
Learning Integrated Relational and Continuous
Action Models for Continuous Domains

by

Joseph Zhen Ying Xu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor John E. Laird, Chair
Professor Satinder Singh Baveja
Professor Benjamin Kuipers
Assistant Professor Honglak Lee
Professor Richard Lewis



c© Joseph Zhen Ying Xu 2013

All Rights Reserved



To my parents.

ii



ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor John Laird for being a wonderful

mentor. John always gave me room to pursue my own ideas, even when they weren’t

priorities on his research agenda. It was probably frustrating watching me stumble

from one project to the next, but he was always patient and guided me in the right

directions.

I am also grateful to the other members of my thesis committee, Satinder Singh

Baveja, Benjamin Kuipers, Honglak Lee, and Richard Lewis, for valuable feedback

that clarified the contributions of my dissertation and improved its overall quality.

In the many years I spent in the Soar lab, I’ve had countless useful and interesting

discussions with former and present members, especially Bob, YJ, Jon Voigt, Nick,

Sam, Nate, Shiwali, Justin, Mitchell, Miller, James, Aaron, and Mazin. I couldn’t

have asked for better collaborators and friends. I am especially indebted to Sam

Wintermute, without whom SVS in its current state would not exist and I would

probably never have pursued my thesis topic, and Nate Derbinsky (who isn’t?) for

his extraordinary efforts in making episodic memory and RL in Soar usable, which

directly enabled some of my earlier action modeling work. I also owe my Ann Arbor

experience to friends outside the lab, especially Ben, Simon, David, Eugene, Haixiong,

and Hu Xin.

Finally, I would like to thank my family for their unconditional support throughout

my entire education, putting up with the question “Why is he still in school?” and

never asking me the same thing.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Action models . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Environment characterization . . . . . . . . . . . . . . . . . . 4

1.2.1 Continuous State . . . . . . . . . . . . . . . . . . . 6
1.2.2 Relational State . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Action modeling in this representation . . . . . . . . 8
1.2.4 Influences and behavioral modes . . . . . . . . . . . 9
1.2.5 Role identification and assignment . . . . . . . . . . 13
1.2.6 Summary of Assumptions . . . . . . . . . . . . . . . 14

1.3 Requirements for model learning . . . . . . . . . . . . . . . . 15
1.4 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . 17

II. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Single continuous function learners . . . . . . . . . . . . . . . 21
2.1.1 Locally weighted regression . . . . . . . . . . . . . . 22
2.1.2 Gaussian process regression . . . . . . . . . . . . . . 23
2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Input space partitioning continuous learners . . . . . . . . . . 26
2.2.1 Model trees . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Mixture of sigmoids approach . . . . . . . . . . . . 27

iv



2.2.3 Multi-Modal Symbolic Regression . . . . . . . . . . 27
2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Relational action model learning . . . . . . . . . . . . . . . . 30
2.4 Object-Oriented Markov Decision Processes . . . . . . . . . . 33

III. System description . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 The box pushing domain . . . . . . . . . . . . . . . . . . . . 35
3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Learning mode functions . . . . . . . . . . . . . . . 38
3.2.2 New mode discovery . . . . . . . . . . . . . . . . . . 42
3.2.3 Identifying roles in mode functions . . . . . . . . . . 44
3.2.4 Fitting examples to existing modes . . . . . . . . . 45
3.2.5 Mode unification . . . . . . . . . . . . . . . . . . . . 47
3.2.6 Modes learned in the box pushing domain . . . . . . 49

3.3 Relational state extraction . . . . . . . . . . . . . . . . . . . 52
3.4 Mode classification . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 FOIL . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Using FOIL to learn mode classifiers . . . . . . . . . 55
3.4.3 Predicting modes . . . . . . . . . . . . . . . . . . . 57
3.4.4 Combined symbolic and numeric classification . . . 57
3.4.5 Overcoming positive bias in FOIL . . . . . . . . . . 59
3.4.6 Mode classifiers learned in the box pushing domain 60

3.5 Role classification . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Role classifiers learned in the box pushing domain . 65

3.6 Prediction using the learned model . . . . . . . . . . . . . . . 66
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

IV. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The ball-box-ramp domain . . . . . . . . . . . . . . . . . . . 68
4.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 69
4.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Learned modes . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Learned mode classifier . . . . . . . . . . . . . . . . 75
4.3.3 Prediction accuracy . . . . . . . . . . . . . . . . . . 80
4.3.4 Classification accuracy . . . . . . . . . . . . . . . . 83

4.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Learned modes . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Learned classifier . . . . . . . . . . . . . . . . . . . 91
4.4.3 Prediction accuracy . . . . . . . . . . . . . . . . . . 98
4.4.4 Classification accuracy . . . . . . . . . . . . . . . . 99

4.5 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Noise Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Comparison to other techniques . . . . . . . . . . . . . . . . . 109

v



4.7.1 Prediction accuracy compared to LWR . . . . . . . 109
4.7.2 Classifier accuracy . . . . . . . . . . . . . . . . . . . 113

4.8 Model accuracy for multiple step predictions . . . . . . . . . 114
4.9 Transfer to domains with different numbers of objects . . . . 122

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



LIST OF FIGURES

Figure

1.1 Environment setup with discrete time steps. . . . . . . . . . . . . . 2
1.2 State representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modes, influences, and behavior of a ball bouncing on a box and ramp. 11
1.4 Overview of the model learning system. . . . . . . . . . . . . . . . . 18
1.5 Prediction using a multiple modes. . . . . . . . . . . . . . . . . . . 18
2.1 Euclidean distance doesn’t correlate with behavioral similarity. . . . 25
2.2 Example of how a simple linear change in the continuous state space

results in complex changes in the relational state space. . . . . . . . 33
3.1 The box pushing domain (left) and the possible configurations of the

boxes (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Flowchart for the clustering process. . . . . . . . . . . . . . . . . . . 39
3.3 Identifying mode roles through linear regression . . . . . . . . . . . 44
3.4 An example induction problem for FOIL. . . . . . . . . . . . . . . . 54
3.5 An example of learning a binary mode classifier in FOIL. . . . . . . 56
3.6 Classification process combining Horn clauses and numeric classifiers. 58
3.7 Learning role classifiers to solve the role assignment problem. . . . . 63
3.8 Role classifiers learned for the box pushing domain. . . . . . . . . . 65
4.1 Some possible initial configurations of the physics simulation domain 71
4.2 Decision tree learned to distinguish between modes 1 and 3 in the y

velocity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Prediction accuracy for x velocity and y velocity models . . . . . . . 81
4.4 Prediction accuracy for x velocity, by mode . . . . . . . . . . . . . . 83
4.5 Prediction accuracy for y velocity, by mode . . . . . . . . . . . . . . 84
4.6 Classification error rates for x velocity and y velocity models. . . . . 85
4.7 y velocity prediction error for bouncing on horizontal surface with

perfect classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Possible cases of the ball bouncing on a horizontal surface. . . . . . 90
4.9 Four possible collision configurations. . . . . . . . . . . . . . . . . . 92
4.10 Decision tree distinguishing between modes 1 and 2 of the x velocity

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 Decision tree distinguishing between modes 4 and 5 of the y velocity

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



4.12 Prediction accuracy for x velocity and y velocity models . . . . . . . 99
4.13 Prediction accuracy for x velocity, by mode . . . . . . . . . . . . . . 100
4.14 Prediction accuracy for y velocity, by mode . . . . . . . . . . . . . . 101
4.15 Classification error rates for x velocity and y velocity models. . . . . 102
4.16 Prediction error of x velocity model in environments with 0.1/0.2

friction, 0.95 elasticity, and 45◦ ramps. . . . . . . . . . . . . . . . . 105
4.17 Classification error of x velocity model in environments with 0.1/0.2

friction, 0.95 elasticity, and 45◦ ramps. . . . . . . . . . . . . . . . . 106
4.18 Model accuracy for different settings of environment and expected

noise variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.19 Comparison of prediction accuracy of our algorithm with LWR . . . 110
4.20 Comparison of prediction accuracy of our algorithm with uncentered

LWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.21 Comparison of accuracy for FOIL, SVM, and KNN classifiers. . . . 114
4.22 Extended prediction error for the x position of the ball . . . . . . . 116
4.23 Extended prediction error for the y position of the ball . . . . . . . 116
4.24 Actual (black) and predicted (gray) positions of the ball getting stuck

in the wall due to imperfect collision resolution. . . . . . . . . . . . 118
4.25 Actual and predicted positions of the ball bouncing against a corner,

low prediction error. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.26 Actual and predicted positions of the ball bouncing against a corner,

high prediction error. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.27 Prediction error for each mode of x velocity model trained in box-only

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.28 Prediction error for each mode of x velocity model trained in ramp-

only environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.29 Prediction error for each mode of x velocity model trained in box-

only, then ramp-only environments. . . . . . . . . . . . . . . . . . . 124

viii



LIST OF TABLES

Table

3.1 Modes learned for box pushing domain . . . . . . . . . . . . . . . . 51
3.2 Learned mode classifier for the box pushing domain. . . . . . . . . . 62
4.1 Environment configuration parameters . . . . . . . . . . . . . . . . 70
4.2 Modes learned for x and y velocities of ball in environments with no

friction, 0.9 elasticity, and 30◦ ramps. . . . . . . . . . . . . . . . . . 75
4.3 Clauses learned for x velocity classifier . . . . . . . . . . . . . . . . 76
4.4 Binary classifier learned using mode 2 as the positive class. . . . . . 77
4.5 Clauses learned for y velocity classifier . . . . . . . . . . . . . . . . 78
4.6 Non-negated binary classifier for y velocity modes 2 and 3. . . . . . 79
4.7 Number of classification errors made by x velocity model for each

pair of predicted/correct modes. . . . . . . . . . . . . . . . . . . . . 85
4.8 Number of classification errors made by y velocity model for each

pair of predicted/correct modes. . . . . . . . . . . . . . . . . . . . . 86
4.9 Modes learned for x and y velocities of ball in environments with 0.2

friction, 0.95 elasticity, and 45◦ ramps. . . . . . . . . . . . . . . . . 89
4.10 Clauses learned for x velocity classifier, part 1 . . . . . . . . . . . . 93
4.11 Clauses learned for x velocity classifier, part 2 . . . . . . . . . . . . 94
4.12 Clauses learned for y velocity classifier, part 1 . . . . . . . . . . . . 95
4.13 Clauses learned for y velocity classifier, part 2 . . . . . . . . . . . . 96
4.14 Clauses learned for y velocity classifier, part 3 . . . . . . . . . . . . 97
4.15 Number of classification errors made by x velocity model for each

pair of predicted/correct modes. . . . . . . . . . . . . . . . . . . . . 103
4.16 Number of classification errors made by y velocity model for each

pair of predicted/correct modes. . . . . . . . . . . . . . . . . . . . . 103
4.17 Modes learned for x velocity of ball in environments with 0.1/0.2

friction, 0.95 elasticity, and 45◦ ramps. . . . . . . . . . . . . . . . . 105
4.18 Frequencies of prediction errors encountered in multi-step predictions. 119

ix



ABSTRACT

Learning Integrated Relational and Continuous Action Models for Continuous
Domains

by

Joseph Zhen Ying Xu

Chair: John E. Laird

Long-living autonomous agents must be able to learn to perform competently in

novel environments. One important aspect of competence is the ability to plan,

which entails the ability to learn models of the agent’s own actions and their effects

on the environment. This thesis describes an approach to learn action models of

environments with continuous-valued spatial states and realistic physics consisting

of multiple interacting rigid objects. In such environments, we hypothesize that

objects exhibit multiple qualitatively distinct behaviors based on their relationships

to each other and how they interact. We call these qualitatively distinct behaviors

modes. Our approach models individual modes with linear functions. We extend the

standard propositional function representation with learned knowledge about the roles

of objects in determining the outcomes of functions. Roles are learned as first-order

relations using the FOIL algorithm. This allows the functions modeling individual

modes to be “instantiated” with different sets of objects, similar to relational rules

such as STRIPS operators. We also use FOIL to learn preconditions for each mode

consisting of clauses that test spatial relationships between objects. These relational

x



preconditions naturally capture the interaction dynamics of spatial domains and allow

faster learning and generalization of the model. The combination of continuous linear

functions, relational roles, and relational mode preconditions effectively capture both

continuous and relational regularities prominent in spatial domains. This results in

faster and more general action modeling in these domains. We evaluate the algorithm

on two domains, one involving pushing stacks of boxes against frictional resistance,

and one in which a ball interacts with obstacles in a physics simulator. We show that

our algorithm learns more accurate models than locally weighted regression in the

physics simulator domain. We also show that relational mode preconditions learned

with FOIL are more accurate than continuous classifiers learned with support vector

machines and k-nearest-neighbor.

xi



CHAPTER I

Introduction

1.1 Action models

Action models are models of how an agent’s actions change the environment. Let

xt represent the state of the environment at time t, and ut represent the agent’s

action at time t, as shown in figure 1.1. An action model is a function that predicts

the next state of the environment given the current state and action:

F (xt,ut)→ xt+1

Accurate action models have many uses for intelligent agents. They allow the

agent to simulate the outcomes of actions without the cost of executing them in the

real world. Simulating actions is usually faster and safer than executing them. For

example, taking exploratory actions such as driving off a cliff does not incur any

penalties in simulation. Simulating extended plans also allows the agent to backtrack

quickly when it runs into dead ends, which is often not possible in the real world.

