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Abstract 

 This dissertation focuses on coupled multicomponent mass, heat, and charge 

transfer analyses of chemical and electrochemical systems. First, the Stefan-Maxwell 

multicomponent diffusion theory is introduced, along with constitutive laws for chemical 

and electrochemical potential. This set of model equations is then applied to various 

systems: gas diffusion in a tube, simultaneous mass and charge transfer in a convection 

battery, coupled heat and charge transfer in a prismatic lithium-ion battery, and coupled 

heat, mass, and charge transfer in a very-high-capacity lithium-ion cell.  

Carty and Schrodt’s measurements of steady-state species concentrations during 

ternary gas diffusion in a tube are analyzed in Chapter 2. The driving forces for gas 

diffusion are concentration gradients in the tube, which induce chemical potential 

gradients that drive relative species fluxes. I find that relaxing Carty and Schrodt’s 

assumptions when analyzing their data results in better fits of theory to measurements.  

In chapter 3, the research focus shifts to electrochemical systems. In addition to 

concentration, which drives diffusion, electric potential is introduced within the Stefan-

Maxwell theory as a driving force for migration. Electric effects are included through 

thermodynamic constitutive laws based on electrochemical potentials. The resulting 

concentrated-solution theory allows the description of simultaneous mass and charge 

transport in isothermal, isobaric binary electrolytes. I apply the concentrated-solution 

theory to illustrate the effect of electrolyte flow through the separator in a traditional 
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battery, showing how convection alters limiting currents and can improve overall power 

efficiency during high-current operation.  

Two different approaches to thermoelectrochemical transport in porous electrodes 

are taken in Chapters 4 and 5. Both approaches extend fundamental electrochemical 

models based on the concentrated-solution theory by adding a general local thermal-

energy balance. The details of the electrochemical models applied in the two cases differ, 

however. First, a transport model based on the Newman-Tobias porous-electrode theory 

is used to simulate the transient thermal response of a commercial A123 lithium-ion 

battery. Although this model does not include the effects of mass-transfer limitations 

within the battery cell, it still is found to predict the cell’s thermal response within the 

bounds of experimental error. Second, the standard Dualfoil model of electrochemical, 

porous intercalation-electrode transport is implemented to include mass-transfer effects. 

In this case, the coupled thermal-energy balance is used to evaluate safety and 

performance of a high-capacity GS Yuasa lithium-ion battery.  

  

 

 



 

 1 

Chapter 1 Introduction 

A system can depart from equilibrium for a number of reasons: heat transfer 

occurs as a result of temperature gradients; fluid flow results from mechanical driving 

forces; charge flow arises in response to electric fields; and mass diffusion results from 

inhomogeneities in composition. This thesis focuses on multicomponent momentum, 

heat, mass, and charge transfer in various systems. I examined multicomponent mass 

transfer in a modified Stefan tube (chapter 2), convective mass and charge transfer in a 

convection battery (chapter 3), simultaneous heat and charge transfer in a 15-Ah A123 

Inc. prismatic lithium-ion battery (chapter 4), and simultaneous heat, mass, and charge 

transfer in a 50-Ah GS-Yuasa Inc. automotive lithium-ion cell (chapter 5).  

In this chapter, I introduce the Stefan-Maxwell multicomponent diffusion 

equation, and provide constitutive laws for chemical and electrochemical potential that 

form the basis for all subsequent discussions of simultaneous mass and charge transfer. In 

chapter 2, I discuss the simplest case of multicomponent diffusion: ternary gas diffusion 

in a tube. Chapter 3 shifts the focus to electrochemical transport systems. I investigate the 

effect of forced electrolyte flow in a traditional battery system, showing how convection 

alters limiting currents and can be used to improve the power delivered by the system. 

Chapters 4 and 5 present two different attacks on coupled thermoelectrochemical 

transport in porous electrodes. Chapter 4 demonstrates that adding a heat balance to a 

simple electrochemical model (the Newman-Tobias porous-electrode theory) can predict 
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the transient thermal response of lithium-ion battery accurately. Although the Newman-

Tobias model does not include the effects of mass-transfer limitations within the battery 

cell, it still estimates the thermal response within experimental error. In Chapter 5, I show 

how the standard Dualfoil model can be used to include mass-transfer effects in the 

electrochemical modeling, using a coupled thermal-energy balance to evaluate the safety 

and performance of a high-capacity GS-Yuasa Li-ion battery. In the Appendix, I provide 

algorithms based on the Chapman-Enskog kinetic theory to estimate transport properties 

of gases in terms of their molecular potentials, an analysis that is a necessary first step 

toward closing some further questions that arise in chapter 2. 

 

1.1 Stefan-Maxwell equation for multicomponent mass diffusion systems 

Gradients of chemical (or electrochemical) potential drive mass diffusion and 

charge transport. In multicomponent systems, the Stefan-Maxwell equation can be used 

to relate mass fluxes to composition gradients [1,2]. The extended Stefan-Maxwell 

equation relates the gradient of chemical (or electrochemical) potential of each species, 

, to the relative velocity of species i relative to every other species j, , through 

a set of drag coefficients Kij.  

 

  
ci!µi = Kij

!vj "
!vi( )

j#i

N

$ = RT
cicj
cTDij

!vj "
!vi( )

j#i

N

$ .
 

 (1.1) 

Here ci is the concentration of species i, N is the number of species, R is the universal gas 

constant, T is the absolute temperature, cT is the total concentration, and Dij is the Stefan-

Maxwell coefficient parameterizing the diffusivity of species i through j. The drag 

!µi  
!vj !
!vi
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coefficient Kij is inversely proportional to the binary diffusion coefficient. This equation 

received its name because Maxwell suggested it to describe the diffusion in a binary gas; 

Stefan generalized Maxwell’s diffusion law to mixtures containing an arbitrary number 

of species [3]. Onsager justified the use of the extended Stefan-Maxwell equation using 

both non-equilbrium statistical mechanics and irreversible thermodynamics [4].  

 

1.2 Chemical potential 

In Stefan-Maxwell equations (1.1),  can be regarded as a driving force per 

unit volume acting on species i (it has units of force per volume). The chemical potential 

µi of an electrically neutral species relates to its activity ai through  

 µi = µi
! + RT lnai ,

 
 (1.2) 

where µi
!  represents the chemical potential of species i in a standard state at fixed 

temperature, pressure, and composition. Since it depends to first order on the molar 

concentration ci, the activity coefficient for species i is typically written as 

 ai = fici = ficTyi ,
 

 (1.3) 

where fi is the molar activity coefficient on a molar concentration basis, and yi the mole 

fraction, of species i. Here cT represents the total molar concentration, i.e., the sum of the 

species concentrations. Sometimes composition is placed on a molal, mole-fraction, or 

mass basis, calling for different definitions of the activity coefficient, but use of equation 

(1.3) is standard in modern electrochemistry [5]. Equation (1.3) suffices to describe 

neutral constituents of solid, liquid, or gas phases. In gases, the activity coefficient from 

ci!µi
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equation (1.3) can be related to a fugacity coefficient, since cT is proportional to pressure 

[6]. A component of an isobaric, isothermal ideal-gas mixture, or a solute in an ideal 

solution can be modeled by taking . That is, 

 µi = µi
! + RT lnci

 
 (1.4) 

for a neutral constituent of an ideal-gas mixture or ideal solution.  

Chapter 2 addresses multicomponent diffusion in an isothermal, isobaric gas, for 

which the Stefan-Maxwell equation can be expressed as  

 

  
!yi =

yi N j

! "!
" yj Ni

! "!

cTDijj#i
$ .

 
 (1.5) 

Here  represents the total molar flux of species i relative to a stationary inertial frame, 

  Ni

! "!
= ci vi
!"
.
 

 (1.6) 

The molar flux is directly measurable (as in the experiments of Carty and Schrodt [7]), 

and is therefore sometimes preferred to the species velocity as a basis for describing 

material flow.  

 

1.3 Electrochemical potential 

In Chapters 3, 4, and 5, transport models based on the Stefan-Maxwell equation 

are applied to electrochemical systems, requiring consideration of the electric field as a 

driving force for charge flow. This effect is taken into account by introducing the 

fi ! 1

 Ni

! "!
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electrochemical potential, which serves as a driving force for both mass and charge 

transfer. When species in a transport system are charged, the chemical potential is 

modified to account for an electrostatic potential Φ, through 

 µi = µi
! + RT lnai + ziF",

 
 (1.7) 

in which zi is the equivalent charge carried by species i, and F is Faraday’s constant. The 

electrochemical potential at standard state has different meaning from the standard 

chemical potential in equation (1.2) as well. In addition to fixed temperature and pressure, 

the potential must be measured relative to a standard reference electrode of a given kind 

at fixed composition. Guggenheim calls this a “secondary reference state” [8].  

The electric current in an electrolytic solution arises from the motion of charged 

particles according to Faraday’s law, 

 
 

!
i = F zi Ni

" !"

i
! .

  (1.8) 

Here,  is the electric current density, expressed in units of charge per time per area. 

Using Faraday’s law, the condition of local electroneutrality (a charge balance) 

 z jcj = 0
j
! ,

  (1.9) 

and the set of species mass balances 

 
 

!cj
!t

= "#$
!
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 (1.10) 
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the modified Stefan-Maxwell equations applicable to an electrochemical system 

comprising a binary electrolytic solution (comprising one neutral solvent and one 

electrolyte) of a binary electrolyte (comprising one anion and one cation) can be 

rearranged into flux-explicit transport laws comprising terms associated with diffusion 

(driven by electrolyte concentration gradients), migration (driven by the current), and 

convection (driven by the solvent velocity) [5], 
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 (1.11) 
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 (1.12) 

where c0 is the solvent concentration. The Fickian diffusivity D is defined in terms of 

Stefan-Maxwell coefficients and the activity coefficient ln f+! ="+ ln f+ +"! ln f!  as 

 

 
D = cTV0 1+

d ln f+!
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#
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&
'
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 (1.13) 

where V0  is the partial molar volume of solvent; the cation transference number t+
0  is 

defined as 

 

 
t+
0 =

z+D0+

z+D0+ ! z!D0!

.
 

 (1.14) 

Insertion of flux laws (1.11) and (1.12) into either of the material balances (1.10) on the 

charged species yields a general form of Fick’s second law, 
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Insertion of the electrochemical potential (1.7) into the Stefan-Maxwell equation for a 

charged species, followed by rearrangement with the flux laws (1.11) and (1.12), further 

yields  

 

 
!" = #
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$
#
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F

t j
z j
! lncj

j
% ,

 
 (1.16) 

where κ is the conductivity, defined in terms of Stefan-Maxwell coefficients as 

 

 
! = "

F2z"c"cTD+"

RT
#

z+D0+ " z"D0"

c0D+" + c+D0" + c"D0+

.
 

 (1.17) 

Equation (1.16) is a modified form of Ohm’s law applicable to systems with 

concentration gradients, also called the MacInnes equation [9]. It relates the electric 

potential to the current density and the concentration distribution of ions.  

Although the modified Stefan tube, the alkaline convection battery, and lithium-ion 

batteries are significantly different systems, the transport formulations involved are all 

based on the same multicomponent mass-diffusion model. 
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Chapter 2 Multicomponent mass diffusion in the Stefan tube 

As a simple introductory case, this chapter discusses the analysis of 

multicomponent transport within a gas mixture in a Stefan tube. A Stefan tube is an 

apparatus similar to an Arnold cell [1,2], in which a liquid film is allowed to evaporate 

into an ambient gas through a tube of fixed length; at the top of the tube, a transverse 

ambient gas flow convects away the evaporating solute or solutes. (The Stefan tube 

differs from an Arnold cell in that a large liquid reservoir is present, keeping the diffusion 

length constant as the liquid evaporates.) Carty and Schrodt [3] produced a modified 

Stefan tube in which gas-phase concentrations could be measured directly as functions of 

height from the liquid film. Carty and Schrodt’s experiments provide an excellent direct 

test and illustration of the general multicomponent Stefan-Maxwell diffusion model on 

which most of the work in this dissertation is based. The driving forces for mass diffusion 

in this case are concentration gradients in the tube, which can be related to relative 

species fluxes by equations (1.5), using the chemical potential constitutive law from 

equation (1.2), under the assumption that the system is isothermal and isobaric.  

Accurate gas transport properties are essential in the design and simulation of 

processes involving heat and mass transfer. For example, binary diffusion coefficients, 

viscosities, and thermal conductivities are necessary in the design of chemical reactors, 

and also play a crucial role in atmospheric chemistry, combustion science, studies of 

indoor air pollution, and aerothermodynamics [4,5]. Carty and Schrodt’s modified Stefan 
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tube allows Stefan-Maxwell coefficients in multicomponent gases to be measured 

directly, by fits of model output to measured concentration profiles.  

Carty and Schrodt used their model to test Stefan-Maxwell theory, using auxiliary 

measurements of diffusion coefficients as input parameters. Their analysis relied on some 

rather extreme simplifying assumptions, causing experimental and theoretical 

concentration profiles to differ by more than the generally acceptable experimental error. 

In this chapter, we demonstrate that relaxing some of Carty and Schrodt’s assumptions 

leads to different boundary conditions on the Stefan tube, yielding a transport model that 

can achieve a better fit of experimental data. The deviation of experimental concentration 

distributions from simulations reduces dramatically when experimentally measured mass 

fluxes at the tube exhaust are employed directly as boundary conditions.  Although the 

model fits data well, the question remains whether these phenomenological results agree 

with expectations based on our knowledge of molecular-level interactions, providing a 

strong motivation for future research into kinetic theory. Some preliminary analysis 

involving the kinetic theory of gases is provided in Appendix A of this thesis. 

 

2.1 Carty and Schrodt’s experiment 

Carty and Schrodt provide concentration profiles for the modified Stefan tube 

during the steady-state evaporation of a methanol/acetone liquid film into ambient air [3]. 

The schematic diagram in Figure 2-1 depicts the experimental setup. The liquid reservoir 

contains a solution of acetone and methanol, which has constant concentration and 

interfacial position throughout a given measurement. The vertical position from the liquid  
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Figure 2-1 A schematic of a modified Stefan tube used in the Carty and Schrodt 
experiment [3] 
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surface is designated by z. Dry air flows across the tube’s aperture at position z = L, 

fixing the mole fractions yi of acetone (species a), methanol (species b), and air (species 

c) at the tube outlet, 

 ya ! 0,    yb ! 0,      and    yc ! 1    at    z = L.
 

(2.1) 

A difference in solute mole fraction between the gas at the liquid surface and the ambient 

flow-by stream at the tube outlet drives acetone and methanol to diffuse in the z-

direction. The actual tube length used by Carty and Schrodt was L = 24.25 cm. Transport 

was assumed to be one-dimensional (for reference, the tube diameter was D = 5.08 cm). 

Seven sealable pinholes along the tube, connected by a piping manifold to a gas 

chromatograph, permitted composition analysis after the concentration profiles in the 

tube had reached steady state. The points on the graph in Figure 2-2 show Carty and 

Schrodt’s steady-state concentration measurements.  

 

2.2 Governing equations 

Carty and Schrodt also developed an analytical solution to the Stefan-Maxwell 

equations and presented theoretical concentration profiles alongside their experimental 

composition data. To explore the validity of the boundary conditions they employed, we 

will lay out the complete system of material balances and flux laws here. An interior 

point in an isothermal, isobaric, three-component ideal-gas diffusion system at steady 

state is modeled by the following five equations: 

  !"Na

! "!
= 0,

 
(2.2) 
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Figure 2-2 Mole fractions of acetone (l), methanol (u) and air (n) in a modified Stefan 
tube. Carty and Schrodt’s theoretical concentration profiles [3] are represented as dotted 
lines; our results using Carty and Schrodt’s Stefan-Maxwell coefficients with a flux 
boundary condition are shown as dashed lines; the result of a best fit wherein all the 
transport properties were allowed to vary is shown by solid lines. 
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  !"Nb

! "!
= 0,

 
(2.3) 

  !"Nc

! "!
= 0,

 
(2.4) 
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(2.5) 

 

  
!yb =

j"b
#

ybN j

! "!
$ yj Nb

! "!

cTDbj

.
 

(2.6) 

Recall that  Ni

! "!
 is the molar flux of species i relative to a stationary reference frame; cT 

represents the total concentration (cT = p/RT for an ideal gas at constant pressure p and 

temperature T). Equations (2.2), (2.3), and (2.4) are material balances; in the steady state 

there is no accumulation; in the absence of homogeneous chemical reactions no 

generation terms appear. Equations (2.5) and (2.6) are the independent Stefan-Maxwell 

equations. (The isothermal, isobaric Gibbs-Duhem equation 

 

 
ci!µi

i
" =

!
0

 
(2.7) 

shows that only two diffusion driving forces in a ternary system are linearly independent, 

justifying the use of only two Stefan-Maxwell equations for ternary diffusion.) 

Composition in an isothermal, isobaric single phase is also constrained by the Gibbs 

phase rule. With species mole fractions as a basis for composition, the dependence of one 

species concentration on the others is described by the simple characteristic equation  



 

 15 

 

j
!yj =1,

 
 (2.8) 

which clearly constrains the mole fractions. After calculating ya and yb by integrating the 

governing system, the distribution of air can be found using equation (2.8). 

 

2.2.1 Boundary conditions 

For the one-dimensional geometry depicted in Figure 2-1, equations (2.2)–(2.6) 

are first-order ordinary differential equations (ODEs). Five independent boundary 

conditions are needed to close the problem. In accord with equation (2.8), equation (2.1) 

provides two linearly independent boundary conditions. Following from integration of 

equation (2.4), a third boundary condition is found: 

 
 
!
Nc = Nc = 0       at     z = 0.

 
(2.9) 

(This equation introduces the simplified notation Ni to represent the flux component of 

species i in the z direction.) Physically this makes sense, since the liquid surface is not 

permeable to air. Note that equation (2.9) does not prevent air from maintaining a 

concentration gradient in the tube.  

Carty and Schrodt used two additional boundary conditions to close the set of 

equations. Direct measurements of the steady-state acetone and methanol fluxes in the z 

direction (Na and Nb) were available to them: values of Na = 1.779 × 10–7 mol·cm2·s–1 and 

Nb = 3.121 × 10–7 mol·cm2·s–1 were computed based on knowledge of the ambient-air 

flow rate and composition at the flow-system exhaust.  
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Rather than using the flux information, however, Carty and Schrodt used the 

conventional wisdom that the kinetics of evaporation is slow in comparison to diffusion, 

which suggests that the acetone and methanol mole fractions at the reservoir surface can 

be determined through vapor-liquid equilibrium (VLE) data. Thus they used boundary 

conditions 

 ya z = 0( ) = ya0 ,
 

 (2.10) 

 yb 0( ) = yb0,
 

(2.11)  

with a superscript 0 indicating the value of a property at the liquid surface. The VLE data 

of Freshwater and Pike suggest that for the liquid composition used by Carty and 

Schrodt, ya
0  = 0.3173, yb

0  = 0.5601, and yc
0  = 0.1227 [6]. The surface compositions will 

be maintained as variables in this analysis, to simplify further discussion in chapter 2.4.1.  

 

2.3 Carty and Schrodt’s analytic solution and deviations from experimental data 

Carty and Schrodt analyzed the problem as follows. Directly integrate equations 

(2.2) through (2.4) to show that the molar fluxes of all species are constant with respect to 

position in the steady state. Then apply equation (2.9); since there is no flux of air 

through the liquid surface at the bottom of the tube, it follows that the total air flux must 

vanish throughout the tube. These conditions reduce the governing system to two first-

order differential equations: 
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(2.13) 

(The Onsager reciprocal relation Dij = Dji [7] has been applied to simplify these 

expressions.) This system can be integrated directly from 0 (where equations (2.12) and 

(2.13) hold) to z, yielding closed-form distributions of methanol and acetone: 
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(2.14) 
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(2.15) 

where  

 

 
!+ = "
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"
Nb

Dbc

,
 

(2.16) 

 

 
!" = "

Na +Nb

Dab
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(2.17) 

These results depend on two surface concentrations ( ya
0  and yb

0 ) and two fluxes (Na and 

Nb). The concentrations at the top of the tube are then given by evaluating these results at 

L, yielding 
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 ya L( ) = yaL = 0,
 

(2.18) 

 yb L( ) = ybL = 0.
 

(2.19) 

Of the six parameters ( ya
0 , yb

0 , ya
L , yb

L , Na and Nb) involved in equations (2.14) through 

(2.19), any four can be specified by boundary conditions; the remaining two are then 

specified self-consistently through algebraic equations (2.18) and (2.19). Carty and 

Schrodt used boundary conditions (2.9), (2.10), (2.11), (2.18), and (2.19), making the 

fluxes dependent variables whose values were determined through self-consistency 

conditions yi
L = 0  (excluding air). We will explore a number of alternative choices here. 

In order to draw the concentration distributions in Figure 2-2, binary diffusion 

coefficients are also needed. The binary diffusion coefficients of acetone in air, Dac, and 

of methanol in air, Dbc, are experimentally available. Literature values are Dac = 0.1372 

cm2/s and Dbc = 0.1991 cm2/s [8,9]. The diffusion coefficient of acetone through methanol 

in the presence of air, Dab, is not as readily available. Carty and Schrodt estimated the 

value using kinetic theory: Dab = 0.0848 cm2/s [10].  

The dotted line in Figure 2-2 shows the analytical solution for the concentration 

profiles based on boundary conditions (2.9), (2.10), (2.11), (2.18), and (2.19) reported by 

Carty and Schrodt. To test the consistency of their result, Carty and Schrodt also 

calculated the fluxes of acetone and methanol using equations (2.18), and (2.19), finding 

them to be Na = 1.781 × 10–7 mol·cm2·s–1 and Nb = 3.186 × 10–7 mol·cm2·s–1, in fair 

agreement with their measured fluxes Na and Nb, which deviated by 0.11% and 2.1% 

from the computed values, respectively. Agreement with experimental mole-fraction 
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distributions was significantly worse than that with the flux data: mole fractions at the 

seven sampling points along the Stefan tube deviated by 8.3%, greater than the intrinsic 

measurement error. To investigate this discrepancy, and to develop finite-difference 

algorithms that could be benchmarked against analytical solutions, we developed a 

computer program to solve equations (2.2)–(2.6) with a variety of boundary conditions. 

The computer program was developed to solve the coupled ordinary governing 

equations (2.2)–(2.6) using an implicit finite-difference scheme. Initially, the solution by 

Carty and Schrodt was duplicated using three natural boundary conditions: equation (2.9) 

two measured steady-state fluxes (Na = 1.779 × 10–7 mol·cm2·s–1 and Nb = 3.121 × 10–7 

mol·cm2·s–1), and two surface-concentration boundary conditions, (2.10) and (2.11). The 

result was satisfactory: the difference between this result and Carty and Schrodt’s 

analytic solution was found to be less than the numerical error of the program ( ! =10!12 ). 

This result showed that the computer program was working properly, and provided a 

basis for further investigations into the sources of discrepancies between theoretical 

results and Carty and Schrodt’s experimental data. 

 

2.4 Possible sources of error in Carty and Schrodt’s analysis  

2.4.1 Calculated interfacial concentrations as boundary conditions 

One possible source of the error in the Carty and Schrodt’s data fitting was the 

use of VLE data as boundary conditions at the liquid surface.  VLE data is, by definition, 

measured at equilibrium; it is possible that the vapor composition at the liquid surface 

could differ significantly from the VLE data in the dynamic steady-state condition of 
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Carty and Schrodt’s experiment. Alternatively, slight changes in temperature at the liquid 

surface due to evaporation, imprecision of the ambient temperature, or slight relative 

humidity could cause the actual surface VLE to differ from the literature data. 

To relax the restriction placed by the VLE data at the liquid surface, the 

governing equations were solved using alternative boundary conditions. Instead of 

equations (2.10) and (2.11), experimentally measured fluxes were used as liquid-surface 

boundary conditions. The resulting deviation from experimental mole-fraction profiles 

was somewhat less; the deviation of the acetone concentration stayed high, at 6.8%. 

