
Understanding Pre-mRNA Dynamics in Single Spliceosome Complexes 

 

by 

 

Ramya Krishnan 

 

 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy 

(Chemistry) 

in the University of Michigan 

2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doctoral Committee: 

 

 Professor Nils G. Walter, Chair 

 Professor Hashim M. Al-Hashimi 

 Professor Carol A. Fierke 

 Assistant Professor Aaron C. Goldstrohm 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Ramya Krishnan 

 

2013



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To amma, appa, Chikki, Girish and Abhi 

 



 

iii 

 

Acknowledgements 

First, I would like to thank my advisor, Dr. Nils Walter for taking me into his group and giving 

me the independence to pursue the science I wanted to. My days spent doing experiments have 

been fun alongside Mario Blanco and Matt Kahlscheuer, whom I have to thank for being great 

colleagues with a solid team spirit. I am honored to have worked in close collaboration with two 

great scientists in the field, Drs. John Abelson and Christine Guthrie. I would like to thank them 

for the insightful and encouraging discussions. For my time spent as a GSI, and for being a 

source of constant encouragement and support, I want to extend my wholehearted gratitude to 

Dr. Kathleen Nolta. Finally I would like to thank my friends in the Walter lab for maintaining a 

congenial environment, full of fun and life. 

Of course, none of this would be possible without the unconditional love and support from mom, 

dad and my sister. My mom has always encouraged me to excel in whatever I did, and my dad 

has set an example for the confident person I am today. I know this will make them proud.  I 

would also like to thank my in-laws for helping us when we needed it the most. Lastly to Girish 

and Abhinav, for making me laugh, loving me to pieces, taking me shopping and putting up with 

me, I owe it to you. 



 

iv 

 

Table of Contents 

 

Acknowledgements iii 

List of Figures viii 

List of Tables xi 

List of appendices xii 

Abstract xiii 

CHAPTER 1:Introduction 1 

1.1 RNA, the versatile biomolecule 1 

1.2 Spliceosome, the cellular mystery machine 2 

1.2.1 The interrupted gene 2 

1.2.2 The Ribonucleoprotein complex 3 

1.2.3 Finding splice sites in a cellular haystack 5 

1.2.4 Types of RNA splicing 8 

1.2.5 Helicases in splicing 8 

1.2.6 An in vitro splicing system 10 

1.3 Single molecule fluorescence microscopy- an ideal tool for studying dynamic systems 11 

1.3.1 Single molecule FRET 11 

1.3.2 Splice site juxtaposition using smFRET 12 

1.3.3 SiMPull-FRET, a refined look at single molecules 14 

CHAPTER 2: Biased Brownian ratcheting leads to pre-mRNA remodeling and capture 

prior to the first step of splicing 16 



 

v 

 

2.1 Introduction 16 

2.2 Materials and Methods 18 

2.2.1 Affinity purification of the B
act

 complex 18 

2.2.2 Cloning, expression and purification of splicing factor proteins 19 

2.2.3 Single molecule FRET of purified spliceosomal complexes 20 

2.2.4 Fluorescent labeling of Cwc25 and distance estimation from FRET 21 

2.2.5 Single Molecule Data Analysis 21 

2.3 Results 23 

2.3.1 Immunopurification of functional complex B
act

 with fluorophore labeled Ubc4 pre-

mRNA 23 

2.3.2 In the B
act

 complex, the pre-mRNA is in a stable low FRET state with distal 5’SS and 

BP 31 

2.3.3 Prp2 mediates a large-amplitude, NTP-dependent conformational remodeling of the 

pre-mRNA 36 

2.3.4 Cwc25 enhances the first step of splicing by increasing the residence time in the H 

state 41 

2.3.5 Cwc25 dynamically interacts with the pre-mRNA close to the BP after Prp2-mediated 

pre-mRNA remodeling 50 

2.4 Discussion 53 

2.5 Acknowledgements 57 

CHAPTER 3: Single molecule dissection of splice site juxtaposition along the pre-mRNA 

splicing cycle  58 

3.1 Introduction 58 

3.2 Materials and Methods 60 

3.2.1 Synthesis of Ubc4 pre-mRNA variants 60 

3.2.2 Yeast extracts and modifications 61 



 

vi 

 

3.2.3 Single molecule measurements 61 

3.2.4 Creating an HMM similarity matrix and Clustering Analysis 62 

3.3 Results 63 

3.3.1 Hierarchical clustering tools facilitate objective classification of complex smFRET 

data 63 

3.3.2 Pre-mRNA in early splicing cycle shows dynamic variation in splice site proximity 79 

3.3.3 Pre-mRNA predominantly explores close splice site proximity during late splicing 

cycle 84 

3.3.4 Clustering analysis groups biologically similar data 88 

3.3.5 The splice sites sample unique conformational paths towards splicing 91 

3.4 Discussion 95 

CHAPTER 4: An early ATP independent role for Prp28 in commitment complex 

formation  98 

4.1 Introduction 98 

4.2 Materials and Methods 100 

4.2.1 Splicing extract preparation 100 

4.2.2 Native gel analysis 100 

4.2.3 Ubc4 pre-mRNA 100 

4.2.4 Expression of recombinant Prp28 (rPrp28) protein 101 

4.2.5 Single molecule FRET 101 

4.3 Results 102 

4.3.1 Absence of Prp28 protein inhibits ATP-independent CC2 formation 102 

4.3.2 Prp28 allows the 5’SS- BP to explore conformations of close proximity 106 

4.3.3 Titration of various concentrations of Prp28 shifts the equilibrium 113 

4.4 Discussion 115 

4.5 Acknowledgements 117 



 

vii 

 

CHAPTER 5: Summary and Outlook 118 

5.1 Pre-mRNA splice site dynamics using smFRET and SiMPull-FRET 118 

5.2 Focusing on the first and second step splicing complexes 119 

5.3 Labeling pre-mRNA and proteins for smFRET studies 123 

5.4 A possible mechanism of action for spliceosomal helicases 125 

APPENDICES  127 

References 147 

 

  



 

viii 

 

List of Figures 

Figure 1.1 Canonical Splicing pathway .......................................................................................7 

Figure 1.2 SmFRET setup for studying pre-mRNA dynamics ................................................... 13 

Figure 2.1 The SiMPull-FRET approach used here to interrogate active splicing complexes. 26 

Figure 2.2 Verification of specificity of the affinity purification of single spliceosome 

complexes. ................................................................................................................................ 27 

Figure 2.3 Affinity purified B
act

 complex is active and can go through both steps of splicing..... 28 

Figure 2.4 Protein expression and purification confirmed by SDS-PAGE analysis..................... 29 

Figure 2.5 Affinity purified B
act

 complex formed with actin pre-mRNA shows very low levels of 

first step splicing when complemented with Prp2, Spp2 and ATP under splicing conditions. ..... 30 

Figure 2.6 In the Prp2-stalled B
act

 complex, the pre-mRNA is predominantly restricted to a stable 

low FRET state. ........................................................................................................................ 32 

Figure 2.7 K-means clustering of HMM assigned FRET states. ................................................. 33 

Figure 2.8 Cross-correlation analysis showing the stable L2 state in the B
act

 complex with no 

significant cross correlation. ...................................................................................................... 35 

Figure 2.9 Upon the addition of ATP, Prp2 and Spp2, the pre-mRNA is able to explore splice site 

proximity. ................................................................................................................................. 37 

Figure 2.10 The NTPase activity of Prp2 induces structural remodeling of the pre-mRNA. ....... 40 

Figure 2.11 Under C complex conditions, the pre-mRNA accesses dynamic and stable high-

FRET states. .............................................................................................................................. 43 

Figure 2.12 Cwc25 enhances the first step of splicing by stabilizing the H state. ....................... 44 

Figure 2.13 Kinetic rate determination for B* and C complex transitions. ................................. 48 

Figure 2.14 Prp2 mediated pre-mRNA remodeling creates a binding site for Cwc25 near the BP.

 ................................................................................................................................................. 51 

Figure 2.15 Model for the conformational mechanism of first-step splicing. .............................. 56 

Figure 3.1 Stalling the progress of splicing at various steps ....................................................... 64 

Figure 3.2 Mutant pre-mRNA substrates show expected stall in the splicing cycle .................... 65 



 

ix 

 

Figure 3.3 Depletion of U2 snRNA results in stalling of splicing cycle ...................................... 66 

Figure 3.4 Depletion of U2 snRNA results in stalling of splicing cycle ...................................... 67 

Figure 3.5 Heat-inactivated of Prp2 protein results in stalling of splicing cycle ......................... 68 

Figure 3.6 FRET probability histograms comparing early and late steps of splicing ................... 70 

Figure 3.7 FSM: A Hidden Markov Modeling derived similarity matrix .................................... 72 

Figure 3.8 Hierarchical tree constructed from clustering single molecules ................................. 74 

Figure 3.9 Choosing a hierarchical tree pruning threshold ......................................................... 75 

Figure 3.10 Vectorized FSM for each cluster ............................................................................. 77 

Figure 3.11 Representative molecules showing dynamic behavior unique to each cluster .......... 78 

Figure 3.12 Conformational dynamics of early splicing stall at commitment complex formation

 ................................................................................................................................................. 80 

Figure 3.13 Conformational dynamics of early splicing stall at A complex formation ................ 83 

Figure 3.14 Conformational dynamics of late splicing stall at B
act

 and C complex formation ..... 86 

Figure 3.15 Conformational dynamics of pre-mRNA that can proceed through both steps of 

splicing ..................................................................................................................................... 87 

Figure 3.16 Hierarchical tree grouping the different experimental conditions ............................ 90 

Figure 3.17 Consensus behavior of the identified hierarchical clusters....................................... 93 

Figure 3.18 Consensus behaviors aligned with splicing cycle .................................................... 94 

Figure 4.1 Depletion of Prp28 results in CC1 accumulation 104 

Figure 4.2 Inhibition of CC2 formation in the absence of Prp28 in Ubc4 pre-mRNA ............... 107 

Figure 4.3 SmFRET set-up and representative traces ............................................................... 108 

Figure 4.4 Addition of rPrp28 protein shifts the 5’SS-BP of Ubc4 pre-mRNA to explore 

conformations of close proximity ............................................................................................ 110 

Figure 4.5 Post-synchronized histogram showing the increase in the high FRET transitions upon 

rPrp28 addition ....................................................................................................................... 111 

Figure 4.6 BP mutant 5’SS-BP dynamics are not affected by Prp28 ........................................ 112 

Figure 4.7 Pre-mRNA dynamics analyzed with varying concentrations of Prp28 ..................... 114 

 

Figure A.1 Immunopurification of the Bact complex and reconstruction of the second step of 

splicing ................................................................................................................................... 131 

Figure A.2 Recombinant expression of second-step splicing proteins Prp16, Prp18 and Slu7 .. 132 



 

x 

 

Figure A.3 Model for the mechanism of second step catalysis via pre-mRNA remodeling ....... 133 

Figure B.1 Fluorescent labeling of U5snRNA via 3’-periodate oxidation 139 

Figure B.2 Reconstitution of snRNA depleted extracts with fluorescently labeled snRNA. ...... 140 

Figure B.3 Assembling Cy3-labeled U2 snRNA on doubly labeled (Cy3-Cy5) pre-mRNA. .... 141 

Figure B.4 Single molecule binding experiment with Cy5-U2 snRNA and Ubc4 pre-mRNA... 142 

 

 



 

xi 

 

List of Tables 

Table 1. 1 Examples of different types of RNA molecules found in a cell....................................4 

 

Table 2.1 Sequence information of oligonucleotides used in this study ...................................... 25 

Table 2.2 K-means clustering parameters used on the HMM assigned FRET states. .................. 34 

Table 2.3 Comparison of average photobleaching times and number of molecules per condition.

 ................................................................................................................................................. 46 

Table 2.4 Classification of molecules from the observation of the same molecule chased from the 

B* to the C complex with the inclusion of a dark period during Cwc25 addition. ...................... 49 

 

Table B.1 Sequence of DNA oligonucleotides for U2 and U6 snRNA depletions .................... 145 

 

file:///C:/Users/ramyak/Desktop/FinalThesis_Ramya_July19_2013.docx%23_Toc364082207


 

xii 

 

List of appendices 

Appendix A: SiMPull-FRET to study pre-mRNA dynamics at the second step of splicing    127  

Appendix B: Utilizing fluorescently labeled snRNAs to characterize the spliceosome    136  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

Abstract 

The spliceosome is a large RNA-protein complex that catalyzes pre-mRNA splicing by removing 

sequences called introns and joining of the remaining sequences, called exons, to produce a 

mature mRNA. Despite over a quarter century of research on splicing, little is known about the 

compositional and conformational rearrangements, timing, and coordination of this process. 

Particularly, the pre-mRNA, which provides the template for spliceosome assembly and the 

reactive sites for splicing chemistry, has been largely ignored. This thesis utilizes single 

molecule fluorescence resonance energy transfer (smFRET) approaches on a short budding yeast 

pre-mRNA to address this challenge. Specifically, we have placed fluorescent dyes near the 

conserved splice sites that are recognized by the spliceosome and have monitored dynamic 

changes in the distance between these sites, in real-time throughout the splicing cycle.  We find 

that, contrary to conventional depictions, the splice sites are highly dynamic and explore 

reversible transitions. By stalling the progress of splicing at various steps, we have been able to 

associate unique dynamic information of the splice sites with specific steps of splicing using 

novel analysis methods that have broad applicability. We find that the splice sites explore 

reversible splice site proximity in a non-monotonic fashion throughout the process. Our results 

show that even at very early steps of splicing assembly, the splice sites are brought close together 

via a novel ATP-independent role of a helicase. Furthermore, employing a combination of 

smFRET and affinity purification (termed SiMPull-FRET), we have been able to describe the 

conformational dynamics of single isolated spliceosomes and find them to follow a biased 

Brownian ratcheting mechanism leading up to the first chemical step of splicing. Our results hint 



 

xiv 

 

at the possibility that, much like the ribosome, the spliceosome and its substrates often toggle 

between active and inactive conformations that are subsequently locked into the preferred state 

by a specific cofactor. The work presented in this thesis provides a structural and dynamic view 

of the pre-mRNA in the spliceosome, finds associated roles for protein factors, and pioneers 

single molecule techniques to answer focused questions about the mechanisms of RNA:protein 

complex assembly and catalysis in general. 
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CHAPTER 1 :Introduction 

 

1.1 RNA, the versatile biomolecule 

Nucleic acids are the biomolecules responsible for transmission of genetic information 

from one generation to another. The role of DNA as the genetic material has been well-known 

since the mid-1900s
1,2

. DNA has garnered much public attention due to its functional properties 

that make it the cell’s master molecule. In an experimental tour-de-force, the cryptic code of 

DNA was cracked, and it became immediately obvious how the genetic information could be 

passed from one generation to the next
3-6

. RNA, the messenger molecule, allows to decode the 

message stored in DNA into proteins
7
. RNA is one of the few biomolecules that can perform two 

diametrically opposite functions; code for proteins, thereby functioning as a gene; and catalyze 

reactions, thereby functioning as an enzyme. Francis Crick already had the prescience to suggest 

that apart from its role as a messenger decoding DNA, RNA could have the ability to act as an 

enzyme, which was later proved by Tom Cech
8
. Even at this now seemingly mundane role, RNA 

exhibits structural and functional variety. Messenger RNA (mRNA) faithfully copies the genetic 

material, and serves as the template for ribosomes (composed of ribosomal RNA, rRNA) to 

synthesize proteins, which in turn is aided by transfer RNA (tRNA), the adaptor molecules 

bringing in the building blocks, amino acids.   
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With the discovery of reverse transcription
9,10

, split genes
11,12

, ribozymes
8
, and more 

recently the completion of the human genome project, it has become increasingly clear that RNA 

plays diverse and unexpected roles (some well-known examples shown in Table 1. 1). Given the 

relatively small fraction of the human genome dedicated to protein coding, one might expect that 

only a small fraction of the genome is transcribed into RNA as well. This is far from the truth. 

Large portions of the genome in humans and other mammals are transcribed into RNA that is not 

classified as mRNA, tRNA or rRNA. These special-function RNAs, now known as non-coding 

RNAs, are being rapidly discovered and have roles ranging from structural scaffolding to 

regulation of gene expression. This versatility has led to much speculation about a possible role 

of RNA in the origin of life
13

. 

1.2 Spliceosome, the cellular mystery machine 

1.2.1 The interrupted gene 

After the discovery of the structure of DNA, it was assumed that a gene comprised of a 

continuous sequence of base pairs that in its entirety was used as a template for protein synthesis. 

In the simplest form, a gene is a length of DNA that directly corresponds to its protein product. 

Although largely correct for bacteria, seminal discoveries in the 1970s challenged this view for 

eukaryotes
11,12

.  It was observed that the RNA transcribed from DNA in the nucleus was 

unusually long compared to the mRNA found in the cytosol. Resolution of this mystery led to 

the discovery of split genes and a process called RNA splicing. A simple yet profound 

comparison of the DNA and its corresponding RNA sequence shed light on the fact that some of 

the intervening sequences were absent from the mature cytosolic RNA product. It was thus 
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proved that genes can be composed of several separate segments. Drs. Philip A Sharp and 

Richard J. Roberts were awarded the Nobel Prize for Physiology or Medicine in 1993 for their 

independent discovery of split genes. This discovery has been of fundamental importance to 

today's basic research in biology, as well as more medically oriented research on disease 

development and research on how genes evolve in organisms.  

1.2.2 The Ribonucleoprotein complex 

In the cellular environment, RNA is often found complexed with proteins while playing 

both structural and functional roles in biomolecular machines. A well-known example is the 

ribosome, the cellular ribonucleoprotein (RNP) complex that facilitates protein biosynthesis. 

Another example involves the highly precise removal of interviewing RNA sequences called 

introns and the ligation of the flanking sequences called exons during the process of precursor-

mRNA (pre-mRNA) splicing. This extraordinary task is carried out by a cellular RNP complex 

called the spliceosome
14

. Extensive genetic and biochemical studies in a variety of organisms 

have revealed that essential components of the spliceosome include five small RNAs – the U1, 

U2, U4, U5 and U6 small nuclear RNAs (snRNAs), each of which functions as an snRNP (small 

nuclear ribonucleoprotein). In addition to snRNPs, splicing requires many non-snRNP protein 

factors. More than two decades after its discovery, the spliceosome part list is slowly nearing its 

completion.  
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Category Name RNA  Length (nts) Functions 

Coding RNA 
Messenger RNA 
(mRNA) 

variable Protein coding 

 
Ribosomal RNA 

(rRNA) 
~120-5,000 Translation 

 
Signal Recognition 
particle RNA 

300 Translation 

Housekeeping 

non-coding RNAs 

Transfer RNA  

(tRNA) 
70-100 Translation 

 
Small nuclear RNA 
(snRNA) 

60-450 
Splicing, Histone 
RNA processing 

 
Small nucleolar 

(snoRNA) 
70-300 RNA editing 

 Telomerase RNA 150-1300 
Telomere length 
maintenance 

Small non-coding 

RNAs 

(< 200 nt) 

MicroRNA 

(miRNA) 

20-24 

 

Post-transcriptional 

gene silencing 

 

Small interfering 

RNA 

(siRNA) 

20-24 
Post-transcriptional 
gene silencing 

 
PIWI-interacting 
RNA 

(piRNA) 

24-31 

 

Germline gene 

silencing 

Long non-coding 
RNAs 

(> 200 nt) 

Long non-coding 
RNA 

(lncRNA) 

>200 
Epigenetic gene 

regulation 

Ribozymes 
Hepatitis Delta Virus 

(HDV) ribozyme 
84 nt viral replication 

 

Table 1. 1 Examples of different types of RNA molecules found in a cell 
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The spliceosome, much like the ribosome, is an energy consuming machine, but neither 

requires NTP hydrolysis for the actual chemical reaction to take place
15

. It is intriguing to think 

that RNA may catalyze the basic chemical reaction of the spliceosome, leaving open what the 

roles of the various proteins are
16-18

. Here, once again, the similarities between the ribosome and 

spliceosome are instructive. The ribosome uses energy to power the various conformational 

rearrangements that occur in this RNP machine to ensure accuracy. Similarly, a widely accepted, 

yet untested hypothesis is that the spliceosome uses energy in terms of ATP hydrolysis to power 

the various RNA:RNA structural rearrangements needed to create the active catalytic core of the 

spliceosome
15,19-21

. 

1.2.3 Finding splice sites in a cellular haystack 

The spliceosome assembles anew on each pre-mRNA conserved recognition sequence
22

. 

In metazoans, the splice sites are defined as conserved sequences at the intron-exon junctions, 

that is, the 5’ splice site (5’SS) at the 5’ end of an intron, the 3’ splice site (3’SS) at the 3’ end of 

the intron, and the upstream branchsite (BS) or branchpoint (BP) (Figure 1.1). The most 

conspicuous feature of the spliceosome is that it lacks a preformed catalytic core, which is 

created in a stepwise fashion, beginning with the assembly of the U1 and U2 snRNPs at the 5’SS 

and BP, respectively, to form the pre-spliceosome (A complex). The U4/U6.U5 tri-snRNP then 

binds to create the mature spliceosome (B complex). Notably, however, U1 and U4 snRNPs 

must be removed before catalysis, creating first the activated B
act

 complex, and after additional 

rearrangements, the catalytically active B* complex (Figure 1.1). The resulting post-first-step C 

complex then undergoes further remodeling required for the second step of splicing and the 
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formation of mature mRNA. The chemistry of splicing occurs in a two-step transesterification 

process. In the first step, the 2’OH of the branchpoint adenosine (BP) attacks the phosphodiester 

bond at the 5’ splice site (5’SS), releasing the 5’ exon and creating the branched, lariat structure; 

in the second step, the newly generated 3’ hydroxyl of this exon attacks the phosphodiester bond 

at the 3’ splice site (3’SS), releasing the lariat intron and creating the spliced mRNA product. 