AI planning algorithms rely on action models represented as STRIPS operators

(Russell and Norvig , 2003) or PDDL operators (Ghallab et al., 1998). In robotics,

motion planning algorithms such as Rapidly-exploring Random Trees (RRT) (LaValle

and Kuffner , 2001) require models of continuous-valued actions and state changes.

1



Environment

Agent

t1 t2 t3

x1 u1 x2 u2 x3 u3

Figure 1.1: Environment setup with discrete time steps.

Action models have also been used to speed up reinforcement learning by giving

the agent “random access” to any part of the state-action space for doing temporal

difference backups (Sutton, 1991; Moore and Atkeson, 1993).

In some applications, the agent designer understands the environment well enough

to hand-code accurate action models into the agent’s knowledge. However, there are

other applications in which this is not possible. For example:

• The agent may have to deal with novel environments that cannot be anticipated

by the agent designer. This is the case for long-living, situated agents that will

encounter a variety of tasks and environments.

• There are too many variations in the action model to enumerate by hand. For

example, the number of interactions in an environment with a large number of

objects will be combinatorially large.

• The agent’s sensors and effectors may change in unexpected ways. For example,

a robot’s motors will behave differently as energy is consumed.

• A model of the agent’s effectors is too complicated for a programmer to express

in code. This is the case for robots with many degrees of freedom.

2



In these applications, one possibility is that the agent learn action models by

observing the effects of its actions in the world. Learning an action model can be

formulated as learning the function F (xt,ut)→ xt+1 from a sequence of observations

in the form of state-action pairs

x1,u1,x2,u2, . . .

where each adjacent pair of state observations and action forms a training example

(xt,ut,xt+1)

The appropriate model learning algorithm to use depends to a large degree on the

characteristics of the environment being modeled and how the state xt is represented.

xt can be a set of relations such as ontop(A,B) and clear(table) in the classic blocks

world, a vector of real numbers encoding the positions and rotations of joints in

a continuous robotics domains, or a combination of both. Likewise, ut can be a

discrete action such as move-block(A,C), or a vector of real numbers representing

motor voltages to send to each joint in a robot arm.

We are interested in the problem of learning action models in spatial, object-based

environments. These are two or three dimensional environments in which multiple

rigid-body objects move and interact based on physical laws. In the most general

case, agent actions in the environment are also continuous, such as voltages to output

to a robot’s motors. Many real world environments can be characterized in this way.

Relational action modeling approaches such as those that learn STRIPS-style

operators(Wang , 1995; Carbonell and Gil , 1996; Kaelbling et al., 2007) are usually

insufficient for such environments because they don’t model continuous properties and

actions. On the other hand, most continuous action modeling techniques are proposi-

tional and not sufficiently expressive when the environment has multiple interacting

3



objects. For example, when a ball bounces down a set of stairs, the same bouncing

interaction recurs between the ball and a different step each time. Intuitively, a single

model should be able to describe all the bounces, regardless of the step involved. This

requires that the model be first-order, so that instead of modeling a specific ball and

step, it models abstract ball and step “variables”, which can then be “instantiated”

with any ball and step. We present an algorithm for learning models that are both

relational and continuous, and can capture these types of regularities.

This thesis focuses on learning models of action outcomes and environment dy-

namics, but does not deal with action selection. We assume that actions are generated

by another source, such as a separate decision module in the agent. Therefore, our

models do not have an explict concept of actions. Instead, actions are encoded as

regular properties of the state (see section 1.2.3), and our action models are formally

the same as environment models. This is consistent with the notion of action mod-

eling in the robotics literature (Nguyen-Tuong and Peters , 2011). The interactions

between action selection and model learning should be considered in future work, but

we ignore it for now to focus on modeling environment dynamics.

For the rest of this chapter, we will describe in detail the characteristics of the

environments we consider in this thesis. We then enumerate a set of requirements

for learning action models in these environments, and finally give an overview of our

approach.

1.2 Environment characterization

Many artificial and real-world environments can be characterized as a set of inter-

acting rigid objects with fixed shapes in 3D space. For example, in a realistic version

of blocks world, the objects are the gripper, the blocks, and the table. The interactions

are the gripper picking up and dropping blocks, one block or the table supporting a

block on top of it, and collisions between all the objects. Other traditional AI tasks

4



Relational State

intersect(B,C)
above(A,B)
left-of(B,C)

Environment

A

B C

Object Shapes

A

B

C

Scene Graph

A

B C

AgentState Vector

pos orient misc

property vector property vector property vector

Figure 1.2: State representation.

such as Towers of Hanoi, 8-puzzle, N-queens, etc. fit this characterization. So do

more complex domains such as automatic car driving in an urban environment.

There are many ways to represent these types of environments. Traditional AI

research used relational representations, such as the classic blocks world, where the

state is encoded as a set of ontop(X, Y ) relationships. A strength of this representa-

tion is that task-relevant information such as the ontop relationship can be encoded

compactly. Expressing the ontop relationship in a different representation, such as

one that encodes the (x, y, z) positions of blocks, is complex and not general. On

the other hand, a major weakness of this representation is that it cannot encode the

continuous information of the environment, such as the actual positions of the blocks.

On the opposite end of the spectrum is the propositional, continuous representa-

tion. The state in this representation is a vector of real numbers, each representing

a continuous dimension such as the x position of one of the blocks. The strength

5



of this representation is that it naturally encodes continuous properties of the envi-

ronoment. A weakness is that some high-level task-relevant information, such as the

spatial relationships between blocks, is only implicitly captured.

Our system uses a combination of both representations in order to get the best

of both worlds. Figure 1.2 gives an overview of our state representation. We assume

that the environment is composed of a set of objects in 3D space. Each object has

a position, orientation, and shape. Objects can also have other arbitrary properties

such as velocity, density, friction coefficient, etc. that can be encoded as real numbers.

Each object has a type, and objects of the same type have the same set of properties.

Object shapes are encoded as the vertices of a convex polyhedron or parameters of

geometric primitives such as the radius of a sphere.

1.2.1 Continuous State

The position, orientation, and miscellaneous properties of an object are concate-

nated into a vector of real numbers, which we call a property vector. We require that

objects of the same type have property vectors of the same length, and that the order

of the properties in the vector is the same. The property vectors for all objects in the

environment are concatenated into the state vector, such that all properties of a single

object are contiguously grouped. The number and order of the property vectors in

the state vector can change as objects appear or disappear from the environment,

as well as when the agent enters a different environment. An updated state vector

is provided by the environment to the agent at each time step. Object shape infor-

mation is not included in the property vector and is provided to the agent through

a separate channel. We assume that object shapes do not change over time, so this

information is only given to the agent once.

The coordinate system used to encode object positions and orientations is impor-

tant for model learning since it contains implicit biases and invariances that affect the

6



difficulty of learning certain types of models, as well as the generality of the learned

models. For example, using polar coordinates to encode the positions of the planets

relative to a star makes it easier to learn a model of planetary motion, since the dis-

tance to each planet never changes (assuming circular orbits), and the angles change

by a constant amount per unit time. On the other hand, using polar coordinates to

encode the positions of chess pieces relative to the king makes it difficult to model

their movements. Since most pieces move on axes aligned with the board and not

radially aligned with the king, the movements would result in complex changes in

angle and distance. In this case, rectangular coordinates relative to a corner of the

board results in simpler and more general models.

Because we want our model learning algorithm to work in a wide variety of en-

vironments, we do not require object positions and orientations to be encoded in

a particular coordinate system. However, the agent must be able to transform the

position and orientation coordinates into absolute rectangular coordinates and Euler

angles, respectively. This is so that the agent can construct a scene graph from the

state vector and shape information, from which it extracts spatial relationships be-

tween objects. Note that the model function learning algorithm still operates over the

original position and orientation representation, and will still exploit the invariances

and biases of that representation.

1.2.2 Relational State

As mentioned previously, a weakness of propositional continuous representations

is that task-relevant information is only implicitly encoded. In spatial environments,

the relationships between objects often determine how they interact, and is therefore

important to the action model. To make this information explicit, we assume that our

system is able to compute the truth values of a set of spatial relations for the objects

in the environment. Some example relations include intersect(X, Y ), ontop(X, Y ),

7



and east(X, Y ), where X and Y are objects in the environment. The set of relations

is fixed across all environments. We call the exhaustive list of these relations at time t

the relational state at time t, abbreviated as rt. We discuss how our system calculates

these relations in section 3.3.

The set of relationships was chosen to maximize applicability to a wide variety

of environments. For example, most types of physical interactions between rigid

objects require the objects to be touching, such as collisions, friction, and support.

Therefore, the intersect relation is in the set. Since gravity is ubiquitous in physical

environments, relations such as above and ontop are also included. Of course, not all

important relations can be anticipated a priori. Some must be learned from experience

in a specific environment. We do not attempt to solve this problem in this thesis, but

discuss a possible approach in section 3.4.4.

The relational state in our system only encodes information that is implicitly

present in and can be derived from the continuous state. For example, the truth of

ontop(A,B) can be calculated from the positions and geometries ofA andB, which are

encoded in the continuous state. This is different from some hybrid representations

in which the relational and continuous data encode orthogonal information. For

example, in probabilistic relational models (Getoor and Taskar , 2007), a relation

may encode whether a student is enrolled in a class, while a continuous attribute may

encode the student’s GPA. Our system does not handle abstract relations such as

class enrollment.

1.2.3 Action modeling in this representation

As mentioned previously, the environment state xt is encoded as a vector of real

numbers. We assume that the agent’s actions are represented as vectors of real

numbers, such as the voltages to apply to each joint in a robot arm. The action

vector is encoded as properties of a virtual object with no physical body, so actions

8



are simply considered additional properties in the state vector. The models our system

learns are conditioned on these action properties just like any other state property;

actions are not treated specially. Therefore, we rewrite the model function F (xt,ut)

as just F (xt) with the assumption that ut ⊂ (xt).

To simplify the problem further, we assume that each dimension of the state vector

xt+1 can be the modeled independently. Therefore, F (xt)→ xt+1 can be decomposed

into a set of simpler functions, each of which predicts a single dimension of xt+1.

{F (xt)→ y1, F (xt)→ y2, . . . , F (xt)→ yk}

where k is the size of the state vector, and y1 = x1
t+1, y2 = x2

t+1, . . . , yk = xkt+1 are

the individual elements of the state vector. In this thesis, we focus on learning these

individual models. We call yi the target property of the model, and the object that

the property belongs to the target object. To learn a complete model, the agent

must independently learn a model for each state dimension. While this may be

inefficient when multiple state dimensions are related, it significantly simplifies the

model learning algorithm, and does not hurt the generality of the results.

1.2.4 Influences and behavioral modes

Environments with discrete interacting objects have two broad classes of influence

on the behaviors of those objects. We call the first class internal influences. For

example, if a wheeled robot is treated as an atomic object, then its ability to convert

energy stored in its battery into driving movements is a type of internal influence.

Behaviors caused by this class of influence are usually conditioned only on the internal

states of objects, such as the voltages applied to the drive motors of the robot, or

the momentum of the robot’s motion. The second class of influences are external

influences and come from interactions between objects. An example of an external

9



influence is a robot driving into a wall: the wall blocks the robot’s forward movement

by exerting an equal force on it in the opposite direction. Another example would

be the robot driving over different types of terrain, which affects its movement and

turning behaviors. Behaviors caused by external influences are conditioned on the

relationships between objects, such as whether the robot touches the wall.

