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Chapter 1 

Introduction 
 

The scope of this dissertation 
Malaria is among the deadliest diseases of all times, having caused more deaths and misery than all 

the wars in the history of humanity combined. Malaria distinguishes itself from other diseases in its 

remarkably complex and well-adapted pathogen, with a variety of strategies to colonize human hosts 

in many different environments and with a long evolutionary history with humans, their ancestors, 

and the ancestors of their ancestors. As a consequence malaria’s parasites have influenced human 

development and prosperity more than any other species since the beginning of civilization. 

An important component of this co-evolutionary history between humans and malaria has been the 

development of agriculture and food production. Historically, farming settlements have influenced 

transmission and virulence of the malaria pathogen by providing suitable environments with 

multiple hosts in close proximity, and today, most malaria affliction takes place in rural agricultural 

communities, primarily in Africa and India. 

The scope of this dissertation is to investigate the ecological associations between malaria population 

dynamics and economic and social prosperity in agrarian communities, as well as to understand the 

implication of land-use changes related to agricultural and human behavior on the persistence and 

distribution of the disease. The approach this dissertation takes is to combine theoretical ecology on 
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the disease with statistical analysis and natural history, to shed light on the feedbacks that operate 

between agriculture, malaria and climate, at multiple spatial and temporal scales. 

The concept of a feedback loop refers to “a situation in which two or more dynamical systems are 

connected together such that each system influences the other and their dynamics are thus strongly 

coupled” (Astrom & Murray, 2008). Since the seminal work of Lotka and Volterra, these feedback 

loops have been known to be an important condition in regulating population growth; however, it 

was not until recently that they have also been recognized as an important component of the 

structure and stability of coupled human and natural systems (Lui et al., 2007) and specifically, of the 

relationship between disease persistence and economic development (Bonds and Rohani, 2010). 

Throughout this work the implications of this feedback are studied. 

The results of this dissertation should be of relevance to public health authorities and policy makers, 

as they provide insights into the processes through which the economy and poverty alleviation affect 

malaria transmission, at the same time, that they address the implications of malaria for economic 

development.  

 

Malaria natural history 

Malaria Evolution and its relationship with agriculture and human behavior  

Malaria is a disease caused by parasites of the genus Plasmodium, transmitted through a female 

mosquito of the genus Anopheles, and characterized by sexual and asexual stages in the life cycle of 

the parasites. When an infected mosquito bites a human, sporozoites enter the human body directly 

via the liver. After many cellular and nuclear divisions in the liver, the sporozoites produce 

approximately 15,000 to 30,000 merozoites that colonize the blood cells after a couple of days. Once 
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inside the blood cells, merozoites consume the hemoglobin and reproduce asexually, with the 

subsequent destruction of the host blood cells and colonization of new ones. It is at this stage that 

the actual symptoms of the disease are observed. Some of the merozoites differentiate into sexual 

gametocyte cells that stay in the bloodstream until a female mosquito bites the infected human, 

passing the gametocytes into the vector. This gametocyte then matures inside the mosquito, 

reproducing sexually to produce more sporozoites that eventually infect another human host.  

Four species of Plasmodium malaria exist for the human host: P. vivax, P. malariae, P. ovale, and P. 

falciparum. Phylogenetic analyses have shown that the four species of human malaria are only weakly 

related to one another, and all have been linked to primate hosts long before humans populated the 

planet (Escalante and Ayala, 1995). Among the four species, P. falciparum is the most virulent, and is 

responsible for most deaths worldwide, especially in Africa.  

The relationship between malaria burden and agriculture development has existed for a long time. 

Anthropological (Livingstone, 1957) and molecular (Rich et al., 2009) studies have suggested that the 

origin of the actual lineage of P. falciparum coincided with the development of agricultural settlement 

in Africa around 10,000 years ago. P. falciparum shows high virulence, with great production of 

merozoites that usually produce severe effects on the human host, including death. In addition, P. 

falciparum does not survive for long in the human host. These two characteristics suggest that a 

sufficiently large number of human hosts and mosquito vectors were needed for P. falciparum to 

survive in ancient times. As agricultural settlements expanded the human population, this resulted in 

changes in the environment influencing the ecology of the mosquito vectors, producing more 

mosquito-breeding sites and increasing its human-biting preference (Coluzzi, 1999). As the human 

population increased and mosquitoes adapted to human meals, P. falciparum also adapted to this new 
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setting, thereby selecting for strains of high virulence (Livingstone, 1957; Carter and Mendis, 2002; 

Rich et al., 2009).  

With this new parasite, the human population also evolved genetic mechanisms to counteract the 

burden of the disease. The most striking adaptation to P. falciparum is sickle cell anemia, which 

resulted from a single point mutation in the gene for the beta chain of hemoglobin, which in 

heterozygotes provides protection against P. falciparum, but produces another disease, anemia, in the 

homozygote (Carter and Mendis, 2002). This reflects the strength of the burden of the disease in the 

early stages of human societies. In this context, it is likely that malaria affected the economy of the 

earliest farming populations (Packard, 2007). In some areas malaria was probably a barrier to the 

development of agriculture, decreasing the chances of survival and a sedentary lifestyle. This 

situation probably influenced the migration of people to areas that were free from malaria, for 

example to locations at high altitudes. In others areas, human adaptations counteracted the burden 

of the disease with selective mutations and protective immunity, helping humans to increase 

productivity and thus population size. In both cases, it is clear that the interaction among vector, 

parasite, and human host has shaped the present distribution and burden of malaria around the 

world (Hume et al., 2003). 

Since the discovery of the Plasmodium parasite that causes the disease, and the contribution of the 

Anopheles vector to transmitting the parasite from human to human at the beginning of the XX 

century, great progress has been made in understanding the intrinsic and extrinsic factors affecting 

the distribution of the disease under different ecological scenarios. The population size of vector 

mosquitoes determined by climatic conditions, the type of Plasmodium species, and the different 

degrees of immunity of the population shape the dynamics of the disease.  
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Among the most important figures in malaria research in the early days was Sir Ronald Ross. He was 

one of the first (among others) to propose the vector transmission route, and he was a strong and 

early supporter of the importance of mosquito control for economic reasons, even before the 

mosquito hypothesis was completely established (Ross, 1905). Besides demonstrating the mosquito 

hypothesis himself (Ross, 1897), he also contributed significantly to the quantitative theory of 

malaria. In 1904 he published his first mathematical model to explain mosquito movement and the 

scale of larvae control, and he published his first malaria transmission model by 1908 (Ross, 1911). 

His work motivated and influenced the new generation of malariologists in the use of quantitative 

analyses to understand disease transmission and the causes of epidemics (Smith et al., 2012). 

The climate influence 

The recognition of the influence of climatic factors, and specifically rainfall, in determining epidemic 

seasonality and interannual variability was rapidly recognized soon after the discovery of the 

transmission route. This knowledge was quickly implemented by malaria public health officers who 

promptly absorbed this biological knowledge to generate the prediction of epidemic events. Among 

the pioneers in this area was Sir R. Christopher. While working as an officer in the Medical and 

Sanitary Department in the Punjab, Christopher witnessed the worst famines that occurred in the 

area during the late XIX century, including the largest malaria epidemics on record in the region 

(deZulueta et al., 1994). This experience shaped his perspective on the causes and the routes by 

which climatic factors, specifically monsoon rainfall and the lack of it, could influence the magnitude 

of the epidemics. In particular he was among the first to generate predictions of malaria epidemics 

based on climatic information, and to develop an early warning system in the region (Swarrop, 1949; 

Bouma and vanderKaay, 1996). In addition, the drought-driven famines helped him to recognize the 

importance of agriculture and food security in shaping malaria epidemics in India. In fact, his early 
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predictions included not just rainfall, but also the prices of the important crops as indicators of 

human susceptibility (Christopher, 1911). 

The eradication era 

Another important figure that shaped the malaria research agenda during the second part of the XX 

century was G. Macdonald. His work, summarized in his book “The Epidemiology and Control of 

Malaria” (Macdonald, 1957), is still a fundamental piece in our understanding of malaria population 

dynamics. This work set the stage for most of the subsequent efforts on malaria epidemiology up to 

the present day, and its mathematical formulation pioneered the use of compartmental mathematical 

and computational models, now widely used not just in malaria research but also for many other 

diseases (Smith et al., 2010). From a practical perspective, Macdonald's theory helped to define the 

scientific basis for the design of the Global Malaria Eradication Program (GMEP) between 1955 and 

1969. First, the theory provided rigorous quantification of the limits of transmission through the 

well-known number R0, and second, it generated predictions of the effects that different methods of 

control would have on R0, making an strong case for interventions that would decrease the contact 

rate between mosquitoes and humans, a. 

With Macdonald's mathematical theory of malaria control, and the massive arsenal of insecticides 

produced after World War II, over-optimism that the disease would be eradicated within a relatively 

short period of time was generated in the public health sector and governments of affected regions 

(Najera, 2010). The GMEP global eradication campaign was launched by the World Health 

Organization, and DDT-based mosquito control intervention was the main tool used to fulfill the 

goal of eradication. The strategy of the campaign was simple: a short war against mosquitoes that 

would last less than 20 years (Najera, 2010). The campaign was divided in different stages, from 

evaluation to confirmation of elimination.  A large surveillance and monitoring system was put in 
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place in the different countries whose function was to help define the areas most in need of 

intervention, and to evaluate the success of the phases of the campaign in order to plan subsequent 

stages. During the following decades, most of the financial efforts for malaria were put into the 

campaign in Africa and Asia and limited funds were spent on research, leaving an immense gap in 

knowledge that, in retrospect, had severe consequences for the control of the disease in the 

following decades (Packard, 2007).  

The resurgence 

By the mid-1970, mosquito resistance to DDT was reported in many countries, and by the end of 

the decade the resurgence of malaria was evident (Packard, 2007). It was clear by then that the 

GMEP was not reaching the objectives proposed, and funding for the campaign shrunk 

considerably. Eventually the GMEP was abandoned, creating a considerable backlash in malaria 

research and its control. India, for example, had considerable success in decreasing malaria mortality 

10 fold during the GMEP, but experienced large epidemics in the 1970s, causing a considerable 

burden to the country that persists today (Sharma, 1999). 

It was clear by the 1980s that a different approach for fighting malaria was needed in light of the 

global resurgence. With a new focus on controlling the disease rather than achieving its eradication, 

new malaria control programs were put in place in many countries, and new global initiatives were 

created to generate and coordinate actions at a global scale. Consequently, a new research agenda 

was proposed to confront the resistance of the mosquito, the parasite's evolutionary way to escape 

detection by the human immune system, and to consider the increased recognition of the influence 

of socioeconomic factors. In addition, a revitalization of the importance of including climate factors, 

the ecology of the mosquito, and the imminent threat of global warming are now part of the new 

agenda. Today, initiatives such as the Roll Back Malaria partnership has attracted the participation of 
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more than 500 partners, including endemic countries, private sector nongovernmental and 

community-based organizations, and the attention of large foundations and research institutions.  

Poverty and malaria 

One of the lessons learned after the GMEP, which has been applied to this new strategy, is the need 

to consider the complex ecological and evolutionary roots of the disease and its interwoven 

connection with human population activities, specifically the interface between poverty, agricultural 

practices, and malaria risk (Kitron, 1987). An indisputable current malaria pattern around the world 

is the relationship between malaria and poverty distribution at the global scale. More than 70% of all 

cases occur in rural communities usually living under extreme economic vulnerability, and its burden 

is suggested to be the cause of a decrease of more than 3% of GDP in malaria-ridden countries 

(Sachs and Malaney, 2002).  

While this striking relationship between malaria and rural poverty has been long recognized, the 

influence of agricultural development and land-use changes on the dynamics of malaria and the 

contribution of malaria to maintaining poverty are still poorly understood, mostly because of the 

complex interaction with other extrinsic factors such as rainfall and temperature, affecting both the 

vector and the parasite as well as food production, and the limited long-term surveillance data in 

both malaria epidemiology and agricultural dynamics. 

A particularly important factor in the malaria-agricultural system is water distribution for crop 

production and the modification of the environment due to infrastructure to generate irrigation 

potential. Many entomological and parasitological studies have addressed this issue and, not 

surprisingly, the literature is in tune with this dichotomy: some studies show a positive relationship 

between irrigation, vector population size, and malaria occurrence, while others report that an 

increment in irrigation regimes increase vector carrying capacity, though not necessarily increase 
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malaria occurrence. This apparent dilemma between irrigation and malaria risk, defined as the paddy 

paradox (Ijumba and Lindsay, 1996), remains poorly understood.  

 

Outline of the dissertation 
In this dissertation I present a series of papers in which I try to disentangle the contribution of land-

use changes related to agricultural and irrigation development to malaria population dynamics and its 

elimination, under the underlying influence of climate forcing. The main goal of these projects was 

to provide ecological insight on the feedback mechanisms that operate among agriculture, 

socioeconomic development, human behaviour, and malaria, in order to gain an understanding of 

their dynamical consequences  on the spatial and temporal distribution of the disease. Chapters II, 

III, and IV consider malaria in Northwest India, in the States of Gujarat and Rajasthan, in the last 

two decades. Chapter V presents a historical study of malaria in the United States, in the State of 

Mississippi between 1917 and 1940, and relies on data from the elimination era. 

Chapter two: Malaria and climate forcing. The Effect of irrigation 

Malaria transmission in Northwest India is epidemic and unstable, and usually cases occur only for a 

few months after the monsoon season. In this area the influence of climate, particularly rainfall, has 

been well-known since the beginning of the twentieth century, and this connection provides valuable 

information for an early warning of epidemic risk. However, large scale land-use changes in 

irrigation and agricultural development are shifting the semi-desert environment to one in which 

water is more accessible and provides increasing suitable areas for mosquito breeding. The influence 

of these changes on the malaria-climate relationship remains poorly understood.  In this chapter I 

provide evidence for the decoupling effect of irrigation on the predictability skill of malaria 

epidemics based on large-scale regional climate rainfall. In addition I present evidence for more 
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endemic malaria in irrigated areas. Finally, I suggest that the decoupling of the malaria-rainfall 

association is due to mosquito control intervention.   

Chapter three: Malaria and its control in highly variable environments 

A legacy from the GMEP in India is the use of the Annual Parasitic Incidence (API, cases/1000 

population) to determine and prepare subsequent area interventions. Today, in accordance with the 

technical criteria of the national Vector-borne Disease Control program, only those villages that 

report 2 API or more, qualify for mosquito control intervention based on insecticides. The 

implication of the use of this policy in the population dynamics of malaria epidemics is still not well 

understood. In Chapter III, I explore the dynamical consequence of control policy and the vector-

control application in India under high environmental variability. This chapter shows how including 

this mechanistic feedback between previous malaria incidence, the perception of the risk, and the 

implementation of control influences the effectiveness of the control strategy and the efficacy of 

reaching elimination. It is this feedback related to human intervention and not immunity that 

generate these interannual cycles. 

Chapter four: Long-lasting transition toward malaria elimination under irrigation 
development 

Irrigation and water storage infrastructure is known to increase malaria risk by increasing mosquito 

breeding sites. However, over a longer time scale, irrigation provides food security and an increase in 

income that eventually generates the possibility for individuals to control the disease. In Chapter IV, 

I examine simultaneous changes in malaria risk and irrigation-related land-use changes over more 

than three decades. In this chapter, I describe and characterize a transitional stage in malaria risk that 

occurs in the early stages of irrigation. I provide evidence to suggest this transition is long lasting and 

temporary state of heightened risk that is followed by a decrease and eventual elimination of risk 

when socioeconomic health is improved by the benefits provided by irrigation. The finding of this 
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work provides a strong case for including health impact assessment in irrigation projects and water 

storage infrastructure for longer periods of time. 

Chapter five: A time series model to test the double causality between malaria and income 
in Mississippi, United States 

Malaria today is a disease of poverty and its distribution is more common among populations with 

low socioeconomic conditions (Gallup and Sachs, 2001). This poverty-malaria pattern remains the 

subject of debate in the scientific community: while some authors argue that malaria is a major 

determinant of population wealth (Malaney et al., 2004, Gallup and Sachs 2001), others claim that 

socioeconomic conditions are instead what drives disease levels (Packard, 2007).  A better 

understanding of the route by which disease and socio-economic conditions  influence each other 

and the main direction of  causation has implications for the implementation of policies and plans 

for malaria control and elimination. In Chapter V, I investigated retrospectively the malaria 

dynamics in Mississippi, United States, during the first part of the XX century when the disease was 

on the path to elimination. I statistically tested the double causality hypothesis between malaria and 

socioeconomic conditions. This work is a first attempt to statistically and dynamically test the 

poverty trap hypothesis. Results provide evidence for (1) the larger effect of income and purchase 

power for malaria control on malaria’s burden, and (2) the relatively low influence of malaria on the 

cotton-based productivity of Mississippi.    
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Chapter 2 

Malaria and climate forcing: The Effect of irrigation 
 

Abstract 
Background: Rainfall variability and associated remote sensing indices for vegetation are central to 

the development of early warning systems for epidemic malaria in arid regions. The considerable 

change in land-use practices resulting from increasing irrigation in recent decades raises important 

questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the 

consequences of irrigation level for malaria epidemics are addressed with extensive time series data 

for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in 

north-west India. The work specifically focuses on the response of malaria epidemics to rainfall 

forcing and how this response is affected by increasing irrigation. 

Methods and Findings: Remote sensing data for the Normalized Difference Vegetation Index 

(NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts 

and at regional scales. The analyses specifically address whether irrigation has decreased the coupling 

between malaria incidence and climate variability, and whether this reflects (1) a breakdown of 

NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in 

epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of 

NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study 
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the association of NDVI and malaria variability in the time and in the frequency domain 

respectively. 

Conclusions: The results show that irrigation dampens the influence of climate forcing on the 

magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low 

irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator 

of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be 

compounded by increased levels of control; nevertheless this leads to no significant decrease in the 

actual risk of disease. This implies that irrigation can lead to more endemic conditions for malaria, 

creating the potential for unexpectedly large epidemics in response to excess rainfall if these climatic 

events coincide with a relaxation of control over time. The implications of our findings for control 

policies of epidemic malaria in arid regions are discussed. 

 

Introduction 
The response of  epidemic malaria to large-scale change in land-use practices related to irrigation and 

agriculture in arid regions remains poorly understood (Tyagi, 2004). In the last three decades, for 

example, the expansion of  a large network of  irrigation canals has supplied an important source of  

freshwater for agriculture in many arid regions of  India; in so doing, it has also contributed to the 

economic development of  these regions. More generally, change in irrigation schemes, and 

associated agricultural practices, are considered among the potential drivers underlying malaria's 

increasing global burden (Sachs and Malaney 2002), but their consequences remain poorly 

understood given the complexity of  their effects on transmission via human wealth and vector 

ecology. In particular, it is not clear how irrigation is modifying the coupling of  epidemic malaria to 

rainfall variability in arid regions. 
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The population dynamics of  malaria at the edge of  its distribution, in either deserts or highlands, 

where rainfall and temperature respectively limit transmission, are characterized by strong seasonality 

and significant variation in the size of  outbreaks from year to year (Yacob and Swaroop 1949; 

Christophers, 1911; Thomson et al., 2006). In these regions the role of  climate forcing is potentially 

central to the prediction of  inter-annual variability of  epidemics. The high variability in the number 

of  cases between years challenges public health efforts, as severe intermittent epidemics can strain 

medical facilities. 

In the north-west of  India, there has been a long-standing interest in the development of  early-

warning systems based on rainfall (Gill, 1923; Swaroop, 1949) and economic conditions (Zurbrigg, 

1994); this has regained significance in the last decades following the failed eradication attempts in 

the 1960s and ‘70s. Epidemics have re-emerged in the desert states of  Rajasthan and Gujarat, and 

have once again motivated interest in climate forcing (Bouma and vanderKaay 1996; Akhtar and 

McMichael, 1996) and its interplay with socio-economic factors. An increment in burden has been 

attributed to the extension of  the canal network that provides water for regional agriculture (Tyagi 

and Yadav, 2001). 

Despite the potential of  remote sensing for the generation of  early-warning systems (Rogers et al., 

2002), efforts have been largely focused on defining malaria's spatial niche and seasonal timing 

(Thomson et al., 1999; Hay et al., 1998) rather than on predicting the seasonal burden in areas of  

unstable malaria (but see (Ceccato et al., 2005) for dry regions of  Eritrea). Because vegetation can be 

used as a proxy for the amount of  water in the ground and, therefore, for the humidity of  the 

environment, the Normalized Difference Vegetation Index (NDVI) provides a spatially-explicit link 

between rainfall and malaria from local to regional scales. Thus NDVI patterns are especially 

relevant for investigating the relationship between epidemic events and regional climatic drivers in 

desert regions [Connor et al., 1998; Thomson et al., 1997]. However, any vegetation index will be 
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susceptible to landscape changes due to irrigation and agricultural practices. The extensive time 

series of  malaria cases in desert and semi-desert districts of  Rajasthan and Gujarat provide an 

opportunity to examine how NDVI-malaria associations change across regions that represent a 

gradient in levels of  irrigation. 

This paper addresses how the level of  irrigation modifies the dynamics of  malaria across such a 

gradient and how irrigation affects the predictability of  epidemics based on climatic variables. It 

further investigates whether a decoupling of  rainfall forcing and malaria epidemics with increased 

levels of  irrigation reflects (1) a real reduction in the risk of  transmission, (2) more effective control 

efforts but no reduction in disease risk, or (3) a breakdown of  NDVI as a sensitive indicator of  

rainfall's inter-annual variability. These different mechanisms have very different implications not 

just for prediction but for the possibility of  unexpected epidemics when control efforts fail. 