This raises an interesting molecular question of how the spliceosome finds, recognizes and 

differentiates these sequences within the plethora of RNA sequences in the cell
23

. The sequences 

constituting the splice sites provide insufficient information to distinguish true splice sites from 

the greater number of false splice sites that populate transcripts. Even the simplest eukaryote, 

Saccharomyces cerevisiae commonly known as Baker’s yeast, with its scarcity of introns that, 

when present, are short, this problem presents a potential roadblock. The answer to the mystery 

in part lies in the fact that the splice sites are only treated as global definitions of motifs while the 

spliceosome actively brings together the reactive units by manipulating the inherent structure of 

the intron in the midst of the variety surround it. In higher eukaryotes, this even more complex 

problem is simplified by the presence of auxiliary sequences that assist in highlighting the splice 

sites and aiding the spliceosome to act as a molecular bridge spanning the intron, thereby 

bringing the reactive exons together. The structure and conformations adopted by the intron play 

a critical role in regulating the progress through the splicing cycle. Although traditionally pre-

mRNA is represented as a linear sequence until after the first chemical step, this is far from the 

truth. It has been shown in recent years that the pre-mRNA is modulated at the structural and  
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kinetic level throughout the splicing cycle with distinct conformational signatures (Chapters 2 

and 3)
24

.  

 

 

  

Figure 1.1 Canonical Splicing pathway 

Schematic representation of the stepwise assembly of spliceosome on a pre-mRNA. The 

exons (blue) are spliced and the intron (black) is removed as a lariat. The conserved 5’ 

splice site, 3’ splice site and branchpoint are shown on the pre-mRNA. DExD/H box 

helicases involved are shown at each step (blue boxes). 
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1.2.4 Types of RNA splicing 

There are four well-known types of splicing mechanism prevalent in eukaryotes. The first 

two called group 1 and group 2 introns share some key characteristics but differ in the details of 

their splicing mechanism. The third and largest type of splicing involving pre-mRNA takes place 

in the nucleus via two phosphoestertransfer reactions. Although the actual chemical reaction 

itself is ATP independent, energy in the form of ATP hydrolysis is required for the various 

conformational rearrangements leading to catalysis.  This reaction is related in mechanism to the 

self-splicing mechanisms of group 1 and group 2 introns.  Specifically, group 2 introns are 

thought to be spliced by a mechanism identical to that of the spliceosome, although there is no 

general requirement for either proteins or co-factors
25

. While the fourth and last type of splicing 

involves tRNA genes that are also interrupted by introns
26

, it differs substantially in mechanism 

as it is mediated by protein enzymes with an intrinsic requirement for ATP hydrolysis.  

1.2.5 Helicases in splicing 

The spliceosome is a highly dynamic machine undergoing iterations of often mutually 

exclusive RNA-RNA unwinding events and rearrangements up until the active catalytic core if 

formed
19

. These rearrangements consume ATP and are facilitated by a large group of conserved 

RNA DExD/H box helicases. Among them, eight highly conserved helicases play crucial roles in 

key steps of splicing (Figure 1.1). These proteins are implicated in early events of spliceosome 

assembly and progression towards catalytic activation, actual catalysis and disassembly and have 

both ATP-dependent and independent roles. Among them, the ATPase activity of Sub2 is 

required in the formation of commitment complex by stabilizing the interaction of the Mud2 and 
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Branchpoint Binding Protein (BBP) proteins with the BP
27

. In an ATP independent manner, 

Sub2 also helps destabilize the Mud2-BBP heterodimer to allow for U2 snRNP binding at the 

BS. Prp5 is required for pre-spliceosome formation with its ability to bridge U1 and U2 snRNPs 

and uses ATP to cause rearrangements leading to the binding of U2 to the BP
28

. With the 

recruitment of the U4:U5:U6 tri-snRNP, the ATPase action of helicase Prp28 has been shown to 

be required for the removal of U1 from the 5’SS to allow for the mutually exclusive U6 binding 

to the 5’SS
15

. In Chapter 4, we have shown evidence for an early, ATP independent role for this 

protein in the splicing cycle. The U5 small nuclear ribonucleoprotein particle (snRNP) helicase 

Brr2 then disrupts the U4:U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to 

engage in an intricate RNA network at the active center of the spliceosome
29

. Brr2 is tightly 

regulated to ensure correct timing of spliceosome activation by its interactions with a protein 

termed Prp8, which is situated at the heart of the spliceosome
30

. Once the catalytic core is 

formed, spliceosome activation occurs wherein Prp2 is required for the first step and Prp16 and 

Prp22 are essential for the second step of splicing. The ATP dependent activity of Prp2 has been 

shown to cause a major remodeling of the spliceosome required for catalytic activation
31

. We 

found that this role is accompanied by a ratcheting motion of pre-mRNA, allowing it to explore 

close splice site proximity (Chapter 2). The next helicase Prp16 is required for the second step of 

catalysis (Appendix A) and for proofreading suboptimal substrates
30,32

. It is involved in the 

removal of Cwc25, a heat-stable protein that binds close to the BP adenosine and enhances the 

efficiency of first-step splicing (Chapter 2). Prp22 proofreads exon-ligation and mRNA 

production while Prp43 is involved in disassembling the spliceosome, allowing recycling of the 

individual components for yet another round of assembly and splicing
33,34

. Although these 
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important regulators have been extensively characterized using genetic and biochemical tools, a 

major goal in the future is to identify their molecular mechanisms of action, as well as the 

ligands and targets required to achieve accuracy in splicing.  

1.2.6 An in vitro splicing system  

The epitome of understanding any biological system is when the individual components 

can be assembled in vitro and the desired biological effect(s) be recapitulated. The secrets of the 

spliceosome began to rapidly unravel after the important achievement of the Abelson lab to 

identify and manipulate particles (which they termed ‘spliceosome’) that splice exons in vitro
14

. 

Simply put, incubation of a pre-mRNA with crude yeast extract, in the presence of ATP, 

crowding agents and essential ions, at room temperature, results in the production of mRNA. 

This technique has been widely exploited for over 25 years to unravel the splicing mechanism. 

Crude whole cell yeast extract has been the choice material for biomolecular scientists until it 

was shown that purified spliceosome intermediates could be isolated with the aid of yeast 

genetics as a tool for stalling the spliceosome at intermediate steps. These intermediary 

complexes can be coaxed with just a handful of proteins to go through the first and second 

catalytic steps of splicing
35

. This important discovery has enabled us to assign specific functions 

to a single protein (Chapter 2). Although, due to the sheer number of components involved, we 

are still far from able to set up an entirely recombinant in vitro splicing system by adding every 

single essential component, the available in vitro splicing systems together with yeast genetics 

have equipped us with an arsenal of tools to better understand the complex splicing process. 



 

11 

 

 

  

1.3 Single molecule fluorescence microscopy- an ideal tool for studying dynamic systems 

1.3.1 Single molecule FRET 

Major advances in understanding biological systems in recent years have been facilitated 

by the advent of single molecule (sm) techniques. These tools have opened a wide array of 

experimental avenues that were previously considered ‘unanswerable’. Sm techniques have the 

unique and powerful advantage that they are able to probe molecular structure, dynamics and 

function unhindered by the averaging inherent in ensemble experiments. The study of single 

molecules can be broadly divided into two facets; one aimed at solving scientific problems and 

the second aimed at improving the associated sm analysis techniques themselves. One of the 

most widely used sm techniques is smFRET or single molecule Fluorescence Resonance Energy 

Transfer. SmFRET is powerful and has been used extensively to study intramolecular 

dynamics
36-39

. FRET is the non-radiative transfer of energy from a donor fluorophore to an 

acceptor fluorophore in a distance dependent manner. The amount of FRET is dependent on 

several factors, but primarily on the distance (R) between the acceptor and donor dyes and their 

relative dipole:dipole orientations. FRET efficiency decreases proportionally to R
6
, where R is 

the donor:acceptor distance. The commonly used smFRET pairs Cy3 and Cy5 enable us to 

measure distances ranging from 20-100 Å, thus serving as a molecular ruler. As a result, 

smFRET techniques have found wide applications in fields ranging from quantum optics and 

photophysics to the assembly, dynamics and function of proteins and cellular RNP machines. 
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1.3.2 Splice site juxtaposition using smFRET  

Each round of spliceosome assembly requires the step-by-step association and 

rearrangements of the splicing components on the pre-mRNA, the substrate on which the actual 

chemistry of splicing takes place. Thus, pre-mRNA conformations can serve as signatures for the 

different steps in the splicing cycle.  To ensure proper fidelity, it is imperative that the 

nucleotides of the 5’SS, BP and 3’SS are aligned perfectly for chemistry. Although the 

recognition of the splice sites starts at a very early step in splicing, it is unclear as to when the 

pre-mRNA is funneled into the right conformation for catalysis to occur. Any mutation of the 

splice sites can affect this conformation and thereby hinder the assembly process
40

. In order to 

understand how the splice sites are positioned throughout the splicing cycle, we used smFRET as 

detected by Total Internal Reflection Microscopy (TIRF) to validate that single pre-mRNA could 

assemble into single spliceosome complexes (Figure 1.2). By judiciously choosing the location 

of the fluorophores –both exons labeled and exon/intron labeled – we were able to focus on the 

first and second step of splicing, respectively
37

. With this in vitro assay based on smFRET, we 

were able to monitor in real-time the dynamic conformational states of the pre-mRNA in spliceo-

some assembly
37

. Furthermore, we used the powerful tools of yeast genetics to stall the 

progression of splicing at critical points in the cycle to enrich for complexes at particular points 

(Chapter 3). Upon immobilizing the pre-mRNA on the microscope slide, we were able to use 

whole cell extracts to induce and monitor splicing and ATP-dependent changes in the splice site 

juxtaposition throughout the splicing cycle (Figure 1.2). 
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Figure 1.2 SmFRET setup for studying pre-mRNA dynamics 

(a) Pre-mRNA with fluorophores at the splice sites is immobilized on a slide via a 

streptavidin-biotin linkage. Whole yeast cell extract is flowed into the channel. The Cy3 

fluorophore (green) is excited using a 532 nm laser to collect smFRET data. (b) The Cy3 

and Cy5 channels are mapped to one another to obtain information on single pre-mRNA 

molecules that are doubly labeled. (c) The anti-correlated signals from a single molecule’s 

Cy3 (green) and Cy5 (red) dyes are tracked here for 50 s.  
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 Due to the highly diverse and dynamic nature of the data obtained from these 

experiments, traditional sm-analysis tools were not sufficient to fully characterize them. We 

therefore used clustering algorithms to classify different behaviors (Chapter 3).  This method has 

broad potential for teasing out complex dynamics in biological systems that cannot be efficiently 

extracted using traditional sm-analysis. 

1.3.3 SiMPull-FRET, a refined look at single molecules 

Traditionally, single molecule experiments on the spliceosome have been performed 

using exogenous pre-mRNAs in yeast whole cell extracts. Recently, an elegant approach to 

combine affinity purification and single molecule techniques was described
23

. We have used a 

similar Single Molecule Pull down (SiMPull) method on the spliceosome to measure the 

proximity of the 5’SS and BS during the first step of splicing and thereby give structural 

information on the spliceosome and its remodeling (Chapter 2). In addition to being able to stall 

the spliceosome at a defined step of splicing, this technique enabled us to purify a splicing 

complex of interest from the remaining extract components for TIRF microscopy. The complex 

thus assembled on the slide surface is free from most non-specific interactions caused by binding 

and dissociation of RNA binding proteins and extraneous protein-protein interactions not 

relevant to the particular step of splicing. A prime advantage of the technique used here is that 

reconstitution of the first step is achieved by the addition of single recombinant protein, which 

allows us to specifically assign shifts in the pre-mRNA conformation to the action of single 

components. The SiMPull-FRET experiment holds promise for future work as it opens up 
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opportunities to investigate other steps using purified components in unusually dynamic systems 

like the spliceosome.   

The work presented in this thesis utilizes a combination of biochemical and single 

molecule FRET techniques and analysis as a way to characterize the pre-mRNA splice site 

dynamics at specific steps of splicing. We find that the 5’SS and BP come together in a non-

monotonic fashion and are kinetically modulated to enable the chemistry of splicing. The FRET 

signature we identify at each step sheds light on the conformational remodeling of the pre-

mRNA from one step to the other. Additionally, using hierarchical clustering tools, we have been 

able to identify the FRET dynamics at each step and re-create the entire conformational 

‘pathway’ followed by a single pre-mRNA in order to be efficiently spliced. Although pre-

mRNA is the prime focus, the experiments presented here also unravel unique roles for protein 

regulators in splicing. In particular, we have been able to assign novel roles to the protein Cwc25 

in stabilizing a conformation favorable to the first step of splicing. Another focus of this thesis is 

DExD/H box helicase regulators, whose mechanism of action has been largely unknown. From 

our results on Prp2 (Chapter 2) and Prp28 (Chapter 4), we hypothesize that the role of helicases 

in general may be to unlock intrinsic thermal fluctuations of the pre-mRNA:spliceosome 

complex, allowing for a ratcheting motion that is rectified by Cwc25 as a cofactor pawl. Much 

like the ribosome, the spliceosome thus functions as a biased Brownian ratchet machine. 
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CHAPTER 2 : Biased Brownian ratcheting leads to pre-mRNA remodeling and capture 

prior to the first step of splicing
1
 

 

2.1 Introduction 

Introns are removed by the spliceosome, a large ribonucleoprotein complex, in a two-step 

transesterification process. In the first step, the 2’OH of the branchpoint adenosine (BP) attacks 

the phosphodiester bond at the 5’ splice site (5’SS), releasing the 5’ exon and creating the 

branched, lariat structure; in the second step, the 3’ hydroxyl of this exon attacks the 

phosphodiester bond at the 3’ splice site (3’SS), releasing the lariat intron and creating the 

spliced mRNA product
14

. The most conspicuous feature of this enzyme is that it lacks a 

preformed catalytic core, which is created in a stepwise fashion, beginning with the assembly of 

the U1 and U2 snRNPs at the 5’SS and BP, respectively, to form the pre-spliceosome (A 

complex)
41

. The U4/U6.U5 tri-snRNP then binds to create the mature spliceosome (B 

complex)
41

. Notably, however, U1 and U4 snRNPs must be removed before catalysis, creating 

first the activated B
act

 complex, and after additional rearrangements, the catalytically active B* 

                                                
1Adapted from Ramya Krishnan

1, Mario Blanco2, Matthew Kahlscheuer1, John Abelson3, Christine Guthrie3, Nils 

G. Walter1; ‘Biased Brownian ratcheting leads to pre-mRNA remodeling and capture prior to the first step of 
splicing’ (under review at Nat. Struct. Mol. Biol., 2013).  R.K. performed the biochemical and single molecule 

experiments. M.L.K. cloned, expressed and labeled the proteins. R.K. and M.R.B. performed data analysis. R.K., 

J.A., C.G. and N.G.W. wrote the manuscript. 
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complex. The resulting post-first-step C complex then undergoes further remodeling required for 

the second step of splicing and the formation of mature mRNA
41

. 

The highly dynamic process of spliceosome assembly and catalysis is guided by a set of 

RNA-dependent ATPases of the DExD/H-box helicase family, which collectively function to 

insure the fidelity of splicing
15

. A major experimental challenge has been to understand the 

precise conformational rearrangements of RNA and protein that accompany each ATP-

dependent step. DExD/H-box helicase Prp2 is required for the first chemical step of splicing and 

recent proteomic analyses of the B
act

, B* and C complexes revealed that its action results in the 

destabilization of the U2 snRNP-associated proteins SF3a and SF3b
31,35,42,43

. An attractive 

hypothesis is that SF3b sequesters the BP adenosine
44

 to prevent a premature attack on the 5’SS, 

and thus the ATP-dependent action of Prp2, together with its cofactor Spp2, would be required to 

initiate catalysis. In a biochemical tour-de-force, successful reconstitution of both steps of 

splicing with the addition of recombinantly expressed proteins to immunopurified splicing 

complexes has been demonstrated
35,45,46

. In particular, first-step chemistry could be achieved 

with the addition of ATP, Prp2, Spp2 and Cwc25, a small heat-stable factor splicing factor
35

.  

We have coupled this advance with single molecule fluorescence resonance energy 

transfer (FRET) to monitor the dynamics of the pre-mRNA as the BP and 5’SS are brought into 

close proximity for first-step chemistry. We used the resulting single molecule pull-down FRET 

(SiMPull
23

-FRET) technique to analyze a functional B
act

 complex assembled on a short (135-

nucleotide) pre-mRNA with fluorophores near the scissile bonds. By assembling this complex in 

an extract with a temperature-sensitive allele of Prp2 (prp2-1)
47

, the B
act

 spliceosome is stalled 

and can then be chased to B* with the addition of ATP, Prp2 and Spp2, and finally to C complex 
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with the addition of Cwc25.  Using SiMPull-FRET, we show that ATP-dependent action of Prp2 

along with its cofactor Spp2 unlocks reversible switching of the intron between splicing-active 

and –inactive conformations. Cwc25 then rectifies this thermal Brownian ratcheting by 

stabilizing the conformation in which the 5’SS and BP are in close proximity, driving the 

equilibrium toward catalysis. 

2.2 Materials and Methods 

2.2.1 Affinity purification of the B
act

 complex 

Extracts were prepared from a prp2-1 cef1-TAP yeast strain, heated at 37 °C for 40 min 

to inactivate Prp2 and stall the spliceosome at the B
act

 complex. In a final volume of 135 μl, 40% 

(v/v) of this heat treated extract was incubated with ~50 pmoles FRET labeled Ubc4 pre-

mRNA
37

 in the presence of 2 mM ATP in splicing buffer (8 mM HEPES-KOH, pH 7.0, 2 mM 

MgCl2, 0.08 mM EDTA, 60 mM Ki(PO4), 20 mM KCl, 8% (v/v) glycerol, 3% (w/v) PEG, 0.5 

mM DTT) and incubated at 23 °C for 35 min. For biochemical experiments, streptavidin-coated 

magnetic beads (Dynabeads® MyOne™ pH 7.5, 50 mM NaCl). An equal volume of 0.5 mg/ml 

IgG-biotin (ZyMAX™ Rabbit Anti-Mouse IgG (H+L) - BT (ZyMAX™ Grade)) in T50 was 

added and incubated in a tube rotator at RT for 30 min. The beads were then pulled down using a 

magnet and the supernatant was discarded. To block any streptavidin not bound by biotin-IgG, 

the beads were incubated with excess free biotin at 1.5 mg/ml in T50 buffer in a tube rotator at 

RT for 20 min. After equilibration in splicing buffer, the independently assembled splicing 

reaction were added and incubated in a tube rotator for 30 min at RT to allow the protein A of 

the Cef1-TAP tag in the spliceosome complex to bind the biotin-IgG. Upon removal of the 
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supernatant, the beads were further washed three times with buffer A (20 mM HEPES-KOH, pH 

7.9, 75 mM KCl, 0.01% NP40, 1.5 mM MgCl2, 5% (v/v) glycerol) and once with splicing buffer 

to further purify the B
act

 complex. The reactions are scaled up for reconstitution reactions 

pursued in parallel and split at this step. Prp2, Spp2 and Cwc25 were added at 90-120 nM final 

concentration in splicing buffer in the presence or absence of 2 mM ATP or AMPPNP or UTP 

and incubated in the tube rotator for 30-40 min for various levels of reconstitution. RNA was 

isolated and products of splicing were analyzed on a denaturing, 7 M urea, 15% polyacrylamide 

gel and scanned on a Typhoon variable mode imager (GE Healthcare). 

2.2.2 Cloning, expression and purification of splicing factor proteins 

The full-length PRP2 gene was PCR-amplified and ligated into plasmid pRSETA 

(Invitrogen) with a C-terminal hexahistidine tag. The N-terminally truncated form of SPP2 

(coding for amino acids 37-185) containing a C-terminal hexahistidine tag, and the full-length 

Cwc25 gene were obtained from Reinhard Lührmann (Max Planck Institute for Biophysical 

Chemistry, Germany). Cwc25 was subcloned into a pRSETa plasmid containing a single 

cysteine residue and hexahistidine tag at the C-terminus. The constructs were then transformed 

into Escherichia coli strain Rossetta II (Novagen). Cultures were grown in 2-4 l of TB medium 

and induced with 125 μM IPTG. Cultures were then incubated at 20 ºC for 18 h. Cells were 

harvested, washed, and the pellets stored at -80 ºC. Purification of Cwc25-His and Spp2-His was 

performed as described
35

. Protein purity was confirmed by 16% SDS-PAGE and proteins were 

either first fluorescently labeled or directly aliquoted, flash frozen in liquid nitrogen, and stored 

at -80 ºC. Protein concentrations were determined by Bradford assay and measurement at A280. 
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His-tagged Prp2 obtained from E.coli cell lysate was purified as described
48

 Protein purity was 

confirmed by 10% SDS-PAGE and the final product aliquoted, flash frozen in liquid nitrogen, 

and stored at -80 ºC. Protein concentrations were determined by Bradford assay and 

measurement at A280. 