The behavior of an object is determined by a combination of internal and external

influences. For example, a ball flying through the air is only subject to the influence

of gravity and momentum, while a ball rolling down a ramp is subject to gravity,

momentum, rolling friction, and the force of the ramp pushing up against it. Each

unique combination of influences gives rise to a possibly unique behavior. The ball

flying through the air follows a different trajectory than when it rolls down the ramp.

When the set of influences affecting an object is constant, the object tends to behave

smoothly. On the other hand, changes in influences tend to cause abrupt, unsmooth

behaviors. The ball flying through the air follows a smooth arc, but when it hits

the ramp, its trajectory undergoes a sudden change in direction. Both internal and

external influences can change abruptly. Internal influences may change due to some

change in operation, such as a brake being engaged or a gearbox being switched to

reverse. External influences usually change when an object enters different relation-

ships with other objects, such as when the ball transitions from flying to rolling upon

contact with the ramp. We will call the distinct behaviors that arise from different

combinations of influences modes. Modes are a characterization of overall behavior,

not the individual influences or causes of a behavior.

Complex behaviors resulting from object interactions can often be decomposed

into a sequence of simpler modes. Consider the scenario in figure 1.3. Suppose that

the system is learning a model of the vertical component of the velocity of ball A (vy).

The trajectory of the ball is complex and difficult to model as a whole, but it can

be broken down into a sequence of four modes conditioned on interactions between

10



2

1

3

4

A

B C

Flying Gravity
Bounce (flat) Gravity, surface pushing up
Roll (flat) Gravity, surface pushing up, friction
Roll (ramp) Gravity, surface pushing up, friction

Mode Influences

1.
2.
3.
4.

#

~intersect(A, *)
intersect(A, B) & vy > 10-8

intersect(A, B) & vy ≤ 10-8

intersect(A, C)

Relations

vy' = vy - k1

vy' = -k2vy

vy' = 0
vy' = k3vx + k4vy + k5

Function

Figure 1.3: Modes, influences, and behavior of a ball bouncing on a box and ramp.

the ball (A), the box (B), and the ramp (C). As shown in the figure, each mode has

a different set of influences, resulting from different relationships between the ball

and the other objects. The influences column lists which physical forces influence the

behavior of the ball in each mode. Note that each mode describes a combination of

forces and does not try to analyze how each individual force contributes to the overall

behavior of the ball. Such an analysis would require extensive background knowledge

about the laws of physics that our system does not possess.

Each entry in the relations column can be thought of as the preconditions that

must hold for the corresponding mode to be exhibited. Therefore, the relations that

hold at a particular time can be used to anticipate the mode that will be active at

that time. The precondition of the flying mode is that the ball (A) is not intersecting

any other objects. The precondition for the bouncing mode is that the ball intersects

the flat platform (B) and its y velocity is above a small threshold (10−8), the value at

which bouncing damps out to rolling. The exact value of this threshold varies from

system to system and depends on a variety of factors. In a physics simulator, the

threshold value may be determined to floating-point round-offs. In the real world,

the threshold value may be determined by the sensitivity of sensors in detecting the

difference in the vertical position of the ball, or the restitution properties of the ball

11



and surface. In any case, an accurate model of this system must be able to determine

this value from observations. When the ball’s y velocity is below the threshold, then

it is in the flat rolling mode. Finally, the precondition for the ramp rolling mode is

that A intersects the ramp (C).

The last column in the table shows the y velocity at time t+ 1 (v′y) as a function

of the y velocity at time t (vy) for each mode. These functions are much simpler

than a single function that describes the entire trajectory of the ball. Furthermore,

each function is only conditioned on the local objects involved (e.g. only the ball

and the object it contacts), and can be applied to any interaction of the same type,

regardless of where the interaction occurs or how other objects are arranged. We call

these functions mode functions.

Decomposing system behavior into qualitatively distinct parts has been studied in

the qualitative reasoning literature. Modes are closely related to the idea of processes

in qualitative process theory (Forbus , 1984). A qualitative process defines a set of

relevant objects, preconditions on the properties of those objects, and how object

properties affect each other. Effects on properties are specified as a relationship

between two properties and a direction of change, such as “the rate of heat flow from a

source to a destination decreases as the temperature of the destination increases.” The

primary difference between modes and processes is that modes model the behavior

of a property as an aggregation of all influences, while processes model individual

influences. For example, if a box is pushed on a rough surface, its velocity is influenced

by both the pushing force and the frictional force. This situation would be described

by a single mode (that of being pushed on a rough surface) but two processes (one

for being pushed, and one for frictional force).

QSIM (Kuipers , 1994) decomposes whole system behavior into a set of operating

regions which are analogous to modes. Within each region, the behavior of the system

is described by qualitative differential equations (QDEs), which are analogous to mode

12



functions. Transitions between regions are defined by transition functions that test

properties of the system. This is different from our characterization of modes which

are conditioned on the true relationships at every time step.

1.2.5 Role identification and assignment

A mode function can be conditioned on the properties of several objects, and

each object affects the behavior of the mode in a different way. In other words,

each object plays a distinct role in determining the behavior of a mode. Consider an

elastic collision between two balls, with masses mA and mB. The function for the

exit velocity v′A of the ball with mass mA is

v′A =
mA −mB

mA +mB

vA +
2mB

mA +mB

vB

where vA and vB are the pre-collision velocities of the balls. Let k1 = mA−mB

mA+mB
and

k2 = 2mB

mA+mB
. Then the function is simply

v′A = k1vA + k2vB

There are two roles in this mode: role A for the ball with mass mA and role B for

the ball with mass mB. Each role is uniquely identified by the terms in the equation

it participates in. The velocity of the ball fulfilling role A is multiplied by k1 while

the velocity of the ball fulfilling role B is multiplied by k2.

This mode function can be used to model any elastic collision between any two

balls with masses mA and mB. In this sense, roles can be thought of as abstract

placeholders or variables, and the objects that fulfill each role can be thought of as an

instantiation of that variable. We observe that in spatial domains, simple behaviors

that are repeated across analogically similar situations are ubiquitous. Conditioning

mode functions on abstract roles instead of actual objects is therefore crucial to

13



learning general models. However, the correct objects must be assigned to the roles

in order for the mode function to be correct. For example, using the velocity of a

ball not involved in the collision, or switching the roles of the two balls in the above

function would result in incorrect predictions. Even if a function perfectly describes

an interaction, it will make an incorrect prediction if its roles are fulfilled by the

wrong objects. Therefore, the system must identify the appropriate object to fulfill

each role. We will call this problem the role assignment problem.

The dual to the role assignment problem is the role identification problem. When

learning a model of a novel environment, the learning algorithm does not know a priori

which roles exist. Not knowing the roles also means not knowing how the attributes

in the training data should be aligned when applying a regression algorithm such as

linear least squares. If we consider model learning as an optimization problem that

minimizes the prediction error of the model, the role identification problem can be

thought of as extending the optimization to search over all possible permutations of

the attributes of each training example. Learning general models requires that the

system solve both the role identification and assignment problems. We will address

these problems directly in our approach.

1.2.6 Summary of Assumptions

Here we summarize the assumptions we make about the environment and model

learning problem.

• The environment is composed of multiple interacting rigid objects with fixed

shapes in 3D space.

• Each object has a type. Objects of the same type have the same properties and

behave identically.

• Object shapes are described as convex polyhedrons or geometric primitives such

14



as spheres.

• Object positions can be encoded in absolute rectangular coordinates. Object

orientations can be encoded in Euler angles. The position and orientation of

an object along with other continuous properties are composed into a property

vector.

• The state of the environment excluding object shapes can be encoded as a

concatenation of all property vectors, called the state vector. The value of each

element of the state vector at time t+ 1 is deterministic given the state vector

and object shapes at time t, but can be degraded by Gaussian noise.

• Agent output to the environment can be encoded as a vector of real numbers.

The model learner will consider the output vector as a component of the state

vector.

• A model for each dimension of the state vector can be learned independently.

The prediction of the next environment state xt+1 can be made by composing

independent models of each dimension F (xt)→ y, where y ∈ xt+1.

• The agent can compute the truth values of a set of spatial relations given the

state vector and object shapes. The set of spatial relations is fixed across

environments.

• The behaviors of individual modes can be modeled accurately by linear func-

tions.

1.3 Requirements for model learning

We enumerate some requirements for a model learning algorithm to perform well

in environments with the characteristics previously described.

15



R1 The accuracy of the model should not be affected by irrelevant objects and prop-

erties. If the model predicts the trajectory of a ball, it shouldn’t depend on

objects the ball does not contact, unless they have influences over the ball’s be-

havior via “action at a distance” such as gravity or magnetic fields. Similarly,

a model of free fall should not depend on the friction coefficient of the object,

since it has no effect on the outcome. A model learned from an object with

one friction coefficient should be applicable to an object with a different friction

coefficient.

R2 The accuracy of the model should not be affected by object location coordinates

that are based on arbitrary origins. In spatial domains, only the relationships

between objects matter. A model learned for a falling ball should not depend

on whether the ball’s y coordinate is 1.0 or 5.0, only the difference between the

y coordinates of the ball and the ground. This invariance can be achieved by

centering object positions on a behavior relevant point, such as the center of

the ball, but this strategy isn’t immune to other types of variations, such as

balls with different radii.

R3 A model of an interaction between several objects should correctly predict the

same interaction in any other set of objects, as long as they have the correct

types and relationships, and regardless of other irrelevant objects in the envi-

ronment. This requires that models be agnostic to object names and should not

rely on them to identify object roles.

R4 The model should be able to represent abrupt and discontinuous changes in

behavior that can occur at the boundaries between different sets of external

influences. For example, a ball transitioning from falling to bouncing undergoes

an abrupt change in its direction of travel.

R5 The model should be learned online as opposed to in batch. This means that the

16



agent does not have random access to the environment. For example, a robot

has a definite position in the world, and can only move within a relatively small

neighborhood with each action. Furthermore, the agent may need to use a par-

tially learned model to plan a route to other areas of the state space so that it

can obtain more training examples. Therefore, the algorithm cannot wait until

it has a representative distribution of training examples before constructing a

useful model. It should try to utilize all available examples as soon as possible

to incrementally improve the model’s accuracy. It should also be able to incor-

porate future training examples without lowering prediction accuracy for the

parts of the space it previously learned.

1.4 Approach Overview

Figure 1.4 shows an overview of our model learning algorithm. Our approach

is based on the observation that learning separate models of individual behavioral

modes is simpler and more general than learning a single model of the total behavior

of the environment. Toward this end, our model learning algorithm must solve two

major problems, corresponding to the two major components in our system. The first

problem is to discover the modes in the system and the linear functions that describe

their behavior. This component is labeled as “clustering” in the figure. The second

problem is to discover a set of rules about how to compose the individual modes into

a complete model. This component is labeled as “classification” in the figure.

The clustering component of our system tries to identify behavioral modes in

the training data by clustering examples based on similarity. This component works

at the level of the continuous state vector representation. We define two training

examples to be similar if they fit the same linear function. The end product of this

component is a grouping of training examples into clusters, with all examples in a

single cluster fitting the same linear function. The rationale is that these clusters will

17



Relational states
T

im
e

mode I

mode II

Clustering Classification

Continuous state

(x1, y1)
(x2, y2)

x1

x2

r1

r2

Continuous
training

examples

Modes

Object Shapes

(r1, mode I)
(r2, mode II)

Training examples
Examples-to-

modes
mapping Mode

classifierFOIL

intersect(A,B)
above(A,B)
ball(A)

~intersect(A,B)
 above(A,B)
 ball(A)

0.3 0.9 0.0 0.2

0.2 1.2 0.0 0.2

EM +
RANSAC

A

B

A

B

A

B

Scene Graph

(Object A, role 1)
Objects-to-roles

mapping

(Object B, role 2)

Training examples

Role
classifiersFOIL

Continuous state

AgentEnvironment

Extract
Spatial
Relations

Training Examples

Figure 1.4: Overview of the model learning system.

Mode
Classifier

Mode 1

x

y

Mode 2

x

y

Mode 3

x

y

0.2 1.2 0.00.0

Test Input

~intersect(A,B)
 above(A,B)
 ball(A)

Relational State

Prediction
Role

Classifier

Figure 1.5: Prediction using a multiple modes.