 

2.4.2 Calculated binary diffusion coefficient of acetone and methanol 

Another possible source of discrepancy between Carty and Schrodt’s model 

output and experimental data is the value used for the binary diffusion coefficient of 

acetone in methanol, Dab, which was estimated based on kinetic theory [10]. To check this 

error source, we took our investigation a step further: using the experimental fluxes as 

boundary conditions, Dab was determined by a least-squares curve-fitting process, using 

the experimental concentration profiles and two experimental values for Dac and Dbc [8,9]. 

The best-fit process was repeated with other boundary conditions as well, to investigate 

coupled effects of the assumptions. The smallest deviation from the experimental 

concentration profiles, 2.7% (see Figure 2-2 and Table 2-1), was found when 

experimental fluxes were directly used as the boundary conditions. This process yielded a 

Dab value of 0.0214 cm2/s.   

Although the fit of the concentration profiles was improved by this method, the 

result also leads to further questions. The acetone/methanol Stefan-Maxwell diffusivity  
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Boundary 
condition 

Fixed D
ab

 Curve-fitted D
ab

 
D
ab
(cm2/s) % D

ab
(cm2/s) % 

y
a 
, y

b  
@ interface 
(VLE data) 

0.0848 8.3% 0.0113 5.2% 

N
a 
, N

b
 

(experiment) 
0.0848 4.5% 0.0214 2.7% 

 

Table 2-1 Average percent deviations between experimental data and theory, using 
different boundary conditions and different acetone/mehtanol diffusion coefficients. 
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that best fit the experimental data is a factor of four smaller than the theoretical value 

given by Carty and Schrodt. 

 

2.5 Discussion/steps to gas kinetic theory  

One further concern is that Carty and Schrodt's analysis was based on an 

unrealistic assumption that air is a single-component gas, whereas air is actually a 

mixture of nitrogen (78%), oxygen (21%), argon (< 1%), etc. To examine the impact of 

this simplification, we generalized our computer program to model Stefan-Maxwell 

diffusion of an arbitrary number of components. A logical test would be to use five 

components: acetone, methanol, nitrogen, oxygen, and argon. However, this approach 

requires ten binary diffusion coefficients, several of which have not been previously 

reported. Experiments would be an ideal way to obtain them – but appropriate numerical 

methods for property estimation would be preferable, saving both time and effort. 

One method to evaluate transport properties like thermal conductivity, viscosity, 

and diffusion coefficients within dilute gases is to exploit the Chapman-Enskog solution 

to the Boltzmann gas equation [11-14]. In this method, transport coefficients are given as 

functions of collision integrals. The particles are modeled as a group of colliding pairs, 

which obey classical momentum and energy conservation laws through an intermolecular 

potential that expresses the attractive and repulsive forces exerted by the particles. Once 

collision integrals are known for a given potential function, and the intermolecular 

potentials for given species are parameterized, the estimation of gas properties over wide 

ranges of composition becomes possible. Very accurate calculations of collision integrals, 

as well as transport properties for some single-component gases, are reported in 
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Appendix A. The groundwork for future analysis of multicomponent transport scenarios 

is therefore present. Since the calculations necessary to compute Stefan-Maxwell 

coefficients require parameterization of intermolecular pair potentials, this effort will 

provide a substantial project for future research. 
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Chapter 3 Increasing the rate capability of batteries with electrolyte flow 

   This chapter shifts the focus to transport in electrochemical systems. In addition 

to the mass balances and transport equations from chapter 2, analysis of electrochemical 

systems also requires a local charge balance, which requires that electrical state variables 

be introduced to the Stefan-Maxwell theory. The electric potential (voltage) is introduced 

within Stefan-Maxwell theory through the electrochemical potential constitutive law 

from equation (1.7). Voltage gradients (or current flow) provide a driving force for 

‘migration’, defined as the motion of charged species due to the action of an externally 

imposed electric field. The current density is introduced as a variable describing charge 

flux through Faraday’s law (1.8). A suitable charge balance is supplied by the 

electroneutrality condition (1.9), since the volume elements under consideration in typical 

transport systems are very large in comparison to the Debye length. Under these typical 

model conditions, the modified Stefan-Maxwell equation yields the equations used to 

describe mass transport in isothermal, isobaric binary electrolytes (the ‘concentrated-

solution theory’ of Newman [1]), equations (1.8) through (1.15). Transport modeling in 

the remainder of this thesis is based on concentrated-solution theory.  

In this chapter, I investigate the effect of forced electrolyte convection on the 

performance of traditional zinc/manganese-oxide alkaline batteries. A theoretical analysis 

describes how electrolyte flow driven through a battery cell alters its efficiency and 

power, as in the ‘convection battery’ configuration recently proposed by Suppes et al. 
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[2,3]. Concentrated-solution theory rationalizes the observation that imposition of 

electrolyte flow parallel to the current through a separator can reduce overpotential 

losses, and is used to quantify the overpotential reduction in terms of the flowrate and 

physical properties of the electrolyte and separator. The model results are consistent with 

the experimental observations of alkaline convection batteries by Suppes et al. It is 

notable that relatively low flowrates in convection batteries allow fine-tuned control over 

their limiting currents. Thus it appears that current-coaxial flow could be used to permit 

very high charge rates in rechargeable convection-battery cells. 

 

3.1 Introduction 

In 2011, Suppes et al. proposed the ‘convection-battery’ configuration [2,3], 

defined as a system in which a pump drives electrolyte flow through a battery cell. The 

cell is constructed like a typical cylindrical packed-bed reactor, but with separate layers 

of packing for the anode, separator, and cathode. Experiments by the Suppes group 

showed that a convection battery’s output voltage at a given state of charge was elevated 

by electrolyte flow. In this chapter, convection-battery separators are analyzed to 

rationalize how flow reduces the voltage losses across them. More importantly, 

electrolyte flow through a separator is shown to increase its tolerance for high electric 

currents. This increased rate capability could allow major reductions in the durations of 

charge or discharge periods. Rechargeable convection batteries could be particularly 

useful for automotive applications, where it may be possible to exploit electrolyte flow to 

reduce significantly the period needed to charge a high-energy battery pack.  
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The primary sources of voltage loss in a traditional battery are mass transfer and 

reaction kinetics. Either of these effects can be rate limiting during high-current operation 

of the battery cell. This work focuses on mass-transfer effects. 

Much research has focused on using convection to reduce mass-transfer 

limitations within porous electrodes. The flow direction used to force convection within 

electrodes is usually either exactly perpendicular to or exactly parallel to the ionic 

current—operational modes that here will be called ‘current-perpendicular flow’ and 

‘current-coaxial flow’, respectively. (In electrolyzer or porous-electrode design, these are 

sometimes called ‘flow-by’ and ‘flow-through’ configurations.) Alkire and Gracon [4] 

combined theory and experiment to show that current-coaxial flow allows porous 

electrodes to operate at higher current, presumably by regulating the rate of reactant 

supply. In the redox-flow-battery literature, experiments have also shown that an 

increased current-perpendicular electrolyte flowrate causes a corresponding increase in 

the maximum current an electrode can support [5-9]. Trainham and Newman [10] 

provided modeling to compare the current/voltage responses and economics of both flow-

through and flow-by electrode designs for flow batteries.  

A convection battery differs from a typical electrolyzer or flow-battery cell in that 

current-coaxial convective flow is driven through the separator domain, as well as 

through the electrodes. To the best of our knowledge, no previous studies have analyzed 

how the convection-battery configuration impacts mass-transfer limitations in separators. 

The analysis here aims to assess whether forced convection through separator domains 

can allow cells to sustain higher currents, and consequently, to deliver—or, in secondary 

(rechargeable) batteries, receive—higher power. 
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The limiting current—the current that causes the charge-carrier concentration to 

vanish at one of the electrode/separator boundaries—measures the upper bound of the 

charge or discharge rate that a separator can tolerate. Below, a model is developed to 

rationalize how changes in electrolyte flowrate can affect a convection battery separator’s 

limiting current, and to quantify the differences in concentration overpotential that arise 

from electrolyte flow. 

Almost any traditional battery can in principle be built in a convection-battery 

configuration. Limited experimental data exists in the literature for the validation of 

theoretical models of convection batteries, however. To allow comparison between model 

results and experiments, this work will focus on the primary alkaline convection battery 

used by Suppes et al. [2,3]. The alkaline convection-battery system is a logical choice for 

modeling because discharge data (both with and without electrolyte flow) are available in 

the literature; furthermore, the alkaline electrolyte’s transport properties are well known. 

A schematic diagram of a primary alkaline convection battery is provided in 

Figure 3-1, which also shows the half-reactions that occur in the anode and cathode 

during discharge with a 2 M aqueous KOH electrolyte.1 To permit current-coaxial 

convection throughout, the battery cell is constructed in a packed-bed configuration, 

wherein the electrodes comprise pellets of solid active materials (Zn and MnO2) and the  

                                                
1 The cathodic reaction mechanism of the alkaline Zn/MnO2 battery has been observed to 
change during operation at high power, a condition that may cause performance to be 
limited by electrode kinetics [11]. Since the main focus here is the rate capability of 
separators, it is assumed for simplicity that the reactions shown on Figure 3-1 occur at all 
discharge currents. A change in reaction mechanism alters the value of ΔVrxn in the 
separator’s boundary conditions (cf. Equations. (3.6) and (3.8)), but this effect is usually 
negligible, as discussed after Equation (3.17). 
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Figure 3-1 Schematic diagram of an alkaline convection-battery cell [2,3]. Reproduced 
form reference 12. 

 

  



 

 29 

separator is an electrically insulating packing material (such as glass beads or a thin 

porous membrane). A large, well-mixed reservoir of electrolyte resides outside the cell, 

and is pumped through the packed bed while the battery discharges. Suppes et al. 

measured how overpotential in this configuration decreases when current-coaxial 

electrolyte flow is imposed. For a cell with 1.27 cm2 cross section discharging into a load 

of 550 Ω, potential losses with flow were 10–50 mV less than they were without it. 

The following analysis generally describes separators under current-coaxial flow, 

with the specific aim of rationalizing the observations Suppes et al. made for primary 

Zn/MnO2 convection batteries. The separator’s limiting current is found to be very 

sensitive to the Péclet number of the flow, suggesting that one can manipulate the rate 

capability of convection-battery separators significantly with very low electrolyte flow 

velocities. Although validated by data from an alkaline battery, the conclusions made 

here should apply to packed-bed plug-flow convection batteries in general, as long as 

transport in the separator is the main factor limiting cell performance. 

 

3.2 Model formulation 

3.2.1 Boundary conditions 

In all batteries electric currents drive interfacial reactions, which induce flux of 

material through the separator. In traditional batteries, bulk flow of the electrolyte toward 

or away from the electrode can arise from the volume change that occurs as the cell 

reaction proceeds from reactants to products, but this effect is usually insignificant. 

(Although not driven by buoyancy, this electrochemical phenomenon is commonly called 
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‘free convection’ [13].) The fundamental distinction of the convection-battery 

configuration is that bulk flow of the electrolyte is driven through the separator by a 

pump, inducing an additional, convective flux of charge carriers – ‘forced convection’ – 

normal to the electrode/separator interfaces. For species j, let  
!
N j
rxn

 represent the part of 

molar flux that arises from heterogeneous reactions, and  
!
N j
forced , the part that owes to 

forced convection.     

Interfacial fluxes arising from heterogeneous reactions can be described following 

the approach established by Newman and Thomas-Alyea [1]. A general half-reaction is 

written as 

 s j
j
! M j

z j " ne#,
  (3.1) 

where Mj is the chemical formula of species j, zj its equivalent charge, and sj its 

stoichiometric coefficient in the reaction. (For a half-reaction written as a reduction, sj is 

positive for a product and negative for a reactant.) Conservation of charge mandates that 

the number of electrons in the reaction, n, should satisfy  

 
z
e!
n = s jz j ,

j
"

 
(3.2) 

where ze! = !1 equivalent/mole is the equivalent charge of electrons. In accord with 

Faraday’s law, the total species flux 
 
!
N j  through a location on the separator boundary 

(labeled with the subscript ‘surf’) is 
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(3.3) 

where  
!n  is a surface normal vector, cj is the interstitial molar concentration of species j 

in the electrode’s pores,  
!v forced  is the convective velocity,  

!
i  is the current density, and F 

is Faraday’s constant. 

The convective velocity  
!v forced  introduced in equation (3.3) has a subtle definition. 

Species fluxes through the separator depend on the rates of both reaction and convection, 

but it is intuitively clear that one can control the convective velocity (driven 

mechanically) independently of the current (driven electrically);  
!v forced  represents only 

the independently variable portion of the bulk velocity, which does not exactly identify 

with standard reference velocities for convection. One example of a standard reference 

velocity is the volume-average velocity   
!v! , defined as 

 
  

!v! = cjVj
!vj

j
! = Vj

j
!

!
N j ,

 (3.4) 

where  
!vj  is the velocity of component j and Vj  is its partial molar volume. Note that 

cjV j  represents the local volume fraction of component j in the solution. 

Through equation (3.3),  
!v forced  can be related to the more familiar reference 

velocity   
!v! . Substitution of equation (3.3) into equation (3.4), followed by summation 

over all species and application of the isothermal, isobaric state equation  



 

 32 

 cj
j
! Vj =1,

 (3.5) 

yields  
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(3.6) 

Thus the forced-convection velocity relates to the volume-average flow velocity in the 

separator, but is corrected for the change in the liquid volume induced by heterogeneous 

reactions across the separator boundaries,  

 !Vrxn = Vk
k
" sk .

 (3.7) 

If the electrolyte concentration is fairly uniform in the electrode (a reasonable 

assumption at sufficient flowrates [4,10]) and the reservoir is well mixed, then at the 

separator’s boundaries each species concentration matches its concentration in the 

reservoir, cj! . With these restrictions the simpler boundary condition 

 

  

!
N j !
!n( )

surf
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"!v! #
!
i
nF

sj +
!
i
nF
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"$Vrxn

%

&
'

(

)
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!n

+

,
-

.

/
0
surf  

(3.8) 

describes material flux through a porous electrode/separator interface when current flow 

and current-coaxial forced convection both occur. (Note that when there are mass-transfer 

limitations within the electrode domains, cj!  in equation (3.8) must be replaced by the 

concentration of j at the interface between the electrode and the separator, which 

generally differs from its concentration in the reservoir.) 
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3.2.2 Flux laws and balance equations 

Aqueous KOH has been used as the electrolyte in alkaline convection batteries 

[2,3]. Thus one can readily employ the concentrated-solution theory for binary 

electrolytic solutions, for which ionic flux laws have been derived in terms of excess 

fluxes relative to   
!v!  [14]. The standard transport properties for binary electrolytes 

include transference numbers t+
0  and t!

0 = 1! t+
0 , which parameterize cationic and anionic 

migration, respectively, and a diffusivity D, which parameterizes bulk electrolyte 

diffusion (cf. equations (1.13) and (1.14)). (For simplicity these properties are assumed 

constant with respect to composition.)  

Since the separator is a porous medium, the transport equations should be further 

modified to account for porosity  ! , finally yielding general ionic flux laws 

 

  

!
N j

!
=

t j
0

!z jF
!
i !D !

!
"cj + cj

!v"

!
!!!!!!! j =+,!.

 
(3.9) 

Here division of superficial fluxes by  !  converts them to interstitial values [15]; 

multiplication by  !  applies the Bruggeman correction for tortuosity to D [16]. An 

explicit flux law for solvent ( j = 0 ) is unnecessary; it follows from kinematic relations. 

Within equation (3.9),   
!v!  is treated as a superficial velocity. (All fluxes through porous 

media will be treated as superficial in this work, a distinction that is also important for the 

analyses in chapters 4 and 5.) 

Since the stoichiometric coefficients ! j  in a formula unit of electrolyte satisfy  
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 z+!+ + z"!" = 0,  (3.10) 

and since local electroneutrality (equation (1.9)) holds, either of the ion concentrations 

can be expressed in terms of a total local electrolyte concentration  

 c = c+
!+

=
c"
!"
.
 

(3.11) 

Electroneutrality further implies that the current density is locally solenoidal,  

  
!
!"
!
i = 0.

 
(3.12) 

Assuming plug flow and a one-dimensional geometry in the y direction (cf. Figure 

3-1), insertion of equation (3.9) into either transient ion balance 

 
 

!c
!t
= "
!
#$
!
N ,

 
(3.13) 

followed by the assumption of local electroneutrality (1.9), yields a form of the 

convective diffusion equation that holds throughout the separator domain, 

 

 

!c
!t
+ v! !c

!y
= " "D !2c

!y2
.
 

(3.14) 

This material balance equation describes convective diffusion in electrochemical systems. 

Either ion balance also implies the auxiliary integral condition  

 c!L = c
0

L

" (t, y) dy.
 

(3.15) 
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The system of equations (3.8), (3.9), (3.14), and (3.15) generally describes transient 

diffusion in convection-battery separators when the electrolyte concentrations in the 

electrode domains match the concentration in the reservoir (cf. Figure 3-1).  

A general assessment of separator performance can be provided by an analysis of 

the governing system at steady state, which allows the separator’s limiting current to be 

determined. To establish the steady-state concentration distribution in the separator, 

equation (3.14) can be solved with  

 !c
!t
= 0,

 
(3.16) 

subject to the boundary condition found by substituting equation (3.9) into equation (3.8), 

along with the integral constraint expressed by equation (3.15).  

 

3.2.3 Non-dimensionalization 

Adoption of dimensionless quantities reveals some critical parameters that control 

the overall physics. Let  
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+
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(3.17) 

represent the dimensionless position in the separator region ξ, ion concentration θ, 

dimensionless fluid velocity Pe (a modified Péclet number), and dimensionless current 

density I.  On the basis that c!"Vrxn  tends to be very small in comparison to transference 

numbers, it is typically reasonable to assume that  
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 !Vrxn " 0.
 

(3.18) 

(This assumption is not as strict as the assumption of extreme dilution, which has the 

same consequence, but is much more restrictive on the applicability of the transport 

formulation.) Observe that diffusivities are typically of the order of 10!9 !m2s!1 , so 

relatively low flowrates can cause Péclet numbers to be extremely large.  

 

3.3 Analysis and discussion 

The dimensionless concentration distribution that satisfies the governing system is  

 
! "; I ,Pe( ) = 1# I

Pe
1+ Pe # Pe

tanh Pe( )
$

%
&

'

(
)e

2Pe"*
+
,

-,

.
/
,

0,
.
 

(3.19) 

Péclet numbers and dimensionless currents can be positive or negative; note that the 

dimensionless concentration has the symmetry property  

 ! "; I ,Pe( ) = ! 1#";#I ,#Pe( ),  (3.20) 

in line with physical expectations. Figure 3-2 shows concentration distributions at several 

flowrates with fixed current I = 1, corresponding to the limiting current without net 

electrolyte flow ( v! = 0  or Pe = 0 ). A positive Pe ( v! > 0 ) delivers additional 

electrolyte to the anode, eliminating mass-transport limitations and making the electrolyte 

concentration deviate from zero at ξ = 0. Negative Pe values are not depicted in Figure 

3-2 because they increase mass-transport limitations, and are consequently impractical 

for applications. The observed responses to positive or negative Pe owe to the fact that  
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Figure 3-2 Co-current forced convection reduces mass-transport limitations in separators. 
Dimensionless concentration distribution as a function of positive Péclet number Pe > 0, 
at dimensionless current density I = 0 (the limiting current with no flow). Reproduced 
form reference 12. 
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anions react in an alkaline flow battery; if cations reacted — as they do in lithium-ion 

batteries — the impact of Pe on mass-transfer limitations would reverse, and 

countercurrent flow would reduce transport limitations. 

The dimensionless limiting current IL can be found through equation (3.19). If 

electric current is co-current with the volumetric flow ( I > 0 ), then at IL the electrolyte 

concentration in an alkaline convection battery separator vanishes at ! = 0 , 

 1
IL Pe( ) = 1+

1
Pe

! 1
tanh Pe( ) .  

(3.21) 

Alternatively, if the two flows are countercurrent, then IL is reached when the electrolyte 

concentration vanishes at the cathode, ! = 1. Note that countercurrent scenarios can be 

described using equation (3.21) by applying the symmetry property explained after 

equation (3.19).  

In Figure 3-3 dimensionless limiting currents IL for current-coaxial flow are 

plotted against Pe; positive Pe values describe co-current flow, whereas negative values 

describe countercurrent flow. The corresponding volumetric flowrate Q and current 

density i are provided in real units on the opposing axes to give a more tangible physical 

sense of the dimensionless quantities. Several parameters describing the experimental 

setup of Suppes et al. [2,3] were used to redimensionalize IL and Pe: geometric factors 

L = 2!cm  and cross-sectional diameter 1.27!cm ; the porosity of a random spherical 

packing  ! = 0.432  [17]; and the diffusivity and cation transference number of 2 M 

aqueous KOH, D = 2.72 !10"9 !m2 / s  and t+
0 = 0.23 , respectively [1,18].  
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Figure 3-3 Limiting currents can be controlled by varying the rate of current-coaxial 
forced convection. Contour plot showing dimensionless concentration overpotential φc as 
a function of I and Pe. In the inset, I is scaled by the dimensionless limiting current IL. At 
constant current, concentration overpotential decreases as Pe increases. Reproduced form 
reference 12. 
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 Figure 3-3 shows that IL converges rapidly to asymptotic limits 

 

 
lim
Pe!1

IL = Pe     and    lim
Pe"!1

IL = 1
2

.
 

(3.22) 

Low electrolyte diffusivity amplifies the effect of forced convection: IL rises by an order 

of magnitude with a volumetric flowrate as low as 0.3 mL/hr. Although this effect is 

amplified artificially because of the very large separator thickness used by Suppes et al.  

( L = 2!cm ), it is nevertheless clear that very slow flows can increase limiting currents 

dramatically. Flowrates of a few milliliters per minute should achieve the same effect in 

separators with more practical thicknesses. In any case, the convection-battery 

configuration may make possible significant reductions in charge or discharge times.  

Through equation (3.19) the reduction in voltage loss arising from electrolyte 

flow can also be calculated. Under the assumption that the electrolyte is ideal, the 

MacInnes equation (modified form of Ohm’s law) governing the distribution of potential 

Φ in the separator is given by equation (1.16). Integration of the second term in the 

MacInnes equation (1.16) across the separator thickness and insertion of the 

dimensionless parameters from equations (3.17) yields the net concentration 

overpotential Φc. A dimensionless concentration overpotential φc can then be identified as 

 
!c =

"Fz+z"#c

RT z"t+
0 + z+t"

0( )
= ln

1" I
Pe( )sinh Pe( )+ IePe

1" I
Pe( )sinh Pe( )+ Ie"Pe

$

%
&

'

(
).

 
(3.23) 

Figure 3-3 also provides contours that show how φc depends on I and Pe. As the limiting-

current line in Figure 3-3 is approached, the concentration overpotential diverges. 

Although earlier analyses have argued that concentration gradients vanish in the 
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separators of convection batteries [3], causing minimal overpotential, equation (3.19) 

contrarily shows that φc depends strongly on Pe.  

Equation (3.23) rationalizes the overpotential decrease observed by Suppes et al. 

after co-current current-coaxial flow was applied to an initially stagnant alkaline 

convection battery [2]. In the limits of large and small Péclet number, 

 
 
lim
Pe!0

"c = ln
1+ I
1# I

!!!!and!!!! lim
Pe!I ,1

"c = ln 1+2I( ).
 

(3.24) 

The difference between these two formulas can be used to compute the steady-state 

concentration-overpotential reduction !"c  for alkaline convection-battery separators 

with large-Péclet-number, co-current, current-coaxial flow, 

 

 
!"c = limPe!I ,1

"c # limPe$0"c = ln
1# I( ) 1+2I( )

1+ I
%

&
'

(

)
*.

 
(3.25) 

This final result allows direct computation of the voltage changes observed 

experimentally in alkaline convection batteries. Since the previously investigated alkaline 

convection battery was observed at room temperature using a 2 M KOH electrolyte,  

 !"c = !#c $14 !mV.
 

