate task execution by ma-

nipulating simulation state such as goals and working memory. Executive processes

represent the human cognitive mechanisms that moderate task execution includ-

25

ing central task scheduling, task priority, operator strategies, and resource conflict

(Meyer and Kieras, 1997a,b).

The concept of isolation and explicit implementation of these processes is in dras-

tic contrast to the ACT-R approach, in which they emerge from the structure of

task simulation using resource modules with availability constraints and a serial lim-

itation of the central production system. Although we do not integrate the EPIC

system with the other architectures described in this chapter, we adopt EPIC’s model

of the executive process in our extension to the IMPRINT software introduced in

section 1.5.5 and detailed in chapter II. Much like EPIC’s executive processes, our

IMPRINT extension is a production system that interferes with the execution of

components of task-specific models in order to enforce the constraints of human cog-

nition. IMPRINT’s task models, however, are hierarchical task networks as opposed

to sets of productions in EPIC models. Therefore we define a theory formalizing the

actions taken in response to task network events to bridge the discrete-event simu-

lation nature of IMPRINT models with the production system nature of the Soar

agent moderating task execution (section II.

CHAPTER II

IMPRINT and Workload Management with Soar

IMPRINT, described in section 1.4, is a widely used cognitive modeling tool in

which tasks are modeled as hierarchical network of task components. Tasks are

simulated by the passage of entities through the network, executing arbitrary code

written by the modeler in the C# language when tasks begin and end. Task compo-

nents have property attributes such as workload values and execution times which

are used to analyze the difficulty and duration of the overall task. The Advanced

Workload System features a method to automatically hamper the execution of task

components in high workload conditions (Mitchell, 2000). However, as we discuss in

this chapter, this feature is limited and inflexible. The goal of our work is to improve

the management of task execution based on cumulative workload values. Parasur-

aman and Rovira (2005), in their review of potential improvements to IMPRINT,

proposed similar efforts, in particular, using a feature which allowed modelers to

define task priorities as a function of task properties. This feature has since been

removed from the IMPRINT program.

We develop a theory of task management similar to EPIC’s executive processes

(Meyer and Kieras, 1997a) and an implementation of the theory as an extension

to the IMPRINT software. The extension was developed using the Soar cognitive

26

27

architecture and is more powerful and flexible than the built-in workload management

system. We show that a task simulation of UAV operators moderated with the

extension exhibits load-shedding strategies observed in the behavior of human UAV

operators (Schulte and Donath, 2011).

The scope of the resulting task management model is limited to endogenous at-

tention allocations. We do not, for example, theorize about how operators react to

interruptions concurrently with task performance. Similarly, UAV task described in

this chapter, and the experimental tasks described in chapters III and IV contain

few, if any interruptions. However, we do suggest that the architecture presented

here could integrate interruption management findings (Sarter, 2013; Lu et al., 2013;

Nikolic et al., 2001) in an effort dedicated to modeling exogenous attention allocation.

2.1 Workload management extension theory

To formalize our extension of task management in IMPRINT we defined the set

of decisions that must be made about whether a task should execute and what

those decisions can be. A diagram of the decisions is shown in figure 2.1. The first

decision type is whether a task component is allowed to begin after the previous

component ends. This is called the release decision and corresponds to the release

effect in an IMPRINT task component. The decision is made in response to a single

task component eligible for release in the context of the state of other concurrent

tasks. The decisions are similar to IMPRINT’s strategies except that we are only

interested in the task performance of a single operator, so we do not have a decision

corresponding to the (E) IMPRINT strategy. The four actions that do result from

the decision correspond to strategies A through D and are shown in figure 2.1:

A. Perform task: Allow the new task component to begin without affecting other

28

Figure 2.1: Possible actions taken for a scheduled task component

concurrent tasks.

B. Ignore task: Do not allow the new task to begin. In this case the task is never

executed, nor are subsequent tasks that would have been executed after this

task was complete.

C. Delay task: Do not allow the new task to begin, but consider beginning the task

at a later time.

D. Interrupt task: Allow the new task to begin and interrupt a currently executing

task. Consider resuming the interrupted task at a later time.

The Delay and Interrupt actions result in a task component being put in a sus-

pended state and incur a new decision: if and when to resume a suspended task. We

call this the Resume decision. Because any task in a suspended state was delayed

or interrupted in favor of the execution of other tasks, the resume decision is made

each time an active task component ends. The action taken in a resume decision is

to resume zero or more suspended tasks. The action specifies which of the currently

29

suspended tasks should resume. There is no distinction made between tasks which

are suspended due to an interruption or a delay action.

The third and final decision type is whether to expire a suspended task. This can

correspond to a task which is interrupted for a long enough duration that a higher

level task in a hierarchy must be restarted.

2.2 Extending IMPRINT

To implement the IMPRINT workload management extension we developed two

primary software components: a plugin to establish communication between a Soar

kernel and an IMPRINT simulation, and a Soar agent to make decisions based on

the current execution state.

2.2.1 Plugin capability

The IMPRINT program is written in C# and exposes an interface that can be

used by third-party code that is compiled to a dynamic link library (dll) called a

plugin. A plugin can subscribe to events that occur during the course of running

the IMPRINT program itself and individual runs of an IMPRINT simulation. Some

events are the same as those that are available within IMPRINT such as the Begin-

ning, Release, Launch, and End effects. A plugin can even modify the value returned

by the Release effect, allowing or disallowing an entity from starting a task. Other

events include variable initialization, simulation beginning, simulation ending, and

application ending. All of the IMPRINT features available to code written in effect

handlers are also available to plugin code. For example, plugin code can search for,

suspend, resume, and modify entities, print to the console window, and even halt

the simulation.

30

2.2.2 Soar plugin

In order to use Soar to make decisions governing an IMPRINT simulation, we de-

veloped an IMPRINT plugin that a ran a Soar kernel instance using its C# interface.

The full source code of the plugin is available at https://github.com/sirctseb/

Scope.

When the plugin is initialized, it creates a Soar kernel which will run the agent

used to make decisions. The plugin also adds event handlers to IMPRINT events,

each of which is described below.

Initialize variable

An event is fired for each variable that the analyst has defined when a simula-

tion begins. We use this event to enable the workload management extension. To

allow the soar agent to make decisions and modify the simulation, a variable named

EnableScope must be defined in the IMPRINT model. When the plugin receives a

variable initialization event corresponding to the variable, it sets an internal flag to

enable decision making.

Simulation begin

This event is fired when an IMPRINT simulation starts running. When the plugin

receives the event, it creates and initializes the agent by loading the soar files from

disk and setting the agent to initial state.

Simulation end

When the IMPRINT simulation ends, the plugin destroys the agent object and

writes statistics about the decisions made to log files.

https://github.com/sirctseb/Scope
https://github.com/sirctseb/Scope

31

Application close

The plugin shuts down the Soar kernel when the IMPRINT program is closing.

After release condition

This event is fired when an entity is being evaluated for release into a task, after

the Release effect code define in the IMPRINT interface has run. The handler can

return a boolean value that overrides the value returned in the Release effect code.

Release effect precedence The handler is passed a boolean value that indicates

whether the Release Effect code defined by the analyst in the IMPRINT interface

returned true or false. If the value is false then there is some domain logic that

indicates that the entity should not be allowed to enter the task. The Soar plugin

respects this decision and returns false as well.

Resume task precedence The handler then checks if the task was delayed and the

agent has made the decision that it should resume. If it is, the handler returns true,

indicating that the entity should now be allowed to begin the task. If it is not delayed

task but there exist delayed tasks that are waiting to resume, the handler returns

false. This allows delayed tasks that the agent has decided should resume to begin

executing before making decisions about whether new tasks should start.

Deferred decisions There is no guarantee that, if the release condition for a given

entity waiting to enter a task returns true, then the entity will, in fact, immediately

enter the task. Multiple entities waiting to enter tasks may have their release con-

ditions evaluated before any of them actually enters. After evaluating the release

conditions, IMPRINT may allow any one entity whose condition was true to enter

32

its task. The remaining entities will have their release conditions evaluated again

before allowing them to start.

For this reason, the Soar plugin can not know that a task will start if the release

condition handler returns true. Therefore, the decision to allow a task to resume is

stored in a list of decisions pending confirmation from IMPRINT that the decisions

took effect. In this case, we must wait until the beginning effect event (section 2.2.2)

fires for an entity before we can remove the flag that indicates the agent has decided

the task should resume.

Delayed tasks Next, the handler checks if the entity is in a suspended state due

to a decision to delay the task. If so, the handler returns false, preventing the task

from starting. All delayed entities will be prevented from beginning tasks this way

until the agent makes a decision to resume them (section 2.2.2).

Deferred decision replacement As described in section 2.2.2, decisions made by the

Soar agent do not always incur immediate action in the IMPRINT simulation. An

entity will likely have its release condition evaluated several times before it begins a

task. As described in section 2.2.2, information about the Soar agent’s decision in

the release condition is stored in a deferred decision object. Therefore, in the release

condition handler, the plugin checks for a deferred decision strategy associated with

the current entity. If it exists, it is destroyed so that a new release decision can be

made for the entity.

Release decision If none of the special cases described above apply, then the Soar

agent must make a decision about whether the current entity should begin its task.

The plugin creates a new entry on the agent’s input-link to represent the task. The

33

entry contains a unique identifier for the task, the time the entity first tried to enter

the task, and the task priority, salience, and workload values. Finally a flag is added

to the entry to indicate that the agent must make a decision about whether the

task can begin. The plugin then runs the Soar agent until it produces a release

decision, which the plugin reads from the output link and carries out the decision in

the IMPRINT simulation.

First, the decision made by the Soar agent is stored in a deferred decision and the

task is removed from the Soar input-link. If the decision is to delay or ignore the

task, the entity is flagged for later processing and the handler returns false so that

the task cannot begin. If the decision is Perform task or Interrupt task the handler

returns true.

Beginning effect

When a task is allowed to begin a task, it is because the Soar agent chose Perform

task or Interrupt task in a Release decision, or it chose to resume a delayed task in

the Resume decision. When the entity enters a task, the Beginning effect event fires.

The plugin implements a handler for this event to process the task that is starting.

The handler first removes the flag that indicates that the entity should be allowed

to resume if it is set. If the last decision made was an interrupt decision the handler

suspends the entity that the Soar agent determined should be interrupted and a flag

is set on the entity to indicate that it has been interrupted. Finally, the Soar agent

is notified of the new simulation state by adding the task to the input-link.

Ending effect

When a task is complete the Ending effect event fires. The plugin handler for this

event removes the task from the Soar input-link to indicate to the agent that the

34

task is no longer running.

Resume decision The ending of a task indicates a change in system state that

may permit a delayed or interrupted task to resume. Therefore, if there are any

delayed or interrupted tasks when an ending effect event fires, the handler runs the

Soar agent until it makes a Resume decision. If the agent determines that a delayed

task should be resumed, the plugin removes the delayed flag from the corresponding

entity, adds a resume flag, and removes the task from the Soar input-link. The task

will be added back to the input-link in the beginning effect event handler.

If the agent determines that an interrupted task should be resumed, the plugin

removes the interrupted flag resumes the corresponding entity, which was suspended

in the IMPRINT simulation. The plugin does not need to add a resume flag to the

entity like it does for a delayed task because the entity had already started its task

and it is able to immediately resume.

Clock advance

When the simulated time in IMPRINT discrete event simulation advances, a Clock

advance event is fired. The plugin handles this event to update the state of the Soar

agent. When the event fires, the handler adds the clock value to the Soar input-link.

It then checks for any deferred decisions to ignore or delay tasks. These decisions,

which are made in the release condition event handler, can only be made when the

clock changes because IMPRINT evaluates release conditions multiple times for the

same task. The plugin can not know which will be the last evaluation until the clock

changes.

If the plugin finds a deferred ignore decision, the corresponding entity is aborted.

If the plugin finds a deferred delay decision, a delayed flag is added to the entity and

35

the task is added to the Soar input-link with a ^delayed yes property.

Expire decision The handler also uses the clock advance effect to request an

Expire decision from the Soar agent. The handler places a ^decision-request

expire entry on the Soar input-link and runs the agent until a decision is returned.

If the decision states that an task should expire, the corresponding entity is aborted

in the IMPRINT simulation and the decision-request entry is removed from the

input-link.

After entities aborted

This event occurs whenever an entity is aborted for any reason. The plugin

handles this event to remove tasks from the Soar input-link for each aborted entity

to keep the agent state synchronized with the IMPRINT simulation.

After entities suspended

When the Soar agent decides to interrupt a task, the corresponding entity is sus-

pended and this event fires. The plugin handler for this event removes the ^active

yes property that indicates to the Soar agent that the task is running and adds a

^delayed yes property to show that the task is suspended.

After entities resumed

When an interrupted task is resumed, the corresponding entity is resumed in the

IMPRINT simulation and this event fires. The handler for this event removes the

^delayed yes property and replaces it with the ^active yes property to indicate

to the agent that the task is running.

36

2.3 Soar agent

The IMPRINT plugin described in section 2.2.2 listens for events in the IMPRINT

simulation, passes state information to the Soar agent, and runs the agent, which uses

the information on the input-link to make Release, Resume, and Expire decisions.

To organize the processing required to make the decisions, the agent uses a subgoal

for each decision type which prepares the possible choices that the agent can make in

response to a decision. The selection among these choices is a question of cognitive

theory and is independent of the architecture to produce them.

2.3.1 Release decision subgoal

When an IMPRINT entity is scheduled to begin a task, the corresponding release

condition is evaluated and the release condition event is fired. The plugin responds to

this event by placing the task on the Soar input-link with a ^release yes property

attached. All other tasks that are executing in parallel are already on the Soar

input-link with a ^active yes property. The agent tests for the existence of a task

with a ^release yes property and proposes the release-decision operator which

becomes a subgoal when it is selected.

Within the release-decision subgoal the agent proposes the following operators:

one perform-task, one ignore-task, one delay-task, and an interrupt-task

operator for each active task on the input-link. This set of operators represents

the entire set of responses to a Release decision for the current state. The decision,

therefore, reduces to choosing among the proposed operators and the implementation

of the choice depends on multitasking theory and is described in section 2.3.4. The

Soar agent contains rules to apply whichever operator is selected. An application

rule places a description of the decision on the output link which is subsequently

37

read by the IMPRINT plugin.

2.3.2 Expire decision subgoal

The IMPRINT plugin requests an Expire decision by placing a special entry on

the input-link: decision-request expire. The Soar agent tests for this property

and creates an expire-decision subgoal. In this subgoal, the agent elaborates each

delayed task with the amount of time it has been delayed. The agent proposes an

expire-task operator for each delayed task and the choice of whether to expire a

task is a matter of cognitive theory and described in section 2.3.4. The agent defines

an application rule that adds an expire decision to the output link if an expire-task

operator is selected. If no operator is selected, a state no-change impasse occurs. The

agent detects the impasse and proposes an expire-none operator that is selected

and placed on the output-link upon application.

2.3.3 Resume decision subgoal

If the agent finds a task on the input link with a ^delayed yes property, it

proposes a resume-decision operator in order to create a subgoal. This can occur

when there is also a task with the ^release yes property, in which case the agent

should be making a release decision. Therefore, the agent defines an elaboration rule

which always prefers a release-decision operator to a resume-decision operator.

In the Release decision subgoal, the agent proposes a resume-delayed operator

for each delayed task on the input link. The actual decision of whether to resume a

task is, again, a theoretical question and the implementation is described in section

2.3.4.

If all resume-delayed operators are rejected, a state no-change impasse results

and a substate is created. The agent detects the substate and proposes an operator

38

named resume-none similar to the expire decision (section 2.3.2). This operator is

selected in the absence of any other eligible operators.

2.3.4 Response selection

The Soar agent infrastructure described above maintains the state of the IM-

PRINT simulation and enumerates the possible response choices for each decision as

operators. The choice among these responses is implemented by defining rules that

declare preferences between the proposed operators. By separating the responsibil-

ities we allow for the implementation and extension of response selection without

requiring knowledge of the Soar agent architecture or even how to develop a full

Soar agent. The barrier to developing custom task-component management models

is reduced to understanding simple Soar rule definition syntax and operator prefer-

ence semantics. We have developed a workload threshold based decision procedure

similar to the Advanced Workload System method. We describe the models and the

Soar preference rules that implement the response selection below. For details on

preference semantics in Soar see Laird (2012) or Lehman et al. (2006).

2.4 UAV Study

Schulte and Donath (2011) performed an empirical study of UAV operators in

which they identified load-shedding strategies that the operators applied in high

workload conditions. The participants controlled one or three UAVs through three

stages of a reconnaissance task. In addition to controlling the UAVs, the participants

performed an object identification task, which required that they search the terrain

for targets. When a target was identified, they entered the location into a map. They

then zoomed in on the target and judged whether the target was friendly or hostile.

Finally, they entered the classification into the map. The participants were also

39

responsible for identifying Surface to Air Missiles (SAM) in the third phase of the

task. The participants exhibited five qualitatively distinct load shedding behaviors:

1. Proactive task reduction: In a three-UAV control task, a participant would

ignore two of the three UAVs and only use one for the mission.

2. Less exact task performance: A participant would spend less time and would

not use full zoom during the target classification subtask, compromising task

accuracy.

3. Omission of subtasks: Of the three subtasks in the object identification task,

only one or two would be completed before moving on to the next target.

4. Complete neglect of the object identification task: In the third stage of the

mission, workload was increased by the addition of a separate task, and the

object identification task was not performed.

5. Purposeful delay of task accomplishment: A participant would begin an object

identification task for a certain target, but would proceed to start on another

target of higher priority before returning and resuming the original task.

We developed an IMPRINT model of the UAV mission task and simulated the

task performance using the Soar agent to make task network decisions. Each stage

of the task consisted of a small subnetwork representing the flight control task and

produced variable workload. The third stage flight subnetwork included an additional

component to represent the additional SAM detection task faced by the participants.

A single object identification task subnetwork ran in parallel with the flight tasks.

In the IMPRINT model, the simulated operator was expected to identify six targets

per mission segment.

40

2.4.1 Release decision

The selection of release decision responses for the UAV model is based on a con-

stant workload threshold. The preferences described below select responses which

heuristically prevent the simulated operator from exceeding the workload threshold.

Lower level models such as QN-ACTR have functional models of the perceptual,

motor, and cognitive mechanisms that simulate task performance, and therefore, na-

tively incur resource conflicts that limit task concurrency. IMPRINT models only

describe the resource-specific workload values associated with task components and

limitations are not enforced by the software. The workload threshold heuristic ap-

proximates the detailed QN-ACTR approach by using these workload values as a

proxy indicator of resource conflict.

Our current implementation of action selection is based on the cumulative task

workload across resources. However, strict resource conflicts that emerge from ACT-

R’s modular structure could be implemented in the Soar system by examining work-

load values at a resource-specific level. For example, ACT-R defines only one declar-

ative module with one associated retrieval buffer, preventing a dual-task production

that makes a retrieval buffer request from firing when the buffer is busy. A Soar

agent could delay tasks with a non-zero cognitive workload value while another task

with a cognitive workload value is active. On the other hand, ACT-R separates the

“where” and “what” components of visual perception and allow them to be used

concurrently. To intentionally match this behavior a Soar agent could define a visual

workload threshold value and allow the concurrent execution of tasks with visual

workload values until the threshold is met. This flexibility in modeling an executive

process and conflict in a single model applies to all resources, allowing the Soar model

to adapt to theoretical changes more easily than ACT-R or QN-ACTR, which would

41

require architectural modifications.

elaborate*perform-task*threshold Each perform-task operator is automatically

elaborated with the workload that would result if the task was allowed to begin. This

rule matches operators with workload values that exceed the workload threshold and

elaborate them with a ^over-threshold yes property that indicates a workload

threshold violation if it was selected.

preference*perform-task*under-threshold The primary heuristic in this task man-

agement model is to allow all task components to execute as long as the workload

threshold is not exceeded. This rule declares a best preference for a perform-task

operator as long as it does not have a ^over-threshold property attached. As long

as no other operator has a best preference declared, the perform-task operator will

be selected. In this model, no best preferences are declared for ignore, delay, or

interrupt task operators. Therefore, all tasks will be performed unless they would

exceed the workload threshold.

prefer*not*perform-task This rule matches operators with the ^over-threshold

property described above and declares a reject preference for the operator, which

prevents the operator from being selected.

The preferences described above cause the perform-task response to be selected as

long as the workload threshold is not selected. If the workload threshold is exceeded

Soar is unable to choose from all other proposed responses. These responses consist

of one ignore-task response, one delay-task response, and one interrupt-task for each

task component already executing in the simulation. When this occurs, an operator-

tie impasse occurs and a substate is created to resolve the tie.

42

In the substate, the eligible proposals are evaluated using the selection.soar sys-

tem, which simulates the selection of each tied operator and evaluates the result of

their application. A rule exists for each type of response that computes the workload

if the operator was selected. The workload is used as the metric used by selec-

tion.soar to evaluate the utility of the operator. The operator with the minimum

value is selected. If two or more operators have equal evaluations, one of them is

selected randomly. This method of resolving operator ties chooses a task to suspend

which results in a minimum resulting workload.

2.4.2 Resume decision

A response for the resume decision is selected using the same heuristic as the

release decision. Each resume-task operator proposed in response to the release

decision is elaborated with the workload that would result if the task was resumed.

A reject preference is declared for any operator that would resume in a workload in

excess of the threshold.

If zero proposals remain, a state no-change impasse results and a resume-none

operator is proposed and selected as described in section 2.3.2. If exactly one operator

is eligible, it is selected by default. If more than one operator can be selected,

an operator-tie impasse is created. As for the release decision, the operators are

evaluated based on the workload values that result if they were selected. This has

the effect of resuming the task with minimum workload.

2.4.3 Expire decision

The model uses a simple time limit for delayed and interrupted tasks. Any expire-

task operator whose task is not over the time limit is rejected. Of the operators with

tasks that have exceeded the suspension time limit, one is randomly selected as the

43

Figure 2.2: Empirical partial and complete task omission. From Schulte and Donath (2011)

Figure 2.3: Modeled partial and complete task omission

response.

2.5 Results

Figure 2.2 shows the subtask completion and omission for the object identification

task during one participant’s trial. In the first two stages of the mission there are

some instances of partial task omission. Specifically, the participant fails to insert

the result for object 12, and fails to classify and insert results for objects 17, 18, and

19. During the third stage, the participant fails to complete any part of the object

identification task.

Figure 2.3 shows the subtask completion and omission from one run of the sim-

ulated task using the Soar agent. We can see that the model produces partial task

completion in the first two stages and complete task omission in the third stage.