18



correspond to the modes in the environment, and the linear functions they fit will

correspond to the mode functions. We assume that all modes can be modeled with

linear functions. The clustering is performed using an Expectation-Maximization-

style and standard linear regression. Note that final number of clusters (modes) is

not known a priori. New clusters are introduced incrementally when existing clusters

cannot accommodate all training data.

Our system variablizes the objects whose properties are tested by the mode func-

tions into roles. It then learns relational rules that assign objects to the correct roles

in new situations, which we call role classifiers. These relational rules are learned

using an inductive logic programming algorithm called FOIL (Quinlan, 1990). The

rules are first order and assign objects to roles based on their spatial relationships to

other objects. Role classifiers allow the learned mode functions to be applied to novel

situations where objects have different names than the training examples, and/or the

correspondence between training objects and test objects is not categorically appar-

ent.

The clustering problem has a dual classification problem of determining which

cluster (mode) a new example belongs to. Our system solves this problem again using

FOIL to learn a set of rules that assigns transitions to the correct mode, which we

call mode classifiers. Mode classifiers are also first order and test spatial relationships

between objects. Object names are variablized so that the rules apply to test examples

with different objects than the training examples. The rules learned in the mode

classifiers can be thought of as preconditions for when a mode will occur.

Prediction using the learned model is straightforward, as shown in figure 1.5. First,

the correct mode is identified by feeding the relational state to the mode classifier.

The role classifier then assigns objects to the roles in the chosen mode function so

that it can be evaluated. An evaluation of the mode function using the appropriate

object properties from the test example produces the prediction.

19



Our approach uses both continuous and relational representations in a mutually

beneficial way. Modeling a continuous environment using linear functions is more

natural and more accurate than discretizing the state space. It is also more tractable

than modeling behavior at the relational level, such as by learning STRIPS opera-

tors (see section 2.3). The clustering algorithm essentially solves a large continuous

optimization problem and infers hidden labels in the form of mode assignments for

training examples and role assignments for objects within each example. These labels

are then used as training data for the classification component to learn role classi-

fiers and mode classifiers at the relational level. Learning relational preconditions for

modes provides better generalization than using a single mode for all behaviors or

distinguishing between modes with continuous classifiers such as SVMs (see section

4.7.2). Learning relational classifiers for roles allows the system to use a mode func-

tion learned in one context to make predictions in relationally analogous contexts,

such as states with different objects. This kind of generalization is not possible using

a purely propositional representation.

Our approach satisfies all the requirements laid out in the previous section. It

satisfies R1 and R4 by partitioning behaviors into modes and learning mode functions

that are only conditioned on the relevant roles in each mode. It satisfies R2 by

learning mode classifiers that are based on spatial relationships instead of absolute

coordinates. It satisfies R3 by explicitly identifying the roles in modes and learning

first order classifiers to assign these roles to objects in any context. Finally, our

system learns from online training data, so it satisfies R5. However, many of our

algorithms are not incremental and can occasionally take a few minutes to process

an additional training example on a modern processor. This happens when the new

example causes major changes to the model’s structure, such as discovering a new

mode.

20



CHAPTER II

Related Work

Many methods for action modeling have been proposed, both for relational and

continuous environments. Because our system combines both types of learning, our

work can be compared to wide variety of approaches. In the following sections, we

first compare our approach to continuous model learners and discuss how relational

learning and classification allows our approach to learn faster and more generally

than purely continuous approaches. We categorize continuous model learners into

two broad classes: methods that learn a single function over the entire state space,

and methods that partition the state space into regions, and learn submodels over

those regions. We then compare our approach to purely relational learners and discuss

how modeling continuous effects is simpler than modeling relational effects.

2.1 Single continuous function learners

The simplest approach to modeling a continuous environment is to learn a single

function

F (xt)→ yt

from training data (x1, y1), (x2, y2), . . . , (xn, yn). Generalization of the training data

usually follows a smoothness assumption: test examples will be similar to nearby

21



training examples, where nearness is usually defined as the norm |xtest − xtrain|k for

some k. For example, k = 2 for Euclidean distance.

Because models in complex environments, such as robotics applications, can be

arbitrarily complex, the most popular techniques for model learning are nonparamet-

ric. This means that instead of using training examples to adjust a fixed number of

parameters, each training example is itself a parameter of the model. Practically, this

means that the model can fit any function given enough training data. Therefore, the

criterion to judge these methods on is not accuracy at the limit, but how well they

can generalize a small amount of training data to new situations.

2.1.1 Locally weighted regression

Locally weighted regression (LWR) (Atkeson et al., 1997a) is an instance-based

(Aha et al., 1991) learning algorithm that has been successfully applied in many

robot action modeling contexts (Atkeson et al., 1997b). LWR is appealing because it

is conceptually simple, non-parametric, and can learn arbitrarily complex functions

in the limit. In the learning phase, LWR simply stores all training examples in a large

table. To make a prediction for input x, LWR takes these steps:

1. Find the K nearest neighbors of x using some distance metric, typically Eu-

clidean distance.

2. Perform a weighted linear regression on the K neighbors to obtain a linear

function f . Each neighbor is weighted based on a function of its distance to

the query instance, called the kernel function. A typical weighting function is

K(d) = e−d
2
.

3. Evaluate f(x) to obtain the prediction.

22



2.1.2 Gaussian process regression

Gaussian process regression (GPR) (Rasmussen and Williams , 2005) is a non-

parametric Bayesian inference method. GPR models the training and test data as

a multi-dimensional Gaussian distribution, with one dimension per training/test ex-

ample. Let X be the matrix of training inputs (one example per row), y the column

vector of training responses, X∗ the matrix of test inputs, and y∗ the test responses.

Then  y

y∗

 ∼ N
0,

 K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)




K(A,B), is a covariance matrix with each element Kij = k(Ai,Bj). k is called the

kernel function. A typical kernel function is the “squared exponential”:

k(a,b) = σ2 exp

(
−(a− b)2

2l2

)

σ2 is the variance of the observation noise, and l is the “characteristic length”, which

controls the smoothness of the function. The kernel function serves a similar role

as the distance metric in LWR. Examples with low covariance affect each other’s

probabilities less than examples with high covariance. The squared exponential kernel

is essentially an exponential on top of the Euclidean distance between examples. GPR

predicts the posterior test response (given the training data) to be

y∗|X,y,X∗ = K(X∗,X)K(X,X)−1y

This expression is called the conditional distribution of y∗ given y

GPR is expensive as it requires taking the inverse of K(X,X), which is size

n×n, n being the number of training examples. This takes O(n3) time, making GPR

extremely slow for large training sets. A typical way to deal with this limitation is the

23



take a smaller random subset of the training examples, but this technique may ignore

important examples. Recent work has been done on running GPR on individual

partitions of the training examples and setting the prediction to a weighted average

of the resulting functions (Nguyen-tuong and Peters , 2008).

2.1.3 Discussion

The major advantage of these methods is that they are online learners, and thus

satisfy requirment R5 from section 1.3. However, there are several problems with ap-

plying these approaches to spatial domains with multiple interacting objects. First,

standard LWR implementations use vector norms such as Euclidean distance that

weigh all state dimensions equally. Because interactions in spatial domains are often

localized, only a small number of state dimensions will matter at any time. There can

be cases where examples that agree on relevant dimensions appear more dissimilar

than examples that only agree on irrelevant dimensions. This violates requirement

R1. Extensions to LWR such as Locally Weighted Projection Regression (Vijayaku-

mar et al., 2005) and GPR try to mitigate this effect of irrelevant dimensions.

Another shortcoming of using a vector norm as similarity is that it doesn’t cap-

ture relationships between dimensions. This is a problem because relative distances

between objects often matter more than their individual distances to the coordinate

origin. Consider the four training examples and the test example in figure 2.1. In-

tuitively, example 1 is the most qualitatively similar example to the test instance,

so it should be weighed the most when making the prediction. However, in terms

of Euclidean distance, example 1 is the most dissimilar example from the test in-

stance. Therefore, methods such as LWR and GPR will weigh example 1 the least in

predicting the outcome. This is a violation of requirement R2.

The second problem with these methods is a lack of compartmentalization of

training examples into individual modes. Basically, real variations in the behaviors

24



Example 1 Example 2 Example 3 Example 4

Test

dist: 3.2 dist: 1.3 dist: 0.6 dist: 0.5

?

Prediction

Figure 2.1: Euclidean distance doesn’t correlate with behavioral similarity.

of similar examples due to being in different modes is confounded with variation due

to noise. Whereas “averaging out” variations due to noise can lead to more accurate

predictions, averaging out real variations leads to predictions that are not accurate

for any mode. This is shown in the prediction panel of figure 2.1. Training example

2 is from the mode of the ball bouncing against the bottom of a platform, example 3

is from the falling mode, and example 4 is from the rolling mode. Because they all

contribute to the final prediction, the prediction becomes an average of several modes

and is not accurate for any mode. This is a violation of requirement R4.

Another problem is that these methods use propositional representations, so there

is no way to apply a model learned on one set of objects to another set of objects,

which violates requirement R3. In propositional representations, the state is assumed

to have fixed dimensionality and each attribute is assumed to be categorically unique

(e.g. age versus height). Attributes across different training examples are assumed

to have a single obvious correspondence (weight corresponds with weight, height cor-

responds with height). Both these assumptions are violated when the state contains

many objects of the same type, such as in the stairs example in section 1.2.5.

25



2.2 Input space partitioning continuous learners

The following methods are similar to ours in that they learn a set of relatively

simple submodels that together cover the entire space of possible behaviors. In other

words, let Rd be the input space and R the response space, so that the model can be

described as F : Rd → R. These methods learn a set of submodels

{
fi : Rd → R for i ∈ 1, . . . , n

}
and a partitioning of the input space

{
pi ⊆ Rd for i ∈ 1, . . . , n s.t. p1 ∪ . . . ∪ pn = Rd ∧ ∀i,jpi ∩ pj = ∅

}
Each function fi is trained only on the examples that are contained in the paired

partition pi. Evaluating F on input x is just a matter of finding the partition that

contains x and evaluating the associated submodel:

F (x) = fi(x) where x ∈ pi

2.2.1 Model trees

Model trees (Quinlan, 1992) are decision trees whose interior nodes contain a

simple test that partitions of the input space in two and whose leaves are functions.

Prediction using a model tree involves routing the test input from the root of the

tree to a leaf, following the branch at each interior node based on the test result,

then evaluating the function at the leaf. Model trees are “grown” by choosing a test

to split the training examples, then recursively growing the left and right subtrees

using the respective partitions. Growth is terminated when the examples at a leaf

can be satisfactorily modeled by a single function, which is usually linear. The choice

26



of the test at each interior node is based on the splitting rule. For example, the

splitting rule of the well known M5 algorithm (Quinlan, 1992) chooses a partitioning

that minimizes the standard deviation of the training response variables. The test

itself usually partitions the input space by comparing a single dimension with a single

value, such as x4 > 12.0. This results in the points on each side of an axis-aligned

hyperplane being placed in one partition.

2.2.2 Mixture of sigmoids approach

Toussaint and Vijayakumar (2005) developed an algorithm that partitions train-

ing data into a collection of linear local models using Expectation Maximization and

assigns test input to local models using a product-of-sigmoids classifier. The product-

of-sigmoids classifier essentially partitions the input space into a set of polyhedrons.

Each face of the polyhedron is established by a single sigmoidal function, a binary

classifier that chooses between the more likely of two possible local models for the

input. Taking the product of all sigmoids is like performing an and on all the bi-

nary classifiers. All test examples whose inputs fall into a particular polyhedron are

predicted using the local model associated with that polyhedron.

This approach was the starting point of our work. Even though the product-

of-sigmoids classifier is more expressive than the axis-aligned hyperplane partitions

used in model trees, they still exhibit weak generalization in domains where spatial

relationships are the natural partitions.

2.2.3 Multi-Modal Symbolic Regression

Multi-Modal Symbolic Regression (MMSR) (Ly and Lipson, 2012) is an algorithm

that learns models of hybrid dynamical systems. Hybrid dynamical systems are finite

automata whose states are analogous to our concept of modes. The system is always

in exactly one state and will exhibit the behavior associated with that state. The

27



system may transition to another state when certain conditions are met, as governed

by the transition function.