(3.26) 

In the experiments of Suppes et al. [2,3], the load was fixed at R = 550! . At potential 

V = 1.2!V , the total current can be found by applying Ohm’s law to the load. Division by 

the cross-sectional area of the separator yields i = 1.9!mA / cm2 , corresponding to 

I = 0.92 . Using equation (3.25), !"c = #2.1 . Conversion back to a dimensional potential 

shows that !"c = #30 mV .  
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Although the present calculation is based on very rough approximations, it obtains 

a result consistent with experimental observation: !"#c  in the range of 10-50!mV . 

Error could arise from the assumptions made regarding separator porosity and tortuosity. 

Although a pseudo-steady-state assumption is probably reasonable when Péclet numbers 

are large, transients may be significant when flow is very slow.  Additional overpotential 

increases could also occur due to concentration accumulation or depletion in the 

electrodes, an effect that is amplified when flow is stopped.  

 

3.4 Optimal flowrate 

From an engineering point of view, flowrate control might be an important factor 

in using a convection battery, because varying pumping loads could change the battery's 

operating cost. Two conflicting factors determine the power efficiency of a convection 

battery. The electrical power efficiency rises with flowrate, since concentration 

overpotentials are decreased by electrolyte flow; but mechanical power efficiency falls 

with flowrate, owing to the parasitic power demands of pumping systems. Therefore, it is 

worthwhile to seek an optimal flowrate to optimize the net power efficiency of a 

convection-battery system.  

 

3.4.1 Power gain by overpotential decrease 

As shown in chapter 3.3, forced convection of electrolyte through a traditional 

battery cell can increase its output voltage by decreasing the concentration overpotential. 
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Concentration overpotential is associated with an ohmic power loss through equation 

(1.16), 

 
Pc = iA!c = "

iART z"t+
0 + z+t"

0( )
Fz+z"

ln
1" I

Pe( )sinh Pe( )+ Ie"Pe

1" I
Pe( )sinh Pe( )+ IePe

#

$
%

&

'
(;

 
(3.27) 

the power savings due to application of electrolyte flow, ΔPc, is then given through 

equation (1.16) by 

 
!Pc = "iA #c " limPe$0#c( ) = " iART z"t+

0+z+t"
0( )

Fz+z"
ln

1" I
Pe( )sinh Pe( )+ Ie"Pe

1" I
Pe( )sinh Pe( )+ IePe

%
1+ I
1" I

&

'
(

)

*
+.

 
(3.28) 

This power savings is reflected by a reduction in the energy that the battery releases as 

heat, and a corresponding increase in useful work that the battery can do. 

 

3.4.2 Power loss by friction 

The convection-battery configuration does have a potential disadvantage: pump 

operation can be energetically costly. As fluid flowrate increases, there is an increase in 

heat dissipation due to the frictional losses associated with fluid motion through the 

porous electrodes and separator. The amount of energy dissipated in the separator of a 

cylindrical packed-bed convection battery can be estimated using the Ergun equation 

[19], which correlates the hydraulic pressure drop Δp to the volumetric flowrate (Péclet 

number). The product of the pressure drop and flowrate then yields the rate of energy 

dissipation by fluid friction, 
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!Pf =

50 1"#( )2 aV2µD2A
3L

Pe2 +
7#1.5 1"#( )aV$D3A

3L2
Pe3.

 
(3.29) 

Here µ and ρ are the dynamic viscosity and density of the liquid; aV is the surface-to-

volume ratio of the particles that comprise the packing. (Although it is not usually 

involved in the Ergun equation, the diffusivity D appears in equation (3.29) because the 

Péclet number was used as a representative volumetric flowrate.) Equation (3.29) shows 

that frictional losses increase with the rate of liquid flow. At low flowrates, the 

dissipation increases with Pe2; at high flowrates, a Pe3 dependence dominates. As one 

would expect, there is no frictional dissipation when Pe = 0.  

 

3.4.3 Optimal flowrate 

Summation of the power gained from decreasing concentration overpotentials and 

power lost to friction in pumping yields total power loss ΔPloss 

 !Ploss = !Pc +!Pf .
 

(3.30) 

Figure 3-4 shows the net power loss as a function of the flowrate at a fixed dimensionless 

current density, I = 500. When the Péclet number is small (low flowrate), the 

concentration overpotential dominates the power loss; as the flowrate increases losses 

due to fluid friction begin to dominate. Interestingly, an optimal flowrate is present 

between these two extremes, showing that there is an optimal fluid flowrate that  
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Figure 3-4 The total power losses Ploss is demonstrated as a function of the dimensionless forced 
convection rate, Pe at I = 500. The power losses are from the friction in the porous medium and 
the concentration overpotential of the nonuniform ion distribution. The concentration 
overpotential effect is dominant when the flow is slow; however, the friction loss is dominant 
factor in the fast flow. 
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minimizes the net power loss due to concentration overpotential in the separator and 

pumping fluid through it. Since the power gain from decreased overpotential also 

depends on the current density, the optimal dimensionless flowrate will also vary with the 

dimensionless applied current, as shown in Figure 3-5. 

 

3.5 Conclusions 

Preliminary analysis of an alkaline convection-battery separator suggests that 

current-coaxial forced convection may provide significant benefits when applied to 

traditional battery cells. Convection reduces mass-transfer limitations; the corresponding 

reduction in concentration overpotential at steady state can be estimated readily with 

equation (3.25). Most importantly, equation (3.21) was developed to show that forced 

electrolyte convection affects limiting currents dramatically. Thus, if rate limitations 

associated with the cell reactions or electrode materials are minimal, the charge/discharge 

times of rechargeable convection batteries can in principle be made arbitrarily short by 

imposing relatively slow electrolyte flows.  

To evaluate the benefits of the convection-battery configuration fully, parasitic 

losses owing to the power demands of pumping systems were considered as well. When 

weighing the benefits of the convection-battery configuration it is clearly necessary to 

include the cost associated with driving fluid flow through the battery, i.e., the power 

demand associated with pumping. It appears that there is a domain of Péclet number 

where the benefits of concentration-overpotential reduction outweigh the pumping cost.  
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Figure 3-5 The optimal dimensionless flowrate, Pe, for the best power efficiency is presented as 
a function of the dimensionless current, I. 
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Furthermore, pumping costs are reasonably low, considering the dramatic affect of Péclet 

number on the maximum charge/discharge rate. In the future, for a complete assessment 

of the convection-battery configuration, the model should be extended to account for 

interfacial kinetic limitations and composition variation within the electrodes, which were 

neglected here. 
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Chapter 4 Thermoelectrical modeling of large-format prismatic lithium-ion cells 

Owing to their large energy densities and low packaging cost, large-format 

prismatic lithium-ion cells are becoming ubiquitous. Thermal management is crucial for 

large batteries due to their small surface-to-volume ratios, which can lead to local 

degradation of active materials within the battery, or catastrophic thermal runaway of the 

battery as a whole [1]. In this chapter, we extend Newman-Tobias porous-electrode 

theory [2] by coupling its local charge balances to a local energy balance. The model is 

shown to predict the transient thermal response of a prismatic lithium-ion battery pouch 

cell well. The approach taken here simplifies the standard Dualfoil model [3-5] by 

neglecting mass transport phenomena in the battery interior. Despite this simplification, 

the model predicts the thermal response of 15-Ah A123 prismatic pouch cells within 

experimental error. 

 

4.1 Motivation 

Early in 2013, two cases of aircraft cabin fires originating from high-capacity 

lithium-ion batteries made world headlines [6-9]. A postmortem analysis by the National 

Transport Safety Board reported several signs of internal short-circuits and thermal 

runaway within the airplane batteries [10]. Figure 4-1(a) compares exemplar and 

damaged lithium-ion battery packs from GS-Yuasa Inc. Figure 4-1(b) and (c) illustrate  
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(a) 

 

(b) 

 

(c) 

Figure 4-1 Boeing event lithium-ion battery (a) exemplar and burned JAL event battery, 
(b) exemplar and damaged cell CT scan image, and (c) damaged electrode; yellow circle 
indicates a hole at the center of the electrode. Reproduced from reference 10. 
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the signs of thermal runaway and internal shorts within failed batteries. The electrolytic 

solutions in the battery cells comprise mixed carbonate solvents, with boiling points 

between 91 °C (for dimethyl carbonate, DMC) and 248 °C (for ethylene carbonate, 

EMC). These are low enough that resistive heating or exothermic chemical reactions 

causes outgassing, explaining why the jellyrolls are warped and the tabs are dislocated in 

the CT scan of the damaged cell from Figure 4-1(b). Although the GS-Yuasa case is still 

under investigation, these figures are enough to suggest that more accurate thermal 

management systems are needed, which leads naturally to the development of faster, 

more accurate electrothermal battery models. 

Several researchers have also observed that in large-format cells of various types, 

spatial non-uniformity of temperature within the cell volume can significantly impact 

battery performance [11-15]. An example of thermal inhomogeneity is shown in Figure 

4-2; one can see that the domain near the tab at the upper left is significantly warmer than 

its surroundings after a long period of cell operation. Such ‘hot spots’ are typical in large-

format cells; understanding where and how they occur is critical for evaluating the safety 

of a given battery configuration.  

Even if they do not cause catastrophic failure of the battery cell, inhomogeneities 

in the thermal history of battery materials may affect cycle life. Battery degradation with 

respect to time and cycling is presently very poorly understood, and is typically modeled 

almost wholly empirically, partially because of a lack of mechanistic understanding 

[16,17]. Since temperature tends to affect phenomena like mechanical fatigue, side 

reactions, and other factors associated with aging, it worthwhile to develop more detailed, 

microscopically informed thermal models. 
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(a) 

 

(b) 

 

(c) 

Figure 4-2 Three infrared images of 14.6 Ah lithium-ion battery cell from LG Chem Inc.  
The images are taken at (a) 2 minutes, (b) 10 minutes, and (c) 18 minutes, respectively. 
These show how temperature profile develops. The battery was discharged at a constant 
3C rate [15]. Reproduced from reference 15. 
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Present day battery-cell designs are not optimized to minimize temperature 

inhomogeneity, and therefore may not achieve the highest possible safety and health 

targets. In order to understand how to optimize cells, one needs models with predictive 

capability. This requires developing an understanding of the fundamental transport and 

kinetic properties of battery materials within a specific battery chemistry. By fitting our 

coupled electrothermal model to experimental data gathered from an existing battery cell, 

we obtained reliable measurements of such properties. With those quantities in hand, it 

should be possible to model alternative battery-cell geometries reliably in the future. 

In this chapter, I first describe some experiments that motivate the theoretical 

study, which were developed for model testing and performed by Jason Siegel (Anna 

Stefanopoulou group, UM Mechanical Engineering) and Lynn Secondo (Monroe group). 

I then develop an extended Newman-Tobias electrothermal model, provide a dimensional 

analysis of it, evaluate parameter sensitivity, and demonstrate a procedure by which the 

experimental data was used to establish the thermoelectrical properties of the materials in 

an A123 15Ah Li-FePO4 (LFP) battery pouch-cell. For solving the inverse problem of 

property estimation with the model, data were gathered using a periodic galavanostatic 

charge/discharge scheme (an ‘excitation test’) that allowed the battery to be run at a 

constant current magnitude without large fluctuations in its overall state of charge (SOC). 

Despite its apparent lack of complexity (relative to the Dualfoil package), our four-

parameter model, which neglects all mass-transfer effects, matches experimental data 

within error. For the A123 battery, the model fit yields a set of material-property values 

that are consistent with measurements from the literature. 
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4.2 Experiments 

4.2.1 Experimental setup 

Surface-temperature profiles were measured in a Z-Plus thermal chamber 

(Cincinnati Sub-Zero Inc., USA), with ambient temperature held fixed at 25°C by forced 

convection. Sixteen T-type thermocouples from OMEGA Engineering Inc., USA, with 

resolution of 0.5°C, were placed on the surface of the battery to track its temperature 

during operation. Tests were performed on 15-Ah LFP pouch cells from A123 Inc., to 

which thermocouples were attached with adhesive tape, as shown in Figure 4-3(a). The 

exact placement of the 16 thermocouples on the pouch-cell surface is illustrated 

schematically in Figure 4-3(b). The irregular thermocouple spacing was chosen based on 

literature observations of temperature distributions in other large-format batteries (cf. 

Figure 4-2) [15], which suggested greater heating (and greater thermal gradients) near the 

tabs. Higher spatial density of temperature measurements near the tabs also helped to 

achieve higher precision when locating the maximum temperature. 

 

4.2.2 Battery preconditioning 

Batteries were cycled in the thermal chamber using a Bitrode battery tester 

(Bitrode Inc., USA). Before each experimental thermal test, the battery was electrically 

preconditioned at the desired ambient temperature (25 °C in these tests) by first charging 

at a 1C rate up to the open-circuit voltage corresponding to 100% SOC (3.6V for the 

A123 15Ah LFP cells used here). Practically, charging at this rate corresponds to a 

nontrivial amount of overpotential. To ensure that the desired equilibrium SOC was  
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(a) 
 

(b) 

Figure 4-3 (a) Experimental setup of the 15-Ah A123 LFP pouch cell (190 mm x 146 mm 
x 6.5 mm) in the thermal chamber, with thermocouple array attached. (b) Schematic 
diagram showing the thermocouple locations schematically, on a Voronoi diagram used 
to establish area elements for spatial temperature averaging. 
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reached, the cell voltage was subsequently held constant while the current was allowed to 

relax until it reached C/100 (a cutoff rate of 0.15 A for A123 15Ah LFP). Typical current 

and potential data from pre-test battery conditioning are shown in Figure 4-4. After 

preconditioning, the desired initial SOC for testing was attained by coulomb counting 

during a discharge, using the reported 15Ah capacity as the assumed capacity. All tests 

reported here initiated at a 50% SOC, achieved via discharging from the highest charge 

condition at 1C for 30 minutes. After this discharging, the cell was then held at open 

circuit (0C) until each of the thermocouples on the cell surface reached ambient 

temperature, typically requiring a rest time of one hour. Thermal relaxation appears to be 

the rate-limiting process: during the thermal relaxation steps, no significant voltage 

changes were observed.  

 

4.2.3 Excitation test control scheme 

Most of the material properties of the battery are known to depend on SOC [18-

23]. Therefore, a control scheme involving short-duration charges and discharges with 

fixed periodicity was introduced to allow the study of rate and temperature effects 

without inducing significant changes in the volume-averaged thermodynamic state. 

Square-wave excitation tests with variable wave period p and amplitude A were 

performed around an average SOC value of 50% (see Figure 4-5 for an illustration of the 

input signal). Around 50% SOC, the open-circuit potential of the battery exhibits a 

plateau with respect to charge state, further ensuring that the properties are relatively 

constant. Below, transient temperature-distribution data are reported during excitation 

tests with period p = 100s and amplitudes of A = 5C and A = 1C. 
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Figure 4-4 Current/voltage data during preconditioning of an A123 15 A-h LFP cell at an 
ambient temperature of 25 °C. 
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Figure 4-5 Control scheme for excitation tests. The scheme repeats charge and discharge 
periodically, maintaining a relatively constant SOC during testing. 
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4.2.4 Experimental results 

Figure 4-6 presents experimental results from two different excitation tests of the 

A123 prismatic cell. The reported average temperature represents a “surface average”. To 

compute surface averages, the area sampled by each thermocouple was taken from a 

Voronoi tessellation, as in Figure 4-3(b). The Voronoi tessalation divides a surface 

containing a finite number of nodes into cells, each of which contains all points whose 

distances from the node are less than or equal to their distances from any other node. The 

sizes of the Voronoi cells relative to the total battery-surface area were used as weighting 

factors when computing the spatially averaged temperature. (This mimics discretely the 

process of integrating distributions over surfaces to compute their geometric averages, 

used by the COMSOL simulation package.) 

Figure 4-6(a) shows that the surface temperature of the battery is highly non-

uniform during excitation tests, even though the average SOC is relatively constant. Thus 

additional factors than thermodynamic state take part in the thermal response. One would 

expect some extent of Joule heating (heat generated by current flow through electrical 

resistance) during the excitation, which, being always exothermic, should cause the 

surface temperature to rise. More intriguing are the oscillations in temperature in the 

steady periodic state, shown most clearly in Figure 4-6(b), and also possibly observable 

through the noise in Figure 4-6(c). These oscillations are surprising since the rate of Joule 

heating should be relatively constant throughout the test, since power ~ I2R and I always 

has the same magnitude. Thermal oscillations at a fixed current magnitude (temperature 

falling relative to the average during charge steps and rising during discharges) suggest 

there is reversible heat generation or consumption with the passage of current.   
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(a) 

 

(b) 
 

(c) 

Figure 4-6  Experimental results. (a) Surface temperature profile for an excitation test 
with A = 5C, p = 100s after 1 hour. The thermocouple locations exhibiting the maximum 
and minimum temperatures are circled. (b) Transient maximum (red), minimum (blue), 
and surface-averaged (green) thermocouple readings during an excitation test with A = 
5C, p = 100s; (c) excitation test with A = 1C, p = 100s.  
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Such behavior is typically associated with the reversible heat – that is, the entropy – of 

the cell reaction, which can act as a heat source or heat sink, depending on the sign of the 

current. Reaction entropy has been quantified for a number of battery systems and 

electrode materials [1,19,21-23].  

 

4.3 Modeling 

4.3.1 Previous thermoelectrochemical modeling 

Two fundamental phenomena are combined in electrothermal modeling: charge 

transport and heat transport. The approach to modeling heat transfer is common across 

groups, but there are two distinct philosophies of charge-transport modeling: equivalent-

circuit modeling [24-28] and electrochemical mass-transport modeling [2-5,29-32]. Both 

methods describe the electrical response of lithium-ion battery cells quite accurately, but 

their levels of sophistication regarding the cell electrochemistry differ significantly. 

For fast calculation, equivalent-circuit models (ECMs) have been widely used to 

provide phenomenological relationships between current/voltage input and 

voltage/current output of battery constituents, cells, or systems [24-28]. An ECM treats 

the battery cell as a network of resistors and capacitors, which in principle model the 

electrical response to microscopic phenomena such as internal mass diffusion (in solid 

and liquid phases), migration, charge transfer, and interfacial capacitance. Open-circuit 

voltage and arbitrary voltage sources are sometimes included to account for the observed 

dependence of the system response on instantaneous SOC, applied current, and 

temperature. ECMs are computationally efficient, motivating their use for real-time 
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control systems, such as SOC and state-of-health (SOH) estimators or power-

management systems for HEVs [27].  

For thermoelectrochemical modeling, Fleckenstein et al. have modeled a battery 

cell as an aggregate of volume elements through which charge transport is governed by 

ECMs, which are coupled to a general thermal energy balance that accounts for heat 

accumulation, conduction, and local heat generation in each volume element [33]. The 

charge balance communicates irreversible Joule heating and reversible reaction heat into 

the local thermal-energy balance. Also, the thermal model in principle communicates 

back to the ECMs, through functions that establish the temperature dependences of 

resistances and capacitances. (Temperature dependences of ECM parameters were not 

included in Fleckenstein et al.’s analysis.) 

Fleckenstein et al.’s model was found to match experimental temperature 

distribution data effectively for a 32113-type 4.4-Ah LFP battery (company, country), but 

discharge data from a very narrow range of applied currents was used for model 

validation. It is possible that outside the 6.8C-9.2C rate range used by the authors the 

ECM employed breaks down, preventing accurate data fitting.  

Electrochemical mass-transport models [2-5,29-32] have also been used to 

underpin thermoelectrochemical simulations. The standard Dualfoil scheme is the most 

common mechanistically based electrochemical model [3-5]. Fuller et al. developed a 

lithium-ion battery-cell model based on porous electrode theory, concentrated-solution 

theory (describing mass transport and ionic conduction in liquid-electrolyte phases), 

Ohm's law (describing charge transport in solid phases), and intercalation kinetics (at 
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solid/electrolyte interfaces). Dualfoil augments the Newman-Tobias porous-electrode 

model by accounting for concentration polarization in the separator, pore-filling 

electrolyte, and solid intercalation media.  

Bernardi et al. accounted for energy generation within a battery, under the 

assumption that, owing to the relatively small thickness of individual cells (typically 

much less than 1/2 mm), their temperatures are locally uniform [34]. Srinivasan and 

Wang [29] provided the most complete coupling of Dualfoil to a local heat balance. In a 

2D geometry, they solved the electrochemical and thermal model equations 

simultaneously by discretizing the partial differential equations involved and using an 

implicit linear multistep solution method. Recently, Christensen et al. suggested a new 

approach for 3-D thermoelectrochemical modeling [30-32], which will be applied to 

large-capacity Li-ion NMC cells in chapter 5. 

 

4.3.2 Newman-Tobias model (electrical porous-electrode theory) 

The Newman-Tobias porous-electrode model [2] describes charge transport within 

porous electrodes, and suggests a few key dimensionless parameters that govern the 

charge distribution and reaction distribution within them. Newman and Tobias modeled 

porous electrodes with a ‘macrohomogeneous approach’ that expresses the microscopic 

geometry of porous materials in terms of a local porosity and a local surface-to-volume 

ratio. Each simulation volume element comprises conductive solid (phase 1) and 

conductive liquid (phase 2), which both conduct charge and can exchange it through local 

interfacial charge transfer. Newman and Tobias’s original paper provides analysis of the 
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current, potential, and reaction distributions in planar porous electrodes with both linear 

and Tafel interfacial kinetics, assuming that the electrode in question is isothermal [2]. 

They introduce a few dimensionless parameters that control the distribution of current, 

and study their effect on reaction distributions in detail. 

Porous electrodes have been widely used because interfacial charge-transfer rates 

generally scale with surface area, and porous electrodes tend to afford very high surface-

to-volume ratios aV. Figure 4-7 schematizes the charge transport and exchange processes 

that occur in a planar porous electrode as it experiences an applied current. In the model, 

the detailed microscopic geometry shown in Figure 4-7(a) is neglected, excepting for its 

description in terms of aV and the electrode porosity  ! ; the solid and liquid are treated as 

“volume-averaged” phases, which in each differential control volume support parallel 

charge conduction (through their bulk) and exchange (across their interface within the 

element), as depicted in Figure 4-7(b). (The figure also establishes sign conventions for 

current and interfacial charge exchange; the overall current density i is positive when 

cathodic; positive current associated with charge exchange, in, flows into the electrolyte 

from the solid.)  

The fundamental model comprises dynamic charge balances on the solid and liquid 

phases, designated with subscripts 1 and 2, respectively: 

  !" i1
!
= aVin ,

 
 (4.1) 

  !" i2
!"
= #aVin .

 
 (4.2) 

 



 

 66 

 

 

 

 

(a) 

 

(b) 

Figure 4-7 A schematic diagram showing (a) a charging anode in 1-D and (b) magnified 
one part.  
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Note that in combination with Gauss’s law and the local electroneutrality condition, 

overall charge conservation within each volume element implies that the sum of both 

currents is solenoidal, !" i1 + i2( ) = 0 .  

The generation terms in equations (4.1) and (4.2) describe the kinetic current, 

which relates to the flux of charge across the liquid/solid interface due to electrochemical 

reactions. For an elementary electrochemical reaction, charge-transfer kinetics is 

described by the Butler-Volmer equation 
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 (4.3) 

in which β is a symmetry factor, i0 is the exchange-current density (a kinetic rate 

constant), and ηs is the surface overpotential. Surface overpotential relates to the local 

voltages of the solid and liquid, and the open-circuit potential U, through 

 !s ="1 #"2 #U.
 