2.2.3 Single molecule FRET of purified spliceosomal complexes   

For the single molecule FRET experiments on affinity-purified complexes, we prepared 

slides using previously published procedures
49

. In short, the surface of a quartz slide was amino 

functionalized, PEGylated and reacted with 0.2 mg/ml streptavidin in T50 buffer for 15 min at 

RT. 100 μl of 0.5 mg/ml IgG-biotin in T50 was flowed onto the slide and incubated for 20 min, 

followed by free biotin at 1.5 mg/ml in T50 buffer for 15 min. B
act

 spliceosomal complexes were 

assembled and stalled as described above by incubation of FRET labeled Ubc4 pre-mRNA with 

heat treated prp2-1 cef1-TAP yeast splicing extract in splicing buffer supplemented with 2 mM 

ATP and an oxygen scavenger system (OSS) composed of protocatechuate dioxygenase, 

protocatechuate and Trolox
37

. These complexes were then flowed onto the slide surface and 

incubated for 15-20 min to allow the Cef-1-TAP on the spliceosome to bind biotin-IgG. The 

slide surface was washed rigorously and reconstituted (in the presence of OSS) as described for 

the biochemical purification and incubated for 10-40 min before acquiring data. A home-built 

prism-based TIRF microscope was used to collect data as described
37,50,51

. To obtain FRET data, 

we directly excited the Cy3 donor near the BP adenosine with a 532-nm laser, and we recorded 

emission by Cy3 and Cy5 fluorophores at 100-ms time resolution using an intensified CCD 

camera (I-Pentamax, Princeton Instruments). 
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2.2.4 Fluorescent labeling of Cwc25 and distance estimation from FRET  

The single-cysteine mutant of Cwc25 was labeled with Cy5-maleimide (GE Healthcare). 

Labeling was performed using 0.150 μmol of Cwc25 in storage buffer and 0.5 mg of dye 

containing 10 μM reducing agent Tris(2-carboxyethyl)phosphine (TCEP) (Sigma). Reactions 

were incubated at RT for 1 h followed by overnight at 4 ºC. Free dye was removed by re-

purification of protein on a Ni
2+

 column and dialysis back into storage buffer. The degree of 

labeling was determined using GE Healthcare’s protocol and was found to be 70%. Protein 

functionality was confirmed using an ensemble pull down assay as described above.  The 

fluorophore distance, R, and the apparent FRET efficiency, Eapp, were calculated as 

described
50,52,53

 from the equations 
16

0 ])/(1[  RRcEapp , where c = 0.69, R0 = 54 Å, and 
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. φ and η signify the fluorophores quantum yields and detector 

channel efficiencies, respectively. The donor and acceptor intensities ICy3 and ICy5, respectively, 

were corrected for leakage of donor photons into the acceptor channel. 

2.2.5 Single Molecule Data Analysis 

The donor and acceptor intensities ICy3 and ICy5, respectively, were corrected for leakage 

of donor photons into the acceptor channel Cross-correlation analysis was carried out utilizing 

customized MATLAB scripts with built-in xcorr function. Time lags for the cross-correlation 

ranged from 0-50. Quality control for the raw smFRET trajectories obtained from the 

experimental conditions were performed as described
49

. Histograms for data sets measuring pre-

mRNA dynamics were constructed by sampling 100 frames of data from each molecule. 
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Histograms for Cwc25-Cy5 and BP-Cy3 FRET experiments were constructed by sampling the 

entire length of data. Hidden Markov Modeling (HMM) was performed on trajectories utilizing 

the vbFRET software suite
49

. Each trajectory was individually fit with models ranging from 1-5 

states with the optimal number of states determined by the vbFRET algorithm. The inherent 

experimental variations of the FRET signal between single molecules leads to a slightly different 

state assignment for similar states across different molecules. A K-means clustering approach 

was therefore performed in MATLAB to group similar states into larger macro states (L1, L2, M 

and H). A matrix cataloging the HMM assigned FRET state, raw FRET level, and difference in 

donor and acceptor intensities for each HMM derived event was utilized as input for the K-

means algorithm. A total of four macro states were identified whose boundaries were used to re-

assign the original HMM idealized FRET states. Transition Occupancy Density Plots (TODPs) 

were used to plot the fraction of molecules that contain any given HMM transition at least 

once
49

. Molecules that did not exhibit any transitions were plotted along the diagonal at their 

respective positions. For kinetic rate calculations, Transition Density Plots (TDPs) that are scaled 

by the number of times a transition occurs irrespective of how many molecules exhibit that 

transition were used as described
49

. A cumulative histogram scatter plot was then fit with a 

double-exponential association equation in MicroCal Origin. A weighted average (kw,observed) of 

the two rate constants from the double-exponential fits was calculated based on the amplitude 

values of the exponential equation. To correct for bias introduced by the limited observation 

window used to measure dwell times, the measured kw,observed values were corrected by 

subtracting the photobleaching rate constant and the reciprocal of the observation window to 

yield kw,actual as described
54

. Equilibrium constants (Keq) were calculated by taking a ratio of the 
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forward and backward rate constants for a set of state-to-state transitions. Post-synchronized 

histograms (PSHs) were constructed by synchronizing individual FRET events to the time where 

one of the macro-states (M, H) was achieved. The scale bar represents the fraction of FRET 

events which exhibit a certain FRET state at a given time. 

2.3 Results  

2.3.1 Immunopurification of functional complex B
act

 with fluorophore labeled Ubc4 pre-mRNA 

It has been known for almost 25 years that a prp2-1 yeast splicing extract can be heat-

inactivated
47

.  In this extract, the spliceosome is fully assembled but cannot carry out the first 

step of splicing.  The prp2-1 immature spliceosome purified by centrifugation (B
act

) was shown 

to be chased into first-step product by the addition of Prp2p and a heat stable factor(s)
45

. More 

recently, Lührmann and colleagues have repeated this experiment with purified Prp2, Spp2 and 

the (now identified) heat stable factor Cwc25
35

. Such a purified system is ideal for exploring 

substrate dynamics using single molecule FRET. To this end, we constructed a yeast strain 

containing the prp2-1 mutation and a Tandem Affinity Purification (TAP) tag derivative of one 

of the NTC components, Cef1, known to be present in the spliceosome at this stage
31,35

. This 

allowed us to purify the stalled B
act

 complex via the TAP tag.   

The Ubc4 pre-mRNA used in this study was synthesized chemically and labeled with the 

FRET donor Cy3 +6 nucleotides downstream from the BP adenosine and with the FRET 

acceptor Cy5 -7 nucleotides upstream from the 5’SS (Table 2.1). Heat inactivated whole cell 

extract from the aforementioned strain was then used to assemble splicing reactions containing 

the fluorophore labeled pre-mRNA in the presence of 2 mM ATP. The reaction was allowed to 
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proceed for 30 min to form the pre-catalytic B
act

 spliceosome, then bound either to streptavidin 

coated magnetic beads for biochemical analysis or to a PEG-passivated slide coated with 

streptavidin, biotin-IgG, and excess free biotin for single molecule analysis (Figure 2.1). Free 

biotin was added to block any biotin binding sites not associated with biotin-IgG and prevent 

direct binding of the 5’ biotinylated pre-mRNA to the slide. Indeed, we observed at least 11-fold 

reduced surface binding of the pre-mRNA by itself compared to the Cef1-TAP-tagged B
act

 

complex containing the pre-mRNA Figure 2.2). We detected similarly minimal non-specific 

binding of the tagged complex upon omission of IgG-biotin or when instead using a TAP-tag on 

protein Prp4, recently shown to be absent from the B
act

 complex
31

 (Figure 2.2). To verify that our 

purification yielded functional B
act

 pre-spliceosome capable of catalyzing both steps of splicing, 

we added micrococcal nuclease (MN) treated (and thus RNA-free) whole cell extract to the 

stalled bead-purified B
act

 complex and incubated for 40 min at 23 ºC under splicing conditions. 

We found that both steps of splicing were reconstituted (Figure 2.3), demonstrating that only 

proteins are needed to chase B
act

 into splicing the FRET-labeled Ubc4 pre-mRNA. To verify that 

reconstitution of the first step of splicing could be achieved with the addition of recombinant 

proteins, we bead-purified the B
act

 complex and found it to require recombinant proteins Prp2 

and Spp2 (Figure 2.4) to yield a low level of first-step splicing products (Figure 2.1), slightly 

above that observed for the previously characterized actin pre-mRNA
35

 (Figure 2.5).  When 

additionally Cwc25 was added, a 2- to 10-fold enhancement of first-step splicing was observed 

(Figure 2.1).  Taken together, these experiments establish that FRET labeling the pre-mRNA 

substrate is compatible with the expected assembly and splicing activity of the immunopurified 

B
act

 complex, paving the way for SiMPull-FRET interrogation.  
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Ubc4 intron is italicized, and the allyl-amine modified uridines are denoted as (5-N-U). The 

red and green colors represent positioning of the Cy3 and Cy5 fluorophores respectively. In 

the 3’SS mutant, the bold and underlined cytosine replaces the guanine in the wildtype. 

The bold and underlined A is the BP adenosine. dSplint is the DNA splint used for 

templated ligation to synthesize the pre-mRNA as described34 Sp9 denotes a 9-carbon 

linker.  
 

 

 

 

 

 

 

Table 2.1 Sequence information of oligonucleotides used in this study 
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Figure 2.1 The SiMPull-FRET approach used here to interrogate active splicing complexes. 

The SiMPull-FRET approach used here to interrogate active splicing complexes. (a) 

Schematic showing the affinity purified B
act

 complex immobilized to a streptavidin coated 

quartz slide via biotinylated-IgG. The green and red circles on the pre-mRNA represent 

Cy3 and Cy5 fluorophores, respectively, for FRET. (b) The affinity purified B
act

 complex is 

active and can be chased through the first step of chemistry with the addition of Prp2, 

Spp2, Cwc25 and ATP. A denaturing polyacrylamide gel scanned using a variable mode 

Typhoon imager shows pre-mRNA and first-step products (the top panel shows intron-

lariat in a Cy3 scan, the mid panel shows pre-mRNA using an overlay of Cy3 and Cy5 

scans, and the bottom panel shows the 5’-exon in a Cy5 scan). Histogram quantification 

shows enhancement of first-step splicing upon Cwc25 addition. 
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Figure 2.2 Verification of specificity of the affinity purification of single spliceosome 

complexes. 

(a) Field of view showing direct binding of the 5’ biotinylated pre-mRNA to the 

Streptavidin on the slide surface saturated with biotin-IgG and free biotin. (b) Field of view 

showing the binding of the immunopurified B
act

 spliceosome (with Cef1-TAP) to the 

streptavidin on the slide surface saturated with free biotin and biotin-IgG. (c) Field of view 

showing the binding of the immunopurified B
act

 spliceosome (with Cef1-TAP) to the 

streptavidin on the slide surface saturated with free biotin in the absence of IgG-biotin. 

Left and right panels are the Cy3 and Cy5 channels, respectively. A 532-nm laser was used 

for excitation under all conditions. (d) Quantification of number of molecules under 

conditions a-c. 
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Figure 2.3 Affinity purified B
act

 complex is active and can go through both steps of splicing. 

Lanes 1, 2 and 3 represent fractions wash, unbound and supernatant, respectively. 

Condition a is Ubc4 pre-mRNA assembled in ΔPrp2-1,Cef-I TAP extract under splicing 

conditions with ATP at 23 °C for 60 min. The B
act

 complex thus formed was affinity 

purified on streptavidin coated magnetic beads loaded with biotin-IgG. Unbound pre-

mRNA is in lane 2 and the beads are further washed to remove non-specifically bound 

components (lane 1). The remaining fraction released from the beads and incubated with 2 

mM ATP in splicing buffer is in lane 3. Condition b is wild-type pre-mRNA assembled in 

the absence of ΔPrp2-1,Cef-I TAP extract with 2 mM ATP in splicing buffer at 23 °C for 60 

min. Most of the pre-mRNA is found in the unbound fraction (lane 2). Condition c is pre-

mRNA assembled in ΔPrp2-1,Cef-I TAP extract to form the B
act

 complex as described in 

condition a. The fraction bound to the magnetic beads was then reconstituted with 

Micrococcal Nuclease (MNuclease) treated extract and analyzed in lane 3. The intron and 

intron-lariat products are observed in the Cy3 scan (left) and the mature mRNA product is 

visualized in the Cy5 scan (right). 
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Figure 2.4 Protein expression and purification confirmed by SDS-PAGE analysis. 

Histidine-tagged Prp2, Spp2 and Cwc25 are shown in lanes 1, 2 and 3, respectively. Cy5-

fluorophore labeled single-cysteine Cwc25 is shown in lane 4. Prp2 was analyzed on a 10% 

SDS-PAGE, while the other proteins were analyzed on a 16% SDS-PAGE. 
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Figure 2.5 Affinity purified B
act

 complex formed with actin pre-mRNA shows very low 

levels of first step splicing when complemented with Prp2, Spp2 and ATP under splicing 

conditions. 

(a) 6% Urea-polyacrylamide gel scanned using a variable mode Typhoon imager showing 

pre-mRNA and 1
st
 step products in the following conditions- affinity purified B

act
 complex 

supplemented with Prp2, Spp2 and 2 mM ATP (lane 1) and Prp2, Spp2, Cwc25 (lane 2). (b) 

Quantification of lanes 1 and 2 showing a 15-fold enhancement of 1
st
 step splicing products 

upon Cwc25 addition.   
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2.3.2  In the B
act

 complex, the pre-mRNA is in a stable low FRET state with distal 5’SS and BP 

To obtain mechanistic insight into pre-mRNA splice site juxtaposition during the crucial 

Prp2-driven restructuring of the B
act

 complex into the catalytically activate B* complex, we 

carried out SiMPull-FRET on the slide-bound B
act

 complex (Figure 2.1) in standard splicing 

buffer. After initial quality control, FRET histograms plotted using the FRET values collected 

from 297 verified molecules over the first 100 frames (at 100 ms time resolution) indicated a 

single Gaussian distribution with an average FRET value of 0.3±0.15 (Figure 2.6). To 

objectively identify the underlying FRET states in the shot-noise dominated fluorescence signal, 

we employed Hidden Markov Modeling (HMM) as described
49

. Using a K-means approach, we 

then clustered the HMM assigned states using all the experimental conditions used in this study 

into four macro states with FRET values of 0.0-0.23 (state L1), 0.23-0.42 (L2), 0.42-0.60 (M), 

and 0.6-1.0 (H) (Figure 2.7 and Table 2.2). The dominant behavior in the B
act

 complex is a stable 

low-FRET state L2 (Figure 2.6). Transition Occupancy Density Plots (TODPs), which are scaled 

to emphasize the transitions found to be most common among a molecule population
49

, indicate 

that the stable L2 state represents the only behavior in ~52% of all B
act

 molecules (Figure 2.6). In 

addition, molecules in this state have very few transitions. To test for dynamics too fast for 

detection by HMM, we performed cross-correlation analysis between the donor and acceptor 

trajectories of each molecule and in the resulting scatter around zero found no evidence for rapid 

transitions (Figure 2.6 and Figure 2.8). Although splice site recognition begins in the splicing 

cycle as early as the commitment complex
55

 our results suggest that the 5’SS and BP in the B
act

 

complex are kept stably apart, likely not yet close enough for splicing chemistry to occur.  
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Figure 2.6 In the Prp2-stalled B
act

 complex, the pre-mRNA is predominantly restricted to a 

stable low FRET state. 

(a) FRET histograms generated by binning the first 10 s of the raw single molecule FRET 

trajectories from the purified B
act

 complex. (b) Representative time traces of the B
act

 

complex with raw donor (Cy3, green), acceptor (Cy5, red), and FRET (black) trajectories 

and their idealized HMM (cyan) showing a stable L2 FRET state. The right panel of each 

molecule is the corresponding cross-correlation of donor and acceptor intensities, 

demonstrating that the HMM did not miss any donor-acceptor anti-correlated events. (c) 

Transition Occupancy Density Plots (TODPs) showing that stable L2 FRET states, which 

lie on the diagonal (dotted white line), characterize more than 50% of all B
act

 complexes. 
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Figure 2.7 K-means clustering of HMM assigned FRET states. 

(a) Histogram of HMM-idealized states for each of the K-means derived clusters L1, L2, M 

and H obtained by clustering single molecule trajectories from all the experimental 

conditions (B
act

, B* and C). (b) Representative molecule showing the FRET states assigned 

by HMM upon K-means clustering.  
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Table 2.2 K-means clustering parameters used on the HMM assigned FRET states.  

Segment number (first column) the mean raw FRET value (second column), HMM state 

(third column), and normalized difference of mean acceptor and mean donor intensities for 

each segment (fourth column). 
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Figure 2.8 Cross-correlation analysis showing the stable L2 state in the B
act

 complex with 

no significant cross correlation. 

(a) Sample trace from the B
act 

showing showing no transitions detected by HMM and no 

significant cross correlation indicating a true stable FRET state with the raw donor (Cy3, 

green), acceptor (Cy5, red), FRET (black) trajectories, idealized HMM models (cyan) and 

cross correlation analysis of donor and acceptor trajectories with time lags from 0-50. (b) 

Sample dynamic traces from the B
act 

 showing anti correlated transitions with raw donor 

(Cy3, green), acceptor (Cy5, red), FRET (black) trajectories, idealized HMM models (cyan) 

and cross correlation analysis of donor and acceptor trajectories with time lags from 0-50. 
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2.3.3 Prp2 mediates a large-amplitude, NTP-dependent conformational remodeling of the pre-

mRNA  

The ATPase action of Prp2 has been shown to catalyze a large conformational change 

that activates the spliceosome for the first step of splicing
31,35,45

. Spliceosomal binding of Prp2 is 

dependent on its interaction with the G patch domain of its cofactor protein Spp2
56,57

. The 

addition of Prp2, Spp2 and ATP transforms the pre-catalytic B
act

 complex into the catalytically 

active, distinctly sedimenting B* complex and results in low levels of first-step splicing
35

. To 

investigate the role of Prp2 in pre-mRNA remodeling during this step, we incubated the B
act

 

complex assembled on the slide surface with Prp2, Spp2 and 2 mM ATP (henceforth referred to 

as B* complex condition). B* complex conditions resulted in a significant shift in the FRET 

histogram toward a new ~45% population with a mean FRET value of 0.71±0.01, diminishing 

the lone 0.33±0.01 FRET distribution observed for the B
act

 complex (Figure 2.9). In contrast to 

the predominantly static L2 state of the B
act

 complex, molecules under B* conditions show 

dynamic excursions to high-FRET states, indicating that the 5’SS and BP can now reach the 

close proximity required for first-step chemistry. More specifically, the B* condition comprises 

the L2, M and H FRET states, where the H state is accessed from either the L2 or M states. 

TODP plots show that only ~11% of molecules retain the stable L2 state characteristic of the B
act

 

complex, while ~39% of molecules exhibit at least one L2→H transition. Notably, transitions 

into the H state are short-lived in a majority of molecules. However, 12% of molecules show a 

stable high FRET state, as expected if they transitioned through the first step of splicing, in 

accord with the ~13% of first-step splicing we observe under B* conditions (Figure 2.1).  
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Figure 2.9 Upon the addition of ATP, Prp2 and Spp2, the pre-mRNA is able to explore 

splice site proximity. 

(a) FRET histograms show higher FRET state sampling upon the addition of ATP and 

Prp2/Spp2 to the Bact complex, leading to formation of the B* complex. (b) Representative 

single molecule FRET time trajectories from this condition show that molecules that were 

in the stable L2 state prior to the addition of Prp2 now transition transiently to the H state 

from either the L2 state (top trajectory) or the M state (bottom two trajectories). (c) 

TODPs indicate that 11% of all molecules retain Bact-like behavior (stable L2 state), while 

a significant population explores higher FRET states. Approximately 12% of the molecules 

populate a stable H state, found along the diagonal.   
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Prp2 can directly bind a region in the pre-mRNA downstream of the BP adenosine, even in the 

absence of ATP
58,59

. To ask whether Prp2 alone can induce the pre-mRNA remodeling observed 

here by SiMPull-FRET, we omitted either Spp2 or Prp2 from our B* conditions and found the 

resulting FRET histograms to be indistinguishable from those of the starting B
act

 complex 

(Figure 2.10). Next, we studied the role of ATP in the remodeling of the B
act

 complex. For most 

spliceosomal DExD/H-box helicases, both ATP dependent and independent roles have been 

proposed
20,60-63

. Prp2 in particular has been shown to cause significant conformational 

remodeling of the spliceosome in the absence of ATP, whereas the displacement of SF3b is ATP 

dependent
31

. To ask whether the pre-mRNA remodeling observed here requires ATP, the B
act

 

complex was incubated with Prp2 and Spp2 in the absence of ATP, leading again to no 

significant change in the FRET histogram (Figure 2.10). Similarly, when the non-hydrolysable 

ATP analog AMPPNP was used instead of ATP, the FRET histogram replicated that of the B
act

 

complex, showing that ATP hydrolysis is required (Figure 2.10). Finally, the DExD/H box 

helicases involved in spliceosomal reorganization are either integral components of snRNPs or 

extrinsic components like Prp2. Mass spectrometry studies have shown that the stalled B
act

 

complex contains stoichiometric amounts of the DExD/H-box helicase Brr2, the integral 

component of the U5 snRNP responsible for U4:U6 unwinding
64

. Direct interactions between 

Prp2 and the C-terminus of Brr2 have recently been discovered
59

, suggesting a possible role for 

Brr2 in first-step catalytic activation. To rule out that Brr2 is responsible for the observed pre-

mRNA remodeling, we exploited the fact that Brr2 is a strict ATPase
29

 whereas Prp2 is a broad 

NTPase
65

, and supplemented the B
act

 complex under B* conditions with UTP instead of ATP. 

The resulting FRET efficiency histogram is clearly distinct from that of B
act

 and overlays well 
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with that of the ATP-mediated B* condition with just a slightly less efficient shift towards the 

higher FRET population (Figure 2.10). This lower efficiency is consistent with the slightly (by 

~2-fold) reduced activity of Prp2 in the presence of NTPs other than ATP
65

. Collectively, these 

results indicate that the NTP-driven helicase activity of Prp2 in complex with its activator Spp2 

causes a large structural reorganization of the pre-mRNA that allows the distal 5’SS and BP of 

the B
act

 complex to reversibly access proximal conformations, which in turn enable first-step 

splicing.  
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Figure 2.10 The NTPase activity of Prp2 induces structural remodeling of the pre-mRNA. 