44

In the first two stages of the mission, the variable workload in the flight control

tasks combined with the workload of the object identification subtask components

exceeded the overall workload threshold. In these cases, the object identification task

components were delayed or interrupted in favor of the flight task components, which

had lower workload values. Generally, the object identification task components were

interrupted and resumed several times before being completed, reflecting the behavior

of an operator as he checks in periodically on the flight controls while performing the

identification tasks. In some instances, the identification tasks would be suspended

for long enough for the Soar agent to determine that they should expire. In these

cases, that subtask component and the subsequent components would be omitted.

In the final stage, the increased workload due to the additional SAM detection task

disrupted the task component that moderated the object identification subtask. In

this case, the simulated operator ceased all activity in that subtask and would not

restart it even after the workload was reduced to normal levels. This behavior was

observed in the empirical UAV operation study.

2.6 Conclusion

We developed an extension to IMPRINT that expands upon and functionally

replaces the Advanced Workload System feature. The plugin implements a task

management theory that enumerates the actions that can be taken in a hierarchi-

cal, discrete-event task performance model when task components are scheduled to

begin, end, or resume. The extension monitors the simulation state and passes in-

formation to a Soar agent running in parallel, which is responsible for determining

which action to take at each decision point. The agent architecture is divided into

two primary components. The first enumerates the possible actions according to the

45

task management theory and does not need to be changed in order to adjust the

method by which actions are chosen. The second is the operator preferences which

select the action to be taken from those produced by the first. The preferences are

simple to define and will allow experts to implement and test theories of task man-

agement while modifying a minimal amount of code. We used the applied theory

in the IMPRINT software and were able to model results observed in an empirical

UAV study in which participants performed two simultaneous tasks and exhibited

distinct load-shedding strategies (section 2.4). In chapter III we apply the extension

to improve IMPRINT predictions of dual task performance with an addition and

targeting task.

CHAPTER III

Modeling concurrency on addition and targeting tasks in
QN-ACTR and IMPRINT

In this chapter we develop and validate a QN-ACTR model of the multi-task

performance of two tasks. The tasks chosen were a targeting task in which two of

three targets were to be identified as enemies by their color and dismissed by moving

the cursor over the target and clicking, and an addition task in which a problem of the

form A+B was displayed and the sum of the numbers was to be announced orally. A

detailed description of each task is given in section 3.2. The performance of the tasks

requires visual, memory, motor, and speech resources, all of which are represented

in standard ACT-R modules. We describe the experimental tasks (section 3.2), the

QN-ACTR models of the tasks (section 3.3), the IMPRINT models of the tasks

(section 3.4), and the method and results of the experiment (section 3.5, 3.6).

3.1 QN-ACTR additions

The QN-ACTR system was developed by Cao and Liu (2011a) as an implemen-

tation of the ACT-R cognitive architecture in Micro Saint Sharp, a general purpose

discrete event simulation program. Cao and Liu verified the ability of QN-ACTR to

duplicate ACT-R simulations of 20 different ACT-R models. This work has provided

the Queueing Networks (QN) real-time visualization and workload prediction capa-

46

47

bilities to ACT-R models. We used QN-ACTR to produce utilization-based workload

values during task simulation and to simulate the concurrent execution of the two

tasks.

We implemented a number of ACT-R features in QN-ACTR which were needed

in the task models described in section 3.2. The primary addition was support for

the temporal module which models the internal monitoring of the passage of time

(Taatgen et al., 2007). Other additions included support for incremental mouse

movements, resolving visual search conflicts by selecting the result nearest to a given

location, and preparing a motor request in advance of its execution.

3.2 Tasks

3.2.1 Targeting task

The targeting task begins with the onset of three targets in random locations on

the screen. Two of the three targets are enemy targets and one is a friend target.

Participants are to dismiss only the enemy targets. A target is dismissed when the

participant aims the pointing device cursor within the target area and presses a

button on the device. The targeting task is complete when both enemy targets have

been dismissed.

The experiment contains two independent variables governing the targeting task.

We describe the first as a difficulty variable. In the low-difficulty level, enemy targets

appear red and friend targets appear green for the duration of the task. In the high-

difficulty level, each target appears black until the participant places the cursor over

the target, at which time the target’s color is shown. The target’s color is only

visible while the cursor is over the target, that is, if the cursor is moved away from

the target, it will again appear black. The intent of the difficulty variable is to shift

the enemy target recognition task component from a highly automatic, preattentive

48

search to a decision made under time pressure and requiring memory retrieval.

The second independent variable is the speed with which the targets move across

the screen. The targets move in a straight line and remain within the screen area

for the duration of the iteration. The target speed variable takes values of 0 and 200

pixels per second on a monitor with 96 dots per inch.

The participants stand approximately eight feet from a 24-inch widescreen monitor

and the targets are 128x128 pixels. The participants control a blue crosshair cursor

by aiming at the screen using a Nintendo Wii remote controller. Pressing the primary

trigger button on the controller produces a mouse click event that dismisses a target

under the cursor. At the end of each six-second iteration, any target that has not

been dismissed is removed from the screen before the next iteration begins.

3.2.2 Addition task

At the beginning of each iteration, an addition problem with two operands is dis-

played in black text in the center of the monitor with a font size of 100 pixels. The

participant mentally adds the two numbers and responds orally with the resulting

value. When the participant announces the correct sum, the color of the text is

changed to green to provide feedback to the participant. No feedback is provided if

the participant announces and incorrect sum and they are responsible for recomput-

ing the sum and responding again. There is no limit on the number of responses the

participant can provide.

The difficulty of the addition task is an independent variable controlled by the

values of the operands in the problem. In the low-difficulty case, the operands are

between 1 and 12. In the high-difficulty case, the operands are between 13 and 25.

49

3.3 QN-ACTR task models

3.3.1 Addition model

Mental arithmetic is widely studied with experiments conducted to examine nearly

every aspect of the process from the encoding of numeric and arithmetic informa-

tion to the variation of strategies used as a function of addend size. Early theories

of single-digit addition proposed that both children and adults solved problems us-

ing a counting algorithm with adults having a lower incrementing time (Groen and

Parkman, 1972), while more recent studies show that the counting strategy is al-

most entirely replaced by direct retrieval by adulthood (Barrouillet and Fayol, 1998;

Svenson, 1985). Studies have presented evidence that the convergence to a single re-

trieval approach does not hold for more complex (e.g. two-digit) addition (Thevenot

et al., 2001). Instead, a more complex process is required in which the addends are

parsed into tens and units values which are added individually and incremented in

the case of a carry (Thevenot et al., 2007). Our model attempts to capture these

basic assumptions, that mental addition in adults is primarily retrieval-based, that

single-digit problems are accomplished by direct retrieval, and that two-digit addi-

tion requires a multi-step process in which values are separated into tens and units

places and added sequentially.

Many aspects of mental addition are still under debate, including whether numbers

and arithmetic facts in memory are encoded in a single format (Blankenberger and

Vorberg, 1997) or multiple, for example, analogically, verbally, or visually, which are

used in combination depending on the task being performed (Thevenot and Barrouil-

let, 2006); and the source of the tie effect, in which problems with repeated operands

are solved more quickly (Blankenberger, 2001; Campbell and Gunter, 2002; LeFevre

et al., 2004). As the purpose of our model is to study the interaction of the addition

50

task with a concurrent targeting task, we do not attempt to capture these effects or

model one among competing theories. Instead we focus on identifying and model-

ing the resource requirements that drive the performance time and conflict with the

concurrent task. For example, we do not subscribe to a single theory of the encoding

format of number and arithmetic facts in long term memory, but we do assume that

the recognition of a number after the visual perception requires a retrieval before

the representation of the addition with another value can be retrieved. Furthermore,

we do not model errors in retrieval or other parts of the addition process, although

empirical studies have found error rates as high as 5% in problems with low num-

bers (0-9), and 10% in problems with high numbers (13-39) (Thevenot et al., 2007).

We define the addition task to be complete when the correct sum is announced and

therefore absorb any increase in time due to error into the performance time. We

also assume that visual attention is allocated to each addend exactly once during

a given problem, that is, that each number is retrieved successfully upon first ex-

amination. There is empirical evidence for this assumption in single-task conditions

with single-digit numbers (Zhou et al., 2011).

We produced one ACT-R model for both conditions of the addition task because

the independent variable is purely quantitative. To perform the addition task, the

model searches for each addend in turn, separating the perceived text into internal

representations of the ones and tens digits. The sum of the unit digits is recalled

from memory and stored along with whether a carry digit was produced. Next

the sum of the tens digits is recalled and optionally incremented in the case of a

carry. Finally the resulting tens and unit digits are spoken in order. In the low

addend range condition, the algorithm reduces to computation by one retrieval for

the recognition of each addend from visual perception and a subsequent retrieval to

51

produce the sum of the two values. In high addend range conditions, each two-digit

number is visually perceived and a retrieval is required to parse the value into tens

and unit places and two more retrievals are required to produce the sum of the tens

and ones values. Finally, if the ones values sum to ten or greater, a final retrieval is

required to increment the tens place following evidence that memory is involved in

carry operations (Ashcraft and Kirk, 2001).

Declarative memory The addition model uses three types of memory elements. The

first represents the concept of a number. The model is initialized with a memory

chunk for the numbers 1 through 24. Each of these number chunks contains a value

slot that contains the text of the number, a ones slot containing the unit digit of

the value, and a tens slot containing the tens digit. The model retrieves a chunk

corresponding to a given number in order to obtain the ones and tens places so they

can be added separately.

The second type represents the sum of single-digit numbers. There is an addition-

fact chunk for each permutation of two single-digit numbers. Each addition-fact has

first and second slots that hold the addends, a result slot that contains the sum of

the addends, a ones slot that contains the ones value of result, and a carry slot that

contains the tens value of result. The model retrieves an addition-fact to compute

the sum of single-digit numbers. The model assumes that direct memory retrievals

of sums are limited to single-digit numbers and that the ones and tens places of

two-digit numbers are added separately.

Finally, a successor chunk represents consecutive pairs of natural numbers. A

chunk of this type is retrieved to compute a new tens place value when there is a

carry.

52

In ACT-R and QN-ACTR, the retrieval time of a chunk from declarative memory

is a function of the activation of the chunk:

RT = Fe−(f∗Ai)

The activation, Ai is defined as the sum of three parameters and a noise term. The

three parameters are the base-level activation, the spreading activation, and the

partial matching value.

Ai = Bi + Si + Pi + εi

The latter two parameters are 0 under the default ACT-R configuration, which we

do not override. The base-level activation for a chunk in the model can be set

using the (set-base-levels chunk-name level) function. We defined separate

base levels for four groups of chunks: low number chunks for numbers between 1

and 12, high number chunks for numbers between 13 and 24, addition chunks which

represent results of single-digit additions, and successor chunks that store the next

integer number greater than a given number (e.g. (s01 isa successor value 1

successor 2)). This final chunk type is used to implement carry operations.

All ACT-R parameters were kept at their default values except the parameter to

enable subsymbolic computation (:esc) necessary to model memory retrieval times

with varying activation, the activation noise parameter (:ans) which was set to 0.5 in

accordance with previous studies (Cao and Liu, 2011b), and the base level activation

values of the chunks representing numbers and arithmetic facts. We constrained

the relative magnitude of the base level values according to the complexity of the

information and the frequency of use. For example, chunks representing the low

numbers were larger than the high numbers and addition facts. The high number

activation level was lower than the addition facts to represent the complexity of

53

separating the number into ones and tens places. We selected the values of the

base levels within these constraints by fitting the model-simulated execution times

to empirical data in single-task conditions. The base level value for each type is

listed in table 3.1.

Table 3.1: Base levels for addition task declarative memory chunks
Chunk type Base level
Low numbers 3.5
High numbers 2
Addition facts 2.7
Successor facts 1

Goal chunk The goal chunk in the addition model is used to store the current state

of processing as well as intermediate results. As is common in ACT-R models, the

state slot of the goal is tested in the conditions of all productions and often contains

the name of the production that should fire next.

The goal chunk also contains slots where the ones and tens digits of each addend

are stored after they are retrieved from memory, slots to contain the ones and tens

values of the result of the addition, and a slot to record whether a carry will occur.

Reading the first addend The find-first production checks that the visual-location

buffer is empty and requests a visual search for the leftmost text object on the

screen, which is always the first addend. Next the attend-first production harvests

the visual-location buffer, which only provides basic information about the object

that is subject to preattentive search. To get the content of the text, the production

checks that the visual buffer is free and empty and requests to move visual attention

to the location of the text. The encode-first production harvests the text content

from the visual buffer, checks that the retrieval buffer is free and empty, and requests

a chunk from memory representing the number.

54

When the retrieval is complete, one of two productions will harvest the separate

digits from the memory chunk and store them in the goal chunk. This will be

the store-first production if the number is 10 or greater, and the store-first-nil-tens

production otherwise. Two productions are necessary because if the number is less

than 10, the tens place in the memory chunk will have the special value nil and a

production will not match if a variable in the conditions is nil. store-first-nil-tens

explicitly checks for the nil value, allowing the production to match. These two

productions do not check the goal state and will file sometime after the retrieval is

complete between subsequent productions that visually process the second addend.

This allows visual processing to continue while the memory chunk is retrieved.

Reading the second addend The two productions that perform the visual search

for, and move the visual attention to the second addend are named find-second and

attend-second and are exactly equivalent to find-first and attend-first except that

they search for the rightmost text on the screen. encode-second is equivalent to

encode-first except with the additional condition that the first-ones slot of the goal

chunk is not nil. This forces the production to wait until the result of the retrieval

of the first addend has been harvested and stored in the goal before requesting the

retrieval of the second addend The store-second and store-second-nil-tens productions

are similar to store-first and store-first-nil-tens in that they harvest the number chunk

from the retrieval buffer and store the digits in the goal. However, in this case, they

also initiate a new retrieval request for a memory chunk describing the sum of the

unit digits of the two addends to begin the addition computation.

Computing the sum The finish-retrieve-ones production harvests the result of the

retrieval requested by the store-second* productions. This memory chunk has a slot

55

for the units place of the sum of the numbers and a slot that indicates if a carry is

needed. finish-retrieve-ones stores these two values in the goal chunk and changes

the goal state to add-tens.

At this point in the simulation, processing splits into seven cases based on whether

the tens places must be added and whether there is a carry. First, both original

addends were less than 10 and their sum is less than ten. In this case, the first-tens

and second-tens slots of the goal are nil, and the carry slot is 0. The add-tens-nil-

nil-no-carry production checks for these conditions and changes the goal state to

response to immediate start responding with the one-digit sum.

Second, both original addends were less than ten, but their sum is at least 10, so

the carry slot of the goal chunk is 1. This case is handled by the add-tens-nil-nil-

carry production which sets the tens slot of the goal chunk to 1 and changes the goal

state to response to begin the oral response.

Third, the first addend was at least 10, the second was less than 10, and the sum

of the unit places is less than 10. The add-tens-first-nil-no-carry production checks

for this case by matching the first-tens slot of the goal to a variable, the second-tens

slot to nil, and the carry slot to 0. No addition of the tens places is necessary because

only one addend has a tens value, so the first-tens value is stored in the tens slot the

goal chunk and the goal state is set to response.

The fourth case is the same as the third case except the sum of the units places

is at least ten. The add-tens-first-nil-carry is the same as add-tens-first-nil-no-carry

except the carry slot is checked to be non-zero and the goal state is changed to

check-carry to increment the tens place before responding.

The fifth and sixth cases are equivalent to the third and fourth cases, respectively,

except that the first addend is less than 10 and the second addend is at least 10. The

56

add-tens-nil-second-no-carry and add-tens-nil-second-carry handle these cases in the

same way as the productions described for the third and fourth cases.

The seventh and final case is that both addends are 10 or greater. In this case

another summation retrieval is required to add the tens places. The add-tens pro-

duction checks for this case and sets the goal state to retrieve-addition-tens.

Adding the tens place In the event that both addends are 10 or greater, the

state is set to retrieve-addition-tens, and the retrieve-addition-tens will be selected

when its condition that the retrieval buffer is empty and free is met. The production

initiates requests a chunk representing the sum of the tens digits from memory.

When the tens digit sum is retrieved and there is no carry, the finish-retrieve-

tens-no-carry production harvests the buffer contents and stores the sum variable in

the tens slot of the goal chunk and sets the goal state to response. If there is a carry,

the finish-retrieve-tens-carry production will do the same but set the goal state to

check-carry to increment the tens place.

Carry the one If the sum of the unit digits of the two addends is 10 or greater,

the tens place of the overall sum must be incremented. This is done by the check-

carry production after a previous production sets the goal state to be check-carry.

The production checks that the retrieval buffer is empty and free and requests a

memory retrieval to find the value that is one greater than the current tens place.

The increment-tens production harvests the result of the memory retrieval, stores

the incremented tens value in the goal chunk, and changes the state to response to

begin announcing the result.

57

Response The verbal response begins in the response state and is split into two

cases: one for two digit sums and one digit sums. If the sum is less than ten, then

the respond-ones-no-tens production is selected. It checks that the vocal system is

free and makes a request to announce the unit digit which, in this case, constitutes

the entire sum.

If there is a tens digit, the respond-tens production is selected and makes a request

for the tens digit of the sum to be spoken. It also sets the goal state to response-

ones. As soon as the vocal buffer is ready for the preparation of a new request, the

respond-ones production is selected and make the final request for the unit digit to

be spoken.

3.3.2 Targeting models

In contrast with the addition task, it is not feasible or useful to produce a single

model to capture the performance in all task conditions. Instead, we created a

separate model for each condition. The models could be unified in a trivial way by

adding a simple set of productions that chose among the four sets of productions after

receiving the information about which task condition was beginning at the beginning

of the trial. In this section we describe the ACT-R models developed for each task

condition. They all share an overall procedure of identifying a target, moving to it,

and clicking to dismiss it. Individually, they vary to account for the movement of

the targets and monitoring and decision required in the high-difficulty case.

In all four models, the right hand is initially placed on the mouse and the cursor is

positioned at the center of the screen. During cursor movements, the cursor location

is updated every 10 ms and the cursor-noise parameter is enabled, which introduces

random variability in the mouse movements.

58

Low speed, low difficulty

find-red-target

move-cursor

move-attention

click-mouse

Figure 3.1: Production graph of the low-difficulty, low-speed targeting model

Goal chunk All four targeting models use the state slot of the goal chunk to

coordinate the task execution. The goal chunk for the low-speed, low-difficulty model

contains a target-location slot to temporarily store the visual location of a target

between productions and a check-miss slot to correctly handle misses as described in

section 3.3.2.

Finding a target The model for the low-speed and low-difficulty case is the simplest

of the four and consists of only five productions. The first, find-red-target, requests

the visual location of a red object that has not yet been attended to: an enemy tar-

get. This type of visual search based on simple properties such as color is modeled

59

as a preattentive search in ACT-R (Anderson and Lebiere, 1998) and consumes no

simulated time on its own. The production itself lasts 50 ms as with all produc-

tions. The production requires that the visual location buffer be empty in order to

be selected in keeping with the “greedy-polite” guidelines (Salvucci and Taatgen,

2008). The production also requires that the state of the goal is “find-red-target”

and changes the goal state to “move-cursor” after it fires.

Moving the cursor The second production, move-cursor, checks for an oval in

the visual location buffer. The simulated targets are represented by buttons which

appear in the visual location buffer as ovals. If the task had other types of ovals in

the display or if a dual-task also used ovals, the check would have to be made more

specific to ensure the correct object was found. However, the addition model only

requires text objects that would be ruled out by the oval constraint. The production

also checks that the manual system is free and clears a flag called check-miss that will

be explained in section 3.3.2. When the production fires, it makes a request to the

manual system to move the cursor to the location in the visual location buffer and

sets the goal state to move-attention. This causes the move-attention production

to fire and a request to move visual attention to the same location. The time to

move the visual attention to the location has mean 85 ms but the time until the next

production is dominated by the mouse movement which is based on Fitts’ law and

therefore depends on the distance to the target and the size of the target.

Dismissing the target The third production, click-mouse, requires that the manual

system be free and harvests the contents of the visual buffer, which by then contains

the target object. The production requests a click-mouse action from the manual

system and clears the visual buffer to prevent changes in the visual scene from filling

60

the visual buffer automatically. This is not strictly necessary for the function of the

model but prevents some conflicts with dual-tasks that can arise when the visual

buffer is left full. The production sets the goal state to find-red-target so that the

model will seek out any remaining enemy target. The mouse click takes 150 ms but

the succeeding production does not require a free manual system so it can fire before

the click has finished. After the click-mouse production fires, the find-red-target is

selected, completing the cycle.

Missing ACT-R supports modeling manual inaccuracy with the :cursor-noise pa-

rameter. When set to true, a random vector is added to the final location of the

cursor during move-cursor requests such that the cursor lies over the target area

along the approach vector 96% of the time. When these misses occur the target

is not removed. However, the target is no longer unattended so the visual-location

search in the find-red-target production will fail to find the target, none of the first

three productions match, and the task remains incomplete. We solve this problem

using the fourth production, no-unattended-red. This production is selected when

the goal state is move-cursor and checks for an error state in the visual-location buffer

that occurs when a visual location search fails. The production sets the goal state to

no-unattended-red-search and the corresponding production performs a new visual

search for a red oval but does not require the object to be unattended, allowing any

target that was missed to be found. The goal state is set back to move-cursor so

that the move-cursor production can fire if a previously missed target is found.

The no-unattended-red also sets the check-miss flag to avoid an infinite loop upon

task completion. Without the flag, the production would be selected again if there

were no red targets remaining, as the visual buffer would again be in an error state

61

and the model would continue firing the production forever. To prevent this, the

production checks that the check-miss flag is not set before firing, and sets the flag

when it does fire. If there are no remaining red targets then the visual location

search fails and the fifth production, no-red, is selected and puts the goal to an end

state. To prevent the model from ending early when two targets are missed, the

move-cursor production clears the check-miss flag.

High speed, low difficulty

The model of the high-speed, low-difficulty task is similar to the low-speed, low-

difficulty model with some additional productions to account for the motion of the

targets. The model cannot simply move the cursor to the location of a target it finds

on the screen because the target will have moved by the time the cursor arrives.

To solve this problem we add productions which monitor a target briefly to gauge

its motion and predict a location where the target is expected to be when a mouse

movement is complete.

Goal chunk In addition to the target-location slot, the goal chunk for the high-

speed, low-difficulty model contains target-x and target-y slots to store the com-

ponent values of a target location so that the model can perform the projection

computation described in section 3.3.2.