 (4.4) 

The open-circuit potential is a thermodynamic property, measured at equilibrium (in an 

isothermal electrochemical system, ‘equilibrium’ corresponds to a situation where there 

is no current and the cell voltage is constant). Generally U may depend on the local state 

of charge (SOC) of the electrode, and is described for many materials by a Nernst 

equation [35]. If solid-phase diffusion is rate-limiting, U may also include a concentration 

overpotential arising from concentration polarization within the solid intercalation 

compounds in the electrodes. This feature is neglected here, but is included in the 

Dualfoil model in the next chapter. 
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 To close the problem, flux laws are needed to relate the local current densities in 

the liquid and solid to their local potentials. Newman and Tobias used versions of Ohm’s 

law in each phase, 

  !"1 = #$1
!
i1,   (4.5) 

  !"2 = #$2
!
i2,

 
 (4.6) 

where ρi is the bulk resistivity of phase i. (Note that Ohm’s law as it stands is naturally a 

good model for charge transport in solids; for ion transport in liquids, Ohm’s law can be 

derived from MacInnes equation (1.16) under the assumption that concentration gradients 

in the liquid electrolytic solution are negligible; note that ρ2 = 1/κ2, where the ionic 

conductivity is given by equation (1.17).) Equations (4.1)-(4.6) comprise the most 

general form of the Newman-Tobias model, providing the governing system of interior 

equations used in the three-dimensional simulations described later in this chapter. 

In their seminal paper [2], Newman and Tobias analyzed equations (4.1)-(4.6) for a 

one-dimensional electrode geometry (an electrode of thickness δ in the x direction) under 

two extremes of the reaction kinetics. When interfacial kinetics is fast, i0 tends to be large 

in comparison to in; consequently overpotential is small, and 
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 (4.7) 

Consequently, fast reaction rates correspond to a ‘linear kinetic regime’. Similarly, when 

interfacial kinetics is slow, overpotential is large, and the kinetic expression simplifies 

asymptotically to an exponential relationship between transfer current and overpotential – 
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the so-called Tafel regime. In this discussion (and since interfacial kinetics in Li-ion 

batteries tends to be fast) linear kinetics will be assumed for simplicity. 

 In the linear kinetic regime, the transfer current can be expressed simply as 

 !kin = aV "1 #"2 #U( ),
 

 (4.8) 

in which the kinetic resistivity !k  depends on temperature, the surface-to-volume ratio of 

the solid phase, and the interfacial exchange-current density through 

 1
!k

=
i0nF
aVRT

.
 

 (4.9) 

Newman and Tobias obtain an analytical solution to the one-dimensional problem 

by first inserting equation (4.10) into the charge balance on the solid (equation (4.1)), 

taking the gradient of both sides, then inserting the expressions of Ohm’s law from 

equations (4.5) and (4.6), yielding the master equation 

 

 
! !" i1

!
( ) = 1

#k
#1i1
!
$ #2 i2
"!

( ).
 

 (4.10) 

Note that U does not appear here, although in lithium-ion batteries, it is generally a 

function of the extent of intercalation that has occurred in a solid electrode material. 

Following Newman and Tobias, we take the open-circuit potential to be constant, under 

the assumption that changes in the local charge state are minimal in the experiments 

being modeled. (Although any constant would suffice, we set U = 0 for the remainder of 

this analysis for simplicity.) 
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In a 1-D geometry (as in Figure 4-7), the solenoidal character of the total current 

density allows equation (4.10) to be solved analytically. The total current satisfies 

 i = i1 x( )+ i2 x( ).
 

 (4.11) 

That is, although the local currents in the solid and liquid may change, the total current 

density in each volume element remains constant.  In the situation shown in Figure 4-7, 

two boundary conditions arise naturally: 

 i1 x = 0( ) = 0,
 

 (4.12) 

 i1 x =!( ) = i.
 

 (4.13) 

At x = 0 , the interface with the separator, the conductive solid material has an insulating 

boundary; therefore the electric current is entirely ionic, passing only through the 

electrolyte. In comparison, at x = ! , the liquid and solid meet at a solid, electronically 

conductive current collector; therefore, the current flows only through the solid phase. 

  

4.3.3 General energy balance 

 Our work extends Newman-Tobias theory by incorporating a detailed local 

energy balance. The general form of this balance for a single, stationary, isobaric, 

multicomponent phase is given by Deen [36]: 
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where Cp is the volumetric heat capacity, k the thermal conductivity, and  
!q x( ) is the 

Dufour energy flux density (heat flux driven by concentration gradients); H i ,  
!
Ji , and Ri 

are the partial molar enthalpy, molar flux density relative to the mass-average velocity, 

and homogeneous generation rate of species i, respectively. (Note that the molar-flux 

densities in equation (4.14) relate to the local current density through Faraday’s law, 

equation (1.8).) 

The term on the left of equation (4.14) represents the local accumulation of 

enthalpy. The terms under the divergence on the right account for heat flux by 

conduction, net excess flux of latent heat, and the Dufour effect; the last term accounts 

for enthalpy generation, primarily by chemical reaction, but also by material 

accumulation (through the divergence of excess flux). Assuming that the Dufour flux can 

be neglected – shown by a variety of sources to be a good assumption in battery systems 

[21-23], equation (4.14) simplifies down to 
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The second term on the right of equation (4.15) accounts for Joule heating as follows. 

Current density relates to flux densities through Faraday’s law equation (1.8), written in 

terms of molar fluxes as 
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using thermodynamics in terms of electrochemical potentials, it can be shown that the 

change in partial molar enthalpy of a charged species relates to the electric potential Φ 

through 

 !Hi = ziF!".
 

 (4.17) 

Together with Ohm’s law, in the general form 
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 (4.18) 

(where ρ represents the phase’s effective resistivity) the right side of equation (4.15) can 

be rearranged to get a term that accounts for Joule heating by conduction through the 

bulk (simple I2R heating) 
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 (4.19) 

The last term in equation (4.19) accounts for local heat generation by reaction. 

 Assuming that equation (4.19) applies to a volume element of a porous 

electrode, and that the bulk generation of reaction enthalpy comes from interfacial 

charge-transfer reactions, equation (4.19) becomes 
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 (4.20) 

(See the appendix to this chapter for the details of this connection), where !Srxn  is the 

local reaction entropy.  
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Use of equation (4.20) assumes that the solid and liquid within a given porous 

simulation volume element are in thermal equilibrium; the heat capacity and thermal 

conductivity that appear should be taken to be effective properties of the mixed phases. 

The resistivity that appears is also effective; to more properly account for how it arises, 

the joule heat should be broken into its two constituent contributions, 

 
 
!
!
i
2
= !1

!
i1

2
+ !2

!
i2

2
.
 

 (4.21) 

 
 
Cp,eff

!T
!t

="# keff"T( )+ $1 i1
! 2

+ $2 i2
"! 2

+ $kin
2 %

aVT&Srxn
nF

in
 

 (4.22) 

Equation (4.22) is the final, practically useful form of the electrochemical thermal energy 

balance, and is similar to the equation proposed by Srinivasan and Wang [29]. The terms 

on the right respectively account for heat conduction, Joule heating in the solid, Joule 

heating in the liquid, Joule heating by interfacial charge transfer, and the reversible heat 

of reaction associated with that charge transfer. 

To get information relevant to typical prismatic battery cells, we assume that the 

separator side of electrode is insulating,  

 !T
!x x=0

= 0,
 

 (4.23) 

and that the exterior surface at the current collector is cooled by convection, 

 
 h T !( )"T#$% &'= "keff

(T
(x x=!

.
 

 (4.24) 

Here h is an interfacial heat-transfer coefficient.  
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 Table 4-1 summarizes the final set of equations used for analytic solutions and 

numerical simulations, which will be used in the later sections. The first five equations 

come from Newman-Tobias theory, and the last equation is the associated energy 

balance. Note that even this ostensibly ‘simple’ formulation of an electro-thermal porous-

electrode transport model and associated boundary conditions contains many parameters. 

It is already difficult to see what properties affect the system response, and in what ways. 

 

4.4 Analytic solution 

4.4.1 Dimensional analysis and steady-state solution in 1D 

Dimensional analysis of the equation system reveals that the physics is controlled 

by the following parameters: 

Control 
parameter: I = iR

aVnFkeff
;
 

 (4.25) 

Material 
properties: ! =

"S rxn#effaV

R
,  $ 2 =

%1 + %2

%k

&

'
(

)

*
+ #effaV( )2 ,  Bi = h#eff

keff

 and s = %2

%1 + %2

.
 

 (4.26) 

These describe the applied current, along with material characteristics that can be 

understood as a dimensionless reaction heat σ, a ratio of electric bulk resistance to kinetic 

resistance α2, a Biot number Bi (describing the relative importance of interfacial heat 

transfer in units of bulk heat conduction), and a dimensionless ratio between the electric 

solid- and liquid-phase resistivies s.  

 



 

 75 

 

 

 

 

Table 4-1 Final set of equations for thermoelectrochemical modeling. 

Physics Equation 
Eqn 

number 
Charge conservation in solid  !" i1

!
= aVin  (4.1) 

Charge conservation in liquid  !" i2
!"
= #aVin  (4.2) 

Ohm’s law in solid  !"1 = #$1
!
i1  (4.5) 

Ohm’s law in liquid  !"2 = #$2
!
i2  (4.6) 

Interfacial charge transfer !kin = aV "1 #"2( )  (4.8) 

Energy balance 

 

Cp,eff
!T
!t

="# keff"T( )+ $1 i1
! 2

+ $2 i2
"! 2

+ $kin
2 %

aVT&Srxn
nF

in
 

(4.22) 
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Note that s is always very close to unity, since the solid phase is so much more 

conductive than the electrolyte phase. This assumption was adopted to simplify all 

subsequent analysis. 

The control parameter and material properties determine relationships between the 

dimensionless position ξ, time τ, and the reaction and temperature distributions, X and θ, 

defined as 

Independent variables: 
!= x

"eff

 and  # = kefft
Cp,eff"eff

2 ,
 

 (4.27) 

Dependent variables: 
X = i1

i
 and ! "( ) = R2T

#kn
2F2keff

.
 

 (4.28) 

Incorporating the dimensionless quantities and s = 1 converts governing equations 

(4.10) and (4.22) for a 1-D geometry at steady state to 

 !2 X
!" 2

#$ 2 X #1( ) = 0,
 

 (4.29) 

 d 2!
d" 2

+ X #1( )2 + 1
$ 2

dX
d"
%

&
'

(

)
*

2

+
+
I
dX
d"

= 0.
 

 (4.30) 

The following four boundary conditions close the system of two second-order differential 

governing equations: 

 X ! = 0( ) = 0,
 

 (4.31) 
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 X ! =1( ) =1,
 

 (4.32) 

 !"
!#

#=0

= 0,
 

 (4.33) 

 
Bi! " =1( ) = #$!

$"
"=1

.
 

 (4.34) 

Following Newman and Tobias [2], the solution equation (4.29) subject to 

boundary conditions (4.31) and (4.32) is obtained by reduction of order, yielding 

 X !( ) =1" cosh #!( )+ coth #( )sinh #!( ).   (4.35) 

Given equation (4.35), the thermal part of the problem can also be solved analytically: 

 
! "( ) = 1+Bi 1#"( )$% &'

(
BiI

+
coth)
)Bi

*

+
,

-

.
/+
( 1# cosh ) 1#"( )$% &'$% &'

I) sinh)
#
sinh2 ) 1#"( )$% &'
2) 2 sinh2)

.
 

 (4.36) 

Solutions (4.35) and (4.36) are not coupled, but they provide enough of a basis for 

looking at the effects of dimensionless parameters on simulation output.  

Figure 4-8 shows how changing the key material properties affects the steady-

state system response with a given applied current I = 10. The reaction heat, kinetic 

resistance, and Biot number are varied around baseline values of σ = 13, α = 1, and Bi = 

0.1. Figure 4-8(a) shows the effect of changing σ across values of 13, 0, and –13. The 

reaction heat changes the shape of the temperature profile significantly (even inducing an 

inflection point in the distribution for negative values), although the reaction distribution  
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(a) 

 

(b) 

 

 (c) 

Figure 4-8 The effects of dimensionless parameters on temperature distribution and 
reaction current in 1D. Test results of (a) reaction heating, (b) the dimensionless ratio 
between electric bulk resistance and kinetic resistance, and (c) Biot number are shown. 
Left side of each graph is separator side; right side is current-collector side. 
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does not change. Figure 4-8(b) shows how profiles are affected by α values of 0.1, 1, and 

10. This parameter affects the average temperature as well as the reaction-rate 

distribution; the effect on the reaction rate is much more significant than that on the 

temperature distribution, however. Also, as α increases, the reaction distribution becomes 

more concentrated toward the separator side of the electrode. Figure 4-8(c) shows the 

effect of Biot number, Bi = 0.1, 1, and 10. In accord with physical intuition, higher Biot 

numbers drop the average temperature and increase the concavity of the temperature 

distribution. Being a thermal property, the Biot number has no effect on the reaction 

distribution. 

 

4.5 Numerical solution 

The analytic solution and dimensional analysis in the previous section suggest that 

three dimensionless material properties primarily control the system response with a 

given cell geometry. A transient 3-D model was developed to model the A123 15 Ah LFP 

pouch cell. It was hypothesized that the transient thermal response observed in 

experiments, which was spatially non-uniform, could be fit by a model to back out 

estimates of the material properties of the battery. The dimensionless material parameters 

identified during the analysis in section 4.4 were varied for data fitting. 

 COMSOL Multiphysics commercial software was used to implement finite-

element numerical analysis. The generic partial-differential-equation solver in COMSOL 

was used to implement the extended Newman-Tobias model equations from table 4-1, 

with the boundary conditions between current collectors and the positive and negative 
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electrode domains summarized in Figure 4-9. In the current collectors, Ohm’s law was 

used with a solenoidal current-density ( !"
!
i = 0 ). The heat equation in the current 

collector involves no reaction heat.  

Once the set of model equations was programmed, material properties, obtained 

from a literature search were included [29,35,37,38]. Initial results of an excitation-test 

simulation using these initial estimates of the material properties are shown in Figure 

4-10(a). Note that the theoretical relaxation time matches the experimental relaxation 

time fairly well. The time taken for relaxation to the periodic state can be controlled 

relatively easily (and independently) by varying the heat capacity of the battery cell in a 

thermal simulation, effectively changing the units of time involved in the dimensionless 

time τ. The volumetric heat capacity was varied from expected literature values to 

achieve the good match of relaxation time shown in the figure. 

To implement a better fit of the periodic steady-state response, model sensitivity to 

the material properties was investigated. The dimensional analysis from the previous 

section indicates that three dimensionless material properties (σ, α2, and Bi in equations 

(4.26)) control the overall behavior. Parameters σ, α2, and Bi can be varied independently 

within simulations by changing the dimensional properties !S rxn , ρ1 + ρ2, and h, 

respectively.  

 Model sensitivity was evaluated by testing the effects of changing the three 

dimensionless material parameters on three characteristic features of the periodic steady-

state response: the time-averaged mean temperature Tavg, the difference between the time-

averaged maximum temperature and the time-averaged mean temperature Tmax – Tavg, and  
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(a) 

 

(b) 

 

 (c) 

 

(d) 

Figure 4-10 Comparisons of experimental (light lines) and theoretical (dark lines) transient 
temperature responses of the A123 15 Ah LFP pouch cell for excitation tests with A = 5C 
and p = 100s ((a), (b), and (c)) and A=1C and p = 100s (d). The set of dimensionless 
numbers for each graph: (a) σ = 15086, α2 = 544.38, Bi = 0.073667 (b) σ = 16293, α2 = 
954.11, Bi = 0.11418, (c,d) σ = 28825.4, α2 = 1354.6, Bi = 0.15371. 
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the amplitude of the temperature fluctuations in the periodic steady state, ΔTfluc. These 

factors were selected as representative output characteristic because the spatial-average 

and maximum temperatures are critical to battery safety, and the fluctuation amplitude 

contains information about the entropy of the cell reaction. 

Model sensitivity can be summarized qualitatively using a Jacobian matrix that 

expresses variations in the three representative output characteristics with respect to the 

material properties. The Jacobian used to analyze model sensitivity was 

 

J =

!Tavg /!" !Tavg /!#
2 !Tavg /!Bi

! Tmax $Tavg( ) /!" ! Tmax $Tavg( ) /!# 2 ! Tmax $Tavg( ) /!Bi
!%Tfluc /!" !%Tfluc /!#

2 !%Tfluc /!Bi

&

'

(
(
(
(

)

*

+
+
+
+

.
 

 (4.37) 

With four different runs of the transient excitation-test simulation – one baseline 

calculation, followed by three calculations that perturb σ, α2, and Bi around the baseline  

– this matrix can be calculated numerically with fair accuracy. Once known, the Jacobian 

can be used to implement a step of a multi-dimensional goal seek by the Newton-

Raphson method. To first order, the target (experimental) values of the properties relate 

to the initial baseline guesses and the Jacobian through 
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 (4.38) 

where ‘expl’ in the superscript represents a targeted experimental value of a property. 
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After finding the rough match of experimental output shown in Figure 4-10(a), 

each of the three dimensionless parameters (σ, α2, and Bi) was perturbed by about 10%, 

and the consequent changes in Tavg, Tmax – Tavg, and ΔTfluc were tracked to see the effects 

on the periodic steady-state response. The resulting Jacobian matrix was 

 
J1 =

0K 0.00699427K !114.154K
0K !0.000869227K !52.1958K

!2.5683"10!5K !0.000201948K !0.306737K

#

$

%
%
%

&

'

(
(
(
.
 

 (4.39) 

 This shows that the dimensionless reaction heat σ affects only the fluctuating-

temperature amplitude Tfluc. On the basis that the entries in the rightmost column are 

large, one might think that the Biot number dominates the system response; bear in mind, 

however, that the orders of the dimensionless numbers σ, α2, and Bi are 

105,  102,  and 10!2,  respectively. Thus all three factors have relatively significant effects 

on the periodic steady-state temperatures. 

One can read Tavgexpl , Tmax
expl , and !Tfluc

expl  directly from a plot of experimental 

excitation data; the temperatures Tavg0 , Tmax
0 , and !Tfluc

0  can be obtained from a simulation 

with initial property guesses ! 0 , !0
2 , and Bi0. Once these numbers and the Jacobian are 

obtained, equation (4.38) can be inverted (neglecting terms of quadratic order and higher) 

to calculate a new set of guesses for the dimensionless parameters: ! 1 , !1
2 , and Bi1. 

These updated material properties can be included in the simulation by altering the values 

of !S rxn , ρ1 + ρ2, and h in the code; the updated properties yield a curve that fits the 

experimental data better (as in Figure 4-10(b)). At this stage, a second Jacobian matrix 
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can be numerically calculated; repeating the application of equation (4.38) yields updated 

properties that provide the best fit in Figure 4-10(c). Note that the nontrivial entries in the 

second Jacobian were observed to differ somewhat from their values in the first, 

suggesting significant nonlinearity of the model output with respect to the dimensionless 

material parameters. 

 Figure 4-10(d) illustrates the extrapolative capability of the model. Theory and 

experiment match for excitation data at a different C rate (A = 1 C) than the rate used for 

parameter estimation (A = 5 C). It is worthwhile to note that the simulation matches 

experimental data at both C rates well within the experimental error of temperature 

measurement (~0.5 °C). The match supports the assertion that a simple thermo-

electrochemical model based on Newman-Tobias theory with linear kinetics suffices. 

 The output shown in Figures 4-10(c) and 4-10(d) show that the dimensionless 

quantities that control the system response are accurate. The goal-seeking procedure used 

to achieve this fit involved changing dimensional quantities whose effects on individual 

dimensionless parameters were independent, however, leading dimensional properties in 

the simulation to have incorrect values. The model contains 10 dimensional properties. 

Given that the 7 dimensionless control parameters, dependent variables, and material 

properties must remain invariant for the data to be fit well, a choice of 3 independent 

dimensional properties can be used to fix the units on all the other dimensional 

properties. To establish the 7 free dimensional property values, the heat capacity Cp = 700 

J/kg-K, effective thickness δeff = 0.0026 m (half of the battery thickness), and current 

density i = 15 A * C rate /(cross-sectional area of current collector) were used.  
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The ratio of keff /Cp,eff!eff
2  in dimensionless time τ should be constant; therefore, to 

maintain invariance of dimensionless time, given dimensional values of Cp and δeff, the 

effective thermal conductivity keff is fixed; once keff is known, the invariance of the Biot 

number can be used to fix the convective heat transfer coefficient h; etc. The final, 

consistent set of dimensional properties is listed in Table 4-2. As expected, when the 

simulation was run with these updated dimensional properties, the output did not change. 

 All the values in Table 4-2 appear reasonable. The convective heat transfer 

coefficient h and the exchange current density i0 are very similar to previously reported 

values [29]. The surface-to-volume ratio aV is difficult to measure directly, but is well 

within an expected range [35]. The effective thermal conductivity keff, the electrical 

resistances ρ1 and ρ2, and reaction-entropy change !Srxn  are slightly different from 

literature values, but they are of the same order of magnitude [29]. Since the composition 

of the A123 battery materials is not exactly known, this difference is justified. 

 

4.6 Conclusion 

A thermoelectrochemical model that modifies the isothermal Newman-Tobias 

model to account for a local thermal energy balance was developed and used to match 

experimental temperature-distribution data for a cycling A123 15 Ah LFP Li-ion pouch 

cell. Three critical dimensionless variables were found to control the response in a 1-D 

galvanostatic steady state; the same parameters were found to control the output of a 3-D 

simulation of a current-square-wave excitation test. Although the extreme non-uniform  
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Table 4-2 Final set of equations for thermoelectrochemical modeling. 

Dimensionless number Suggested property Literature values 

! =
kefft

Cp,eff"eff
2  keff = 0.249 W/m-K  keff =1 ~ 5 W/m-K  [29] 

Bi = h!eff
keff

 h =14.74 W/m2 -K  h =10 ~ 200 W/m2 -K  

I = iR
aVnFkeff

 aV =1.2!10
6m"1  aV =10

7m!1  [35] 

! =
"S rxn#effaV

R
 !Srxn / nF = 0.794 mV/K  !Srxn / nF ~ 0.3 mV/K  [29] 

! "( ) = R2T
#kn

2F2keff
 

!k =109"-m  

i0 =1.33 A/m2( )
 i0 = 0.8 ~ 1.1 A/m2  [29] 

! 2 =
"1 + "2
"k

#

$
%

&

'
( )effaV( )2  

!1 = 0.00107 "-m; 
!2 = 0.133 "-m

 
!1 = 0.018 "-m 
!2 = 0.77 "-m

 [37, 38] 
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temperature of the A123 battery is a sign of suboptimal battery-cell design, it provides a 

tool by which one can use external measurements of cell surface temperature to estimate 

properties of materials within the cell. Using dimensional analysis and an iterative 

procedure based on a numerically computed goal-seeking algorithm, estimates of the 

A123 15 Ah LFP battery’s material properties were obtained. It was shown that the 

model had extrapolative capability; best-fit parameters obtained from a model fit at high 

C rate could be used to predict the output at a lower C rate. 

 

4-A  Appendix: thermodynamic analysis 

A thermodynamic analysis relating the heat generation by reaction term in 

equation (4.22) to interfacial charge-transfer reaction parameters is illustrated below. 
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Chapter 5 Thermoelectrochemical simulations of performance and abuse in 50-Ah 

automotive Li-ion cells 

This chapter also deals with thermoelectrochemical simulations, but extends the 

basic model discussed in the previous chapter to account for mass-transfer effects within 

the battery cell. Simultaneous charge and mass transfer in two-phase porous electrodes is 

simulated here using the standard Dualfoil model [1-3], augmented with a local thermal 

energy balance, equation (4.22). For this effort, a more sophisticated meshing procedure 

than that used in chapter 4 was needed for two reasons: (1) Dualfoil operates under an 

assumption that simulation volume elements are locally isothermal; and (2) Combined 

thermal and electrochemical/diffusive transport simulation is too computationally 

expensive. Thus a mapping between two mesh systems – one used for electrochemical 

computations, and one for thermal computations – was essential.   

The Dualfoil model includes mass diffusion in solid-particle, pore-filling-liquid, 

and separator domains, requiring several additional transport equations that augment the 

basic Newman-Tobias model [4] used in chapter 4. One practical ramification of this 

added model complexity is that simulations require significantly greater computation 

times. Although the duration of a simulation depends somewhat on the meshing used, a 

given simulation with the Newman-Tobias model tends to run in about a fifth the time 

taken for a comparable simulation with Dualfoil. (Note that the Newman-Tobias-type 
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calculations from chapter 4 took from 4-8 hours to complete; the thermal extension of 

Dualfoil reported here requires more than a day per run on a comparable CPU.) 