Statistical analyses are used to address these different hypotheses, and the findings are discussed in 

light of  a simple dynamical model of  mosquito abundance and irrigation. The data provide 

additional empirical evidence for the possibility of  surprises in years when intervention and 

monsoon rains vary simultaneously but in opposite directions. This suggests that control policies 

based on residual insecticide spraying, whose planning is "reactive" to disease levels in the previous 

season, need to be modified given the known consequences of  past failures and relaxation of  

control in irrigated areas. The implications of  these findings for forecasting and control policies in 

other arid regions with epidemic malaria are also discussed. 

 

Methods 

Malaria and remote sensing data  

Epidemiological data 
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The epidemiological data consists of  time series of  monthly confirmed cases of  Plasmodium 

falciparum from five districts in north-west India (Fig. 2.1): Bikaner and Barmer in Rajasthan, and 

Kutch, Kheda, and the combined area of  Banaskantha, Mehsana, and Patan (hereafter, BMP) in 

Gujarat state. The data from BMP was combined into one dataset to circumvent problems related to 

modifications of  boundaries over the time of  this study, and the resulting separation into different 

districts of  what was originally a single administrative unit at the beginning of  the data collection 

(1976). For Bikaner, BMP and Kheda, the data represent 30 years of  observations (1976-2009), and 

for Barmer, 24 years (1985-2009 with a gap between 2004 and 2006). For each time series the 

monthly cases were divided by the total yearly human population of  the respective district, and all 

analyses relied on this normalized incidence data (See Fig. S2.1). The blood samples were collected 

by passive surveillance of  patients that visited their local health facility, and by active surveillance of  

patients with fevers in house-to-house visits. These data were obtained from the offices of  the Joint 

Director, Vector Borne Diseases, Commissionaire of  Health Rajasthan and Gujarat. Information on 

the level of  irrigation was extracted from statistical abstract books from the states of  Gujarat and 

Rajasthan between 1979 and 2006. For each district the percentage of  agriculture under some type 

of  irrigation was computed by dividing the number hectares of  agriculture by the number of  

hectares of  land under irrigation (Fig. 2.1). These quantities were then ranked by district based on 

these irrigation levels. The resulting ranking remains unchanged for the whole time period covered 

by this study. 

The Normalized Difference Vegetation Index 
NDVI is defined as the difference in radiation reflected by any surface in two bands of the energy 

spectrum - the infrared and the red band. From this index, which ranges from -1 to 1, it is possible 

to discriminate between radiation reflected by vegetation and other surfaces. Values greater than 0.2 

quantify vegetation greenness from different sources and/or from different seasons. The NDVI 
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data utilized in this analysis was obtained from two sources that cover respectively two different 

time periods. The first one is the Global Inventory Modeling and Mapping Studies (GIMMS; Tucker 

et al., 2005). The original source of this product is a combination of observations made by different 

NOAA missions carrying the Advanced Very High Resolution Radiometer (AVHRR). This dataset 

has a temporal extension ranging from 1982 to 2006 on a bi-monthly basis, and a spatial extension 

covering the entire globe at a resolution of 8 km. The data have been corrected to avoid distortions 

and to show only positive values (Tucker et al., 2005). A window area that includes the five districts 

from which we extracted the vegetation information (19.18°N - 29.15°N and 66.98°E - 78.55°E; 

Fig. 2.1) was defined for the years with epidemiological information up to 2006. The second source 

corresponds to the NDVI product from the Moderate Imaging Spectroradiometer (MODIS) in the 

TERRA satellite. The data are distributed by the Land Processes Distributed Active Archive Center 

(LP DAAC) located at the U.S. Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) Center. Specifically, all the analyses with MODIS rely on the monthly average product at 1 

km resolution for the month of September from 2000 to 2009. 

The statistical analyses focused on the longer NDVI dataset from NOAA (referred to hereafter as 

NDVI) and corroborated that similar results for the spatial correlation maps (see below) were 

obtained with the shorter but more recent MODIS NDVI. 

Rainfall Data 
Monthly accumulated rainfall records were acquired to compare predictability based on rainfall to 

that based on NDVI. The data, which span 20 years, were obtained from one local station within 

each district and supplied by the Indian Meteorological Department in Pune (India). 

Statistical and numerical analysis 

The Signature of NDVI 
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Irrigation increases water available for agriculture, making yearly multi-crop rotations possible. The 

differences in water supply and multi-crop rotations, therefore, should be reflected in the amount of 

vegetation and in the signature of the NDVI time series. In highly irrigated areas we should observe 

less inter-annual variability than in non-irrigated areas. At the same time, the seasonality of NDVI 

should also vary across districts as different peak times can result from different crop seasons 

supported by irrigation. Here, both the coefficient of variation of NDVI for each grid-point (pixel) 

in the study area and the month at which NDVI shows the largest average value (peak) were 

calculated as a way to quantify the regularity and seasonality over time for each location in the study 

area. The coefficient of variation (CV) is a dimensionless measure of the variability of a quantity with 

respect to its mean value. Therefore, CV allows us to compare different districts independently from 

their mean value. 

Correlation Maps 
Since malaria time series exhibit strong seasonality with a peak of cases between October and 

December (Fig. S2.2), the association between malaria and NDVI was examined for the monthly 

cases of each of the months of the epidemic season (October, November and December) and 

NDVI at a given preceding month for each year. Spearman rank correlation was used as a non-

parametric measure of association between incidence in a given month (say October) and NDVI 

(say in September). A map of the NDVI/malaria correlation was obtained by computing this 

correlation repeatedly for each 8 × 8 km grid point in the study area. These maps provide one way 

to discern the hypothesis that rainfall, as a regional phenomena, no longer acts as a driver from the 

alternative that it continues to do so, but it is poorly reflected in the local NDVI. For this purpose, a 

large regional box overlapping the Thar desert and the area within the boundaries of a given district 

are relevant. The former provides information on NDVI at a large regional level (and, therefore, 

climate), and the latter corresponds to a more local level under the influence of district land-use and 
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irrigation practices. The resulting correlation map shows the correlation coefficient only for those 

grid points in which its value is statistically significant (p < 0.05 for NOAA and p < 0.1 for 

MODIS). These maps were obtained for both NDVI products. 

In addition, time series were constructed for each district for the average NDVI over an area of 

approximately 576 km2, selected because it exhibited the highest rank correlation within the given 

district. These time series were then used to fit parametric linear regression models of malaria cases 

for a given epidemic month as a function of NDVI in the preceding months. Since rainfall has been 

of interest as a predictor variable in early-warning systems for desert malaria, the proportion of the 

variance explained by NDVI was compared here to that explained by accumulated rainfall, for every 

month preceding the epidemic season. This allowed a comparison of the predictive skill of NDVI to 

that of rainfall, and an examination of the respective delays between NDVI, rainfall, and epidemics. 

Rainfall was accumulated over the monsoon months based on previous results indicating the 

usefulness of the resulting quantity in malaria transmission models for this region (Laneri et al., 

2010). 

Wavelet analysis 
In order to further investigate the relationship between NDVI time series and malaria, the spectral 

signature of both times series was obtained using wavelet analysis. Wavelet analysis is particularly 

well suited for studying the dominant periodicities of epidemiological time series because of the 

non-stationary nature of disease dynamics (Cazelles et al., 2007; Pascual et al., 2008). By contrast to 

the standard Fourier power spectrum, which provides a global analysis (over time) of the dominant 

frequencies of a time series, the wavelet spectrum is local in time, providing the additional 

information of when a specific frequency is present (for a detailed explanation of the method and 

the interpretation of the results see (Laneri et al., 2010; Cazelles et al., 2007) and (Pascual et al., 2008) 

for an epidemiological application). Here the implementation developed by Cazelles and 
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collaborators (Cazelles et al., 2007) was used which includes the assessment of statistical significance 

based on bootstraps methods. For each district the wavelet power spectrum was calculated for both 

the NDVI and the malaria time series. 

Model and simulations 
In order to interpret and discuss the results of the statistical analyses, a simple model of malaria risk 

was also developed that encapsulates basic elements of the relationship between rainfall, irrigated 

agriculture and mosquito population abundance (Appendix 2.1: A simple model of mosquito 

population dynamics, rainfall and irrigation). The model consists of a set of differential equations 

describing how rainfall water is allocated to different compartments of the landscape (See Fig. S2.3). 

Simulations of the model are used to examine the consequences of increasing irrigated area for (1) 

the seasonal and inter-annual correlation between rainfall and mosquito abundance and (2) disease 

risk measured in terms of mosquito abundance. 

 

Results 
The analyses of the variability and seasonality of the spatially explicit NDVI time series show that 

NDVI inside BMP and Kheda have a very low coefficient of variation (CV) for a large fraction of 

grid points, and that the average peak of NDVI occurred more often in the months of January and 

February (reflecting irrigation for the winter crops). By contrast Barmer and Bikaner both show a 

higher CV for most locations, and the peak vegetation months fall after the monsoon rains and 

preceding the epidemic season (in September and October). Thus, the temporal dynamics of NDVI 

differ across the districts and are altered in the presence of irrigation and associated agriculture (See 

Fig. S2.4). 
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Spatial correlation maps (Fig. 2.2) show that the prevalence of malaria in Barmer and Bikaner, the 

two districts with the lowest irrigation values, has a strong and significant positive association with 

September's NDVI for a large region including parts of the Thar Desert. Thus, high values of NDVI 

in the arid zone precede the observation of an important portion of cases in the consecutive 

months. In the adjacent region with higher levels of irrigation, BMP, only a small part of the district 

shows a positive and significant correlation with NDVI; although an association can still be 

observed with regional NDVI from areas outside the district. This suggests that NDVI has 

weakened as an indicator of rainfall variability but that this variability continues to act to some 

extent as a driver of malaria at inter-annual time scales. At the highest level of irrigation, Kheda 

showed a different pattern: no significant correlation with NDVI is present for any location of the 

study area, inside or outside the district. In this district, rainfall variability appears to no longer act as 

a driver of epidemic size. Similar results are obtained with the more recent NDVI product, MODIS 

(See Fig. S2.5). The parametric linear models show similar results. Barmer, Bikaner and Kutch have a 

high and significant correlation with a coefficient of determination R2>0.7, whereas for Kheda and 

BMP, this association weakens considerably (Fig. 2.3). 

A similar picture emerges from the analysis in the frequency domain. Figure 2.4 shows the power 

spectrum for both the malaria and NDVI time series for the two districts corresponding to the 

extremes of the irrigation spectrum. Results show that for Barmer, malaria and NDVI both show 

strong and significant power in the 2 and 4-year periods. On the other extreme of the irrigation 

intensity, the spectrum for Kheda shows that most of the variance is concentrated in the one year 

period, as expected for seasonal malaria (epidemics), and in the five year period with this multiyear 

cycle absent in NDVI. NDVI shows some power for period 4, but for a small window of time 

(between 1992 and 1998). A general pattern observed in the power spectrum of both NDVI and 

malaria for most all the districts is that as irrigation increases, the time interval during which the 
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seasonal signal (at period one) predominates increases with irrigation (see Fig. S2.7). In Barmer, for 

example, the annual signal is absent for considerable extents of time, with the exception of a few 

years in the early nineties. By contrast, this signal is present in Kheda almost uniformly over time as 

the dominant scale of variability. Concurrently, the times with variance concentrated around period 

2 decrease as the extent of agricultural land under irrigation expands. This is also true for NDVI 

with the exception of Barmer, which shows less activity than the other districts in this particular 

frequency. Although the variance of Kheda is concentrated in the seasonal cycle, the average 

seasonal pattern of malaria incidence in this district also shows a less pronounced seasonality, in the 

sense that the troughs, in the inter-epidemic months, exhibit higher values than in less irrigated 

districts (See Figure S2.2). At the same time, on average, the seasonal incidence during epidemic 

months in Kheda is higher (and not lower). Thus, when epidemics occur, disease burden tends to be 

larger than in the less irrigated districts. This is the case both in earlier and more recent times (See 

Fig. 2.1 and Table S2.1 for the large outbreaks of 2004). 

A comparison between NDVI and rainfall predictability shows that NDVI is a better explanatory 

variable at a lead time of one month (See Fig. S2.7). In August, the best predictor month for rainfall, 

NDVI performed equally well for Barmer, Bikaner, and Kutch. This comparison also shows that for 

BMP, rainfall is a better predictor than NDVI, and that in Kheda neither rainfall nor NDVI can 

predict the size of epidemic events, confirming the decoupling of the malaria system from the 

annual effect of rainfall in the number of cases. 

Consistent with the above results, a dynamical model (see Methods and Fig. S2.3) illustrates that 

mosquito abundance increases as the area of the landscape under irrigated agriculture increases (See 

Fig. S2.8, panel B). However, this increment is only observed for the months in which irrigation is 

supplied to the agriculture (the driest months) and not during the epidemic season. This would result 
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in less pronounced troughs between epidemics and more sustained transmission. It also follows 

from this that irrigation cannot modify the inter-annual correlation between rainfall and mosquito 

abundance in the model (See Fig. S2.9, panel D). Thus, disease risk remains associated with excess 

rainfall, in the absence of additional factors such as intervention efforts or the increase in levels of 

population herd immunity with higher transmission. 

 

Discussion 
The resurgence of  malaria in desert and semi-desert areas of  Rajasthan and Gujarat over the last 

three decades once again underscores the potential relevance of  an early-warning system based on 

climate variability. Any new predictive tool must now also consider the considerable changes in land-

use patterns that arise from irrigation and agriculture. More generally, the long-term surveillance 

programmes in India provided an opportunity to address climate forcing in the context of  changing 

irrigation patterns, a problem of  relevance to desert malaria in other continents. The results suggest 

an increasing decoupling of  malaria with local and then regional rainfall variability that possibly 

reflect more effective control measures, rather than a real reduction in potential risk. This has clear 

implications for control policies as discussed below. 

This work specifically examined the relationship between a remote sensing index of  vegetation 

(NDVI) and malaria in districts that differ considerably in levels of  irrigation. September NDVI was 

shown to provide a reliable predictor of  malaria prevalence during the epidemic period (October, 

November and December) both within the district and in the larger region; however, this prediction 

is strongest in districts where irrigation is low or completely absent. These results provide a bridge 

between predictions at a somewhat longer lead time, in July and August, based on rainfall and the 

actual peak of  cases in October, November and December. For the non-irrigated districts, 
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September NDVI explained the inter-annual variation in the size of  malaria epidemics better than 

the accumulated rainfall of  August and September. The coherence of  malaria and NDVI in the 

frequency domain, with 2 and 4-year cycles, further confirms the importance of  the monsoon rains 

as a driver of  malaria's inter-annual cycles in these arid and un-irrigated regions. 

In contrast, in the highly irrigated districts, Kheda and in the combined Banaskantha, Mehsana, and 

Patan (BMP), the association between NDVI and malaria weakens and NDVI provides a poor 

predictor of  the magnitude of  an outbreak. For BMP this is only the case for NDVI within the 

district and not at larger regional scales. This suggests a persistent role of  rainfall forcing on malaria 

transmission, with irrigation and agriculture mainly compromising how well NDVI reflects this 

variability within the district. For Kheda, the more extreme breakdown of  the association with 

NDVI both inside and outside the district indicates that rainfall no longer determines the size of  

epidemics from year to year. 

Two hypotheses arise as possible explanations of  this breakdown: 1) an increase in wealth with 

irrigation would underlie more effective intervention measures based on residual insecticide spraying, 

which in turn would prevent epidemics under anomalous and large monsoons. More irrigated, 

wealthier districts would therefore experience a greater decoupling than poorly or non-irrigated ones. 

Or 2) the importance of  rainfall has diminished due to changes in either the entomological and 

ecological conditions underlying the vectors' dynamics, or climatic conditions. In particular, multi-

crop systems supported by irrigation and rainfall can continually provide the water necessary for a 

suitable mosquito environment. For example, a study in Pakistan's Punjab region (Johansson et al., 

2009), where malaria used to exhibit pronounced monsoon driven epidemics, described how 

irrigation now provides perennial sites for mosquito breeding, with different vector species breeding 

at different seasons during the year. On longer time scales, both mechanisms might be at play, with 

the development of  irrigation ultimately resulting in more extensive ecological and socio-economic 
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change and a more permanent reduction of  malaria risk (Zurbrigg, 1994). This implies that similar 

effects may occur in Kheda, which currently exhibits similar epidemic timing, but with a higher 

disease incidence (when epidemics occur) than in other districts, suggesting that disease risk 

following anomalous monsoons has not decreased with irrigation, but that intervention measures 

have prevented its manifestation. Indoor Residual Spray (IRS) in these districts is planned at the 

village level based on the incidence of  malaria in the previous year. All the dwellings in villages 

whose annual parasite incidence exceeds 2 per thousand population are targeted for spray in the next 

year and preceding the epidemic season. 

Higher levels of  irrigation and associated wealth would underlie more effective implementation of  

planned IRS, and in so doing keep malaria transmission in check at the same time that malaria risk 

itself  would remain responsive to climate variability (and even increase). This creates the possibility 

of  surprises, with unexpected large epidemics when a temporary failure of  control coincides with an 

anomalous monsoon year. An example of  this is suggested by data on residual insecticide spraying 

in Kheda (See Table S2.1). In 2004, the number of  cases increases dramatically following a series of  

years of  low incidence and low insecticide application. This year also exhibits an excess of  rainfall. 

This large epidemic was then followed by an increase in the level of  insecticide spraying and, 

correspondingly, by low levels of  malaria cases, which in turn gave way to low levels of  control up to 

the present. 

These findings have implications for control policies and the relevance of  a climate-based early-

warning system to control itself. Control in these regions is explicitly reactive in the sense that cases 

in the previous year determine the allocation and planning of  resources for insecticide spraying in 

the next season within the districts. Even in the absence of  such policy, the implementation and 

planning of  control in epidemic regions is likely to be implicitly 'reactive'. This is because a feedback 

is likely to emerge from past disease levels to future human and economic resources allocated to 
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reducing vector abundance and malaria transmission. Whether or not an explicit reactive control 

policy exists, this feedback can operate at time scales longer than one year, depending in a complex 

way on the perception of  the problem and availability of  resources. Thus, our findings have 

implications beyond the specific district of  Kheda to other regions of  epidemic malaria where 

irrigation and its concomitant development underlie more effective control measures. They suggest 

that inter-annual variability in control levels can set the stage for temporal windows of  high 

susceptibility to anomalous weather conditions. They also indicate that remote sensing in indicator 

regions (such as the Thar desert) can be used to forecast the potential risk of  an outbreak given 

regional climate variability, especially when control levels fall to low levels. 

The dynamical model of  mosquito abundance in an irrigated landscape further illustrates the 

persistent role of  climate forcing for disease risk under irrigation. Under irrigation, the seasonal 

relationship between rainfall and mosquitoes is altered, but only in the non-epidemic months (of  

low rainfall). In the epidemic months, mosquito abundance continues to respond to rainfall events 

and, therefore, the inter-annual variability of  mosquito abundance after the rainfall season remains 

unaltered (See Fig. S2.9, Panel D). This is consistent with the scenario of  no decrease in the risk of  

large epidemics in Kheda with increased irrigation, and the persistence of  climatic variability as an 

important factor, now modulated by levels of  control. 

Entomological studies may also shed light on this conclusion. Anopheles culicifacies, the principal 

malaria vector in rural areas of  India, is mainly present in riverine and canal areas, where two peaks 

in vector abundance are observed yearly, one in the monsoon season (Jul-Aug) and another in 

March-April associated with irrigated rice fields (Mukhtar et al., 2003). Although temperatures in 

March increase enough to support mosquito development, temperatures become very high in May-

June, leading to the decline of  vectors' abundance and lifespan. The short vector longevity during 

winter leads to a low sporogony rate, and therefore, a low transmission rate for this period. In the 
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monsoon season, however, optimum temperatures and humidity, and extensive areas for breeding, 

generate suitable conditions for parasite development and large vector populations. 

Finally, this study has considered the particular scale of  the district, at which the epidemiological 

data were aggregated. This may not match well the scales at which irrigation influences 

socioeconomic conditions. In this regard, the complexity of  the interaction between malaria 

dynamics and land-use change, and the long-term consequences of  the interaction between socio-

economic determinants and malaria dynamics, deserve a closer examination. At local scales, 

irrigation can be associated with high mosquito populations, but not necessarily with high incidence, 

a phenomenon known as the paddies paradox (Kant and Pandey, 1999; Ijumba et al., 2001; Ijumba 

et al., 2002). Irrigation also may provide new ways to enhance wealth that subsequently improve 

education levels, housing conditions, or other types of  protective measures taken by the individuals 

in a community or population (Yasuoka et al., 2006; Ng'ang'a et al., 2009). Therefore, in addition to 

control measures implemented at larger spatial scales, the observed decoupling between climate 

variability and malaria can also reflect long-term changes in socio-economic drivers such as better 

coverage by health facilities, self  protective measures, and house improvements. Regardless of  the 

specific mechanism, in areas where the risk itself  persists for anomalous climatic conditions, it would 

be beneficial to incorporate predictions of  this risk based on remote sensing tools in the planning of  

spray interventions. 

Further work is needed to understand the connection between agriculture, mosquitoes, human 

behaviour, and wealth in human-modified landscapes at different spatial and temporal scales. At the 

large scale of  districts, these findings underscore the differential effects of  irrigated landscapes on 

malaria's risk and predictability, including the possibility of  unexpected epidemics that are more 

difficult to predict because of  the complex interaction between climate forcing and control efforts. 

At lower scales, to understand the role of  remote sensing in predicting epidemic risk in different 
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agricultural landscapes and how this risk changes in space and time, more research is clearly needed. 