 

FRET probability densities show that the characteristic distribution of the B
act

 complex is 

retained when B
act

 is incubated with either Spp2, Prp2, or ATP missing, or when incubated 

with Prp2/Spp2 and non-hydrolysable ATP analog AMPPNP, as indicated. By contrast, the 

addition of UTP or ATP shifts the distribution notably towards a high-FRET population 

characteristic of the B* complex (bottom two panels). 
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2.3.4 Cwc25 enhances the first step of splicing by increasing the residence time in the H state 

Although the pre-mRNA is remodeled by the NTPase action of Prp2/Spp2, it does not undergo 

very efficient first-step catalysis. To further enhance first-step splicing efficiency, addition of 

Cwc25 to the B
act

 complex incubated with Prp2, Spp2 and ATP is necessary. Cwc25 was 

identified as one of a group of proteins complexed with Cef1/Ntc85 of the NTC complex. It is a 

thermostable 20-kDa protein with short coiled coil domains
66

. To determine its role in 

remodeling of the pre-mRNA, we performed SiMPull-FRET on the purified B
act

 complex 

supplemented with Prp2, Spp2, ATP and Cwc25 (henceforth referred to as C complex 

conditions). This resulted in a FRET histogram with an enhanced ~73% population with a mean 

FRET value of 0.75±0.01 (Figure 2.11). We found the FRET states under C complex conditions 

to be the same as those under B* conditions, with the L2→H and M→H transitions prevalent; 

however, the occupancy in the H state is significantly enhanced under C conditions. TODP 

analysis revealed the fraction of molecules displaying at least one L2→H and M→H transition to 

be similar under B* and C conditions, whereas the stable H state occupancy is ~3-fold increased. 

This shift is similar in magnitude to the enhancement in first-step splicing that Cwc25 induces 

(Figure 2.1), consistent with the stable H state representing the C complex after the first step of 

splicing. Post-synchronized histograms (PSHs) created by aligning the HMM-fitted traces to start 

at the M state show that the molecules under C conditions both transition more frequently to the 

H state and exhibit a higher residence time once in the H state (Figure 2.12). A similar 

comparison of transitions starting at the H state further emphasizes the stabilization of this state 

by Cwc25 under C conditions (Figure 2.12). To rule out that a change in photostabilty of 

molecules in the C complex affects the relative prevalence of the H state, we analyzed the 
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average photobleaching time under B
act

, B* and C conditions and found them to be comparable 

(Table 2.3). To quantitatively characterize the effects of Cwc25 on the conversion of the B* to 

the C complex, we plotted the cumulative dwell times for the forward and backward L2→H and 

M→H transitions under both conditions and fit them with double-exponential functions ( 

Figure 2.13).  A comparison of the weighted average rate constant for the L2→H transition 

showed similar forward and backward rate constants under both conditions, yielding equivalent 

equilibrium constants Keq = kforward/kbackward of ~0.80. In contrast, the presence of Cwc25 

accelerates the forward and reduces the backward rate constant of the observed M→H transition, 

leading to a Keq that is ~3-fold more favorable for the H state under C compared to B* 

conditions. To show that the same pre-mRNA molecule can be chased from B* to C complex, 

we observed the same field of view before and after shifting from B* conditions (excluding 

Cwc25) to C conditions (including Cwc25) and incubating for 10 min in the dark.  Before the 

dark period, molecules were dynamically shuttling between the L2 and H states. A subset of 

molecules were observable after the dark period and of those ~50% shifted to the stable H state ( 

Figure 2.13 and Table 2.4). Taken together, our results suggest that Cwc25 acts kinetically to 

stabilize the catalytically favorable conformation, thereby effecting an enhancement of the first 

chemical step of splicing. 
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Figure 2.11 Under C complex conditions, the pre-mRNA accesses dynamic and stable high-

FRET states. 

(a) FRET probability densities plotted for molecules under C complex conditions where the 

addition of Cwc25 results in an enhanced shift to the high-FRET population. (b) 

Representative single molecule FRET trajectories from this condition show either M→H 

transitions (top panel), a stable H state (mid panel) or L2→H transitions (bottom panel), 

resulting in an overall increased residence time of the H state. (c) TODPs under this 

condition show that about 35% of the molecules exhibit a stable H state (so that they lie on 

the diagonal), which is 3-fold higher than under B* conditions, whereas the fraction of 

molecules showing L2→H and M→H transitions are similar. 
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Figure 2.12 Cwc25 enhances the first step of splicing by stabilizing the H state. 

(a) A comparison of the aggregate molecular behavior before (B*) and after Cwc25 

addition (C) through post-synchronized histograms (PSH) with all trajectories 

synchronized to start from either the M (top) or H state (bottom) reveals a higher 

occupancy of the H state under C complex conditions. (b) (b) A comparison of the rate 

constants of the observable transitions under B* and C conditions reveals a ~3-fold 

increase in the stability of the dynamic H state for the C complex. The thickness of arrows 

corresponds to the relative rate constants. (c) Representative trajectories with transition 

dynamics from the same molecules imaged before (B*) and after Cwc25 (C) addition. 

Representative single molecule FRET trajectories with transition dynamics from the same 

molecules imaged before (B*) and after Cwc25 (C) addition. The axis breaks represent 10 
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min of incubation after Cwc25 addition. The data confirm that individual molecules change 

their conformational dynamics upon Cwc25 addition.  
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Table 2.3 Comparison of average photobleaching times and number of molecules per 

condition. 

The average photobleaching times for the B* and C complex conditions are nearly 

identical. The increase in stable high FRET states in the C complex is thus not a result of a 

bias in the single molecule lifetimes under these conditions. 
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Figure 2.13 Kinetic rate determination for B* and C complex transitions. 

(a) Transition Density Plots (TDPs) for the B* and C complex conditions scaled to the 

number of transitions determined by HMM. The most prominent transitions in each 

condition are L2→H, H→L2, M→H, and H→M. (b) Dwells times were extracted for each 

corresponding transition, plotted as a cumulative count plot, and fit with either a single- or 

double-exponential rate equation. The double-exponential function best approximates the 

data and was chosen for further analysis. (c) Parameters for the double-exponential 

equations fitted to the dwell time data. To reduce the dimensionality of the data, a weighted 

average rate constant kw was calculated by utilizing the amplitudes associated with each 

time constant as weighting factors. kw was used for Keq calculations and rate comparisons 

between B* and C complex conditions. 
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Table 2.4 Classification of molecules from the observation of the same molecule chased 

from the B* to the C complex with the inclusion of a dark period during Cwc25 addition. 

 

 

 

 

 

 

 

 

 

Fraction Pre-Cwc25 addition Post-Cwc25 addition Classification

0.11 High FRET with long dwell High FRET with long dwell Catalysis of 1st step

0.39 Various behaviors (excluding
high FRET with long dwell)

High FRET with long dwell Cwc25 mediated 
enhancement

0.33 Fast Switching Slow/No switch (no 
stable high FRET)

Prp2 unbound

0.08 Fast Switching Fast Switching Cwc25 not bound

0.09 N/A Elevated Noise N/A
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2.3.5  Cwc25 dynamically interacts with the pre-mRNA close to the BP after Prp2-mediated pre-

mRNA remodeling 

Previous studies have shown that Cwc25 binds stably to the spliceosome following Prp2 

mediated SF3a/b destabilization
43

. It seems likely that Cwc25 enhances first-step chemistry by 

binding to the pre-mRNA since mutation at the BP abolishes this interaction
32

. Additionally, 

Cwc25 has been recently shown to crosslink near the BP of the pre-mRNA
32,67

. To directly 

observe the binding of Cwc25 to the pre-mRNA we labeled the protein’s C-terminus with Cy5 

fluorophore. The Cy5 near the 5’SS of the pre-mRNA was pre-bleached so that the pre-mRNA 

had a single fluorescent Cy3 label near the BP. We tested the activity of the Cy5-tagged Cwc25 

using our bead pull-down assay and found it to be fully functional. SiMPull-FRET experiments 

were then carried out with Cwc25-Cy5 added to the B
act 

complex with and without the addition 

of Prp2, Spp2 and ATP (Figure 2.14). We observed repeated binding and dissociation of Cwc25-

Cy5 and resulting FRET with the BP under B* condition. By contrast, there was little observable 

FRET between Cwc25 and the pre-mRNA BP in the absence of Prp2/Spp2 and ATP. From the 

FRET distribution of these binding events, centered around 0.37±0.03, we estimate that Cwc25 

binds within FRET distance of the Cy3-Cy5 pair (<100 Å), roughly ~52 Å from the BP 

Adenosine. We conclude that Cwc25 activates the spliceosome for the first step by dynamically 

binding to the pre-mRNA near the branch point. 
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Figure 2.14 Prp2 mediated pre-mRNA remodeling creates a binding site for Cwc25 near 

the BP. 

(a) Schematic of our SiMPull experiment to test for binding of Cy5-tagged Cwc25 to the 

spliceosome assembled on pre-mRNA with a single active Cy3 fluorophore. (b) FRET 
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histogram under B* conditions (in the presence of Prp2-mediated remodeling) showing the 

average FRET value obtained from the experiment. The lower FRET peak centered at 0.15 

is the background associated with the system while the broader peak centered at 0.37 is the 

mean FRET between the fluorophores. (c) FRET histogram under B
act

 conditions (in the 

absence of Prp2-mediated remodeling) showing the low levels of background centered at 

0.08. (d) Representative single molecule FRET trajectories showing the binding and 

associated FRET between the Cy5 on Cwc25 and the Cy3 near the pre-mRNA BP under B
*
 

conditions. Arrows indicate binding events. (e) Representative smFRET trajectory showing 

the absence of FRET between the Cy5 on Cwc25 and the Cy3 near the pre-mRNA BP 

under B
act

 conditions. 
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2.4 Discussion 

Here we have combined single molecule FRET between fluorophores attached near the 

5’SS and BP of the pre-mRNA substrate with affinity purification into a technique we term 

SiMPull
68

-FRET to study the spliceosomal B
act

 complex stalled by heat inactivation of Prp2.  

Stepwise addition of ATP and the recombinant proteins Prp2, Spp2 and Cwc25, which together 

are required for efficient first-step splicing and conversion of the B
act

 into first the B* then the C 

complex, revealed the role of each factor in pre-mRNA remodeling as summarized in Figure 

2.15. We find that the pre-mRNA remains in the stable low-FRET L2 state of the B
act

 complex 

(which for clarity we term L2
act

) with distal 5’SS and BP until the activation by Prp2/Spp2 in the 

presence of ATP produces the B* complex. Prp2-mediated hydrolysis of ATP (or UTP) in this 

step weakens the binding of some seven proteins, including SF3a and SF3b
31,35,42,43

 that bind the 

pre-mRNA upstream and downstream of the BP adenosine, presumably preventing its premature 

nucleophilic attack on the 5’SS. Accordingly, the B*-associated low-FRET state (L2*) allows 

the pre-mRNA to transiently and reversibly visit both mid- (M*) and high-FRET (H*) states with 

more proximal 5’SS and BP.  First-step splicing now proceeds with low efficiency, leading to 

post-catalytic C complex formation signified by a stable high-FRET state (H
C
). This finding 

indicates that the increased proximity of the reactive sites is sufficient for catalysis. However, 

reaction chemistry is significantly enhanced by the addition of Cwc25, which binds the pre-

mRNA substrate near the BP and slows particularly the rate constant of the high- to mid-FRET 

transition, leading to a longer dwell time in the pre-catalytic transient-FRET state H
C-pre

.  In turn, 
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this event leads to enhanced occurrence of the stable high-FRET state associated with the post-

catalytic C complex (H
C
) (Figure 2.15). 

Our data show that before Prp2/Spp2/ATP action, the spliceosome keeps the reactive 

sites of the pre-mRNA strictly apart. This observation is consistent with and refines a recent 

report that suggested that stable splice site juxtaposition occurs some time after the NTC 

assembles on the pre-mRNA
24

. Furthermore, it has previously been speculated that the 

catalytically activated B* complex, formed after Prp2/Spp2/ATP but before Cwc25 action, may 

shift back and forth between inactive and active conformations
35

. We here have presented direct 

evidence for this notion by showing that only in the B* state dynamic excursions between low- 

and high-FRET states become observable, and only the high-FRET state places the reactive 5’SS 

and BP in close enough proximity for subsequent catalysis, correlated with the appearance of the 

stable high-FRET state H
C
. The same authors also proposed that Cwc25 binding may shift the 

equilibrium between inactive and active conformations towards the latter, which we directly 

observe and assign to a marked increase of the dwell time in the active conformation H
C-pre

 with 

proximal 5’SS and BP.  This behavior strikingly resembles that of a classical biased Brownian 

ratchet machine that draws path directionality from the stochastic thermal fluctuations to which it 

is constantly subjected, through a form of “rectification” or “biasing”
69,70

. In fact, the ribosome 

has been described as a biased Brownian ratchet machine
71-73

 and our previous single molecule 

FRET probing of pre-mRNA dynamics in whole yeast cell extract suggested that the 

spliceosome, like the ribosome, works close to thermal equilibrium
37

. We therefore propose that 

the ATP-driven helicase activity of Prp2/Spp2 acts to remove SF3a/SF3b as an impediment to 

the intrinsic thermal fluctuations of the spliceosome-substrate complex, while Cwc25 provides 
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directionality to the reaction pathway by then acting as a “pawl” to stabilize the catalytically 

competent conformation.  

DExD/H-box helicases such as Prp2 are widespread enzymes that participate in many 

aspects of RNA processing
21,74

. In general, they are thought to use ATP hydrolysis to remodel 

RNA and RNP complexes by binding, unwinding and releasing the RNA. Unlike all previous 

single molecule approaches
24,37,75-77

, our SiMPull-FRET approach allowed us to directly 

interrogate a specific intermediate of spliceosomal assembly and catalysis and discover the 

specific mechanism by which the helicase activity of Prp2/Spp2 is augmented by Cwc25. Such 

biased Brownian ratcheting may be widespread among helicase-driven RNPs, and SiMPull-

FRET will allow us to test this hypothesis further.  
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Figure 2.15 Model for the conformational mechanism of first-step splicing.   

The 5’SS and BP of the pre-mRNA in the B
act 

complex are predominantly in the stable 

distal L2
act

 conformation with low FRET (i.e., high Cy3 and low Cy5 fluorescence, 

indicated by the green and red circles, respectively). Upon ATP hydrolysis and conversion 

into the B* complex, Prp2 along with its cofactor Spp2 unlocks the B*-associated low-

FRET state L2* to reversibly sample the mid- and high-FRET (spatially proximal) 

conformations M* and H* (and H
C-pre

 under C complex conditions). Cwc25 binds near the 

BP of the pre-mRNA, thus reducing the rate constant of the high- to mid-FRET transition 

and favoring first-step chemistry, upon which the pre-mRNA adopts the stable high-FRET 

state H
C
. 
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CHAPTER 3 : Single molecule dissection of splice site juxtaposition along the pre-mRNA 

splicing cycle
 2

 

 

3.1 Introduction 

Excision of introns from pre-mRNA transcripts is carried out at single nucleotide 

resolution by a large and elaborate macromolecular RNP machine called spliceosome. The 

spliceosome lacks a preformed catalytic core and is assembled in a stepwise fashion from the U1, 

U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs). Each of the snRNPs 

consists of a specific small nuclear RNA (snRNA) and associated proteins. Assembly is carefully 

orchestrated in a stepwise manner on each pre-mRNA template, resulting in the formation of a 

mature mRNA in a two-step transesterification process. In the first catalytic step of splicing, the 

2’OH of the branchpoint adenosine (BP) attacks the phosphodiester bond at the 5’ splice site 

(5’SS), creating a lariat structure and a free 5’ exon. In the second step, the 3’ hydroxyl of this 

exon attacks the phosphodiester bond at the 3’ splice site (3’SS), releasing the lariat intron and 

mRNA product.  

                                                
2
Adapted from: Ramya Krishnan*, Blanco, Mario*, Joshua Martin, Matthew Kahlscheuer, John Abelson, Christine 

Guthrie, Alain Laederach and Nils Walter; “Single molecule dissection of splice site juxtaposition along the pre-

mRNA splicing cycle” (manuscript in preparation). Single molecule experiments and biochemical characterizations 

of the various blocks were carried out by Ramya Krishnan. Single molecule data pre-filtering was jointly done by 

Ramya Krishnan and Matthew Kahlscheuer. Data clustering was jointly done by Mario Blanco and Joshua Martin. 

*Contributed equally to this work. 
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The conserved sequences and the secondary structure of the pre-mRNA serve as template 

on which the components of the spliceosome assemble in a dynamic and highly regulated 

manner. While the focus in the field has largely been on the protein components, advances in the 

last decade in single molecule fluorescence microscopy techniques have allowed us to track the 

pre-mRNA structural rearrangements with accuracy. Notably, these studies have identified that 

components of the spliceosome are in a state of constant flux, characterized by steady-state 

dynamics and reversibility. Our previous work showed that the pre-mRNA reversibly samples a 

variety of conformations during the ATP-dependent and -independent assembly steps in splicing 

extracts. The multitude of different conformations sampled stochastically in the absence of 

molecular synchronization did, however, limit our ability to assign dynamics to specific parts of 

the assembly cycle.  

In an effort to reliably characterize pre-mRNA splice site dynamics throughout the 

splicing cycle and integrate it with the mechanistic information available, we here have 

employed a combination of genetics to stall the spliceosome at distinct stages, single molecule 

microscopy and hierarchical clustering tools to detail the 5’SS-BP conformational dynamics 

explored by the pre-mRNA throughout splicing. Using a hierarchical clustering approach to 

extract the consensus behaviors of pre-mRNAs throughout the splicing cycle, we find that the 

splice sites are dynamic and explore dynamic conformational proximity with the early assembly 

restricted to predominantly low- to mid-FRET (high- to mid-distance) states. Using these 

snippets of FRET dynamics of each splicing stall, we have recreated the entire pre-mRNA 

conformational consensus pathway in the splicing cycle. The approach presented here is widely 

applicable to macromolecular systems with complex sets of dynamics. 
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3.2 Materials and Methods 

3.2.1 Synthesis of Ubc4 pre-mRNA variants 

The Ubc4 pre-mRNA variants used in this study were synthesized chemically and labeled with 

the FRET donor Cy3 +6 nucleotides downstream from the BP adenosine and with the FRET 

acceptor Cy5 -7 nucleotides upstream from the 5’SS via allyl-amine modified uridines. A DNA 

splint (dSplint) was used for templated ligation to synthesize the pre-mRNA as described
34

. The 

5’- end of the pre-mRNA is biotinylated and used for direct immobilization on the microscope 

surface. Sequences for the mutants are given here (mutated sites are bolded and highlighted): 

WildtypeUbc4: 

5’GAACUAAGUGAUCUAGAAAGGUAUGUCUAAAGUUAUGGCCACGUUUCAAAUGC

GUGCUUUUUUUUUAAAACUUAUGCUCUUAUUUACUAACAAAAUCAACAUGCUAU

UGAACUAGAGAUCCACCUACUUCAUGUUT3’  

5’Hyperstable mutant Ubc4: 

5’GAACUAAGUGAUCAGAAAGGUAAGUAUUAUGUUAUGGCCACGUUUCAAAUGCG

UGCUUUUUUUUUAAAACUUAUGCUCUUAUUUACUAACAAAAUUCAACAUGCUAU

UGAACUAGAGAUCCACCUACUUCAUGUUT3’  

Branch point mutant Ubc4: 

5’GAACUAAGUGAUCUAGAAAGGUAUGUCUAAAGUUAUGGCCACGUUUCAAAUGC

GUGCUUUUUUUUUAAAACUUAUGCUCUUAUUUACUACCAAAAUCAACAUGCUAU

UGAACUAGAGAUCCACCUACUUCAUGUUT3’   
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3’Splicesite mutant Ubc4: 

5’GAACUAAGUGAUCUAGAAAGGUAUGUCUAAAGUUAUGGCCACGUUUCAAAUGC

GUGCUUUUUUUUUAAAACUUAUGCUCUUAUUUACUAACAAAAUCAACAUGCUAU

UGAACUACACAUCCACCUACUUCAUGUUT3’  

3.2.2 Yeast extracts and modifications 

Wildtype yeast splicing extracts (Snu66-TAP background) were prepared as previously 

described
37

. U2 and U6 snRNAs were ablated as described with the following modifications
78,79

. 

DNA oligo SRU2 was used at a concentration of 400nM to achieve efficient depletion of U2 

snRNA. In vitro transcribed U2 snRNA at 50 nM concentration was then incubated with the 

depleted extract to achieve U2 reconstitution and efficient splicing. DNA oligo D1 

complementary to U6 snRNA was used at 300 mM concentration to achieve efficient depletion 

of U6 snRNA from the extract. In vitro transcribed U6 snRNA at 10 nM concentration was 

sufficient to reconstitute active splicing. Prp2-1 heat sensitive extract was incubated for 40 min 

at 37 ºC to inactivate the Prp2 protein. Each of the splicing stalls and reconstitution of activity 

were verified with ensemble splicing assays after each single molecule experiment.  