After testing the effects of different thermal boundary conditions (natural and 

forced convection), various tests are also executed with the developed model, especially 

focusing on safety issues such as lithium plating (which occurs at extreme voltages, even 

at low temperatures) and thermal runaway (which occurs due to chemical instability at 

high temperatures, even at moderate voltages). The work summarized in this chapter was 

performed in collaboration with researchers at Robert Bosch Research and Technology 

Center in Palo Alto, California. 

 

5.1 Introduction 

 Thermal phenomena in lithium-ion batteries have received significant interest 

recently, as they significantly impact both aging and safety [5,6]. Many groups have 

researched how temperature affects capacity fade and power fade [7-15]. Higher ambient 

operating temperatures have been shown to result in greater capacity fade, which has 

been attributed to degradation of the negative electrode [7,8] and loss of cyclable lithium 

due to SEI growth [9]. Thomas et al. [10] reported that the internal impedances of battery 

cells depend on storage temperature, suggesting that thermal phenomena may also play a 

part in power fade.  

 Most aging models (such as those in references [8] and [15]) rely on semi-

empirical equations that provide expected capacity or power fades as functions of time, 

state of charge (SOC), and operation or storage temperature. These phenomenological 

approaches to battery aging have neglected the effects of thermal and chemical 
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inhomogeneities inside the battery cell. In other words, the impact of temperature 

gradients and the resulting current-density and SOC gradients inside the 

anode/separator/cathode ‘jellyroll’ have not been considered, even though temperature 

can be highly non-uniform in some battery geometries, particularly during prolonged 

charge or discharge at high C rate [16,17]. Temperature and the extent of cell reaction 

(i.e., local SOC) both influence the rates of aging processes; if these are highly 

inhomogeneous locally, it is possible that the global effects on aging could be significant. 

 Fleckenstein et al. suggested an interesting method to approach local 

inhomogeneity within the battery cell [6]. They modeled a 32113 cylindrical cell using an 

equivalent-circuit-based model (ECM) [18,19] for the electrochemical response of each 

volume element in the battery interior. Using the local values of current from the ECMs, 

the Joule heating (I2R) and local reversible heats of reaction (IT dU/dT) could be 

evaluated in each volume element, coupling the local ECMs to a partial differential 

equation describing the detailed local heat balance. Although Fleckenstein et al.’s model 

yields a local temperature distribution, and can match experimental data effectively, it has 

the same limitation of other ECMs: the resistors and capacitors involved in the electrical 

model do not have clear physical interpretations. Thus it is difficult to use fits of data to 

get information about degradation processes. 

 Recently Christensen et al. introduced a different method to analyze thermal 

inhomogeneity in 18650 lithium-ion cells [20,21]. They suggested expanding the one-

dimensional electrochemical cell-sandwich model (the standard Dualfoil model) [1-3] 

instead of relying on an ECM. The Dualfoil model is based on detailed models of 

interfacial electrochemistry and multi-phase electrochemical transport. Within Dualfoil, 
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lithium transport in the electrolyte and both electrodes is modeled explicitly, as are 

interfacial reaction kinetics and reaction thermodynamics. Typical implementations of 

Dualfoil assume the cell sandwich to exist at a nearly uniform temperature, suggesting 

that the Biot number of the battery cell is relatively small and its internal heat 

conductance is relatively high [22]. Dualfoil receives current or voltage as input 

variables, and returns voltage or current (respectively), along with additional information 

such as SOC, extent of concentration polarization in the separator, and surface 

overpotentials in the anode and cathode. See 5-A Appendix for the Dualfoil equations 

used in this work.  

 Bosch researchers proposed several techniques to couple the Dualfoil model to a 

local energy-balance equation. The key is to separate the thermal and electrochemical 

problems, solving the two models sequentially at a given timestep. This approach allows 

the spatial domain of the problem to be separately meshed for the electrochemical and 

thermal phenomena. (This is appropriate, since the characteristic length scales for the 

mass-transfer processes in a single layer of the jellyroll differ significantly from the 

characteristic length scale for heat transfer across the cell.) The entire battery was divided 

into a number of electrochemical volume elements, each of which was modeled by a one-

dimensional cell-sandwich model essentially identical to the original implementation of 

Dualfoil, but modified for the curvature of the layer. At the same time, the battery cell 

was divided into a set of thermal volume elements, which do not necessarily coincide 

with the electrochemical elements. Exemplary thermal and electrochemical meshings 

used for the past simulations by Christensen et al. [20,21] are reprinted in Figure 5-1. 

Generally the thermal meshing is finer than the electrochemical meshing; to implement  
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Figure 5-1 Two different meshings of an 18650 (18 mm x 65 mm cylindrical) Li-ion 
battery cell. (a) Thermal mesh (b) electrochemical mesh. Reproduced from reference 20. 
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simulations, each electrochemical volume element is taken to exist at the average 

temperature of the thermal elements it contains. The solution process is as follows: first, 

the electrochemical problem is solved throughout the cell; once convergence is reached, 

the heat-generation rate in each electrochemical element is passed to the thermal model; 

the temperature in each thermal element is subsequently updated, and the updated 

temperatures are returned to the electrochemical elements for the next time step.  

 Although the characteristic length for mass transport is on the order of the 

thickness of a single layer of the jellyroll, the effect of locally varying temperature is 

fairly weak. Thus the work by Christensen et al. justified the use of a coarser-grained 

electrochemical meshing, showing that the local electrochemical response was minimally 

affected by temperature gradients for electrochemical volume elements below a certain 

size [20,21]. On the other hand, the desire to observe local variation of local 

electrochemical variables such as current density, electrode charge state, and 

overpotential – not to mention the computational expense of Dualfoil – places an upper 

bound on the electrochemical mesh size. Thus there should be an optimal electrochemical 

mesh size that describes local electrochemical transport sufficiently accurately, contains 

cells across which temperature gradients are minimal, and is computationally efficient.  

This work expands Christensen et al.’s method to larger lithium-ion batteries, and 

provides a tool for simulating aging and assessing battery safety. Large-capacity lithium-

ion cells have received significant interest in the past several years because of the high 

energy demands set by a variety of applications, including transportation [23]. In the past, 

electric-vehicle batteries have comprised packs of 18650 batteries (2~3 Ah capacity per 

cell). The market is moving to larger capacity cells such as the LEV50 (50-Ah per cell): 
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their surface-to-volume ratio is lower, reducing packaging cost; the total energy density 

of the battery system (including the battery casing itself, as well as peripherals such as 

mounting brackets, exhaust-gas manifolds, and control circuitry) can be increased, saving 

space. But the same reductions in surface-to-volume ratio that lower costs and raise 

energy density make thermal management more difficult, calling for a better 

understanding of coupled electrochemical/thermal processes. 

 

5.2 Model description  

A representation of the GS Yuasa LEV50 cell geometry was created, using details 

of the casing configuration from the company website [24]. The battery geometry used 

for our simulation is shown in Figure 5-2, which also illustrates the thermal mesh. 

Information about the battery interior was unavailable (it is intellectual property of GS 

Yuasa Inc.); therefore, plausible assumptions were made about the geometric 

configuration and materials used within the cell interior. The mesh was built using 

Gambit (Ansys Inc.) [25]. The whole thermal mesh is composed of 1mm3 hexahedral 

volume elements, for a total of 678,862. In contrast, the electrochemical model used to 

describe the jellyroll within the cell comprises larger (230 mm3) volume elements, for a 

total of 3,375 (= 153); the electrochemical volume elements were taken to be simple 

parallelepipeds, delineated by 15 mesh points each in the x, y, and z directions of the 

jellyroll. The current collector parts do not require the electrochemical mesh because 

there is no electrochemical reaction or mass diffusion; however, volumetric heat 

generation (Joule heating) is separately evaluated, and is included in the thermal equation.   
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Figure 5-2 Thermal meshing of the GS Yuasa LEV50 cell geometry (the exterior casing 
is 171 mm L x 44 mm W x 115 mm H). The blue domain represents the jellyroll; yellow 
represents copper, and red, nickel. An additional aluminum current collector on the right 
side of the battery cell is obscured by the jellyroll. (The jellyroll and current collectors 
are also subdivided by the electrochemical mesh.) An extremely low-pressure gas (or 
vacuum) was assumed to occupy the space between the jellyroll and the casing. 
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Since the battery geometry is prismatic, the code mapping between electrochemical cells 

and thermal cells [20,21] was rewritten to use a three-dimensional Cartesian coordinate 

rather than a cylindrical coordinate, as well (i.e., the Dualfoil implementation was 

simplified to mirror the original geometry used by Doyle et al. [1-3]). For details about 

the procedures used to map temperatures between electrochemical and thermal simulation 

steps, see references 20 and 21. 

Different domains within the cell were modeled with different heat-generation 

terms in the local energy balance. For the jellyroll, all possible sources of electrochemical 

heat generation were included: irreversible Joule heating from the internal impedances of 

the electrodes and separator, as well as reversible heating from entropy change in each 

electrode material. For the current collectors, only irreversible Joule heating was included. 

No heat generation terms were included in the stainless-steel housing domain, which was 

assumed to be electrically isolated from the jellyroll and tabs. 

The thermal properties used to parameterize different domains of the cell are 

summarized in Table 5-1. The Fluent material database provided property values for 

steel, nickel, copper, and aluminum, taken from a variety of sources [26-28]. Properties 

of the jellyroll were also taken from another literature [29].  

In general, the jellyroll consists of a spirally wound electrode stack. In the case of 

cylindrical cells, the jellyroll is macroscopically modeled as a homogenous hollow 

cylinder with anisotropic heat conduction properties because more layers per length 

increase the thermal contact resistance – exhibiting low radial, and high axial and polar, 

thermal conductivities [6]. Although the GS Yuasa cell is also spirally wound, the  
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Table 5-1 Assumed thermal properties of the GS-Yuasa LEV50 [26-29]. Anisotropic 
thermal conductivities are included in the jellyroll [6] (see Figure 5-3(b) for more 
information about the thermal conductivities in the z direction). 

Volume Material k (W/m-K) ρ (kg/m3) cp (J/kg-K) 

Jellyroll Multiple 
x: 28 
y: 1.5 

z: 1.5, 28 
2708.2 781.38 

Housing Steel 16.27 8030 502.48 

Current collector 

Nickel 91.74 8900 460.6 
Copper 387.6 8978 381 

Aluminium 202.4 2719 871 
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configuration of the winding makes it better considered as a multilayer sandwich over the 

majority of its volume. Figure 5-3(a) is taken from a patent [30], which illustrates the 

spiral winding configuration and suggests how anisotropic thermal conductivity should 

be taken into account in a macro-homogeneous thermal model of the jellyroll. The heat 

transfer is anisotropic because the current-collector layers within the jellyroll have much 

higher thermal diffusivity than the separator. Therefore, on a layer of the jellyroll normal 

to the y direction in Figure 5-2, heat conduction in the y direction will be apparently 

much slower than it is in the xz plane.  

Note that Table 5-1 shows that two different thermal conductivity values were 

used in the z direction for the jellyroll, because of the complexity added by the jellyroll 

winding. Figure 5-3(a) shows that at the top and bottom of the jellyroll, there are small 

domains where the layers predominantly occupy the xy plane, i.e., where the separator is 

normal to z. In these domains the thermal conductivity in the z direction was reduced to 

the same value in the y direction. A user-defined function was written and included in the 

Fluent code to implement this property variation. Note that the thermal conductivity 

tensor was assumed to be diagonal for simplicity. 

Figure 5-4 shows local temperature distributions that arise within the LEV50 after 

550s of discharge at a 4C rate (200 A), assuming (a) anisotropic and (b) isotropic thermal 

conductivity. (In the isotropic case, a uniformly high conductivity, kz = 28 W/m-K, was 

used.) The battery was taken to be in initial equilibrium with an ambient temperature of 

298 K; a heat-transfer coefficient of h = 40 W/m2-K, corresponding to forced convection, 

was used on the outer boundary of the stainless-steel housing; the bottom of the housing 

was taken to be thermally insulated, as it is in many practical automotive batteries.  
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               (a)  

(b) 

Figure 5-3 (a) An exemplary picture of jellyroll inside a battery; (b) distribution of non-
uniform z direction thermal conductivity, implemented in the Fluent program. (a) is 
reproduced from reference 30. 
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(c) 

Figure 5-4 Low thermal conductivity at the top and bottom of the jellyroll affects on the 
local temperature distribution: (a) anisotropic thermal conductivity of Figure 5-3(b), (b) 
uniformly high thermal conductivity in the z direction, and (c) comparison of the 
temperature along the arrow in (a) and (b). 
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Figure 5-4(c) shows the centerline temperature in the z direction; the base of the 

centerline is located at the body-center point of the battery bottom plate (in the xy plane). 

One can see that lower thermal conductivity in the z direction at the top and bottom of the 

jellyroll leads to significant differences in the temperature distribution in the lower 

portion of the jellyroll. Both of the cases have thermally insulated boundary at the 

bottom, but the lower thermal conductivity results greater temperature gradient in the top 

and bottom region of the jellyroll. Lower thermal conductivity results in higher overall 

temperature and greater local temperature gradients. These facts are important because 

the local temperature and its gradients are critical to battery safety and cycle life.  

 

5.3 Performance results 

5.3.1 Thermal boundary conditions 

  The developed simulation tool was used to test the impact of local internal 

temperature on battery performance. First, the effects of different thermal boundary 

conditions on the internal temperature distribution within the battery cell were assessed. 

Four different boundary conditions were simulated with a 4 C discharge current (200 A) 

and initial uniform temperature of 298 K. (An insulating boundary condition at the 

bottom face of the battery housing was used in all cases.) Figure 5-5(a) shows four 

different temperature distributions that arise from different thermal boundary conditions 

on the battery housing and tabs. Cases 1 and 2 in Figure 5-5(a) use natural-convection 

boundary conditions on the battery housing, h = 8 W/m2-K; cases 3 and 4 used forced  
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(a)       

(b) 

Figure 5-5 The effects of different boundary conditions on the local temperature 
distribution.  
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convection there, h = 40 W/m2-K; cases 1 and 3 use thermal boundary conditions on the 

tabs that match the housing; cases 2 and 4 assume isothermal conditions (298 K) at the 

surfaces of the tabs. Conditions of constant tab temperature were tested because in 

practice, batteries are usually connected to large thermal masses maintained at ambient 

temperature (such as the vehicle being powered), to which heat is readily conducted 

through electrically conductive wiring.  

A more detailed comparison can be made using Figure 5-5(b), which compares 

centerline temperature distributions from Figure 5-5(a). In line with physical 

expectations, natural convection (cases 1 and 2) results in higher peak and average 

temperature, whereas forced convection (cases 3 and 4) results in greater temperature 

gradients. In cases 2 and 4, the forced low temperature at the tabs induces much higher 

heat fluxes there, lowering the overall temperature relative to cases 1 and 3. 

 

5.3.2 Local distribution of temperature 

The evolution of temperature profiles within the jellyroll is illustrated in Figure 

5-6, which shows several different instants after the start of a 4C (200 A) discharge. The 

simulation was stopped at t = 556 s, when a cell voltage of 3.0V was reached. Owing to 

the convection from the cell exterior, the temperature at the central part of the jellyroll 

was always significantly higher than its exterior surfaces. As time elapsed, the relative 

difference between maximum and minimum temperature in the jellyroll rose, eventually 

reaching about 9 °C at the end of the simulation. 
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(a) 

 
(b) 

  

  
(c) 

 
(d) 

Figure 5-6 Non-uniform temperature distribution at three different instants during a 
constant-current discharge started in equilibrium with the ambient temperature: (a) 30s, 
(b) 300s, and (c) 556s; (d) maximum, minimum, and volume-average temperature of the 
jellyroll throughout the discharge duration.  
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5.3.3 Local distribution of the current density 

The local transient distribution of current density shows more subtle features. 

Deviation of local current density from the average is illustrated in Figure 5-7. In general 

the upper central part of the jellyroll sustains higher current density than other parts; and, 

the outer part, close to the housing, has lower current density than average. Interestingly, 

the deviation from average current fluctuates significantly at fixed locations, as shown in 

Figure 5-7(d): in the time domains labeled 1, 3, and 5 on the figure, the deviation from 

the average current increases; it decreases in domains 2 and 4. 

A possible explanation for the features of the transient current distribution is 

provided as follows. Increases in local temperature induce increases in local current 

density, because of the way the local electrochemical properties – diffusion coefficients, 

interfacial reaction rates, and conductivities – vary with local temperature. (The 

temperature dependence of the properties used in this simulation has been fairly well 

established from independent characterization efforts [31-36].) This increase in local 

current causes the local SOC in each electrode to vary significantly from its average; the 

natural response of the open-circuit potential (i.e., equilibrium cell potential) is to fall in 

response to this SOC change, correspondingly reducing the overpotential driving 

discharge and decreasing the deviation of local current density.  The overall mechanism 

is illustrated schematically in Figure 5-8.  

Generally, the temperature of the central part of the jellyroll is higher than its 

outer side due to the outward heat flux from the casing into the surroundings. The mass 

diffusivity D, the reaction rate constant k, and the resistance of the solid electrolyte  
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(a) 
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(c) 

 

 
(d) 

Figure 5-7 (a, b, c) Non-uniform electric current distribution at the three different instants 
shown in Figure 5-6; and (d) transient deviations from the average current at two distinct 
locations within the jellyroll; locations are marked with red and yellow circles in (a), (b), 
and (c). 
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Figure 5-8 A suggested explanation for the fluctuating current distribution deviations. 
Subscripts ‘int’ and ‘ext’ indicate properties in the interior and exterior parts of the 
jellyroll, respectively. 
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interface (SEI) layers RSEI in the jellyroll are sensitive to the temperature; these 

coefficients follow the Arrhenius law as follows: 
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where the superscript 0 demonstrates that the coefficient is at the reference state,	
   ajE  are 

activation energies (different for each property), and Tref is a reference temperature.  

 Experimental measurements show that higher temperature increases lithium 

diffusivity in liquid-electrolytes and solid intercalation materials [32], as well as 

increasing reaction rate constants at solid/electrolyte interfaces [33]; higher temperatures 

decrease the resistivities of the solid/electrolyte interphase (SEI) layers on porous-

electrode surfaces [36]. Each of these dependences helps to reduce electrical (or mass-

transfer) resistance as temperature increases. Since the resistance generally falls less than 

the square of the corresponding increased current, local increases in temperature also 

drive a feedback mechanism, where Joule heating due to current flow causes the 

temperature to further increase. 

Another effect involves the thermodynamics of the cell reaction. Figure 5-9 (a) 

demonstrates the open-circuit potential (OCP) (i.e., the equilibrium potential of the 

reaction) as a function of the SOC of the anode material, which is evaluated based on the  
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(a) 

 

(b) 

Figure 5-9 The open circuit potentials as a function of the state of charge (SOC) of the 
surface of anode particles (a) anode of graphite and (b) cathode of NMC. (b) is reproduced 
from reference 37. For anode (a), the regions 2 and 4 have relatively greater gradient then 
other regions; therefore the small SOC difference in the regions 2 and 4 results in the 
larger open circuit potential difference. For cathode (b), no significant gradient is observed 
between 10 ~ 100% SOC region. 
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local lithium content of and extent of concentration polarization within the solid. Regions 

2 and 4 show greater changes in OCP than the other three regions; in these domains of 

the charge state, small differences in SOC will result in larger changes in open-circuit 

potential than they will in other regions. This changes the surface overpotential η, 

following η = V – U, where V is the applied voltage and U, the local OCP. Through the 

Butler-Volmer equation, η drives interfacial reactions faster, inducing higher local 

current density. Because of the smaller OCP gradients with respect to SOC, in regions 1, 

3, and 5, the thermal effects on internal resistance dominate. One might think that the 

cathode has similar effects on OCP; however, Figure 5-9 (b) shows the OCP of the 

cathode used for our model, nickel-manganese-cobalt oxide (NMC). The OCP of NMC 

does not exhibit a significant change in gradient between 10 and 100% SOC [37]. Under 

10% SOC, the change in NMC equilibrium potential might affect the overall OCV of the 

cell; such an effect would still support the argument in Figure 5-8. 

 

5.4 Implications for battery safety 

Local temperature and current distributions can provide information about failure 

mechanisms in automotive battery systems. Two key failure mechanisms are lithium-

metal plating and thermal runaway. Tests pertinent to these safety issues were performed 

using the developed simulation tool. 

5.4.1 The lithium plating side reaction 

During charging, lithium ions ideally intercalate into the porous graphite negative 

electrode (typically called the anode, although it acts as a cathode during the charging  
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process). If the surface overpotential at the anode is near zero or negative, 

thermodynamics drive lithium metal to plate on the solid surface instead. As lithium 

plating continues, dendrites can form; dendrite propagation can cause internal short 

circuits and consequent catastrophic battery failure. The process of lithium plating on a 

porous graphite negative electrode has been imaged in situ by Harris et al. [38].  

To examine lithium plating, a charge step at 4C from an initial state of 50% SOC 

was simulated with forced-thermal-convection boundary conditions on the battery 

housing and tabs, at four different ambient temperatures. Charging was stopped when the 

battery voltage reached a cutoff of 4.35 V. Figure 5-10(a) shows typical data at 20°C, 

which shows the outer area of the jellyroll to have the most negative overpotential. 

suggesting that more lithium plating is likely to occur there. Anode surface overpotentials 

that occur during 4C charging in ambient temperatures of 10 °C, 15 °C, 20 °C, and 25 °C 

are shown in Figure 5-10(b). Lower ambient temperature appears to increase the 

propensity for lithium plating at high current. All in all, lithium plating is more likely at 

the outer surface of the jellyroll, and could be severe in low-temperature ambients. 

 

5.4.2 Thermal runaway 

High ambient temperatures also lead to safety concerns. When a lithium-ion 

battery is exposed to a high enough temperature, the heating triggers a spontaneous 

exothermic chemical reaction, in a process typically called ‘thermal runaway’ [5]. 

Hatchard et al. modeled thermal runaway using a theoretical description of a proposed 

SEI decomposition reaction [39]. The reaction was hypothesized to proceed via two 
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(a) 

    

(b) 

Figure 5-10 The local distribution of anodic surface overpotential. (a) A case of 4C 
recharge in a 20°C ambient shows that the outer area of the jellyroll has more Li plating 
after 160s. (b) Anode surface overpotentials with different ambient and initial 
temperatures demonstrate that lower ambient temperatures result in more Li plating. 
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steps: first, in the range 90–120°C, the metastable SEI phase reorganizes into a stable SEI 

film; second, around 150°C, anode-intercalated lithium reacts with the electrolyte to 

thicken the stable SEI film. Both reaction steps are highly exothermic, accompanied by a 

significant release of heat. To account for thermal runaway, a heat generation term was 

added to the energy balance that describes the Hatchard SEI thermal reorganization and 

growth mechanism. (See 5-B Appendix for the model equations.) 

Figure 5-11 shows thermal runaway at four different ambient temperatures. In each 

simulation, the battery was initially equilibrated at 25°C, and the forced boundary 

condition was applied. The ambient temperatures are varied from 140 to 155°C. One can 

see that an ambient temperature of 140°C is too low to trigger the exothermic reaction; 

higher temperatures lead to faster thermal runaway with higher peak temperatures. 

 

5.5 Conclusion 

A simulation tool was created to investigate the impact of design changes on 

battery performance and thermal response of a commercial automotive cell (the GS-

Yuasa LEV50 50 Ah NMC battery). For simulations, the standard Dualfoil model was 

coupled to a local energy balance to get transient temperature distributions within the 

battery. Simulations in three dimensions were necessary because of the complicated 

components within the battery; anisotropic heat conduction in the jellyroll was also taken 

into account. Using the simulation tool, various boundary conditions and initial 

conditions were tested to assess their impacts on battery performance. Higher cooling 

rates reduced the uniformity of the current density and temperature, as expected.  
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Figure 5-11 The thermal runaway simulation (oven test) at four different ambient 
temperatures. 
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Transient solutions of the local distributions of temperature and the electric current 

density were obtained. These showed the merits of the detailed electrochemical model, 

which rationalized swings in current homogeneity that occur due to temperature-

dependence of local properties and variations in the local SOC. Extreme conditions were 

tested for thermal runaway as well, and the critical ambient temperature for triggering 

thermal runaway was found to be about 145°C. 