 

Conclusions 
Remote sensing (the vegetation index known as NDVI) provides a useful predictor of malaria 

epidemics in regions with low levels of irrigation. Increased irrigation modifies the coupling between 

climatic forcing and malaria's inter-annual variability. This decoupling appears to reflect the effect of 

control measures rather than a reduction in disease risk. Thus, early-warning systems based on 

remote sensing in regional indicator regions remain of value to control itself and to the preparedness 

for public health responses. In addition, reactive control policies may lead to unexpected large 

epidemics in areas with increased irrigation, when anomalous rainfall coincides with relaxations of 

control. Prediction efforts coupled to non-reactive control would be of particular value in the 

transition stage from largely rainfall-driven epidemics to a more permanent reduction of the malaria 

risk that would accompany socio-economic development and increased irrigation.  
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Figures 

 

Figure 2. 1 Study area in north-west India and the level of irrigation of each district 

Each line represents a time series of the percentage of agricultural land under some source of 
irrigation (source: district statistical books, Gujarat and Rajasthan). 
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Figure 2.2 Correlation maps 

Spearman rank correlation (ρ) between malaria incidence from October to December and 
September NDVI, for each location (8 × 8 km grid point) of the study area. Each location (pixel) 
then represents the correlation in time between NDVI at this location and malaria incidence from a 
specific district. This boundary of this district is indicated inside each map. A high spatial correlation 
is observed over a large regional area (including the Thar desert), especially for the driest and weakly 
irrigated districts. 

 

Figure 2.3 Linear regression plots 

September NDVI is the predictor of malaria incidence in October, November and December. 
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Figure 2.4 Wavelet power spectrum for malaria incidence and NDVI 

The wavelet power spectra of the cases (panel A) and NDVI (panel B) are shown for Barmer and 
Kheda, the two districts at the extremes of the irrigation gradient (for the rest of the districts see 
Figure S2.6). The wavelet spectrum shows the variance (technically the power) for different periods 
(y-axis) and for different years (x-axis). The scale ranges from blue to red, with red indicating high 
power at a particular year and period. As irrigation increases, the 1-year period becomes stronger and 
the 2 and 4-year periods become weaker.
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Appendices

Appendix 2.1: A simple model of mosquito population dynamics, rainfall and irrigation. 

A relatively straightforward model can be constructed that examines the underlying dynamic 

interactions between rainfall, irrigated agriculture, and mosquito abundance. We use this model to 

interpret and illustrate some of the patterns observed in the statistical analysis of the empirical data. 

In order to keep the model simple, we consider the dynamics of the mosquito population in a 

landscape composed of agricultural and non agricultural land (See Figure S2.3). Specifically, we 

define D the total proportions of a district’s land as follows:  

D = 1 = a + p. 

where a is the proportion of the total area that is designated for agriculture and p is the proportion  

designated for other uses. We also differentiate between seasonal agriculture and agriculture under 

irrigation, such that 

a = i + n 

where i and n are the proportions of land covered by irrigated and non-irrigated agriculture, 

respectively. 

Five equations describe the system: 
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P is the total volume of water that stands in p and W is the total volume of water stored in the canal 

network. An and Ai denote the total agriculture yield obtained in a (respectively, irrigated and non-

irrigated), and M is the mosquito abundance.  

Here f(π) is the bi-annual rain fall cycle, which we characterize using 

r1*(1 + r0*sin(2πfr))  +  m1*(1 + m0*sin(2πfm)). 

m1 is the average extra water due to monsoon events with frequency fm = 1/24 months, and r1 is the 

average annual rainfall with fr = 1/12. e is the evaporation rate of water in puddles, d is the rate at 

which water is drained into W, c is the relative rate at which irrigation evaporates (we assume a value 

around 0.1), and f(ψ) is the rate at which water storage in W is supplied to irrigated agriculture. f(ψ) 

is also a sine wave function with a period of one year and a maximal peak lagging 6 months after 

that of the rainfall season. yn and yi are the conversion constants from water to seasonal and 

irrigated crop production, and h is the crop harvesting rate. Although crop yield most likely differs 

for irrigated versus non-irrigated systems, and this may influence mosquito breeding preference, we 

set yn  = yi to focus on the large scale effect of increasing the area designated for irrigated agriculture. 

ω*W and ρ*P correspond to the contribution of the canal network and accumulated water on p to 
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mosquito abundance, respectively, and αnAn and αiAi correspond to  the contribution of non-

irrigated (seasonal) and irrigated agriculture. In our simulations we assume that αn < αn. 

The total yield of non-irrigated agriculture is assumed to be proportional to the amount of rain that 

falls directly in n. This is denoted by f(π)*n, where f(π) is the total rain that falls onto D. 

Mosquito birth rate is assumed to be entirely dependent upon available water in the district 

(agriculture, non-agriculture land, and canal network), but the potential for mosquitoes to breed 

varies depending on land-use. We ignore larval stages and associated time delays and simply assume 

that mosquitoes die at a constant rate μ. It would be relatively straightforward to add additional 

stages for mosquito biting rates and the abundance of infected and susceptible hosts, but the details 

of this would obscure the main points we wish to make, so we simply assume that mosquito 

abundance is a good index of transmission potential for malaria. 

We initially used the model to examine the seasonal (annual) and inter-annual correlations between 

rainfall (measured by P) and mosquito abundance M. Figure S2.9 illustrates the correlations with and 

without irrigation: With no irrigation, there is a strong relationship between seasonal rainfall and 

mosquito abundance (panel A). When we increase the area of irrigated agriculture, then we see a 

weaker correlation between rainfall and mosquito abundance (Figure S2.9: panel B). However, 

irrigation does not affect the inter-annual correlation, as illustrated in panels C and D.  

We also examine the long-term consequences for epidemic risk of increasing the area designated for 

agriculture under irrigation. We simulated the model for a range from almost no irrigated land i = 

0.01, to thirty percent irrigated landscape, and measure the total mosquito abundance in a year and 

the maximal and minimal values (See Figure S2.8, panels A and B). These simulations show that 
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irrigation leads to an increase in the mosquito abundance (panel B), but it does not affect the 

maximum, which is still controlled by the amount of rainfall (panel A).  

Appendix 2.2: Supporting Figures 

 

Figure S2.1 Time series of malaria incidence 

The y-axis represents the monthly number of cases per 100,000 people. Note that the range in the y-
axis varies across districts. For comparison purposes, see Additional file 2.2. 
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Figure S2.2 Box-plots of malaria incidence and NDVI 

The first row shows the average and the range of anomalies of cases (in logarithmic scale) for each 
district in a gradient of irrigation intensity. The second row shows NDVI from the time series inside 
the districts. 

 

Figure S2.3 Graphical representation of the model. 

The land inside the district is divided into irrigated and non-irrigated agriculture (i and n) and into 
other uses (p). A network of canals drains the water that precipitates on p to supply the production 
of irrigated agriculture. 
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Figure S2.4 Coefficient of variation and seasonality of NDVI 

BMP and Kheda both exhibit low coefficients of variation (red colors) and a peak in NDVI in the 
month of January. (In the left side of both figures, the red colored areas delineate the irrigation tract 
associated with the Indus River in neighbouring Pakistan.) 
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Figure S2.5 Correlation maps using MODIS images. 

Spearman rank correlation between September NDVI from MODIS and malaria incidence for a 
specific district in the epidemic season (the sum of the cases for October, November and 
December). Note that the dataset consists of ten years (and only 7 years for Barmer). At a significant 
level of 0.1, evidence for an association between malaria and NDVI at the regional level is present 
for both Barmer and Kutch. This pattern is less pronounced, however, than for the NOAA NDVI 
data because of the shorter length of the time series for MODIS NDVI. 

 



41 
 

 

Figure S2.6 Wavelets analysis (continuation) 

Similar to Figure 2.4, but for the three districts in the middle part of  the irrigation gradient. The 
picture shows that as irrigation intensified, the 1 year signal became stronger over longer periods of  
time, both for incidence (Panel A) and NDVI (Panel B). 
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year 1996 19
97 
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7 
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8 

200
9 
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10 

rainfall 860 14
55.
6 
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.6 

83 459
.5 

700
.7 

132
.1 

50 935
.7 

454
.44 

454
.58 

- - - - 

prop. 
populatio
n covered 

0.29
9847 

0.1
35
4 

0.1
985
45 

0.1
944
74 

0.1
076
93 

0.0
244
17 

0.0
450
25 

0.0
605
38 

0.0
412
95 

0.3
924
68 

0.3
724
58 

0.2
020
45 

0.0
642
63 

0.0
641
87 

0.
03
68
92 

cases 1117 24
18 

107
7 

631 153 663 174
8 

195
4 

168
55 

251
9 

432 770 574 423 58
1 

Table S2.1Total rainfall, insecticide application and number of cases recorded in Kheda 

The amount of  insecticide use corresponds to the proportion of  the state population covered by 
spray activity in that particular year. Rainfall and cases are the total values for the year. Note that in 
2004 the large number of  cases coincides with anomalous conditions of  rainfall and a relatively low 
level of  insecticide application, not just that year but also for a number of  previous years. In 1997 
and 2001 similar anomalous rainfall conditions did not produce this large number of  cases. 
(Insecticide use data were missing for 2003; the value in the table was predicted by a linear 
regression of  insecticide use at the district level as a function of  insecticide use for 10 talukas, 
administrative units within the district; regression coefficient 0.979). No rainfall data after 2006 are 
available at this point. 
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Figure S2.7 Malaria predictability based on NDVI v/s rainfall 

The x-axis shows the month of  the year used to fit a linear model of  the number of  cases in the 
epidemic season (October to December). The y-axis shows the corresponding R-squared value. 
NDVI is a better predictor than rainfall one month prior (September; dashed line) to the epidemic 
season (October-November-December) for Barmer, Bikaner and Kutch. For BMP, rainfall from 
Banaskantha is a better predictor. For Kheda, neither NDVI, nor rainfall, are good predictors of  
epidemics. 
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Figure S2.8 Maximum, minimum and yearly average mosquito abundance 

Panel A shows that the minimum mosquito abundance increases as the total area under irrigation 
increases, however its maximum does not change. Panel B shows that mosquito abundance increases 
linearly with the proportion of  land under irrigation (i). 
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Figure S2.9 Seasonal and inter-annual correlation 

Correlation between mosquito (M) and precipitation (P) with non-irrigated agriculture (i= 0; panel, 
A and C), and with 30 percent of  the landscape under irrigated agriculture (i= 0.3; panels B and D). 
Seasonal correlation in panels A and B and inter-annual correlation in panels C and D. The values 
for the rest of  the parameters are: n= 0.1; p= (1- n – i); e= 30; d= 200; c= 0.1; b= 120;μ= 18;ρ= 
0.8;ω= 0.1;fn=fi= 3; r1= 200; r0= 0.99; m1= 200; m0= 0.99; h= 5; αn = 2;αi= 3. The annual 
cycle leads to the change in correlation, but not the actual inter-annual variability. 
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Chapter 3 

Malaria and its control in highly variable environments 
 

Abstract 
In areas of the world where malaria prevails under unstable conditions, attacking the adult vector 

population through insecticide-based Indoor Residual Spraying (IRS) is the most common method 

for controlling epidemics. Defined in policy guidance, the use of Annual Parasitic Incidence (API) is 

an important tool for assessing the effectiveness of control and for planning new interventions. To 

investigate the consequences that a policy based on API in previous seasons might have on the 

population dynamics of the disease and on control itself in regions of low and seasonal transmission, 

we formulate a mathematical malaria model that couples epidemiologic and vector dynamics with 

IRS intervention. This model is parameterized for a low transmission and semi-arid region in 

northwest India, where epidemics are driven by high rainfall variability. We show that this type of 

feedback mechanism in control strategies can generate transient cycles in malaria even in the absence 

of environmental variability, and that this tendency to cycle can in turn limit the effectiveness of 

control in the presence of such variability. Specifically, for realistic rainfall conditions and over a 

range of control intensities, the effectiveness of such ‘reactive’ intervention is compared to that of 

an alternative strategy based on rainfall and therefore vector variability. Results show that the 

efficacy of intervention is strongly influenced by rainfall variability and the type of policy 

implemented. In particular, under an API ‘reactive’ policy, high vector populations can coincide 

more frequently with low control coverage, and in so doing generate large unexpected epidemics and 
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decrease the likelihood of elimination. These results highlight the importance of incorporating 

information on climate variability, rather than previous incidence, in planning IRS interventions in 

regions of unstable malaria. These findings are discussed in the more general context of elimination 

and other low transmission regions such as highlands.  

 

Introduction 
Malaria transmission is low and highly seasonal at the edge of the distribution of the disease where 

climate variables, either temperature or rainfall, limit vector abundance and parasite development. 

Thus, in these regions, control efforts unavoidably operate in highly variable environments where 

malaria dynamics are known as ‘unstable’ or ‘epidemic’. It is the interplay of control and climate 

variability in one such environment, desert fringes, that interests us here, especially for the kind of 

dynamic intervention policy that would prove most effective. 

Historically, the discovery of effective and long lasting residual insecticides, such as DDT, 

contributed to a significant extent to WHO’s global initiative to eradicate malaria initiated in 1955. 

These campaigns dramatically reduced India’s estimated annual malaria deaths from an estimated 

million (Russell, 1936) to only a few hundred. When malaria eradication was no longer considered 

feasible at a global scale, policy shifted to treatment of the disease to limit  clinical burden, and the 

use of Indoor Residual Spray (IRS here on) was mostly abandoned and viewed as an expensive short 

term eradication tool. However, with the dramatic resurgence of malaria in South Asia in the mid 

1970s, IRS made a comeback as a proven method to reduce morbidity, but without a careful 

appraisal of spraying methods previously used as a long-term control. The legacy of the eradication 

efforts in India are still visible in the form of an impressive network of diagnostic services 

(microscopy) and the continued dependence on indoor spraying, that proved so effective in large 
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parts of the country where vectors are rather inefficient because they are short-lived and exhibit 

zoophilic behavior. 

Another legacy from the eradication era is the use of the Annual Parasite Incidence rate (API), 

usually expressed as cases per 1000 per year, to evaluate the effectiveness of interventions and plan 

the subsequent phases of the campaign (Najera et al., 2011). In India, areas with API > 2.0 cases per 

1000 population in the preceding 2 years qualified for intervention (NMEP, 1983). Although the 

absolute number justifying IRS intervention has been modified over the years, the reactive nature of 

insecticide use has remained unchanged until the present. In addition to the inherent delays in the 

purchasing and delivery of commodities and supplies, reasons for a response that applies in the 

following transmission season include the practical requirements of a national scale and of a rigorous 

implementation that considers for example the timing of the transmission season after the monsoon 

and the duration of insecticidal activity. The uniform approach that characterized the eradication 

design did not take into account however the dynamic differences of malaria within the country such 

as those between endemic and epidemic regions, and the potential implications of a delayed 

response if elimination were not to be achieved in the short term. 

Thus, an important but often unrecognized consequence of relying on these indices for the planning 

of subsequent interventions is the potentially reactive nature of the public health response. We 

specifically refer here to this kind of response as ‘reactive’ to describe a delayed response whose level 

depends on the disease burden in the past over some temporal window of time, for example cases in 

the last season. This effectively establishes a dynamic feedback between past incidence levels and 

current control efforts. Such feedback can arise either from explicit control policies or from the 

myriad processes underlying the allocation of intervention efforts and the perception of risk in 

public health systems operating under limited resources. Regardless of the actual mechanisms, case-
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detection would trigger control intervention in affected areas leading to the subsequent decrease in 

incidence. This reduction in the number of cases would in turn result in a decreased perception of 

risk leading to the relaxation of control before actual elimination is achieved. Because malaria 

incidence in the absence of intervention would then return to previous levels defined by 

environmental and socioeconomic conditions, a reactive intervention has the potential to generate 

recurrent disease cycles and unexpected epidemics. 

These dynamics are of particular relevance where transmission is ‘unstable’ or ‘epidemic’ and under 

the influence of highly variable environmental drivers such as rainfall. In these regions, climate 

variability is known to generate strong interannual variation in the number of cases (e.g. Laneri et al., 

2010) but its interaction with vector control is poorly understood. Although a vast body of work has 

addressed and compared the effects of particular interventions (Goodman et al., 2001; Guyatt et al., 

2002; Smith et al., 2009; Pedercini et al. 2011; White et al., 2011; Kigozi et al., 2012; Hamusse et al. 

2012), there has not been much work exploring the effectiveness of different strategies under high 

environmental variability (but see Worrall et al., 2007). Here we hypothesize that in these areas 

reactive control policies can generate long cycles between IRS interventions and epidemics, and also 

influence the efficiency of the allocation of resources and the risk of malaria in the long run. 

The long-term malaria control program in the arid northwestern states of India provides a unique 

opportunity to simultaneously follow malaria epidemiology and IRS intervention in a seasonal and 

low-transmission region under strong rainfall forcing, where control policy explicitly defines target 

areas based on the number of recorded cases in previous years. To investigate the dynamical 

consequences of this policy, a coupled human-mosquito transmission model is parameterized for 

this semi-desert region. With this model, the effectiveness of reactive control is also compared 

against that of an alternative strategy based on rainfall variability. Results show that transient 
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multiannual cycles can emerge in the absence of climate variability. When driven by observed daily 

precipitation, the model exhibits intermittent unexpected epidemics corresponding to large rainfall 

events and situations of unpreparedness and inefficient control. These patterns are consistent with 

observations in time series of cases and IRS coverage in the region. Our findings further suggest that 

control efforts whose level is determined based on rainfall itself provide a more effective and 

efficient strategy. 

 

Background and Motivation 

Malaria situation and large scale control strategy in the states of Gujarat and Rajasthan, 
India.  

Gujarat and Rajasthan are the western states of India and their combined population exceeds 120 

million people in an area of 196.000 Km2. In most northern and western districts, total rainfall does 

not exceed 200 mm per year, while in the southernmost districts more than 1000 mm can be 

recorded. High interannual variation in rainfall intensity is observed over the region. As a 

consequence, large fluctuations in the abundance of the mosquito population from year to year can 

be generated, and these fluctuations in vector abundance are reflected in the pronounced interannual 

variability of the seasonal malaria outbreaks (Laneri et al., 2010). The principal species of malaria are 

Plasmodium falciparum and Plasmodium vivax, and the principal malaria vector is Anopheles culicifacies 

(Barik et al., 2009). 

Since the resurgence of malaria in the 1970s, several malaria control intervention strategies have 

been implemented to decrease the burden of malaria in the region (Sharma and Sharma 1989, 

Sharma et al., 1991). The malaria endemicity of an area (village, talukas or districts) is estimated 

based on the number of cases detected by the surveillance system, consisting of clinical malaria cases 
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diagnosed in health centers (passive case detection) and cases brought to light by outreach workers 

(active case detection). Based on  these estimations, the modified plan of operation (MPO) since 

1977 consisted of the use of IRS in rural areas recording an API > 2 from the previous 2 malaria 

seasons (NMEP, 1983). In the last 15 years, this threshold is calculated based on the previous 3 years 

(NMEP, 1995). This policy is reflected in the delayed increase in control levels that follows large 

epidemic years (Fig 3.1).  

 

Methods 

The malaria-mosquito model 

We developed a mathematical model to investigate the temporal dynamics generated under this 

mechanistic feedback between intervention and incidence, and their consequences for the 

interannual variability of seasonal outbreaks and control itself. The model is a coupled mosquito-

malaria model that explicitly considers a control intervention that increases the mortality of the adult 

mosquito population. It is written as a system of differential equations and organized into three 

modules: The first one is the epidemiological module which divides the total human population, N, 

into 4 classes for susceptible (S), exposed (E), infected (I) and recovered (R) individuals respectively. 

The transitions between classes and the structure of the model are represented in the diagram of 

Figure 3. 2, and a more detailed explanation of the model is given in section 8 (Appendix 3.1). 

In particular, the force of infection β or per capita rate at which susceptible individuals become 

infected, depends on the environmental factors that influence the density of the adult mosquito 

population and the mosquito vectorial capacity, as well as the human and mosquito behavior that 

influence their encounter rate and the rate at which mosquitoes bite human hosts. In the model, the 
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force of infection is then expressed as the product of the human biting rate a, the probability that an 

infectious bite becomes an infection b, the ratio M/N of mosquitoes (M) to humans (N), and the 

infectious mosquito fraction W/M. 

The second module of the model tracks the dynamics of the mosquito population (Fig. 3.2) and 

follows closely the general representation in Alonso et al. (2010). This subdivides the vector 

population into larval (L) and adult stages (M) and further subdivides the adult mosquitoes into 

three classes for uninfected X, infected V and infectious W individuals, respectively, so that M = 

X+V+W. The larval birth rate depends on the intrinsic growth rate of larvae F, the density of adult 

mosquitoes M, and the carrying capacity K. The parameter K is defined as the total area available for 

mosquito growth and depends on the amount of water in the environment (P) and the number of 

mosquitoes supported by a unit area (Kr). 

Larvae develop into adults at rate dL and die at a constant rate δL. The larvae that survive per unit 

time dLL become uninfected adult mosquitos X. These mosquitoes become infected  at rate acy 

where c is the probability that a bite of an infected human results in an infected mosquito, and y is 

the proportion of infected humans (y = I/N). We further consider that infected mosquitoes V do not 

transmit the parasite until sporozoites develop in the salivary glands of the mosquitoes. Thus, 

infected mosquitoes become infectious W at the sporogony rate γ. 

A large entomological literature has accumulated for the most important mosquito vectors in India 

(Ramachandra Rao, 1984). This literature provides most of the information needed to parameterize 

the entomological submodel described above for this region based on the most common malaria 

vector, Anopheles culicifacies. For a few parameters, unavailable for this species, we relied instead on 

studies of other Anopheles species (Appendix 3.2). For the human submodel, we adopt the parameter 
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estimates previously obtained by Laneri et al. (2010) for the district of Kutch (Gujarat) with a 

recently developed statistical method for parameter inference from time series data. 

One important aspect of unstable malaria transmission in semi-desert environments is the constraint 

of mosquito population growth imposed by water availability in the environment. This is 

incorporated in a third module of the model via a simple representation of the process of water 

accumulation in the landscape from precipitation and its effect on larval intraspecific competition. 

To estimate the parameters of this conversion of rainfall into mosquito larvae, and in particular the 

carrying capacity, we maximize the likelihood of the model assuming only measurement error 

(Appendix 3.2). Table 3.1 summarizes the parameters of the model as well as their corresponding 

source. 