3.2.3 Single molecule measurements 

 Single molecule measurements were carried out as described
37

. The Ubc4 pre-mRNA 

used in this study were biotinylated at the 5’-end and attached directly via streptavidin-biotin 

linkage onto a quartz slide. Single molecules were selected for further analysis after verification 

that they had each a single donor (Cy3) and acceptor (Cy5) as evident from photobleaching 

analysis or direct excitation of the Cy5 dye with a 635 nm laser. Histograms were constructed by 
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sampling the first 10 seconds of each trajectory. Hidden Markov Model (HMM) analysis was 

carried out by applying a global model to the entire data set of molecules utilizing the vbFRET79 

program. The number of states allowed ranged from 1-10 and vbFRET was allowed to choose 

the final number of states, found to be 7 states. The global fit ensures that the same idealized 

FRET values are sought in all data sets, allowing for a direct comparison of state abundance and 

state-to-state transitions. 

3.2.4 Creating an HMM similarity matrix and Clustering Analysis 

 The FRET data for all conditions examined were fit with a global HMM to determine and 

assign idealized states. The HMM analysis was performed with vbFRET, allowing for the 

number of states to range from 1-10. The VbFRET algorithm determined that a total of 7 states 

exist in the system. Transition probability (TP) matrices were created for each individual 

molecule by using the path of idealized states determined by vbFRET and the hmmgenerate 

function in MATLAB. When a specific molecule did not sample a particular state that state’s 

position on the TP matrix was assigned a zero to make sure that all TP matrices have the same 

size (7 states x 7 states). The FRET Similarity Matrix (FSM) combined the TP matrix with the 

fraction occupancy of a molecule at each state (1 x 7 matrix); making the FSM an overall 7 x 8 

matrix. The FSM was then clustered using the hierarchical clustering toolbox in MATLAB. 

Before clustering, molecules sampling only one (static) state were separated and grouped 

independently because their low complexity resulted in the identification of 5 distinct static 

clusters. The pairwise distance of each molecule’s FSM was calculated using the Euclidean 

metric. These distances were then joined using the linkage function that created a hierarchical 
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tree joined at nodes based on the median Euclidean distance between the trajectories. The 

hierarchical tree can be clustered by determining a height cutoff between pairs of nodes. We 

determined the appropriate cutoff by measuring the intra and inter cluster distances at several 

different thresholds. A threshold was chosen that resulted in 14 different clusters. These clusters 

were then joined with the 5 static clusters previously identified. Once these 19 clusters were 

identified, we could quantify the number of molecules present in each cluster under each 

experimental condition. To determine consensus behaviors for each cluster we calculated the 

mean TP matrix for each cluster and then determined the trajectory with the shortest Euclidean 

distance to that mean. 

3.3 Results 

3.3.1 Hierarchical clustering tools facilitate objective classification of complex smFRET data  

Previous smFRET studies on splice site dynamics in Ubc4 substrate have shown that the 

dynamics are time- and ATP-dependent and largely reversible
37

. More recently, work on 5'SS-

BS dynamics in RP51 pre-mRNA has shown that these sites are held farther apart from each 

other during assembly until the binding of the NTC complex, after which the splice sites explore 

close proximity
24

. We have used established genetic and biochemical tools to stall the progress 

of the splicing cycle at various steps (Figure 3.1) and observed 5’SS-BP dynamics in 

immobilized Ubc4 pre-mRNA in whole yeast cell extract  (YE). These stalls were characterized 

biochemically via standard splicing assays by incubating either the wildtype/mutant pre-mRNA 

with wildtype/mutant YE, with and without ATP for 30-40 min at 23  °C to confirm their ability 

to reliably stall the cycle progress at the specific steps (Figure 3.2, Figure 3.3, Figure 3.4 and 
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Figure 3.5). The Ubc4 pre-mRNA used was 5’-biotinylated and labeled with a donor fluorophore 

(Cy3) at position +6 from the branchsite adenosine while maintaining the acceptor fluorophore 

(Cy5) at position -7 from the 5’ splice site. 

 

 

 

Figure 3.1 Stalling the progress of splicing at various steps 

Schematic showing the assembly, activation, catalysis and disassembly of the spliceosome 

during the process of pre-mRNA splicing. Shown in red cross marks are the independent 

stalls employed in the study. The mutant pre-mRNAs (BP mutant, 5’Hyp mutant and 3’SS 

mutant) are used with wildtype extract while the other stalls have extract modifications 

used as described in methods.  
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Figure 3.2 Mutant pre-mRNA substrates show expected stall in the splicing cycle 

Wildtype (WT) and mutant (BP, 5’Hyp, 3’SS) Ubc4 pre-mRNA assembled in wildtype 

extract under splicing conditions without and with ATP ((-) and (+), respectively) at 23 °C 

for 60 min. RNA was extracted and the products were analyzed on a denaturing, 7 M urea, 

15% polyacrylamide gel. A variable mode Typhoon scanner was used to obtain the Cy3 

scan (left-green) and Cy5-scan (right-red). The intron and intron-lariat products are 

observed in the Cy3 scan (left) and the mature mRNA product is visualized in the Cy5 scan 

(right). 
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Figure 3.3 Depletion of U2 snRNA results in stalling of splicing cycle 

DNA oligonucleotide SRU2 is complementary to the U2 snRNA and when incubated at a 

sufficiently high concentration can deplete WT extract of U2 snRNA. (a) SRU2 at 400 nM 

was sufficient to abolish all splicing activity of WT UBC4 pre-mRNA. (b) In vitro 

transcribed U2snRNA at 50 nM was able to efficiently reconstitute activity when 

supplemented to extract depleted of U2 (with 400 nM SRU2). 
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Figure 3.4 Depletion of U2 snRNA results in stalling of splicing cycle  

DNA oligonucleotide D1 is complementary to the U6 snRNA and when incubated at a 

sufficiently high concentration can deplete WT extract of U6 snRNA. (a) D1 at 300 nM was 

sufficient to abolish all splicing activity of WT UBC4 pre-mRNA. (b) In vitro transcribed 

U6 snRNA at 10 nM was able to efficiently reconstitute activity when supplemented to 

extract depleted of U6 (with 300 nM D1).  
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Figure 3.5 Heat-inactivated of Prp2 protein results in stalling of splicing cycle  

Prp2-1 extract carries a temperature sensitive mutation in the RNA dependent ATPase 

Prp2 that can be heat inactivated at 37 ºC for 40 min. This blocks any catalysis but allows 

assembly to proceed until just before the first step of catalysis. This block can be relieved 

by supplementing heat inactivated extract with 100 nM recombinantly expressed Prp2 

protein.  
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To obtain insights into pre-mRNA splice site juxtaposition up to each step where splicing 

was stalled, we performed smFRET studies on either WT or mutant pre-mRNA immobilized on 

quartz slides via streptavidin-biotin interaction. To this pre-mRNA, either the WT or modified 

yeast extract (YE) was flowed and the RNA imaged. To relieve a particular stall, we added back 

mutant extract reconstituted with the specific component and imaged the pre-mRNA. After 

initial quality control, FRET histograms were plotted using the FRET values collected from all 

verified molecules over the first 100 video frames (at 100 ms time resolution). As expected, we 

observed ATP-dependent changes in the WT pre-mRNA when incubated in YE (Figure 3.6 b 

and c). WT pre-mRNA incubated in standard splicing buffer exhibited a wide range of 

conformational dynamics with prevalence of high FRET states which are disfavored upon extract 

addition (Figure 3.6 a and b). The earliest stall in the splicing cycle was achieved by using a BP 

mutant pre-mRNA that showed a highly populated low FRET state irrespective of ATP (Figure 

3.6 d). We similarly plotted probability density histograms for all the splicing stalls used in this 

study to achieve enrichment at either the CC1 complex, CC2 complex, A complex, B
act

 complex 

or C complex stages. Our previous work had established that the conformational behaviors of 

single pre-mRNAs undergoing splicing are complex with multiple interconverting states and a 

variety of kinetic behaviors
37

. The data obtained with the 5’SS-BP labeled substrate similarly 

exhibited intricate behaviors and therefore required sophisticated techniques to dissect. 
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Figure 3.6 FRET probability histograms comparing early and late steps of splicing 

FRET histograms were plotted using the FRET values collected from all the verified 

molecules over the first 100 frames showing WT Ubc4 pre-mRNA in (a) splicing buffer, (b) 

wildtype YE depleted of ATP and (c) wildtype YE with 2 mM ATP. (d) FRET histogram 

showing Branchpoint (BP) mutant pre-mRNA in YE in the absence of ATP. 
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The large amount (>10,000 single molecules) of complex data collected from these 

experiments required the use of novel analysis methods to objectively classify the similarities 

and differences between them. We created a FRET similarity matrix (FSM) by combining the 

traditional Transition Probability matrix (TP) and a histogram that describes the overall 

occupancy of states (Figure 3.7). A global Hidden Markov Model fit to all single molecule data 

collected yielded a total of seven discrete FRET states (7 x 7 TP matrix). We then created a FSM 

for each single molecule trajectory. A vector form FSM can now be used as input into clustering 

algorithms. The data sets collected for all the blocks were mixed and then a pairwise distance 

between all possible trajectories was calculated using the Euclidean distance metric. Static 

molecules (no transitions with occupancy in only one state) were then separated since their 

features are simple and can be treated separately. The Euclidean distances between FSMs for 

dynamic molecules were calculated and used to build a hierarchical cluster tree by utilizing the 

linkage function in Matlab (Figure 3.8). Molecules with short distances (high similarity) were 

grouped together and connected to other groups of molecules based on their average inter-cluster 

distance. A tree-pruning threshold was then selected based on the inter-cluster distance that 

minimized the intra-cluster distance (differences within a cluster) and maximized inter-cluster 

distance (differences between clusters) (Figure 3.9). The threshold yielded a total of 19 clusters,h 

14 of which were dynamic and 5 static. Importantly, the data were not segregated a priori by the 

experimental conditions, thereby allowing molecules with similar dynamics across conditions to 

be grouped objectively. The uniqueness of the 19 clusters created from the hierarchical clustering 
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analysis were assessed by visually verifying that similar molecules were grouped together to 

create clusters of high homogeneity.  

 

 

 

Figure 3.7 FSM: A Hidden Markov Modeling derived similarity matrix 

(a) Hidden Markov Models (HMM) can objectively and accurately analyze single molecule 

FRET signals with complex behaviors. A complex single molecule trajectory with several 

underlying states is fit with an HMM algorithm that can identify change points within the 

trajectory. (b) A simplified two-state HMM with defined transition probabilities. 

Transition probabilities describe the likelihood of any given state either transiting to 

another state or remaining in the same state. The Transition Probability (TP) matrix 
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summarizes all the pairwise probabilities and can be used to describe the kinetic behavior 

of a single molecule. (c) A FRET similarity matrix (FSM) based on a TP matrix can be 

constructed for individual molecules and used as a clustering tool. The similarity matrix 

shown here is a 7 x 7 matrix (7 idealized states) based on the TP matrix calculated for each 

molecule and a final column (column 8) which is the distribution of data points at each 

state, i.e., a histogram. The FSM of two similar molecules, depicted as heat maps, are 

shown. A vectorized form of the FSM was used for clustering analysis. 
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Figure 3.8 Hierarchical tree constructed from clustering single molecules 

Single-molecule FRET data were collected for each substrate and extract and globally fit 

with a 7-state HMM. An HMM similarity matrix was then constructed for each molecule 

and clustered. Molecules with only 1 state (static) were clustered separately and later 

incorporated as separate clusters. Hierarchical clustering was performed utilizing Matlab 

routines by calculating the pairwise Euclidean distance of every single molecule and 

building an agglomerative hierarchical cluster tree utilizing the unweighted average 

distance to compute distances between clusters. This tree was pruned by using a distance 

criterion that resulted in the formation of 14 well separated clusters. 
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Figure 3.9 Choosing a hierarchical tree pruning threshold  

The hierarchical tree was cut several times varying the node height criterion to yield a 

range of clusters. Intra- and inter-cluster distances were computed by measuring the mean 

Euclidean distance of the trajectories to the cluster centroids formed at the various cuts. 14 

clusters were selected because there was minimal improvement in intra cluster distance 

beyond this point. 
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To perform this cluster analysis with minimal user introduced bias, the linearized form of the 

FSM (i.e., the 7 x 8 matrix converted to a 1 x 56 matrix) of each molecule was plotted in its 

assigned clusters as a heat map of the values at each position in the matrix. These heat maps 

were organized such that each row represents a single molecule, while the columns are the 

different values for each point in the FSM (Figure 3.10). We found that each cluster thus 

projected has a distinct set of values for the FSM but high homogeneity within the clusters. The 

HMM fit for 20 single molecules selected at random for each cluster was concatenated into a 

single plot with vertical bars separating individual molecules. The randomly selected molecules 

within clusters have similar dynamics and illustrate the behaviors that represent each cluster 

(Figure 3.11).  
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Figure 3.10 Vectorized FSM for each cluster 

A total of 19 clusters were derived from the clustering of single molecule splicing data. 14-

dynamic clusters, and 5-static clusters. Heat maps of the vectorized HMM similarity 

matrices for the molecules assigned to each cluster are represented here. These vectorized 

matrices (columns) represent the features that were used for clustering the individual 

molecules (rows) by the hierarchical clustering routine. 
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Figure 3.11 Representative molecules showing dynamic behavior unique to each cluster 

Single molecules were randomly selected from each of the 19 clusters and concatenated into 

a single plot. Vertical bars serve to separate the individual molecules. The randomly 

selected molecules exemplify the typical kinetic behavior of molecules with the assigned 

cluster. As expected, the behaviors within the clusters are homogeneous and distinct from 

those in other clusters. Cluster assignment given in the inset. 
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3.3.2 Pre-mRNA in early splicing cycle shows dynamic variation in splice site proximity 

The BP mutant substrate has an intact 5’SS that allows the U1 snRNP to bind. However, 

it blocks further assembly steps by preventing the binding of the Mud2/BBP complex at the 

branch site
44

.  The FRET histogram of the BP mutant in splicing buffer shows that it can adopt 

high-FRET conformations in the absence of any splicing component. Upon addition of YE 

depleted of ATP, the substrate becomes constrained and mainly adopts a low-FRET distribution 

(Figure 3.6). The addition of ATP does not have a dramatic effect on the FRET distribution with 

the most noticeable change manifesting as a slight increase in the abundance of high-FRET 

states. Using the data obtained from the FSM clustering, we analyzed the abundance of clusters 

(organized by ascending mean FRET value from left to right) to identify the dynamics that lead 

to the differences between conditions.  The most abundant dynamics in the BP buffer are rapid 

inter-conversions within the high FRET states (Figure 3.12). This shifts to dramatically lower 

FRET states populated by 55% of WT pre-mRNA molecules in YE depleted of ATP. The slight 

increase in the high-FRET population with the addition of ATP is due to a redistribution of 

molecules in cluster 2 to cluster 13, which exhibits the same low-FRET state but with a 

reversible excursion to the high FRET state (Figure 3.12). This systematic study allows us to link 

the extensive genetic knowledge available in the field to dynamic changes in the splice site 

proximity. Although the BP mutant pre-mRNA is recognized independent of ATP, genetic 

interactions show that the ATP-dependent DExD/H helicase Sub2p interacts early in 

spliceosome assembly
80

. Accordingly, our results imply that even at an early step, the pre-mRNA 

dynamics are influenced by ATP.  
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Figure 3.12 Conformational dynamics of early splicing stall at commitment complex 

formation 

FRET histograms and hierarchical clusters compared for the early splicing assembly stalls 

at commitment complex 1 and commitment complex 2. Clusters are reorganized based on 

mean FRET value within the cluster so the plot reads from lowest mean FRET (left) to 

highest mean FRET (right). 
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According to the current understanding in the field, commitment complex 2 can assemble 

in the absence of ATP on a pre-mRNA with intact splice sites. Binding of Mud2 and BBP in 

addition to U1 snRNP now allows the pre-mRNA splice sites to sample excursions to mid-FRET 

states. However, U2 snRNA depletion, which stalls the spliceosome at CC2 similar to the 

omission of ATP from WT pre-mRNA, results in a broad sampling of several FRET states not 

restricted to low-FRET states. Since ATP is required to deplete U2 snRNA in these experiments, 

we speculate that this observation may be due to the removal of BBP-Mud2 complex by the 

ATP-dependent action of Sub2. The binding of U4:U5:U6 to the spliceosome results in the 

formation of the B complex. Depletion of U6 snRNA prevents this complex from forming and 

stalls the spliceosome at the A complex with U1 bound to the 5’SS and U2 bound to the BP 

(Figure 3.1). The most abundant dynamics (cluster 11) under these condition shows surprisingly 

low 5’SS-BP proximity, which may serve the purpose to facilitate the extensive remodeling that 

the pre-mRNA and snRNAs undergo at this step (Figure 3.13). Additionally, the 5’hyperstable 

pre-mRNA, which stabilized the interaction between the U1 snRNA and the 5’splice site and 

results in the inability of the spliceosome to exchange U1 snRNA for U6 snRNA, also leads to a 

stall at the A complex. We find that the 5’Hyp substrate in buffer has a FRET distribution that is 

lower in FRET than the BP mutant, suggesting that the 5’Hyp mutation leads to a change in the 

conformational space sampled by the naked RNA (data not shown). The addition of extract 

depleted of ATP diminishes the bulk of the high-FRET dynamics, leading to a lower FRET 

distribution (Figure 3.13). The addition of ATP has a minimal effect on the FRET distribution, 

which could be a result of the inefficient assembly of this substrate. We find that irrespective of 

ATP, the 5’Hyp pre-mRNA is dominated by the relatively slow 0.25-0.50 FRET transitions of 
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cluster 8. The inability of this substrate to assemble efficiently spliceosomes even in the presence 

of ATP results in early assembly complex behaviors. 
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Figure 3.13 Conformational dynamics of early splicing stall at A complex formation 

FRET histograms and hierarchical clusters compared for the early splicing assembly 

stalled at A complex formation. Clusters are reorganized based on their mean FRET value 

within the cluster so the plot reads from lowest mean FRET (left) to highest mean FRET 

(right). 
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3.3.3 Pre-mRNA predominantly explores close splice site proximity during late splicing cycle 

With the spliceosome assembled on the pre-mRNA, several splicing regulators modulate 

the structure and conformation of the splice sites to facilitate the occurrence of the first chemical 

step of splicing. The exact timing and mechanism of how the splice sites are brought sufficiently 

close for chemistry is largely unknown. We performed smFRET experiments on two late splicing 

stalls at the B
act

 complex (via the Prp2_1 stall) and the C complex (via the 3’SS mutant pre-

mRNA stall). The Prp2_1 stall allows for the spliceosome to progress until the B
act

 complex 

which has the U2:U5:U6 tri-snRNP assembled on it. The DExD/H box helicase Prp2 is then 

required for the spliceosome to undergo extensive remodeling to facilitate the first step of 

chemistry
35

. The most abundant cluster under this condition is cluster 5 which samples low-, 

mid-, and high-FRET states. Although we find that high-FRET states are sampled by the pre-

mRNA at various steps of splicing, albeit at lower frequency, it is at this stage that we find this 

behavior to predominate. Results presented in Chapter III of this thesis show that the splice sites 

are brought into close proximity by the action of Prp2 protein, whereas prior to that the pre-

mRNA shows a stable ~0.4 FRET state in the B
act

 complex. The sampling of high-FRET states 

under this condition could represent the pre-mRNA being extensively remodeled in the B 

complex to achieve the final tri-snRNP composition found in the B
act

 complex conformation. We 

find that relieving this stall by the addition of Prp2 protein allows for the spliceosome to go 

through both steps of splicing.  
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The 3’SS substrate blocks exon ligation through a mutation in the AG acceptor site near 

the 3’exon. When examined under single molecule conditions, the 3’SS mutant undergoes a 

similar shift towards lower FRET behaviors from higher FRET after the addition of ATP 

depleted extract (Figure 3.14). This seems to be a general phenomenon as all three substrate 

mutants adopt lower FRET behaviors during early assembly steps. In the case of the 3’SS 

mutant, the increase in low-FRET population originates from molecules now occupying cluster 8 

as opposed to cluster 6, the predominant cluster in buffer (data not shown). Cluster 8 has 

dynamics similar to the cluster 6 found in buffer except that the transition to a higher FRET state 

is disallowed, suggesting the early assembly events are preventing the substrate from reaching 

the high FRET state, therefore leading to the lower FRET distribution. The addition of ATP 

leads to a slight shift towards high FRET that can be attributed to an increase in cluster 1 

occupancy, which exhibits rapid transitions in the high-FRET regime and a decrease in the 

abundance of molecules in clusters with low-FRET state consensus sequences. 

 To determine how similar or different the predominant behavior of the pre-mRNA that 

were relieved of a splicing stall to achieve splicing were when compared to an unblocked pre-

mRNA splicing. WT pre-mRNA was found to undergo a shift towards lower FRET states from 

the high FRET states observed in buffer upon the addition of (-)ATP extract (Figure 3.12). Upon 

addition of extract with ATP, we find that the predominant behavior shifts to high-FRET 

conformations with infrequent sampling of lower FRET states indicating proximity between the 

5’SS and BP for the first step of splicing. A comparison of the most abundant cluster for the 

WT(+)ATP data with the reconstitutions that remove the stalls introduced at CC2, A and B
act

 

complex via U2, U6 and Prp2 mutations shows that the predominant behaviors sampled under 
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these conditions are similar to those of the WT pre-mRNA (+)ATP as they populate cluster 7 

(Figure 3.15).  