 

5-A  Appendix: Dualfoil [1-3,21,22] 

Mass balance: ion transport in the electrolyte  
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5-B  Appendix: thermal abuse model [39] 

Heat balance:  
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Sabuse = Ssei + Sne + Spe
 

SEI Reaction (metastable to stable SEI):  
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, where xf is the amount of lithium-containing metastable species in SEI. 

Negative solvent reaction 
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, where xi is the amount of lithium intercalated within carbon, and z is the dimensionless measure of 

SEI thickness. 
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Positive solvent reaction 
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, where Δα is the fractional degree of conversion of cathode. 

Heat generation 
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Appendix A. High-accuracy calculations of sixteen collision integrals for Lennard-Jones 

(12–6) gases and their use to parameterize neon, argon, and krypton 

Chapter 2 demonstrated a strong motivation to research how transport properties 

can be estimated using kinetic theory. Even for the simple experiment described there, a 

detailed multi-component transport analysis in principle requires more than ten binary 

diffusion coefficients (because of the complicated composition of air), including 

experimentally unavailable properties like Dacetone-methanol. In addition, even if air was 

treated as a homogeneous substance, the best-fitting Dacetone-methanol was found to be four 

times smaller than Carty and Schrodt’s value calculated using Lennard-Jones parameters. 

In this appendix, we develop a method to evaluate collision integrals, which are 

kinetic properties needed in the estimation of transport properties. We show conclusively 

that through Chapman-Enskog kinetic theory, a Lennard-Jones (12–6) potential can be 

used to predict the temperature dependence of continuum transport properties (viscosity, 

thermal conductivity, and self-diffusivity) for several dilute monatomic gases within the 

accuracy limits established by experiments, while simultaneously matching the 

temperature dependence of thermodynamic data (the second virial coefficient). To 

provide this conclusion we develop arbitrary-precision algorithms to compute collision 

integrals; these high-accuracy calculations are then used to create interpolation formulas 

that allow very rapid collision-integral computation. The fast collision-integral 

interpolations we develop make tractable the inverse problem of multi-objective pair-
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potential parameterization. Ultimately, we show the Lennard-Jones (12–6) potential 

suffices to match all reliable experimental data for Ne, Ar, and Kr from temperatures of 

boiling points up to 2000K (the first demonstration of its kind), as well as providing the 

most accurate Lennard-Jones parameters to date for these three gases. 

Although this work focuses on three noble gases, it could be extended to polar 

gases such as acetone and methanol, used for Carty and Schrodt’s expeirments reported 

in chapter 2. In that case, a different intermolecular potential may be necessary. 

Expansion of the current work to the polar-gas properties would be interesting. This work 

provides the groundwork for future study of more complicated intermolecular potential 

functions. 

 

A.1 Introduction 

As shown in Chapter 2, accurate transport properties are crucial for the simulation 

of processes involving continuum-scale momentum, heat, or mass transfer. Gas 

viscosities, thermal conductivities, and diffusivities, for example, are needed in the 

design of chemical reactors, and also play an important role in atmospheric chemistry, 

combustion science, and aerothermodynamics [1, 2]. Direct measurements of all the 

properties of a gas over a wide temperature range are usually impractical, so there is a 

need for reliable methods of property estimation [2]. 

Kinetic theory, as implemented through the analysis of Boltzmann's gas equation 

[3], provides a well-established method to calculate macroscopic transport coefficients. 

Conventional wisdom has it that the theory can achieve temperature-dependent properties 
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of dilute nonpolar gases with fair agreement [4]. This chapter shows that kinetic-theory 

predictions can be made to fall within the bounds of intrinsic error in property-

measurement experiments. High-precision algorithms are developed to compute 

properties, and a method to parameterize potentials is introduced. 

Gressman and Strain proved the global existence of stable solutions to the 

Boltzmann equation in 2010 [5]. This recent result emphasizes that the perturbation 

approach developed independently by Chapman and Enskog a century ago [6-8] is a 

physically sound method by which to compute properties for use in continuum transport 

models. Chapman-Enskog theory treats a gas fluctuating near equilibrium as an average 

representation of its ensemble of two-particle encounters. Perturbation of Boltzmann's 

equation yields transport coefficients as algebraic functions of reduced collision integrals 

Ω(l,s)«, which essentially quantify moments of the mean free path. The indices l and s are 

integer parameters that arise during analysis of a dynamic perturbation of the equilibrium 

state according to the Chapman-Enskog procedure [9, 10]. 

Collision integrals in dilute gases depend only on the reduced temperature 

 T
* = kBT / ! , where kB is Boltzmann's constant, T the absolute temperature, and  !  a 

characteristic two particle interaction energy. Thus Ω(l,s)« values are amenable to 

tabulation—in principle. Several well-known computational difficulties are barriers to 

numerical analysis: divergences, discontinuities, and rapid oscillations occur in several of 

the functions from which collision integrals derive [1]. Because of the high 

computational cost and analytical complexity of their calculation, collision integrals are 

usually retrieved from tables, rather than being computed on the fly, despite the facts that 

procedures for interpolation between temperatures are not definitively established, and 
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that published tables may summarize inaccurate calculations. 

 In an early effort to speed computation, Hattikudur and Thodos [11] applied 

nonlinear least-squares methods to fit existing collision-integral tables for the Lennard-

Jones (LJ) potential [12, 13]. Their interpolations compute Ω(1,1)« and Ω(2,2)« for LJ (12–6) 

gases from 0.3!T * ! 400  matching the original tables of Hirschfelder et al. [9] within 

1%. The Hattikudur-Thodos equations suffice only to compute thermal conductivity and 

viscosity to first order in the Sonine expansion, and should be avoided because the tables 

on which they are based contain significant numerical error: Akhmatskaya and Pozhar 

proved that the underlying tables have error nowhere less than 0.1%, and more than 1% 

for T* < 1 [14]; approximations used by Hirschfelder et al. have also been shown to cause 

inaccuracy at high temperatures [16]. 

Neufeld, Janzen, and Aziz (NJA) provided interpolation formulas for sixteen LJ (12–

6) collision integrals—allowing viscosity, thermal conductivity, self-diffusion coefficient, 

and thermal diffusivity computations to third order—for 0.3!T * !100  [16]. A database 

precise to 0.05%, computed with O’Hara and Smith’s algorithm [17], underpins the 

formulas. Some higher-order integrals rely on a recursion relation with intrinsic ~ 2% 

error [18]. Overall the NJA formulas are precise to one or two digits at most. 

This chapter uses the topology of two-particle interaction trajectories to inform 

accurate collision integral computation. By leveraging the knowledge of trajectory shapes, 

collision cross-sections are computed with unprecedented precision. Very accurate 

empirical interpolation formulas are also developed, which allow the transport properties 

of LJ (12–6) gases to be calculated up to relatively high orders of approximation. 
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Figure A-1 Reduced collision integrals for Lennard-Jones (12–6) gases, computed using 
the methods developed in chapter 0. 
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This chapter closes by applying the new interpolation formulas to solve the inverse 

problem of optimal potential parameterization. Three noble gases are analyzed. Previous 

disagreements between LJ theory and experiments are ultimately resolved by the 

implementation of fast, precise collision-integral calculation. For dilute neon, argon, and 

krypton, the LJ potential model predicts viscosity, self-diffusion coefficient, thermal 

conductivity, and second virial coefficient within experimental error, from their boiling 

points up to extremely high temperatures. 

 

A.2 Collision-integral interpolation 

Since it provides a basis for putting this work to broader practical use, we first present 

empirical interpolation formulas for reduced LJ (12–6) collision integrals, which take the 

form 

 

 
! l ,s( )! = A l ,s( ) + Bk

l ,s( ) T *( )k +Ck
l ,s( ) lnT *( )k"

#$
%
&'.

k=1

6

(
 

 (1) 

Figure A-1 demonstrates that this functionality reasonably approximates the first sixteen 

most useful collision integrals, which all decrease with rising T* according to the form of 

the summand. Table A-1 summarizes the error of equation (1) relative to the high-

precision tables on which it is based. For 0.3!T * ! 400 , the average error is always less 

than 0.0011% and the maximum error less than 0.0069%; equation (1) yields collision 

integrals accurate to at least four significant digits throughout this temperature range. 
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Table A-1. Average and maximum deviations from high-precision tables for the 
interpolation formulas in equation (1). 

(l, s) Average deviation (%) Max deviation (%) 

(1,1) 0.00099 0.0051 at T* = 300 

(1,2) 0.00041 0.0025 at T* = 0.55 

(1,3) 0.00031 0.0011 at T* = 400 

(1,4) 0.00022 0.00093 at T* = 0.8 

(1,5) 0.00020 0.00095 at T* = 0.7 

(1,6) 0.00025 0.00099 at T* = 0.7 

(1,7) 0.00023 0.00099 at T* = 0.6 

(2,2) 0.0011 0.0071 at T* = 300 

(2,3) 0.00063 0.0030 at T* = 200 

(2,4) 0.00035 0.0018 at T* = 200 

(2,5) 0.00022 0.0012 at T* = 0.5 

(2,6) 0.00024 0.00085 at T* = 0.85 

(3,3) 0.00037 0.0021 at T* = 0.45 

(3,4) 0.00054 0.0033 at T* = 200 

(3,5) 0.00038 0.0020 at T* = 200 

(4,4) 0.00041 0.0029 at T* = 200 
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Table A-2. Coefficients for equation (1), which predicts collision integrals within 0.007% 
in the range 0.3 ≤ T* ≤ 400. 
(l, s) A B1 C1 B2 C2 × 10 B3 × 10 C3 × 10 

(1,1) −1.1036729 2.6431984 1.6690746 0.0060432255 −6.9145890 −1.5158773 1.5502132 

(1,2) 1.3555554 −0.44668594 −0.47499422 0.42734391 1.4482036 −1.6036459 −0.32158368 

(1,3) 1.0677115 −0.13945390 −0.25258689 0.17696362 0.59709197 −0.26252211 −0.13332695 

(1,4) 0.80959899 0.12938170 −0.045055948 0.059760309 −0.22642753 0.071109469 0.056672308 

(1,5) 0.74128322 0.17788850 0.0013668724 0.027398438 −0.41730962 0.076254248 0.10378923 

(1,6) 0.80998324 0.073071217 −0.071180849 0.034607908 −0.12738119 −0.011457199 0.038582834 

(1,7) 0.81808091 0.044232851 −0.089417548 0.029750283 −0.051856424 −0.022011682 0.021882143 

(2,2) −0.92032979 2.3508044 1.6330213 0.50110649 −6.9795156 −4.7193769 1.6096572 

(2,3) 2.5955799 −1.8569443 −1.4586197 0.96985775 5.2947262 −3.9888526 −1.1946363 

(2,4) 1.6042745 −0.67406115 −0.62774499 0.42671907 2.0700644 −1.0177069 −0.47601690 

(2,5) 0.82064641 0.23195128 0.039184885 0.12233793 −0.57316906 0.13891578 0.12794497 

(2,6) 0.79413652 0.23766123 0.050470266 0.077125802 −0.62621672 0.13060901 0.14326724 

(3,3) 1.2630491 −0.36104243 −0.33227158 0.68116214 0.79723851 −3.6401583 −0.15470355 

(3,4) 2.2114636 −1.4743107 −1.1942554 0.64918549 4.3000688 −2.4075196 −0.97525871 

(3,5) 1.5049809 −0.64335529 −0.60014514 0.3261704 1.9764859 −0.82126072 −0.45212434 

(4,4) 2.6222393 −1.9158462 −1.4676253 1.0166380 5.3048161 −4.3355278 −1.1909781 

(l, s) B4 × 10 C4 × 102 B5 × 102 C5 × 103 B6 × 103 C6 × 104  

(1,1) 0.54237938 −2.0642189 −0.90468682 1.5402077 0.61742007 −0.49729535  

(1,2) 0.31461648 0.44357933 −0.32587575 −0.34138118 0.13860257 0.11259742  

(1,3) −0.043814141 0.19619285 0.16752100 −0.16063076 −0.14382801 0.055804557  

(1,4) −0.063851124 −0.065708760 0.10498938 0.040733113 −0.058149257 −0.010820157  

(1,5) −0.031650182 −0.13492954 0.032786518 0.096963599 −0.0092890016 −0.030307552  

(1,6) 0.0028198596 −0.047060425 −0.020060540 0.030466929 0.021446483 −0.0085305576  

(1,7) 0.0063264120 −0.024874471 −0.017555530 0.013745859 0.014255704 −0.0030285365  

(2,2) 1.5806367 −2.2109440 −2.6367184 1.7031434 1.8120118 −0.56699986  

(2,3) 0.90063692 1.6264589 −1.0918991 −1.2354315 0.56646797 0.40366357  

(2,4) 0.0061857136 0.67153792 0.31225358 −0.52706167 −0.35206051 0.17705708  

(2,5) −0.20903423 −0.15336449 0.46715462 0.10241454 −0.35204303 −0.029975563  

(2,6) −0.10982362 −0.17806541 0.18034505 0.12353365 −0.095982571 −0.037501381  

(3,3) 1.0500196 0.18686705 −1.6400134 −0.12179945 1.0880886 0.032594587  

(3,4) 0.51820149 1.3399366 −0.60565396 −1.0283777 0.29812326 0.33956674  

(3,5) 0.059682011 0.63650284 0.10269488 −0.49991689 −0.15957252 0.16833944  

(4,4) 1.0496591 1.6123847 −1.3951104 −1.2174905 0.80048534 0.39545100  



 

 132 

 

 

 

 

 

 

 

Figure A-2. Schematic of a binary encounter, characterized by the trajectory rʹ′(θ). The 
initial relative particle speed gʹ′ and impact parameter bʹ′ determine the deflection angle χ. 
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Values of the coefficients in equation (1) are given in Table A-2 for the sixteen 

combinations of l and s shown on Figure A-1. Coefficients were determined by applying 

an optimization procedure based on the method of least squares [19] to a database of 

collision-integral tables, which was produced with the high-precision computational 

procedures discussed in chapter 0. 

Unlike the NJA fit, equation (1) has a series form wherein coefficients generally 

decrease in magnitude as their order rises. One might think that adding terms to the sum 

would reduce deviations from the data tables on which it is based, but use of more than 

six terms in the series was found to increase truncation error overall when the coefficients 

were truncated after their eighth significant digit (as in Table A-2). Note also that the 

NJA parameterization was designed for accuracy within the range 0.3!T * !100 ; in 

contrast, equation (1) is designed for accuracy up to reduced temperatures of 400. 

 

A.3 Precise collision-integral calculation 

A.3.1 Description of encounters 

Chapman-Enskog theory hinges on a detailed description of individual two-particle 

encounters, which are modeled with Newtonian dynamics. Several researchers have 

embedded quantum effects into kinetic theory [20–22], but quantum corrections tend to 

contribute negligibly to collision integrals [21]. Classical physics is employed here. 

A representative classical binary encounter is sketched schematically in Figure A-2. 

Encounters are treated in a polar coordinate system (rʹ′,θ) centered on one particle (which 
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we call the ‘incident particle’), in the plane established by the two particle velocities, with 

θ = 0 aligned parallel to the direction of the relative velocity of the other particle (called 

the ‘incoming particle’). (This perspective is equivalent to the center-of-mass coordinates 

used by Grad [10, 23]; here we follow the particle-center convention used by Chapman 

and Cowling [7, 8] and Hirschfelder et al. [9, 24-26]) Collision trajectories rʹ′(θ) depend 

on the initial relative particle speed gʹ′, as well as the impact parameter bʹ′, which 

represents the distance of closest approach that would be achieved if the two particles did 

not exert any forces on each other during the encounter. 

The energetics of particle interactions depend on a pair potential φ´, which always has 

some repulsive character, and usually also has some attractive character. For a pair of 

similar particles, the trajectory during an encounter conserves angular momentum and 

energy, according to 

 mb!g! = mr!2 d"
dt
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where t is time and m is the particle mass. The potential function thus establishes how g´ 

and b´ determine the angle χ by which the relative velocity deflects during an encounter. 

The character of an encounter trajectory ultimately depends on the functionality 

of the pair potential. Chapman and Cowling [7, 8] used a hard-sphere potential to 

determine coefficients of viscosity, thermal conductivity, and self-diffusion. The 

accuracy of these transport coefficients was limited by the failure to account for 

interparticle attraction. Diffusivities computed for hard-sphere gases generally exceed 

experimental values by ~10-15% at moderate temperatures [27]. 
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Kihara and Kotani,[28, 29] Hirschfelder et al., [9, 24–26] and Rowlinson[30] 

concurrently reported transport coefficients based on the LJ (12–6) interaction 

potential[12, 13] 
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Here σ is the distance at which the potential crosses zero (it reaches a minimum at 

r '/! = 26 " 1.12 ), and the characteristic energy ε quantifies the depth of the potential 

well. The term ‘LJ parameters’ will be used here to refer to the characteristic temperature 

ε/kB and characteristic distance σ. Unlike the hard-sphere model, the LJ (12–6) potential 

accounts for interparticle attraction, whose sixth-order decay is suggested by quantum-

mechanical analysis of non-polar, neutral atoms with spherically symmetric electron 

shells [31–33]; mathematical convenience is afforded by choosing a twelfth-order 

repulsive term [9]. When potentials involve both attraction and repulsion, the evaluations 

of collision integrals are complicated, because they must account for orbiting and 

spiraling trajectories [1], which will be a key focus here. 

To determine trajectories during a binary encounter it is standard to obtain a time-

independent expression of the angle θ by eliminating dt between Equations (2) and (3); 

after substitution of  from equation (4), one obtains 

 
! y;b,g( ) = bgdy

P y;  b,g( )0

y
"

 

 (5) 

where the polynomial P is defined as 

 P y;b,g( ) = g2 1!b2y2( )+ 4 y6 ! y12( )  
 (6) 

Equations (5) and (6) introduce dimensionless variables  

!"
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b = !b

"
;    g2 =

1
2 m !g( )2

#
;    $ = !$

#
;    and   y = "

!r  
 (7) 

A dimensionless inverse radius y conveniently changes the integration domain in 

Equation (5) from open, , to closed, .  

 The dimensionless inverse distance of closest approach, ym, is the smallest positive 

root of the polynomial P, 

 ym b,g( ) =min ym
i : ym

i ! R+,P ym
i ;b,g( ) = 0{ }  

 (8) 

For a given two-particle encounter, the incoming trajectory can be drawn with Equation 

(5); the outgoing trajectory can be found by reflection about a radial line inclined at the 

closest-approach angle !m =! ym;b,g( ) . 

Reduced collision integrals Ω(l,s)« result from a threefold integration: one over all 

inverse trajectory radii, the closed domain of ; one over all impact parameters, 

the semi-infinite domain ; and one all relative speeds, . The sequence 

of integrals used to obtain Ω(l,s)« is [9,24-26] 

 
! b,g( ) = " #2$m = " #2bg dy
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These include the deflection angle χ (cf. Figure A-2) and introduce the reduced collision 

cross-section Q(l)«. (Quantities with a superscript  are scaled by the corresponding 

functions obtained with hard-sphere potential.)  

r ! r,"[ ) y! 0, y[ ]

y! 0, ym[ ]
b![0,") g![0,")

 !
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The hyper-elliptic integral that arises in Equations (9) for LJ (12–6) particles 

cannot be solved analytically. While computing collision integrals numerically, ym, χ, 

Q(l)«, and Ω(l,s)« must be calculated within strict accuracy limits. Singularities, 

discontinuities, and oscillations of the functions involved impede high-precision 

calculations [1].  

 

A.3.2 Distance of closest approach 

The reciprocal of the closest approach distance ym (cf. Equation (8)) must be 

calculated first, because it sets the upper bound of integration in Equation (9). At this 

stage it is important to assess whether P (cf. Equation (6)) affords multiple real positive 

roots. When interaction potentials have both attractive and repulsive character, two 

particles can spiral around each other or even fall into orbit (following ‘looping’ 

trajectories), rather than undergoing a simple collision. Orbits correspond to parameter 

combinations that yield minimal real positive roots of P with multiplicity higher than 1. 

Akhmatskaya and Pozhar [14] found combinations that lead to orbits using the 

characteristic of double roots 

 
P ym

i ;b,g( ) =
dP ym

i ;b,g( )
dy

= 0
 

 (12) 

On thus finds that ym
i  is a double root of P when 

 
ym
i =

1
5
±
1
5
1! 5
4
g26 .

 

 (13) 

Insertion of Equation (13) into Equation (6) determines a relationship between b and g 

that, when satisfied, shows that an encounter will result an orbit. Only the smaller of the 
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two roots in Equation (13) actually yields orbiting trajectories; the larger does not satisfy 

Equation (8).  

One might ask whether combinations of b and g that satisfy Akhmatskaya and 

Pozhar’s conditions are the only orbiting trajectories within the domains of b and g. 

Uniqueness of these orbits can be proved by enumerating the real positive roots afforded 

by the polynomial P. Hostetter’s modification to the Routh-Hurwitz test [34,35] allows 

the values of a polynomial’s coefficients to be used to count how many real, positive 

roots it affords. The Hostetter-Routh-Hurwitz test shows P has three real positive roots 

when g ! 2 5 ,  
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 (14) 

Otherwise, P possesses a single real positive root. 

Figure A-3 summarizes characteristics of the polynomial P and values of its least 

root ym. Two lines on the figure delineate the boundaries of the domains of b and g where 

P affords repeat positive roots. On the upper ( ym
1 = ym

2 > ym
3 ) and the lower ( ym

1 > ym
2 = ym

3 ) 

lines, one of the three roots has multiplicity 2; there is a triple root at the point 

g,b( ) = 2 / 5,3 / 53( ) . The upper double-root line on Figure A-3 has no physical 

significance because if the double root is larger than the single root, a trajectory will 

never traverse its position. 
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Figure A-3. Contour plot of the inverse closest-approach distance ym  with respect to b 
and g for Lennard-Jones (12–6) particles. The polynomial P of Equation (6) affords either 
three real positive roots or just one in this domain. On the ‘orbit line’ b and g combine to 
make the deflection angle χ diverge.  
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The line where the minimum root repeats corresponds to a situation where two 

particles fall into orbit during an encounter. Because of this characteristic, the lower 

curve on Figure A-3 will be called the ‘orbit line’, described when g ! 2 / 5  by 

 
bo g( ) = 2 3

g 53
1! 1! 5g

2

4
3 3

5
+
2
5
1! 5g

2

4  

 (15) 

Newton’s method [36] was used in combination with Horner’s scheme for 

synthetic division [37] to establish the positions of the real roots of P with high accuracy. 

The asymptotic behavior of ym helps provide a clue toward useful initial guesses for the 

algorithm. The shapes of the ym contours on Figure A-3 change around a hypothetical line 

b3g = 1. Asymptotic analyses show that the following relations are reliable initial guesses 

for roots: 

 

 

ym !

1  if  g < 2
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2 1+ g26   if g " 2
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 and b3g!1,
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 (16) 

When b3g ≈ 1, the last two guesses yield similar results. In this work, 1/b was used when 

b > bo or b3g ≥ 1. 

 Newton’s method reliably finds the first root of P. In the 3-root region, P can be 

reduced in order by synthetic division, Newton’s method can be applied to locate the 

second root, and a sequential division can be performed to find the third. Truncation 

errors introduced by division can be mitigated by using these preliminary results as 

guesses for roots with the original polynomial P. 

High precision ym values are essential; their accuracy limits all further calculations. 

To verify accuracy Equations (6) and (8) were combined, yielding 
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b! g, ym( ) =

2ym
2 b,g( )
g

g2

4ym
6 b,g( )

+1! ym
6 b,g( )

 

 (17) 

Here  is equivalent to b; their difference tracks the accuracy of ym. (When ym nears 1, a 

new variable xm = ym − 1 can be introduced to avoid truncation errors.) Equation (17)

confirmed that computed ym values were accurate to machine precision–fourteen 

significant digits. 