Finding a target The model begins the task by seeking a red target with the find-

red-target production. The production is the same as in the non-moving model in

that it checks for an empty visual-location buffer and requests a visual search for a

red oval. However, the production also checks that the manual system is also free

for technical reasons explained in 3.3.2.

62

Predicting target movement In contrast with the non-moving case, in which the

model could simply move the mouse cursor to the location found by find-red-target,

the model must account for the movement of the target. The cap-first-location

production harvests the visual-location information requested by find-red-target and

stores the screen position of the object in the goal chunk. The ensuing production,

cap-first-location-search makes another visual search request for a red oval. The

request specifies that the object should be the one nearest to the location just found:

the exact same object at its new location.

The next production to fire is lead-target, which again harvests the result of

the visual-location search. This production fires 50 ms after cap-first-location in a

single-task simulation and possibly more in a dual-task simulation when one or more

productions from the other task are selected between the two. The non-zero time

span allows the object to move slightly between the two visual-location requests. The

lead-target production matches the screen position values from the first search re-

quest that were stored in the goal chunk and calculates the predicted target location.

The target projection is implemented by producing a unit vector in the direction from

the first matched location to the second, multiplying by a constant, and adding the

result to the more recently matched location. The value of the constant is 139 and

was selected to maximize accuracy of the projection. In order to move the cursor to

the predicted location in a subsequent production, the predicted location values are

stored back into the visual-location buffer.

Moving the cursor The move-cursor production is equivalent to that in the non-

moving case: it verifies that the visual-location buffer contains a target object and

checks that the manual system is free before requesting a move-cursor action from

63

the manual system. The following production, move-attention checks that the visual

buffer is free and empty and requests for visual attention to be moved to the projected

target location.

Dismissing the target The moving condition model uses the feature in ACT-R’s

motor module that allows a motor request to be prepared before it is executed. The

prepare-click production fires while the cursor is being moved to the target as soon as

the preparation stage of the manual system is available and makes a manual request

to prepare a mouse click. The click is not executed until the click-mouse production

fires, which tests that the manual system is once again ready to prepare an action.

The early preparation allows the click to occur faster when the cursor moves over

the target and reduce target misses. The production also clears the visual buffer.

Missing Unlike the non-moving model, the find-red-target production does not

constrain its visual search to unattended targets. Due to the design of the manual

system in ACT-R, objects that are moved are considered new and are therefore

unattended. The model cannot use the attended state of objects to process which

were the focus of previous movements. This simplifies the handling of misses as any

red target can be found by the find-red-target visual search and we do not need

to have a production to check for attended but extant targets if it fails. Instead,

a production named fail-find detects a failed visual-search from find-red-target and

moves into a final state.

Because find-red-target cannot filter targets that are currently being clicked from

its visual search, it would occasionally find them and restart the process of dismissing

one even though it will likely be dismissed in a few milliseconds. In this case, the

simulation would fail somewhere in the ensuing production sequence. To avoid this

64

problem, we require that the manual system be free before selecting the find-red-

target production. This requirement implies that, as long as the click doesn’t miss

the target, the target will be dismissed and removed before the visual search occurs.

Low speed, high difficulty

Each target in the high difficulty task condition is shown in black until the cursor is

positioned over it, whereupon the target is shown to be either red or green. Modeling

the performance of this task condition is more complex and requires three major

additions:

1. Productions to store the location of the green target when it is found and check

against it after subsequent visual searches to avoid moving to it more than once

(section 3.3.2, 3.3.2).

2. A sequence of productions required to monitor for the change in color while the

cursor moves over a target (section 3.3.2).

3. A memory retrieval to determine the appropriate action based on the target

color (section 3.3.2).

Goal chunk The goal chunk in this model contains all of the slots of the high-speed,

low-difficulty model as well as friend-x and friend-y slots that contain the location

components of the green target.

Finding a target The high difficulty model starts by performing a visual search for

an unattended black target. The find-black-target production is exactly the same as

in the low difficulty, low speed condition except for the color constraint in the visual

search.

65

Avoiding repeated green target checks The process of storing the location of the

green target is described in section 3.3.2. After find-black-target fires, the goal state

is set to move-cursor, and one of three cases will be true:

1. The cursor has not yet been moved over the green target.

2. The cursor has been moved over the green target, which is not the object found

by find-black-target.

3. The cursor has been moved over the green target, which is the object found by

find-black-target.

There is one production for each of these cases: move-cursor-no-friend-info (section

3.3.2), move-cursor-not-friend (section 3.3.2), and avoid-friend (this section) respec-

tively. The avoid-friend production harvests the visual-location buffer and checks

that the x,y location values are the same as the green target x,y, location values

stored in the goal chunk. This condition verifies the case that the object found in

the visual search is the green target. The production sets the goal state back to

find-black-target for the visual search to be repeated to find a different target.

Moving the cursor The move-cursor-no-friend-info production checks that the goal

chunk does not contain any the location of the green target, verifying that it has not

yet been found. The production checks that the manual system preparation phase is

free and makes a manual request to move the cursor to the result of the visual search.

Finally, both the visual-location object and the x,y values of the object are stored

in the goal chunk. The former so that the model can refer to the location when

performing subsequent visual searches and the latter so the values can be stored as

the green target location if this target is found to be green. The goal state is set to

66

move-attention which causes the move-attention production to fire next, making a

visual request to move attention to the target. The visual buffer is then cleared by

the harvest-visual production

The move-cursor-not-friend differs from move-cursor-no-friend-info only in its con-

ditions. It checks for the remembered green target location in the goal buffer and

compares it to the visual search result to ensure they are different.

Monitoring for target color After previous productions begin moving the cursor

to the location of a black target, the check-target production matches the visual-

location object from the goal chunk that refers to the target of focus. When it fires

a visual search is requested for an oval at the exact location of the target found by

the initial search. The state is changed to distinguish-target.

The visual search made by check-target starts a production loop in which visual

searches are repeated requested for the original object until it is no longer black. The

loop is implemented in the distinguish-target-black production, which checks for a

busy manual system and a black oval in the visual-location buffer and requests a new

visual search for the object without changing the goal state. This production will

be repeatedly selected and fired as long as the target remains black and the cursor

is moving.

When the cursor enters the target bounds the target will become red or green.

The detect-target-color checks for an oval in the visual-location buffer that has any

color but black and is selected as soon as the target becomes colored and its other

requirement, that the retrieval buffer is free and empty, is satisfied. The production’s

actions are described in the next section 3.3.2.

One more production is required to prevent an infinite loop when the cursor misses

67

the target and the target never changes color. The distinguish-whiff production

checks that the result of the most recent visual search is a black target, that the

manual system is free, meaning the mouse movement has completed, and that the

goal state is distinguish-target. When the production fires, a new manual request

is made to move the cursor to the same target and a new visual search is made to

restart the color monitoring loop.

Note that this second cursor movement is not within the closed-loop feedback

control system that is suggested to enforce Fitts’ law (Gawthrop et al., 2008). Fitts’

law is used within ACT-R and governs the timing of each discrete cursor movement.

The total time and trajectory of a motor action in ACT-R is calculated before the

motion starts and cannot be altered during the movement. The second cursor move-

ment will be small but distinct from the original, requiring its own motor preparation

and initiation time. This introduces some difficulties in modeling the targeting task

which emerge during simulations of dual-task conditions as discussed in section 3.7.

Decision making When the detect-target-color production fires, a declarative mem-

ory chunk is requested for a response whose color slot matches the color of the visual-

location object. This retrieval models a human’s decision based on target color. The

goal state is changed to decide-whether-to-shoot.

When the appropriate action is retrieved from memory, one of two productions

will be selected to carry out the decision. The decide-to-shoot production matches

a chunk in the retrieval buffer when the action slot contains the value shoot, and

changes the goal state to click-mouse to begin the process of dismissing the target.

The decide-not-to-shoot production matches when the action is dont-shoot and re-

trieves the x,y values of the target that were stored by the production that moved

68

the cursor. When it fires, these values are stored as the green target x,y location

values in the goal chunk and the goal state is changed to find-black-target to begin

searching for a new target.

Dismissing the target The click-mouse production checks that the manual system

is free, requests a mouse click and sets the goal state back to find-black-target.

Special cases A model with the productions described above can fail if two targets

overlap. If the cursor is moved into the area where the targets overlap, both will be

shown in color. If one target has already been dismissed, there will be no remaining

black targets so the visual search requested by find-black-target will fail. Therefore,

we include a production, fail-find, which detects the failed visual search and performs

a new search without the black color constraint.

High speed, high difficulty

The high speed, high difficulty model is the most complex of the four as it includes

the extra considerations of both the high speed, low difficulty model and the low

speed, high difficulty model.

Goal chunk The model introduces five additional slots to the goal chunk. The

first two are friend-x-diff and friend-y-diff, which store the motion information about

the green target when it is found. These are required to achieve the same green-

target avoidance system implemented in the low-speed, high-difficulty model which

only needs the location information. The next two are cur-x-diff and cur-y-diff,

which store the motion information of the target currently being processed. Fi-

nally, the heuristic slot contains information used to reduce the number of times the

69

avoid-friend production fires. The heuristic initially contains the value lowest and is

explained in section 3.3.2.

Finding a target The find-black-target production checks that the visual-location

buffer is empty and matches the heuristic slot of the goal chunk which contains either

lowest or highest. The visual-location buffer allows searches constrained by x or y

value. A search can specify an absolute value, a relative value (e.g. >4), or can

use the special values lowest and highest to select the match with the lowest and

highest values for the slot, respectively. In this case, the production provides the

values contained in the heuristic slot to the screen-x slot of the search, which causes

the search to return the leftmost or rightmost matching location, depending on the

heuristic value. Initially, the heuristic slot contains lowest, so the leftmost black

target will be found by the search.

Avoiding repeated green target checks The method used to avoid repeatedly mov-

ing the cursor over the friend target in the high-speed, high-difficulty model is similar

to that in the low-speed, high-difficulty model. However, there are two additional

complications. The first is that the search heuristic should be toggled whenever

the friend target is avoided. For example, if the find-black-target searched for the

leftmost target and that target is the friend target, then the next firing of find-

black-target should be for the rightmost target, so that it is less likely to find the

friend target again. Therefore we have two productions to detect the friend target:

avoid-friend-lowest and avoid-friend-highest. Both check that the target found by the

find-black-target search is the friend target and set the goal state back to find-black-

target to begin a new search. The first checks that the heuristic slot contains lowest

and sets updates the value to be highest. The second does the opposite. The second

70

consideration is that a target can not be identified only by a location value. Instead,

information about a target’s movement is stored in the goal state as described in

section 3.3.2. The avoid-friend* productions test if the object returned by the visual

search lies on a line constructed from the stored information. This is accomplished

using an ACT-R !bind! statement which stores the result of the is-on-line function

into a condition variable =on-line. If the current object does not lie on the motion

path of the friend object, the function returns nil, which prevents the production

from matching. The production will also fail to match if no motion information is

stored in the goal chunk.

Predicting target location The low speed, high difficulty model required two move-

cursor production variants to handle the first two cases described at the beginning

of section 3.3.2. This model contains the extra step of obtaining movement informa-

tion from a target before moving the cursor, and so, contains two cap-first-location

variants for the two cases.

The cap-first-location production is similar to that in the high speed, low difficulty

model. It harvests the visual location buffer, stores the x,y values in the goal in

case they need to be stored to identify the green target later, and requests a new

visual search for the same target so that the next production can predict the target

motion based on two locations. The production also checks that no friend location

information is stored in the goal chunk.

The cap-first-location-no-friend production harvests the visual location buffer and

checks that it is not the green target by binding a condition variable to (not (is-on-

line)), that is, the logical inverse of the is-on-line function. The production stores

the x,y location of the object and the object reference itself in the goal chunk.

71

The lead-target production harvests the visual location buffer, calculates a pre-

dicted target location, and stores it back to the buffer just as in the high speed, low

difficulty model. In this case, the change in locations is also stored in the goal chunk

in case the target turns out to be green.

Moving the cursor The move-cursor production is identical to that in the high

speed, low difficulty case except that the visual-location object harvested is stored

in the goal chunk to that future searches are based on the predicted target location

instead of the current location.

Monitoring for target color The method for detecting a change in a target’s color

is similar to the low speed, high difficulty case. Since the targets are moving, we

can’t request visual searches based on an exact location. Instead the check-target

production performs an initial search for an oval nearest to the predicted target

location and moves to the distinguish-target state. As long as the target remains

black and the cursor is still moving, distinguish-target-black will match and fire

repeatedly. The detect-target-color production is the same as in the low speed, high

difficulty model.

This model also accounts for the case in which the cursor movement has enough

error that it does not move over the target, which would normally cause an infinite

loop. The distinguish-whiff production does not, however, immediately request a

new motor movement for two reasons:

1. the target is moving and a new predicted location would need to be computed

first, and

2. the originally predicted target location is computed such that nearly all whiffs

72

occur when the cursor lies in a place where the target will soon move into.

Therefore, instead of making a new motor request, two productions are introduced

to wait a short period of time in case the target moves to the final cursor location,

at which time the model can react to its color.

The distinguish-whiff production begins initiates a timer from the temporal mod-

ule and requests a new visual search for the target. The whiff-spin production checks

that a timer is running and that the total number of ticks is less than a constant

number, 16, and that the result of the visual search is a black target. The details

of the temporal module are described in Taatgen et al. (2007) and the ACT-R 6.0

Reference Manual. It makes a new visual search request, forming loop as long as

the target remains black and 16 ticks have not elapsed. During this time, the goal

state keeps the value distinguish-target, so that detect-target-color will be selected

if the target moves under the cursor and becomes colored. After 16 ticks elapse,

the move-after-whiff production will match and change the goal state to find-black-

target, starting a brand new target search.

Decision making The decide-to-shoot production is similar to that in the low speed,

high difficulty model except that it includes a request to the manual system to click

the mouse. During the cursor movement, a production called prepare-click makes

a request to the manual system to prepare a mouse click action, which is executed

when decide-to-shoot fires. This is designed to reduce the time required to click the

mouse button, which helps reduce misses when targets are moving.

The decide-not-to-shoot is also similar to the low speed equivalent but it must

also record the difference between the two object locations in addition to the the first

object location found.

73

3.3.3 Concurrency model

The concurrency model implemented in QN-ACTR is based on the threaded cog-

nition model proposed and implemented in ACT-R by Salvucci and Taatgen (2008).

The theoretical single-task performance assumptions made by the model essentially

describe the architecture of the ACT-R system: that a number of resources such as

declarative memory, perceptual, and motor systems are available to perform a task

and that they function as buffers that can be read and written and have their states

queried. Additional assumptions describe multi-task behavior. First, multiple tasks

are maintained as separate goals whose processing is threaded. Second, the resources

used to accomplish tasks process requests in serial, essentially abiding by a strict ver-

sion of Multiple Resource Theory (MRT) (Wickens, 1984). Third, the individual goal

threads use resources in a “greedy, polite manner” (Salvucci and Taatgen, 2008). A

greedy-polite thread checks that the resources it requires are available, requests them

for processing, and ensures they are free and available when it is finished using them.

This assumption has the largest effect on task model development while the other

three specify the implementation of the theory. Finally, preference is given to the

least recently processed thread when two or more threads have productions available

for processing.

To use the QN-ACTR instantiation of threaded cognition, one model must first

have its references to the goal module changed to a second goal module. For example

=goal> is replaced by =goal-2>. The new name of the goal module does not imply

that the task is a secondary task, only that it is a conceptually separate task in

the mind of the modeled participant. The second and more demanding modeling

task is to ensure that the productions of each model abide by the greedy-polite

method of resource acquisition. There is no computational requirement that the

74

models exhibit the greedy-polite property, that is, any valid ACT-R models can be

run in a multi-task context with threaded cognition. However, if the models require

the same resources, they can very easily fail to accomplish their tasks during multi-

task simulation even if they operate correctly independently. We found in particular

that extra care must be taken when two related resources are used in sequence. For

example, a common pattern in ACT-R is to request a search from the visual-location

buffer and request a move-attention action from the visual buffer using the result of

the search. A fatal conflict can occur if a dual task makes a visual request concurrent

with the first goal’s visual-location request and a visual-location request immediately

thereafter. In this case it is insufficient for productions to maintain greedy-politeness

in the two buffers independently but instead must check for the availability of the

second resource before requesting the first. With the greedy-polite property in place

in the individual models, no further considerations must be made to run them in a

dual-task context in QN-ACTR.

3.4 IMPRINT task models

Unlike ACT-R which is a production system, IMPRINT is based on a general

purpose discrete event simulation tool called Micro Saint Sharp. IMPRINT analyses

are developed by dividing a task into components and arranging them in a network

through which entities flow. Each task network has a single beginning but may

branch and loop within the network. Each task component is assigned workload

values for a number of cognitive, perceptual, and psychomotor resources. The time

required for an entity to pass through a task component can be defined as a constant,

a random distribution, or a mathematical expression defined by an analyst in C#.

ACT-R models define the conditions under which productions fire and the pro-

75

cesses that begin when productions fire. IMPRINT task components, however, cor-

respond to the processes themselves and the conditions are contained in the paths

between components. Therefore, IMPRINT task components correspond to the time

between productions instead of the productions themselves. We have developed IM-

PRINT models of each of the ACT-R models of the experimental tasks. The task

components in the IMPRINT models generally have a one-to-one correspondence

between pairs of successive ACT-R productions. For example, figure 3.1 shows the

ACT-R production graph, and the IMPRINT task network for the low-speed, low-

difficulty targeting task is shown in figure 3.2. The name of each task component in

the IMPRINT model is a combination of the two corresponding ACT-R productions.

Figure 3.2: Low-speed, low-difficulty targeting task network in IMPRINT

To assign durations to the task components, we identified the time between pro-

duction firings in the ACT-R model. For example, if a production makes no requests

in its conditions and the next production can fire immediately, the corresponding

task component has a duration of 50 ms, which is the time between a production

being selected and firing. If a production requests to move visual attention to a lo-

cation, a random time with mean 85 ms is added. For ACT-R resource requests that

76

result in stochastic execution times, we use identical execution time distributions

in the corresponding IMPRINT task components. As a result, we can expect the

IMPRINT and QN-ACTR models to predict nearly identical completion time values

in single-task conditions.

Finally, we assigned workload values to each task component using values in the

IMPRINT workload reference tables that correspond to the task activity. The IM-

PRINT tables include values for visual search, monitoring, motor movements, speech,

and cognitive tasks such as simple association and calculation.

3.5 Method

20 participants were recruited from a population of undergraduate and graduate

students at the University of Michigan. Half of the participants were male and

half female to control for a potentially confounding gender variable. Participants

completed trials in which they attempted to complete one or more tasks quickly and

accurately. Each trial consisted of 12 task replications in which the participant had

six seconds to complete the tasks presented. The participant’s goal was to complete

the tasks while minimizing execution time and errors. The participants were scored

based on both execution time and errors and the score was visible to the participants.

All independent variables are within-participant factors and the order of condi-

tions was randomized. In addition to each block condition of the dual-task, par-

ticipants completed trials of the addition task at each difficulty level without the

targeting task, and the targeting task at each combination of the speed and dif-

ficulty independent variables without the addition task. A table of independent

variables is shown in Table 3.2.

77

Table 3.2: Experiment 1 Design
Independent variables
Targeting difficulty Low High
Target speed (pixels / second) 0 200
Addition operands [1,12] [13,24]

3.5.1 Scoring

Participants received a score on each task that was visible to them to reward fast

and accurate task completion. The participants received 100 points for each enemy

target dismissed and 100 points for a correct answer to the addition problem. 100

points were deducted for each friend target dismissed, and 20 points were deducted for

each button click that did not hit any target. In order to encourage fast performance,

100 points were added to the score for each second remaining second in the iteration

after the overall task is completed. The participants were informed of the scoring

policy before the experiment began.

3.5.2 Procedure

Before beginning the trials, we described the addition and targeting tasks and

the parameter levels to the participant. We also described the scoring system in

detail to ensure participants attempted to complete the tasks quickly and accurately.

Participants first completed a set of practice trials that consisted of one trial of each

single and dual-task condition. Between each trial, participants were permitted to

take time to rest in order to avoid the effects of fatigue.

After verifying that the participant was comfortable with each task condition and

was capable of performing the tasks, the participant began experimental trials. The

participant performed two experimental trials of each dual and single-task condition.

After the two trials in each block condition, the participant responded to the NASA-

TLX survey that was presented on-screen (Hart and Staveland, 1988). After all

78

block conditions were completed, participants weighted the sources of each workload

subscale according to the NASA-TLX procedure.

3.5.3 Apparatus

We implemented the experiment as a web browser application using HTML, CSS

and the Dart language. The browser window occupied the entirety of a 24-inch

widescreen monitor. The Nintendo Wii remote controller senses four infrared LEDs

that were affixed to the corners of the monitor and were powered by a 5V USB

connection. We developed Java software to compute the screen location where the

remote was pointing and produce corresponding system events for mouse movements

and clicks, which were received by the browser. Software for logging and analyzing

data is written in Dart, Go, perl, and R. A screenshot of the experiment task interface

is shown in figure 3.3.

Figure 3.3: Experiment task interface

79

3.5.4 Data collection

After each block, the participant responded to the NASA-TLX survey to measure

the subjective workload of each task condition. The survey asks respondents to assess

the workload of a task on six subscales: mental demand, physical demand, temporal

demand, performance, effort, and frustration. During the experiment, mouse events

including movements and clicks were recorded. Target hits and misses were recorded

to examine the error rate and execution time of the targeting task. During trials

with an addition task, an audio recording was taken of the participant’s responses.

3 tones are played prior to the start of the trial to synchronize the audio data.

3.6 Results

3.6.1 Empirical results

Single tasks In the single addition task scenario, the addend value range variable

had a significant effect on the execution time (α = 0.05). The mean completion time

for the low addend range was ≈ 1.27 and for the high range was ≈ 2.05.

In the targeting task, the difficulty variable and the interaction between difficulty

and speed had significant effects on the execution time while the speed variable itself

did not. The difficulty variable increased on the execution time (α = 0.05) from

mean ≈ 1.84 to mean ≈ 2.39 across speed levels and was similar with the speed

variable fixed at either level. The speed variable itself had a significant effect on

execution time only with the difficulty variable fixed at the low value (α = 0.05). At

low difficulty, an increase in target speed reduced the mean of the execution time

from ≈ 1.87 to ≈ 1.80.