 

Figure 3.14 Conformational dynamics of late splicing stall at B
act

 and C complex formation 

FRET histograms and hierarchical clusters compared for the early splicing assembly stalls 

at A complex formation. Clusters are reorganized based on mean FRET value within the 

cluster so the plot reads from lowest mean FRET (left) to highest mean FRET (right). 
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Figure 3.15 Conformational dynamics of pre-mRNA that can proceed through both steps 

of splicing 

FRET histograms and hierarchical clusters compared for the early splicing assembly stalls 

at A complex formation. Clusters are reorganized based on mean FRET value within the 

cluster so the plot reads from lowest mean FRET (left) to highest mean FRET (right). 
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3.3.4 Clustering analysis groups biologically similar data 

Clustering analysis allows us to objectively assess data sets by comparing the abundance 

of each cluster for each condition. We performed a similar linkage analysis on the different data 

sets collected. The abundance profile (fraction of molecules in a given cluster) for each condition 

was used as a similarity matrix for the analysis. The result of this analysis is represented by a 

hierarchical cluster tree whose leaf order is based on the similarity among conditions (Figure 

3.16). An immediate observation from this plot is that the clustering routine was able to group 

conditions that are expected to be similar to each other. In addition, our results show that both 

the BP and 3’SS mutant pre-mRNA remarkably segregate into distinct clusters of their own 

separate from the other experimental conditions. This finding alludes to a possibility that the BP 

and the 3’SS mutations are recognized very early on in the splicing cycle and that they follow a 

kinetically and conformationally distinct path from the WT pre-mRNA. WT, BP and 5’Hyp pre-

mRNA substrates in splicing buffer similarly fall into a separate branch, indicating a similarity in 

the secondary structures of these substrates, a finding that was also observed for the doubly exon 

labeled Ubc4 initially characterized by smFRET
37

. On the contrary, the 3’SS pre-mRNA, which 

can go through the first step of splicing, might need to be strictly regulated to prevent the 

formation of an aberrant mRNA. The pre-mRNA molecules in splicing buffer are in general less 

restricted than the BP mutant pre-mRNA in cell extract and often exhibit FRET dynamics that 

mimic dynamics during spliceosome assembly. Additionally, we find that the stalls employed at 

CC2, A and B
act

 complexes via U2 snRNA, U6 snRNA and Prp2 depletions respectively fall 
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close together in the tree away from both early ATP independent assembly events and late 

splicing events. Finally, the wildtype pre-mRNA in extract with ATP and conditions where 

extract depletions were relieved via reconstitution allowing them to undergo splicing again, are 

grouped most closely to each other (Fig 3.15). These results highlight the sensitivity of single 

molecule measurements and the clustering analysis to differentiate inherent structural differences 

in the RNA without any bias created by user input.  
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Figure 3.16 Hierarchical tree grouping the different experimental conditions  

The abundance of each cluster for each condition was used as a metric for hierarchical 

clustering. Conditions are ordered based on similarity.  
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3.3.5 The splice sites sample unique conformational paths towards splicing 

The pre-mRNA dynamics that lead to chemistry must be regulated in a strict manner to 

prevent mis-splicing and achieve precision. It has been observed that close proximity of the 

splice sites, even in the absence of proteins can lead to chemistry. A WT pre-mRNA that the 

spliceosome recognizes by binding to conserved sequences must adopt a set of defined 

conformations as it progresses along the pathway. Recently, it has been proposed that the 

spliceosome exists in two distinct conformations before the first and second steps of chemistry
81

. 

In Chapter III, we describe how the pre-mRNA conformations are kinetically modulated to favor 

the first step of splicing. In order to identify the predominant conformational behavior of the pre-

mRNA at each slicing step, the consensus behavior within a cluster was determined by 

calculating the mean behavior of all the molecules within a cluster and then determining the 

single molecule with the shortest distance to the mean. These “consensus” molecules represent 

the average behavior of each of the 19 clusters (Figure 3.17). Comparison of the consensus 

behavior of the different splicing stalls as the pre-mRNA progresses along the splicing cycle is 

shown in Figure 3.18 a. We find that during early stages of spliceosome assembly, the intrinsic 

structure of the pre-mRNA is disrupted, leading to the 5’SS and BP predominantly in an 

extended conformation. However, in the presence of ATP, we find that pre-mRNA in CC2 

shows some mid-FRET excursions. Additionally, we find that upon binding of U2snRNP, the 

pre-mRNA splice sites are removed farther from each other possibly to facilitate the extensive 

snRNA:pre-mRNA rearrangements to accommodate tri-snRNP binding. The 5’SS and BP are 

then brought closer together through the addition of ATP once the spliceosome has been 

activated by the loss of U1 and U4 snRNPs. Our results indicate that during the later stages of 
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assembly, the splice sites are predominantly limited to proximal FRET conformations that 

facilitate first step of catalysis. Relieving the splicing stalls using reconstitutions show behaviors 

similar to the pre-mRNA in extract with ATP (Figure 3.18 b) indicating that even if the splicing 

cycle is stalled at certain steps, relieving the stalls allow the pre-mRNA to go through a 

conformational pathway similar to what is adopted by a wildtype pre-mRNA undergoing 

splicing.   

 

 

 

 

 

 

 

 

 

 

 



 

93 

 

 

  

 

Figure 3.17 Consensus behavior of the identified hierarchical clusters  

The pair wise distance from each molecule to the centroid of its assigned cluster was 

determined and the molecule with the smallest distance (highest similarity) to the centroid 

was plotted. These molecules represent the average or ‘consensus’ behavior of the 

molecules within the given cluster (inset). 
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Figure 3.18 Consensus behaviors aligned with splicing cycle 

(a) The consensus behaviors of the most abundant cluster for each block is paired with the 

relevant complex enriched in the splicing cycle. (b) The predominant consensus behavior in 

the conditions where the stall was relieved using a reconstitution was similar to a wildtype 

pre-mRNA that can go through the entire splicing process (WT (+) ATP).   
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3.4 Discussion 

In this study, we have collected single molecule FRET data from Ubc4 pre-mRNAs 

labeled at the 5’SS and BP that can reach various steps of splicing assembly. To achieve 

enrichment up to specific points along the splicing cycle, we introduced substrate mutations and 

depleted specific splicing factors. Stalling the progress of splicing at these specific steps allowed 

us to delineate the dynamic proximity of 5’SS and BP during the early and late steps of splicing. 

We have employed a clustering routine to tease out the multi-state dynamic behavior of the 

single molecules observed under these experimental conditions. By utilizing the transition 

probability matrix that results from Hidden Markov Modeling, we created a FRET Similarity 

Matrix (FSM) that can be utilized in hierarchical clustering algorithms to group molecules of 

similar state and kinetic behavior. This technique has enabled identification of consensus 

behaviors of molecules at various stages of splicing. We find that the WT substrate as well as the 

mutant BP, 3’SS, 5’Hyp substrates all undergo a shift to low FRET during the ATP independent 

assembly events. The BP mutant, which is stalled during the earliest stages of assembly, can only 

bind the U1 snRNP in a stable fashion and adopts the lowest FRET conformation. The WT 

substrate can undergo all the necessary assembly steps to achieve both steps of catalysis. We 

controlled the assembly of the WT substrate by depleting the extract of ATP or ablating the 

activity of the U2 snRNP, U6 snRNP, and Prp2 protein. Although the U2 snRNP ablation (∆U2) 

is expected to enrich the same complexes as the (-) ATP condition, we detected differences in the 

most abundant conformations present during the two blocks. The low FRET dynamics present in 
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WT(-)ATP mirror those of the BP mutant, while the most abundant dynamics in the ∆U2 can 

now sample mid-FRET states from a low-FRET state, suggesting that the presence of ATP but 

absence of U2 snRNP has effects on the assembly of components on the pre-mRNA. Genetic and 

biochemical evidence previously established a role for the ATP dependent helicases Sub2p and 

Prp5 near the site of U2 snRNP assembly
27,60

. We attribute the differences seen here to the 

ATPase action of Sub2 located near the branchsite. However, the absence of U2snRNP prevents 

the spliceosome assembly to progress beyond this stage. The ∆U6 block allows for the assembly 

of the U2 snRNP near the branchsite enriching the A complex. Although cross-linking studies 

have shown that U2 snRNP promotes cross-intron interaction between the BP and 5’SS through 

U1-U2 snRNP interactions
28

, the results presented here show that at the A complex, Ubc4 pre-

mRNA adopts a predominantly low FRET behavior with 5’SS and BP kept apart from each 

other. This complex, however, does explore transient high-FRET excursions, possibly 

contributing to the results observed in the cross-linking studies. The stall at the B
act

 complex 

mediated by the prp2-1 mutation allows the substrate to assemble up to the point just prior to 

catalytic activation. At this stage, the most common pre-mRNA dynamics are molecules that 

sample low-, mid-, and high-FRET states. Relieving the splicing stalls with the reconstitution of 

splicing components allows the splicing cycle to proceed similar to the wildtype pre-mRNA in 

extract with ATP. The most common dynamics sampled are restricted primarily to mid- and 

high-FRET transitions with kinetics that favor the high FRET state. This suggests that the 

spliceosome components facilitate the stabilization of conformations where the 5’SS and BP are 

in close proximity during the latter stages of splicing cycle to promote catalysis. These results 

collectively indicate that the splice sites in the pre-mRNA approach proximal high-FRET states 
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in a non-monotonic or dynamic manner with frequent excursions sampling high- and low-FRET 

states. A progressive sequence of dynamics across the spliceosome assembly landscape has 

provided us with the ability to determine the effects the spliceosomal components on the 

juxtaposition of the 5’SS and branchsite as shown in Figure 3.18.  

The novel combination of hierarchical clustering approach to understand complex single 

molecule data presented here has allowed us to group large data sets without any user input bias 

into biologically meaningful results. The analysis routine is generalizable to any set of smFRET 

data and we believe that it will become a commonly used tool as the behavior of increasingly 

complex systems is investigated by smFRET. 
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CHAPTER 4 : An early ATP independent role for Prp28 in commitment complex 

formation
3
  

 

 

4.1 Introduction 

Pre-mRNA is processed via the removal of intervening introns and joining of the exons in 

a two-step transesterification process called splicing. This process is catalyzed by a large and 

dynamic RNP complex termed the spliceosome that in Saccharomyces cerevisiae is composed of 

five small nuclear RNAs (snRNAs) and about 80 proteins. Exquisite precision in this process is 

imperative and derives from controlled rearrangements catalyzed by a group of RNA-dependent 

proteins called the DExD/H-box helicases. In Saccharomyces cerevisiae, eight DExD/H-box 

helicases facilitate extensive rearrangements in the spliceosome using energy from ATP 

hydrolysis, thereby ensuring splicing accuracy. By contrast, the actual chemical steps of pre-

mRNA splicing are isoenergetic and do not require ATP hydrolysis.   

 The stepwise assembly of the spliceosome components on pre-mRNA starts with the 

binding of the U1 snRNP at the 5’ splice site (5’SS) to form commitment complex 1 (CC1, 

Figure 4.1). In the next step, two proteins, BBP and Mud2 recognize and bind the branch site and 

3’ end of the intron forming commitment complex 2 (CC2). These steps do not require ATP 

                                                
3Ramya Krishnan performed the single molecule experiments and analysis. Argenta M. Price at University of 

California, San Francisco, carried out the biochemical experiments characterizing the commitment complexes. 

Matthew Kahlscheuer expressed and purified Prp28 protein and helped with the titration experiments. 
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hydrolysis. The first ATP-dependent rearrangement occurs with Sub2, followed by Prp5, and 

U2snRNP joining to form the A complex. This event is followed by the joining of the tri-snRNP 

to form the B complex. The action of the DExD/H-box protein Prp28 then facilitates the 

exchange of U1 for U6 from the 5’SS in an ATP-dependent manner. This is followed by Prp8 

and Brr2 mediated RNA:RNA and RNA:protein rearrangements to form the catalytic core of the 

spliceosome. The actual steps of splicing are promoted by the helicases Prp2, Prp16 and Prp22, 

and finally the spliceosome is disassembled by Prp43
82

.  

 The ATP-dependent role for Prp28 in displacing U1 snRNA from the branch site has 

been extensively studied
83-86

. Both ATP-dependent and –independent roles have been proposed 

for most of the spliceosome DExD/H box helicases. Using a cold-sensitive Prp28 strain, prp28-1, 

it was found that Prp28 not only plays a role in spliceosome activation but also one of the earliest 

steps of assembly, formation of the ATP-independent Commitment Complex 2 (CC2) 

(unpublished results, A. Price et. al., 2013). In order to precisely characterize the role played by 

Prp28 in early pre-spliceosome formation, we assembled early spliceosome in the absence of 

ATP, in Prp28 depleted extracts on Ubc4 pre-mRNA labeled with fluorophores on the branch 

site and 5’SS. Our biochemical and single molecule FRET results suggest that Prp28 plays a 

novel role in promoting/stabilizing the ATP-independent formation of CC2.  
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4.2 Materials and Methods 

4.2.1 Splicing extract preparation  

The Prp28-depletion (ΔPrp28) strain was created by deleting the genomic copy of Prp28 

and complementing with a plasmid containing Prp28 under control of a galactose inducible 

promoter. The galactose-induced copy of Prp28 had a 3xHA tag inserted 3aa into its N-terminus, 

which partially destabilized the protein (Thesis of Pratima Raghunathan, UCSF, 1997). The yeast 

strain was grown in YEP complemented with 2% (w/v) galactose and 0.04% (w/v) sucrose, until 

reaching an OD600 of 0.5. After filtering, the cells are washed with YEP, and resuspended in 

either YEP with 2% (w/v) galactose and 0.04% (w/v) sucrose (for Wt) or in YEP with 2% (w/v) 

glucose (for ΔPrp28).  The cells were grown for 4.5 h, until the yeast were at OD ~1.8 and 

extract was prepared as described (Umen and Guthrie 1995). Extracts were checked by Western 

blot with anti-HA antibody to confirm that Prp28 was no longer detectable. 

4.2.2 Native gel analysis  

Commitment complex gels were performed essentially as described
87

, except that 

reactions were incubated at 16 °C or 23°C for 20 min in the absence of ATP. The reaction was 

run on a 3% (w/v) polyacrylamide, 0.5% (w/v) agarose, 5% (v/v) glycerol gel electrophoresis in 

0.5x TBE, run at ~5 V/cm for ~22 h in the cold. 

4.2.3 Ubc4 pre-mRNA  

Wildtype (WT) and branch point (BP) mutant Ubc4 pre-mRNA sequences were used and 

labeled with fluorophores near the branch site and 5’SS as described in Chapters 2 and 3.  
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4.2.4 Expression of recombinant Prp28 (rPrp28) protein 

A 25 mL overnight culture of Rosetta II cells containing Prp28 in pRSetA vector plasmid 

was used to inoculate 3-4 L of LB broth. Bacterial cells were grown to an OD 600 of 0.5-0.7. The 

cells were then cooled to 20 °C, induced with 125 μM IPTG and incubated for 12-18 h at 18-22 

°C. The cells were then harvested and lysed in lysis buffer (50 mM Tris-HCl, pH 8.0, 300 mM 

NaCl, 10% (w/v) imidazole, 10% (v/v) glycerol). Any insoluble material was removed via 

centrifugation and the supernatant applied to Ni
2+

-NTA resin equilibrated in lysis buffer. The 

resin was then washed with lysis buffer and eluted in elution buffer (50 mM Tris-HCl, pH 8.0, 

300 mM NaCl, 150 mM (w/v) imidazole, 10% (v/v) glycerol).  The eluted rPrp28 protein was 

dialyzed against dialysis buffer (50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 1 mM EDTA, 10% 

(v/v) glycerol), snap cooled and stored at -80 °C.  

4.2.5 Single molecule FRET 

For smFRET experiments, the 5’ biotinylated pre-mRNA was attached to a streptavidin 

coated quartz slide as described in Chapter 3. Yeast ΔPrp28 extract was then depleted of any 

remaining ATP by adding Glucose at 1 mM concentration along with Oxygen Scavenging 

System as described in Chapter 3 and added to either immobilized WT or BP mutant pre-mRNA 

on a slide. The slide was then imaged as the (-ATP, Prp28Δ) condition. For Prp28 reconstitution, 

expressed recombinant Prp28 protein (rPrp28) was added to the specified concentration to 

Prp28-depleted extract and incubated for ~10 min. This reconstituted extract was then flowed 

onto a slide with Ubc4 pre-mRNA bound to flow out Prp28 depleted extract that was present. 

The obtained single molecule trajectories were prefiltered by visually inspecting for the presence 
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of any substantial anticorrelation, presence of two fluorophores, and single-step photobleaching. 

We screened transition events found within the prefiltered FRET index trajectories for localized 

anticorrelation in the donor and acceptor traces. The postfiltering system required the use of the 

HMM tool vbFRET. Post-synchronized histograms (PSHs) were constructed by synchronizing 

individual FRET events. For the titration experiments, rPrp28 at various concentrations was 

added to reconstitute the extract. Starting from the lowest concentration, this extract was flowed 

onto the slide surface, incubated for 2-5 min and imaged.  

4.3 Results 

4.3.1 Absence of Prp28 protein inhibits ATP-independent CC2 formation  

In order to investigate the role played by Prp28 in early splicing commitment complex 

formation, splicing reactions with radiolabeled RP51A pre-mRNA were assembled with either 

Wildtype (WT), Prp28-depleted (ΔPrp28), csPrp28 (prp28-1 at 16 °C) or U2snRNA-depleted 

(ΔU2) extract, in the presence and absence of ATP (+/-ATP). ). The resulting complexes were 

resolved on native gels (Figure 4.1, Price et al. 2013 in preparation). As expected, WT splicing 

reactions depleted of ATP are stalled right after CC2 formation and hence accumulate CC2, 

which migrates slower than CC1. Addition of ATP converts most of the CC2 into co-migrating 

pre-spliceosome/spliceosome (P/SP). In contrast, both ΔPrp28 and prp28-1 splicing reactions in 

the absence of ATP accumulate the majority of pre-mRNA in CC1. Upon addition of ATP to the 

prp28-1 splicing reaction, only about half as much pre-mRNA was converted to P/SP than was 

with WT extract, and most of the pre-mRNA that remained in commitment complexes remained 
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in CC1. The prp28-1 does not completely block splicing at 16 ˚C, while in the ΔPrp28 strain the 

expression of Prp28 can be turned off by growth in media with glucose as the sugar source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 

 

 

  

 

 

Figure 4.1 Depletion of Prp28 results in CC1 accumulation  

(a) Schematic of a section of the splicing cycle depicting spliceosome assembly on pre-

mRNA and the ATP-dependent role played by Prp28 in exchanging U1 for U6. (b) Native 

polyacrylamide gel showing complex formation using either WT,  ΔPrp28, cold sensitive 

prp28-1 or U2 depleted (ΔU2) extract in the absence (-) or presence (+) of ATP on RP51 

pre-mRNA (Price et al. 2013, in preperation). In the absence of Prp28 and ATP, the 

conversion to CC2 is inefficient.  
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After 3.5-5 h of growth in the presence of glucose, splicing extract made from these cells no 

longer contained HA-Prp28 detectable by Western blot for HA and failed to splice at 16 ˚C. The 

accumulation of pre-mRNA in CC1 in the absence of ATP is more pronounced in the ΔPrp28 

extract. By contrast, extracts that were U2snRNA depleted, which should prevent complex A 

formation and result in the accumulation of CC2 complex, exhibits the expected behavior both in 

the presence and absence of ATP. It seems likely that the absence of Prp28 affects the 

association of BBP and Mud2 with CC1. Our results indicate that Prp28 plays an early, ATP-

independent role for Prp28 in the conversion of CC1 to CC2 and thereby commits the pre-

mRNA to splicing. To confirm that the Prp28-mediated effect seen is not limited to the RP51 

substrate, we performed a similar set of experiments using the Ubc4 substrate. In this case, 

depletion of Prp28 combined with the absence of ATP resulted in an accumulation of CC1 

complex as with RP51 substrate (Figure 4.2). To confirm that this was due to the depletion of 

Prp28, we added back rPRp28 to the extract. This however, only resulted in a marginal increase 

of CC2 band (adding back rPrp28 in both RP51 and Ubc4 has been unsuccessful in our hands to 

date). A wildtype control depleted of ATP, as expected resulted in the accumulation of CC2 

band. However, when Prp28 was depleted and ATP present in the extract, the resulting effect 

caused an accumulation of CC1 instead of the P/Sp band, consistent with our hypothesis. If 

Prp28 only has a late, ATP-dependent role in splicing, depletion of Prp28 should have resulted in 

the pre-spliceosome accumulation as with a wildtype control extract in the presence of ATP 

(Figure 4.2). Although this result adds strength to the hypothesis, addition of rPrp28 needs to be 

optimized.  
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4.3.2 Prp28 allows the 5’SS- BP to explore conformations of close proximity 

To investigate the role of Prp28 in CC2 formation and the effect on pre-mRNA 

conformation, we chose Ubc4, our well-studied pre-mRNA with fluorophores near the 5’SS and 

BP (as described in Chapters 2 and 3). The WT pre-mRNA was biotinylated at the 5’end and 

immobilized on a streptavidin coated quartz slide. Splicing reactions were assembled in the 

ΔPrp28 extract in the absence of ATP (-ATP) and flowed onto the slide (Figure 4.3). After initial 

imaging, the ΔPrp28 extract was reconstituted with recombinantly expressed rPrp28 protein at 80 

nM concentration and flowed onto the slide.  
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Figure 4.2 Inhibition of CC2 formation in the absence of Prp28 in Ubc4 pre-mRNA 

Yeast extract assembled on radiolabeled Ubc4 pre-mRNA in either Prp28-depleted extract 

(ΔPrp28) or wildtype (WT) extract analyzed on a 3% acrylamide, 0.5% agarose, 5% 

glycerol gel.  
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Figure 4.3 SmFRET set-up and representative traces 

(a) Schematic of the smFRET experiment showing Ubc4 pre-mRNA immobilized via the 5’ 

biotin onto a streptavidin coated quartz slide. ΔPrp28 extract in the absence of ATP (-ATP) 

or the same extract reconstituted with rPrp28 is flowed onto the slide and imaged. (b) 

Representative single molecule traces from ΔPrp28 (-ATP) and ΔPrp28 (-ATP) 

reconstituted with 80 nM recombinantly expressed Prp28 protein. Red trace represents 

Cy5 and blue trace represents Cy3. 
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Representative single molecule traces from these conditions show anti-correlated behavior under 

both conditions (Figure 4.3). FRET  probability histograms plotted by sampling the first 100 

frames of each single molecule trajectory show that under Prp28-depleted condition, the pre-

mRNA exhibits a bimodal distribution with centers at ~0.21 and ~0.7 (Figure 4.4). Addition of 

rPrp28 induces the pre-mRNA molecules to explore higher FRET states (Figure 4.4). Post-

synchronized histograms (PSHs) also show that high FRET transitions are favored in the 

presence of rPrp28 (Figure 4.5). 