Control-induced mosquito mortality 

Now we turn our attention to mosquito adult mortality δM and the implementation in the model of 

the reactive policy defined above. In the model we specifically incorporate the effect of IRS 

intervention as an additional mortality rate δC, over the natural mortality δ0, which therefore 

shortens the average lifespan of an adult mosquito, with the total mortality now given by δM = δ0 

+ δC.  

To implement reactive control, we consider δC a function of cases in the previous seasons given by 

∫
−

=
t

t
EItP

c

dtEI
τ

µ)(  

µEI represents the per-capita rate at which individuals in class E move to the class I. That is, IP 

corresponds to the total number of cases added over a given interval of time [t-τC, t] in the past. This 
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expression emulates the API policy described in the background and motivation section. The shape 

of the control function δC is shown in Figure 3.2 and is based on the observed patterns in the time 

series data (See results). 

We compare this strategy against a different one based on the observed rainfall rather than 

cumulated previous incidence. Now δM = δ0 + δR with δR, the control-induced mosquito mortality 

based on rainfall, given by 

Rh
R

R
R +

= maxδ
δ , 

where δmax denotes the maximal extra mortality possible, hR is a half saturation constant, and R is the 

total cumulative rainfall observed over the previous month, 

∫=
R

dtrR t
τ

)( . 

Thus, the magnitude of this response saturates with extreme events. Furthermore, intervention in 

this case only occurs during the rainy season, between June and August for reactive control and 

between July and September for rainfall-based control. 

Assessment of intervention and control effort 
In general it is expected that as the resources and effort put into control measures increase, the 

intensity of the intervention also increases and the number of cases should go down. Thus the 

effectiveness of a control strategy can be measured by the total reduction in risk and will depend on 

the intensity of the intervention or total control effort over the whole window of time considered.  

Here we define the total control effort (TCE) as the sum of the control induced mortality rate (δC) 
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over the period of time ∆T for which the intervention was in place. This quantity can then be 

interpreted as the total budget and resources needed to maintain the extra mosquito mortality over 

the intervention time (Appendix 3.3).  

The assessment of the effectiveness of IRS interventions can be measured in three different ways: 

the direct estimation of the effectiveness of the insecticide, confirmatory entomological assessment 

and the epidemiological assessment of the intervention (Detinova, 1962). The first basically consists 

of checking that the insecticide is working properly, namely that the insecticide is effectively killing 

mosquitoes. For our purposes, we assumed 100 percent effectiveness without loss of generality. 

Confirmatory entomological assessment consists of estimating the total mosquito population that 

was effectively eliminated after the intervention. Of higher relevance to public health officers is the 

epidemiological assessment of the intervention quantified here with the Total Epidemiological or 

Disease Efficacy (TDE) and measured as the total number of cases over the period in which the 

intervention was applied. This is calculated by integrating the total number of new cases (EµEI) over 

a period of time ∆T (Appendix 3.3). 

The relationship between TCE and TDE can be depicted by a simple malaria intervention cost-

benefit curve (MICB; Fig. S3.1). Importantly, the use of this curve allows us to compare the two 

strategies for similar control efforts over the whole period of intervention (e.g. ten years). In this 

way, differences in their effect do not depend on short-term, year to year, differences in allocation 

determined by climate variability. 

Numerical Simulations 
To incorporate climate variability, we forced the model with daily rainfall intensity (mm/day) from 6 

climatic stations in the district of Barmer (Rajasthan). We randomly sampled from this dataset a 

subset of 45 series of 13 consecutive years each, beginning each series and corresponding simulation 
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with a different starting location and time point. For each rainfall scenario, we ran the model for the 

two control strategies over a set of parameter values to cover a large range of control intensities (90 

simulations per rainfall scenario, each one a combination of parameters for the control functions δC 

and δR). Each simulation was run for 13 years, but control was applied only after an initial period of 

3 years to let the effect of initial conditions decrease and disease levels settle around a mean 

determined by rainfall conditions. Only the final 10 years were considered in the estimation of 

effectiveness and effort. For the reactive strategy we consider three possibilities for the previous 

cases IP calculated over for 1, 2, and 3 years (τC) respectively.  

We also ran simulations for the same parameter values (Table 1) but under constant rainfall to 

establish the baseline temporal dynamics that are generated by reactive control in the absence of 

external forcing. A range of values was considered that encompasses observed median rainfall for 

the semi-arid districts of Kutch (Gujarat) and Barmer (Rajasthan) for the last ten years. Because we 

are interested in examining the initial, transient, dynamics but also the long-term temporal patterns, 

these simulations were run for a long time (~2000 years).  

  

Results 

Control under a constant environment 

Figure 3.3 shows the population covered by IRS intervention as a function of the number of cases in 

the previous two years. An increasing and nonlinear relation is observed that saturates for high 

incidence. We note that the period over which this relationship is most evident does not need to 

correspond exactly with that of the policy, especially at the larger scale of the whole district vs. that 

of the local villages. This is because the actual manifestation of the policy depends also on the 
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allocation of human and economic resources and the perception of the problem at multiple levels of 

the administration. 

Based on this pattern, we define the mortality due to reactive control in the model, δC, as an 

increasing function of the number of cases observed in previous years with a saturation form given 

by 

P

P
C Ih

I
+

= maxδ
δ , 

where δmax denotes the maximal mortality rate and h the half saturation constant. This constant 

specifically represents the reactiveness of the intervention by determining how fast the additional 

vector mortality rate rises as a function of IP, the cases observed in the past (section 3.1.1).  

Not surprisingly, in the absence of environmental variability, the long-term temporal dynamics of 

the model exhibits a one year cycle corresponding to the period of the control forcing. In the initial 

transient dynamics, however, a longer inter-annual cycle is observed (Figure 3.4A). This cycle has a 

long period of 10 years for the parameters considered here, as shown in Figure 3.4B. Although its 

amplitude decreases in time, so that this oscillation does not persist in the long-term, it does so 

slowly, over multiple decades. This tendency to cycle is important because it can interact with rainfall 

variability in ways that lead to intermittent and unexpected large epidemics, as evident in our 

comparisons next of the two control strategies under variable rainfall. 

Control under environmental variability 

Without control but under the observed rainfall forcing, the model exhibits high variability in the 

number of cases with patterns similar to those observed in the incidence time series from the 

surveillance program in this region. For similar values of annual and monsoon rainfall (JJA), the 
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number of cases over the same period can vary significantly depending on the specific pattern of 

rainfall variability within and between years (Fig. S3.2A and Fig. S3.2B). Importantly, this variability 

influences the effectiveness and results of the comparison of the two control policies, as we show 

next. 

A reactive policy is typically less effective in decreasing the total malaria burden, independently from 

control effort. This is shown in Figure 3.5, top row, for results that are representative of most of the 

simulations and comparisons, and correspond to a high number of cases in response to rainfall time 

series with high variability from one year to the next. More importantly, under high control effort, 

the reactive policy always misses some epidemics with the consequent decrease in the likelihood of 

elimination.  

There are exceptions however to this typical outcome and these are represented in Figure 3.5, 

second row, where the reactive policy performs better than that based on rainfall. This pattern is 

observed whenever the particular rainfall time series has a succession of consistently high years 

followed by a series of low ones. Thus, a number of successive epidemic events are followed by 

multiple years with low incidence. Here, the superposition of low transmission and forceful control 

over a sustained period of time following the large number of cases effectively drives the disease to 

elimination. 

Another uncommon pattern is illustrated at the bottom row of Figure 3.5. This corresponds to 

situations in which the reemergence of the disease is observed, in a pattern of rainfall essentially 

opposite to the previous one.  Here, rainfall starts with a sequence of low years and therefore low 

transmission. Thus, there is no intervention and also almost no recorded cases over the first 10 

years. After this time, large rainfall events drive two large epidemics. The reactive policy is unable to 

prevent this kind of re-emergence, whereas the rainfall based control does. Finally, we also note that 
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even under high levels of control in some scenarios the reactive strategy cannot generate full 

elimination. 

Discussion 
In many developing countries that suffer a burden of malaria and other infectious diseases, public 

health authorities face the dilemma of how best to allocate limited resources so that social, ecological 

and economic benefits are maximized. Judicious allocation of scarce disease control resources in 

space and time may therefore improve cost-efficiency. In malarious regions of the world where 

spraying of insecticides is the preferred method of vector control, IRS usually constitutes a major 

part of the malaria budget, and its targeted use could apart from reducing expenditure, delay 

developing resistance of vectors. Although originally designed for a short “all out war” against the 

malaria parasite, the practices of reactive insecticide application, that is, the practice of spraying in 

the following transmission season in areas where malaria has exceeded a certain threshold,  has been 

preserved in countries on the Indian subcontinent. 

Emphasis on evaluating the efficiency of IRS has been placed on testing the susceptibility of the 

local vector(s). However, its suitability as long term malaria control strategy for a wide range of 

malaria conditions has never been assessed. In this paper we demonstrated that in a dry region of 

India with epidemic prone (unstable) malaria, this policy can prove less effective and more effort-

costly than a policy based on risk monitoring using rainfall itself. Specifically, our model simulations 

show that under a reactive policy, the feedback mechanism between planned intervention and 

previous incidence generates gaps in control protection as the result of short term achievement 

followed by favorable climatic conditions (Baeza et al., 2011). The combination of variability in a 

climate driver with that of intervention facilitates the temporary breakdown of control and the 

reemergence of the disease within a few years. This can prevent complete elimination even under 
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intense control efforts. Our modeled results are likely to underestimate the true efficacy of such an 

alternative policy, as complacency during periods of low or absent malaria interferes with adequate 

diagnosis and reporting of cases. The frequently reduced availability, and, through lack of practice, 

competence of microscopists, undermines the reliability and validity of diagnostic services that are 

the foundation of a reactive intervention policy. In addition, the inadequate stock management of 

anti-malarial drugs is usually responsible for the high burden in regions of occasional epidemic 

malaria. 

In the past, public health authorities have noted that one of the most common causes of the failure 

of malaria eradication programs in India has been the lack of appreciation by the authorities of the 

re-emergence of malaria as a problem (NMEP, 1983) and in a recent review on the resurgence of 

malaria around the world, Cohen et al. (2012) have concluded that in most cases these patterns 

follow the relaxation of intervention with budget constraints and resource limitations. Our results 

underscore that this phenomenon can also occur on shorter time scales of years and in a recurrent 

fashion under climate variability. Preventing this feedback from operating would be important in the 

planning for long-term campaigns, whether it originates from an explicit policy or a suite of implicit 

mechanisms related to the allocation of resources and the perception of risk, especially as the critical 

point of elimination is approached. 

 In our model, a rainfall based control strategy, contrary to a reactive one, creates a coupling 

between the natural periodicity of the disease and its control application. Including this mechanism 

in the intervention ensures a more efficient and effective targeting of the mosquito population in 

periods when transmission intensifies. Mosquito/malaria control programs that include the natural 

inter-annual variability of the disease might increase the epidemiological efficiency of these 
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interventions in the long term, in support of the proposed importance for long term control 

strategies of incorporating a better understanding of the ecology of the vector (Ferguson, 2010).  

Rainfall has been used in the first half of the 20th century in the epidemic prone Punjab as a guide to 

rationally distribute scarce resources of quinine and aid its swift availability in districts most at 

epidemic risk (Swaroop, 1949). For climate based predictions to be operational today, however, 

these must be obtained with a sufficient lead time relative to the epidemic season, as the logistical 

planning of vector control requires preparing for the mobilization of large quantities of insecticide, 

workers and information. Our alternative rainfall based IRS policy would have faced serious 

practical limitations in the past with the limited number of rainfall gauges deployed, reporting delays, 

and the requirement of completing the campaigns before the transmission season takes off. 

Quantitative data of rainfall and, more importantly, its precise distribution can now be monitored 

almost in real-time using remote sensing. To extend lead times of early-warnings, teleconnections are 

also sought that have a basis in physical atmospheric and oceanic mechanisms, and take advantage 

of ocean regions that remotely influence the interannual variability of regional climate drivers of the 

disease in the area of interest (Cash et al., 2013). For example, Sea Surface Temperatures in the 

Tropical South Atlantic can help anticipate malaria prone conditions for the arid Northwest India, 

with a lead time a couple of months longer than that of local rainfall itself (Cash et al., 2013). A 

similar approach motivated the use of Sea Surface Temperatures in the Tropical Pacific to anticipate 

anomalous cholera outbreaks in Bangladesh, lengthening the lead time to nine months in this case 

(Cash et al., 2008; Cash et al., 2009; Cash et al., 2010). The large variability in the relationship 

between the monthly rainfall distribution and the number of cases observed here in different 

simulations with different rainfall time series suggests that in addition to interannual variability, 

short-term (daily) fluctuations also matter (Fig. S3.2B). The consideration of daily temperature 
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variation has already been emphasized for climate change and malaria (Paaijmans, 2010), and 

similarly a better understanding of intra-annual rainfall variability is also lacking. 

Historically, rainfall related cycles of malaria have been evident in the semi-arid regions of India 

since the mid nineteenth century. These followed a cycle of 7 years bearing the signature of ENSO 

(Bouma and van der Kaay, 1996). Interestingly, the potential cycling of malaria in our model results 

exclusively from a reactive vector control policy. Although this tendency to cycle over ten years 

post-dates the historical epidemics, it may have contributed to the complexity of the periodic 

exacerbations of malaria observed in the second half of the 20th century. 

Epidemic preparedness has improved in Western India in the last decade with more frequent 

electronic reporting of malaria cases and rapid selective spraying as response to outbreak within the 

same year, changes that have strengthened the traditional reactive policy. However, modern rainfall 

monitoring and rainfall predictions with a longer lead-time may further aid malaria forecasting and 

preparedness also in the context of fast-response interventions. 

In a semi-desert epidemic prone region and under low transmission, the guidance of IRS 

intervention by local environmental drivers proved to be a more efficient strategy than a delayed 

“fire-fighting” policy. This conclusion might also apply to other low transmission regions, such as 

highlands, where malaria dynamics are also highly seasonal and under strong climate forcing. For the 

particular parameters considered here, our malaria transmission model generated transient multi-year 

cycles in the size of seasonal outbreaks. These transient cycles are the basis for the observed failure 

of the reactive control when coincident with some of the large rainfall events. An analytical study of 

the model dynamics will follow to investigate the generality of this cyclical behavior under different 

transmission intensities and under different environmental drivers. 



65 
 

Figures 
 

 

Figure 3. 1. Cases and IRS intervention for the districts of Ahmedabad (2000-2008) and Kheda (1995-2009) in 
the state of Gujarat. 

The grey lines represent the percentage of population covered by IRS intervention over the same period. 
Cases for Kheda correspond to Plasmodium falciparum, whereas those for Ahmedabad are the sum of infections 
by Plasmodium falciparum and Plasmodium vivax. 

 

Figure 3. 2 Diagram of the coupled-mosquito malaria transmission model. 

Rainfall provides suitable areas for the development of larvae that generate adult mosquitoes. These 
mosquitoes can be uninfected X, infected V, or infectious W. Transmission occurs at rate β from 
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mosquitoes to humans and acy from humans to mosquitoes. Total adult mosquito mortality δM is a 
combination of natural and control induced mortality.  

 

Figure 3.3 Cases vs. Control. 

The nonlinear relationship between the number of observed cases reported in the two previous 
years (x-axis) and the level of population covered by the subsequent IRS intervention (y-axis) for the 
district of Kheda. The dashed line is a fitted curve of the form y=Ax/(B+x). This functional form is 
used in our model to simulate the ‘reactive’ control function δC. 



67 
 

 

Figure 3.4 Malaria and control dynamics without environmental variability. 

The top panel shows the time series of new infected individuals (µEIE(t); darker line) and control 
application in terms of the control-induced mosquito mortality (δC; lighter line) at the beginning 
(transient) phase of the simulation. The graph below shows the periodogram power spectrum for 
the same time series, that is the power (or variance) corresponding to each frequency. A peak in the 
spectrum indicates a characteristic cycle in the data. Although an annual cycle of period 1 
corresponding to the control-forcing dominates the dynamics, a longer interannual cycle with a 10 
years period (grey dashed line) is also present in the transients. This cycle eventually decays, leaving 
only the one year periodicity, but does so over a relatively large period of time. This figure illustrates 
that even in the absence of environmental forcing, multi-annual cycles can be generated following a 
perturbation by reactive control. 
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Figure 3.5 Comparison of control strategies. 

The first column on the left shows three examples of daily rainfall time series. For each of these, we 
simulated the model over a range of control intensities (by varying δmax and h) and compared the 
effect of the two different control strategies, based respectively on (1) total incidence over a window 
of time in previous years (in red)  and (2) total rainfall in the previous month (in green).  The plots in 
the second column summarize results from an ensemble of simulations in the form of a malaria 
intervention cost-benefits curves. The curves are created by plotting each simulation as a point for 
the Total Control Effort (TCE; x-axis) and the Total Epidemiological/Disease Efficacy (TDE, y-
axis) as defined in the text. Triangles, sums and crosses symbols correspond to different numbers of 
years for cumulating incidence in the reactive response, respectively 1, 2, and 3 years. Inside the 
dashed lines are simulations in which the control effort TCE is the same for both strategies. The 
third column shows the time series of new cases (mid-right column) observed under such similar 
control intensity. The black dashed line represents the new cases observed in the absence of control. 
The left-most column shows the control intensity (δC) time series for the scenarios described above. 
The example on the top row illustrates the most common outcome of the ensemble of outcomes 
observed in the simulations, and corresponds to situations with the larger number of cases in the 
absence of intervention. In this case rainfall-based control outperforms the reactive strategy. 
Exceptions to this pattern are illustrated with the cases in the second and third row (as described in 
the text).  

 
 

Sub-
model Parameter name Symbol/Function 

Parameter 
value Units References 
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M 
Human blood 
index HBI 0.032 

Human 
bood/total 
blood 

DeZoysa et al. (1998); 
Reisen and Boreham (1982) 

M Gonotrophic cycle g 2.2 days Sloof and Herath (1980) 

M & H Human biting rate a=HBI/g 0.015 
human 
bites/day 

Calculated from HBI and g; 
Reisen and Boreham (1982) 

M Probability (M→H)  b 0.64   Alonso et al. (2010) 

M 
Average 
Temperature Te 28 

degree 
Celcius 
(°C) 

Fan and vanden Dool 
(2008) 

M 

Critical 
developmental 
temperature for P. 
falciparum Te_c 16 

degree 
Celcius 
(°C) Detinova (1962) 

M Degree days D 111 days Detinova (1962) 

M 
Duration of 
sporogony st=D/(Te-Te_c) 9.25 days Detinova (1962) 

M Sporogony rate γ=1/st 0.108 1/day Calculated from st 

M Probability (H→M)  c 0.3   Alonso et al. (2010) 

M Per-capita fertility f 56 L/M Ramachandra Rao (1984) 

M 
Larvae intrinsic 
growth rate F=f/g 25.45 L/M*day Calculated from f and g 

M 

Larvae to adult 
survival 
probability at Te s 0.6   Bayoh and Linday 2003 

M 

Larval 
developmental 
time at Te td 10 days Bayoh and Linday 2003 

M 

Larval 
develomental rate 
at Te dL=s/td 0.06 1/day Calculated from s and td 

M 
Larval mortality 
rate δL 0.01 1/day 

Russell and Ramachandra 
Rao (1942b) &  
Ramachandra Rao (1984) 
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M 
Adults natural 
mortality δ0 0.08 1/day 

Russell and Ramachandra 
Rao (1942a) 

M 
Local carrying 
capacity Kr 6.33 L/m2 Estimated 

H Human lifespan 1/δH 55 years Laneri et al., 2010 

H Human birth rate 1/br 55 years Laneri et al., 2010 

H 

Per-capita 
epidemiological 
transition rates 
{S,E,I,R} µij   1/year Laneri et al. (2010) 

H Human Population N 203150 person 
Taluka (sub-district) 
average from Census 

W Evaporation rate e 2.63 1/day Estimated 
W Surface area A 3523 Km2 Average taluka area 

Table 3.1 Parameter values and their corresponding source for the coupled mosquito-human transmission model. 

Those parameters inferred by fitting the model to the time series data (Section 3) are indicated as 

‘estimated’.
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Appendices

Appendix 3.1: Mathematical description of the model  

 Entomological submodel and water dependence 
The model includes a structured mosquito population composed of larvae and three adult stages for 

uninfected X, infected V and infectious W mosquitoes. 

The rate of change in the mosquito population for the different classes is described by the set of 

differential equations 

WV
dt

dW
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dt
dV
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dt
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Our model includes a water reservoir P based on the rain r(t) that falls in the area A and its 

evaporation at rate e. This water in the system represents the limiting resource for larvae to grow. In 

the model we assume that the mosquito larvae population grows logistically with a carrying capacity 

K proportional to P, the total water in the landscape. K = KrP, where Kr is the maximum number of 

larvae than can be supported per square meter of surface of the water bodies. Thus, the number of 
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larvae that can recruit to the system will change according to the availability of water in the 

landscape. 

The mosquito intrinsic growth rate F is a function of the per-capita fertility f, the number of new 

larvae per female oviposition per unit of time, and the gonotrophic cycle g (Appendix 3.2). Larvae 

will develop into adults at rate d, and those that do not complete the process will die at rate δL. 

Epidemiological submodel 
This system follows Laneri et al (2010) and is an extension of the classic Ross-Macdonald model that 

follows the number of individuals in each of four different classes, for susceptible S, exposed E, 

infected I, and recovered R respectively. The temporal changes in the number of individuals in each 

class is described by the set of differential equations  

RRI
dt
dR

IIE
dt
dI

EES
dt
dE

SNbSR
dt
dS

HRSIR

HIREI

HEI

HrRS

δµµ

δµµ

δµβ

δβµ

−−=

−−=

−−=

−+−=

 

where µij represents the per-capita rate at which individuals in class i move to the class j. The model 

assumes a loss of immunity in the host at rate µRS>0. The parameter br corresponds to the natural 

birth rate of the population whose total number of individuals is N (where N = S+E+I+R). δH 

denotes the natural mortality of the human host. We assume that the human population remains 

constant so that br = δH, and that there is no disease induced mortality. The force of infection, the 

rate at which susceptible individuals become infected, is defined as 
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M
W

N
Mab=β  

where a is the vector’s biting rate, the number of mosquito bites per human per day, and b is the 

probability that a bite by an infectious mosquito will produce an infection in the human host.  Thus, 

aM/N represents the encounter rate and bW/M, the probability that this encounter results in an 

exposed individual. 