Like our algorithm, MMSR uses Expectation Maximization to assign training ex-

amples to modes. MMSR models the behaviors of individual states using an algorithm

called Eureqa (Schmidt and Lipson, 2010). Eureqa is essentially a nonlinear regression

algorithm that uses genetic programming to search the space of symbolic equations

for one that best fits the data. The ability to model complex functions increases the

potential for a single mode to overfit the data and cover more training examples than

it should. MMSR uses the Akaike Information Criterion (Akaike, 1974) to balance

equation complexity with goodness of fit. MMSR also learns a model of the system’s

transition function. It uses a similar evolutionary technique adapted for classification

to find equations that describe conditions under which state transitions occur. Be-

cause these equations are potentially nonlinear, the state space partitioning learned

by MMSR is more expressive than the hyperplane partitioning schemes used in the

previously discussed works.

MMSR’s partitioning scheme is more expressive than using combinations of hy-

perplanes, but it still operates in absolute coordinates, and is therefore not as natural

to adapt to the domains we are interested in as spatial relations. MMSR’s ability to

model nonlinear mode functions is something our system is unable to do. We avoided

nonlinear regression mainly because of the problems with EM and overfitting that is

described in the MMSR work. Exploring how to use the AIC to prevent overfitting

in our system is left as future work.

2.2.4 Discussion

All of the above methods partition examples along relevant state dimensions and

learn functions that are only conditioned on relevant dimensions, so they satisfy

requirement R1. They all use propositional representations, so they fail requirement

28



R3.

Predictions made by models learned with these methods are only affected by the

training examples that share a partition with the test input. This is different from

the single model learning algorithms described previously, in which every training

example influences every prediction, albeit the influence is weighted by a similarity

metric. Therefore, these methods get closer to modeling independent behavioral

modes and the possibility for abrupt changes to occur when transitioning between

modes, satisfying requirement R4.

Model trees and product-of-sigmoids models partition the input space using hy-

perplanes located at absolute coordinates. This means that a model learned in one

part of the space cannot be applied to another part of the space. Hence these meth-

ods fail requirement R2. Furthermore, distinct modes due to external influences

are usually based on spatial relationships between objects, and many spatial rela-

tionships are hard to capture with hyperplanes located at absolute coordinates. For

example, whether two objects intersect is conditioned on their position vectors being

close to each other, not their absolute values. Therefore, hyperplane-based partitions

are not expressive enough to describe the entire space where a particular submodel

applies, and generalization suffers as a result. On the other hand, MMSR is capable

of partitioning the space using nonlinear functions, so it does not suffer from these

shortcomings.

The product-of-sigmoids learner is online and satisfies requirement R5, and there

is an online and incremental version of model trees (Potts , 2005), but MMSR is not

online. Furthermore, MMSR has reported run times of 10 to 40 minutes for toy

problems on standard modern hardware (Ly and Lipson, 2012), which is orders of

magnitude slower than either of the other approaches. This is not surprising consid-

ering the high expressivity of symbolic regression and use of evolutionary algorithms.

29



2.3 Relational action model learning

Much of the early work in action modeling was on learning STRIPS operators in

relational domains (Wang , 1995; Carbonell and Gil , 1996). The work presented in this

thesis grew out of previous systems we built that performed instance-based relational

model learning (Xu and Laird , 2010) and combined relational model learning with

LWR (Xu and Laird , 2011).

The relational aspects of our system (mode and role classifier learning) most

closely relates to the work of Kaelbling et al. (2007). They built a system that

learns STRIPS-style “Noisy Deictic Rules” (NDR) of relational domains from noisy

training examples. NDRs are first-order and contain “deictic references,” references

to objects that affect an action’s outcome or are modified by the action, but are not in

the action parameters. In blocks world for example, the pick-up(X) operator has the

parameter X for the block to pick up. However, one of its effects includes deleting the

relation on(X, Y ), where Y is the block or table that X was originally on. Therefore,

Y is a deictic reference in pick-up(X). Deictic references correspond to roles in our

models. Each deictic reference has a conjunction of first-order literals that restrict

which objects it can bind to, which correspond to role classifiers in our system. For

the deictic reference Y in the pick-up operator, the restriction is that on(X, Y ) is

true.

Even though they fulfill the same function, deictic references and roles are learned

in completely different ways. Deictic references are discovered as part of a general

search through the space of possible rules. This search involves iteratively applying

a set of search operators to modify a seed NDR in ways such as adding or removing

literals to/from a rule’s precondition or postcondition, adding or removing deictic

refences, adding or removing literals to deictic reference restrictions, etc. The search

is greedy and maximizes the log-likelihood of the rule set with a complexity penalty.

The discovery of deictic references is therefore folded into the process of maximizing

30



this objective function along with learning the other aspects of the NDR, such as its

preconditions or its effects.

In our system, roles are identified during clustering, separate from and strictly

before learning role classifiers (which correspond to the descriptions of deictic ref-

erences) and mode classifiers (which correspond to rule preconditions). When our

system reaches the stage to learn role classifiers, it already a set of roles and labeled

examples of objects that are and are not suitable for each role. Therefore, learning

role classifiers is a straightforward supervised learning problem. This makes our sys-

tem both simpler and more powerful, in that it is able to learn complex role classifiers

made of conjunctions and disjunctions of many literals. The NDR learner is unable

to learn complex conjunctions for its deictic reference restrictions because its greedy

search requires each additional literal to increase the log-likelihood of the rule more

than it increases the complexity penalty. This is not possible if a conjunction of lit-

erals only increases rule correctness when it is complete, which is often the case in

domains like blocks world. The NDR learner compensates for this by introducing an-

other level of search through the space of possible conjunctions of basic literals. This

search tries to combine basic relations into useful conjunctions called concepts, and

then run the NDR learning procedure using a vocabulary of both basic relations and

concepts. If the resulting rules have higher objective scores, the concept is considered

useful and kept in the system. Although the authors do not report the computation

time required for this search, we suspect that it is expensive.

Our system is simpler because each model it learns tracks the continuous change

of a single property of a single object, whereas NDRs and all STRIPS-style rules

model relational changes that can involve arbitrarily many objects for a single action.

Huffman and Laird (1992) discuss the advantage of modeling action effects using

non-relational, concrete representations. They point out that a continuous, propo-

sitional state representation implicitly encodes the combinatorially large number of

31



relationships that are explicitly represented in the equivalent relational state. An

action model of the continuous propositional state space therefore only has to update

a bounded number of properties, while an action model of the relational state space

must update an exponential number of relationships in the worst case. This problem

with relational action models is known as the ramification problemGinsberg and Smith

(1988). For example, consider the situation shown in figure 2.2. Box A undergoes

a simple linear translation between states 1 and 2, which can easily be modeled in

the continuous propositional state space. However, this results in a complex set of

changes in the relational state space. The number of literals that can change in this

situation can be arbitrarily large depending on the number of objects in the envi-

ronment, making a general rule that describes this transition difficult to learn. By

modeling only the continuous effects of single object properties, our system avoids

the ramification problem. Furthermore, these models can still be used to predict the

relational effects of actions by using the simulate-then-derive strategy introduced by

Huffman and Laird (1992). This strategy is to simulate an action in the continuous

state space, obtain the final continuous state, and then calculate the new relational

state by testing the truth value of every relation. Although simulating the entire state

requires our system to learn one model for each property of each type of object, the

total number of models is linear with the number of object types in the environment,

which is usually much smaller than the number of objects. On the other hand, the

number of effects to be modeled by a single rule of a relational model is combinatorial

with the number of object instances in the worst case.

The unlimited generality of a relational rule also makes action modeling intractable

in another way: the learner must search the space of trade offs between a large number

of specific rules and a small number of general rules. This trade off is also present in

our system, where single modes can use arbitrarily complex non-linear mode functions

to model a large number of behaviors. Our solution is to fix the trade off a priori and

32



A

B

C
D

left-of(A, B)
left-of(A, C)
left-of(A, D)
left-of(A, E)

E

A

B

C
D

A

right-of(A, B)
right-of(A, C)
right-of(A, D)
left-of(A, E)

E

State 1 State 2

Figure 2.2: Example of how a simple linear change in the continuous state space
results in complex changes in the relational state space.

restrict mode functions to be linear. This solution is not suitable if the environment

has non-linear modes that cannot be decomposed into simpler linear modes.

2.4 Object-Oriented Markov Decision Processes

Diuk et al. (2008) describe a system that learns models in object-oriented do-

mains with continuous attributes called Object Oriented Markov Decision Processes

(OOMDP). In this formulation, the environment is composed of a set of objects, each

belonging to a class. The class of the object defines what attributes it has and how

it behaves. Relations are boolean functions on two objects that test conditions about

the objects’ attributes, such as whether the objects touch. Actions are modeled as a

set of condition-effect pairs, such that when the agent performs an action, any effects

whose associated conditions are met will take place. Conditions are conjunctions of

tests for the truth values of relations. Effects can either set an object’s attribute to an

absolute value, or increment or decrement the attribute value by a particular amount.

The OOMDP representation has many similarities to our representation. Both

define objects to have types (classes) that determine the attributes they have and

their behaviors. Both define relations on multiple objects whose truth values are

based on the attributes of the objects. Both allow for qualitatively different effects

33



for one action based on preconditions that test the truth values of relations.

Our approach is more general than OOMDPs in many ways. The preconditions of

effects in OOMDPs are propositional even though they test relations. They cannot

represent concepts such as on-top(A,B)∧ on-top(B,C) and enforce that the variable

B is bound to the same object in both conjuncts. Our mode classifiers are first

order and can represent such concepts. While models in OOMDPs can only represent

effects as setting object attributes to specific values or incrementing or decrementing

by a fixed amount, our models learn effects that are general linear functions of object

attributes. Furthermore, because OOMDP effects are not conditioned on attributes

of other objects, their models don’t address the role assignment problem which is

unavoidable in more flexible representations of effects. Our approach solves the role

assignment problem by learning role classifiers using FOIL. The increased generality

of our approach comes at the cost of higher computational complexity.

34



CHAPTER III

System description

In this chapter, we present a detailed description of our model learning algorithm.

We will first describe an experimental domain which we will use as a running example

throughout the chapter. Then we will describe each component of our system as

shown in figure 1.4.

3.1 The box pushing domain

The demonstration domain we will use consists of a truck and a stack of boxes, as

shown in figure 3.1. The truck moves toward the right and generates a constant force

that pushes the stack of boxes. The left side of the figure illustrates the forces on the

Box 1

Box 3

Box 2

friction I friction II

Truck

pushing
force

Ground

a a b

ab a b c

1 2

3 4

b

c

c

c
t

t

t

t

Figure 3.1: The box pushing domain (left) and the possible configurations of the
boxes (right).

35



system. Each box has the same mass and a different non-zero friction constant. The

frictional force generated against the ground opposes the pushing force. Each vertical

stack of boxes generates a different frictional force. We use the basic Coulumb model

of friction, so the friction force is calculated as the product of the downward normal

force generated by the stack’s weight and the friction constant of the bottom-most

box. The total force on the system determines the acceleration of all the objects and

in turn the velocities of the objects. We set up our system to learn a model of the

truck’s horizontal velocity.

The right side of figure 3.1 shows the possible configurations of the boxes. Note

that the labels a, b, and c are labels for positions and not the names of the boxes. So

each configuration in the figure corresponds to six concrete states because the identi-

ties of the boxes can be permuted amongst the positions. Since configurations 2 and

3 have identical stacks of boxes except for their horizontal order (which is irrelevant

in determining behavior), we expect them to behave identically. However, configu-

rations 1, 2, and 4 distribute boxes among stacks differently, so we expect different

frictional forces in each and thus different behaviors. These different behaviors will

be modeled using different modes. Furthermore, the model will have to learn a mode

classifier that can distinguish the different modes based on the configurations of the

boxes.

We train the model on a sequence of 48 blocks. Each training block begins in

one of the 4 configurations, one of the 6 permutations of box identities, and one of

2 random seeds. The random seed affects the size of the boxes and their positions

in absolute coordinates. This shows that our learned model generalizes across these

random variations, and also prevents it from overfitting some accidental regularities

that we didn’t anticipate. 40 training examples are generated from each initial state

by simulating the system for 40 time steps. This results in a total of 1920 training

examples. This is actually more training examples than needed for the system to

36



learn the correct model, but we want to show that the model can correctly unify a

diverse training set under a compact description.