Dual tasks The targeting difficulty and addition difficulty variables had significant

increases on task execution time in the dual-task conditions while the target speed

80

variable had a small but significant decrease in execution time (α = 0.05). The

increase in speed decreased the mean execution time by ≈ 0.12 when the addend

range was low and was not significant in the high addend range cases. The variable

interactions had no significant effects.

Concurrency To quantify concurrency we defined a metric based on the relation-

ship between the execution time on the dual task with those on the single tasks of the

same condition. For a given pair of single task conditions A and T , let the average

independent execution time of each be ETA and ETT respectively. For the dual-task

condition AT where tasks A and T are performed simultaneously, the execution time

is ET (AT). Then we define concurrency as

C =
ETA + ETT − ET (AT)

min(ETA, ETT)

The properties of this definition of concurrency are described in section 3.7.

Each of the three independent variables as well as the interaction between addition

difficulty and target difficulty had significant effects on concurrency (α = 0.05), with

the addition difficulty variable having the largest reduction in concurrency (mean

≈ 0.78 to mean ≈ 0.58). The target difficulty variable reduced the concurrency

value while the speed variable increased concurrency.

3.6.2 QN-ACTR Model validity

Single tasks Bar plots of the empirical and modeled execution times on each single-

task condition are shown in figures 3.4 and 3.5 for the addition and targeting tasks

respectively. The difference in completion times between the empirical and modeled

data is significant only for the low-difficulty, high-speed targeting task.

81

0.0

0.5

1.0

1.5

2.0

[1 12] [13 25]
Addend range

E
xe

cu
tio

n
tim

e
(s

)

Data source

Human

Model

Figure 3.4: Execution times by difficulty in single-task addition problems

Dual tasks Dual task empirical and modeled execution time boxplots are shown in

figure 3.6. There are significant differences in completion times between the model

and empirical data for two cases: in the high-difficulty, high-speed targeting condi-

tions.

Accuracy During experimental trials, each button click is logged and classified as

a hit or miss. We define the targeting error rate as

misses

shots

The overall error rate across targeting tasks in the empirical data is ≈ 0.067 while

82

0.0

0.5

1.0

1.5

2.0

2.5

0.Low 200.Low 0.High 200.High
Speed, difficulty interaction

E
xe

cu
tio

n
tim

e(
s)

Data source

Human

Model

Figure 3.5: Execution times by difficulty and speed in single-task targeting condition

the modeled error rate is ≈ 0.066. Bar plots of the error rate across the single task

targeting conditions is shown in figure 3.7, and across dual task targeting conditions

in figure 3.8. The model notably overestimates the error rate in the high difficulty,

high speed conditions in the dual task.

Concurrency The bar plot in figure 3.9 compares the means of the currency values

for each condition. The modeled concurrency values are significantly different from

empirical values only in the high-diffculty, high-speed conditions (α = 0.05).

83

0

1

2

3

4

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

E
xe

cu
tio

n
tim

e
(s

)

Data source

Human

Model

Figure 3.6: Execution times by addition and targeting difficulty in dual-task performance

3.6.3 IMPRINT

The single-task execution times for the IMPRINT-simulated addition and target-

ing tasks in each condition are shown in tables 3.3 and 3.4. The values are nearly

identical to the QN-ACTR simulation values due to the fact that the IMPRINT

models were designed to duplicate the QN-ACTR versions. As a result, the values

are significantly different from the empirical values in exactly the same cases as the

QN-ACTR values: the high-speed, low-difficulty targeting condition.

Table 3.3: IMPRINT simulated addition task completion times
Addend range Completion time

[1 12] 1.26± 0.02s
[13 24] 1.99± 0.05s

84

0.00

0.02

0.04

0.06

0.08

0.Low 200.Low 0.High 200.High
Speed, difficulty interaction

E
rr

or
 r

at
e Data source

Human

Model

Figure 3.7: Targeting error rate in single task conditions

We used IMPRINT to simulate task performance in each dual-task condition with

and without the extension described in chapter II. Without the extension, there was

no limit on task concurrency and the dual-task completion times were equal to the

greater of the completion times of the two primary subtasks. The simulated comple-

tion times when run with the extension are shown in figure 3.10. The empirical and

QN-ACTR simulated values are included for comparison. The dual-task completion

time predicted by IMPRINT differs significantly from the empirical data in three of

the eight conditions, and differs from the QN-ACTR predictions in two.

The concurrency metric calculated from the IMPRINT simulations is shown along

with the QN-ACTR prediction and the empirical value for each dual-task condition

85

0.00

0.05

0.10

0.15

0.20

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

E
rr

or
 r

at
e Data source

Human

Model

Figure 3.8: Targeting error rate in dual task conditions

in figure 3.11. The IMPRINT value differs significant from the empirical and QN-

ACTR values in two conditions each.

3.7 Discussion

3.7.1 Effect of speed

In the cases when the speed variable was significant, increasing the speed of the

targets had the unintuitive effect of decreasing performance time or increasing con-

currency. We had expected a speed increase to increase the complexity of the task

and increase execution times and the QN-ACTR models predicted an increase in

execution time in some conditions.

This effect is likely caused by a reduced mean distance to the targets in the high-

86

0.00

0.25

0.50

0.75

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

C
on

cu
rr

en
cy

Data source

Human

Model

Figure 3.9: Concurrency by speed, difficulty, and addend range

speed case due to the experiment design. In the high-speed condition, the targets

move at 200 pixels per second for 6 seconds, so they will each move 1200 pixels.

This traversal is a large portion of the monitor, which has a resolution of 1920x1200

pixels. As a result, the target trajectories tend to pass near the center of the screen,

reducing the distance between them and therefore the time to move from one to

another. The participants also tended to position the cursor in the center of the

screen before the start of each iteration, so the targets would be moving toward the

cursor itself, compounding the effect.

If the advantage gained by human participants from the centripetal target motion

causes the reduction in targeting execution time, then the model is failing to capital-

87

Table 3.4: IMPRINT simulated target task completion times
Speed Difficulty Completion time
0px/s Low 1.85± 0.01s

200px/s Low 1.89± 0.01s
0px/s High 2.32± 0.02s

200px/s High 2.43± 0.03s

ize on it. This could be because the model randomly selects which target to process

first instead of selecting based on a heuristic, while human participants tended to

select the target nearest to the cursor first.

The high-speed models also require two extra productions between identifying a

target and moving the cursor to calculate a final cursor location. These productions

take 50 ms for a total increase of 200 ms to move to both targets in the low-difficulty

case. This difference accounts for the combination of the 40 ms increase in predicted

execution time and the 122 ms decrease in empirical execution time. This can explain

the model inaccuracy if the human control system begins moving the cursor toward

a target immediately and accounts for target motion during the motion.

3.7.2 Execution time

Histograms comparing modeled and empirical execution times in the single-task

conditions are shown in figures 3.12 and 3.13. The figures show that the effects

of targeting and addition difficulty are correctly predicted by the model and that

predicted distributions have similar means and lower variance than the empirical

distributions. The lower model variance is expected as the model simulates a single

person performing the tasks and does not reflect individual differences.

Another notable difference in the distributions can be seen in the targeting task

conditions with high difficulty. We can see from figure 3.12 that the modeled execu-

tion time distributions are bimodal while the distributions from the empirical data

are not. The left peak in the model histograms correspond to trials in which both

88

0

1

2

3

4

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

E
xe

cu
tio

n
tim

e
(s

)

Data source

Human

Model

IMPRINT

Figure 3.10: IMPRINT dual task completion times by speed, difficulty, and addend range

enemy targets were identified before the friend target. In these cases the task is

complete after checking only two targets as opposed to three. There is a significant

difference in completion time between these two cases in the empirical data as well

but the higher variance prevents bimodality. We also see an an exaggerated effect

of misses. The model distributions have a third peak corresponding to trials when

a target is missed. The effect is weaker in the empirical data both because of the

higher variance and because the increase in completion time due to a missed target

is significantly higher in the model.

89

0.00

0.25

0.50

0.75

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

C
on

cu
rr

en
cy Data source

Human

Model

IMPRINT

Figure 3.11: IMPRINT concurrency by speed, difficulty, and addend range

3.7.3 Concurrency

Metric properties The concurrency metric was based on two basic assumptions

about dual task execution. Consider two tasks, A and B, that have execution times

TA and TB respectively. The first assumption is that no concurrency occurs if the

time required to perform both is TA + TB, as this is the time required to perform

the two tasks in serial. Second, we assume perfect concurrency occurs if the time

required to perform both is max(TA, TB). In this case, the shorter of the two tasks

is completed within time required to perform the longer of the two tasks. Our

concurrency metric linearly interpolates these two points, mapping execution time

max(TA, TB) to concurrency C = 1 and execution time TA + TB to concurrency

90

difficulty: Low difficulty: High

0

50

100

150

200

0

50

100

150

200

speed: 0
speed: 200

2 4 6 2 4 6
Execution time (s)

C
ou

nt

Data source

Human

Model

Figure 3.12: Targeting task execution time distributions

C = 0. When computing the concurrency metric from the data, we use the mean

execution time from single-task trials of the addition and targeting tasks as TA and

TB.

Model accuracy The predicted concurrency values are significantly different from

empirical values in 2 of the 8 conditions: the high-speed, high-difficulty targeting

conditions. These two underestimates are caused by the model significantly overes-

timating the number of target misses. In this targeting condition, the model moves

the cursor to a target and performs a memory retrieval to decide whether to click a

target based on the color. In the single task condition, the model is able to make the

91

0

50

100

150

200

0

50

100

150

200

[1 12]
[13 25]

2 4 6
Execution time (s)

C
ou

nt

Data source

Human

Model

Figure 3.13: Addition task execution time distributions

decision and execute a click before the target moves away from the cursor. However,

when the addition task is performed concurrently, the targeting task processing is

often delayed enough to allow the target to move away before the click is executed.

There are two underlying modeling failures that explain this increase in misses.

First, the models use ACT-R’s motor module to simulate cursor movement. Cursor

movements in ACT-R begin with a request and can not be modified or interrupted

until they are complete. This prevents the model from tracking a target with the cur-

sor as it moves as human participants do. The model may be improved by reducing

the motor initiation and preparation times and introducing additional productions

to simulate target tracking.

92

The second related modeling failure is that the model predicts longer completion

times for the addition subtask in dual-task conditions than empirical data show. Fig-

ure 3.14 shows the addition subtask completion times across all conditions from the

modeled and empirical data. We can see that the model systematically overestimates

the completion time of the addition subtask but not the overall task completion time.

This suggests that while the overall completion time and concurrency estimates may

be accurate, the policy of alternately selecting productions from the two goals does

not represent actual behavior. We could attempt to correct this in the model itself by

violating the polite component of the greedy-polite policy of the threaded cognition

theory. The addition task model could, for example, retain the use of the visual and

visual-location across several productions to prevent interruption by the targeting

task.

3.7.4 Behavioral modeling

In addition to overall execution time and concurrency, the dual-task model gener-

ally matches the behavioral aspects of human performance. Figure 3.15 which shows

the subtask and overall completion times of the empirical and modeled data in one

condition. We can see that the model correctly predicts that the addition subtask is

completed before the targeting subtask. This behavior and prediction holds for all

other conditions.

Although the order of subtask completion is predicted correctly, the completion

time for the addition subtask are often overestimated in the model, suggesting that

it fails to identify a resource conflict between the tasks. Empirical studies have

shown that the phonological and visual-spatial memory play a role in mental arith-

metic problems with medium to large numbers that are not solved by direct retrieval

(DeStefano and LeFevre, 2004; Trbovich and LeFevre, 2003; Heathcote, 1994). We

93

0

1

2

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]
Speed, difficulty, addend range interaction

C
om

pl
et

io
n

tim
e

(s
)

Data source

Human

Model

Figure 3.14: Addition subtask execution times in dual-task conditions

found anecdotal evidence for a resource conflict due to this visual-spatial memory

requirement during empirical trial observation. In high-difficulty conditions, par-

ticipants would often move the cursor over a target but would not click to dismiss

the target until they finished calculating the sum of the addition problem. These

visual-spatial memory requirements are neglected by our addition model, which uses

only ACT-R’s declarative memory module once the two numbers have been visually

attended once. Figure 3.16 plots the addition subtask completion time against the

time until the first target is hit, by targeting and addition task difficulty. In trials

with low targeting difficulty, the model-predicted target hit times are a near constant

1s while the empirical data show that target hit times increase with the addition task

94

0

20

40

60

80

0

20

40

60

80

H
um

an
M

odel

0 2 4 6
Completion time (s)

C
ou

nt

Subtask

Addition

Targeting

Figure 3.15: Subtask completion order in a dual-task condition

time. The model inaccuracy is alleviated in conditions with high targeting difficulty

because the model requires both a visual perception and a retrieval to determine

whether the target should be dismissed. The relationship between addition com-

pletion times and target hit times and improved model accuracy in high-difficulty

conditions provides more evidence for the claim that visual-spatial memory is used

during mental arithmetic.

3.7.5 Application to IMPRINT

Using the Soar-based task management extension described in chapter II we were

able to accurately simulate task concurrency in IMPRINT. Figures 3.10 and 3.11

show that IMPRINT simulations with the extension matched or improved the com-

95

difficulty: Low difficulty: High

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●
●

●
●

●

●
●●●

●●
●●

●

●
●

●
●●●●●
●

●●● ●
●

●

●●

●

●
●●
●

●
●

●

●●●
●

●

●

●●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●●

●●

● ●●

●

●
●

●

●

●

●

●

●

●●
●●

●
●

●

● ●

●
●
●

●

●
●
●

●●
●

●

●

●
●

●

● ●

●

●● ●●
●

●●
●

●
●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●

●

●

●
●
●●●●

●●●

●

●

●
●

●

●

●●
●

●
●●

●
●

● ●

●●

●

●
● ●

●

●

● ●
●

●

●
●●

●
●●
●

●●●

●

●

●

●

●

●
●

●● ●

●

●
●

●

●

●● ●●
●●●●

●

●

●
●

●

●●
●

●● ●

●

●

●●
●

●●

●●

●

●
●
●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●●
●●●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●●
●●●
●

●

●

●

●●●●●

●

●●

●
●

●

●
●
●●
●

●

● ●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●
●

●

● ●●
●

●
●

●
●

●
●

● ●
●

●●
●

●●● ●●
●

●●●

●
●●

●
●●

●
●

●●

●

●
●

●●●

●●

●●
●
●
●

●
●

●
●

●
●●

●●● ●●
●

●
●

●
● ●●

●

●
●

●● ● ●
●●

●

● ●
● ●●● ● ●

● ●

●

●● ●●
●

● ●●●
●

●

●

●
● ●

●
● ● ●

● ●
●

●
●

●

●
●

●● ●●● ● ●●

●

●●
●● ●● ●●● ●●

●●
● ●●●

●●

●●● ●
●

●● ●●
●

●
●
●●

●●

●
●

●

●●●●●●
● ●

●

●● ●

●
●

●

●
●
●●

●●●
●

●● ●●● ●
●

●
●

● ● ●● ●

●

● ●
● ●

●
●

● ●

●
●●

●

●
●

● ●

●●

●

●● ●
●

●●
● ●

●
●

●
●●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●●

●
● ●●●

●●
● ●● ● ●●●●

●

●

●
● ●●●●●

●

●
●
● ●●●

●
●

●
●

●●●
●

●●
●

●

●

●

●

●
●● ●

●

●

●
●

●
●

●●
●●
●

●●● ●●
● ●●● ●●

●

●
● ●●

● ●●●
●

●

●
●

●

● ●
●

●●
●

●
●●

●●

●

●

●●
●

●
●

●

● ● ●
●

●
●

●
●

●●●●
●

●
● ●●

● ●
●

●

●● ●●
●

● ●
●

●●
●●●●

●●
●

●

●
●

● ●●●
●●

●

●
● ●

●
●

●
●●

●
●

● ●

●● ●
●●

●
●●●
●● ●

●
●

●●

●

●
●●●

●
●●

●

●
●

●●●
●

●
●

●●
●●●●

●
●● ●

● ●

●

●●●
●

● ●
●●

●●
●

●● ●●● ●
●

●

●● ●●
● ●

●●●
●

●
● ●●

●

●

●
●●●

●
● ●●

● ●

●
●● ●●

●●●
● ●

●● ●● ● ●● ●
●

●

●
●●
●

● ●●
●

●

● ●
●

●

● ●

●
●●

●

●●

●

●

●●

●

●

●
●

●

●

● ●

●

●
●

●

●●

●●
●●●●

●● ●●
●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●●
●

●

●

●

● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●

● ●●

●

●
●

●
●

●
●
●●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●●●
●

●

●
●

●●
● ●●● ●

●

● ●

● ●
●●

●
●● ● ●

●●●●●

● ●
●● ● ●

●

●

●

●●
●●●●

●

●

●

● ●●●
●

●
●

●
●●

●

●

●●

●

●

●

●●
●

●

●
● ●●

●
●

●

●●●●
●●●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

● ●
●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●● ●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

● ●
●

●● ●
●

●●
●

●

● ●
●

●●
● ●● ●

● ●● ●

●
● ●

● ● ●●
●

●● ●
●

●
●

●

●

●

●

● ●●●
●

●

●

●●
●● ●

●● ●● ●
●●

●

●

●●

●
●

●

●● ●●
●

●

●

●
●

●● ●●●●

●

● ●●●

●

● ●●
●

●
●

●

●●● ●

●

●
●●●

●
●

●

●
●

●
●●

● ●
●●
●

●●
●●

●
●●

●●

●

●
● ●

●

●
●

● ●

● ●

●

● ●●●

●
●

●

●

●●●

●

●

●
●●

●

●

●

●●● ●
●

●

●

●

●
● ● ●

●
●

●

●●● ●●
●

●

●

●
●

●

●
●

●
● ●

●

●●
●

●
●

●
● ●●

●
●

●
●

●●

●

● ●

●

●●
●

●

●
● ●

●
●

●
●●●

●
● ●●●●●

●
● ●

●●
●

●
●

●
●

●
● ●● ● ●●

●
●●●

●
●
●

●
●●

●

●

●

●
●●

●●
●●

● ●
● ●●●

●
● ●

●

●●

●

●
●● ●● ●●● ●● ●●●

●

●● ●

●●● ●●

●

●● ●
●

●● ●● ● ●

●
●

●

●

●

●

●

●

●

●●
●● ●●● ●

●

● ●●
●

●
●

●
●

●
● ●

●●● ●

●

●
●

●

●

●● ●●
●

● ●

●

●
● ●

● ●
●

●

●
●●

●

●

●
●

●
●

● ●
●

●

●● ●●
●

●

●

●

●

●
●●

●

● ●

●

●●●
●

●
●●

● ●
●

●
●

●●

●

●

●

●
●

●
●

●● ●
●

●
●●

●
●●

●

●

●
● ●

●●
●

● ●●

●
●

●

●●
●

●

●

●●

●

●●● ●●
●● ●

● ●

●

●

● ●
●

●
● ●● ●

●
●

●
●

●

●
●

●

●

●

● ●

●

●
●●●●

●
● ●

● ●

● ●●
●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●●

●

●
●

●
● ●

●
●

●

●

●

●●●

●

●

●●

●

● ●

●

●●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●
●
●

●

●

●●

●
●

●

●● ●

●

●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●●●

● ●

●

●
●

●

●
●

●

●

●

●●●

●

●
●●

●

● ●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●

●

●
●

●
●

●

●

●

●

●
●●●

●

●

●

●
●

●●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●
●

●

●

●

●●

●

●●
●

●●

● ●
●

●

●
●

●
●

●

●
●●

●●
●

● ●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●●
●●

●
●
●

●

●
●

● ●

●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●● ●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

● ●

●

●

●

●

●
●●

●

● ● ●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●●

●

●

●●

●
●

●●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●● ●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●

●

●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●

●
●

●

●●●

●

●

●

●

●
●●

●●
●

●

●●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●● ●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

●

●

●

●

●

●

●

●●
●●●●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●
● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

● ●

●

●

●

●
●●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●
●●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

0

2

4

6

0

2

4

6

oprange: [1 12]
oprange: [13 25]

0 2 4 6 0 2 4 6
Addition execution time (s)

T
im

e
to

 fi
rs

t t
ar

ge
t h

it
(s

)

Data source

●

●

Human

Model

Figure 3.16: First target hit time vs. addition task completion time in dual-task conditions

pletion and concurrency predictions in most experimental conditions. In one condi-

tion (low-speed, high-difficulty, low-addend range) the completion time and concur-

rency predictions made by IMPRINT were significantly different from the empirical

values while the QN-ACTR prediction was not. Similarly, there was one condi-

tion (high-speed, high-difficulty, high-addend range) in which the QN-ACTR values

showed a significant difference from the empirical values while the IMPRINT values

did not.

Figure 3.17 shows the dual-task completion times predicted by IMPRINT with

the Soar-based task management extension and with the built-in Advanced Work-

load System using strategy A (section 1.4.2). The empirical and QN-ACTR pre-

96

dicted values are also included for comparison. The IMPRINT predictions using

AWS consistently overestimated the dual-task completion times by 10 to 50%. The

concurrency values, shown in figure 3.18 are greatly underestimated in all conditions,

including three in which the predicted concurrency is negative.

0

1

2

3

4

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]

Speed, difficulty, addend range interaction

E
xe

cu
tio

n
tim

e
(s

)

Data source

Human

Model

IMPRINT

IMPRINT (AWS)

Figure 3.17: Comparison of IMPRINT predicted dual task completion times using AWS and the
Soar-based extension in dual-task conditions

3.8 Conclusion

We developed QN-ACTR and IMPRINT models of multi-task performance con-

sisting of an addition and targeting task. We collected empirical data of human

performance in each single and dual-task condition from 20 participants in order

to validate the completion time, accuracy, and concurrency predictions made by

97

0.0

0.5

0.
Lo

w
.[1

 1
2]

20
0.

Lo
w

.[1
 1

2]

0.
H

ig
h.

[1
 1

2]

20
0.

H
ig

h.
[1

 1
2]

0.
Lo

w
.[1

3
25

]

20
0.

Lo
w

.[1
3

25
]

0.
H

ig
h.

[1
3

25
]

20
0.

H
ig

h.
[1

3
25

]

Speed, difficulty, addend range interaction

C
on

cu
rr

en
cy

Data source

Human

Model

IMPRINT

IMPRINT (AWS)

Figure 3.18: Comparison of IMPRINT predicted concurrency values using AWS and the Soar-based
extension in dual-task conditions

QN-ACTR. The IMPRINT models were simulated using both the Soar-based task

management extension described in chapter II and with the built-in AWS feature.