 We next assembled early spliceosomes in the absence of ATP in the branchpoint A-to-C 

mutant (BP) pre-mRNA substrate and imaged it under single molecule conditions. Substrates 

with mutant or missing branchpoint regions are known to only form the CC1 complex
88

, since 

the association of the branchpoint binding protein (BBP) and Mud2 are dependent on the 

presence of an intact BP sequence
89,90

. If the high FRET transitions observed in the WT pre-

mRNA to be induced by rPrp28 were representative of 5’SS-BP proximity in CC2, then these 

transitions should be absent from the BP mutant substrate since the lack of a correct BP sequence 

prevents Mud2-BBP complex from binding it. FRET probability histograms show that, in the 

absence of ATP, ΔPrp28 extract assembled on BP mutant pre-mRNA shows a bimodal 

distribution that does not change significantly with the addition of rPrp28 protein (Figure 4.5). 

This result supports the conclusion that Prp28 is indeed responsible for driving the proximity 

between 5’SS and BP in WT pre-mRNA. Pre-mRNA in CC1 may be in equilibrium between 

high- and low-FRET states, and rPrp28 drives this equilibrium towards CC2 signature wherein 

the 5’SS and BP are more stable in the proximal high-FRET state. 
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Figure 4.4 Addition of rPrp28 protein shifts the 5’SS-BP of Ubc4 pre-mRNA to explore 

conformations of close proximity   

FRET histograms generated by binning the first 10 s of the raw single molecule FRET 

trajectories from doubly labeled Ubc4 pre-mRNA imaged under (a) ΔPrp8, (-) ATP extract 

and (b) ΔPrp8, (-) ATP extract incubated with 80 nM rPrp28 protein. Transition Density 

Plots (TDPs) show that the predominant transition under condition a is restricted to low 

FRET ranges while condition b shows more higher FRET transitions. Transition 

Occupancy Density Plots (TODPs) depicting all the transitions encountered by the 

molecules under both conditions.  
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Figure 4.5 Post-synchronized histogram showing the increase in the high FRET transitions 

upon rPrp28 addition 

Post-synchronized histograms of pre-mRNA dynamics in the absence of ATP in either (a) 

ΔPrp28 extract or (b) ΔPrp28 extract supplemented with recombinant Prp28. 
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Figure 4.6 BP mutant 5’SS-BP dynamics are not affected by Prp28  

FRET histograms generated by binning the first 10 s of the raw single molecule FRET 

trajectories from doubly labeled BP mutant Ubc4 pre-mRNA imaged under conditions of 

(a) ΔPrp8, (-) ATP extract and (b) ΔPrp8, (-) ATP extract incubated with 80 nM rPrp28 

protein.  
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4.3.3 Titration of various concentrations of Prp28 shifts the equilibrium 

To assess if the addition of rPrp28 indeed shifts the equilibrium between the high- and 

low-FRET states observed in the pre-mRNA traces, we added increasing concentrations of 

recombinant rPrp28 to Ubc4 pre-mRNA incubated with ΔPrp28 extract in the absence of ATP. 

In the absence of rPrp28, the probability histogram of 5’SS-BP dynamics shows bimodal 

sampling of both high- and low-FRET states. Addition of 20, 40 and 80 nM rPrp28 biases this 

sampling increasingly towards the high-FRET state (Figure 4.7). The 40 nM and 80 nM rPrp28 

concentrations do not significantly differ in the equilibrium between these states. It appears that 

very low concentrations of rPrp28 are sufficient to drive the equilibrium towards high-FRET 

states under these conditions.  
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Figure 4.7 Pre-mRNA dynamics analyzed with varying concentrations of Prp28 

FRET probability histograms showing 5’SS-BP FRET distributions at varying 

concentrations of rPrp28. 

 

 



 

115 

 

 

  

4.4 Discussion 

DExD/H box helicases have been studied quite extensively in recent years. It has become 

clear that we still have a long way to go before fully understanding them. Questions ranging 

from what is their mechanism of action to what is their substrate remain unanswered. The 

spliceosomal DEXD/H-box proteins have been shown to function at different points in the 

splicing cycle in ATP-dependent and –independent roles. These roles are well known for 

Prp5
28,91,92

, Prp2
31,35

 Prp22 and Prp16
32

. In the work presented here, we have shown that Prp28 

plays an early, ATP-independent role in spliceosome assembly in addition to its well-known 

ATP-dependent role in substituting U1 for U6 snRNP
85,93

. We show that Prp28 promotes the 

formation of CC2 complex. The 5’SS and BP of pre-mRNA assembled in CC1 toggle between 

low-FRET (distal) and high-FRET (proximal) states. Binding of the Mud2-BBP complex and 

conversion to CC2 pushes the conformation to closer proximity (high-FRET state). We show that 

rPrp28 induces this change possibly by stabilizing BBP and Mud2 binding on the branchsite of 

the pre-mRNA during CC2 formation, since a BP mutant pre-mRNA does not show a Prp28-

dependent high-FRET state. We believe that this principle of toggling might be a common theme 

that the spliceosome exploits to achieve precision
94

 (Chapter 2). 

Another approach that can be used to tease out the hypothesis is to use extract from a U1-TAP 

yeast strain. Using a pre-mRNA assembled in this extract in the absence of ATP, we can affinity 

purify any complex that is bound by U1snRNP in the absence of ATP, the CC1 and CC2 

complex. Using a similar set up, in the presence of the BP mutant pre-mRNA, we can purify the 

CC1 complex. After purification, one half of this can be run on a native gel after TEV protease 

mediated cleavage of the complex from the IgG-biotin tag and the other half on the single 
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molecule microscope for side by side comparison of signatures of CC1 and CC2 in Ubc4 

substrate. Once definitive signatures of CC1 and CC2 are obtained, a variety of routes can be 

taken to confirm if CC2 formation is enhanced by Prp28.  We could deplete the pulled down 

complex in the absence of ATP of any Prp28 using a specific antibody and then analyze the 

complexes using smFRET or make the ΔPrp28 strain in the U1-TAP background.  

The results presented in Chapter 2 hint towards the possibility that the 5’SS and BP in Ubc4 pre-

mRNA only come into close proximity after remodeling by Prp2. The experiments presented 

there with Ubc4 substrate in wildtype extract (Snu66-TAP background) under conditions of ATP 

depletion and U2snRNA depletion should essentially be signatures of CC2 complex. However, 

we find that under these conditions, 5’SS and BP of Ubc4 are still farther apart from each other. 

If according to the results presented here, Prp28 drives the spliceosome to form and possibly 

stabilize CC2 complex, this should result in low FRET states population. However, we find this 

not to be the case. There could be several reasons for this; 1) the splicing extracts used under 

these two experimental conditions might have slightly altered spliceosome to pre-mRNA 

stoichiometry. To resolve this, a wildtype extract with the same background as the ΔPrp28 strain 

needs to be tested in the absence of ATP. 2) Another possibility is that these experiments were 

carried out at 80 nM Prp28. If Prp28 stabilizes CC2 formation in a concentration dependent 

manner, the conditions used in these experiments could be overly saturating. If this is the case, 

Prp28 reconstitution experiments should be done at a lower concentration of Prp28.  

Additionally, our preliminary results from using a Prp28 mutant with a single cysteine labeled 

with a fluorophore shows that even in the absence of ATP, Prp28 binds the 5’SS of the pre-

mRNA transiently. Further experiments to characterize if the binding and dissociation rates of 
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labeled Prp28 varies in the presence and absence of ATP are required to kinetically assess the 

mechanism of Prp28-mediated early complex formation.   
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CHAPTER 5 : Summary and Outlook 

 

 

5.1 Pre-mRNA splice site dynamics using smFRET and SiMPull-FRET 

Structural information about the spliceosome has largely been derived from electron 

microscopy images of stable complexes
95

. Recently crystallization of spliceosome components 

like Prp8, known to be at the heart of the spliceosome are providing clues into how this 

enigmatic machine functions
30,81,96

. However, the pre-mRNA so far is largely excluded from 

these studies. Although some efforts have been made towards mapping the position of the splice 

sites in these complexes
97

, these at their best, capture only static images of the system. The 

dynamics of any biological system hold the key to how it actually functions. The results 

presented herein on pre-mRNA dynamics clearly reveal that splice sites transiently and 

reversibly sample close splice site proximity many times throughout the splicing cycle (Chapters 

2, 3 and 4). Some of the early biochemical experiments meant to probe splice site proximity 

pointed towards a possibility where the splice sites were brought close together very early in the 

splicing cycle
98,99

. Our results show that the splice sites adopt close proximity only after the 

action of Prp2 (Chapter 2). Careful analysis of FRET dynamics provides vital insights into the 

coordinated interplay between the snRNPs, pre-mRNA and DExD/H box helicases to achieve 

efficient splicing. 



 

119 

 

 

  

 In this thesis, we have described the use of two different techniques to understand pre-

mRNA dynamics - one, a direct attachment of 5’ biotinylated pre-mRNA on a streptavidin 

coated quartz slide and the other, more recently developed, SiMPull-FRET, where the 

immunopurification of a complex is followed by an antibody mediated immobilization on a 

quartz slide. Direct immobilization of pre-mRNA has its advantages in that it is simple and 

allows the user to change the experimental conditions simply by flowing in and out different 

variations of extracts and mutants. While it does not allow for the same flexibility in varying the 

conditions, SiMPull-FRET on the other hand offers a cleaner system to address focused 

questions to associate specific FRET changes with single components. To the best of our 

knowledge, this is the first time smFRET dynamics has been studied in the spliceosome using a 

purified system. Both techniques have provided the field with significant advancement as tools 

for investigating mechanistic details of various stages of splicing and are fully extendable to 

other biomolecular systems.  

5.2 Focusing on the first and second step splicing complexes 

In order to gain insights into the structure of the spliceosome and the mechanism by which 

splicing occurs, significant efforts in recent years have been directed at the catalytic steps 

themselves
31,32,35,43,59,100,101

. It is known that conformational change in the spliceosome precedes 

both catalytic steps of splicing. In Chapter 2, we have focused on the pre-mRNA dynamics at the first 

step of splicing by assigning specific roles to the proteins known to be involved in this. Specifically, 

we have shown that Prp2 acts to remodel the pre-mRNA bringing about a large conformational 

change positioning the 5’SS and BP in close proximity. This opens up the obvious question of 
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what the target of Prp2 could be. One speculation is that Prp2 remodels the spliceosome by 

weakening the protein interactions near the BP. One of the critical snRNA-pre-mRNA interactions 

in the spliceosome involves a short duplex between the U2 snRNA and the BP region where the 5′ 

end of the U2 snRNA contains a sequence complementary to the BP, with the exception of a bulged 

branchpoint adenosine44,102. It has been proposed that in order to avoid a premature attack, the 

adenosine residue is thought to be physically sequestered by the SF3b subcomplex, one of the two 

multimeric protein complexes required for the addition of U2 snRNP during pre-spliceosome 

formation31. Structural reorganization of the spliceosome by Prp2 possibly displaces SF3b protein 

allowing for the BP to become accessible for the first step chemistry to occur. This hypothesis could 

be tested by smFRET between a labeled SF3b protein and pre-mRNA substrate with a fluorophore 

label near the BP in the presence and absence of Prp2. In human spliceosomes, structural analysis 

have shown that SF3b complex crosslinks to the BP adenosine
103

. If according to the proposed 

model the BP is sequestered by SF3 sub-complex, we would be able to look for direct interactions 

between BP and the labeled protein which should subsequently get altered with the addition of Prp2.  

Another interesting facet to explore is the mechanism by which Prp2 as a helicase mediates 

the displacement of SF3b. One model is that Prp2 slides along the BP of the pre-mRNA fulfilling its 

role as a helicase much like Prp22104, weakening the U2-BP base pairing and thereby destabilizing 

SF3b subcomplex. To test this, we can utilize the SiMPull-FRET set-up assembled using the heat 

inactivatable Prp2-1 extract that has been reconstituted with 5’-end labeled U2 snRNA as described 

in Chapter 2. Ubc4 pre-mRNA with fluorophore near the BP assembled in this set-up can essentially 

serve as a single molecule helicase assaying system to test if the addition of Prp2 (possibly ATP-

dependent) weakens the interaction between U2 snRNA and pre-mRNA. On the contrary, our 

findings may already hold the answer to how this occurs. Prp2 might affect the local structure of the 
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pre-mRNA (as shown in Chapter 2) to destabilize SF3b. This testable hypothesis will provide vital 

clues to what the target of this important first step protein might be.  

In Chapter 2 we have shown that Cwc25, a protein whose mechanistic roles functions were 

unknown, plays a prime role in kinetically modulating the spliceosome towards enhanced first step 

catalysis. Our findings indicate that Cwc25 does this by binding to a site within FRET distance to the 

BP of the pre-mRNA (Figure 3.14). However, binding a dissociation of Cwc25 evidences the 

transition between first and second step catalytic conformational switches. With the singly labeled 

Cwc25, we can address kinetically when and how long Cwc25 is bound near the BP prior to the first 

step. Which factors are responsible for the removal of Cwc25 bound near the BP in Ubc4 pre-

mRNA, where the distance between the BP and 3’SS lies somewhat in between the longer and 

shorter version of actin substrates previously used100. Additionally, we can also explore if the 

displacement of Cwc25 is mediated by the ATPase action of the helicase Prp16 by using an ATPase 

deficient Prp2 mutant.   

With the reconstitution of second step of splicing, it can become clear that the spliceosome 

exploits structural reorganizations to regulate chemistry. Our findings detailed in Chapter 2 show that 

prior to the first step of splicing, Prp2, in an ATP-dependent manner mediates a large conformational 

change in the pre-mRNA itself. Similarly, does the second step helicase Prp16 mediate a 

conformational change in the pre-mRNA, possibly bringing the 3’SS and 5’SS close together? If so, 

is the role of other second step factors (Prp18-Slu7) to stabilize the second step conformation?  

SiMPull-FRET offers easy means to answer these questions by simply immobilizing the Bact complex 

as described earlier with the sequential addition of step 1 and step 2 factors while imaging the pre-

mRNA. In order to image single molecules throughout this process, a traditional continuous exposure 

is almost impossible with the current dyes. A simple Bact to C complex chase had proven to be 
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extremely challenging in our previous experiments (Figure 3.12 c). To circumvent this, we will use 

time-lapse illumination and increase our observation window with short exposures where we 

capture dynamics and longer dark periods with no illumination that can be used to image pre-

mRNA molecules to an hour in buffer conditions. Alternatively, we could use dyes with 

enhanced photostability that have a proximal protective agents linked to it instead of the 

traditional cyanine dyes as described
105

. It would be interesting to observe how Prp16 affects the 

molecules with a stable high FRET state (post-first step chemistry) versus those molecules that 

are still toggling between high and mid-FRET states (Prp2-induced) even after Cwc25 addition, 

providing clues towards how Prp16 mediates proofreading.  

The catalytic center of the spliceosome holds several secrets. With the recent crystal structure 

of Prp8 protein, a highly conserved factor known to be at the active site of the spliceosome81, it has 

been increasingly evident that the RNaseH-like domain on this protein could be important either as 

the docking site for catalytic events or directly take part in catalysis. It has been proposed that Prp8 

has two alternative states that facilitate either the first or the second step106,107. In a screen for the 

identification of suppressors of splicing defects caused by pre-mRNA mutations, Prp8 suppressors 

were identified, that can rescue or suppress first step and second step splicing defects106,108. First step 

alleles favor the first step, accumulate intermediates and produce very little mRNA.  Second step 

alleles favor the second step, result in very little intermediates but make second step products. Some 

of the suppressors of 5’SS, 3’SS and BP mutations map to the b-finger of the RNaseH-like domain81. 

This domain has been shown to assume several different conformations which in theory could be 

relevant for the transition between first and second steps of splicing. It is plausible that the 

conformations adopted by the RNaseH domain influences and informs the structure of the pre-
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mRNA towards catalysis. Our SiMpull-FRET set up offers a way to test if in the presence of extract 

with the first step alleles, the pre-mRNA adopts conformations favorable for the first step as opposed 

to the second step and conversely, in the presence of extract with second step alleles, the pre-mRNA 

adopts conformations favorable for the second step. If this is true, it could mean that either these 

suppressor mutations of Prp8 are directly involved in catalytic steps of splicing or that these mutant 

residues encourage the rearrangements in the RNA structure necessary for catalysis.  

5.3 Labeling pre-mRNA and proteins for smFRET studies 

The ability to site-specifically attach fluorescent dyes to proteins and nucleic acids is 

crucial for understanding their structure and function. SmFRET techniques are limited by our 

ability to conjugate specific fluorophores to either RNA or protein, yet retain their normal 

functionality, to study RNA-RNA, RNA-protein and protein-protein interactions. A handful of 

techniques have been developed to conjugate dyes to RNA molecules
109

, but these are 

predominantly for end-labeling RNA molecules. In the case of RNA, we are primarily restricted 

to shorter lengths because of the ease of chemical synthesis and site-specific conjugation with 

dyes. Actin pre-mRNA, which has a 308-nts long intron, has been the choice for traditional yeast 

in vitro splicing experiments. In an effort to find a shorter and more easily synthesizable pre-

mRNA, Ubc4 was identified as suitable for single molecule studies
37

. Ubc4 pre-mRNA has been 

predominantly used in the experiments described in this thesis. This pre-mRNA has the 

advantage of being short (90 nts intron) and yet splicing efficient. This allowed us to synthesize 

the pre-mRNA in two pieces and ligate them to obtain the full-length product. The individual 

pieces were conjugated with fluorophores at the desired splice site locations, upon which they 

were purified on 6% denaturing polyacrylamide gels (7 M urea).  The fluorophore conjugated 
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pieces were then ligated using T4 RNA ligase 1 with a DNA splint. The ligated product was 

purified away from the remainder of unligated pieces by electrophoresis on a 6% polyacrylamide 

gel (7 M urea). The pre-mRNA band was then carefully excised from the gel and electroeluted 

on a home-built setup to finally extract it. We are still limited in terms of overall yield because of 

the cumulative loss in the multiple steps involved in the process, but can easily produce 

sufficient quantities for single molecule detection. Nevertheless, there is high need for new and 

more efficient labeling methods. 

Fluorescent proteins have swept through world of biology. With the introduction of 

GFP
110

 there has been a leap in the use of fusion protein to understand cellular processes.  Many 

methods have been developed to introduce site-specific, covalently attached labels into proteins; 

however, each method has its own limitation
109

. With over 80 proteins making up the 

spliceosome in yeast, there is no dearth of potential protein labeling targets. The experiments 

presented in Chapter 2 on a labeled single-cysteine mutant of the Cwc25 protein is an example of 

the questions that can be addressed using labeled proteins. To the best of our knowledge, Cwc25-

pre-mRNA FRET experiments are the first of their kind since there has been no other RNA-

protein FRET study in the splicing field. The results point to the idea that Cwc25 binds close to 

the BP, modulating the kinetics required for favorable first-step splicing. There has been a recent 

advance that eliminates the requirement to recombinantly express and purify proteins for 

labeling
77

. The desired advantage is that crude whole cell yeast extracts can be incubated with 

labeling reagent(s) and yet be able to achieve specific labeling of a single protein. Similar 

techniques based on inteins
111

 are currently being developed in our lab. In order to meet the 
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burgeoning demand in fluorescent microscopy, it is imperative that further advances are made in 

the development of new, easy and efficient labeling strategies. 

5.4 A possible mechanism of action for spliceosomal helicases 

The work presented in this thesis spans three important DExD/H box helicases, Prp2 

(Chapter 2), Prp28 (Chapter 4) and Prp16 (Appendix A), which bring about significant 

conformational rearrangements for catalytic activation of the spliceosome. RNA helicases in 

general are characterized by an NTP binding domain and usually use the energy derived from 

hydrolysis to unwind dsRNA. However in vitro strand displacement activity is yet to be 

demonstrated for most of the spliceosome helicases whose direct targets are largely unknown. 

Our results indicate that Prp2 with NTP and protein cofactor Spp2 rearranges the spliceosome-

substrate complex to reversibly explore conformations with proximal 5’SS and BP that 

accommodate chemistry. Similarly, experiments on Prp28 show that the pre-mRNA at this stage 

toggles between two FRET conformations and that Prp28 may drive the equilibrium towards a 

higher FRET state. We thus draw analogy to the ribosome and find the spliceosome to be a 

biased Brownian ratchet machine. In the Brownian motor mechanism, stochastic thermal 

fluctuations in a system allow for a factor to bias the directedness of the process. We believe that 

such a toggling mechanism may be prevalent throughout the spliceosome
94

. In the case of Prp2, a 

stable FRET state seen in the B
act

 pre-mRNA is unlocked by the helicase Prp2, while in the case 

of Prp28, the equilibrium between two FRET states in the CC1 complex is biased towards the 

higher FRET state corresponding to CC2. Thus, the spliceosome in principle can toggle between 

active and inactive, large-scale conformations at critical steps in splicing. Although we have no 
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direct evidence yet that this may be the case with other helicases, we believe that a similar 

mechanism is likely operating to facilitate the second step of splicing and that this theme might 

be recurrent in the function of DExD/H box helicases. Interestingly, much like proofreading in 

the ribosome, the toggling seen in here might be the mechanism by which proofreading is 

accomplished in the spliceosome, where each conformational selection by toggling is separated 

by an irreversible step leading to increased commitment as we progress into the splicing cycle.   