Appendix 3.2: Model parameterization 

Entomological parameterization 
We based our choice of parameters on the entomological literature on the most common malaria 

vector in this area of India, Anopheles culicifacies. Where parameters were not found for this 

species, we relied on studies of other Anopheles species.   

Biting rate 
Compared to other mosquito species, A. culicifacies is a relatively poor vector due to its zoophilic 

behavior.  Using the derivation calculation of Reisen and Boreham (1982), the human biting rate of 

A. culicifacies can be estimated as  

a=HBI/g 

where HBI is the anthropophagic or human blood index. This is the proportion of human-positive 

blood meals among all over positive reactive mosquito meals. g is the gonotrophic cycle. This is the 

number of days that it takes a mosquito to bite, lay the eggs and find the next victim. Estimation of 

the human biting index has been conducted by Reisen and Boreham (1982) in the province of 

Punjab and by DeZoysa et al. (1998) in Sri Lanka. Sloof and Herath (1980) and Ramachandra Rao 

(1984) have provided estimates of the gonotrophic cycle for A. culicifacies. They found values of 1.7 

and 2.2 days. In this work we use the maximum of this range. 
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Mosquito growth rate  
The population growth rate of larvae depends on their intrinsic growth rate and the death rate. The 

intrinsic growth rate F is defined as 

F=f/g 

Where f denotes the per-capita adult fecundity (new larvae per adult mosquito oviposition) and 1/g 

is the length of the gonotrophic cycle. f has been estimated by Russell and Ramachandra Rao 

(1942a). The death rate δL was estimated by Russell and Ramachandra Rao (1942b). 

Parasite developmental rate in the mosquito 
The rate at which sporozoites develop depends on the Plasmodium species as well as on the 

temperature of the area. The derivation of this rate for Plasmodium falciparum was based on Detinova 

(1962), which defines the days needed for sporozoites to develop as follows: 

1/γ = D/(T-TC) 

Where D measures the number of days it takes the parasite to develop under conditions of 1 degree 

above the critical temperature TC, the value below which sporozoites will not form. T is the 

temperature of the environment. We maintain this constant throughout the experiment at a value of 

28 degrees. This is the average surface temperature in the district of Kutch during the last ten years. 

Table 1 summarizes each parameter, as well as the reference from which the respective parameters 

were obtained. 

Statistical estimation of unknown parameters 
We consider that the incidence values observed by the surveillance system are those produced by the 

model but with a measurement error. Specifically, let y be the total number of new cases recorded by 

the surveillance system in a particular month. We model these cases as 
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),(~ σCtnegbinyt , 

with 

∫
−

=
t

t
tEI dtECt

1
)(µρ . 

ρ gives the reporting rate of the cases Ct, and negbin(a,b) indicates a negative binomial distribution 

with mean a and variance a + a2b. This distribution allows for overdispersion of the error and 

maintains positive and discrete counting of cases. Our estimation approach compares the model 

predictions against the monthly cases reported in the district of Barmer between the years 1994 and 

2010, and maximizes a likelihood defined as the probability of observing the data under this model. 

We choose this particular district of Rajasthan because of negligible control levels, and therefore 

presumably no interference by control in the estimation of the particular parameters. The maximum 

likelihood estimation of the parameter Kr, e, ρ, and the size parameter of the binomial distribution 

function were obtained using the Nelder-Mead algorithm in the function Optim, in R (Bolker, 2008). 

This method estimates parameter values that generate similar dynamics to those observed in the data 

(Fig. S3.3). 
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Appendix 3.3: Quantification of the effort and effectiveness assessment of control 
intervention  

In the model the direct quantity of the intervention effort per-day is the vector mortality induced by 

the control.  On a per-capita basis, this corresponds to δC∆t. Thus, during a period of time the total 

control effort (TCE) can be defined as  

∑ ∆tδc=TCE  

This quantity measures the total effort applied to reduce the mosquito population for the total 

duration of control (∆t; e.g. 10 years). TCE can also be viewed as reflecting the total resources 

needed for vector control over this time. 
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A more intuitive way to quantify this effort would be to quantify the average total population that is 

effectively covered per year (Supplementary data, Figure 3.4).  We consider that over a season, and 

therefore the yearly round of intervention, the rate of population coverage per day, denoted by λ, is 

proportional to the average control-induced mortality rate, so that   

λ
δ

α =∑
T

c
 

where the sum is over the season of T=90 days, and α is the proportionality constant. 

Thus the temporal change in the population that remains unprotected by IRS intervention follows 

an exponential model of the form 

N
dt
dN λ−=  

and the total population covered can be calculated as 

)1( t
C eN=N λ−−  

To set α, we consider that a constant application of the maximum control rate results in a total 

population covered after T=90 days of Nmax.  It follows that 

T
Te

N
N ∑−

=
maxmax δα

 

and 
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The epidemiological assessment of a control intervention is defined as the decrease in the total 

number of new cases over the period in which the intervention was applied. The new cases at each 

time step are µEIE(t)dt. Integrating these cases over the intervention period ∆T we obtain, 

∫
∆t

EI dttE )(µ  

the Total Disease Efficiency (TDE). 

Appendix 3.4 Supportive figures 

 
Figure S3 1 Malaria intervention cost-benefit curve 

The curve is constructed by calculating the total disease efficacy (TDE, y axis) for a particular total 
control effort (TCE, x axis). The figure depicts two situations that can arise when comparing two 
hypothetical strategies under the same conditions: In scenario A, one of the strategies (dashed line) 
is always more efficient than the other (solid line), no matter how much effort is applied, and 
elimination is reached at a low level of control effort. Scenario B depicts a situation in which one 
strategy is better than the other under low intensity, but the opposite ranking happens under high 
intensity. Thus control strategies may vary in the shape of the MICB curve, which allows for 
comparison between different strategies. We used this curve to quantify the two strategies of control 
intervention over a range of situations dictated by observed patterns of rainfall variability. 
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Figure S3.2 Maximal likelihood estimation of parameter Kr and e 

To the left the daily rainfall record for the station in Barmer (Log likelihood = -2721.047). The plot on 
the right shows the observed (grey line) and estimated (black line) new cases of Plasmodium falciparum, 
using the “best” parameters. The parameter values obtained for Kr and e where 6.339 and 2.6 
respectively. No data between 2004 and 2006 was possible to obtain. The model does not capture the 2 
epidemics of 2001 and 2003, a relative dry period according to the rainfall record for this station. 
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Figure S3.3 Comparison of MICB curves for total population covered 

Total population covered by intervention (Appendix 3.2) replaces here the measurement of total control 
effort in the x-axis of these curves. To calculate the conversion factor α we assumed a maximal population 
covered over a season of 90%. Otherwise, the simulations are the same as those of Figure 3.5. The leftmost 
plot exemplifies the most common outcome observed in the ensemble of simulations. Towards the right, the 
second and third plots correspond to the two other scenarios presented in figure 3.5. 

 

Figure S3.4 Rainfall variability and malaria epidemics 

Panel A depicts the relationship between total rainfall over a period of 13 years (x-axis) and the total cases 
observed (with no control) over the same period (y-axis). Each point represents one of the rainfall scenarios 
in which control interventions were applied. Panel B shows monsoon rainfall (June-August) and epidemic 
cases (Sep-Dec). Each point is now one year. The grey dashed line shows an arbitrary rainfall threshold of 
100mm. Bellow this threshold no epidemic were observed. Both plots exemplify the importance of the 
distribution of rainfall events on the magnitude and the occurrence of epidemic events. 
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Chapter 4 

Long-lasting transition toward malaria elimination 
under irrigation development 

 

Abstract 
In arid areas, people living in the proximity of irrigation infrastructure are potentially exposed to a 

higher risk of malaria due to changes in ecohydrological conditions that lead to increased vector 

abundance. However, irrigation provides a pathway to economic prosperity that over longer time 

scales is expected to counteract these negative effects. A better understanding of this transition 

between increased malaria risk and regional elimination, in particular whether it is slow or abrupt, is 

relevant to sustainable development and disease management. By relying on space as a surrogate for 

stages of time, we investigate this transition in a semidesert region of India where a megairrigation 

project is underway and expected to cover more than 1,900 million hectares and benefit around 1 

million farmers. Based on spatio-temporal epidemiological cases of Plasmodium vivax malaria and 

land-use irrigation from remote sensing sources, we show that this transition is characterized by an 

enhanced risk in areas adjacent to the trunk of the irrigation network, despite a forceful and costly 

insecticide-based control. Moreover, this transition between climate-driven epidemics and sustained 

low risk has already lasted a decade. Given the magnitude of these projects, these results suggest that 

increased health costs have to be planned for over a long time horizon. They further highlight the 

need to integrate assessments of both health and environmental impacts to guide adaptive mitigation 
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strategies. Our results should help to define and track these transitions in other arid parts of the 

world subjected to similar tradeoffs. 

 

Introduction 
In agricultural economies, food insecurity imposes a strong pressure to extend agriculture to 

marginal areas. In low-rainfall regions, irrigation offers considerable rewards, creating water 

resources for irrigation and other usage. On either side of the border of India and Pakistan, an 

extensive arid region is intersected by large rivers carrying water from the Himalayan glaciers and 

rainwater from a short rainy season. Hundreds of millions of people depend on the southwestern 

monsoon for their survival. Over the centuries, its periodic failure and severe ensuing drought and 

famine conditions have provided a strong incentive to develop and extend irrigation. The continuing 

expansion of the Indian population in the 21st century adds further pressure to optimize the 

country’s water resources for agriculture, fisheries, industrial and general usage. 

The development of water resources, in the context of malaria and dengue, exemplifies a central 

challenge in sustainability science: how can we achieve socioeconomic development based on land-

use transformations, with concomitant increases in human well-being, when the transformations can 

compromise ecosystem services and human health for present and future generations? 

For arid regions, concerns have been raised about the consequences for malaria epidemiology 

resulting from ecological changes subsequent to the arrival of irrigation, with several studies 

reporting local increases in prevalence and parasitemia (Jayaraman, 1982; Yohannes et al., 2005; 

Yewhalaw et al., 2009; Srivastava et al., 2009). By increasing surface water levels, irrigation modifies 

eco-hydrological conditions of the landscape, creating more standing bodies of water for longer 
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periods of time (Sharma; 2001), thereby increasing the abundance of mosquito breeding sites and 

adult vector populations (Yadav et al., 1989; Amerasinghe et al., 1992; Amerasinghe and Indrajith, 

1994; Konradsen et al., 1998; Herrel et al., 2001; Claborn et al., 2002; Dia et al., 2010; Kibret et al., 

2010). In addition, agricultural development can, increase the frequency of human-vector contact, 

when human labor and mosquito breeding seasons are synchronized (Doannio et al., 2002), and 

promotes migration to newly irrigated areas (Shah and Singh, 2004), thus changing the spatial scale 

of malaria transmission. The global population at risk of contracting malaria due to proximity to 

irrigation infrastructure has been estimated at around 800 million, which represents approximately 

12% of the global malaria burden (Keiser et al., 2005).  

In these dry, fragile ecosystems, where increase in water availability from rainfall is the limiting factor 

for malaria transmission, irrigation infrastructure can drastically alter mosquito population 

abundance to levels above the threshold needed to maintain malaria transmission. In northwestern 

India, an increase in domestic and para-domestic water storage support Anopheles stephensi, India's 

urban malaria vector. In the desert areas of Rajasthan, a rise in malaria associated with A. culicifacies 

has been reported following large-scale irrigation development by the Indira Gandhi canal (Tyagi 

and Yadav, 2001; Tyagi, 2004). Currently, seasonal epidemics of mainly Plasmodium vivax occur in 

these semi-deserts, at the edge of the geographic distribution of the disease. At these fringes, P.vivax, 

with its relapses (White, 2011), has a competitive advantage over P. falciparum the more malignant 

form of malaria that also occurs in India. P. falciparum, less able to persist in unfavorable 

transmission conditions, is less consistently present in this region, and displays more interannual 

fluctuations. Because we are mostly concerned with the seminal changes of malaria resulting from 

irrigation in the area, we have in this study focused on changes of P. vivax. 
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Despite these environmental changes favoring transmission, historical studies in the semi-arid 

regions of Pakistan and the former Punjab Province have also documented irrigation-based 

development having the opposite effect. With the arrival of irrigation in the latter half of the 19th 

century, large-scale migration and colonization followed, and the regional malaria burden initially 

rose dramatically (Darling, 1925; de Zulueta et al., 1980). However, the Eastern and Western Punjab 

of former British India, part of India and Pakistan, respectively, since 1947, are now rich agricultural 

regions with low malaria prevalence. 

Apparently, ecological and socioeconomic factors alter the dynamics and distribution of the parasite, 

the vector and human susceptibility, from the arrival of irrigation to its long-term stabilization. 

Although previous studies taken together suggest that different effects operate over different time 

horizons (Klinkenberg et al., 2004), observations typically correspond to different stages of the 

developmental process, local in time or in space. No study to date has followed remotely sensed 

irrigation characteristics and malaria levels simultaneously over a period of time that encompasses 

these different stages, or over large regions whose irrigation gradient provides a surrogate for these 

temporal stages. 

The long-term malaria surveillance program in arid northwestern India provides a unique spatio-

temporal data set for considering just such a gradient in irrigation intensification over the last fifteen 

years. By following the changes in malaria incidence, vegetation and socioeconomic data at the level 

of sub-districts, we identify a transition phase toward sustainable low risk (elimination) lasting for 

more than a decade, and characterized by an enhanced environmental malaria risk despite intensive 

mosquito control efforts. This protracted phase highlights the need for considering health impacts in 

the long-term planning, assessment and mitigation of projects related to water resources.  
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Results 

Study area  

This research was conducted in a semi-arid area of the northeast part of the state of Gujarat, in the 

districts of Kutch, Banas Kantha and Patan (Fig. S1). These districts are divided into 25 sub-districts, 

or talukas, for which the epidemiological surveillance data is aggregated (Fig. 4.1 Panel A). Due to 

the influence of the southwest monsoon, rainfall is extremely variable from year to year in the 

region. Annual rainfall ranges from 120 in western part of Kutch to 600 mm in the eastern border of 

Banas Kantha, and is concentrated between the months of June and September. This climatic 

pattern creates strong seasonal malaria and high variability between years (Laneri et al., 2010; Baeza 

et al., 2011). The peak of the epidemics usually varies from August to November, depending on the 

parasite species and the timing and length of the rainfall season (Bhatt et al., 2008). 

Spatial-temporal patterns of malaria and irrigation  

Strong and long-lasting differences exist in malaria population dynamics between the talukas located 

in the eastern and the western parts of the study area. We identified these two main regions 

(depicted in red and green colors in Fig. 4.1 Panel A) using a Bayesian statistical method that 

identifies groups of spatial locations (talukas) whose temporal disease dynamics are similar 

(Baskerville et al., 2013; Methods). These differences, observed for P. vivax reflect distinct overall 

incidence levels, as illustrated by the time series of the monthly cases accumulated for each group 

(Fig. 4.1 Panel B). The identified grouping was robust to changes in modeling assumptions 

(Methods). A similar pattern was also observed for P. falciparum, the species with the lower and less 

consistent regional presence. Throughout the entire region a slow declining trend is also apparent, 

presumably as the result of the intense level of mosquito control intervention in the area (Dattani et 

al., 2009). However, due to the dynamic interplay between rainfall and control intervention in the 
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region, which can cause a tendency to cycle at decadal time scales (Baeza et al., 2013), caution is 

needed in extrapolating this trend to the future. 

The identified differences in malaria population dynamics are strongly coherent with long-term 

irrigation patterns. Figure 4.1 Panel C shows a map of irrigated areas for the year 2009 obtained 

from remote sensing information and the spectral signature of important crops in the area 

(Methods). In this figure, two regions are also apparent and closely map onto the malaria clusters. 

Whereas the westernmost sub-districts in Banas Kantha and Patan are intensively irrigated (mainly 

from deep-wells) and have been for over 30 years (Fig. S4.2), the eastern ones, in Kutch and parts of 

Patan and Banas Kantha, have little irrigation. Thus, we refer to these two regions as “mature 

irrigated” and “low-irrigated”, respectively. Figure 4.1 Panel D shows the epidemic vulnerability of 

the low irrigated areas after above normal monsoon rains for the year 2003. The incidence of malaria 

recorded in the low-irrigated zone (red dots) was more than twice the burden observed in the 

mature irrigated one (green dots). This particular large epidemic followed a very dry year (2002) with 

little malaria, and a reduced (re-active) insecticide coverage response in 2003 (see Methods for 

insecticide application policy). Thus, although this particular year exhibits an increase in incidence at 

every location, the ranking in epidemic size is consistent with the two spatial clusters defined over 

the whole period of study, despite differences in local climatic conditions or control intervention.  

Are these differences in malaria risk between the mature-irrigated and low-irrigated areas associated 

with the overall level of development and wealth of these two main regions? Table 4.1 summarizes 

the results from a statistical comparison between high and low malaria risk zones in terms of 

socioeconomic indicators for the year 2001 (Methods). In general, high-risk talukas had a lower 

proportion of literate people and more limited access to sources of improved drinking water. In 

addition, no significant differences were observed between the percentage of people with access to 
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state-supplied public health and medical facilities, and education. The differences between the 

proportion of people with access to credit from agricultural societies, however, are pronounced, 

with 80% of the farming communities living in the low-risk malaria area having access to credit for 

improving agricultural practices, compared with only 60% of those living in the high-risk area.  

Change in irrigation and malaria risk in last decade  

Currently, a large irrigation project is under expansion at the edge of the mature irrigated and low-

irrigated sub-districts (Fig. 4.2 Panel A). Most of the low-irrigated territory is expected to receive the 

complete intended water supply for agriculture and human consumption by the year 2014. Since we 

do not have direct information on yearly irrigation, and therefore, on the annual change that has 

occurred during the same period of time for which the epidemiological and control data were 

obtained, we estimated these changes by relying on the yearly variation in vegetation coverage during 

the peak of the irrigation (Rabi) season (January). During this period without rain, most of the 

satellite-observed vegetation in this arid environment should be the result of irrigated crops, an 

assumption that is supported by the observation of the seasonality of the Normalized Difference 

Vegetation Index (NDVI) in the area (Fig. S4.3), and the spatial clustering of the vegetation outside 

the rainy season. Taking advantage of this seasonality and the map of true irrigation from the year 

2009, we develop a classification based on a threshold value of NDVI to separate mature irrigated 

and low-irrigated locations (pixels) (Methods). Figure 4.2 Panel A shows the areas classified as 

irrigated and non-irrigated for the years 2001, and Panel B shows in red the areas classified as 

irrigated in 2009 but not in 2001. This latter map highlights that most of the change in irrigation 

(outside the monsoon season) during the last decade took place in the fringe zone between the 

mature irrigated and low-irrigated regions. These ecological changes occurring on the border match 

the path of the main irrigation canal of this mega-irrigation project taking place in the area of study 

(Fig. 4.2 Panel A). This increment in vegetation was especially pronounced in the southernmost 
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talukas where the principal canal first arrived more than a decade ago (Fig. 4.2 Panel B, and fig S4.4), 

but the canal is expanding to the north, to the un-irrigated districts of Rajasthan, with a side-branch 

to the talukas in Kutch (Fig. 4.2 Panel A). 

How do these changes in irrigation within the last decade correlate to the changes in malaria risk 

during the same period? The spatial distribution of malaria burden, especially within the most 

malarious and low-irrigated talukas, can be examined in more detail by dividing the time series into 

two periods (2000–2005 and 2006–2010), accumulating the incidence during the two periods and 

then normalizing them by the corresponding value for the sub-district with the highest burden. In 

this way we can compare the spatial distribution of the cases independently from the yearly variation 

in malaria due to climate conditions or control application. These maps of spatial relative risk (Fig. 

4.3, Panel A for 2006–2010 and Fig. S4.6 for 2000–2005) also highlight this same boundary region in 

the middle of the mature irrigated and low-irrigated clusters. In this fringe zone, the incidence of 

Plasmodium vivax was higher than in the low-irrigated more western talukas of Kutch, particularly in 

the last part of the decade. P. falciparum does not show this clear distinction especially for the more 

recent years (Fig. S4.5) given its low incidence.  

Strikingly, this transition region with highest levels of malaria is also observed in the efforts to 

control the disease. Figure 4.3 (Panel B) shows the percentage of population covered by mosquito 

indoor residual spray application (IRS) in each sub-district between 2006 and 2010 (see fig. S4.7 for 

2000 and 2005). In the transition zone up to 80% of the population qualifies for spraying; signifying 

the raised levels of Public Health efforts to address increased levels of malaria. This contrasts with 

the low-irrigated regions to the West, and particularly with the mature-irrigated areas that required 

least intervention. This clearly highlights that this zone is epidemiologically different from the other 

two regions previously described. 
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Based on the incidence and control of malaria and the ecological changes observed, three main eco-

epidemiological zones can be recognized (Fig. 4.3 Panel C): (1) an area of low disease burden and 

low requirement of control coverage, corresponding to sub-districts that have been irrigated over a 

long period of time (several decades; Fig. S4.2); (2) a transition region with high incidence despite 

high control coverage (IRS coverage of 80–90% of the targeted population) in the talukas adjacent 

to the advancing irrigation project; and (3) and a low-irrigation area in Kutch with variable rainfall-

dependent seasonal outbreaks and intermediate (variable) levels of required intervention.  