We found that the model with the Soar-based extension produced significantly more

accurate completion time and concurrency predictions than with AWS.

The QN-ACTR models predict task performance in terms of execution time and

concurrency well, but fail to capture two aspects of dual-task performance. First,

while the predicted completion times are accurate, execution times for the addition

task are overestimated while the target task times are underestimated. This suggests

that a strict least-recently processed goal selection algorithm for threaded cognition

may not reflect actual task performance strategies. We propose that a more sophisti-

98

cated algorithm could be used, which favors the execution of a single task for longer

periods of time. A system such as the Soar-based task management extension to IM-

PRINT may be used for this purpose. The system could be applied at the goal level,

selecting whether a production should be allowed to fire based on current resource

usage, or to the task network implementation of the ACT-R algorithm in QN-ACTR

itself, as it is in IMPRINT. However, network components in IMPRINT represent

task components themselves while QN-ACTR network components represent the

mechanisms simulating task performance. Applying the Soar-based extension to the

current QN-ACTR implementation would correspond to interfering with individual

actions and conditions in ACT-R model productions leading to complex interac-

tions in the simulation. Applying the system at the goal-threading level is a more

promising option.

Second, the model fails to capture a resource conflict in the latter stages of task

performance when empirical data suggests the use of visual-spatial memory inter-

feres with the visual requirements of the target task. This conflict is not predicted in

ACT-R without explicitly introducing visual resource usage in the addition model.

This is more easily remedied in the IMPRINT simulation with the Soar-based ex-

tension where a visual workload value can be introduced in the appropriate network

component, increasing the likelihood of a task delay.

CHAPTER IV

The effect of effort on dual-task performance and
concurrency

The study of the effects of incentive and effort covers many aspects of task per-

formance: manual tasks (Toppen, 1965; Kuhl and Koch, 1984), decision making

(Bettman et al., 1990; Hogarth et al., 1991), problem solving (Wieth and Burns,

2006), pain tolerance (Baker and Kirsch, 1991), and job performance (Dillard and

Fisher, 1990). Bonner and Sprinkle (2002) and Bonner et al. (2000) provide an

excellent overview of research on financial incentives, effort, and task performance,

and review the effectiveness of incentives based on reward scheme and task type

in laboratory settings. Few studies have been conducted on the effect of effort on

dual-task performance (Erez et al., 1990; Schmidt et al., 1984) and these examined

performance only in terms of speed or accuracy. The focus of the present study is on

the source of improvement and whether time-sharing between dual-tasks improves.

We conducted an experiment using the experimental tasks from chapter III with

modifications to require dual-task performance for the duration of the task and with-

out the independent variables relating to targeting task difficulty and speed. A

monetary reward was introduced as a within-participants variable: each single and

dual-task condition was performed by a participant with and without the incentive.

Pursuant to the results of Dambacher et al. (2011) and Bonner et al. (2000), the

99

100

incentive was linear with the number of tasks completed within each 90 second trial.

The reward primarily incentivized speedy performance: no deductions were made for

incorrect responses to the addition task and the deduction for hitting a green target

was used only to prevent participants from dismissing all targets regardless of color,

ensuring the appropriate visual and cognitive task requirements.

4.1 Tasks

The experimental tasks were similar to those in the first experiment with a few

changes. In the first experiment the tasks were presented to the participants at the

beginning of each 6 second interval, allowing us to easily define the start and end

time of the dual-task. However, this produced a period of time in which a participant

is performing only one task. After one of the two tasks was complete, the participant

completed the remainder of the remaining task without the interaction of the first

task. It also limited the fraction of the participation time that participants spent

actively performing tasks and the total number of tasks performed.

To ensure that participants were exhibiting truly dual-task performance during

the dual-task trials we modified the task design. In this experiment, a new task

was presented as soon as the participant completed the task presented. In the ad-

dition task, when the participant announced the correct answer, the display would

be refreshed with a new problem. In the targeting task, a new set of three targets

would appear as soon as a participant dismissed the two red targets. This was true

for the dual-task conditions so that there would be two active tasks at all times.

To accommodate for the new task design, we modified the concurrency definition as

described in section 4.4.

101

4.1.1 Targeting task

The targeting task experiment interface is identical to the first experiment. How-

ever, unlike the first experiment, there are no independent variables governing the

targeting task. The task only takes the high-difficulty, low-speed targeting condition

from the first experiment: each target is stationary and is displayed in black until

the cursor is placed over it, whereupon the red or green color is shown.

4.1.2 Addition task

The addition task is identical to the first experiment except that a new task

is shown immediately when a task is complete. The difficulty of the task is an

independent variable with two settings: addends between 1 and 12, and between 13

and 24.

4.2 QN-ACTR models

4.2.1 Addition model

In order to model the new task design, we made minor changes to the addition

model. The changes to the model are described here. For a full description of the

model, see section 3.3.1.

Instead of moving to a final state after announcing the sum in the respond-ones

and respond-ones-no-tens productions, the model sets the goal state to reset and

a production with the same name fires. The production resets the goal chunk slots

to nil and sets the goal state to find-first to begin the next addition problem.

In both the experiment and model, there is a brief delay between the response and

the display of the new addition problem. Without any changes to the find-first

production, the result of the visual-location request would be the plus sign, which is

the only remaining unattended text item while the completed problem remains on

102

screen. We added a constraint to the visual-location request: < screen-x 960 which

limits the search to the left side of the screen, preventing the plus sign from being

found. Before the new problem is displayed, this visual-location request will fail.

We therefore added a new production, fail-find, which detects the visual-location

buffer error state and performs a new search for unattended text on the left side of

the screen. This production will fire until the new problem is displayed and normal

processing resumes.

To model the increase in effort induced by the incentive payment, we modified

the activation base level values in simulations of incentivized trials. Recent neuro-

science studies provide support for long-held theories (Kahneman, 1973; Pribram and

McGuinness, 1975) and found direct evidence of increased activation levels leading

to reduced reaction time (Jansma et al., 2007; Engström et al., 2013). The base level

values from the first experiment were increased by a constant fraction and used for

incentivized simulations. The fraction was fit using empirical addition task execution

times in the low-difficulty, incentivized condition.

4.2.2 Targeting model

Experiment 2 uses only the high-difficulty, low-speed targeting condition from

experiment 1. We therefore used the corresponding model from experiment 1 with

minor changes described here. For a full description of the model see section 3.3.2.

The model in experiment 1 was already designed to repeatedly search for targets

so no change was required to account for the immediate display of new targets upon

task completion. However, as in the addition task, there is a brief period of time after

the click-mouse production when the model continues with the next productions

but the new task has not yet been displayed. In this case, the visual-location request

performed by find-black-target-friend will fail and result in an error state. We

103

added a production named fail-find-not-friend to handle this case. The produc-

tion detects the error and performs a new search for a black target. This production

continue firing until new targets are displayed, causing the visual-location request to

succeed.

The fail-find-not-friend production only handles the case in which the friend

target was encountered before dismissing the second red target. If the friend target

was never found, the find-black-target production will fire and successfully find

the friend target which will momentarily be removed from the display. In this case,

processing continues until the check-target production performs another visual-

location request for the same target. By the time this production fires, the target has

been removed from the screen and new targets shown and the visual-location request

fails. We added a distinguish-target-error production which detects this search

failure and changes the state back to find-black-target to begin processing the

new targets.

4.3 Method

20 participants were recruited from a population of undergraduate and graduate

students at the University of Michigan. Half of the participants were male and

half female to control for a potentially confounding gender variable. Participants

completed trials in which they attempted to complete one or more tasks quickly

and accurately. Each trial lasted 90 seconds in which the participant completed as

many tasks as possible. The participants were instructed to complete the tasks while

minimizing execution time and errors. During incentivized trials, the participant’s

reward was computed in real-time and displayed in the corner of the screen.

All independent variables are within-participant factors and the order of condi-

104

Table 4.1: Experiment 2 Design
Independent variables
Incentive No Yes
Addition operands [1,12] [13,24]

tions was randomized. In addition to each block condition of the dual-task, par-

ticipants completed trials of the addition task at each difficulty and incentive level

without the targeting task, and the targeting task at each incentive level without the

addition task. A table of independent variables is shown in Table 4.1.

4.3.1 Scoring

During incentivized trials, participants received a dollar amount based on task

performance that was visible to them to reward fast and accurate task completion.

The participants received $0.05 for each enemy target dismissed and $0.10 for a

correct answer to the addition problem. $0.05 was deducted for each friend target

dismissed, and $0.02 was deducted for each button click that did not hit any target.

The participants were informed of the scoring policy before the experiment began

and the task conditions before beginning each trial.

4.3.2 Procedure

Before beginning the trials, we described the addition and targeting tasks and

the parameter levels to the participant. We also described the reward system in

detail to ensure participants attempted to complete the tasks quickly and accurately.

Participants first completed a set of practice trials that consisted of one trial of each

single and dual-task condition with no incentive. Between each trial, participants

were permitted to take time to rest in order to avoid the fatigue effects.

After verifying that the participant was comfortable with each task condition and

was capable of performing the tasks, the participant began experimental trials. The

participant performed two experimental trials of each dual and single-task condition.

105

After the two trials in each block condition, the participant responded to the NASA-

TLX survey that was presented on-screen (Hart and Staveland, 1988). After all

block conditions were completed, participants ranked the sources of each workload

subscale according to the NASA-TLX procedure.

4.3.3 Apparatus

We implemented the experiment as a web browser application using HTML, CSS

and the Dart language. The browser window occupied the entirety of a 24-inch

widescreen monitor. The Nintendo Wii remote controller senses four infrared LEDs

that were affixed to the corners of the monitor and were powered by a 5V USB

connection. We developed Java software to compute the screen location where the

remote was pointing and produce corresponding system events for mouse movements

and clicks, which were received by the browser. Software for logging and analyzing

data is written in Dart, Go, and R.

4.3.4 Data collection

After each block the participant responded to the NASA-TLX survey to measure

the subjective workload of each task condition. The survey asks respondents to assess

the workload of a task on six subscales: mental demand, physical demand, temporal

demand, performance, effort, and frustration. During the experiment, mouse events

including movements and clicks were recorded. Target hits and misses were recorded

to examine the error rate and execution time of the targeting task. During trials

with an addition task, an audio recording was taken of the participant’s responses.

3 tones are played prior to the start of the trial to synchronize the audio data.

106

4.4 Results

4.4.1 Single tasks

The incentive and addition difficulty variables both had significant effects on

single-task addition completion times (α = 0.05). For low-difficulty trials, incen-

tivization reduced the mean completion time from 1.19 to 1.11, and from 2.08 to

1.96 in high-difficulty trials. The data show no significant effect of incentive on

single-task targeting completion times.

4.4.2 Dual tasks

In both unincentivized trials, the addition difficulty variable had a significant

effect on both addition and target task completion times (α = 0.05). The effect

of incentivization, however depended on the addition difficulty variable. In low-

difficulty trials, the addition completion times showed a significant decrease under

incentivization while target task completion times showed a significant increase. In

high-difficulty trials, neither addition nor target task completions times showed a

significant change under incentivization.

The score awarded to participants was also calculated for unincentivized condi-

tions. In both unincentivized and incentivized trials, the addition difficulty variable

had a significant effect on the score (α = 0.05). The score significantly increased

under incentivization in low-difficulty conditions, but not high-difficulty conditions.

The concurrency metric used in the first experiment assumes that two subtasks are

presented simultaneously and defines the dual-task completion time as the time that

both subtasks are complete. The tasks in the second experiment, however, begin and

end independently of each other, so the original concurrency metric cannot be directly

applied. Instead we define a generalized concurrency metric based on the subtask

107

completion times in single and dual-task conditions. Let A be a single-task condition

of the addition task, T be the single-task condition of the targeting task, and AT be

the dual-task condition in which A and T are performed simultaneously. Then let

ETA(X) and ETT (X) be the mean execution time of the addition and targeting task

in condition X respectively. For example, ETA(A) is the mean execution time of the

addition task in a single-task condition, while ETA(AT) is the mean addition task

execution time in the corresponding dual-task condition. We define concurrency as

1− ETA(AT) + ETT (AT)− (ETA(A) + ETT (T))

ETA(A) + ETT (T)

The right side measures the fractional increase in the sum of the mean completion

times of the two tasks when performed simultaneously. If there is no increase in

the completion times in the dual-task scenario, we have ETA(AT) = ETA(A) and

ETT (AT) = ETT (T). The fraction reduces to 0 and the concurrency metric is

1. If the two tasks were performed alternately and in serial, we have ETA(AT) =

ETT (AT) = ETA(A) + ETT (T). The fraction reduces to 1 and the concurrency

metric is 0.

As in experiment 1, the addition difficulty variable had a significant effect on

concurrency regardless of incentive (α = 0.05). However, incentive did not have a

significant on concurrency in either the high or low difficulty dual-task conditions.

4.4.3 Model validity

We found no significant differences between empirical and model-predicted execu-

tion times in the single-task conditions of the addition and targeting tasks. Further-

more the model showed a significant decrease in completion times of the addition

tasks in incentivized trials in both the low and high-difficulty conditions, and no

108

significant difference in targeting times based on incentive. Bar plots comparing the

empirical and modeled times in the addition and targeting tasks are shown in figures

4.1 and 4.2 respectively.

0.0

0.5

1.0

1.5

2.0

false.[1 12] true.[1 12] false.[13 25] true.[13 25]
Incentive, addend range interaction

E
xe

cu
tio

n
tim

e
(s

)

Data source

Human

Model

Figure 4.1: Execution times by difficulty and incentive in single-task addition problems

A bar plot comparing the empirical and model-predicted addition task completion

times in each dual-task condition is shown in figure 4.3. As in the empirical data, the

model data shows a significant decrease in addition task completion times based on

incentive only in the low-difficulty conditions. We also find no significant difference

between empirical and modeled completion times for the addition task in the high-

difficulty condition. However, the model significantly overestimates the completion

times in the low-difficulty conditions.

109

0.0

0.5

1.0

1.5

2.0

false true
Incentive

E
xe

cu
tio

n
tim

e(
s)

Data source

Human

Model

Figure 4.2: Execution times by incentive in the single-task targeting problem

The model also significantly overestimates the targeting task completion times in

the low-difficulty conditions as shown in figure 4.4. Furthermore, the model-predicted

targeting task completion times in the low-difficulty conditions show no significant

difference between incentivization levels. In the high-difficulty conditions the model

significantly underestimates the task completion times and shows not significant

difference based on the incentive variable.

Due to the task design, there is no dual-task completion time metric to examine

directly. To compare the performance in dual-task conditions, we computed the

incentivization score in units of dollars without deductions for targeting-task errors.

A bar plot showing the mean score for a single trial in each condition is shown in

110

0

1

2

[1 12].false [13 25].false [1 12].true [13 25].true
Addend range, incentive interaction

C
om

pl
et

io
n

tim
e

(s
)

Data source

Human

Model

Figure 4.3: Addition task execution times by difficulty and incentive in dual-task conditions

figure 4.5. Due to overestimating both the addition and targeting-task completion

times in the low-difficulty conditions, the model significantly underestimates the

score awarded in these conditions. In the high-difficulty conditions, the data show no

significant difference between empirical and modeled scores. There is no significant

difference in model-predicted scores based on incentive.

The error of overestimating the addition and targeting is also reflected in a sig-

nificant modeled underestimate of concurrency in the low-difficulty conditions. The

concurrency bar plot in figure 4.6 shows that the model underestimates concurrency

in the low-difficulty, but shows no significant difference in concurrency in the high-

difficulty conditions.

111

0

1

2

3

4

[1
 1

2]
.fa

ls
e

[1
3

25
].f

al
se

[1
 1

2]
.tr

ue

[1
3

25
].t

ru
e

Addend range, incentive interaction

C
om

pl
et

io
n

tim
e

(s
)

Data source

Human

Model

Figure 4.4: Targeting task execution times by difficulty and incentive in dual-task conditions

4.5 Discussion

4.5.1 Single task incentivization

In regard to task completion times, our findings are consistent with previous stud-

ies of incentivization and performance (Bonner and Sprinkle, 2002). As shown in

figure 4.1, addition completion times in single-task conditions were significantly im-

proved under incentivization. We noted, anecdotally, indicators of increased arousal

in speech including pitch, volume and speed during incentivized trials (Burgoon

et al., 1989, 1992). Targeting task completion times, however, were not effected by

incentivization in the single-task conditions as shown in figure 4.2. The QN-ACTR

models of performance under incentivization correctly predicted both the effect on

112

0.0

2.5

5.0

7.5

10.0

[1
 1

2]
.fa

ls
e

[1
3

25
].f

al
se

[1
 1

2]
.tr

ue

[1
3

25
].t

ru
e

Addend range, incentive interaction

S
co

re
 (

$) Data source

Human

Model

Figure 4.5: Score by difficulty and incentive in dual-task conditions

the addition tasks and the lack of effect on the targeting task.

4.5.2 Dual task performance

Incentivization was also found to affect performance in dual-task trials. The score

metric, in units of dollars awarded to the participant, showed a significant increase

with incentivization. Addition completion times showed a significant decrease under

incentivization in both low and high difficult trials as shown in figure 4.3. Targeting

task completion times, as shown in figure 4.4, showed no difference under incentiviza-

tion in high-difficulty conditions. In low-difficulty conditions, however, targeting task

completion times showed a significant increase in incentivized trials.

The effects of incentivization on task performance were complex: in low-difficulty

113

0.0

0.2

0.4

0.6

[1
 1

2]
.fa

ls
e

[1
3

25
].f

al
se

[1
 1

2]
.tr

ue

[1
3

25
].t

ru
e

Addend range, incentive interaction

C
on

cu
rr

en
cy

Data source

Human

Model

Figure 4.6: Concurrency by difficulty and incentive in dual-task conditions

trials, addition times decreased, targeting times increased, and the score increased.

A pure effort effect would suggest that both addition and target times would de-

crease or at least remain constant under incentivization. That target times increased

shows that participants not only increased effort but also adjusted their strategy to

attain higher reward. The QN-ACTR model fails to capture the effect of the strat-

egy allocation of attention to the addition task, predicting a significant decrease in

targeting task completion times under incentivization in both low and high difficulty

conditions. Figure 4.5 shows the model-predicted effects of difficulty and incentive

on score in dual-task conditions.

The increase in scores in dual-task conditions can derive from two distinct sources

114

of improvement. Improvement on the performance of the individual tasks, and im-

provement on performing the tasks concurrently. Results from the single-task trials

show that participants improve their performance on the addition task when given

an incentive. To isolate the effect of true concurrency improvement, we calculate

concurrency as a function of single-task execution times separately for incentivized

and unincentivized trials. Despite evidence of increased effort and strategy adjust-

ment, the data do not show an increase in concurrency in incentivized trials. Figure

4.6 shows the empirical and model-predicted effects of task difficulty and incentive on

task concurrency. Incentive, in both empirical and modeled-data, has no significant

effect on concurrency at either difficulty level.

One explanation for this lack of effect is that increased effort and arousal induced

by the incentive does not reduce the conflict between cognitive resources required

to perform each of the tasks. We did not make any modifications to the model

to attempt to improve resource concurrency under incentivization. ACT-R itself

provides only minimal mechanisms for achieving increased resource sharing. Only

one of each type of buffer exists and each can contain only one chunk at a time. The

motor and speech modules allow new requests to be made before the previous action

is complete. Each action is separated into three stages: preparation, processor, and

execution. A new request will be accepted if the latter two stages are busy but

the preparation stage is free. Other modules including visual and declarative will

only accept new requests when all three stages are not busy. QN-ACTR introduces

concurrency accommodations notably by the inclusion of multiple goal buffers. Due

to its server-network model, QN-ACTR could parallelize the usage of the single

resource buffers, however we did not investigate this possibility.

It is also possible, however, that increased effort can increase resource concur-

115

rency but that our particular experimental tasks are unsuitable for observing such

an effect. The two experiment tasks are visually intensive and require memory re-

trieval, although the targeting task execution time is dominated by the movement

of the cursor between targets. While effort does not appear to improve concurrency

in or between the visual and memory resources, it is possible that we would observe

improvement in tasks that use, for example, auditory cues instead of visual cues.

Further experiments with alternate resource requirements would allow us to either

generalize the claim that effort does not improve concurrency or identify resources

whose conflicts are sensitive to effort and arousal.

Finally, we can hypothesize that the arousal mechanisms that produce single-

task performance improvement themselves prevent an increase in concurrency. The

data show that addition task completion times in both single-task and dual-task

conditions improve under incentivization, likely due to increase allocation of attention

and reduced memory retrieval times. Tasks performed with higher effort and with

increased attention would naturally be more resistant to concurrent performance with

another task. We can see evidence of this in the low-difficulty dual-task conditions

under incentivization when addition task completion times decrease but targeting

task completion times increase.

4.5.3 Concurrency predictions

Although the model correctly predicts a significant increase in score under incen-

tive in low-difficulty dual-task conditions, it significantly underestimates the mag-

nitude of the score and concurrency in these cases. This modeling inaccuracy was

not observed in the first experiment which featured a slightly different task design.

In the first experiment, the two tasks started simultaneously every 6 seconds. In

this experiment, however, a new task of a given type would begin as soon as the

116

previous was complete. That is, when an addition problem was answered, a new set

of numbers was shown immediately, regardless of the participant’s progress on the

targeting task, and vice versa. The ACT-R models of the tasks had to be modified

to restart when a task was finished. A production was added to the addition task

model to reset the goal state and start again at the first production after the response

was spoken. Because there is a delay between a speech request and its execution,

the production to find the location of the first addend would fire before the task

display was updated with the new values. The visual-location request checks that

the object is unattended and therefore fails. A production was added to detect this

search failure and perform a new search for the first addend. This production would

fire cyclically until the new problem was shown. Until the new values are displayed

and the request succeeds, the visual-location buffer is in an error state, preventing

any production in the targeting model from firing if it requires the visual-location

buffer. Several productions in the targeting model use the visual-location buffer as

the targeting task is largely visual.

The targeting task model was modified in a similar way. There is a brief delay

between the time the production that requests the last click and the time the new

targets are displayed on screen. During the delay, processing in the targeting model

proceeds and it attempts to locate a target to move to. The model continues searching

until the display refreshes and the new targets are available. Productions in the

addition model that use the visual-location buffer are prevented from firing during

this time.

These conflicts do not affect single-task execution time but do increase execution

time in dual-task simulations. The increase has a particularly strong effect on the

low-difficulty addition task when the time increase is a larger fraction of the overall

117

execution time. This is a technical and not theoretical problem, and could potentially

be resolved by modifying the task models. For example, a clear request could be made

to the visual module which would clear the error state of the visual-location buffer.