 

A.3.3 Deflection angle 

Once closest-approach distances ym are known, the task of evaluating the deflection 

angle χ presents itself. Since P always has at least one real positive root, the integrand in 

Equation (9) always has a singularity at the upper bound of integration. Roots at the 

upper bound correspond to poles in the integrand of order 1/2, 1, or 3/2. 

Singularities of order 1/2 at y = ym in the integrand can be removed by a change of 

integration variable. First, relying on the fact that P is even, factor it to 
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where R is a 10th-order even polynomial, 

 
R x;b,g( ) = Bk b,g( ) x2k

k=0

5

! ,
 

 (19) 

Whose coefficients are given by Horner’s scheme as 

 B5 = B4 = B3 = 4ym
12;  B2 = B1 = B3 ! 4ym

6 ;  B0 = g
2.   (20) 

Inserting u = 2 !( )sin"1 y ym( )  transforms Equation (9) to 

 

 b!
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Figure A-4. Map showing how trajectory shapes depend on the impact parameter and 
relative speed for binary Lennard-Jones (12–6) interactions. Six different trajectory types, 
drawn using Equation (5), are represented. An inset shows behavior in the region 
bounded by the loop line, where spiraling trajectories occur. Orbits (χ → ∞), undeflected 
trajectories (χ = 0) and head-on collisions (b = 0, χ = π) have no statistical weight in the 
ensemble and are not depicted. 
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Table A-3. Comparison of calculated deflection angles. 

g2=0.1 Deflection angle χ  (radian)  
b Hirschfelder et al. [9] Sharipov et al. [39]a This work Region in Figure A-4 

2.838 -0.323 -0.3230 -0.3230 III 
2.696 -0.543 -0.5435 -0.5435 III 
2.643 -0.706 -0.7049 -0.7049 III 
2.598 -0.945 -0.9437 -0.9437 III 
2.572 -1.205 -1.199 -1.199 III 
2.544 -1.998 -1.977 -1.977 III 
2.539 -2.576 -2.584 -2.584 III 
2.538 -2.346 -2.903 -2.903 III 
2.516 -1.166 -4.944 -4.481 V 
2.503 -1.944 -2.324 -3.959 V 
2.470 -2.867 -3.081 -3.203 V 
2.456 -3.106 -2.984 -2.984 IV 
2.400 -2.509 -2.356 -2.356 IV 
2.328 -1.943 -1.819 -1.819 IV 
2.171 -1.124 -1.041 -1.041 IV 
1.996 -0.491 -0.4360 -0.4360 IV 
1.881 -0.150 -0.1119 -0.1119 IV 

aSign convention matched to Ref. 9  
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 (21) 

This integrand is finite across its domain when P has just one root. When b and g are on 

the orbit line, however, poles of order 1 or 2 occur at u = 1; then ! "#$ . 

Hirschfelder et al. [9, 24–26] replaced the integrand in their equivalent of 

Equation (21) with a best-fit polynomial. This injected numerical error without specific 

bounds. Akhmatskaya and Pozhar [14] brought more rigors to the analysis, using Gauss-

Chebyshev quadrature to approximate the integral with bounded error [38]. 

For the present work a 4th-order Runge-Kutta method (RK4)[36] was adapted to 

perform the integration in Equation (21). Grid-independent values valid to machine 

precision were extrapolated by using the known dependence of error on mesh spacing in 

the RK4 scheme. Results matched those of Colonna and Laricchiuta’s fractal integration 

algorithm [1], which yields results of similar accuracy at considerably greater 

computational expense. 

Figure A-4 maps out the characteristic shapes of trajectories with respect to the 

impact parameter b and relative speed g. Although this sort of map can greatly aid the 

physical understanding of pair potentials, to the best of our knowledge, Figure A-4 is the 

first topological diagram of its kind. Four lines demarcate regions where ‘collisions’ (0 ≤ 

χ), ‘deflections’ (–π ≤ χ < 0), ‘loops’ (χ < –π) and orbits ( ! "#$ ) occur. Trajectories 

can also have inflection points, dividing the map into six domains. 

Representative trajectories obtained by solving Equation (5) are included in each 

region that occupies finite area on the map. In regions I and II of Figure A-4, the impact 

parameter is relatively small; particles therefore collide with a trajectory dominated by 
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short-range repulsion. Some effect of attraction is seen for trajectories in region I, where 

kinetic energy (which scales as g2) is lower. In regions III and IV, the impact parameter is 

relatively large, so interactions are dominated by long-range attraction, which ultimately 

causes the incoming particle to be deflected toward the incident particle from its original 

path. In region III, the kinetic energy is large enough that repulsion does not have a 

significant effect; incoming gas particles primarily experience long-range attraction. 

When kinetic energy is smaller, in region IV, the particles are drawn sufficiently close 

together by the attractive force that repulsion comes into effect. In regions V and VI, 

kinetic energy is low enough that particles spiral around each other one or more times 

before the attractive force can be overcome. Qualitatively dissimilar loops appear above 

and below the orbit line, in regions V and VI, respectively. 

Table A-3 compares deflection angles yielded by the extrapolative RK4 algorithm 

described above to computations by Hirschfelder et al.[9] and Sharipov and Bertoldo [39]. 

The squared relative speed g2 is fixed to 0.1, and the impact parameter b is varied to pass 

through regions III, IV, and V. Results from extrapolative RK4 identify with Sharipov 

and Bertoldo’s, excepting in region V, where they differ significantly. Sharipov and 

Bertoldo split Equation (9) into two integrations; in one of the domains P was linearized 

around its roots. In regions V and VI of the trajectory map the second derivative of P can 

be larger than its first, and quadratic behavior of P dominates. Thus Sharipov and 

Bertoldo’s method fails in domains where trajectories exhibit loops.  

Inflections occur when d 2! dy2  changes sign during an encounter, which happens 

only if dP/dy changes sign. Either dP/dy has two real positive roots or it has none [34, 35]. 

These domains of b and g are separated by a line where the root repeats, which can be 
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found by Akhmatskaya and Pozhar’s method [14] to be bg = 6 / 31256   (the ‘inflection 

line’ on Figure A-4). Roots of dP/dy must also be less than ym to yield inflected 

trajectories, so the orbit line also bounds regions I, IV, and V in Figure A-4. 

Orbiting trajectories and those in regions I, III, IV and VI are well documented,[1, 

9, 14, 24, 26, 28, 39–41] but to the best of our knowledge regions II and V have not been 

discussed. Region V is most important because looping trajectories dramatically affect 

collision cross-sections. 

 

A.3.4 Collision cross section 

Divergent deflection angles make the integrand of the reduced cross section Q(l)« take 

on fractal character, oscillating with increasing frequency as the orbit line is approached. 

The integrand in Equation (10) is not Riemann integrable in the neighborhood of bo (cf. 

Equation (15)); at bo, it is undefined. Earlier sources approximate χ near the orbit line, 

taking ! "1/ b2 #bo
2 g( ) , and using the proportionality constant as a fitting parameter. 

This accounts neither for the discontinuity in nor the non-analyticity of cos χ near bo. 

Even the most authoritative earlier sources [14, 24] do not address the error this 

approximation incurs. 

An ad hoc Lebesgue integration can be used to circumvent the non-analyticity of the 

integrand in Equation (10) at the orbit line. A measure of the error in the integral’s value 

as it crosses bo is provided by cutting out a small area of the integration domain around 

bo, b ∈ [b0 – δ, b0 + δ]. In any region of the trajectory map, the upper bound of the 

integrand in Equation (10) is b for even l and 2b for odd l, because −1 ≤ cos χ ≤ 1; the 
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lower bound is always zero. Thus the exclusion of a neighborhood of size 2 around bo 

induces an error in resulting Q(l)« values of at most 2bo for even l and 4bo for odd l. It 

follows that numerical error in the integral as a whole can be controlled by the choice of 

δ; an exact integral can be calculated in principle by taking a limit as the measure δ goes 

to zero. 

To resolve difficulties with the semi-infinite integration domain in Equation (10), 

observe that integrands in Q(l)« always behave similarly when impact parameters are 

large. Asymptotic behavior was analyzed to inform a decision procedure for terminating 

the upper bound of the integration domain at a predefined level of accuracy. The 

asymptotic analysis begins with Equations (6) and (16). When b is much greater than 1, P 

asymptotically satisfies 
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An asymptotic formula for ym follows from Equation (8). Insertion into Equations (18), 

(20), and (21) yields the asymptotic behavior of the deflection angle. Maclaurin 

expansion of the cosine ultimately provides the formula  
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The collision-cross-section integrand and Equation (23) are depicted in Fig. 5; they match 

if b is sufficiently large. 

Equation (23) allows estimation of the error induced by truncating the integration 

domain in Equation (10) at finite upper bound bstop. Presuming that  bstop !1, the portion 

of the semi-infinite integral lost is 
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Figure A-5. Integrands of the reduced cross sections, Q(l)«, and the asymptotic behavior 
for b ≫ 1, with l = 1. Solid line, g = 0.001; dotted line, g = 0.1; short dashed line, g = 10; 
long- dashed lines show the asymptotic behavior from Equation (23). 
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Figure A-6. Collision cross section Q(l)« as a function of relative kinetic energy g2. The 
solid lines are reprinted from Hirschfelder et al. [24]; the dashed lines are from Storck 
[40]; the dotted lines represent calculations accurate to 6 digits based on the methods 
discussed here. The inset shows significant differences when g2 is near unity. 
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Marching forward from b = 0 with RK4, the ratio of the area lost by truncation of the 

domain to the area already integrated can be monitored to decide when to halt the 

numerical procedure. 

Figure A-6 compares collision cross sections previously reported by Hirschfelder et 

al. [24] and Storck [40] to those developed here, as functions of the dimensionless kinetic 

energy g2. For the present calculations 6-digit accuracy (0.00001% error) was deemed 

sufficient. The inset in Figure A-6 shows significant differences between the present 

results and Storck’s for a range of g2 values between 0.5 and 2.0. These differences owe 

to Storck’s neglect of the trajectories in region V and VI of Figure A-4.  

 

A.3.5 Collision integrals 

The reduced collision integrals Ω(l,s)« defined in Equation (11) are more readily 

computed than other preliminary quantities. Although the integration domain is also 

semi-infinite, the integrand decreases rapidly with g2, making it easier to create 

procedures to terminate the integration with bounded error. The exponentially decreasing 

character allows precision to be insured by a procedure where the forward-marching RK4 

integration is halted when the integrand becomes smaller than a target value. 

Collision integrals with 6 digits of precision (0.00001% accuracy) are tabulated in the 

supplementary material. (Values with higher accuracy could be evaluated using the 

methods suggested above.) Equation (1) was obtained by fitting this table with the 

method of least squares, as discussed in chapter 0. As a result, Equation (1) generates 
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collision integrals accurate to at least four significant digits when 0.3!T * ! 400 . This 

accuracy is well within the bounds of intrinsic experimental error on transport-property 

measurements, and should suffice for most continuum heat, mass, and momentum 

transport analyses. 

The present computations deviate up to 2% from those of Hirschfelder et al. at low 

reduced temperature, T* = 0.3, consistent with the observation of Akhmatskaya and 

Pozhar [14]. There is a larger difference, up to 3.5% at T* = 400. This is consistent with 

NJA’s observation that previous computations were in error at large T* [16].  

 

A.4 Optimal Lennard-Jones parameters for Neon, Argon, and Krypton 

Finding the pair potential that best describes a particular type of particle is a 

challenging inverse problem. The temperature dependences of transport properties are in 

principle known from experiments, with various degrees of measurement error. 

Parameterization of a potential requires that these data be simultaneously fit with 

calculations from kinetic theory—or at least, it should. A true optimization has not yet 

been performed, because iterative procedures in which LJ parameters vary require 

prohibitively time-intensive collision-integral calculations. 

Previous efforts to establish pair potentials in gases have also tended to use one set of 

property data, such as the second virial coefficient [42] or viscosity [24], and varied both 

LJ parameters in an ad hoc fashion to obtain a best fit. Such procedures do not guarantee 

an optimal choice that minimizes the error across multiple properties. 

It is worth mentioning that many papers call into question whether the LJ potential 

accurately models gas-particle interactions at all [18, 43–45]. When considering such 
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criticisms, it should be borne in mind that the true test of a potential model is whether it 

accurately predicts how macroscopic thermodynamic and transport properties depend on 

temperature—with ‘accurately’ taken to mean ‘within the bounds of intrinsic 

experimental error for all known data at all accessible temperatures.’ Since accurate 

collision-integral tables have never been used for this sort of multiobjective optimization 

of the LJ potential, it is impossible to judge whether or not the potential models any real 

gas well. To address this concern, simultaneous best fits of the two most accurately 

known properties (second virial coefficient and viscosity) of a gas were used to 

parameterize the LJ potential; the predictive capability of the potential was then tested by 

comparison to less accurately known properties (thermal conductivity and self-diffusion 

coefficient). All four properties for Ne, Ar, and Kr were matched within experimental 

error. 

Virial coefficients are thermodynamic properties. By definition, they correct the 

pressure-explicit equation of state for an ideal gas according to 

 

 

pV
NAkBT

=1+
B2V T( )
V

+
B3V T( )
V
2 +!,

 
 (25) 

in which the second coefficient B2V reflects pairwise interactions, the third virial 

coefficient B3V quantifies pairwise and three-body interactions, etc [46]. Here p is 

pressure, V  is the molar volume, and NA is Avogadro’s number. In a pure gas B2V varies 

with temperature as [47] 
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Lennard-Jones considered a number of pair potentials, ultimately settling on the form in 

(4) [48, 49]. 
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Transport coefficients depend on collision integrals of various orders, which in 

turn depend on the pair potential. Hirschfelder et al. implemented one of the first attempts 

to determine LJ parameters from a transport property—viscosity. The viscosity η is given 

terms of collision integrals for an LJ gas as [9] 

 

 

! T *( ) = 5 "#mT *

16"$ 2% 2,2( )! T *( )
f!
n( ).

 
 (27) 

Here f!
n( )  denotes a function that brings η up to the nth order in the Sonine expansion. The 

thermal conductivity k and the self-diffusion coefficient D are 
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where fk
n( )  and  fD

n( )  represent corrections of nth order. Since it involves the density ρ, 

given up to second order in the virial expansion by
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 (30) 

computation of the self-diffusion coefficient D involves a computation of B2V as well as 

the collision integrals.  

 Use of higher-order corrections improves accuracy of the property in question, but 

only up to a point—Viehland et al.[50] demonstrated that convergence of the 

approximation is ordinarily very rapid, and that third- and fourth-order calculations of the 

viscosity in the dimensionless temperature range 0.3 ≤ T* ≤ 400 differ by less than 
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0.004%, far less than the 2.5% experimental error in viscosity measurement. Hurly and 

Moldover showed that third- and fourth-order accurate calculations of thermal 

conductivity differ by less than 0.01% over a wide temperature range [51]. For this work, 

f!
3( ) , f!

3( ) , and  fD
2( ) , were deemed sufficiently accurate for use in Lennard-Jones 

parameterization. These are written in terms of collision integrals in the A-A Appendix. 

 An LJ parameterization effort requires reliable experimental data that quantify the 

temperature dependence of B2V, η, λ, and  D  were needed. Here ‘reliable’ is interpreted 

to mean that the experiments were replicated and reported with quantitative estimates of 

experimental error. Maitland and Smith [52] performed an extensive data search for gas 

viscosities, and aggregated literature data to generate tables accurate within 2.5% for the 

viscosities of Ne, Ar, and Kr between their boiling points and 2000 K. Saxena et al.’s 

data were used for thermal conductivities between 350K and 1500K, which have 4.0% 

maximum error [53–56]. 

 In the case of self-diffusion coefficients, experimental values are quite sparse, so in 

addition to self-diffusion coefficients [44,49,69,70,71], we also gathered mutual-diffusion 

coefficients for isotopic mixtures [48,64]. Mutual diffusion coefficients were converted to 

self-diffusion coefficients by correcting for the composition differences between the 

equilibrated isotopic mixtures and naturally occurring isotope ratios. Some reports of 

self-diffusion coefficients did not provide error estimates [48,70,71], but most report 

intrinsic error of 2~3%.  
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Figure A-7. Procedure for LJ parameterization of argon: (a) contours of the maximum 
percentage deviation between theoretical and calculated viscosity values (the viscosity-
correct region where calculations match experiments is shaded); (b) virial-correct region; 
(c) contraction of the viscosity-correct region to minimize error in viscosity within dual-
correct region; (d) comparison of results to experiments. 
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Measurements of both self-diffusion coefficients [57–61] and mutual-diffusion 

coefficients at atmospheric pressure were collected [62, 63]. Mutual diffusion coefficients 

were converted to self-diffusion coefficients by correcting m for the composition 

differences between equilibrated isotopic-mixture compositions and naturally occurring 

isotope ratios. Some reports do not provide error estimates [60–62]; most report error of a 

few percent. 

The extensive tables produced by Dymond and Smith [64], which compile 

measurements by numerous groups over several decades, were used for B2V data. Error 

ranges for second virial coefficients are typically provided as absolute values, rather than 

percentages, on the basis that B2V is very close to zero when gases behave near ideally. 

Error in B2V ranges from 0.5-1 cm3/mol. 

To determine optimal LJ parameters, experimental data quantifying the 

temperature dependences of viscosity η and second virial coefficient B2V were fit with 

Equations (26) and (27), using equations (31) and (32) from the appendix to get f!
3( )

 in 

terms of collision integrals, and Equation (1) to compute the collision integrals. This 

approach strictly tests the potential chosen by using both a thermodynamic property and a 

transport property—parameters computed by two distinct theories. Among the transport 

coefficients, viscosity was chosen as the objective for LJ parameter optimization because 

it has the least error and is recorded over the widest T range.  

LJ parameter optimization was facilitated by a graphical method illustrated in 

Figure A-7 for argon. A contour plot of the maximum percentage deviation between 

theoretical and experimental η values was created vs. σ and ε/kB. The experimental error 

of 2.5% corresponds to one of these contours, delineating a ‘viscosity-correct’ region in 
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which all combinations of σ and ε/kB correctly predict the temperature dependence of 

viscosity. In a similar plot for B2V, a ‘virial-correct’ region was identified by creating a 

Boolean function that took value 1 if all predicted B2V values for a given σ and ε/kB were 

within experimental error, and 0 otherwise, and coloring the two values differently. Any 

σ and ε/kB values within the intersection of the ‘viscosity-correct’ and ‘virial-correct’ 

regions match both properties within error. Since this overlapping area has finite size, a 

further constraint is needed to determine exact parameter values. Viscosities are more 

precisely measured, so the deviation from experimental viscosity data within this ‘dual-

correct’ domain was minimized: the error tolerance on the ‘viscosity-correct’ domain was 

reduced until it met the ‘virial-correct’ domain at a point (within the precision of 

Equation (1)). 

Validity of the LJ parameter optimization was tested by using parameters fit to η 

and B2V to predict k and D; the predictions were subsequently compared to experimental 

data. Thermal conductivity strongly correlates to viscosity. The self-diffusion coefficient 

is a more stringent test of a potential model, because in addition to depending on a 

different order of collision integral than η, it also depends on B2V. 

Optimal LJ parameters for Ne, Ar, and Kr are shown in Table A-4, which also 

compares property predictions to those based on LJ parameters provided by earlier 

researchers [9, 42, 65]. Ironically, Lennard-Jones’ parameters (the oldest) are closer to 

the ones obtained here than any others, because Lennard-Jones based his parameter 

optimization on the second viral coefficient alone, avoiding a reliance on faulty collision- 

integral computation. Hirschfelder et al. suggested that their LJ parameters would 

describe pair potentials better because of the lower intrinsic error of viscosity 
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Figure A-8. Optimal LJ parameters generate four different gas properties accurately 
within experimental error. Each graph includes three gases: neon (dashed), argon (dotted), 
and krypton (solid). Data for D are at 101325 Pa. 
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Table A-4. Comparison of LJ parameters from this work to literature values for Ne, Ar, 
and Kr, showing average and maximum deviation from measured transport properties, as 
well as the number of points located inside the virial-correct region on Figure A-7. 
Intrinsic experimental errors are written parenthetically next to η, k, and D. 
 

Gas Group 

Properties 
used for 

parameteri
zaion ε/k (K) σ (Å) 

η (2.5%) k (4%) D (≥ 3%) 

B2V avg max avg max avg max 

Ne 

Lennard-Jones B2V 35.35 2.743 2.6 5.3 0.8 1.9 2.8 4.3 6/10 
Hirschfelder η 35.7 2.80 1.3 2.2 4.0 5.2 0.7 1.4 8/10 

Kestin η 60.89 2.6481 1.3 8.8 1.0 2.1 2.4 12. 0/10 
This work η, B2V 35.750 2.7820 1.3 2.0 2.8 4.0 0.7 1.5 10/10 

Ar 

Lennard-Jones B2V 119.5 3.408 1.8 2.5 2.7 2.8 1.1 2.6 10/11 
Hirschfelder η 124.0 3.418 2.0 3.4 3.8 4.0 1.3 3.2 3/11 

Kestin η 152.75 3.2923 1.4 6.4 0.4 0.5 2.2 7.5 0/11 
This work η, B2V 120.38 3.4062 1.8 2.3 2.7 2.8 1.1 2.4 11/11 

Kr 
Hirschfelder η 190.0 3.61 2.1 3.3 3.5 4.5 2.2 4.4 0/13 

Kestin η 206.42 3.5222 1.1 2.8 0.3 1.5 1.3 2.2 0/13 
This work η, B2V 171.64 3.6202 1.5 2.5 2.4 3.0 1.4 3.0 13/13 
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measurements. Table A-4, however, shows that Hirschfelder et al. found inaccurate LJ 

parameters due to faulty collision-integral calculation. DiPippo and Kestin’s more recent 

LJ parameterization [65] was based on the collision-integral tables of Hirschfelder et al., 

and is therefore similarly suspect. 

 

A.5 Conclusion 

An arbitrary-precision algorithm was developed to calculate collision integrals for the 

LJ (12–6) potential. To speed computation and solve inverse problems with variable LJ 

parameters, interpolation formulas with 4-digit accuracy were developed (Equation (1)). 

Optimal LJ parameters were computed for three gases by simultaneously fitting 

experimental data for the temperature dependence of viscosity and second virial 

coefficient. Collision integrals were involved in viscosity calculation, and the second 

virial coefficient came from a separate equilibrium theory. The LJ parameters that 

matched these properties were verified using the self-diffusion coefficient and thermal 

conductivity of the gases in question. LJ potentials were found that predict the 

temperature dependences of viscosities, thermal conductivities, self-diffusion coefficients, 

and second virial coefficients of neon, argon, and krypton within experimental error, over 

temperatures ranging from their boiling points to 2000 K. 

This work could be extended to the property evaluations of polar gases using 

different intermolecular potential. Once a different form of potentials is introduced, one 

might repeat the steps in chapter 0 and 0 to evaluate the arbitrary collision integrals of the 

polar gas, and to get its empirical equations. Once the empirical equation is established, 

the steps in chapter 0 would provide the optimal parameters for the polar gas. The work 
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in this chapter was enough to prove that this suggested method is capable of calculating 

the properties of polar gases with high precision. 

 

A-A Appendix: higher order corrections 

The third-order viscosity correction includes a factor 

 
f!
3( ) =1+ b12

2

b11b22 "b12
2 +

b11 b12b23 "b22b13( )2

b11b22 "b12
2( )det b( )

,
 

 (31) 

where the independent entries in the 3 × 3, symmetric matrix b are 

 

 

b11 = 4!
2,2( )!

b12 = 7!
2,2( )! "8! 2,3( )!

b22 = 301
12 !

2,2( )! "28! 2,3( )! +20! 2,4( )!

b13 = 63
8 !

2,2( )! "18! 2,3( )! +10! 2,4( )!

b23 = 1365
32 !

2,2( )! " 321
4 !

2,3( )! + 125
2 !

2,4( )! " 30! 2,5( )!

b33 = 25137
256 !