The transition zone in malaria risk, between the “mature-irrigated” low-malaria risk and the “low-

irrigated” and high-risk talukas, is characterized by an increased environmental risk that has now 

already lasted for at least a decade. 

 

Discussion 
We have shown that enhanced disease risk despite heightened intervention is concentrated in the 

sub-districts adjacent to the main canal that have experienced the most pronounced change in 

irrigation levels in the last decade. By contrast, a sustained low disease burden, not requiring high 

coverage with vector control, is found in neighboring sub-districts that have been irrigated for at 

least three decades. This long-lasting transition phase is consistent with the historical changes 

reported for the Punjab, once the center of some of the most devastating malaria epidemics on 

record (Swaroop, 1949; Bouma and van der Kaay, 1996) and today one of the more prosperous 

food-producing parts of India, with low endemic levels of the disease. These historical changes took 

place in a period in excess of half a century and their dynamics remain only partially understood. 
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A better understanding of socioeconomic and ecological differences between recently irrigated and 

mature irrigation areas could provide the means to reduce the malaria burden and shorten the 

“transition phase” (Russell and Ramachandra Rao, 1942). On the environmental side, changes in 

vectors’ ecology following increases in surface water levels and soil salinity have been proposed for 

the decrease in malaria risk in the Punjab (Herrel et al., 2004; Klinkenberg et al., 2004). Historically 

an enhanced malaria risk has also been related to construction activities, such as the local production 

of bricks and road works, that create vector’s habitats by altering the landscape and fall under the 

“tropical aggregation of labor” (Molineaux, 1998). For the expanding population in the command 

area of the Sardar Sarovar Project in Gujarat this has been recognized as a problem (Srivastava et al., 

2009), along with the seepage of water from improperly constructed and maintained irrigation 

structures. 

On the socioeconomic side, our observations based on the 2001 census data, show that the in the 

cluster of  sub-districts irrigated for at least three decades, farmers had easier access to agricultural 

credit, and populations benefited from higher literacy levels and better access to clean water. (Similar 

analyses for the 2011 census would be of interest when these data become available). By extending 

periods of water availability beyond the rainy season, irrigation creates the possibility of multi-crop 

rotations and also facilitates the use of high yield varieties with superior economic return (FAO, 

2003). Over the years, these changes should ensure food security and more stable income, leading to 

improved socioeconomic conditions and the ability of the population to seek health care and afford 

preventive measures, eventually spiraling out of the “malaria poverty trap” (Bonds et al., 2010; Sachs 

and Malaney, 2002). 

Regardless of specific mechanisms, this long-lasting transition from high risk to low disease 

prevalence is usually accompanied by a resource-intensive vector control operation mainly based on 
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the use of insecticides. Given the timescale of this transition, efficient and long term policies and 

sustainable intervention capability is required, especially in usually poor semi-arid areas undergoing 

intensive and rapid ecological change, where resources to support long-term control interventions 

can be limited. The exacerbation of malaria risk combined with a deceleration of economic 

development or even the temporary relaxation of control (Cohen et al., 2012) may lengthen the 

transition phase and allow for epidemic surprises in years of anomalous high rainfall (Baeza et al., 

2013), in a regression back to climate-driven dynamics. This is a concern especially in areas where 

groundwater extraction surpasses the current capacity of water sources (Rodell et al., 2009).  

Based on the high cost of interventions and the large areas involved, Environmental Impact 

Assessments (EIA) in irrigation developments should include Health Impact Assessments (HIA) at 

all different phases of the projects (WHO, 2012). Ongoing monitoring, surveillance, and adaptive 

mitigation of the negative consequences on water-borne and vector-borne diseases are needed as the 

projects evolve over time, as well as provision for the cost of these activities over a significant time 

horizon (NTPC, 2005). During the construction phase of the Sardar Sarovar Project (1979-1985), 

malaria incidence increased significantly (Srivastava et al., 2009). Later, during the developmental 

activities in the command area, considerations regarding water- and vector-borne diseases were 

incorporated and mitigation measures implemented. Even though HIA is generally included in EIA 

for large-scale developmental projects, the sustained implementation of recommended measures to 

decrease these impacts is often incomplete (Caussy et al., 2003; Garg, 2009). The situation is 

generally more critical for small- to medium-scale developmental projects in South-East Asia, such 

as the construction of smaller irrigation canals and ponds for water collection and storage. In these 

settings, HIA, and specifically monitoring and surveillance, are more limited, despite their potential 

to affect extensive areas and large populations.  
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The observations on the long transition phase in Gujarat reinforce the insight that development of 

water resources requires a strong binding commitment to finance and implement projects which 

maintain public health and safety (Birley, 1991). Environmental management methods for 

sustainable disease control are strongly needed. Several of these methods have proved to be cheaper, 

more effective, and feasible to implement at local scales, including those that manipulate water flow 

in irrigation systems, such as intermittent irrigation or canal flushing (Keiser et al., 2005). The 

challenge ahead, then, will be to apply these methods over extensive regions and maintain them for 

long enough periods. Already in the early 1980s the interdisciplinary and multi-sectorial nature of 

health problems related to irrigation were recognized. A joint WHO/FAO/UNEP Panel of Experts 

on Environmental Management was established which produced guidelines and raised main issues at 

stake with policy-setting institutions worldwide (Slooff, 1990). The likely decline of global food 

security with predicted climate, and the rise of food prices in recent years, should be an incentive to 

reinvigorate initiatives to develop methods that mobilize global water resources without 

compromising human and environmental health. 

 

Methods 

Study area and epidemiological data 

The western district of Kutch contains 9 sub-districts or talukas. In the eastern districts of Banas 

Kantha and Patan, 16 talukas complete our data set. Taluka Bhabhar was part of taluka Deodhar 

until the year 2000. For this analysis cases for both talukas were merged and included as a single 

unit.  

The epidemiological data consists of time series of microscopically confirmed cases of Plasmodium 

falciparum and Plasmodium vivax from rural areas for the 25 talukas in these three districts. These 
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monthly time series span a period of 12-15 years, from 1997 to 2011 for Kutch and Banas Kantha, 

and between 2000 and 2011 for Patan. The malaria data based on active surveillance (health workers’ 

home visits twice a month) and passive surveillance (self-reporting at public health facilities), were 

obtained from the office of the Joint Director (Malaria), Commissionerate of Health & Family 

Welfare, Gandhinagar (Gujarat). All the analyses were conducted using incidence rates (cases/1000 

population). Rural population for each taluka data were obtained by linear interpolation from three 

national district decadal population census reports for 1991, 2001 and 2011, by removing large urban 

agglomeration and cities.(for the robustness of the results to other means of estimating population 

numbers see Figs. S4.6 and S4.7). Socioeconomic data were obtained from the District Census 

Handbook of concerned district for the year 2001 from Directorate of Census Operations, Gujarat 

(Table 4.1).  

Indoor residual spraying data and control in the region 

Indoor residual spray (IRS) with an effective insecticide is applied to control malaria in high-risk 

villages and to contain malaria outbreaks. The national policy requires IRS application in high-risk 

villages only, for which villages are stratified by risk at the beginning of each calendar year (high risk 

reported in the previous year: villages reporting ≥2 malaria cases/1000 population; those reporting 

confirmed malaria death or cumulative increase in falciparum in the past three years). Usually 

beginning in late May/early June, two rounds of IRS three months apart with a pyrethroid 

insecticide or three rounds 45-days apart with malathion are applied. For this study, we obtained IRS 

data of each taluka for 2001 through 2010 from the office of the Joint Director (Malaria) 

Gandhinagar. 

In outbreak years IRS intervention efforts are complemented, through intensive active case 

detection and prompt treatment and better coverage by insecticides. Until recently chloroquine has 
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been the first line of treatment for P. falciparum and P. vivax cases. Recent changes in control efforts 

for the district of Kutch include the introduction of deltamethrin impregnated nets at a small scale 

since 2004, of long lasting nets after our study period, and of Artemisinin based combination 

therapy (ACT) for the treatment of P. falciparum cases in the year 2010. 

Remote sensing data and NDVI-based irrigation product 

Irrigation map for the year 2009 
A procedure to discriminate irrigated from non-irrigated crops using remote sensing information is 

to compare the empirical spectral signature of crops, obtained by ground control measurements, 

against the spectral signature of vegetation in the area of interest gathered by satellite sensors 

(Dheeravath et al., 2010). The irrigation map presented in Figure 4.1 panel C was developed in this 

way by the Bhaskaracharya Institute for Space Application and Geo-Informatics (BISAG) 

Gandhinagar, Gujarat, and constructed using the Advanced Wide Field Sensor (AWiFS), at a 

resolution of 56 meters and with ground control points from the BISAG data library. 

Reconstructing irrigation maps and estimating change in irrigated areas based on remote sensing 
Agricultural seasons can be divided into Kharif and Rabi, with crops in the former usually planted in 

June/July and consisting of a mixture of irrigation and rain-fed crops, and those in the latter (mainly 

wheat) planted in October/November and harvested in March/April, relying mostly on irrigation.  

To reconstruct areas of irrigated agriculture outside the year of 2009, we used the 250 m resolution 

Normalized Difference Vegetation Index (NDVI) images from the Moderate-resolution Imaging 

Spectroradiometer instrument (MODIS) aboard the Terra satellite. The data were provided by the 

Land Processes Distributed Active Archive Center located at the U.S. Geological Survey (USGS) 

Earth Resources Observation and Science (EROS) Center (https://lpdaac.usgs.gov). Our method is 

based on the observation of the seasonal temporal pattern of vegetation in the region: in highly-
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irrigated areas, NDVI time series show a bimodal seasonal pattern with one peak in September (end 

of Kharif crop) and another in January (middle of Rabi crop) reflecting irrigation (SI, Fig. S4.3). 

Thus, the NDVI image for the month of January 2009 shows a spatial pattern similar to that of the 

irrigated map for that same year (Fig, S4.8). Based on the comparison of NDVI values in January 

2009 with the irrigation map, we developed a classification that differentiates irrigated and non-

irrigated pixels based on a cut-off value in NDVI. Thus, by collecting images from the MODIS 

instrument, we generated a set of Boolean images between 2001 and 2013 (Fig. 4,2 Panel A for 

2001, and Fig. S4.8 for other years, including 2009) that were then used to quantify the change in the 

proportion of irrigated land in each sub-district (Fig. 4.2 Panel B for 2001-2009 and Fig. S4.9 for 

other years). The best cut-off value was obtained when the classification performance was the most 

accurate in predicting true occurrence of irrigated and non-irrigated locations simultaneously.  

Specifically, let Pi and Pn be univariate density functions of NDVI-MODIS images for irrigated and 

non-irrigated classes, respectively, and Fi and Fn, their corresponding cumulative distribution 

functions at different cut-off values of NDVI ∈ [0,1]. For our purposes, Fi is the empirical 

cumulative distribution function of the predicted probability for pixels of MODIS-NDVI images 

when irrigation actually occurred (BISAG map), and Fn is the empirical cumulative distribution 

function for areas where irrigation did not occur. We determined the value of NDVI that maximizes 

the Kolmogorov-Smirnov distance D(τ)=max|Fi - Fn|, where τ is the value of NDVI with the 

greatest distance D between the two curves. A threshold of NDVI = 0.34 (F-statistic= 0.8) was 

found as the best value for this binary classification.  

Group inference via a Markov transition model 

In order to identify groups of locations with similar dynamics, we employed a nonparametric 

Markov transition model (Reiner et al., 2012) in a Bayesian framework (Baskerville et al., 2013). 
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Under this model, the data is discretized into a set of finite levels by putting all zeros in the lowest 

level and then dividing the remaining data into observed quantiles of cases per capita. Transitions 

between levels over time are described by a Markov transition matrix. Locations are assigned to 

different groups, and within a group each location’s time series is assumed to follow the same 

transition matrix. Good groupings thus have locations with similar dynamics assigned to the same 

groups, and the goal is to identify the best grouping, defined as the one with the highest marginal 

likelihood. Transition-matrix rows were assigned non-informative Jeffreys priors (Jeffreys, 1946), 

and the marginal likelihood was evaluated analytically for all 224 = 16,777,216 different 

arrangements into one or two groups. We checked results for robustness to changes in transition-

matrix priors, to the number of disease levels, and to changes in the number of groups. An 

equivalent maximum-likelihood analysis also yielded identical results.   
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Figures 

 

Figure 4.1 Spatial-temporal pattern in malaria population dynamics and its relationship to irrigation development. 

Panel A shows the two groups in the configuration of malaria risk obtained by the Bayesian 
grouping algorithm. Areas of high risk are colored in red and those of low risk areas, in green. (The 
overall results on groupings are robust to the choice of parasite species, as well as to the number of 
levels for the different quintile divisions of the epidemiological data). In B, the time series of 
accumulated cases are shown for the two groups (red and green) and for the two malaria species 
(solid line: P. vivax and dashed line: P. falciparum). Most of the malaria burden in the region 
corresponds to P. vivax. For comparison with A, panel C shows the irrigation pattern for the year 
2009, for which a detailed irrigation map was available. This comparison shows that the high and 
low malaria groups map respectively onto the non- (or low-) irrigated (in white) and irrigated areas 
(in green) respectively. Although the map is for 2009, a similar broad pattern of irrigation holds 
across years (Fig. S4.8), and the eastern region has been irrigated for at least three decades (Fig. 
S4.2). The detailed pattern of how irrigation has changed in the more recent decade is addressed in 
Figure 4.2. An example of the malaria-irrigation relationship is presented in panel D, for the large 
epidemic of the year 2003. In this figure, each point corresponds to incidence (1000*cases/pop in 



100 
 

log scale) in a particular taluka, during the epidemic season (Sep-Dec), as a function of the 
proportion of the land classified as irrigated, based on January’s vegetation from remote sensing 
(Methods). The numbers in A correspond to the name of a taluka as follows: 1 Lakhpat, 2 Rapar, 3, 
Bhachau 4, Anjar & Gandihan, 5 Bhuj, 6 Nakhatrana, 7 Abdasa, 8 Mandavi, 9 Mundra, 11 Cac, 12 
Tharad, 13 Dhanera, 16 Danta, 17 Vadgam, 18 Palanpur, 19 deesa, 20 Deodar, 21 Bhabhar, 22 
Kankrej, 23 Santalpur, 24 Radhanpur, 26 Sidhpur, 27 Patan, 28 Harij, 29 Sami, 30 Chanasma. 

 

 

Figure 4.2 Irrigation pattern and its change over time. 

 

Panel A shows the area classified as irrigated agriculture (in green) for 2001, based on  the NDVI 
classification of irrigated pixels outside the monsoon season (at a 250 m2 resolution), as described in 
the Methods. The black dotted lines in panel A represent the position of the trunk of the canal and 
its main branch to the west. Panel B shows the areas that have experienced the most pronounced 
variation in irrigation levels between 2001 and 2009. Specifically, areas in red correspond to those 
classified as irrigated in 2009 but non-irrigated in 2001 (see also figures S4.8 and S4.9).  
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Figure 4.3 Spatial distribution of relative malaria risk and control application. 

The spatial distribution of total incidence for Plasmodium vivax relative to its maximum value is 
shown in panel A for the period of 2006 to 2010. The scale of green tones corresponds to values of 
malaria incidence relative to this maximum and spans values of ‘risk’ from the lowest (=0.006, in 
light green) to the highest (up to 1, in dark green). Panels B shows a similar spatial distribution of the 
IRS effort based on the mean proportion of the population covered, again relative to the maximum 
value observed between the period of 2006-2010. Colors from light to dark red represent population 
covered with IRS according to the national policy of insecticide house-spraying, from a low 
(=0.0004) to a high percentage, respectively. Talukas with no information are shown in white; gray 
areas represent the un-inhabited Rann of Kutch. (Similar spatial patterns are seen for the period of 
2000-2005 in Figs. S4.6 and S4.7). Panel C shows the three malaria epidemiological zones defined 
based on incidence, control and irrigation. The mean proportion of population covered by IRS is 
shown as a function of median incidence from 2000 to 2010. Green dots correspond to the talukas 
that have been irrigated for a long time and present low malaria risk and low IRS coverage (zone 1). 
Differences in the level of IRS coverage for areas of high risk (red dots) can be observed between 
the talukas in Kutch with relative low control but high risk (zone 3) and those in Banas Kantha and 
Patan, the transition zone, that exhibit both high IRS application and high incidence (zone 2), with 
coverage reaching values of around 80%. Despite the downwards trend in cases, the existence of 
these three zones persist throughout the decade (Fig. S4.10). 
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Variable High risk Low risk t_value df p.value W  W p.value 
Literates/Illiterates 0.7577 0.8935 -0.8827 16.1796 0.3903 71 0.7675 
Improved drinking water 0.9227 0.9903 -2.2142 13.9951 0.0439 36.5 0.0282 
Agricultural credit 
societies 0.6106 0.8183 -2.7805 18.2579 0.0122 18 7.00E-04 
Banks access 0.2565 0.2464 0.1966 19.1836 0.8462 83 0.7675 
Education access 0.9946 0.9975 -1.0629 22.9806 0.2989 51 0.1492 
Medical access 0.7705 0.6615 1.5383 22.9944 0.1376 102 0.1832 
% Irrigated land 0.1615 0.7172 -9.1045 21.25 <0.0001 2 <0.0001 
IRS control 0.4558 0.069 4.6783 16.176 <0.0001 146 2.00E-04 

Table 4.1Statistical analysis of differences between mature irrigated and nonirrigated areas 

These variables consist of the ratio between literate and illiterate population, the proportion of the 
population in each taluka with access to potable water, agricultural credit societies, banks, education 
and public health and medical facilities. Education facilities encompass all primary and secondary 
schools. Medical access corresponded to the Community Health Centers, Primary Health Centers, 
sub-centers, and hospitals available in each taluka. We tested if these socioeconomic indicators are 
significantly different between irrigated and non-irrigated talukas. A two-sample location unpaired 
Welch’s t-test, with the level of malaria risk obtained from the cluster algorithm as a categorical 
variable, was used to test if the socioeconomic indicators from the talukas were sampler from two 
different normal distributions based on the level of the malaria risk. We also performed a non-
parametric Wilcoxon test that does not assume normality. We applied these tests for IRS control and 
for the percentage of the talukas under irrigation to support our findings.
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Appendices

Appendix 4.1: Supporting Figures 

 

Figure S4.1 Study area 

The study is conducted in the state of Gujarat (dashed area) in the districts of Kutch (red), Banas 

Kantha (green) and Patan (blue). The un-inhabited Rann of Kutch is also shown (in orange). 
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Figure S4.2 Historical trends in irrigation in the districts of Kutch and Banas Kantha 

To complement our spatial-temporal data, we obtained from the literature historical data on 

irrigation growth in the region. The map on the left panel shows an NDVI image for January 1982 

at an 8 km resolution, obtained from the AVHRR instrument (Tucker et al., 2005). NDVI values > 

0.38 are plotted in green, to highlight pixels classified as irrigated (Methods). (Because this threshold 

value was obtained for MODIS NDVI, we transformed it from MODIS to AVHRR measurements, 

by fitting a non-linear regression of the form y~a*xb, with x=NDVI-MODIS and y= NDVI-

AVHRR, and both variables corresponding to the taluka average for the month of January during the 

years in which MODIS and AVHRR overlapped, 2001-2006). The right panel shows gross irrigated 

area at the district level for Kutch (red line) and Banas Kantha (blue line) between 1977 and 2004. 

This additional information on irrigation in the region indicates that the eastern group of talukas, 

whose spatial extent maps onto the detailed irrigation map of 2009 (Figure 4.1 and Methods), have 

been irrigated at least since the beginning of the 1980s. 
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Figure S4.3 NDVI seasonality 

The boxplots show the seasonality of average NDVI for the two talukas at the extremes of the 
irrigation gradient. At the dry end, Lakhpat (taluka #1, Fig. 4.1 panel A) exhibits only one peak in 
the vegetation index for the month of September, following the monsoon season. At the other 
extreme, the highly irrigated taluka of Deodhar (taluka #20, Fig. 4.1 panel A) displays a bimodal 
seasonality with a much larger peak in January and much less interannual monthly variation. This 
January peak is clearly outside the monsoon season and most likely reflects the effect of irrigation on 
vegetation. Thus, we consider the values of the NDVI vegetation index in that month to formulate a 
classification of irrigated and non-irrigated land (Methods). 
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Figure S4.4 Temporal changes in estimated irrigation 

Each line represents the annual proportion of the taluka area classified as irrigated between 2001 and 
2009, based on the classification procedure using NDVI images (Methods).The green and red lines 
correspond to talukas in the low and high risk zone according to the results obtained using the 
grouping algorithm (in Fig. 4.1 Panel A). The two thicker red lines highlight the talukas where most 
of the change occurred during the decade; these talukas are located in the southernmost part of the 
study area (Figure 4.2 Panel B) and at the boundary of the two regions identified in Figure 4.1. 

 

 

 

 

Figure S4.5 Relative risk of Plasmodium falciparum malaria between the years 2000-2010 
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Colors from light to dark blue correspond to the level of P. falciparum incidence relative to their 
maximal value. Because the number of cases for this parasite are low (Fig. 4.1 Panel B), especially in 
the second half of the decade, the pattern can be quite noisy.  