However, the request would also empty the visual buffer and reset the visual buffer

state, fatally interrupting processing in the opposite task when it is using the visual

buffer. This option is not feasible without implementing the greedy-polite policy

over the visual and visual-location buffer as a single resource instead of separately.

The effect of the conflict is also weaker in the score and concurrency metrics in

high-difficulty conditions because the addition task execution time overestimate is

offset by an underestimate of the targeting task execution times. This is an artifact

of the alternate-goal threading policy used in QN-ACTR as discussed in section 3.7.3.

4.6 Conclusion

We modified the experimental design from chapter III to increase dual-task re-

quirements and study the effect of incentive and effort on multi-task performance.

The most striking result from this study is the lack of evidence that increased effort

improves concurrency in dual task performance even when execution time improves.

This suggests that resource sharing and the executive processes responsible for sub-

task scheduling are insensitive to arousal. We also validated the QN-ACTR model of

task performance and its ability to capture the effect of effort. Technical problems in

the ACT-R models introduced some error in the model predictions in low-difficulty

conditions.

CHAPTER V

Conclusion

In chapter II we described an architecture for governing task execution in models

of dual-task performance and its integration with the IMPRINT modeling software.

The IMPRINT extension fills a role similar to EPIC’s executive processes: it is

independent of the task model itself and enforces cognitive constraints on otherwise

uninhibited concurrent task execution.

We implemented the architecture as a Soar agent in two components: one that

enumerates the possible actions that can be taken at each decision point in a task

performance simulation, and another that selects one from among those actions based

on the simulation state. The selection procedure uses heuristics to limit task execu-

tion based on a workload-threshold. Using the extension, an IMPRINT simulation

of UAV operator tasks from a study by Schulte and Donath (2011) produced several

qualitatively distinct load-shedding strategies exhibited by experiment participants.

In chapter III we describe our use of QN-ACTR to model concurrent task execu-

tion on a mental arithmetic task and a targeting task. We are particularly interested

in the prediction of a quantitative concurrency metric that describes the extent of

time sharing between the two tasks. We validated the model by collecting experi-

mental data and discussed various aspects of task performance and how well they

118

119

were predicted by the model. We found that the magnitude of the addends and

the complexity of the targeting task but not the speed of the targets had significant

effects on execution time and concurrency. The model predicted both well in most

cases, but failed notably in two dual-task conditions when large overestimates in

targeting errors propagated to high execution time and low concurrency predictions.

We also developed IMPRINT models of the experimental tasks and used both

the Soar-based task management extension and the built-in workload management

system to predict execution time and concurrency, and compared the results with

empirical data. The Soar-based system was found to significantly improve the IM-

PRINT predictions.

Finally, in chapter IV, we collected experimental data concerning the effect of

effort on task performance and concurrency. We presented evidence that decreases

in dual-task execution times resulting from increased effort are not caused by im-

provement in the executive processes governing task scheduling or improvements in

resource sharing, but by the same mechanisms that decrease the execution times of

the single-tasks. We modified the QN-ACTR models from chapter III to model the

effort effect and validated the model using the empirical data.

5.1 Summary of models and their roles

Our work makes direct use of, and expands upon, several cognitive architectures

for the purpose of further integration of modeling methods and improvement of

modeling capabilities (Liu, 2009).

QN-ACTR As an implementation of ACT-R in discrete-event simulation software,

QN-ACTR combines the powerful and accurate model capabilities with the visual-

ization and utilization-based workload features of the Queueing Networks modeling

120

approach. We used QN-ACTR to model single and dual-task performance of an

addition and targeting task with variable difficulty parameters and an incentive vari-

able, and validated the models with two experiments described in chapters III and

IV.

IMPRINT The IMPRINT software is widely used to evaluate the difficulty of

tasks and the usability of interfaces. We identified a limitation in the IMPRINT

software, specifically, the modeling of multi-task concurrency under high workload

and developed an extension to suppress task execution depending on the state of the

simulation.

Soar To implement the IMPRINT extension described above, we developed a

Soar agent which examined the simulation state and decided when task components

should be delayed, interrupted, or ignored.

5.2 Scientific contributions and Future work

As scientific contributions of this dissertation research, two empirical findings

stand out from the work described in chapters III and IV. First, as described in

section 3.7.4, our data provide further evidence for the use of the visual-spatial

resource during complex addition tasks (DeStefano and LeFevre, 2004; Trbovich

and LeFevre, 2003; Heathcote, 1994). We used the declarative and goal module to

model the later stages of the addition task in QN-ACTR and the model failed to

capture the conflict between the addition and targeting tasks. We view this not

only as a limitation of the model, but also of the ACT-R system, as there is no

direct representation of visual-spatial memory in ACT-R (Lyon et al., 2004). We

propose both further use of QN-ACTR to investigate details of the use of visual-

121

spatial memory in complex addition, and a concrete representation of the resource

in ACT-R or QN-ACTR.

Second, the primary empirical finding of our second experiment was the lack of

increase in the concurrency metric under incentive. The empirical data show a small

but significant increase in the rewarded dimension in dual-task conditions, but no

increase in the concurrency metric. We suggest that further empirical studies in

different task domains to verify the result. Data from existing studies can also be

analyzed for the same purpose.

The addition of the Soar extension did not reduce the performance of the IM-

PRINT simulations of the UAV task or the combined addition and targeting task.

However, an analysis should be performed to examine whether the extension slows

simulations with a large number of task components.

Although the model predicted accurate execution times and concurrency in dual-

task performance, we found that the least-recently processed policy for selecting goal

productions in the threaded-cognition model caused sensitivity to the number of pro-

ductions in the individual ACT-R task models in the QN-ACTR simulation. This

resulted in slightly overestimated addition subtask execution times and slightly un-

derestimated target subtask execution times. We suggest that the threaded-cognition

approach to modeling dual task performance in QN-ACTR should be replaced by a

parallel goal processing mechanism, or that the threading policy should be modified

to model a more sophisticated executive process that schedules task components with

a model of task set inertia and task switching costs (Monsell, 2003; Reynolds et al.,

2006; Meiran, 2000; Rubinstein et al., 2001).

Our work on improving the power and accuracy of cognitive models and modeling

tools can be applied in diverse and important domains. During an internship at

122

the Army Research Laboratory, I attended a meeting between an analyst who uses

IMPRINT to assess tasks and an operator of a military vehicle. The analyst had

produced a model of vehicle interface and the operator’s task and interviewed the

operator to confirm the model design. The model was used to evaluate the difficulty

of the task and suggest improvements to protect the safety of the operator. This

application domain, along with many others, illustrates the value of computational

task performance simulation and the ability to quickly assess task difficulty and

interface usability.

APPENDICES

123

124

APPENDIX A

ACT-R models

Below are the ACT-R models used to model the tasks in the experiment described

in chapter III. Minor modifications were made for the experiment in chapter IV and

so the full models are omitted.

A.1 Addition model

(defparameter *seq-base-level* 1)

(defparameter *n-low-base-level* 3.5)

(defparameter *n-high-base-level* 2)

(defparameter *a-base-level* 2.7)

(define-model addition

(sgp

:esc t

:ans 0.5)

(set-visloc-default isa visual-location color

does-not-exist)

(chunk-type arithmetic first second result ones carry)

(chunk-type arithmetic-problem first-ones second-ones

first-tens second-tens state ones carry tens)

(chunk-type successor value successor)

(chunk-type number ones tens value)

(add-dm

(a0+0 ISA ARITHMETIC FIRST "0" SECOND "0" RESULT "0"

ONES "0" CARRY "0")

125

(a0+1 ISA ARITHMETIC FIRST "0" SECOND "1" RESULT "1"

ONES "1" CARRY "0")

(a0+2 ISA ARITHMETIC FIRST "0" SECOND "2" RESULT "2"

ONES "2" CARRY "0")

(a0+3 ISA ARITHMETIC FIRST "0" SECOND "3" RESULT "3"

ONES "3" CARRY "0")

(a0+4 ISA ARITHMETIC FIRST "0" SECOND "4" RESULT "4"

ONES "4" CARRY "0")

(a0+5 ISA ARITHMETIC FIRST "0" SECOND "5" RESULT "5"

ONES "5" CARRY "0")

(a0+6 ISA ARITHMETIC FIRST "0" SECOND "6" RESULT "6"

ONES "6" CARRY "0")

(a0+7 ISA ARITHMETIC FIRST "0" SECOND "7" RESULT "7"

ONES "7" CARRY "0")

(a0+8 ISA ARITHMETIC FIRST "0" SECOND "8" RESULT "8"

ONES "8" CARRY "0")

(a0+9 ISA ARITHMETIC FIRST "0" SECOND "9" RESULT "9"

ONES "9" CARRY "0")

(a1+0 ISA ARITHMETIC FIRST "1" SECOND "0" RESULT "1"

ONES "1" CARRY "0")

(a1+1 ISA ARITHMETIC FIRST "1" SECOND "1" RESULT "2"

ONES "2" CARRY "0")

(a1+2 ISA ARITHMETIC FIRST "1" SECOND "2" RESULT "3"

ONES "3" CARRY "0")

(a1+3 ISA ARITHMETIC FIRST "1" SECOND "3" RESULT "4"

ONES "4" CARRY "0")

(a1+4 ISA ARITHMETIC FIRST "1" SECOND "4" RESULT "5"

ONES "5" CARRY "0")

(a1+5 ISA ARITHMETIC FIRST "1" SECOND "5" RESULT "6"

ONES "6" CARRY "0")

(a1+6 ISA ARITHMETIC FIRST "1" SECOND "6" RESULT "7"

ONES "7" CARRY "0")

(a1+7 ISA ARITHMETIC FIRST "1" SECOND "7" RESULT "8"

ONES "8" CARRY "0")

(a1+8 ISA ARITHMETIC FIRST "1" SECOND "8" RESULT "9"

ONES "9" CARRY "0")

(a1+9 ISA ARITHMETIC FIRST "1" SECOND "9" RESULT "10"

ONES "0" CARRY "1")

(a2+0 ISA ARITHMETIC FIRST "2" SECOND "0" RESULT "2"

ONES "2" CARRY "0")

(a2+1 ISA ARITHMETIC FIRST "2" SECOND "1" RESULT "3"

ONES "3" CARRY "0")

(a2+2 ISA ARITHMETIC FIRST "2" SECOND "2" RESULT "4"

ONES "4" CARRY "0")

(a2+3 ISA ARITHMETIC FIRST "2" SECOND "3" RESULT "5"

ONES "5" CARRY "0")

126

(a2+4 ISA ARITHMETIC FIRST "2" SECOND "4" RESULT "6"

ONES "6" CARRY "0")

(a2+5 ISA ARITHMETIC FIRST "2" SECOND "5" RESULT "7"

ONES "7" CARRY "0")

(a2+6 ISA ARITHMETIC FIRST "2" SECOND "6" RESULT "8"

ONES "8" CARRY "0")

(a2+7 ISA ARITHMETIC FIRST "2" SECOND "7" RESULT "9"

ONES "9" CARRY "0")

(a2+8 ISA ARITHMETIC FIRST "2" SECOND "8" RESULT "10"

ONES "0" CARRY "1")

(a2+9 ISA ARITHMETIC FIRST "2" SECOND "9" RESULT "11"

ONES "1" CARRY "1")

(a3+0 ISA ARITHMETIC FIRST "3" SECOND "0" RESULT "3"

ONES "3" CARRY "0")

(a3+1 ISA ARITHMETIC FIRST "3" SECOND "1" RESULT "4"

ONES "4" CARRY "0")

(a3+2 ISA ARITHMETIC FIRST "3" SECOND "2" RESULT "5"

ONES "5" CARRY "0")

(a3+3 ISA ARITHMETIC FIRST "3" SECOND "3" RESULT "6"

ONES "6" CARRY "0")

(a3+4 ISA ARITHMETIC FIRST "3" SECOND "4" RESULT "7"

ONES "7" CARRY "0")

(a3+5 ISA ARITHMETIC FIRST "3" SECOND "5" RESULT "8"

ONES "8" CARRY "0")

(a3+6 ISA ARITHMETIC FIRST "3" SECOND "6" RESULT "9"

ONES "9" CARRY "0")

(a3+7 ISA ARITHMETIC FIRST "3" SECOND "7" RESULT "10"

ONES "0" CARRY "1")

(a3+8 ISA ARITHMETIC FIRST "3" SECOND "8" RESULT "11"

ONES "1" CARRY "1")

(a3+9 ISA ARITHMETIC FIRST "3" SECOND "9" RESULT "12"

ONES "2" CARRY "1")

(a4+0 ISA ARITHMETIC FIRST "4" SECOND "0" RESULT "4"

ONES "4" CARRY "0")

(a4+1 ISA ARITHMETIC FIRST "4" SECOND "1" RESULT "5"

ONES "5" CARRY "0")

(a4+2 ISA ARITHMETIC FIRST "4" SECOND "2" RESULT "6"

ONES "6" CARRY "0")

(a4+3 ISA ARITHMETIC FIRST "4" SECOND "3" RESULT "7"

ONES "7" CARRY "0")

(a4+4 ISA ARITHMETIC FIRST "4" SECOND "4" RESULT "8"

ONES "8" CARRY "0")

(a4+5 ISA ARITHMETIC FIRST "4" SECOND "5" RESULT "9"

ONES "9" CARRY "0")

(a4+6 ISA ARITHMETIC FIRST "4" SECOND "6" RESULT "10"

ONES "0" CARRY "1")

127

(a4+7 ISA ARITHMETIC FIRST "4" SECOND "7" RESULT "11"

ONES "1" CARRY "1")

(a4+8 ISA ARITHMETIC FIRST "4" SECOND "8" RESULT "12"

ONES "2" CARRY "1")

(a4+9 ISA ARITHMETIC FIRST "4" SECOND "9" RESULT "13"

ONES "3" CARRY "1")

(a5+0 ISA ARITHMETIC FIRST "5" SECOND "0" RESULT "5"

ONES "5" CARRY "0")

(a5+1 ISA ARITHMETIC FIRST "5" SECOND "1" RESULT "6"

ONES "6" CARRY "0")

(a5+2 ISA ARITHMETIC FIRST "5" SECOND "2" RESULT "7"

ONES "7" CARRY "0")

(a5+3 ISA ARITHMETIC FIRST "5" SECOND "3" RESULT "8"

ONES "8" CARRY "0")

(a5+4 ISA ARITHMETIC FIRST "5" SECOND "4" RESULT "9"

ONES "9" CARRY "0")

(a5+5 ISA ARITHMETIC FIRST "5" SECOND "5" RESULT "10"

ONES "0" CARRY "1")

(a5+6 ISA ARITHMETIC FIRST "5" SECOND "6" RESULT "11"

ONES "1" CARRY "1")

(a5+7 ISA ARITHMETIC FIRST "5" SECOND "7" RESULT "12"

ONES "2" CARRY "1")

(a5+8 ISA ARITHMETIC FIRST "5" SECOND "8" RESULT "13"

ONES "3" CARRY "1")

(a5+9 ISA ARITHMETIC FIRST "5" SECOND "9" RESULT "14"

ONES "4" CARRY "1")

(a6+0 ISA ARITHMETIC FIRST "6" SECOND "0" RESULT "6"

ONES "6" CARRY "0")

(a6+1 ISA ARITHMETIC FIRST "6" SECOND "1" RESULT "7"

ONES "7" CARRY "0")

(a6+2 ISA ARITHMETIC FIRST "6" SECOND "2" RESULT "8"

ONES "8" CARRY "0")

(a6+3 ISA ARITHMETIC FIRST "6" SECOND "3" RESULT "9"

ONES "9" CARRY "0")

(a6+4 ISA ARITHMETIC FIRST "6" SECOND "4" RESULT "10"

ONES "0" CARRY "1")

(a6+5 ISA ARITHMETIC FIRST "6" SECOND "5" RESULT "11"

ONES "1" CARRY "1")

(a6+6 ISA ARITHMETIC FIRST "6" SECOND "6" RESULT "12"

ONES "2" CARRY "1")

(a6+7 ISA ARITHMETIC FIRST "6" SECOND "7" RESULT "13"

ONES "3" CARRY "1")

(a6+8 ISA ARITHMETIC FIRST "6" SECOND "8" RESULT "14"

ONES "4" CARRY "1")

(a6+9 ISA ARITHMETIC FIRST "6" SECOND "9" RESULT "15"

ONES "5" CARRY "1")

128

(a7+0 ISA ARITHMETIC FIRST "7" SECOND "0" RESULT "7"

ONES "7" CARRY "0")

(a7+1 ISA ARITHMETIC FIRST "7" SECOND "1" RESULT "8"

ONES "8" CARRY "0")

(a7+2 ISA ARITHMETIC FIRST "7" SECOND "2" RESULT "9"

ONES "9" CARRY "0")

(a7+3 ISA ARITHMETIC FIRST "7" SECOND "3" RESULT "10"

ONES "0" CARRY "1")

(a7+4 ISA ARITHMETIC FIRST "7" SECOND "4" RESULT "11"

ONES "1" CARRY "1")

(a7+5 ISA ARITHMETIC FIRST "7" SECOND "5" RESULT "12"

ONES "2" CARRY "1")

(a7+6 ISA ARITHMETIC FIRST "7" SECOND "6" RESULT "13"

ONES "3" CARRY "1")

(a7+7 ISA ARITHMETIC FIRST "7" SECOND "7" RESULT "14"

ONES "4" CARRY "1")

(a7+8 ISA ARITHMETIC FIRST "7" SECOND "8" RESULT "15"

ONES "5" CARRY "1")

(a7+9 ISA ARITHMETIC FIRST "7" SECOND "9" RESULT "16"

ONES "6" CARRY "1")

(a8+0 ISA ARITHMETIC FIRST "8" SECOND "0" RESULT "8"

ONES "8" CARRY "0")

(a8+1 ISA ARITHMETIC FIRST "8" SECOND "1" RESULT "9"

ONES "9" CARRY "0")

(a8+2 ISA ARITHMETIC FIRST "8" SECOND "2" RESULT "10"

ONES "0" CARRY "1")

(a8+3 ISA ARITHMETIC FIRST "8" SECOND "3" RESULT "11"

ONES "1" CARRY "1")

(a8+4 ISA ARITHMETIC FIRST "8" SECOND "4" RESULT "12"

ONES "2" CARRY "1")

(a8+5 ISA ARITHMETIC FIRST "8" SECOND "5" RESULT "13"

ONES "3" CARRY "1")

(a8+6 ISA ARITHMETIC FIRST "8" SECOND "6" RESULT "14"

ONES "4" CARRY "1")

(a8+7 ISA ARITHMETIC FIRST "8" SECOND "7" RESULT "15"

ONES "5" CARRY "1")

(a8+8 ISA ARITHMETIC FIRST "8" SECOND "8" RESULT "16"

ONES "6" CARRY "1")

(a8+9 ISA ARITHMETIC FIRST "8" SECOND "9" RESULT "17"

ONES "7" CARRY "1")

(a9+0 ISA ARITHMETIC FIRST "9" SECOND "0" RESULT "9"

ONES "9" CARRY "0")

(a9+1 ISA ARITHMETIC FIRST "9" SECOND "1" RESULT "10"

ONES "0" CARRY "1")

(a9+2 ISA ARITHMETIC FIRST "9" SECOND "2" RESULT "11"

ONES "1" CARRY "1")

129

(a9+3 ISA ARITHMETIC FIRST "9" SECOND "3" RESULT "12"

ONES "2" CARRY "1")

(a9+4 ISA ARITHMETIC FIRST "9" SECOND "4" RESULT "13"

ONES "3" CARRY "1")

(a9+5 ISA ARITHMETIC FIRST "9" SECOND "5" RESULT "14"

ONES "4" CARRY "1")

(a9+6 ISA ARITHMETIC FIRST "9" SECOND "6" RESULT "15"

ONES "5" CARRY "1")

(a9+7 ISA ARITHMETIC FIRST "9" SECOND "7" RESULT "16"

ONES "6" CARRY "1")

(a9+8 ISA ARITHMETIC FIRST "9" SECOND "8" RESULT "17"

ONES "7" CARRY "1")

(a9+9 ISA ARITHMETIC FIRST "9" SECOND "9" RESULT "18"

ONES "8" CARRY "1")

(n00 ISA NUMBER VALUE "0" ONES "0" TENS nil)

(n01 ISA NUMBER VALUE "1" ONES "1" TENS nil)

(n02 ISA NUMBER VALUE "2" ONES "2" TENS nil)

(n03 ISA NUMBER VALUE "3" ONES "3" TENS nil)

(n04 ISA NUMBER VALUE "4" ONES "4" TENS nil)

(n05 ISA NUMBER VALUE "5" ONES "5" TENS nil)

(n06 ISA NUMBER VALUE "6" ONES "6" TENS nil)

(n07 ISA NUMBER VALUE "7" ONES "7" TENS nil)

(n08 ISA NUMBER VALUE "8" ONES "8" TENS nil)

(n09 ISA NUMBER VALUE "9" ONES "9" TENS nil)

(n10 ISA NUMBER VALUE "10" ONES "0" TENS "1")

(n11 ISA NUMBER VALUE "11" ONES "1" TENS "1")

(n12 ISA NUMBER VALUE "12" ONES "2" TENS "1")

(n13 ISA NUMBER VALUE "13" ONES "3" TENS "1")

(n14 ISA NUMBER VALUE "14" ONES "4" TENS "1")

(n15 ISA NUMBER VALUE "15" ONES "5" TENS "1")

(n16 ISA NUMBER VALUE "16" ONES "6" TENS "1")

(n17 ISA NUMBER VALUE "17" ONES "7" TENS "1")

(n18 ISA NUMBER VALUE "18" ONES "8" TENS "1")

(n19 ISA NUMBER VALUE "19" ONES "9" TENS "1")

(n20 ISA NUMBER VALUE "20" ONES "0" TENS "2")

(n21 ISA NUMBER VALUE "21" ONES "1" TENS "2")

(n22 ISA NUMBER VALUE "22" ONES "2" TENS "2")

(n23 ISA NUMBER VALUE "23" ONES "3" TENS "2")

(n24 ISA NUMBER VALUE "24" ONES "4" TENS "2")

(s01 ISA SUCCESSOR VALUE "0" SUCCESSOR "1")

(s12 ISA SUCCESSOR VALUE "1" SUCCESSOR "2")

(s23 ISA SUCCESSOR VALUE "2" SUCCESSOR "3")

(s34 ISA SUCCESSOR VALUE "3" SUCCESSOR "4")