This scenario presents interdependent opportunities and challenges for structural and dynamics 

studies in the spliceosome and other biomolecular machines. 

Cell biology is at its most exciting time now. With the development of new and improved 

microscopy techniques and instrumentation, we are able to push the limits of resolution and ‘see’ 

things that were invisible previously. In all likelihood, single molecule methods will continue to 

expand and provide valuable answers to important biological questions in the future.   
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APPENDIX A: SiMPull-FRET to study pre-mRNA dynamics at the second step of splicing  

 

 

A.1 Reconstitution of the second step of splicing using SiMPull-FRET 

The second step of pre-mRNA splicing involves a transesterification reaction where the 

3’ hydroxyl group of the 5’SS attacks the 3’SS to splice the exons together and to remove the 

intron as a lariat intermediate. In Chapter 2, the roles played by Prp2, Spp2 and Cwc25 in 

facilitating the first step of splicing were shown to involve the remodeling of the B
act

 complex by 

ATPase action of Prp2 and the stabilization of the necessary first-step conformation by Cwc25. 

With the in vitro reconstitution of the second step of splicing, it was demonstrated that the 

essential proteins for this step are Prp16, Prp18 and Slu7
35,100

. The helicase Prp16 is involved in 

the removal of Cwc25 and Yju2 from the BP and remodeling of the C complex
32,100,101,112

. For 

the second step of splicing, the 3’SS needs to be positioned at the catalytic site. This is achieved 

by the ATP-independent action of the Prp18-Slu7 heterodimeric complex
113

. The primary role 

for the helicase Prp22 lies in the ATP-driven disassembly of the spliceosome, with an additional 

ATP-independent role in assisting step 2 catalysis
114

.  

 The nucleotide distance between the BP and 3’SS of the pre-mRNA has been shown to 

play a crucial role in which second step factors are required
100

. For a truncated actin pre-mRNA 

substrate, where this distance is as short as 7 nucleotides (nts), only Prp16 and ATP are required, 
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while when the distance is 38 nts, Prp16, ATP, Prp18 and Slu7 are all required for efficient 

product formation
100

. In order to investigate the role played by these factor(s) in restructuring the 

pre-mRNA to bring the 3’SS and 5’SS close together, we decided to use our preferred smFRET 

substrate, Ubc4 pre-mRNA, with fluorophores near the 3’SS and 5’SS. As discussed in Chapter 

2, SiMPull-FRET can be effectively utilized to assign specific pre-mRNA dynamics to specific 

proteins. Using Ubc4 pre-mRNA and heat-inactivatable Prp2 extract (ΔPrp2, Cef-1-TAP), we 

developed a system to reconstitute both steps of splicing starting from the stalled B
act

 complex. 

Immunopurification of the B
act

 complex was achieved as described in Chapter 2, by flowing the 

assembled splicing reaction onto streptavidin coated magnetic beads (Invitrogen) that had been 

pre-incubated with biotinylated IgG. The TAP-tag on the Cef-1 protein binds the protein A 

domain on the immobilized IgG. The complex is then washed under stringent salt conditions to 

obtain a pure complex devoid of any non-specifically bound proteins. The pre-mRNA in the B
act

 

complex alone does not undergo splicing, as expected (Figure A.1, lane 1). Addition of first-step 

factors Prp2, Spp2 and Cwc25 along with ATP leads to efficient first-step products as seen in 

Figure A.1, lane 2. Addition of Prp16 to this complex yielded second-step products albeit at a 

lower efficiency (Figure A.1, lane 3). Furthermore, addition of Prp18 and Slu7 increased the 

second step products by a small factor (Figure A.2, lane 4). Quantification of the free 5’ exon 

released shows that’s there is a slight reduction with the addition of Prp18, Slu7 with respect to 

the pre-mRNA, possibly due to its incorporation into the mature mRNA. Due to high background 

signal, an accurate value for this enhancement could not be reported here.  

 Prp22 has been shown to be not required for second-step reconstitution with actin pre-

mRNA. This seems to be the case with Ubc4 pre-mRNA here also. The lower splicing efficiency 
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with the second step may be in part due to the stepwise addition of second step factors. Our 

results show that for Ubc4, where the distance between the BP and 3’SS is 23 nts, Prp16 seems 

largely sufficient to drive second-step catalysis, while Prp18 and Slu7 only offer a slight 

enhancement, less than what is seen with Cwc25 in the first step. This immunopurified and 

reconstituted system can be used in future SiMPull-FRET experiments to address several 

pertinent questions in the field of splicing. We believe that, like the first step of splicing, the 

second step may also exhibit thermal ratchet-like motion that is locked by a factor in the active 

second-step conformation. To test this, the B
act

 complex needs to be chased as described in 

Chapter 2 to go through the first step of splicing, after which second-step factors can be added 

one at a time to observe what conformational changes each induces in Ubc4 pre-mRNA with 

fluorescent labels near the 3’SS and 5’SS. Additionally, the role played by Prp16 in remodeling 

the spliceosome such that Cwc25 is now displaced from the BP can be explored with 

fluorescently labeled Cwc25 described in Chapter 2. A hypothetical model by which the pre-

mRNA explores two alternative routes to get through step 2 catalysis with the remove Cwc25 to 

is shown in Figure A.3. Our results in Chapter 2 show that in the C complex the 5’SS and BP 

explore stable high FRET states. This could mean that the 3’SS is yet to get coordinated into the 

catalytic center, positioning the 5’ and 3’ exon distal from each other (low FRET state in H
C
 

complex as shown in Figure A.3. In pre-mRNA with a short BP-3’SS distance, Prp16 mediated 

remodeling weakens the binding of Cwc25 to the BP, giving the intron loop the flexibility to 

move out of the catalytic center. This leads to some second-step product formation in substrates 

with short BP-3’SS distance (Step 2* complex). In pre-mRNA with longer BP-3’SS distance, 

removal of Cwc25 is enhanced by Prp18-Slu7
100

, which when bound also stabilize the second-
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step conformation and product formation (Step 2 complex). Binding of Cwc25 does not 

necessarily mean reversal of second step chemistry, since such a role for Cwc25 has not been 

shown. Removal of Cwc25 is necessary for the spliceosome to adopt second step conformation 

and subsequently catalysis. This model can be tested in future SiMPull-FRET experiments.  
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Figure A.1 Immunopurification of the Bact complex and reconstruction of the second step 

of splicing 

Reconstitution of second step of splicing with immunopurified B
act

 complexes analyzed on a 

15% polyacrylamide, 7 M urea gel. Immunopurified B
act

 complex (lane 1) is incubated with 

first-step factors Prp2, Spp2, Cwc25 and ATP (lane 2) alone, or additionally with Prp 16 

and ATP (lane 3), or additionally with Prp16, Prp18 and Slu7 and ATP (lane 4). 
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Figure A.2 Recombinant expression of second-step splicing proteins Prp16, Prp18 and Slu7 

The second-step proteins Prp16, Prp18 and Slu 7 were expressed, purified and analyzed on 

10% SDS PAGE gels. 
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Figure A.3 Model for the mechanism of second step catalysis via pre-mRNA remodeling 

The 3’ and 5’ exons of the pre-mRNA at the C complex are positioned farther apart from 

each other in a stable low-FRET state. Much like Prp2, the helicase Prp16 unlocks this 

state, remodeling the pre-mRNA, thereby allowing the exons to now sample close 

conformational proximity and second step product formation (Step 2* complex). For the 

efficient removal of Cwc25, Prp18-Slu7 heterodimer binds this complex, helping the 

displacement of Cwc25 thereby stabilizing the step 2 conformation and enhancing second 

step chemistry (Step 2 complex).   
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A.2 Materials and Methods 

Expression and purification of Prp16, Prp18 and Slu7 

Prp16 was cloned into a pET22b plasmid with a C-terminal hexa-histidine tag, Slu7 was 

subcloned from pGEX6P1 into pRsetA plasmid to carry a C-terminal hexa-histidine tag, and 

Prp18 was cloned into a pETM11 plasmid with an N-terminal hexa-histidine tag. The constructs 

were then transformed into Escherichia coli strain Rossetta II (Novagen). Cultures were grown in 

2-4 l of TB medium and induced with 125 μM IPTG. Cultures were then incubated at 20 ºC for 

18 h. Cells were harvested, washed, and the pellets stored at -80 ºC. Purification was performed 

as described
35

. Protein purity was confirmed by 10% SDS-PAGE (Figure A.2) and proteins were 

aliquoted, flash frozen in liquid nitrogen, and stored at -80 ºC. Protein concentrations were 

determined by Bradford assay and measurement at A280.  

 

Immunopurification and second-step reconstitution 

Extracts prepared from prp2-1 cef-1-TAP yeast strain were heated at 37 °C for 40 min to 

inactivate Prp2 and stall the spliceosome at the B
act

 complex. In a final volume of 135 μl, 40% 

(v/v) of this heat treated extract was incubated with ~50 pmoles 3’SS and 5’SS labeled Ubc4 pre-

mRNA in the presence of 2 mM ATP in splicing buffer (8 mM HEPES-KOH, pH 7.0, 2 mM 

MgCl2, 0.08 mM EDTA, 60 mM Ki(PO4), 20 mM KCl, 8% (v/v) glycerol, 3% (w/v) PEG, 0.5 

mM DTT) and incubated at 23 °C for 35 min. Streptavidin-coated magnetic beads were 

incubated with an equal volume of 0.5 mg/ml IgG-biotin in T50 in a tube rotator at RT for 30 

min. The beads were then pulled down using a magnet and the supernatant was discarded. Free 
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biotin was added to block any streptavidin molecules not yet bound to biotin as described in 

Chapter 2. After equilibration in splicing buffer, the independently assembled splicing reaction 

was added and incubated in a tube rotator for 30 min at RT, followed by washes with buffer A 

and splicing buffer to further purify the B
act

 complex (see Materials and Methods of Chapter 2). 

The reactions are scaled up for reconstitution reactions pursued in parallel and split at this step. 

One part of this B
act

 complex was analyzed on a 15% polyacrylamide gel (Figure A.1, lane 1). To 

the other part, Prp2, Spp2 and Cwc25 were added at 90-120 nM final concentration in splicing 

buffer in the presence or absence of 2 mM ATP and incubated in the tube rotator for 30-40 min. 

At this step, the reaction was split into two aliquots, one of which was loaded into lane 2, 

whereas to the other Prp16 at 80 nM concentration was added in splicing buffer with 2 mM ATP 

and incubated for 30 min. The reaction was once again split into two aliquots, one was loaded 

into lane 3, whereas to the other Prp18 and Slu7 were added at each ~100 nM final concentration 

in splicing buffer and incubated in the tube rotor for 30 min (lane 4). To visualize the products of 

splicing, RNA was isolated and analyzed on a denaturing, 7 M urea, 15% polyacrylamide gel and 

scanned on a Typhoon variable mode imager (GE Healthcare). Shown in Figure A.1 is the Cy5 

scan.  
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APPENDIX B: Utilizing fluorescently labeled snRNAs to characterize the spliceosome 

 

 

B.1 An in vitro splicing system with fluorescently labeled snRNAs 

The spliceosome is made up of five subunits, each consisting of a single uridine-rich 

small nuclear RNA (snRNA). Assembly occurs in a stepwise manner on the pre-mRNA 

substrate
77

. Various rearrangements and conformational changes take place to finally form the 

catalytically active core of the spliceosome, which consists of the U2, U5 and U6 snRNA:protein 

(snRNP) complexes. During the course of this assembly, pre-mRNA:snRNA interactions are 

disrupted and new ones are created. Despite extensive research in the field, very little is known 

about the timing of snRNA assembly and the pre-mRNA conformational changes accompanying 

it. By establishing a splicing system where the endogenous snRNAs are replaced with 

fluorescent snRNAs, we can in real-time monitor several critical assembly and catalytic steps of 

splicing. Towards this goal, U2, U5 and U6 snRNA were transcribed and fluorescently labeled at 

the 3’ end by coupling with hydrazide derivative of Cy3, Cy5, Alexa488 or TAMRA (Figure 

B.1). Each of the snRNAs could be depleted independently from the wildtype yeast extract using 

previously published complementary DNA oligonucleotides (Chapter 3 and Table B.1).  The 

snRNA-depleted samples were then tested for in vitro splicing by incubating the depleted extract 

with radiolabeled pre-mRNA for 30 min and visualizing the product on a 15% PAGE. Since 
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snRNAs are essential in the extract for pre-mRNA splicing, upon depletions using 

complementary DNA oligonucleotides pre-mRNA splicing was inhibited, as expected (Figure 

B.2). To these inhibited reactions in vitro transcribed and fluorophore labeled snRNAs were 

added; we were able to restore splicing for U2 snRNA (Figure B.2). Once the conditions for 

depletion and reconstitution for U2, U5 and U6 snRNAs were established, we performed 

smFRET experiments on the system to address specific questions.  

To characterize splice site proximity and the role played by specific snRNAs with respect 

to it, we performed what we term a coincidence analysis to observe pre-mRNA dynamics and 

correlate it with snRNA binding to pre-mRNA. Binding of U2 snRNA is one of the first ATP 

dependent steps in the spliceosome assembly process. We first imaged Ubc4 wildtype pre-

mRNA with Cy3 near the intron, and Cy5 near the BP (Chapters 2 and 3) in the presence of yeast 

whole cell extract depleted of U2 snRNA (to monitor pre-snRNA assembly dynamics). We then 

flowed on whole cell yeast extract reconstituted with U2 snRNA labeled with Cy3 fluorophore at 

its 3’end (to monitor post-snRNA assembly dynamics) (Figure B.3). U2 snRNA was labeled at 

the 3’end because the truncated Δ107 U2 snRNA construct used in these experiments increases 

the proximity between the 3’ end of U2 snRNA and the BP of the pre-mRNA, while it lacks the 

extensive base pairing with U6 snRNA that a full-length 5’ end has. In a converse experiment, 

we were able to observe binding of Cy5-labeled U2 snRNA on the pre-mRNA with a single Cy3 

label near the BP when excited with both red and green lasers (Figure B.4).   

The system presented here has wide applicability. Kinetic information on snRNA 

assembly on the pre-mRNA can be obtained using a similar experimental strategy. Interactions 

between U2:U6 snRNAs are restructured several times during activation and catalysis. Using a 
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fluorescently labeled U2 and U6 snRNA assembled on 5’-biotinylated pre-mRNA in the 

depletion/reconstitution system described, the structural rearrangements between these snRNAs 

to form the catalytic core can be investigated.  Labeling U2 and U6 snRNAs, components of the 

only two snRNPs thought to be involved in catalysis, can be used to gain insights into the much-

debated penta- versus tri-snRNP assembly pathway
115

,
116

 by visualizing the time-dependent 

assembly of U2 and U6 snRNA on the pre-mRNA substrate. The experiments described here 

merely serve as examples of the wide range of questions that can be addressed.   
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Figure B.1 Fluorescent labeling of U5snRNA via 3’-periodate oxidation 

15% polyacrylamide, 7 M urea gel showing fluorescently labeled U5 snRNA. From left to 

right, lane 1 is free Cy5 dye (marked with a black star), lane 2 shows Cy5 labeled 

U5snRNA and lane 3 shows U5 snRNA labeled with TAMRA fluorophore (black arrow 

head indicates snRNA band).  
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Figure B.2 Reconstitution of snRNA depleted extracts with fluorescently labeled snRNA. 

(a) Schematic showing RNaseH mediated degradation of snRNA-DNA hybrid and 

reconstitution with Cy3 labeled snRNA (green circle). (b) 15% polyacrylamide, 7 M urea 

gel showing wildtype snRNA (WT snRNA, unmodified), U2 snRNA -, depleted and +, 

reconstituted with Cy3-labeled U2 snRNA, U6snRNA -, depleted and +, reconstituted with 

Cy3-labeled U6snRNA in the presence or absence of ATP (+/-). Efficient splicing is 

achieved upon reconstitution with labeled snRNA as indicated by the splicing products 

mRNA, lariat intron and lariat.  
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Figure B.3 Assembling Cy3-labeled U2 snRNA on doubly labeled (Cy3-Cy5) pre-mRNA. 

(a) Schematic of the experimental setup showing immobilized pre-mRNA (with Cy3 near 

the BP and Cy5 near the 5’SS) on a slide surface in extract depleted of U2 snRNA and 

extract reconstituted with Cy3-U2 snRNA. (b) Representative smFRET trajectories from 

the experiment showing the assembly of Cy3-U2snRNA on pre-mRNA (blue, Cy3 signal; 

red, Cy5 signal). The presence of two Cy3 fluorophores (one on the U2 snRNA and the 

other on the BP of the pre-mRNA) is confirmed by the two-step photobleaching observed.   
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Figure B.4 Single molecule binding experiment with Cy5-U2 snRNA and Ubc4 pre-mRNA. 

(a) Schematic of a binding experiment showing Cy5-labeled U2 snRNA binding to Ubc4 

pre-mRNA labeled with a single Cy3 fluorophore. (b) Representative traces from this 

experiment indicating binding of Cy5-U2snRNA (red) on single labeled Cy3-Ubc4 (blue).  
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B.2 Materials and Methods 

Plasmids used 

Plasmids for U2, U5 and U6 snRNA (cloned in pUC18) were obtained from the Guthrie 

lab at the University of California, San Francisco. U2 and U6 snRNA plasmids have a T7 

promoter upstream of the snRNA sequence. U5 snRNA plasmid was cloned into the pUC18 

without the T7 promoter. The length of U2, U5 and U6 are 307, 220 and 120 nts, respectively. 

PCR amplification and in vitro transcription 

U5 snRNA was amplified from the plasmid using a forward primer with a T7 promoter 

and a reverse primer. The PCR product was analyzed on a 1% agarose gel and subsequently gel 

purified. This DNA template was then used directly for standard in vitro transcription reactions. 

U2 and U6 snRNA were linearized using restriction enzymes Afl1 and Dra1, respectively, with 

cleavage sites located at the 3’ end of the snRNA sequences. The product was analyzed on a 1% 

agarose gel and subsequently gel eluted. Transcription reactions were then carried out on this 

template using home-made T7 polymerase and buffer. The transcription reaction were carried 

out for 8 h at 37 ºC and treated with DNase enzyme to digest the DNA template. The products of 

the transcription were run out on a 15%, 7 M urea PAGE, gel eluted using 1 mM EDTA and 

precipitated using 300 mM sodium acetate, pH 5.3, and 2.5 volumes of 100% ethanol. 

Periodate oxidation and Cy3/Cy5/Alexa488-hydrazide coupling of snRNA 

To fluorescently label the snRNAs, we used periodate oxidation of the 3’ terminal ribose 

followed to couple the RNA with Cy3, Cy5 or Alexa488-hydrazide (GE life sciences) as 

described
109

. 50% (v/v) glycerol was added to the reaction mixture and the product was analyzed 
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on a 15%, 7 M urea PAGE. The bands were eluted using standard protocol (see above) and 

ethanol precipitated.  

DNA oligonucleotides for U2 and U6 snRNA depletion 

U2 and U6 snRNA were depleted using DNA oligonucleotides complementary to 

specific accessible regions. DNA oligonucleotide SRU2 was hybridized to U2 snRNA and DNA 

oligonucleotide D1 was hybridized to U6 snRNA.  The sequence of SRU2 and D1 are shown in 

Table B.1. Wildtype yeast cell extracts were incubated with 450 nM of SRU2 and 300 nM of D1 

independently for 30 min at 33 ºC in the presence of 3.3 mM ATP. Depletions were tested using 

the in vitro splicing reaction conditions described above and the products analyzed on a 15%, 7 

M urea PAGE for splicing. 

Reconstitution of splicing 

Yeast cell extract depleted of endogenous U2 and U6 snRNA was reconstituted with 15 

nM and 10 nM concentrations of in vitro transcribed and 3’ fluorophore labeled U2 and U6 

snRNA, respectively. The ability of the reconstituted system to direct pre-mRNA splicing was 

tested using the in vitro splicing reaction conditions described above and the products analyzed 

on a 15%, 7 M urea PAGE.  
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SRU2 (anti U2 snRNA) 5’-CAGATACTACACTTG-3’ 

D1 (anti-U6 snRNA) 5’-CATCTCTGTATTGTTTCAAATTGACCAA-3’ 

 

Table B.1 Sequence of DNA oligonucleotides for U2 and U6 snRNA depletions 
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PCR amplification, in vitro transcription and fluorophore coupling 

U2 and U6 snRNA plasmids were linearized and in vitro transcriptions were performed 

using T7 polymerase to generate the respective snRNAs (data not shown). U5 snRNA plasmid 

was PCR amplified using a T7 promoter added to the forward primer. The product of the PCR 

reaction was used to obtain U5 snRNA via in vitro transcription. Periodate oxidation and 

coupling with the hydrazide derivative of the desired fluorophore yielded the labeled snRNAs 

shown in Figure B.3. 

U2 and U6 snRNA depletion and reconstitution reactions 

Splicing cell extracts were depleted of their endogenous U2 and U6 snRNAs using 

complementary DNA oligonucleotides as described (Chapter 3) and reconstituted with in vitro 

transcribed and fluorescently labeled U2 and U6 snRNA to reconstitute splicing as visualized by 

a standard in vitro splicing assay.  
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