3.2 Clustering

The clustering component is responsible for discovering new modes, learning the

linear function for each mode, identifying the roles in each mode, and assigning each

point in the training data to a mode. Input into the clustering component is a stream

of continuous training data

(x1, y1), (x2, y2), . . . , (xn, yn)

where xi is the initial state vector, and yi is the value of the target dimension in the

post state, as discussed in section 1.2. The outputs of clustering are

• A set of modes. Our system starts out with only a single “noise” mode that

serves as a catch-all for examples that don’t belong to any other modes. As the

system accumulates examples, it tries to identify subsets of examples that are

highly correlated and create new modes to accomodate them. This is accom-

plished with the RANSAC algorithm.

• A linear function that describes the behavior of each mode. Since the behavior

of each mode is distinct, our system learns a function for each mode, called the

mode function. It does this by fitting a line to the examples assigned to the

mode using linear regression. We assume that all behaviors can be described

by linear functions.

• A mapping from training examples to modes. We assume that each training

example was generated by a unique mode, but the true mode is not observed.

The clustering algorithm tries to deduce the mode responsible for each training

37



example based on how well it fits the linear function of each mode. More

precisely, the mode assigned to example (x, y) is arg minm∈M |y−Fm(x)| where

M is the set of modes and Fm is the function for mode m.

Note that the second and third items are interdependent: the mode function is

learned by fitting a line to the examples assigned to it, and examples are assigned to

mode based on how well they fit the mode functions. We solve for both sets of pa-

rameters (parameters of mode functions and assignments of examples) simultaneously

using Expectation Maximization (EM), discussed below.

The use of the terms “input” and “output” may be misleading here. Clustering

does not start from scratch with each new input, and does not return a complete

copy of its output with each run. Instead, new inputs trigger an iterative process

that runs on persistent structures until convergence. Output simply means that the

process has converged and the structures can be inspected. Therefore, clustering can

be considered an incremental algorithm in form, although it is not computationally

incremental and may inspect the entire history of inputs during some iterations.

Figure 3.2 shows the clustering process. When a new training example arrives,

EM is first run until all mode assignments and mode functions converge. Next, if the

noise mode contains enough unassigned examples, RANSAC is run to look for a new

mode. If a new mode is not found, then the system has converged and waits for the

next input. Otherwise, the system tries to unify the new mode with existing modes.

Regardless of whether any unification was successful, EM is run again to find the best

mode assignments and functions in light of the new mode. We will now describe each

algorithm in the flowchart in detail.

3.2.1 Learning mode functions

Mode functions are linear and have the form Fm(x) = w · x, where w is a vector

of weights (w1, w2, . . . , wk) and w · x is the inner product of the weights with the

38



Run RANSAC 
on noise mode

Run EM

Noise mode 
exceeds 

threshold?

New mode 
discovered?

yes

yes

Done

no no

Run unification

New
example

Figure 3.2: Flowchart for the clustering process.

state vector. Learning the mode function involves finding the best set of weights by

applying linear regression to all training examples assigned to the mode.

Linear regression is a well-understood problem. Given a set of training examples

(x1, y1), (x2, y2), . . . , (xn, yn)

the basic linear regression algorithm finds a set of weights that minimizes the residual

training error

arg min
w

{
n∑
i=1

(yi −w · xi)2
}

Notice that if an element in w is zero, then the corresponding element in x would

have no impact on the linear function’s value because it’s zeroed out when multiplied

by its weight. Typically, we want linear functions to have as few non-zero weights

as possible, because functions that depend on fewer explanatory variables tend to be

more general according to Occam’s Razor. For example, suppose that two dimensions

of the state vector have a constant value of 1 in all training examples. Clearly, these

39



dimensions do not play a role in determining the function’s output. However, a naive

linear regression algorithm may set the weights for these dimensions to 106 and −106

without incurring additional residual error, since they cancel each other out. But

when applied to test examples where the dimensions in question vary even slightly

away from value 1, the learned function will incur extreme errors. On the other hand,

if the weights were set to 0, the function would not be affected no matter how much

the values in the test examples vary.

The practice of minimizing the number of nonzero weights is called regulariza-

tion. Typically, regularization techniques supplement the residual error with a slight

penalty for each non-zero weight. For example, the popular ridge regression technique

minimizes the residual error plus the l2 norm of the weight vector:

arg min
w

{
n∑
i=1

(yi −w · xi)2 + λ|w|

}

The λ constant trades off the aggressiveness of the regularization with residual error.

Some other regularization techniques include LASSO and forward-stepwise regression

(Hastie et al., 2002).

Regularization is especially important in our model learning system. The state

vector x contains at least nine dimensions for each object in the environment (the

basic position, rotation, and scaling transforms), so even with very few objects, the

dimensionality of the vector is high. But for most modes, only a small number of

dimensions actually affect behavior. For the reasons discussed above and in section

3.2.3, it is important that only the truly relevant dimensions have non-zero weights.

Our system uses forward-stepwise regression for linear regression and regulariza-

tion. This technique has empirically proven to be more robust in our experiments

than ridge regression and LASSO. The basic idea of forward-stepwise regression is to

repeatedly run basic linear regression on subsets of the state vector dimensions, each

40



time adding only one dimension that results in the best improvement in residual error,

until a threshold is reached. Pseudo-code for this technique is shown in algorithm 1.

Note that the pseudo-code illustrates a naive and inefficient implementation of the

algorithm. The actual implementation in our system uses the sweep operator (Lange,

2010) to perform multiple regressions efficiently.

Algorithm 1 Forward-stepwise regression

1: procedure forward-stepwise-regression(X, Y )
2: Let X be a n×m matrix, with each row being a training example
3: Let Y be a n× 1 vector of the corresponding response values
4:

5: c← ∅ . c is the set of chosen regressors
6: r ← 1 : m . r is the set of remaining regressors
7: w ← LinearRegression(X, Y )
8: S ← 1

n

∑n
i=1(Yi − w ·Xi)

2 . S is MSE with all regressors
9: Cbest ← inf

10: while r 6= ∅ do
11: dbest ← ∅
12: for d ∈ r do
13: c′ ← c ∪ d
14: X ′ ← [Xi ∀i ∈ c′] . X ′ is matrix with c′ columns of X
15: w ← LinearRegression(X ′, Y )
16: SSE ←

∑n
i=1(Yi − w ·X ′i)2 . SSE is residual error with c′

17: Cp ← SSE
S2 − n+ 2|c′| . Mallow’s Cp statistic

18: if Cp < Cbest then
19: Cbest ← Cp
20: dbest ← d
21: end if
22: end for
23: if dbest 6= ∅ then
24: c← c ∪ dbest
25: else
26: return c
27: end if
28: end while
29: end procedure

41



3.2.2 New mode discovery

Our model learner does not have a priori knowledge about which modes exist in the

environment, and must discover these modes from training data using the approach

of Toussaint and Vijayakumar (2005). The model learner begins with a single noise

mode. All new training examples that do not fit any existing modes are assigned to

the noise mode. Therefore, training examples belonging to undiscovered modes will

be in this set. The problem is that these examples will be mixed in with examples

from other undiscovered modes and genuine noise, so they must be separated out.

We assume that it is unlikely for a large number of random examples or examples

belonging to different modes to fit the same linear function. So if a large set of

examples in the noise mode are found to fit the same line, we assume they belong

to the same undiscovered mode, and create a new mode with those examples. Our

system uses Random Sampling and Consensus (Fischler and Bolles , 1981) (RANSAC)

to distill new modes out of the noise mode.

RANSAC is an algorithm for performing linear regression on data sets with large

percentages of outliers. The goal is to fit a line to a set of “inliers” without letting the

outliers influence the final fit. In the context of our problem, the inliers are examples

from the same undiscovered mode, and the outliers are truly noisy data or examples

from other undiscovered modes. The basic idea of RANSAC is to repeatedly draw

small samples from the data set in hopes of getting one without outliers, fit a line to

the sample, then find all other points that also fit the line. Assuming the data set D

contains (xi, yi) pairs, RANSAC follows this procedure:

1. Draw a random sample S ⊂ D.

2. Fit a linear function f to S using the linear regression method described in

section 3.2.1.

3. Find all other points (x, y) ∈ D such that |y − f(x)| < 2σ. Call this set S ′.

42



4. If |S ′| > T , then return f and S ′. Otherwise repeat from 1 unless the maximum

number of iterations N is exceeded.

T , σ, and N are all free parameters in our system. T is a threshold parameter

that is manually set in our system. Because RANSAC is used to discover new modes

in our system, the value of T directly impacts the quality of the learned model. If

T is set too low, the system may learn spurious modes that overfit accidental linear

relationships between examples. If T is set too high, then more data than necessary

is required for the agent to discover new modes. Furthermore, in online training

contexts, there is no upper limit that will guarantee that the system has a good

distribution of examples before committing to a new mode. The value to use trades

off speed of learning with the goodness of the learned models. We suspect that erring

on the side of slower learning will be better than learning overspecific models in most

situations. T is set to 40 in most of the experiments described in this thesis.

We assume that all training examples can be corrupted by Gaussian noise with

mean 0 and standard deviation σ. This free parameter is used throughout the system

as the expected standard deviation resulting from noise. Here, we set the maximum

tolerance for a point to fit a line at two standard deviations away. Setting σ too high

will result in the system folding distinct behaviors into a single mode. Setting σ much

lower than the actual environment noise will result in the system being too selective

and not learning any new modes at all. We empirically demonstrate these effects in

section 4.6.

N is the maximum number of iterations to RANSAC. Higher values of N cause

the system to waste time searching for new modes in the noise data that might not

exist. Lower values of N cause the system to miss new modes. We set N to 2000

in our experiments because that value empirically worked. An adaptive policy that

decreases N over time may result in faster performance by reducing the amount of

time spent looking for non-existent modes.

43



o1 o2 o3 o4 o5

State Vectors

o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

properties of object o1

Roles

R1 R2 R3

o1 R1
o4 R2
o5 R3

Role map

0 0

Training
examples

Weight
vector

Linear
Regression

Figure 3.3: Identifying mode roles through linear regression

3.2.3 Identifying roles in mode functions

Recall from section 1.2.5 that every mode has a set of roles that define which

objects are involved in the mode and how their properties affect behavior. We define

a role to be a set of non-zero weights in a linear mode function that test properties

of the same object. For example, the mode function for an elastic collision between

two balls is

v′A = k1vA + k2vB

where k1 = mA−mB

mA+mB
and k2 = 2mB

mA+mB
. Assuming the masses mA and mB are constants,

this function has two roles. The first role is that of the ball with mass mA, with weight

k1 for its velocity, and the second role is the ball with mass mB, with weight k2 for

its velocity.

When a new mode is discovered via RANSAC, its roles are implicitly identified

through the linear regression process. This is illustrated in figure 3.3. Each state

44



vector in the training data is composed of a sequence of property vectors, with each

property vector enumerating the properties of a single object. The weight vector

learned by performing linear regression on a set of state vectors can be segmented

in the same way. Each segment with at least one non-zero weight corresponds to a

role in the mode. Segments with all zero-valued weights are discarded. The linear

regression produces two results: a set of roles and weight vectors for those roles, and

a mapping from the objects in the training data to those roles. The latter is used

when learning role classifiers, as will be discussed in section 3.5.

This approach requires that the objects that fulfill the same roles in each training

example used in RANSAC must occupy the same positions in the state vectors. In

other words, they must be aligned in the same “columns” in figure 3.3. This is a rea-

sonable requirement given that our training examples are obtained online and thus

come from continuous traces of the environment. It’s likely that the same objects will

fulfill the same roles over an extended period of time. Furthermore, this requirement

only applies to the discovery of new modes. After the mode and its roles are estab-

lished, our system can fit additional examples with different role assignments to the

mode by searching over all possible assignments for the best fit (see the next section).

This kind of search is not possible when the roles have not been fixed, since it would

require trying to discover a linear relationship over all possible role permutations of

every training example, which would be prohibitively slow.

3.2.4 Fitting examples to existing modes

In the previous section, we described how RANSAC is used to discover new modes.

Here, we describe how our system assigns new training examples to the set of discov-

ered modes, and how the mode functions are continuously updated to fit new training

examples. This is accomplished using Expectation maximization (EM) (Hastie et al.,

2002). EM is an algorithm for simultaneously solving for two sets of interdependent

45



unknowns. In the context of our model learning algorithm, these unknowns are

1. The parameters of the linear functions for each mode.

2. The mode that generated each data point.

The two sets of unknowns are interdependent because the parameters of a mode

directly determine which data points are plausibly generated by the mode. The basic

idea of EM is to iterate between two steps:

• E-step. Assuming the mode parameters are correct, calculate P (xt, yt|mt = m),

the probability that example (xt, yt) was generated by mode m, for all time

steps t observed so far. Also calculate the mode that most likely generated each

example (mt = arg maxm∈M P (xt, yt|mt = m)).