 

 

Figure S4.6 Comparison of results on the spatial distribution of malaria risk for three different ways to estimate 
population values in between the two censuses of 2001 and 2011 

As a way to corroborate the robustness of our findings to the linear population estimation approach, 
we also extrapolated the population changes based on exponential growth. To take into 
consideration possible yearly variation in population we also used the Landscan grid population 
product from 2001-2011 (Bright, et al., 2002 & Bright, et al., 2012). Because of changes in the 
methodology from one year to the next, it has been noted that this product should not be used in a 
time series fashion. Thus, we relied on Landscan data only for results concerning spatial patterns of 
prevalence in this figure, and IRS coverage in Fig. S4.7). See the caption of Figure 4.3 for further 
details. To facilitate comparison, the maps of that figure (obtained with the linear interpolation) are 
repeated here and included in the top row. The two other methods give similar spatial distributions; 
in particular, the high risk area remains, at the boundary of the “mature-irrigated” and “low-
irrigated” groups of talukas (Figure 4.1). This is a robust feature with the exception of one additional 
‘dark’ taluka on the coast of Kutch for the Landscan’s population estimates (Methods). 
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Figure S4.7 Comparison of results on the spatial distribution of IRS coverage (relative to its maximum value), for 
three different ways to estimate population values in between the two censuses of 2001 and 2011 

Linear interpolation, exponential interpolation and the gridded product known as Landscan. See the 
caption of Figures S4.6 and 4.3 for more details. Maps of the top row are those of that figure. The 
high coverage area at the boundary of the eastern and western groups of talukas (Figure 4.1) is a 
robust feature.  
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Figure S4.8 Reconstruction of irrigation between 2003 and 2013 based on MODIS NDVI images 

 

 

Figure S4.9 Spatial change in irrigation between 2001 and subsequent years (2003, 2005, 2007, 2009, 2011, and 
2013) 

A pronounced change is observed for the talukas at the boundary between the low (or no) irrigation 
region in the west and the mature irrigated region in the east.  
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Figure S4.10 Trend trajectory of the malaria system and persistence through time of the three identified zones for IRS 
population coverage and malaria risk, described in the main text 

Each dot in the plot shows the value of control Intervention in terms of percent population covered 
by IRS as a function of the total incidence per ten thousand people, in logarithmic scale. Empty dots 
represent the period between 2000 and 2005 and filled dots that between 2006 and 2011. Colors are 
similar to those in figure 4.3 Panel C (and 1 A). Despite a downward trend in incidence, the three 
main regimes depicted in Figure 4.3 Panel C remain present. 
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Chapter 5 

A time series model to test the double causality 
between malaria and income in Mississippi, United 

States 
 

Abstract 
In agricultural communities, malaria and socioeconomic conditions are intimately connected. Malaria 

incidence can affect income level by decreasing labor productivity, and low income level can in turn 

affect prevention and control affordability, resulting in the exacerbation of disease burden, which 

reinforces the negative feedback loop between poverty and disease. Theoretical studies of  the 

population dynamics of  infectious diseases  have proposed a ‘poverty trap’ resulting from this 

double causality or feedback loop, when considering an aggregated level of infection due to multiple 

pathogens. Although multiple empirical studies have addressed these linkages for one direction of 

influence or the other, no study has considered the explicit dynamics of this epidemiological-

economic system, especially when both effects are acting in concert for a given pathogen of 

significant health impact. An understanding of the relative importance of these two effects in 

concert and in a dynamic framework is relevant to the population dynamics of malaria, to its control, 

public health policy and eventual elimination in developing countries.  

By relying on epidemiological and economic data from the eradication era (1914-1927) in the highly 

malarious state of Mississippi (1914-1927), we statistically test a dynamic poverty trap hypothesis 
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between malaria incidence, labor productivity, and income with a time series model. We compare 

this hypothesis against others that specifically disconnect part of the feedback loop, thereby 

changing the causality pathways, via a likelihood approach. Results show that while the full model 

with explicit feedback loops among malaria, cotton productivity, and income better explain the data 

than partial parts of the system, malaria burden had only a weak effect on cotton productivity, and 

causality appears dominated by the direction from income to malaria in a non-linear manner. 

Furthermore, sensitivity analyses of parameter values suggest that the elimination of the disease was 

most likely driven by macro-level determinants related to the overall improvement of socioeconomic 

conditions, bottom-up control methods, and the affordability of the latter. We discuss our findings 

for the historical United States and its implications for the current malaria situation in other parts of 

the world under similar endemic conditions but on the path to elimination. 

 

Introduction 
Malaria is one of the most deadly diseases of all times, currently responsible for more than 200 

million clinical episodes every year. Most of these cases are concentrated in regions of the world 

with the lowest average GDP: Ninety percent of all malaria cases occur in sub-Saharan Africa 

(Teklehaimanot and Mejia, 2008), in India (Sharma, 1999), and in different countries in South 

America. Malaria-ridden countries exhibit on average five times less income than countries without 

the disease, and tend to grow at a rate that is 1.3% slower (Gallup and Sachs, 2001). 

While this association between malaria and poverty has long been recognized (Sachs and Malaney, 

2002; Laxminarayan, 2004; Malaney et al., 2004; Chuma et al., 2006; Teklehaimanot and Mejia, 

2008), the direction of this causality and the relative importance of the potential feedbacks in the 

two opposite directions remain the subject of debate (Packard, 2009 & 2007).  
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When the parasite in its merozoite stage colonizes blood cells and consumes hemoglobin, fever 

episodes and anemia are experienced by symptomatic hosts. These episodes not surprisingly reduce 

the time and energy that an individual spends in work-related activities. Under recurrent malaria 

episodes, therefore, long-term human productivity is expected to decrease, thereby slowing the 

economic return of a household (Guiguemde et al., 1997; Chuma et al., 2006) and eventually, the 

prosperity of a village or entire country. In the opposite direction, several studies have shown that 

socioeconomic factors such as income (Filmer, 2005), state-level resources for disease control 

(White, 2011), education (Yasuoka et al., 2006), household construction (Hulden & Hulden, 2009), 

and agricultural development (Baeza et al., In press) can influence malaria epidemiological patterns. 

If malaria burden is a dominant factor in shaping the economy of an individual, a community, or a 

nation, measures that directly decrease the burden of the disease will have indirect benefits for the 

alleviation of poverty. Alternatively, if decreasing poverty level dominates the risk of contracting 

malaria, then maintaining the downward trend in poverty level may collaterally decrease the burden 

of malaria without a top-down intervention. Thus a better understanding of what direction of 

causality is most important has clear implications for malaria control and elimination policy, and can 

shed light on the conditions needed to maintain a stable elimination state (Chiyaka et al., 2013). 

Despite its relevance, however, limited work has been done to understand the dynamical 

consequences of this double causality. In particular, most studies on malaria and socioeconomic 

conditions assume that causation runs in one specific direction. Theoretical studies, however, that do 

include the full feedback system in epidemiological models have proposed a poverty trap hypothesis 

of infectious diseases and income to explain the relationship between aggregated disease prevalence 

and GDP (Bonds and Rohani, 2010).  Although a few recent studies have proposed testing this 

double causality hypothesis using spatial data (Bond et al., 2010, Somi et al, 2007), to our knowledge 
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no study has established this hypothesis based on longitudinal, temporal observations and their 

statistical confrontation to dynamical models. 

The historical data set of malaria in the cotton-driven economy of Mississippi between 1917-1950, in 

the period that immediately precedes the eradication of the disease in the United States, provides an 

opportunity to address these questions; specifically, how important were income and human 

productivity in driving malaria patterns in the region and, simultaneously, to what extent did malaria 

incidence influence the labor productivity of the poor sharecroppers. We are particularly interested 

here in identifying the path of causality and the strength of causation. Using annual State-level 

records of malaria cases, income, and human productivity, we statistically confronted the feedback 

hypothesis against alternatives that disconnect specific pathways using likelihood inference. We 

show that even though the poverty trap hypothesis cannot be rejected, its influence in driving the 

disease to elimination was relatively low and much of the variability in the system can be explained 

by large-scale economic drivers, such as cotton prices and mosquito-related control affordability. 

Moreover, our results suggest that a hypothesis in which the causality runs from socioeconomics to 

malaria seems to be better supported by the data. In light of these results, we discuss their 

implications for endemic malaria in current times and in other parts of the world on the path to 

poverty alleviation and malaria elimination. 

  

Methods 

Malaria and socio-economic conditions in historical United States (1900-1940) 

Plasmodium malaria arrived in North America with the early colonists and the first Africans brought 

to the continent as slaves. By the 1875, malaria-related fevers in the United States were observed in 

the northernmost states, such as Michigan and Illinois, where disease prevalence started a steady 
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decline. By the beginning of the nineteen hundreds, the distribution of the disease had shrunk to 

only the southernmost states of Florida, Louisiana, South Carolina, and Mississippi, with its final 

elimination achieved by 1950 (Ter Veen, 2005).  

This study focuses on the State of Mississippi during the first part of the 20th century for several 

reasons: First, Mississippi was the state with the most reliable malaria data in the region (Ter Veen, 

2005). Second, by the time malaria was approaching elimination, the economy of Mississippi was 

mostly based on cotton production (Schulman, 1994). Third, this cotton production was intense in 

human labor with very low levels of mechanization and technology. And fourth, most of the farms 

were large properties owned by a few landowners who rented the land to sharecroppers, most of 

them originating from poor black communities. Therefore, the connection between the disease and 

the economy, regardless of direction, should be most evident in this state, and thus, if the poverty 

trap exists, it should be detectable and significant in this region. 

All the analyses presented here were conducted on the  data between 1918 and 1938 (Fig. 5.1, 

dashed lines) in order to avoid the effect of World War II and the technification and diversification 

of the Mississippi economy right before the sharecropper system collapsed in 1939 (Schulman, 

1994).  

Epidemiological and socioeconomic data  

The epidemiological data consists of annual morbidity cases of malaria in the state of Mississippi 

reported by the Mississippi State Board of Health between 1916 and 1945 (Fig. 5.1 Panel A). The 

data show a downwards trend with the final elimination of the disease by 1950. During the years of 

this study, three large epidemics are apparent. A time series of cotton productivity per person was 

constructed based on cotton production per hectare, by multiplying this value by total area of cotton 

harvested and then dividing it by the rural population (Fig. 5.1 Panel B). Cotton production and 
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cotton prices were reported by the Mississippi Department of Agriculture. Income data were 

obtained for the same period and correspond to total yearly ($/year) taxable income reported by the 

annual edition of the Statistical Abstract of the United States, corrected according to the price index 

of the year to avoid changes due to inflation (Fig. 5.1 Panel C). 

To correct for the possible effect of population migration, malaria cases were transformed to 

incidence (cases per 1000 person) by dividing the time series by the yearly rural population obtained 

from annual editions of the Statistical Abstracts of the United States. Income and productivity were 

also converted to per-person using similar rural population figures. Without loss of generality all the 

statistical inference analyses were conducted on the anomalies of the incidence and cotton-related 

human productivity computed as x_a=[x-mean(x)]/sd(x), where x is the variable in the 

untransformed scale and x_a, the corresponding anomaly. 

Statistical model and likelihood-based inference method 

In order to statistically test  the possibility of a poverty trap created by  the interactions between 

malaria, income, and cotton productivity, a time series model relating the  these three variables was 

constructed. Specifically, the model consists of a system of linear and non-linear regressions that 

explain the variability observed in malaria incidence (M), income (I), and cotton yield human 

productivity (Y) simultaneously. These variables, defined as the state variables S, with S={M,I,Y}, are 

estimated based on a set of external and internal predictors (Fig. 5.2). External predictors, or drivers 

D (Fig. S5.3), are variables that are known to explain variation in S but are not influenced by them.  

Internal predictors, on the contrary, are the state variables themselves that may or may not be a 

predictor of another state variable (Fig. 5.2). 
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Let us define M, Y, and I as random variables, and mt, yt, and it as random realizations at time t from 

the distributions p(M), p(Y), and p(I), respectively. p(M) and p(Y) are assumed normal with means µY 

and µM, and p(I),  gamma with shape parameters =µI
2/V and scale=V/µI. 

The mean of these distributions, µM, µY, and µM follow regression equations of the form 

𝜇𝐼𝑡 = 𝑎 + 𝑏𝐶𝑇𝑡 +  𝑐𝑌�𝑡−Δ +  𝜀𝐼 

𝜇𝑀𝑡 = 𝑑 +
𝑓(𝑃𝑦𝑡)
𝐼𝑡−Δ

(𝐼𝑡−Δ)𝛼 + 𝑔𝐻 +  𝜀𝑀 

𝜇𝑌𝑡 = 𝑖 + 𝑗𝑀�𝑡 + 𝑘𝐹 +  𝜀𝑌, 

where a, d, and i are the intercepts of the regressions and εI, εM, and εY correspond to white, 

observational or process noise, depending on the estimation method. State variables are presented 

with the accent symbol and ∆ to symbolize the temporal delay hypothesis (See Temporal 

formulation of the model). 

External predictors for each regression 
In this section we present a detailed explanation of the model and the drivers. In Figure S5.3, the 

time series of these drivers is shown. 

Income equation (𝜇𝐼𝑡): Because the per-capita income of Mississippi at the time was mainly based 

on a cotton economy, the linear regression, µI, includes cotton price per pound per year, CTt, and 

cotton-related human productivity Y (Fig. 5.2). The model includes these effects in an additive way. 

We also tested the model with the interaction term C*Y, but its inclusion did not improve the model 

performance (results not shown). 
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Malaria equation (𝜇𝑀𝑡): The malaria (anomaly) estimation at time t, mt, is an additive function of 

the price of pyrethrum flowers, Py, and the number of people per house, H. Pyrethrum flowers form 

the active component of the insecticide used as a repellent for mosquitos in this area. This quantity 

represents therefore the price of a control intervention. We test the effect of I on malaria by dividing 

Py by I, and then multiply it by the term Iα. The justification of this model comes from previous 

studies suggesting a similar relationship between quinine (control) and an income proxy (cotton 

prices). This quantity was defined as the affordability index of malaria (Terr Veen, 2005). Using the 

parameter α, we explicitly test here  the affordability index effect of income in the model:  When 

α=1 income cancels out and is not a factor explaining malaria variability, and only the price of the 

control intervention acts as an  external driver. If α=0, we have Py/I, a quantity analogous to the 

affordability index described by Terr Veen. Given this functional form, if income modulates the 

affordability of control, this effect would be a non-linear one.  

Per-household population was included as another external predictor. This driver has been proposed 

in the literature as a “proxy” for a large scale socioeconomic factor indirectly related to transmission 

but with relation to aggregated index for overall prosperity. 

No climatic variable was included directly in the malaria regression, as previous studies have 

suggested that most of the influence of climate drivers, specifically maximum and minimum 

temperature, is only present on the seasonality of the disease, but not on its interannual variability 

(Terr Veen, 2005). 

Human productivity equation (𝜇𝑌𝑡): As mentioned in the data description, cotton in Mississippi 

was mostly produced by human labor, and the quantity that may reflects the only technological 

method used by the sharecroppers at the time to improve cotton production per unit of area is 
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fertilized. Thus, cotton-related human productivity, µY, was a linear function of total imported 

fertilizer per acre per year, F.  In addition to fertilizer another factor that may explain the variation 

of cotton productivity is malaria anomalies. This internal predictor was included as another linear 

factor in the regression. 

Statistical inference, parameter estimation, and temporal formulation of the model 

A feedback in the model occurs only when parameters c ≠0, α≠1, and j≠0 (Fig. 5.2). We named 

this model the feedback hypothesis H0. Thus, we explicitly tested for the disconnection of the 

feedback loop by considering the case of parameters c or j = 0 or α =1 (Fig. 5.3). In this way, four 

hypotheses were compared: H1, when c=0 but α≠1 and j≠0, we have a model in which the 

direction of causality goes from Income (I) to Malaria (M) to Yield (Y). This model is called the IMY 

model. H2, when α=1 but c≠0 or j≠0, then the causality goes from M to Y to I (the MYI model). 

H3, when j=0 but α≠1 and c≠0, the causality goes from Yield to Income to Malaria (YIM model). 

And finally H4, when c=0, j=0, and α =1. In this case the null hypothesis was considered. 

The time dimension is included in the model by setting one of the internal predictors one time step 

in the past. Specifically, two models were constructed: Model 1 with Mt = f(It-1), It = f(Yt),  and Yt = 

f(Mt), and Model 2 with Mt= f(It), It = f(Yt-1), and Yt = f(Mt) (Fig. 5.3, vertical dashed lines). We did not 

test a model of the form Yt = f(Mt-1), as we found no evidence for infections in previous years 

influencing the following year’s production, at least directly. 

By using this temporal structure, a chain of causality can be constructed for every yearly step, and 

the model can be analyzed assuming a first order Markov process (Pawitan, 2001). Thus causality 

can be statistically tested using standard likelihood theory. Specifically, the likelihood of observing it, 

mt, and yt at time step t given the data it, yt, and mt is defined as 
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𝐿𝑀(𝜃) =  ∏ 𝑝(𝑦𝑡|𝑚�𝑡)𝑝(𝑚𝑡|𝚤𝑡̂−1)𝑝(𝑖𝑡−1|𝑦�𝑡−1)𝑛
𝑡=2 , 

for the 1-step-ahead estimation method, and  

𝐿𝑀(𝜃) =  ∏ 𝑝(𝑦𝑡|𝑚𝑡̇ )𝑝(𝑚𝑡|𝚤𝑡̇−1)𝑝(𝑖𝑡−1|𝑦̇𝑡−1)𝑛
𝑡=2 , 

for the trajectory matching.  

The tilde “ � ” represents the data point observed in the time before, and “ ̇ ” the simulated value 
from the time step before. 

We estimated the model parameters using a one step-ahead and trajectory matching estimation 

(Bolker, 2008). When implementing point estimation, the parameters of each sub-model are 

estimated based on the data from the time step before (Fig. S5.1). Trajectory matching estimation 

considers instead the actual dynamics of the system on time by simulating the trajectory of the 

system from a given set of initial conditions and then calculating the likelihood using the entire 

simulated time series (Fig S5.1). The likelihood function L is maximized using the package Optim 

with the Nelder-Mead algorithm. Because the model hypotheses are nested, a likelihood ratio test 

was used to compare model performances based on the χ2 test. The confident intervals of the 

likelihood functions are constructed to using + − 𝜒21(1−𝛼)
2

. Because we are interested on confronting 

the feedback hypothesis, only the confidence intervals to the side of the parameter values that 

generate the other models were calculated. 

Sensitivity Analysis 

As a way to quantify the relative contribution of each driver, we carried out a sensitivity analysis 

using the analytical form of the model and the best parameters obtained from the inference analysis. 

Specifically, by setting It=It-1=I>0 and α=0, an analytical solution of the form AM+BM2+C=0 can be 

obtained (Appendix 5.1: Equilibrium). Using the solution of this quadratic equation, and setting all 

the other drivers to their observed mean, we evaluated the equilibrium (M*, I*) when one driver at a 

time was varied from the minimum to the maximum value observed.  
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Results 
Table 5.1 shows the results of the likelihood ratio test for the trajectory matching inference, 

comparing the feedback model against the competing hypotheses described in the Methods section. 

This table shows that the feedback model performs significantly better than those that disconnect 

either income from malaria (model MYI) or human productivity from income (model IMY). By 

contrast, when the effect of malaria on human productivity was disconnected (model YIM), the 

maximum likelihood did not decrease significantly. The neutral model, the one that disconnects the 

feedback completely, exhibited the worst performance, confirming the importance of some 

relationship between the internal predictors in the dynamics. All the models compared in Table 5.1 

are those with a one year delay in the effect of income on malaria, as these models show the best 

likelihoods (Fig. S5.2). 

 Figure 4 shows the likelihood profiles of parameters c, α, and j, respectively. In the three panels the 

maximum likelihood estimates are highlighted. For the three parameters, this maximum is outside 

the values corresponding to the alternative hypothesis (Fig. 5.4). Panel B shows that the non-linear 

effect of income on malaria is only significant at the 95% but not at the 99% level. Furthermore, 

Panel C shows that the value of j = 0 falls inside both the 95% and 99% CI. Similar results hold 

from the LRT based on the one-step-ahead estimation, except that in this case, the YIM model is 

also significantly different from the feedback model (Fig. S5.4). Thus while we cannot rule out 

completely the possibility of the feedback model, the importance of malaria on cotton productivity 

appears relatively weak, compared to the influence of income on malaria.  

In addition, results from the sensitivity analysis further support the causality pathway of the YMI 

model. Figure 5.5 shows a phase diagram of the change in the equilibrium point for malaria and 
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income when one parameter value was changed at a time. This figure illustrates the considerable 

importance of cotton prices (Fig. 5.5, black dots) in driving both malaria and income in the system. 

Additionally, while household size H did in fact influence malaria, it did not influence income (Fig. 

5.5, green dots). A similar effect is observed for Pyrethrum Py as well (Fig. 5.5, blue dots). These 

results suggest that the causality was stronger in the direction of socio-economic drivers on malaria 

rather than the other way around.  

Finally, figure 5.6 illustrates a simulation using the best estimates for the parameters. These 

simulations were run for similar initial conditions and without noise. The figure shows that the 

dynamics of the system are poorly represented when the drivers are not included. 

 

Discussion 
With a series of nested time series model and state level data of malaria incidence, per-capita income, 

and cotton-related human productivity, we investigated the evidence for a poverty trap effect in the 

State of Mississippi between 1917 and 1938. During this period a decrease in the number of cases 

was evident in all of the United States, with the final elimination of the disease observed around 

1950 in the southernmost states. Results from the statistical analyses provide evidence against the 

poverty trap hypothesis. They also suggest that the dynamics of the system are mostly dominated by 

the external conditions imposed on the region at the time.  A sensitivity analysis further suggests that 

causality in the system was dominated in the direction from socio-economic drivers to malaria. 

The elimination of malaria in the southern United States was a process lasting for at least 50 years, 

and the factors influencing this decrease remain only partially understood. Several hypotheses have 

been proposed to explain this decline in incidence (Humphreys 2001; Terr Veen, 2005). These 
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include changes in the ecology and behavior of Anopheles vectors, improvements in malaria 

medication, migration of the population from rural areas to urban centers, control of larval and adult 

mosquitoes by local authorities, and better economic conditions present in the south after the Civil 

War (Andrews, 1948; Andrews et al., 1950). Yet few studies have examined the data with rigorous 

statistical analyses.  