2,2( )! " 1755
8 ! 2,3( )! + 1905

8 ! 2,4( )! "135! 2,5( )! + 105
2 !

2,6( )! +12! 4,4( )! .

 
 (32) 

The same order of thermal conductivity involves 

 
f!
3( ) =1+ a12

2

a11a22 "a12
2 +

a11 a12a23 "a22a13( )2

a11a22 "a12
2( )det a( )

,
 

 (33) 

where entries in the symmetric 3 × 3 matrix a are 

 

 

a11 = b11;   a12 = b12;   a13 = b13;

a22 = 77
4 !

2,2( )! "28! 2,3( )! +20! 2,4( )!

a23 = 945
32 !

2,2( )! " 261
4 !

2,3( )! + 125
2 !

2,4( )! " 30! 2,5( )!

a33 = 14553
256 !

2,2( )! " 1215
8 ! 2,3( )! + 1565

8 ! 2,4( )! "135! 2,5( )! + 105
2 !

2,6( )! + 4! 4,4( )! .
 

 (34) 

Second-order self-diffusion coefficients include 
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1
fD
2( ) = 1!

6C ! ! 5( )2
55 !12B! +16A!

,
 

 (35) 

where 

 

 

A! =! 2,2( )! /! 1,1( )!

B! = 5! 1,2( )! " 4! 1,3( )!{ } /! 1,1( )!

C ! =! 1,2( )! /! 1,1( )!  

 (36) 

These orders of η, k, and D suffice to fit all the available data for the gases discussed in 

this article. 
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A.6 Supplementary data: sixteen collision integral values of 6 digits accuracy (0.00001%) 
 

T *   !
1,1( )!   !

1,2( )!   !
1,3( )!   !

1,4( )!   !
1,5( )!   !

1,6( )!   !
1,7( )!   !

2,2( )!  

0.30 2.6500024 2.2568342 1.9665277 1.7422927 1.5692059 1.4367486 1.3357334 2.8436719 
0.35 2.4690902 2.0803498 1.7992869 1.5906654 1.4362847 1.3224167 1.2377740 2.6793810 
0.40 2.3147191 1.9334804 1.6655752 1.4739771 1.3372123 1.2389202 1.1669636 2.5333021 
0.45 2.1817500 1.8106979 1.5576333 1.3828143 1.2614679 1.1758283 1.1136355 2.4027196 
0.50 2.0663606 1.7072842 1.4695923 1.3103104 1.2021301 1.1266734 1.0720503 2.2852477 
0.55 1.9654568 1.6195116 1.3970409 1.2516628 1.1545826 1.0873425 1.0386623 2.1797044 
0.60 1.8769305 1.5445772 1.3364925 1.2034475 1.1157023 1.0551401 1.0111924 2.0848158 
0.65 1.7987221 1.4800688 1.2854200 1.1632213 1.0833326 1.0282481 0.98812233 1.9994146 
0.70 1.7292913 1.4242462 1.2419179 1.1292004 1.0559550 1.0054049 0.96840757 1.9226284 
0.75 1.6675641 1.3754865 1.2044863 1.1000678 1.0324731 0.98571345 0.95130868 1.8533519 
0.80 1.6121364 1.3326440 1.1719829 1.0748426 1.0120831 0.96852089 0.93628907 1.7906831 
0.85 1.5624746 1.2948503 1.1435158 1.0527821 0.99418312 0.95334226 0.92295044 1.7340892 
0.90 1.5174627 1.2612243 1.1184037 1.0333110 0.97831663 0.93981035 0.91099132 1.6826234 
0.95 1.4768357 1.2311810 1.0960772 1.0159875 0.96413043 0.92764266 0.90017961 1.6358666 
1.00 1.4397702 1.2041955 1.0761146 1.0004554 0.95134931 0.91661848 0.89033337 1.5931672 
1.05 1.4060217 1.1798014 1.0581465 0.98643969 0.93975414 0.90656270 0.88130844 1.5541219 
1.10 1.3750666 1.1577189 1.0418789 0.97371159 0.92916937 0.89733523 0.87298883 1.5184065 
1.15 1.3466473 1.1376075 1.0270868 0.96208905 0.91945328 0.88882209 0.86528009 1.4855505 
1.20 1.3204234 1.1192153 1.0135626 0.95142110 0.91048923 0.88092999 0.85810466 1.4552844 
1.25 1.2962670 1.1023150 1.0011456 0.94158523 0.90218129 0.87358176 0.85139815 1.4273571 
1.30 1.2738574 1.0867759 0.98969426 0.93247623 0.89444917 0.86671280 0.84510662 1.4015367 
1.35 1.2530452 1.0724095 0.97910188 0.92400777 0.88722575 0.86026898 0.83918453 1.3775536 



 

 164 

T *  
 !

1,1( )!   !
1,2( )!   !

1,3( )!   !
1,4( )!   !

1,5( )!   !
1,6( )!   !

1,7( )!   !
2,2( )!  

1.40 1.2336136 1.0590926 0.96926129 0.91610605 0.88045410 0.85420416 0.83359312 1.3552816 
1.45 1.2155747 1.0467019 0.96009215 0.90870885 0.87408586 0.84847912 0.82829923 1.3345419 
1.50 1.1986808 1.0351603 0.95152055 0.90176277 0.86807940 0.84306002 0.82327421 1.3152088 
1.55 1.1828536 1.0243771 0.94348497 0.89522147 0.86239909 0.83791765 0.81849327 1.2971279 
1.60 1.1679578 1.0142682 0.93593428 0.88904506 0.85701370 0.83302664 0.81393476 1.2801718 
1.65 1.1539511 1.0047749 0.92881914 0.88319896 0.85189631 0.82836480 0.80957967 1.2642756 
1.70 1.1408224 0.99583780 0.92209781 0.87765275 0.84702325 0.82391262 0.80541135 1.2493360 
1.75 1.1284010 0.98740237 0.91573575 0.87238001 0.84237367 0.81965290 0.80141495 1.2352709 
1.80 1.1166373 0.97943615 0.90970084 0.86735749 0.83792919 0.81557048 0.79757735 1.2220198 
1.85 1.1055155 0.97189625 0.90396440 0.86256423 0.83367350 0.81165172 0.79388680 1.2095019 
1.90 1.0949587 0.96474278 0.89850262 0.85798182 0.82959206 0.80788453 0.79033282 1.1976519 
1.95 1.0849179 0.95794271 0.89329397 0.85359390 0.82567190 0.80425810 0.78690594 1.1864277 
2.0 1.0753782 0.95147239 0.88831761 0.84938582 0.82190137 0.80076262 0.78359768 1.1757878 
2.1 1.0576880 0.93941612 0.87899283 0.84145786 0.81476839 0.79413024 0.77730684 1.1560755 
2.2 1.0415415 0.92839764 0.87040761 0.83410749 0.80812087 0.78792640 0.77140676 1.1382131 
2.3 1.0267699 0.91828467 0.86246292 0.82726094 0.80189937 0.78210064 0.76585289 1.1219472 
2.4 1.0131781 0.90894977 0.85507731 0.82085684 0.79605443 0.77661074 0.76060781 1.1070586 
2.5 1.0006472 0.90029830 0.84818368 0.81484417 0.79054453 0.77142109 0.75563978 1.0933919 
2.6 0.98906701 0.89224814 0.84172453 0.80917987 0.78533451 0.76650137 0.75092168 1.0807943 
2.7 0.97829129 0.88472900 0.83565191 0.80382741 0.78039436 0.76182556 0.74643015 1.0691400 
2.8 0.96824673 0.87768660 0.82992513 0.79875553 0.77569826 0.75737120 0.74214494 1.0583269 
2.9 0.95886031 0.87106903 0.82450913 0.79393736 0.77122390 0.75311876 0.73804836 1.0482551 
3.0 0.95005427 0.86483130 0.81937367 0.78934962 0.76695180 0.74905117 0.73412491 1.0388470 
3.1 0.94177557 0.85893580 0.81449279 0.78497194 0.76286495 0.74515340 0.73036091 1.0300376 
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T *  
 !

1,1( )!   !
1,2( )!   !

1,3( )!   !
1,4( )!   !

1,5( )!   !
1,6( )!   !

1,7( )!   !
2,2( )!  

3.2 0.93400074 0.85335175 0.80984369 0.78078651 0.75894835 0.74141217 0.72674421 1.0217697 
3.3 0.92666046 0.84805008 0.80540630 0.77677772 0.75518872 0.73781571 0.72326405 1.0139889 
3.4 0.91970993 0.84300574 0.80116297 0.77293164 0.75157428 0.73435352 0.71991072 1.0066494 
3.5 0.91311310 0.83819666 0.79709810 0.76923595 0.74809450 0.73101614 0.71667561 0.99971193 
3.6 0.90685315 0.83360430 0.79319799 0.76567966 0.74473996 0.72779516 0.71355081 0.99314079 
3.7 0.90089774 0.82921201 0.78945026 0.76225293 0.74150216 0.72468291 0.71052933 0.98690575 
3.8 0.89521976 0.82500346 0.78584389 0.75894689 0.73837349 0.72167248 0.70760469 0.98097605 
3.9 0.88980006 0.82096453 0.78236895 0.75575354 0.73534696 0.71875763 0.70477109 0.97532751 
4.0 0.88461425 0.81708302 0.77901658 0.75266566 0.73241634 0.71593260 0.70202323 0.96993895 
4.1 0.87965381 0.81334769 0.77577864 0.74967666 0.72957583 0.71319223 0.69935616 0.96479082 
4.2 0.87490764 0.80974903 0.77264787 0.74678059 0.72682026 0.71053164 0.69676551 0.95986544 
4.3 0.87035232 0.80627792 0.76961763 0.74397198 0.72414477 0.70794656 0.69424703 0.95514646 
4.4 0.86597230 0.80292597 0.76668185 0.74124583 0.72154501 0.70543286 0.69179709 0.95061857 
4.5 0.86175561 0.79968564 0.76383499 0.73859757 0.71901691 0.70298691 0.68941206 0.94626864 
4.6 0.85769318 0.79655010 0.76107195 0.73602297 0.71655672 0.70060518 0.68708870 0.94208483 
4.7 0.85377421 0.79351319 0.75838809 0.73351815 0.71416099 0.69828452 0.68482413 0.93805622 
4.8 0.84999456 0.79056912 0.75577912 0.73107956 0.71182653 0.69602196 0.68261547 0.93417280 
4.9 0.84634383 0.78771273 0.75324108 0.72870382 0.70955036 0.69381476 0.68046011 0.93042544 
5 0.84281354 0.78493952 0.75077033 0.72638792 0.70732973 0.69166044 0.67835565 0.92680619 
6 0.81285427 0.76092265 0.72912577 0.70597537 0.68768908 0.67256505 0.65967671 0.89620912 
7 0.78978812 0.74182420 0.71162085 0.68932388 0.67159018 0.65686760 0.64429297 0.87275246 
8 0.77115143 0.72600688 0.69695069 0.67528837 0.65797787 0.64357010 0.63124604 0.85381806 
9 0.75558286 0.71252733 0.68434230 0.66317681 0.64620640 0.63205656 0.61994085 0.83797577 
10 0.74223469 0.70079676 0.67330028 0.65253913 0.63585166 0.62192004 0.60998263 0.82436995 
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T *  
 !

1,1( )!   !
1,2( )!   !

1,3( )!   !
1,4( )!   !

1,5( )!   !
1,6( )!   !

1,7( )!   !
2,2( )!  

20 0.66405281 0.62944509 0.60519146 0.58652602 0.57140344 0.55873123 0.54785312 0.74363086 
30 0.62347510 0.59125466 0.56837928 0.55071357 0.53638643 0.52437838 0.51407164 0.70078919 
40 0.59627779 0.56544434 0.54345126 0.52645211 0.51266524 0.50111255 0.49119952 0.67169995 
50 0.57596616 0.54610667 0.52476590 0.50826839 0.49489105 0.48368462 0.47407140 0.64979124 
60 0.55984084 0.53073284 0.50991043 0.49381509 0.48076715 0.46983950 0.46046786 0.63229371 
70 0.54652207 0.51802665 0.49763441 0.48187445 0.46910151 0.45840686 0.44923670 0.61777649 
80 0.53521100 0.50723298 0.48720820 0.47173560 0.45919842 0.44870342 0.43970638 0.60540410 
90 0.52540444 0.49787433 0.47817019 0.46294861 0.45061739 0.44029690 0.43145039 0.59464667 
100 0.51676535 0.48963015 0.47021007 0.45521112 0.44306276 0.43289720 0.42418449 0.58514739 
200 0.46296112 0.43832021 0.42071111 0.40713202 0.39614770 0.38696530 0.37910221 0.52556475 
300 0.43383794 0.41058661 0.39398951 0.38120211 0.37086503 0.36222809 0.35483526 0.49305524 
400 0.41418524 0.39188997 0.37598843 0.36374360 0.35384941 0.34558517 0.33851320 0.47103246 

 

T *   !
2,3( )!   !

2,4( )!   !
2,5( )!   !

2,6( )!   !
3,3( )!   !

3,4( )!   !
3,5( )!   !

4,4( )!  
0.30 2.5806610 2.3622719 2.1704207 2.0010465 2.3996913 2.1698726 1.9860912 2.5710549 
0.35 2.4091063 2.1834561 1.9898392 1.8258038 2.2254600 2.0038490 1.8289555 2.3938882 
0.40 2.2575571 2.0297914 1.8408867 1.6868985 2.0803510 1.8673483 1.7018522 2.2395320 
0.45 2.1240588 1.8990875 1.7186542 1.5765238 1.9575384 1.7537232 1.5977523 2.1053244 
0.50 2.0069722 1.7882134 1.6181863 1.4880206 1.8525505 1.6580928 1.5116212 1.9886589 
0.55 1.9046180 1.6940822 1.5350981 1.4162050 1.7620821 1.5769424 1.4396656 1.8871923 
0.60 1.8150156 1.6138942 1.4658166 1.3571792 1.6835043 1.5075387 1.3789923 1.7987636 
0.65 1.7364493 1.5452565 1.4075304 1.3080480 1.6148438 1.4477580 1.3273775 1.7214751 
0.70 1.6674359 1.4861632 1.3580404 1.2666544 1.5545007 1.3959162 1.2830921 1.6536775 
0.75 1.6065811 1.4349531 1.3156437 1.2313822 1.5011905 1.3506548 1.2447869 1.5939665 
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T *  
 !

2,3( )!   !
2,4( )!   !

2,5( )!   !
2,6( )!   !

3,3( )!   !
3,4( )!   !

3,5( )!   !
4,4( )!  

0.80 1.5526726 1.3903133 1.2790066 1.2010100 1.4538369 1.3108971 1.2113994 1.5411581 
0.85 1.5047917 1.3511504 1.2470898 1.1746032 1.4115863 1.2757691 1.1820864 1.4942592 
0.90 1.4620443 1.3165932 1.2190696 1.1514400 1.3737257 1.2445561 1.1561756 1.4524316 
0.95 1.4237576 1.2859202 1.1942947 1.1309565 1.3396477 1.2166734 1.1331257 1.4149738 
1.00 1.3893188 1.2585459 1.1722436 1.1127074 1.3088446 1.1916425 1.1124988 1.3812893 
1.05 1.3582156 1.2339935 1.1524937 1.0963379 1.2809145 1.1690665 1.0939370 1.3508871 
1.10 1.3300294 1.2118563 1.1347033 1.0815622 1.2554800 1.1486110 1.0771464 1.3233387 
1.15 1.3043943 1.1918081 1.1185922 1.0681483 1.2322414 1.1300009 1.0618842 1.2982860 
1.20 1.2809860 1.1735721 1.1039286 1.0559062 1.2109437 1.1130009 1.0479478 1.2754262 
1.25 1.2595512 1.1569163 1.0905207 1.0446789 1.1913652 1.0974136 1.0351684 1.2544978 
1.30 1.2398589 1.1416427 1.0782082 1.0343361 1.1733062 1.0830712 1.0234031 1.2352759 
1.35 1.2217188 1.1275872 1.0668561 1.0247685 1.1566067 1.0698304 1.0125311 1.2175683 
1.40 1.2049473 1.1146073 1.0563501 1.0158838 1.1411207 1.0575671 1.0024495 1.2012088 
1.45 1.1894056 1.1025824 1.0465931 1.0076041 1.1267275 1.0461757 0.99307048 1.1860539 
1.50 1.1749662 1.0914076 1.0375022 0.99986251 1.1133123 1.0355640 0.98431832 1.1719775 
1.55 1.1615160 1.0809925 1.0290059 0.99260197 1.1007802 1.0256524 0.97612759 1.1588698 
1.60 1.1489623 1.0712592 1.0210426 0.98577312 1.0890508 1.0163714 0.96844160 1.1466352 
1.65 1.1372108 1.0621399 1.0135589 0.97933319 1.0780449 1.0076599 0.96121097 1.1351894 
1.70 1.1261887 1.0535748 1.0065081 0.97324497 1.0676999 0.99946422 0.95439245 1.1244586 
1.75 1.1158312 1.0455117 0.99984960 0.96747593 1.0579583 0.99173737 0.94794812 1.1143770 
1.80 1.1060784 1.0379050 0.99354748 0.96199748 1.0487650 0.98443768 0.94184454 1.1048868 
1.85 1.0968772 1.0307135 0.98757016 0.95678443 1.0400747 0.97752803 0.93605214 1.0959359 
1.90 1.0881810 1.0239013 0.98189003 0.95181448 1.0318466 0.97097562 0.93054467 1.0874785 
1.95 1.0799496 1.0174365 0.97648202 0.94706785 1.0240442 0.96475115 0.92529879 1.0794735 
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T *  
 !

2,3( )!   !
2,4( )!   !

2,5( )!   !
2,6( )!   !

3,3( )!   !
3,4( )!   !

3,5( )!   !
4,4( )!  

2.0 1.0721422 1.0112907 0.97132416 0.94252689 1.0166328 0.95882826 0.92029365 1.0718843 
2.1 1.0576712 0.99985674 0.96168219 0.93400056 1.0028680 0.94779539 0.91093290 1.0578241 
2.2 1.0445409 0.98942473 0.95282960 0.92612771 0.99034584 0.93771554 0.90233462 1.0450714 
2.3 1.0325613 0.97985338 0.94465732 0.91882073 0.97889431 0.92845696 0.89439477 1.0334411 
2.4 1.0215773 0.97102666 0.93707600 0.91200766 0.96837334 0.91991113 0.88702785 1.0227808 
2.5 1.0114602 0.96284896 0.93001171 0.90562882 0.95866550 0.91198800 0.88016290 1.0129643 
2.6 1.0021004 0.95524048 0.92340281 0.89963429 0.94967207 0.90461216 0.87374059 1.0038861 
2.7 0.99340868 0.94813418 0.91719743 0.89398190 0.94130938 0.89772016 0.86771093 0.99545741 
2.8 0.98530826 0.94147344 0.91135165 0.88863584 0.93350643 0.89125817 0.86203147 0.98760320 
2.9 0.97773329 0.93520999 0.90582799 0.88356547 0.92620218 0.88518026 0.85666594 0.98025947 
3.0 0.97062776 0.92930264 0.90059428 0.87874436 0.91934463 0.87944694 0.85158315 0.97337142 
3.1 0.96394335 0.92371569 0.89562274 0.87414960 0.91288876 0.87402418 0.84675611 0.96689191 
3.2 0.95763837 0.91841838 0.89088924 0.86976125 0.90679542 0.86888240 0.84216139 0.96078014 
3.3 0.95167605 0.91338390 0.88637269 0.86556181 0.90103025 0.86399579 0.83777848 0.95500065 
3.4 0.94602470 0.90858880 0.88205461 0.86153587 0.89556349 0.85934176 0.83358936 0.94952249 
3.5 0.94065658 0.90401245 0.87791870 0.85766981 0.89036869 0.85490049 0.82957817 0.94431847 
3.6 0.93554710 0.89963667 0.87395053 0.85395152 0.88542254 0.85065434 0.82573082 0.93936475 
3.7 0.93067461 0.89544535 0.87013727 0.85037020 0.88070445 0.84658775 0.82203481 0.93464011 
3.8 0.92601967 0.89142414 0.86646749 0.84691616 0.87619607 0.84268685 0.81847895 0.93012585 
3.9 0.92156512 0.88756027 0.86293092 0.84358073 0.87188098 0.83893924 0.81505322 0.92580526 
4.0 0.91729564 0.88384227 0.85951835 0.84035606 0.86774479 0.83533380 0.81174863 0.92166346 
4.1 0.91319746 0.88025985 0.85622148 0.83723505 0.86377411 0.83186053 0.80855706 0.91768708 
4.2 0.90925819 0.87680372 0.85303280 0.83421126 0.85995719 0.82851038 0.80547115 0.91386415 
4.3 0.90546674 0.87346549 0.84994548 0.83127885 0.85628337 0.82527521 0.80248424 0.91018384 
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T *  
 !

2,3( )!   !
2,4( )!   !

2,5( )!   !
2,6( )!   !

3,3( )!   !
3,4( )!   !

3,5( )!   !
4,4( )!  

4.4 0.90181294 0.87023757 0.84695332 0.82843246 0.85274294 0.82214777 0.79959026 0.90663639 
4.5 0.89828765 0.86711304 0.84405067 0.82566720 0.84932712 0.81912111 0.79678368 0.90321296 
4.6 0.89488258 0.86408560 0.84123237 0.82297859 0.84602795 0.81618917 0.79405943 0.89990551 
4.7 0.89159019 0.86114950 0.83849366 0.82036249 0.84283808 0.81334635 0.79141289 0.89670672 
4.8 0.88840358 0.85829945 0.83583020 0.81781512 0.83975103 0.81058750 0.78883978 0.89360992 
4.9 0.88531644 0.85553064 0.83323798 0.81533297 0.83676050 0.80790791 0.78633618 0.89060900 
5 0.88232298 0.85283861 0.83071330 0.81291278 0.83386098 0.80530310 0.78389847 0.88769837 
6 0.85654973 0.82937384 0.80853723 0.79154957 0.80891308 0.78262759 0.76251500 0.86260235 
7 0.83619863 0.81050537 0.79050905 0.77406342 0.78924407 0.76443263 0.74516965 0.84273175 
8 0.81939793 0.79472897 0.77532473 0.75927045 0.77303257 0.74924772 0.73058710 0.82628544 
9 0.80509669 0.78117621 0.76221439 0.74645986 0.75925378 0.73622396 0.71801542 0.81225329 
10 0.79264954 0.76930082 0.75068505 0.73517070 0.74727784 0.72482750 0.70697412 0.80001509 
20 0.71644579 0.69554433 0.67855911 0.66427378 0.67429261 0.65434851 0.63817231 0.72458743 
30 0.67507284 0.65513376 0.63888735 0.62521359 0.63488403 0.61592387 0.60049842 0.68331752 
40 0.64684273 0.62752545 0.61178127 0.59853428 0.60806710 0.58973506 0.57481379 0.65505591 
50 0.62555277 0.60670537 0.59134838 0.57843324 0.58787704 0.57001539 0.55547876 0.63369637 
60 0.60854523 0.59007918 0.57503914 0.56239643 0.57176719 0.55428446 0.54006052 0.61660850 
70 0.59443663 0.57629285 0.56152168 0.54911025 0.55841509 0.54125073 0.52729066 0.60241831 
80 0.58241611 0.56455190 0.55001433 0.53780381 0.54704700 0.53015758 0.51642587 0.59031847 
90 0.57196833 0.55435118 0.54002015 0.52798715 0.53717186 0.52052451 0.50699402 0.57979498 
100 0.56274587 0.54535011 0.53120413 0.51933007 0.52845897 0.51202788 0.49867723 0.57050077 
200 0.50498732 0.48905190 0.47612279 0.46529004 0.47396894 0.45895175 0.44677450 0.51220356 
300 0.47354227 0.45845471 0.44622782 0.43599273 0.44435102 0.43014706 0.41864148 0.48041234 
400 0.45226789 0.43777361 0.42603617 0.41621633 0.42432860 0.41069132 0.39965208 0.45888704 
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