• M-step. Assuming the probabilities from the E-step are correct, use linear

regression to fit each mode’s function Fm to the set of points that were most

likely generated by it {(xt, yt)|mt = m} .

This process iterates until convergence or a maximum iteration count is reached.

The probability that the data point (xt, yt) belongs to mode m is based on the

residual error ε between the observed target value yt and the value predicted by the

mode function. Due to the multiple possible assignments of the objects at time t

to the roles in Fm, ε is calculated as the minimum possible error over all possible

assignments:

ε = arg min
R

|yt − FRm (xt)|

where FRm (xt) is the mode function evaluated on xt using role assignment R. Because

we assume Gaussian noise with variance σ2 in the training data, the probability of

observing residual error ε given that example t belongs to mode m follows a normal

46



distribution with mean 0 and variance σ2:

P (xt, yt|mt = m) =
1√

2πσ2
exp

{
−ε2

2σ2

}

Since this calculation requires a search over all possible role assignments, it could be

expensive if there are many objects of the same type in the environment. But we

didn’t encounter this problem in our experiments.

It is difficult to characterize the complexity of EM, but the use of linear regression

in the M step suggests it is at least O(n3). We use several strategies to cut down

on the actual runtime of EM. In the E step, our algorithm persistently caches all

calculated probabilities and only updates the values for modes whose functions have

changed. In the M step, our algorithm tries to avoid refitting functions as much as

possible. When new examples are added to a mode (meaning mt 6= m in the previous

EM iteration and mt = m now), a linear regression is not performed if the existing

function fits the new examples well enough. Removal of examples from a mode does

not initiate a linear regression if the function fits the remaining examples well enough.

By “well enough,” we mean the maximum error maxxt(F
R
m (xt)−yt) < T , where T is a

free threshold parameter. In practice, we found that most mode functions converged

quickly and did not require refitting thereafter.

3.2.5 Mode unification

Our learning algorithm runs online and learns from available data at any point in

time. In some situations, the system will learn a mode that fits the observations up

to one point in time at the expense of learning a more general mode that fits future

observations as well. For example, suppose that an agent receives training examples

of a ball rolling at a constant speed in the positive x direction. After a sufficient

number of training examples, it may learn a mode for the ball’s x-velocity with the

47



function vxt+1 = c1, where c1 is some constant. Suppose that later on, the agent

gets training examples of the ball rolling in the negative x direction and learns a new

mode function vxt+1 = c2. However, a more general mode that would cover rolling in

both the positive and negative directions is vxt+1 = vxt, i.e. the ball maintains its x

velocity.

The problem here is that the model is being learned online, so contiguous training

examples tend to come from similar behaviors rather than a uniform sampling of the

behavior space. In this situation, learning the overspecific mode first is the right thing

to do, since there is no upper bound on the number of training examples to wait for

before a sufficient diversity is achieved. Furthermore, the agent may be able to use

the overspecific modes to make accurate predictions, such as if the ball kept rolling.

The best thing to do, then, is to learn the overspecific modes as soon as possible,

utilize them when possible, but then learn a more general mode when additional

training examples become available. Our system tries to do this by unifying newly

learned modes with existing modes, meaning it tries to find a function that fits the

examples from both the existing and new modes. If it is successful, the agent will

discard both overspecific modes and keep the generalized mode.

In the case of the rolling balls, upon discovering the negative rolling mode, the

system will first try to unify it with the positive rolling mode, and find the more

general mode with function vxt+1 = vxt. Both the negative and positive rolling

modes will then be discarded in favor of the general mode.

The unification algorithm runs each time a new mode is discovered. For each

existing mode, it uses RANSAC to search for a function that covers the examples in

both the existing mode and the new mode. If RANSAC discovers a function that

covers a large ratio Runify of the examples, that function is used to create a new

mode. Both the existing mode and the overspecific new mode are then discarded. In

our experiments, Runify is set to 0.9.

48



3.2.6 Modes learned in the box pushing domain

We now analyze the modes learned in the box pushing domain to make the previ-

ous algorithm descriptions more concrete. First we analytically derive the forms that

the modes should have, then show the modes actually learned.

The acceleration of the truck can be calculated using the equation F = Ma. Since

all objects in the environment are moving together, we treat them as a single point

mass, so M = mtruck + 3mbox, where mtruck is the mass of the truck and mbox is the

mass of a single box. Furthermore, the total force on the system is a combination of

the pushing force from the truck and the frictional forces from the boxes sliding on

the ground:

F = Ftruck − Ffriction

The frictional force can be further decomposed into the friction experienced by each

stack, which depends on the configuration of the boxes. In configuration 1 (see figure

3.1, the frictional force is

Ffriction = Ca × 3Gmbox

where Ca is the friction constant for the box in position a, G is the gravitational

constant, and 3Gmbox is the downward force exerted by the stack of 3 boxes. The

total acceleration can be calculated as

accel =
F

M
=
Ftruck − Ca × 3Gmbox

M

accel =
Ftruck
M

− Ca
3Gmbox

M

Since M , G, and mbox are constants, let

k0 =
1

M

49



kn = −nGmbox

M
for n ≥ 1

We can then we can further simplify this equation to

a = k0Ftruck + k3Ca

This is a linear function with independent variables Ftruck and Ca. This function has

a role corresponding to the term k0Ftruck that must be fulfilled by an object of type

truck. It also has a role corresponding to the term k3Ca that must be fulfilled by an

object of type box.

In configuration 2, the frictional force is

Ffriction = Ca × 2Gmbox + Cb ×Gmbox

The total acceleration in configuration 2 is

accel =
Ftruck − Ca × 2Gmbox − Cb ×Gmbox

M

accel =
Ftruck
M

− Ca
2Gmbox

M
− Cb

Gmbox

M

accel = k0Ftruck + k1Cb + k2Ca

This is a linear function with independent variables Ftruck, Ca, and Cb. This single

function can cover both configurations 2 and 3 because the positions of the stacks are

not important, only the distribution of blocks amongst stacks. There are 3 roles in

this function, corresponding to the terms k0Ftruck, k1Cb, and k2Ca.

Finally, the friction force in configuration 4 is

Ffriction = Ca ×Gmbox + Cb ×Gmbox + Cc ×Gmbox

50



# Config. Num. Mode function
examples

0 Noise 0 -
1 1 480 v′truck = vtruck + 0.025Fpush − 7.5Ca
2 2 and 3 960 v′truck = vtruck + 0.025Fpush − 5.0Ca − 2.5Cb
3 4 480 v′truck = vtruck + 0.025Fpush − 2.5Ca − 2.5Cb − 2.5Cc

Table 3.1: Modes learned for box pushing domain

and the total acceleration is

accel = k0Ftruck + k1Ca + k1Cb + k1Cc

This is a linear function with independent variables Ftruck, Ca, Cb, and Cc. There are

4 roles in this function, one for each of the terms in the summation.

Therefore, we expect that our algorithm will learn 3 different modes for this do-

main, corresponding to the three equations derived above. The actual learned modes

are shown in table 3.1. The first column in the table numbers the modes. The sec-

ond column is the configuration the mode covers. This was determined by manually

inspecting the training examples covered by the modes. The 0th mode is the default

noise mode that the system begins with. The third column lists the number of train-

ing examples assigned to each mode. In our training set there were 480 examples for

each configuration, with 40 examples from each of the 6 permutations of box names

in possible positions. The model didn’t actually require so many examples to learn

the correct modes, but we included all permutations to show that they are correctly

unified under a single mode function each.

The fourth column shows the function learned for the mode. Here v′truck is the

predicted velocity of the truck in the next time step, and vtruck is its velocity in the

current time step. The functions correspond to the ideal function we derived, and

the proportions of the constants are as expected.

51



3.3 Relational state extraction

Our system combines positional information contained in the continuous state

vector with object shape information into a scene graph, a 3D representation of the

environment state. This is shown in the top right of figure 1.4. Positional information

captured in the continuous state vector is updated every time step, but object shapes

are only given once and assumed to be static. The system computes all spatial

relationships between all objects in the scene graph using specialized algorithms. For

example, it uses collision detection algorithms to determine if two objects intersect.

Some example relations include intersect(X, Y ), ontop(X, Y ), and east(X, Y ). The

set of truth values for all spatial relations between all objects makes up the relational

state at each time step rt. The relational state is used for learning mode and role

classifiers.

3.4 Mode classification

The clustering component is responsible for identifying modes and mode functions.

However, the mode functions alone are not sufficient to make predictions, because

the agent doesn’t know which mode to use at any time. The mode classification

component is responsible for solving this problem. It learns a classification function

C(rt) → m that predicts the correct mode m given the spatial relations rt of the

initial state, which we call the relational state. The relational state is computed from

the continuous state vector and geometry information. Training examples for the

classifier learner is a list

(r1,m1), (r2,m2), . . . , (rt,mt)

The mode mt associated with each time step is obtained from the clustering step.

52



3.4.1 FOIL

First Order Inductive Learner (FOIL) (Quinlan, 1990) is the primary algorithm

used to learn the classification function. We chose FOIL primarily for its simplicity

of implementation; other inductive logic programming methods can be used by our

system as well. FOIL learns first-order descriptions of object relationships. The input

into FOIL are

1. A set of objects O

2. A set of relations R on those objects

3. A target relation T to be learned

4. A set of object tuples P serving as positive examples of T

5. A set of object tuples N serving as negative examples of T

FOIL outputs a set of Horn clauses, each describing a set of sufficient conditions for

the target relation to hold. Each Horn clause has the form

T (X)← L1(X) ∧ L2(X) ∧ . . . ∧ Lk(X)

where T is the target relation and L1, L2, . . . , Lk are literals (either relations or nega-

tions of relations). X is a stand-in for any number of variables. An example Horn

clause is

grandparent(X, Y )← parent(X,Z) ∧ parent(Z, Y )

Algorithm 2 shows a pseudo-code version of FOIL. FOIL operates in two nested

loops. In the outer loop (line 5), FOIL iteratively adds Horn clauses to the disjunction

until all positive tuples of the target relation are covered. In the inner loop (line

8), FOIL iteratively adds literals to the right-hand-side of the Horn clause until all

negative tuples of the target relation are excluded. The function ChooseLiteral

53



Algorithm 2 Sketch of FOIL

1: procedure FOIL(relations, target)
2: pos← PositiveTuples(target)
3: neg ← NegativeTuples(target)
4: disjuncts← ∅
5: while |pos| > 0 do
6: clause← ∅
7: neg′ ← neg
8: while |neg′| > 0 do
9: lit← ChooseLiteral(pos, neg′)

10: neg′ ← FilterNegatives(neg′, lit)
11: clause← clause ∧ lit
12: end while
13: pos← FilterPositives(pos, clause)
14: disjuncts← disjuncts ∨ clause
15: end while
16: return disjuncts
17: end procedure

BA

DC

relation positive tuples

connected (A,B), (B,D), (C,C), (D,C)
goal (D)
can-reach (A), (B), (D)

Figure 3.4: An example induction problem for FOIL.

always chooses the literal that filters out the most negative tuples from neg′. The net

result of the algorithm is that each clause covers a subset of the positive tuples of the

target relation, and the entire disjunction together covers all positive tuples.

As another example, consider the diagram in figure 3.4. Suppose we wanted to

learn a description of nodes that can reach the goal node D. The objects in this

problem are the nodes A, B, C, and D. The relations are displayed in the table to

the right. Note that only positive tuples for each relation are explicitly listed. By

convention, all tuples not explicitly listed as positive are negative. can-reach is the

54



target relation. For this input, FOIL will learn the following clauses:

can-reach(X)← goal(X)

can-reach(X)← connected(X, Y ) ∧ goal(Y )

can-reach(X)← connected(X, Y ) ∧ connected(Y, Z) ∧ goal(Z)

Notice that the names of the nodes have been variablized in the learned description.

This means that the description will apply to any set of nodes, regardless of names,

as long as the tested relations hold between them.

3.4.2 Using FOIL to learn mode classifiers

To use FOIL to learn the mode classifier function C(rt) → m, some tailoring in

problem representation were required. First, FOIL learns binary classifiers, while the

classification function must be able to distinguish between any number of modes.