Our findings are consistent with the hypothesis that suggest that  most of the interannual variation 

in malaria during this time correlating with the possible reduction of domestic densities of 

Anopheles due to the use of insecticide. They further confirm the important role of income and 

cotton prices in modulating the affordability of the control (Terr Veen, 2005). However, most of the 

decline in incidence was explained by the number of people per household. This variable was used 

here as a proxy for an external large-scale socioeconomic factor indirectly related to malaria 

transmission. Its ecological implications for directly influencing mosquito biting behavior, and thus 

transmission intensity, cannot be ruled out completely, however, as the decrease in people per 

household had been proposed to explain the decline in malaria from areas of low transmission 

(Hulden & Hulden, 2009). Most likely the decreasing trend in malaria can also be attributed to other 

social factors such as education, house improvement, agricultural indemnification, and 

modernization (Bradley, 1966). 

Further studies need to address higher resolution data (monthly county level observation, for 

example) and more mechanistic models to gain a better picture of the processes by which income 

and socioeconomic characteristics interacted with ecological factors in the region. In addition, 

socioeconomic data that more accurately represents the financial status of poor families should be 

obtained. The type of income data used here was limited in this regard as taxable income was 

reported by landowners, and therefore did not directly represent the income of the sharecroppers.  
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The name “sharecroppers” was given to the families renting the land and was derived from the way 

in which the rental agreements and payments were conducted: A person or a household paid the 

rent by “sharing” the harvest. Because the percentage was negotiated in advance of the next season, 

only information on the production from the previous season was available to the sharecroppers, 

and this was mostly dominated by cotton prices. Therefore it is not surprising that the model most 

supported by the data was the one of the form M=f(It-1), which suggests that the income of the 

sharecroppers (influenced by the affordability of malaria control) was mostly reflected in  the taxable 

income from one year prior. 

The analyses presented here are not just relevant from a historical perspective, but also from a 

practical point of view. Today, the tenant sharecropping system is a common practice in many 

places with malaria, for example in India (Deiniger et al., 2013). If similar tenant systems exist in 

different parts of the world, it is possible that also similar socioeconomic drivers are behind the 

population dynamics of the disease. Therefore, an understanding the connection between agriculture 

and income variability, and malaria population dynamics can help identify best policies and practices 

for the control of malaria. It can also lead to the consideration of large-scale economic predictions in 

the prediction of malaria incidence itself (Zurbrigg, 1994).   

There is still a critical lack of studies in the literature that empirically address the dynamical 

consequences of the double causality between malaria and poverty. Although further research is 

needed, this work provides a quantitative framework to analyze dynamical processes linking disease 

ecology and economic determinants simultaneously. Such a framework can contribute insight into 

the current trajectory of malaria in areas of the world on the path to eliminating poverty. Coupling 

the intrinsic and extrinsic forces driving the biology of malaria with economic variables at different 

scales of analysis can raise insights into the critical paths for intervention to be effective and 
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efficient, and will eventually help to develop a formal integrated theory coupling ecological and 

socioeconomic systems (Bonds and Rohani, 2010). To achieve this goal, it is fundamental to rely on 

long-term time series of relevant ecological and economic data, as well as new statistical tools, to 

confront the double causality hypothesis.  

The interaction among agricultural practices, malaria, and its vector has been tightly interwoven 

since the beginning of agriculture (Carter and Mendis, 2002), and most malaria cases today are still 

found in poor communities working the land for agricultural purposes. The results presented here 

suggest that the most effective route for malaria control over time will be one that integrates not just 

environmental and public health considerations, but  also socioeconomic factors, including those 

that are not  directly related to malaria control interventions.   
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Figures 

 

Figure 5. 1 Yearly records of malaria incidence, cotton productivity per person (human productivity), and per capita 
income between 1916 and 1946 for the State of Mississippi 

The dashed lines represent the years 1917 and 1938, and bracket the period of time for which the 
poverty trap hypothesis was tested. 

 

Figure 5.2 The feedback hypothesis 

The three state variables are depicted in color. Malaria (M) in red, cotton yield/human productivity 
(Y) in green, and per-capita income (I) in gray. The external predictors, or drivers, of the system are 
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shown in black. The dashed lines represent the mechanistic feedback loop between the state 
variables. 

 

Figure 5.3 The feedback model and alternative hypotheses over time 

The top row represents the feedback model in which the causality runs in both directions. Squares 
represent the state variables M (malaria), Y (productivity), and I (income). Each state variable is an 
internal predictor of the other variable as represented by the black arrows. The feedback hypothesis 
is confronted with several alternatives in which a particular mechanistic link is disconnected (second, 
third, and fourth rows; see Methods). A model in which the system is completely disconnected is 
shown in the fifth row (“null model”). For completeness, a model in which the direction of causality 
was completely reversed was also tested (bottom row). The dashed vertical lines correspond to two 
different hypotheses concerning the time delay involved in cause and effect. Specifically, black 
vertical lines illustrate a model of the form Mt = f(It-1), It = f(Yt)  and Yt = f(Mt), in which malaria is 
influenced by income of the previous year, whereas income depends on productivity, and similarly 
malaria affects productivity, in the same year. Orange lines illustrate instead a model of the form Mt= 
f(It), It = f(Yt-1) and Yt = f(Mt), where now malaria and income are related with no delay, but yield in 
the previous year influences income.  

 

 

 logLik AIC df Chisq Pr(>Chisq) 

feedback 37.27 -48.53 13 - - 
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YIM 35.94 -47.88 12 2.65 0.1 

IMY 28.73 -33.47 12 17.07 3.61E-05 

MYI 35.04 -46.09 12 4.45 0.03 

NULL 23.95 -27.89 10 26.64 6.99E-06 

Table 5.1 Likelihood ratio test results 

The feedback model (top row) is best supported by the data based on both the log likelihood 
(second column) and the Akaike information criterion (AIC; third column) which corrects for the 
different degrees of freedom (df). The likelihood ratio test shows that this model is significantly 
better than the model in which human labor did not influence  income (IMY), and the one in which 
income did not influence malaria (MYI). However, a model in which malaria does not influence 
human labor (YIM) did not differ significantly from the feedback model, suggesting that the 
causality from socioeconomic conditions to malaria was stronger than the other way around. The 
completely disconnected (Null) model performed the worst. 

 

Figure 5.4 Likelihood profile for the parameters testing the poverty trap hypothesis 

This figure shows the profile likelihood for the following three parameters: c, connecting human 
productivity to income (panel A); α, connecting income to malaria (Panel B); and j, connecting the 
effect of malaria on human productivity (Panel C). This figure shows that the maximal likelihood 
estimator (MLE) of the feedback model (vertical dashed and gray lines) lies outside the parameter 
values when this is disconnected, as defined in the Methods section and represented here by the 
vertical dashed black lines (c=0 in A, α=1 in B, and j=0). The vertical blue and green lines represent 
the 95% and 99% confidence intervals, respectively, from the likelihood ratio test (Table 1). 
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Parameter c is positive and significantly different from 0 at 95%, as well as 99% CI, suggesting a 
positive relationship between income and the productivity per person. Furthermore, the MLE 
estimator for parameter α (Panel B) is significantly different from the model’s 95% but not at 99%. 
Finally, while the MLE for j (Panel C) is negative, this value is not significantly different from the 
model in which the effect of malaria is not included (j=0). 

 

Figure 5.5 Phase plot of the malaria-income equilibrium for different values of the drivers 

The vertical dashed lines in the figure display the equilibrium point (I*, M*) for the analytical model 
(SI, Text 1) using the best parameters estimated from the feedback model (Fig. 5.2) and the average 
value of the drivers. Each colored point represents a combination of malaria and income values for a 
particular value of a given driver when all others are kept constant at their arithmetic mean value. A 
large influence of socio-economic drivers on malaria’s deviation from the mean can be observed. On 
the contrary, a relatively low effect of malaria-related drivers on income is observed (household size 
and pyretroid flower prices, represented by the green dots and blue dots, respectively). Malaria and 
income are non-linearly related in the direction from income to malaria.  
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Figure 5. 6 Time series of simulation results 

Yearly estimation of per capita income (Panel A), malaria anomalies (Panel B), and human 
productivity anomalies in pounds of cotton per person (Panel C) using the parameters estimated 
with the feedback model (Table 1). Black lines represent the observations and green lines, the 
predictions obtained by simulation from specified initial conditions. Blue and green dashed lines 
correspond respectively to the simulations for the parameters at their 95% and 99% confidence 
interval limits (See Fig. 5.4). IN yellow the max and min value observed of 1000 random draws.
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Appendices
 

Appendix 5.1: Equilibrium 

𝐼𝑡 = 𝑎 + 𝑏𝐶𝑇𝑡 +  𝑐𝑌𝑡−Δ + 𝜀𝐼 

𝑀𝑡 = 𝑑 +
𝑓(𝑃𝑡)
𝐼𝑡−Δ

(𝐼𝑡−Δ)𝛼 + 𝑔𝐻 +  𝜀𝑀 

𝑌𝑡 = 𝑖 + 𝑗𝑀𝑡 + 𝑘𝐹 +  𝜀𝑌 

 

𝐼𝑡, 𝑀𝑡 and 𝑌𝑡 are per-capita income, malaria prevalence and per-capita productivity respectively. 
𝐶𝑇𝑡 is the cotton price at year t, 𝑃𝑡 pyrethroid flowers import price, Ht dwelling population per 
house and Ft pounds per hectare of fertilize imported per year. Setting  𝛼 = 1 and the drivers 𝐷  to 
it arithmetic mean D�, at equilibrium 𝐼𝑡 = 𝐼𝑡−Δ = 𝐼∗ > 0 

 

𝑀∗𝐼∗ − 𝐼∗[𝑑 + 𝑔𝐻] = 𝑓𝑃 

with 

𝑀∗𝐼∗ = 𝑀∗ ∗ [𝑎 + 𝑏𝐶𝑇 + 𝑐(𝑖 + 𝑗𝑀∗ + 𝑘𝐹)] 

and 

−𝐼∗[𝑑 + 𝑔𝐻] = −[𝑎 + 𝑏𝐶𝑇 + 𝑐(𝑖 + 𝑗𝑀∗ + 𝑘𝐹)][𝑑 + 𝑔𝐻] 

By simple algebra we get a quadratic equation of the form 

𝐴 + 𝐵𝑀∗ + 𝐶𝑀∗2 = 0 

with 

𝐴 = −(𝑎 + 𝑏𝐶𝑇 + 𝑐𝑖𝑑 + 𝑐𝑖𝑔𝐻 + 𝑐𝑑𝑘𝐹 + 𝑐𝑘𝑔𝐹𝐻 + 𝑓𝑃) 

𝐵 = 𝑎 + 𝐶𝑇 + 𝑐𝑖 + 𝑐𝑘𝐹 − 𝑐𝑗𝑑 − 𝑐𝑗𝑔𝐻 
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𝐶 = 𝑐𝑗. 

And the solution 

 

𝑀∗ =  
±𝐵 + √𝐵 − 4𝐴𝐶

2𝐴
 

 

𝐼∗ = 𝑎 + 𝑏𝐶𝑇 +  𝑐(𝑖 + 𝑗𝑀∗ + 𝑘𝐹). 

 

The solution (𝐼∗, 𝑀∗) is plotted fir different values of a D driver Di from the min(D) to max(D) (Fig. 5.5). 

 

Appendix 5.2: Supporting Figures 

 

Figure S5.1 Graphical representation of the estimation methods 

Data on malaria incidence (M), human productivity (Y), and income (I white squares) were used to 
estimate the relationship between the state variables represented in red, green, and gray, respectively. 
On top, the 1-step-ahead estimation method used data from previous observations to estimate the 
model. Panel B, on the bottom, represents the trajectory matching method based on shutting a 
simulated trajectory from initial conditions. The likelihood of the simulated trajectory (color squares) 
is computed using the observed data, represented in white at the bottom of the color squares. 

 



136 
 

 

Figure S5.2 Likelihood profile comparison of parameter α 

The figure displays the profile likelihood of the parameter α for the model Mt = f(It-1), It = f(Yt) and 
Yt = f(Mt) (solid green line) and the model Mt= f(It), It = f(Yt-1) and Yt = f(Mt) (solid red line). 
Vertical dashed and horizontal lines represent the parameter values and the likelihood values of the 
corresponding MLEs for comparison. The temporal causality for the model with the lag from 
income to malaria is clearly better supported by the data. 
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Figure S5.3 Time series of the drivers or external predictors of the model. 

The two top plots show the drivers of the malaria equation.  On the left, the price of importation of 
pyrethroid flowers is shown in dollars per pound; on the right, the average number of people per 
household in Mississippi. On the bottom row, the driver of human productivity, the total weight of 
fertilizer per acre per year, is shown (left). The international price of cotton, on the right, was used as 
the driver in the income equation.  
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 logLik AIC df Chisq Pr(>Chisq) 

feedback 37.27 -48.53 13 - - 

YIM 35.94 -47.88 12 2.65 0.1 

IMY 28.73 -33.47 12 17.07 3.61E-05 

MYI 35.04 -46.09 12 4.45 0.03 

NULL 23.95 -27.89 10 26.64 6.99E-06 

Table S5.1 Model comparison 

The table shows the results of the model comparison based on the maximal log-Likelihood (logLik) 
for the trajectory matching estimation method. A Likelihood Ratio test (LRT) was conducted using 
an ANOVA table (Chisq and Pr). In addition, the Akaike Information Criteria (AIC) was used to 
correct for the number of parameters (df).  

 

 

Figure S5.4 Likelihood profile of the poverty trap parameters using a 1-step-ahead estimation method. 

The figure depicts the likelihood profile in a similar way than that presented in Figure 5.4, with the 
exception that in this case the effect of malaria is significant in explaining cotton-related human 
productivity. 
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Chapter 6 

Conclusions 
 

Summary of major findings 
This dissertation addressed several aspects the dynamical consequences of including agriculture and 

socioeconomic factors to explain the population distribution of malaria in space and time. 

Feedbacks operating in both directions where demonstrated, especially in the context of climate 

variability. Together the different chapters present several explanations and possibilities for how 

these feedbacks affect the inter-annual cycles of malaria.   

Chapter II showed how the signal from climate forcing in the inter-annual variability of malaria in 

semi-desert India is decoupled in highly irrigated landscapes. We presented evidence to suggest that 

mosquito control intervention is the most likely driver behind this decoupling. In addition, I offered 

data supporting the persistence of more endemic malaria in highly irrigated areas. Finally, by using 

remote-sensing information about the vegetation, an operational regional index for forecasting 

environmental malaria risk in areas of low irrigation is now available. 

In Chapter III I explored further the implications of mosquito control intervention and malaria 

population dynamics in highly variable environments. With a coupled malaria-mosquito model 

parameterized for the Northwest states of India, I showed how the policy and the implementation 

of vector control in Gujarat can generate a mechanistic feedback between disease and intervention 

levels. This feedback can in turn generate multi-annual cycles in malaria incidence in areas of low 
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rainfall and low vectorial capacity. In the presence of rainfall variability, these cycles can modify the 

effectiveness and the efficacy of intervention, and subsequently the likelihood of malaria elimination. 

Including climatic information in the malaria control program for vector-borne diseases would 

facilitate synchronization of the natural cycles of both disease and intervention, and in so doing, 

prove more efficient in the long term. 

Chapter IV synthesized the changes in malaria risk that occur under irrigation intensification and 

socioeconomic development over time. A transitional zone in malaria risk, characterized by high risk 

despite high mosquito control, was described for newly irrigated areas. This transitional zone was 

shown to be protracted, having lasted already over a decade. It is positioned between a climate-

driven high malaria risk zone, with low or nil irrigation development and poor socioeconomic 

conditions, and a low-malaria risk zone where control is no longer required and overall economic 

conditions have significantly improved. These results highlight the need for including Health Impact 

Assessments into water and irrigation developmental projects over long-term horizons. 

Chapter V explored the last stage of malaria before elimination in the United States during the first 

part of the twentieth century, with an emphasis on testing the poverty trap hypothesis between 

income and malaria. A time series model, parameterized  using yearly economic and epidemiological 

data, and connecting human productivity with malaria, indicated that the influence of income and 

cotton price on  malaria incidence was stronger than the effect that malaria itself on human 

productivity. The influence of income on the purchase power for control measures appears to be 

non-linear. The combination of high prices for control and low income due to low cotton price 

seems to have been an important factor behind the amplitude of malaria epidemics. Elimination 

seems to have been mostly driven by large-scale socioeconomic factors related to the overall 

improvement in the economy of the United States. 
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Future directions 

Climate forcing 

In semi-desert environments climate forcing continues to be an important factor in the dynamics of 

malaria transmission and mosquito ecology, even in the presence of large-scale land-use changes. 

This influence, however, seems to operate via more channels when those land changes occurred: by 

influencing mosquito ecology directly, but also by influencing crop production and thus the 

economic vulnerability of the population. Several questions remain open for future research in order 

to understand the implications of climate variability and climate change for epidemic vulnerability 

and preparedness. 

First, most of the analyses presented in this work addressed the magnitude of epidemics between 

years by accumulating cases over a season or the entire year. Because of this, climate influences were 

also aggregated, and rainfall related data were also accumulated over a season (e.g., monsoon rainfall, 

NDVI September). It is not clear, however, how the accumulation of rainfall within a season may 

influence the phases of an epidemic, especially at the beginning of the rainy season. It is likely that to 

generate transmission in such a short window of time, changes in mosquito abundance must be 

greatly amplified by the frequency and the temporal correlation of rainfall events. Detailed models 

connecting rainfall, surface water dynamics, mosquito ecology, and malaria transmission are a critical 

tool needed for our understanding of malaria epidemics within a season. Similarly, changes in 

maximal temperature can influence mosquito longevity (Russell, 1942) that, in turn, might impact 

the vectorial capacity, and recent findings suggest that daily temperature fluctuations can control the 

intensity of malaria transmission (Paaijmans et al., 2010). At the moment, we lack the knowledge on 

how the interaction between those two climatic drivers might influence mosquito ecology and 
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ultimately the transmission of the parasite.  This information is critical for the parameterization of 

more accurate mosquito models that can provide more reliable representation of the timing of the 

epidemics. Through a better understanding of these climate-related mechanisms on mosquito 

ecology, especially on intraseasonal time scales, we will be able to investigate other strategies for 

control that can be both more effective and sustainable over the long term. 

In addition, climate factors also have an impact on crop productivity, which can then influence 

mechanisms by which food availability modifies human susceptibility and transmission in years of 

food scarcity, a topic which is still poorly understood. Similarly, the hypothesis of the contribution 

of famine to the spread of epidemics of malaria remains controversial (Zurbrigg, 1994). This opens 

the doors for fascinating ecological questions: For example, how do changes in food availability over 

time influence the immune response of a population under high and seasonal levels of parasitemia? 

How is the evolution of the parasite shaped by large-scale climatic patterns, considering the large 

diversity of strategies that the parasites have to avoid detection by the immune system? And how do 

mechanisms at these disparate two scales interact over time? A multi-sectorial and multi-scale 

perspective, involving geneticists, ecologists, climatologists, and economists, is needed to face the 

continuing challenges of malaria control and elimination. 

Malaria population dynamics and agriculture development 

Future scenarios of water availability for India indicate that for the next decades this resource will be 

scarcer (Postel 1993; Rodell et al., 2009). In the opposite direction, food consumption, and therefore 

production, is expected to increase in the near future (Poster, 1998), increasing the pressure towards 

more infrastructure for storage and its distribution to vaster areas (Jha, 2013). Thus, water-related 

infrastructure projects will most likely continue to increase in areas where water availability is the 

limiting factor for development, and the confrontation of those two opposite trends will contribute 
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to an increase in the risk of malaria and other zoonotic diseases by generating unoccupied and 

sometimes abandoned irrigated infrastructure with the potential for increased vector populations. In 

addition practices of water storage common in urban and peri-urban areas of India were another 

malaria vector (Anopheses spefensis) thrives are likely to increase as well, generating even more 

habitat for mosquitoes. 

In this scenario, a new approach to agricultural development, better interwoven with vector-borne 

disease control, is needed to tackle these potential threats and to generate long-term sustainable 

solutions (Batterman et al., 2009). Several methods to decrease vector populations without 

compromising food productivity have been tested before, most of them before the GMEC, and 

some of them have been successfully applied to malaria reduction locally (see intermittent irrigation, 

for example Keiser et al., 2002). It is not clear, however, how to extrapolate these methods to large-

scale irrigation projects in such a way that regional risk can be quantified and compared. On this 

front, the development of models combining water distribution in irrigation channels at multiple 

scales with mosquito population dynamics (Otta and Kaga, 2013) and their relationship to vectorial 

capacity and transmission would provide valuable information on the ways in which water can be 

efficiently distributed to the fields and at the same time decrease the potential risk for diseases. 

These models would also provide a way to include in early stages of the projects estimation about 

the possible health impact and the costs under different regimes of water distribution. 

Interdisciplinary collaboration between hydrologists, engineers, entomologists, ecologists, and 

geographers, among others, would be crucial to generate such models.  

No other human-nature system would provide a better example than malaria, of the importance of 

considering feedback mechanisms, given its entrenched historical relationship to human prosperity. 

Due to the inherent evolutionary link between agriculture, mosquito ecology, and malaria, it is likely 
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that future changes in land-use will continue to have consequences for environmental risk of this 

and other vector-borne diseases. Moreover, since most of the poorest, most isolated and most 

vulnerable populations in the world are rural communities, the burden of malaria will most likely 

continue to affect them. Most of the people in these communities practice subsistence agriculture, 

exchanging crops for cash each season. Usually, these populations are also without access to 

education and seldom have public health access, suggesting that the socioeconomic conditions in 

which these communities are living today are very similar to those present at the dawn of agriculture. 

The complexity of malaria's dynamics and the elusive nature of the malaria vaccines create an 

important challenge for ecologists and policymakers to generate solutions that can systematically 

reduce both disease risk and poverty. This challenge is even greater in endemic areas of transmission 

where the elimination of the disease is unlikely to be achieved by only malaria-specific control 

methods.  
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