130

(addition-goal ISA arithmetic-problem state

find-first))

(goal-focus addition-goal)

(set-base-levels

(s01 *seq-base-level *) (s12 *seq-base-level *) (s23

*seq-base-level *)

(s34 *seq-base-level *) (s45 *seq-base-level *) (s56

*seq-base-level *)

(s67 *seq-base-level *) (s78 *seq-base-level *) (s89

*seq-base-level *)

(n00 *n-low-base-level *) (n01 *n-low-base-level *)

(n02 *n-low-base-level *)

(n03 *n-low-base-level *) (n04 *n-low-base-level *)

(n05 *n-low-base-level *) (n06 *n-low-base-level *)

(n07 *n-low-base-level *) (n08 *n-low-base-level *)

(n09 *n-low-base-level *)

(n10 *n-low-base-level *) (n11 *n-low-base-level *)

(n12 *n-low-base-level *)

(n13 *n-high-base-level *) (n14 *n-high-base-level *)

(n15 *n-high-base-level *)

(n16 *n-high-base-level *) (n17 *n-high-base-level *)

(n18 *n-high-base-level *)

(n19 *n-high-base-level *) (n20 *n-high-base-level *)

(n21 *n-high-base-level *)

(n22 *n-high-base-level *) (n23 *n-high-base-level *)

(n24 *n-high-base-level *) (n25 *n-high-base-level *)

)

(set-base-levels

(a0+0 *a-base-level *) (a0+1 *a-base-level *) (a0+2

*a-base-level *) (a0+3 *a-base-level *) (a0+4

*a-base-level *)

(a0+5 *a-base-level *) (a0+6 *a-base-level *) (a0+7

*a-base-level *) (a0+8 *a-base-level *) (a0+9

*a-base-level *)

(a1+0 *a-base-level *) (a1+1 *a-base-level *) (a1+2

*a-base-level *) (a1+3 *a-base-level *) (a1+4

*a-base-level *)

(a1+5 *a-base-level *) (a1+6 *a-base-level *) (a1+7

*a-base-level *) (a1+8 *a-base-level *) (a1+9

*a-base-level *)

(a2+0 *a-base-level *) (a2+1 *a-base-level *) (a2+2

131

*a-base-level *) (a2+3 *a-base-level *) (a2+4

*a-base-level *)

(a2+5 *a-base-level *) (a2+6 *a-base-level *) (a2+7

*a-base-level *) (a2+8 *a-base-level *) (a2+9

*a-base-level *)

(a3+0 *a-base-level *) (a3+1 *a-base-level *) (a3+2

*a-base-level *) (a3+3 *a-base-level *) (a3+4

*a-base-level *)

(a3+5 *a-base-level *) (a3+6 *a-base-level *) (a3+7

*a-base-level *) (a3+8 *a-base-level *) (a3+9

*a-base-level *)

(a4+0 *a-base-level *) (a4+1 *a-base-level *) (a4+2

*a-base-level *) (a4+3 *a-base-level *) (a4+4

*a-base-level *)

(a4+5 *a-base-level *) (a4+6 *a-base-level *) (a4+7

*a-base-level *) (a4+8 *a-base-level *) (a4+9

*a-base-level *)

(a5+0 *a-base-level *) (a5+1 *a-base-level *) (a5+2

*a-base-level *) (a5+3 *a-base-level *) (a5+4

*a-base-level *)

(a5+5 *a-base-level *) (a5+6 *a-base-level *) (a5+7

*a-base-level *) (a5+8 *a-base-level *) (a5+9

*a-base-level *)

(a6+0 *a-base-level *) (a6+1 *a-base-level *) (a6+2

*a-base-level *) (a6+3 *a-base-level *) (a6+4

*a-base-level *)

(a6+5 *a-base-level *) (a6+6 *a-base-level *) (a6+7

*a-base-level *) (a6+8 *a-base-level *) (a6+9

*a-base-level *)

(a7+0 *a-base-level *) (a7+1 *a-base-level *) (a7+2

*a-base-level *) (a7+3 *a-base-level *) (a7+4

*a-base-level *)

(a7+5 *a-base-level *) (a7+6 *a-base-level *) (a7+7

*a-base-level *) (a7+8 *a-base-level *) (a7+9

*a-base-level *)

(a8+0 *a-base-level *) (a8+1 *a-base-level *) (a8+2

*a-base-level *) (a8+3 *a-base-level *) (a8+4

*a-base-level *)

(a8+5 *a-base-level *) (a8+6 *a-base-level *) (a8+7

*a-base-level *) (a8+8 *a-base-level *) (a8+9

*a-base-level *)

(a9+0 *a-base-level *) (a9+1 *a-base-level *) (a9+2

*a-base-level *) (a9+3 *a-base-level *) (a9+4

*a-base-level *)

(a9+5 *a-base-level *) (a9+6 *a-base-level *) (a9+7

*a-base-level *) (a9+8 *a-base-level *) (a9+9

132

*a-base-level *)

)

(P find-first

=goal >

ISA arithmetic-problem

state find-first

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

:attended nil

kind text

screen-x lowest

=goal >

state attend-first

)

(P attend-first

=goal >

ISA arithmetic-problem

state attend-first

=visual-location >

ISA visual-location

kind text

?visual >

state free

buffer empty

==>

+visual >

ISA move-attention

screen-pos =visual-location

=goal >

state encode-first

)

(P encode-first

=goal >

ISA arithmetic-problem

state encode-first

133

?visual >

state free

=visual >

ISA text

value =value

?retrieval >

state free

buffer empty

==>

+retrieval >

ISA number

value =value

+visual >

ISA clear

=goal >

state find-second

)

(P store-first

=goal >

ISA arithmetic-problem

first-ones nil

=retrieval >

ISA number

ones =ones

tens =tens

==>

=goal >

first-ones =ones

first-tens =tens

)

(P store-first-nil-tens

=goal >

ISA arithmetic-problem

first-ones nil

=retrieval >

ISA number

ones =ones

134

tens nil

==>

=goal >

first-ones =ones

)

(P find-second

=goal >

ISA arithmetic-problem

state find-second

?visual-location >

buffer empty

?visual >

state free

buffer empty

==>

+visual-location >

ISA visual-location

kind text

screen-x highest

=goal >

state attend-second

)

(P attend-second

=goal >

ISA arithmetic-problem

state attend-second

=visual-location >

ISA visual-location

kind text

?visual >

buffer empty

state free

==>

+visual >

ISA move-attention

screen-pos =visual-location

=goal >

state encode-second

)

135

(P encode-second-ones

=goal >

ISA arithmetic-problem

state encode-second

- first-ones nil

=visual >

ISA text

value =value

?visual >

state free

?retrieval >

state free

buffer empty

==>

+retrieval >

ISA number

value =value

+visual >

ISA clear

=goal >

state store-second

)

(P store-second

=goal >

ISA arithmetic-problem

state store-second

first-ones =first-ones

=retrieval >

ISA number

ones =second-ones

tens =second-tens

?retrieval >

state free

==>

=goal >

state finish-retrieve-ones

second-ones =second-ones

136

second-tens =second-tens

+retrieval >

ISA arithmetic

first =first-ones

second =second-ones

)

(P store-second-tens-nil

=goal >

ISA arithmetic-problem

state store-second

first-ones =first-ones

=retrieval >

ISA number

ones =second-ones

tens nil

?retrieval >

state free

==>

+retrieval >

ISA arithmetic

first =first-ones

second =second-ones

=goal >

state finish-retrieve-ones

second-ones =second-ones

)

(P finish-retrieve-ones

=goal >

ISA arithmetic-problem

state finish-retrieve-ones

first-ones =first

second-ones =second

=retrieval >

ISA arithmetic

first =first

second =second

ones =ones

carry =carry

==>

137

=goal >

ones =ones

carry =carry

state add-tens

)

(P add-tens-nil-nil-no-carry

=goal >

ISA arithmetic-problem

state add-tens

first-tens nil

second-tens nil

carry "0"

==>

=goal >

tens "0"

state response

)

(P add-tens-nil-nil-carry

=goal >

ISA arithmetic-problem

state add-tens

first-tens nil

second-tens nil

- carry "0"

==>

=goal >

tens "1"

state response

)

(P add-tens-first-nil-no-carry

=goal >

ISA arithmetic-problem

state add-tens

first-tens =first-tens

second-tens nil

carry "0"

==>

=goal >

tens =first-tens

state response

)

(P add-tens-first-nil-carry

138

=goal >

ISA arithmetic-problem

state add-tens

first-tens =first-tens

second-tens nil

- carry "0"

==>

=goal >

tens =first-tens

state check-carry

)

(P add-tens-nil-second-no-carry

=goal >

ISA arithmetic-problem

state add-tens

first-tens nil

second-tens =second-tens

carry "0"

==>

=goal >

tens =second-tens

state response

)

(P add-tens-nil-second-carry

=goal >

ISA arithmetic-problem

state add-tens

first-tens nil

second-tens =second-tens

- carry "0"

==>

=goal >

tens =second-tens

state check-carry

)

(P add-tens

=goal >

ISA arithmetic-problem

state add-tens

first-tens =first-tens

second-tens =second-tens

==>

=goal >

139

state retrieve-addition-tens

)

(P retrieve-addition-tens

=goal >

ISA arithmetic-problem

state retrieve-addition-tens

first-tens =first

second-tens =second

?retrieval >

state free

buffer empty

==>

=goal >

state finish-retrieve-tens

+retrieval >

ISA arithmetic

first =first

second =second

)

(P finish-retrieve-tens-no-carry

=goal >

ISA arithmetic-problem

state finish-retrieve-tens

first-tens =first

second-tens =second

carry "0"

=retrieval >

ISA arithmetic

first =first

second =second

ones =ones

==>

=goal >

tens =ones

state response

)

(P finish-retrieve-tens-carry

=goal >

ISA arithmetic-problem

state finish-retrieve-tens

140

first-tens =first

second-tens =second

- carry "0"

=retrieval >

ISA arithmetic

first =first

second =second

ones =ones

==>

=goal >

tens =ones

state check-carry

)

(P check-carry

=goal >

ISA arithmetic-problem

state check-carry

carry "1"

tens =tens

?retrieval >

state free

buffer empty

==>

+retrieval >

ISA SUCCESSOR

value =tens

=goal >

state increment-tens

)

(P increment-tens

=goal >

ISA arithmetic-problem

state increment-tens

=retrieval >

ISA SUCCESSOR

SUCCESSOR =value

==>

=goal >

tens =value

state response

141

)

(P respond-tens

=goal >

ISA arithmetic-problem

state response

tens =tens

- tens "0"

?vocal >

preparation free

==>

+vocal >

ISA speak

string =tens

=goal >

state response-ones

)

(P respond-ones-no-tens

=goal >

ISA arithmetic-problem

state response

tens "0"

ones =ones

?vocal >

preparation free

==>

+vocal >

ISA speak

string =ones

=goal >

state done

)

(P respond-ones

=goal >

ISA arithmetic-problem

state response-ones

ones =ones

?vocal >

preparation free

142

==>

+vocal >

ISA speak

string =ones

=goal >

state done

)

)

A.2 Targeting models

A.2.1 Low speed, low difficulty

(define-model targeting-easy-slow

(sgp

:cursor-noise t

:incremental-mouse-moves 0.01

:esc t)

(set-visloc-default isa visual-location color

does-not-exist)

(start-hand-at-mouse)

(set-cursor-position 960 600)

(chunk-type targeting state target-x target-y

target-location check-miss)

(chunk-type response color action)

(add-dm

(enemy-response isa response color red action shoot)

(friend-response isa response color green action

dont-shoot)

(goal isa targeting state find-red-target))

(goal-focus goal)

(P find-red-target

=goal >

ISA targeting

state find-red-target

?visual-location >

buffer empty

==>

143

+visual-location >

ISA visual-location

:attended nil

kind OVAL

color red

=goal >

state move-cursor

)

(P no-unattended-red

=goal >

ISA targeting

state move-cursor

check-miss nil

?visual-location >

state error

?manual >

state free

==>

=goal >

state no-unattended-red-search

check-miss t

)

(P no-unattended-red-search

=goal >

ISA targeting

state no-unattended-red-search

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

color red

=goal >

state move-cursor

)

(P no-red

=goal >

144

ISA targeting

state move-cursor

check-miss t

?visual-location >

state error

==>

=goal >

state end

)

(P move-cursor

=goal >

ISA targeting

state move-cursor

=visual-location >

ISA visual-location

kind OVAL

?manual >

preparation free

==>

+manual >

ISA move-cursor

loc =visual-location

=goal >

state move-attention

target-location =visual-location

check-miss nil

)

(P move-attention

=goal >

ISA targeting

state move-attention

target-location =target-location

?visual >

state free

buffer empty

==>

+visual >

145

ISA move-attention

screen-pos =target-location

=goal >

state click-mouse

)

(P click-mouse

=goal >

ISA targeting

state click-mouse

?manual >

state free

=visual >

ISA OVAL

==>

+manual >

ISA click-mouse

+visual >

ISA clear

=goal >

state find-red-target

)

)

A.2.2 High speed, low difficulty

(define-model targeting-easy-fast

(sgp

:cursor-noise t

:incremental-mouse-moves 0.01)

(set-visloc-default isa visual-location color

does-not-exist)

(start-hand-at-mouse)

(set-cursor-position 960 600)

(chunk-type targeting state target-location target-x

target-y projected-x projected-y)

(add-dm (goal isa targeting state find-red-target))

146

(goal-focus goal)

(P find-red-target

=goal >

ISA targeting

state find-red-target

?manual >

state free

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

:attended nil

kind OVAL

color red

=goal >

state cap-first-location

)

(P fail-find

=goal >

ISA targeting

state cap-first-location

?visual-location >

state error

==>

=goal >

state fail

)

(P cap-first-location

=goal >

ISA targeting

state cap-first-location

=visual-location >

ISA visual-location

screen-x =tx

147

screen-y =ty

==>

=goal >

target-x =tx

target-y =ty

target-location =visual-location

state cap-first-location-search

)

(P cap-first-location-search

=goal >

isa targeting

state cap-first-location-search

target-location =target-location

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

:nearest =target-location

color red

=goal >

state lead-target

)

(P lead-target

=goal >

ISA targeting

state lead-target

target-x =tx

target-y =ty

=visual-location >

ISA visual-location

screen-x =sx

screen-y =sy

==>

!bind! =x-diff (- =sx =tx)

!bind! =y-diff (- =sy =ty)

!bind! =mag (sqrt (+ (* =x-diff =x-diff) (*

=y-diff =y-diff)))

148

!bind! =x-diff-normal (/ =x-diff =mag)

!bind! =y-diff-normal (/ =y-diff =mag)

!bind! =projected-x (+ =sx (*

target-projection =x-diff-normal))

!bind! =projected-y (+ =sy (*

target-projection =y-diff-normal))

=visual-location >

screen-x =projected-x

screen-y =projected-y

=goal >

state move-cursor

)

(P move-cursor

=goal >

ISA targeting

state move-cursor

=visual-location >

ISA visual-location

kind OVAL

?manual >

preparation free

==>

+manual >

ISA move-cursor

loc =visual-location

=goal >

state move-attention

target-location =visual-location

)

(P move-attention

=goal >

isa targeting

state move-attention

target-location =target-location

?visual >

state free

buffer empty

149

==>

+visual >

ISA move-attention

screen-pos =target-location

=goal >

state prepare-click

)

(P prepare-click

=goal >

ISA targeting

state prepare-click

?manual >

last-command move-cursor

preparation free

==>

+manual >

ISA prepare

style punch

hand right

finger index

=goal >

state click-mouse

)

(P click-mouse

=goal >

ISA targeting

state click-mouse

?manual >

last-command prepare

preparation free

?visual >

state free

=visual >

ISA OVAL

==>

+manual >

150

ISA execute

+visual >

ISA clear

=goal >

state find-red-target

)

)

A.2.3 Low speed, high difficulty

(define-model targeting-hard-slow

(sgp

:cursor-noise t

:incremental-mouse-moves 0.01

:esc t)

(set-visloc-default isa visual-location color

does-not-exist)

(start-hand-at-mouse)

(set-cursor-position 960 600)

(chunk-type targeting state target-location target-x

target-y friend-x friend-y)

(chunk-type response color action)

(add-dm

(enemy-response isa response color red action shoot)

(friend-response isa response color green action

dont-shoot)

(goal isa targeting state find-black-target))

(set-base-levels (enemy-response 3) (friend-response 3))

(goal-focus goal)

(P find-black-target

=goal >

ISA targeting

state find-black-target

?visual-location >

buffer empty

==>

+visual-location >

151

ISA visual-location

kind OVAL

color black

=goal >

state move-cursor

)

(P avoid-friend

=goal >

ISA targeting

state move-cursor

friend-x =fx

friend-y =fy

=visual-location >

ISA visual-location

screen-x =fx

screen-y =fy

==>

=goal >

state find-black-target

)

(P move-cursor-no-friend-info

=goal >

ISA targeting

state move-cursor

friend-x nil

=visual-location >

ISA visual-location

kind OVAL

screen-x =x

screen-y =y

?manual >

preparation free

==>

+manual >

ISA move-cursor

loc =visual-location

=goal >

152

state move-attention

target-x =x

target-y =y

target-location =visual-location

)

(P move-cursor-not-friend

=goal >

ISA targeting

state move-cursor

friend-x =fx

friend-y =fy

=visual-location >

ISA visual-location

kind OVAL

- screen-x =fx

- screen-y =fy

screen-x =x

screen-y =y

?manual >

preparation free

==>

+manual >

ISA move-cursor

loc =visual-location

=goal >

state move-attention

target-x =x

target-y =y

target-location =visual-location

)

(P move-attention

=goal >

isa targeting

state move-attention

target-location =target-location

?visual >

state free

buffer empty

==>

153

+visual >

isa move-attention

screen-pos =target-location

=goal >

state check-target

)

(P check-target

=goal >

ISA targeting

state check-target

target-x =x

target-y =y

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

screen-x =x

screen-y =y

=goal >

state distinguish-target

)

(P harvest-visual

=goal >

isa targeting

?visual >

state free

=visual >

isa OVAL

==>

+visual >

isa clear

)

(P detect-target-color

=goal >

ISA targeting

154

state distinguish-target

target-x =target-x

target-y =target-y

=visual-location >

ISA visual-location

kind OVAL

- color black

color =color

?retrieval >

state free

buffer empty

==>

+retrieval >

ISA response

color =color

=goal >

state decide-whether-to-shoot

)

(P decide-to-shoot

=goal >

ISA targeting

state decide-whether-to-shoot

=retrieval >

ISA response

action shoot

==>

=goal >

state click-mouse

)

(P decide-not-to-shoot

=goal >

ISA targeting

state decide-whether-to-shoot

target-x =sx

target-y =sy

=retrieval >

ISA response

action dont-shoot

155

==>

=goal >

state find-black-target

friend-x =sx

friend-y =sy

)

(P distinguish-whiff

=goal >

ISA targeting

state distinguish-target

=visual-location >

ISA visual-location

kind OVAL

color black

?manual >

state free

==>

=goal >

state distinguish-whiff-search

+manual >

isa move-cursor

loc =visual-location

)

(P distinguish-whiff-search

=goal >

isa targeting

state distinguish-whiff-search

target-x =target-x

target-y =target-y

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

screen-x =target-x

screen-y =target-y

=goal >

156

state distinguish-target

)

(P distinguish-target-black

=goal >

ISA targeting

state distinguish-target

=visual-location >

ISA visual-location

kind OVAL

color black

?manual >

state busy

==>

=goal >

state distinguish-target-black-search

)

(P distinguish-target-black-search

=goal >

isa targeting

state distinguish-target-black-search

target-x =target-x

target-y =target-y

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

screen-x =target-x

screen-y =target-y

=goal >

state distinguish-target

)

(P click-mouse

=goal >

ISA targeting

state click-mouse

157

?manual >

state free

==>

+manual >

ISA click-mouse

=goal >

state find-black-target

)

)

A.2.4 High speed, high difficulty

(define-model targeting-hard-fast

(sgp

:cursor-noise t

:incremental-mouse-moves 0.01

:esc t)

(set-visloc-default isa visual-location color

does-not-exist)

(start-hand-at-mouse)

(set-cursor-position 960 600)

(chunk-type targeting state target-x target-y

target-location

friend-x friend-y friend-x-diff

friend-y-diff cur-x-diff cur-y-diff

ticks heuristic)

(chunk-type response color action)

(add-dm

(enemy-response isa response color red action shoot)

(friend-response isa response color green action

dont-shoot)

(goal isa targeting state find-black-target heuristic

lowest))

(set-base-levels (enemy-response 3) (friend-response 3))

(goal-focus goal)

(P find-black-target

=goal >

ISA targeting

state find-black-target

158

heuristic =heuristic

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

:attended nil

kind OVAL

color black

screen-x =heuristic

=goal >

state cap-first-location

)

(P avoid-friend-lowest

=goal >

ISA targeting

state cap-first-location

friend-x =fx

friend-y =fy

friend-x-diff =x-diff

friend-y-diff =y-diff

heuristic lowest

=visual-location >

ISA visual-location

screen-x =tx

screen-y =ty

!bind! =on-line (is-on-line =tx =ty =fx =fy

=x-diff =y-diff)

==>

=goal >

state find-black-target

heuristic highest

)

(P avoid-friend-highest

=goal >

ISA targeting

state cap-first-location

friend-x =fx

friend-y =fy

friend-x-diff =x-diff

159

friend-y-diff =y-diff

heuristic highest

=visual-location >

ISA visual-location

screen-x =tx

screen-y =ty

!bind! =on-line (is-on-line =tx =ty =fx =fy

=x-diff =y-diff)

==>

=goal >

state find-black-target

heuristic lowest

)

(P cap-first-location

=goal >

ISA targeting

state cap-first-location

friend-x nil

=visual-location >

ISA visual-location

screen-x =tx

screen-y =ty

==>

=goal >

target-x =tx

target-y =ty

state cap-first-location-search

target-location =visual-location

)

(P cap-first-location-not-friend

=goal >

ISA targeting

state cap-first-location

friend-x =fx

friend-y =fy

friend-x-diff =x-diff

friend-y-diff =y-diff

=visual-location >

ISA visual-location

screen-x =tx

160

screen-y =ty

!bind! =on-line (not (is-on-line =tx =ty =fx

=fy =x-diff =y-diff))

==>

=goal >

target-x =tx

target-y =ty

state cap-first-location-search

target-location =visual-location

)

(P cap-first-location-search

=goal >

isa targeting

state cap-first-location-search

target-location =target-location

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

:nearest =target-location

=goal >

state lead-target

)

(P lead-target

=goal >

ISA targeting

state lead-target

target-x =tx

target-y =ty

=visual-location >

ISA visual-location

screen-x =sx

screen-y =sy

==>

!bind! =x-diff (- =sx =tx)

!bind! =y-diff (- =sy =ty)

!bind! =mag (sqrt (+ (* =x-diff =x-diff) (*

=y-diff =y-diff)))

161

!bind! =x-diff-normal (/ =x-diff =mag)

!bind! =y-diff-normal (/ =y-diff =mag)

!bind! =projected-x (+ =sx (*

target-projection =x-diff-normal))

!bind! =projected-y (+ =sy (*

target-projection =y-diff-normal))

=visual-location >

screen-x =projected-x

screen-y =projected-y

=goal >

state move-cursor

cur-x-diff =x-diff-normal

cur-y-diff =y-diff-normal

)

(P move-cursor

=goal >

ISA targeting

state move-cursor

=visual-location >

ISA visual-location

kind OVAL

?manual >

preparation free

==>

+manual >

ISA move-cursor

loc =visual-location

=goal >

state check-target

target-location =visual-location

)

(P check-target

=goal >

ISA targeting

state check-target

target-location =vis-loc

?visual-location >

162

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

:nearest =vis-loc

=goal >

state distinguish-target

)

(P distinguish-target-black

=goal >

ISA targeting

state distinguish-target

target-location =target-location

=visual-location >

ISA visual-location

kind OVAL

color black

?manual >

state busy

last-command prepare

==>

+temporal >

ISA clear

=goal >

state distinguish-target-black-search

)

(P distinguish-target-black-search

=goal >

ISA targeting

state distinguish-target-black-search

target-location =target-location

?visual-location >

buffer empty

==>

=goal >

state distinguish-target

163

+visual-location >

ISA visual-location

kind OVAL

:nearest =target-location

)

(P prepare-click

=goal >

ISA targeting

state distinguish-target

?manual >

last-command move-cursor

preparation free

==>

+manual >

ISA prepare

style punch

hand right

finger index

)

(P detect-target-color

=goal >

ISA targeting

state distinguish-target

target-x =cx

target-y =cy

cur-x-diff =x-diff

cur-y-diff =y-diff

=visual-location >

ISA visual-location

kind OVAL

- color black

color =color

screen-x =sx

screen-y =sy

!bind! =on-line (is-on-line =sx =sy =cx =cy

=x-diff =y-diff)

?retrieval >

state free

buffer empty

==>

164

+retrieval >

ISA response

color =color

=goal >

state decide-whether-to-shoot

)

(P decide-to-shoot

=goal >

ISA targeting

state decide-whether-to-shoot

=retrieval >

ISA response

action shoot

?manual >

last-command prepare

preparation free

==>

=goal >

state find-black-target

+manual >

ISA execute

+temporal >

ISA clear

)

(P decide-not-to-shoot

=goal >

ISA targeting

state decide-whether-to-shoot

target-x =sx

target-y =sy

target-location =target-location

cur-x-diff =x-diff

cur-y-diff =y-diff

=retrieval >

ISA response

action dont-shoot

==>

165

+temporal >

ISA clear

=goal >

state find-black-target

friend-x =sx

friend-y =sy

friend-x-diff =x-diff

friend-y-diff =y-diff

heuristic highest

)

(P distinguish-whiff

=goal >

ISA targeting

state distinguish-target

?temporal >

buffer empty

?manual >

state free

=visual-location >

ISA visual-location

kind OVAL

color black

==>

+temporal >

ISA time

=goal >

state distinguish-whiff-search

)

(P distinguish-whiff-search

=goal >

isa targeting

state distinguish-whiff-search

target-location =target-location

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

166

kind OVAL

:nearest =target-location

=goal >

state distinguish-target

)

(P whiff-spin

=goal >

ISA targeting

state distinguish-target

!bind! =whiff-wait-time *whiff-wait-time*

=temporal >

ISA time

<= ticks =whiff-wait-time

=visual-location >

ISA visual-location

kind OVAL

color black

==>

=goal >

state whiff-spin-search

)

(P whiff-spin-search

=goal >

isa targeting

state whiff-spin-search

target-location =target-location

?visual-location >

buffer empty

==>

+visual-location >

ISA visual-location

kind OVAL

:nearest =target-location

=goal >

state distinguish-target

)

(P move-after-whiff

=goal >

167

ISA targeting

state distinguish-target

!bind! =whiff-wait-time *whiff-wait-time*

=temporal >

ISA time

> ticks =whiff-wait-time

=visual-location >

ISA visual-location

==>

=goal >

state find-black-target

+temporal >

isa clear

)

)

BIBLIOGRAPHY

168

169

BIBLIOGRAPHY

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C. and Qin, Y.

An integrated theory of the mind. Technical Report 4, Psychology Department,

Carnegie Mellon University, Pittsburgh, PA 15213, USA. ja@cmu.edu., 2004.

Anderson, J. R. and Lebiere, C. The atomic components of thought. Lawrence

Erlbaum Associates, 1998. ISBN 0805828176.

Ashcraft, M. H. and Kirk, E. P. The relationships among working memory, math

anxiety, and performance. Journal of experimental psychology General, 130(2):224–

237, 2001.

Baker, S. L. and Kirsch, I. Cognitive mediators of pain perception and tolerance.

Journal of Personality and Social Psychology, 61(3):504–510, 1991.

Barrouillet, P. and Fayol, M. From algorithmic computing to direct retrieval: ev-

idence from number and alphabetic arithmetic in children and adults. Memory

cognition, 26(2):355–368, 1998.

Bettman, J. R., Johnson, E. J. and Payne, J. W. A componential analysis of cog-

nitive effort in choice. Organizational Behavior and Human Decision Processes,

45(1):111–139, 1990. ISSN 07495978. doi:10.1016/0749-5978(90)90007-V.

Bierbaum, C. R., Szabo, S. M. and Aldrich, T. B. Task analysis of the UH-60 mission

170

and decision rules for developing a UH-60 workload prediction model: Volume 1.

Summary report. US Army Research Institute, 1989.

Blankenberger, S. The arithmetic tie effect is mainly encoding-based. Cognition,

82(1):B15–B24, 2001.

Blankenberger, S. and Vorberg, D. The single-format assumption in arithmetic fact

retrieval. Journal Of Experimental Psychology. Learning Memory And Cognition,

23(3):721–738, 1997. ISSN 02787393. doi:10.1037/0278-7393.23.3.721.

Bonner, S. E., Hastie, R., Sprinkle, G. B. and Young, S. M. A Review of the Effects

of Financial Incentives on Performance in Laboratory Tasks: Implications for Man-

agement Accounting. Journal of Management Accounting Research, 12(1):19–64,

2000. ISSN 10492127. doi:10.2308/jmar.2000.12.1.19.

Bonner, S. E. and Sprinkle, G. B. The effects of monetary incentives on effort and

task performance: theories, evidence, and a framework for research. Accounting,

Organizations and Society, 27(4-5):303–345, 2002. ISSN 03613682. doi:10.1016/

S0361-3682(01)00052-6.

Burgoon, J. K., Kelley, D. L., Newton, D. A. and Keeley-Dyreson, M. P. The Nature

of Arousal and Nonverbal Indices. Human Communication Research, 16(2):217–

255, 1989. ISSN 0360-3989. doi:10.1111/j.1468-2958.1989.tb00210.x.

Burgoon, J. K., Poire, B. A., Beutler, L. E., Bergan, J. and Engle, D. Nonverbal

behaviors as indices of arousal: Extension to the psychotherapy context. Journal

of Nonverbal Behavior, 16(3):159–178, 1992. doi:10.1007/BF00988032.

Campbell, J. I. D. and Gunter, R. Calculation, culture, and the repeated operand

effect. Cognition, 86(1):71–96, 2002.

171

Cao, S. and Liu, Y. Integrating Queueing Network and ACT-R Cognitive Architec-

tures. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

55(1):836–840, 2011a. ISSN 1071-1813. doi:10.1177/1071181311551174.

Cao, S. and Liu, Y. Mental Workload Modeling in an Integrated Cognitive Architec-

ture. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

55(1):2083–2087, 2011b. ISSN 1071-1813. doi:10.1177/1071181311551434.

Card, S. K., Moran, T. P. and Newell, A. The model human processor- An engineer-

ing model of human performance. Handbook of perception and human performance,

2(4):45–1, 1986. doi:10.1037/1076-898X.13.4.224.

Dambacher, M., Hübner, R. and Schlösser, J. Monetary incentives in speeded percep-

tual decision: effects of penalizing errors versus slow responses. Frontiers in psy-

chology, 2(September):248, 2011. ISSN 16641078. doi:10.3389/fpsyg.2011.00248.

Derbinsky, N. and Laird, J. E. Efficiently Implementing Episodic Memory. Case-

Based Reasoning Research and Development, 1001:403–417, 2009. doi:10.1007/

978-3-642-02998-1\ 29.

DeStefano, D. and LeFevre, J.-A. The role of working memory in mental arithmetic.

European Journal of Cognitive Psychology, 16(3):353–386, 2004. ISSN 09541446.

doi:10.1080/09541440244000328.

Dillard, J. F. and Fisher, J. G. Compensation Schemes, Skill Level, and Task Perfor-

mance: An Experimental Examination*. Decision Sciences, 21(1):121–137, 1990.

ISSN 00117315. doi:10.1111/j.1540-5915.1990.tb00320.x.

Engström, M., Landtblom, A.-M. and Karlsson, T. Brain and effort: brain activa-

tion and effort-related working memory in healthy participants and patients with

172

working memory deficits. Frontiers in human neuroscience, 7:140, 2013. ISSN

1662-5161. doi:10.3389/fnhum.2013.00140.

Erez, M., Gopher, D. and Arzi, N. Effects of goal difficulty, self-set goals, and

monetary rewards on dual task performance. Organizational Behavior and Human

Decision Processes, 47(2):247–269, 1990.

Gawthrop, P., Lakie, M. and Loram, I. Predictive feedback control and Fitts’ law.

Biological Cybernetics, 98(3):229–238, 2008.

Groen, G. J. and Parkman, J. M. A chronometric analysis of simple addition. Psy-

chological Review, 79(4):329–343, 1972. ISSN 0033295X. doi:10.1037/h0032950.

Hart, S. G. and Staveland, L. E. Development of NASA-TLX (Task Load Index):

Results of empirical and theoretical research. Human mental workload, 1:139–183,

1988. doi:10.1016/s0166-4115(08)62386-9.

Heathcote, D. The Role of Visuospatial Working-Memory in the Mental Addition

of Multi-Digit Addends. Cahiers De Psychologie CognitiveCurrent Psychology of

Cognition, 13(2):207–245, 1994. ISSN 02499185.

Hogarth, R. M., Gibbs, B. J., McKenzie, C. R. and Marquis, M. A. Learning

from feedback: Exactingness and incentives. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 17(4):734–752, 1991. doi:10.1037/0278-7393.

17.4.734.

Jansma, J. M., Ramsey, N. F., De Zwart, J. A., Van Gelderen, P. and Duyn, J. H.

fMRI study of effort and information processing in a working memory task. Human

Brain Mapping, 28(5):431–440, 2007.

173

Kahneman, D. Attention and Effort, volume 88 of Prentice-Hall Series in Experi-

mental Psychology. Prentice-Hall, 1973. ISBN 0130505188. doi:10.2307/1421603.

Kieras, D. A Guide to GOMS Model Usability Evaluation using NGOMSL. Handbook

of HumanComputer Interaction, 2(313):49, 1996.

Kuhl, J. and Koch, B. Motivational determinants of motor performance: The hidden

second task. Psychological Research, 46(1-2):143–153, 1984.

Laird, J. The Soar Cognitive Architecture. MIT Press, 2012. ISBN 0262122960.

Laird, J. E., Rosenbloom, P. S. and Newell, A. Chunking in Soar: The anatomy of a

general learning mechanism. Machine Learning, 1(1):11–46, 1986. ISSN 08856125.

doi:10.1007/BF00116249.

LeFevre, J.-A., Shanahan, T. and DeStefano, D. The tie effect in simple arithmetic:

an access-based account. Memory cognition, 32(6):1019–1031, 2004.

Lehman, J. F., Laird, J. and Rosenbloom, P. A Gentle Introduction to Soar, an

Architecture for Human Cognition: 2006 Update. Science, 4(0413013):1–37, 2006.

Liu, Y. Queueing network modeling of elementary mental processes. Psychological

Review, 103(1):116–136, 1996.

Liu, Y. Queueing network modeling of human performance of concurrent spatial

and verbal tasks. IEEE Transactions on Systems, Man, and Cybernetics - Part

A: Systems and Humans, 27(2):195–207, 1997. ISSN 10834427. doi:10.1109/3468.

554682.

Liu, Y. QN-ACES: Integrating Queueing Network and ACT-R, CAPS, EPIC, and

Soar Architectures for Multitask Cognitive Modeling. International Journal of

174

Human-Computer Interaction, 25(6):554–581, 2009. ISSN 10447318. doi:10.1080/

10447310902973182.

Liu, Y., Feyen, R. and Tsimhoni, O. Queueing Network-Model Human Processor

(QN-MHP): A computational architecture for multitask performance in human-

machine systems. Engineering, 13(1):37–70, 2006. ISSN 10730516. doi:10.1145/

1143518.1143520.

Lu, S. A., Wickens, C. D., Prinet, J. C., Hutchins, S. D., Sarter, N. and Sebok,

A. Supporting Interruption Management and Multimodal Interface Design: Three

Meta-Analyses of Task Performance as a Function of Interrupting Task Modality.

Human Factors: The Journal of the Human Factors and Ergonomics Society, pages

0018720813476298–, 2013. ISSN 0018-7208. doi:10.1177/0018720813476298.

Lyon, D. R., Gunzelmann, G. and Gluck, K. A. Emulating a visuospatial mem-

ory field using ACT-R. In Proceedings of the Sixth International Conference of

Cognitive Modeling. 2004.

McCracken, J. H. and Aldrich, T. B. Analysis of selected LHX mission functions im-

plications for operator workload and system automation goals. US Army Research

Institute, 1984.

Meiran, N. Modeling cognitive control in task-switching. Psychological Research,

63(3-4):234–249, 2000.

Meyer, D. E. and Kieras, D. E. A computational theory of executive cognitive

processes and multiple-task performance: Part 1. Basic mechanisms. Psychological

Review, 104(1):3–65, 1997a.

Meyer, D. E. and Kieras, D. E. A computational theory of executive cognitive pro-

175

cesses and multiple-task performance: Part 2. Accounts of psychological refractory-

period phenomena. Psychological Review, 104(4):749–791, 1997b. ISSN 0033295X.

doi:10.1037//0033-295X.104.4.749.

Mitchell, D. K. Mental workload and ARL workload modeling tools. Technical

report, Army Research Laboratory, 2000.

Mitchell, D. K. and Samms, C. Workload Warriors: Lessons Learned from a Decade

of Mental Workload Prediction Using Human Performance Modeling. In Proceed-

ings of the Human Factors and Ergonomics Society 53rd Annual Meeting, vol-

ume 53, pages 819–823. Human Factors and Ergonomics Society, 2009. ISSN

10711813. doi:10.1518/107118109X12524442637868.

Monsell, S. Task switching. Trends in Cognitive Sciences, 7(3):134–140, 2003. ISSN

13646613. doi:10.1016/S1364-6613(03)00028-7.

Nason, S. and Laird, J. E. Soar-RL: integrating reinforcement learning with

Soar. Cognitive Systems Research, 6(1):51–59, 2005. ISSN 13890417. doi:

10.1016/j.cogsys.2004.09.006.

Nikolic, M. I., Ho, C.-Y. and Sarter, N. B. Supporting Timesharing and Interruption

Management Through Multimodal Information Presentation. 2001. doi:10.1177/

154193120104500416.

Parasuraman, R. and Rovira, E. Workload Modeling and Workload Management :

Recent Theoretical Developments. (April), 2005.

Pribram, K. H. and McGuinness, D. Arousal, activation, and effort in the control of

attention. Psychological Review, 82(2):116–149, 1975.

176

Reynolds, J., Braver, T., Brown, J. and Vanderstigchel, S. Computational and neural

mechanisms of task switching. Neurocomputing, 69(10-12):1332–1336, 2006. ISSN

09252312. doi:10.1016/j.neucom.2005.12.102.

Rubinstein, J. S., Meyer, D. E. and Evans, J. E. Executive Control of Cognitive Pro-

cesses in Task Switching. Journal of Experimental Psychology Human Perception

and Performance, 27(4):763–797, 2001. ISSN 00961523.

Salvucci, D. D. and Taatgen, N. A. Threaded cognition: An integrated theory

of concurrent multitasking. Psychological Review, 115(1):101–130, 2008. ISSN

0033295X.

Sarter, N. Multimodal Support for Interruption Management: Models, Empirical

Findings, and Design Recommendations. Proceedings of the IEEE, 101(9):2105–

2112, 2013. ISSN 0018-9219. doi:10.1109/JPROC.2013.2245852.

Schmidt, K.-H., Kleinbeck, U. and Brockmann, W. Motivational control of motor

performance by goal setting in a dual-task situation. Psychological Research, 46(1-

2):129–141, 1984. ISSN 0340-0727. doi:10.1007/BF00308598.

Schulte, A. and Donath, D. Measuring self-adaptive UAV operators’ load-shedding

strategies under high workload. Engineering Psychology and Cognitive Ergonomics,

pages 342–351, 2011.

Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J.,

Kieras, D. E. and Meyer, D. E. Virtually perfect time sharing in dual-task

performance: uncorking the central cognitive bottleneck. Psychological Science,

12(2):101–108, 2001.

177

Svenson, O. Memory retrieval of answers of simple additions as reflected in response

latencies. Acta Psychologica, 59(3):285–304, 1985.

Taatgen, N. A., Van Rijn, H. and Anderson, J. An integrated theory of prospective

time interval estimation: the role of cognition, attention, and learning. Psycholog-

ical Review, 114(3):577–598, 2007.

Thevenot, C. and Barrouillet, P. Encoding numbers: behavioral evidence for

processing-specific representations. Memory cognition, 34(4):938–948, 2006.

Thevenot, C., Barrouillet, P. and Fayol, M. Algorithmic solution of arithmetic prob-

lems and operands-answer associations in long-term memory. Quarterly Journal

of Experimental Psychology, 54(2):599–611, 2001.

Thevenot, C., Fanget, M. and Fayol, M. Retrieval or nonretrieval strategies in mental

arithmetic? An operand recognition paradigm. Memory cognition, 35(6):1344–

1352, 2007.

Toppen, J. T. Effect of Size and Frequency of Money Reinforcement on Human

Operant (Work) Behavior. Perceptual and Motor Skills, 20(1):259–269, 1965. ISSN

0031-5125. doi:10.2466/pms.1965.20.1.259.

Trbovich, P. L. and LeFevre, J.-A. Phonological and visual working memory in

mental addition. Memory cognition, 31(5):738–45, 2003. ISSN 0090502X.

Wang, Y. and Laird, J. E. Integrating Semantic Memory into a Cognitive Architec-

ture Investigators. Technical report, Center for Cognitive Architectures, University

of Michigan, Ann Arbor, 2007.

Wickens, C. D. Processing resources in attention. In Parasuraman, R. and Davies,

178

D. R., editors, Varieties of Attention, 3, pages 63–102. Academic Press, 1984. ISBN

0125449704.

Wieth, M. and Burns, B. D. Incentives improve performance on both incremental

and insight problem solving. The Quarterly Journal of Experimental Psychology

(2006), 59(8):1378–1394, 2006.

Wu, C. and Liu, Y. Queuing Network Modeling of Driver Workload and Perfor-

mance. IEEE Transactions on Intelligent Transportation Systems, 8(3):528–537,

2007. ISSN 15249050. doi:10.1109/TITS.2007.903443.

Wu, C. and Liu, Y. Queuing network modeling of transcription typing. ACM Trans-

actions on ComputerHuman Interaction TOCHI, 15(1):1–45, 2008. ISSN 10730516.

doi:10.1145/1352782.1352788.

Zhou, F., Zhao, Q., Chen, C. and Zhou, X. Mental representations of arithmetic

facts : Evidence from eye movement recordings supports the preferred operand-

order- specific representation hypothesis. Experimental Psychology, 26(February

2012):37–41, 2011. ISSN 17470226. doi:10.1080/17470218.2011.616213.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	QN
	ACT-R
	Declarative Module
	Procedural Module
	Goal Module
	Vision Module
	Device Module
	Motor Module
	Speech Module
	Temporal Module

	QN-ACTR
	IMPRINT
	IMPRINT model structure
	Workload management

	Soar
	Problem state representation
	Productions
	Elaboration rules
	Operator application rules
	Impasses

	Input and Output (IO)
	Learning
	Using Soar in cognitive models

	EPIC

	IMPRINT and Workload Management with Soar
	Workload management extension theory
	Extending IMPRINT
	Plugin capability
	Soar plugin
	Initialize variable
	Simulation begin
	Simulation end
	Application close
	After release condition
	Beginning effect
	Ending effect
	Clock advance
	After entities aborted
	After entities suspended
	After entities resumed

	Soar agent
	Release decision subgoal
	Expire decision subgoal
	Resume decision subgoal
	Response selection

	UAV Study
	Release decision
	Resume decision
	Expire decision

	Results
	Conclusion

	Modeling concurrency on addition and targeting tasks in QN-ACTR and IMPRINT
	QN-ACTR additions
	Tasks
	Targeting task
	Addition task

	QN-ACTR task models
	Addition model
	Targeting models
	Low speed, low difficulty
	High speed, low difficulty
	Low speed, high difficulty
	High speed, high difficulty

	Concurrency model

	IMPRINT task models
	Method
	Scoring
	Procedure
	Apparatus
	Data collection

	Results
	Empirical results
	QN-ACTR Model validity
	IMPRINT

	Discussion
	Effect of speed
	Execution time
	Concurrency
	Behavioral modeling
	Application to IMPRINT

	Conclusion

	The effect of effort on dual-task performance and concurrency
	Tasks
	Targeting task
	Addition task

	QN-ACTR models
	Addition model
	Targeting model

	Method
	Scoring
	Procedure
	Apparatus
	Data collection

	Results
	Single tasks
	Dual tasks
	Model validity

	Discussion
	Single task incentivization
	Dual task performance
	Concurrency predictions

	Conclusion

	Conclusion
	Summary of models and their roles
	Scientific contributions and Future work

	APPENDICES
	BIBLIOGRAPHY