To address this problem, we use FOIL to learn binary classifiers for each pair of

modes, so that we have n(n−1)
2

FOIL classifiers in total. We then use a one-against-

one strategy (Hsu and Lin, 2002) to combine these binary classifiers into a single

multi-class classifier. Basically, each binary classifier votes for one of two possible

modes, and the mode with the most votes wins.

The second modification is the addition of a time parameter to each spatial re-

lation. For example, intersect(A,B) becomes intersect(T,A,B). In this represen-

tation, intersect(T,A,B) is true if and only if A intersects B at time step T . This

modification is necessary because the training examples for our classifier learner spans

multiple time steps, while FOIL has no concept of time. Adding the time parameter

essentially collapses relations from different time steps into a single set.

The third modification is the addition of an artificial target relation. This relation

55



A

B
A

A1
2

3

1
2
3

1 ~intersect(A,B) &  left(A,B)
2  intersect(A,B) & ~left(A,B)
1 ~intersect(A,B) & ~left(A,B)

Time Mode Relations

Figure 3.5: An example of learning a binary mode classifier in FOIL.

is positive for all time steps in which one mode is exhibited and negative for the

others. It also has a parameter for the object that we are learning the model for.

The need for this second parameter is explained in more detail in section 3.6. The

target relation has the form target(T,X) where T is the time step and X is the target

object. Basically, when learning a classifier to distinguish between modes m1 and m2,

target(T,X) relation marks all T during which X exhibited mode m1.

Figure 3.5 shows an example of learning a binary mode classifier in FOIL. In

the example, FOIL has three training examples, two from mode I, in which the ball

is flying freely, and one from mode II, in which the ball is bouncing. After the

representation transformation described above, the relations given to FOIL are:

relation positive tuples

intersect (2,A,B)

left (1,A,B)

target (1,A), (3,A)

In this case, the time steps where mode 1 hold are considered positive examples,

and those where mode 2 hold are considered negative examples. Hence the positive

tuples for the target relation are (1) and (3). The description FOIL learns for target

is

target(T,X)← ¬intersect(T,X, ∗)

56



This says that the ball exhibits behavioral mode 1 when it is not intersecting any-

thing, otherwise it exhibits mode 2. The ∗ in the intersect literal indicates universal

quantification.

3.4.3 Predicting modes

To predict the mode of a test example given the extracted relational state rt,

the system evaluates each of the n(n−1)
2

binary classifiers on rt. For each binary

classifier, each Horn clause in the classifier is evaluated on rt until one matches or

all of them have been tried. Because the clauses are first order, there can be many

possible bindings of objects in the state to variables in the clause. For example,

the first clause of the first binary classifier learned in the box pushing domain is

y-greater-than(B,A) ∧ on-top(C,B) (see table 3.2). A always binds to the target

object, but B and C can potentially bind to any of the other boxes in the environment.

Evaluating the clause on rq therefore requires solving a constraint satisfaction problem

(CSP), where each conjunct in the clause is a constraint. In our experiments, a

basic backtracking solver using the Minimum Remaining Values heuristic (Russell

and Norvig , 2003) was sufficient to solve all CSPs quickly. If a matching clause is

found, then the binary classifier votes for the positive mode it was trained on. If none

of the clauses match, then binary classifier votes for the negative mode. Each binary

classifier votes for one of two modes, and the mode with the most votes is chosen.

3.4.4 Combined symbolic and numeric classification

In some cases, the relational classifiers alone are not sufficient to distinguish two

modes correctly. For example, a ball bouncing off a platform or rolling on it have the

same relational state. The distinguishing feature is whether the ball’s Y-velocity is

zero or non-zero, which is not distinguished by any relations. When this is the case,

a learned Horn clause may misclassify some negative examples as false positives.

57



Clause Numericy

n

Mode 2

y

n

n
Numeric

Numeric

n

Begin

Clause

n

Mode 1

y

y

y

Figure 3.6: Classification process combining Horn clauses and numeric classifiers.

Furthermore, true positive examples that cannot be accurately described by Horn

clauses will be classified as false negatives. To address this problem, our system

learns a numeric classifier that distinguishes between the true and false positives of

each clause whose false positive rate is above a hand-tuned threshold. Furthermore,

if the false negative rate of the entire disjunction is too high, our system also learns

a numeric classifier to distinguish between the true and false negatives. The final

decision combines these two types of classifiers as shown in figure 3.6.

The algorithm has a waterfall model. If any pair of Horn clause/numeric classi-

fiers both decide an instance is positive, then it is labeled as belonging to mode 1.

Otherwise it goes on to the next clause/numeric classifier pair. If none of the pairs

classify the instance as positive, then a final numeric classifier makes the decision

between mode 1 and 2. When the false positive rate of a clause is low, the numeric

classifier will not be learned and default to a “yes” answer. The same is true for false

negatives.

Our system currently learns simple decision trees (Mitchell , 1997) for numeric

classifiers. Each node in the tree compares the value of a particular dimension of

the continuous state vector to a threshold and branches left if the value is below the

threshold or right otherwise. Other methods such as support vector machines and

linear discriminant analysis can also be used, but we chose decision trees for their

simplicity and lack of tunable parameters.

58



We also found that more powerful learning methods are more prone to overfitting.

Overfitting is especially prevalent in our system because it learns online, so training

examples may be sampled from a narrow portion of the input space, while future

test examples may come from an entirely different portion of the space. Furthermore,

typical techniques for estimating out-of-sample error, such as cross-validation, are

often ineffective in these contexts. Therefore, the system must rely on the intrinsic

bias of the learning algorithm to avoid overfitting. Decision trees have a strong

bias of separating data along axis-aligned hyperplanes that happened to suit our

experimental domains, and therefore performed well in our experiments. But they

will not work well in all domains. We also observed that the Horn clauses learned by

FOIL are less vulnerable to overfitting than numeric classifiers. We hypothesize this is

due to two reasons. First, the spatial relations the clauses are built from have strong

biases that are well suited for spatial domains. Second, when FOIL overfits data,

it tends to produce clauses that are conjunctions of large numbers of relationships,

and situations that satisfy such conjunctions are sparse. Therefore, an overfit clause

is unlikely to match future test examples and cause misclassifications. Instead, they

will just be “dead weight.”

As future work, we plan to investigate whether it is possible to learn new spatial

predicates from numeric classifiers that prove to be accurate and useful over multiple

domains.

3.4.5 Overcoming positive bias in FOIL

FOIL learns a binary classifier as a disjunction of clauses. Each clause covers a

portion of the positive training examples, and new clauses are added until all positive

training examples are covered. The space of negative examples is then considered to

be whatever is not covered by the clauses. This strategy has an intrinsic bias that

favors problems where the space of positive examples is simpler to describe than the

59



space of negative examples. In some situations, the simplicity of the descriptions can

be extremely asymmetric, even to the point where it is impossible to describe one set

of examples generally using clauses of spatial relations while the other set of examples

can be characterized using a single relation.

In learning a binary classifier in our system, one mode is considered the positive

class while the other is considered the negative class. If the wrong mode is chosen for

the positive class, the resulting classifier will likely overfit the data and not generalize

very well. To accommodate these problematic cases, our system learns two binary

classifiers for each pair of modes (i, j), one in which mode i is used as the positive

class and one in which mode j is used as the positive class. The system then keeps

the classifier with the lower training error.

3.4.6 Mode classifiers learned in the box pushing domain

Table 3.2 shows the mode classifiers learned by our system. The table is split

into three sections, one for each binary classifier learned for each pair of modes. For

example, the first section describes the binary classifier learned to distinguish between

modes 1 and 2. A positive output from this classifier is a vote for mode 1, whereas a

negative output is a vote for mode 2. The mode numbers correspond to the numbers

in the left-most column of table 3.1.

Within each section is the list of clauses comprising each binary classifier, along

with the number of training examples they correctly classify and those that they

misclassify. In the mode 1 versus mode 2 case, a correctly classified training example

is one that was assigned to mode 1 by the clustering algorithm and which satisfies the

clause. An incorrectly classified training example is one that was assigned to mode 2

by clustering, but still satisfies the clause. The “train perf.” value is the proportion of

training examples the classifier as a whole, including any numeric classifiers, correctly

labels.

60



The last column in the table indicates whether a numeric classifier was learned

for the clause. In this domain, the spatial relations alone were sufficient to perfectly

distinguish all modes, so no numeric classifiers were learned.

The last row in each section, labeled “Negative,” represents the “fall-through”

examples that are not covered by any of the clauses. Assuming FOIL learned the

clauses correctly, these examples should be labeled with the negative mode (mode 2

in this case). An incorrectly classified example in this row is one that is assigned to

mode 1 by clustering and not covered by any of the clauses.

Within each clause, the individual literals representing spatial relation tests are

variablized. The variable A is always bound to the target object (the truck in this

case), while all other variables can bind to any object. For clarity, we have omitted

the time step parameter that is normally tested by each spatial relation (see section

3.4.2). Variables other than A serve as existential quantifiers. For example, in the first

clause, y-greater-than(B,A) is satisfied as long as there exists some object that is

higher than A. However, since the clauses are first order, B must be bound consistenly

throughout. So the first clause is only satisfied if there is an object B above A that

also has another object C on top of it.

A manual inspection of the clauses suggests that it aligns with our intuition of

how to distinguish the modes from each other. The classifier learns that mode 1 is

distinguished from mode 2 by the presence of a stack of 3 boxes (C is on top of B

and B is higher than A). Both modes 1 and 2 are distinguished from mode 3 by the

presence of an object positioned higher than the truck.

3.5 Role classification

When applying mode functions to test states with different objects than the train-

ing data, the system must assign the correct object to each role, i.e. solve the role

assignment problem. For each role, our system learns a relational classifier that can

61



Clause Num. Num. Numeric
correct incorrect classifier?

Mode 1 vs. 2 (train perf. 1.0000)
y-greater-than(B,A) ∧ on-top(C,B) 480 0 No
Negative 960 0 No
Mode 1 vs. 3 (train perf. 1.0000)
y-greater-than(B,A) ∧ intersect(B,C) 480 0 No
Negative 480 0 No
Mode 2 vs. 3 (train perf. 1.0000)
y-greater-than(B,A) ∧ intersect(B,C) 960 0 No
Negative 480 0 No

Table 3.2: Learned mode classifier for the box pushing domain.

determine if an object is suitable for the role, which we call a role classifier. Like

mode classifiers, role classifiers are disjunctions of first order Horn clauses learned

using FOIL.

This process is illustrated in figure 3.7. The top-right portion of the figure is

a reproduction of figure 3.3. As shown in the figure, the training data given to

FOIL consist of the relational states of each training example, and the object-to-role

mappings obtained from linear regression. These two pieces of data are combined so

that FOIL knows which object fulfilled each role in each training example, and the

spatial relationships between that object and all other objects. From this FOIL learns

a set of first order Horn clauses that distinguishes the role-fulfilling object from other

objects in the environment.

More formally, for each role ρ, the input into FOIL is

• All spatial relations in the relational states (r1, r2, . . . , rn), augmented with the

time value as described in section 3.4.1.

• A special relation with the form fulfillsρ(T,X, Y ), where T is the time step,

X is the target object, and Y is any other object. fulfillsρ(T,X, Y ) is true if

and only if X is the target object and Y fulfills role ρ at time T .

Note that unlike the mode classifier which uses a one-against-one strategy, the role

62



o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

State VectorsSpatial Relations

t1

t2

tn

Role Classifiers
fulfills1 fulfills2 fulfills3

q1 q2 q3 q4

CSP Solver
R1 q3
R2 q1
R3 q4

Role assignment

q1 q2 q4q3

P
rediction

Training

Prediction

Clauses Clauses Clauses

object

relation o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

properties of o1

Weight Vector
R1 R2 R3o1 R1

o4 R2
o5 R3

Role map

Linear
Regression

FOIL

Test relational state

Test state vector

× × ×

Inner product
R2 R3 R1

Figure 3.7: Learning role classifiers to solve the role assignment problem.

63



classifier uses a one-against-all strategy. This means that all objects that do not fulfill

the role being learned are negative examples, and only the object that fulfills the role

is a positive example.

The output from FOIL is a set of clauses that establish the requirements for an

object to fulfill a role. For instance, the classifier for one of the balls in the two ball

bouncing example (section 1.2.5) may be:

fulfillsρ(T,X, Y )← is-ball(T, Y ) ∧ intersect(T,X, Y )

In other words, the object that fulfills the role must be of type ball and intersect the

target ball. The other ball role in the mode is the role for the target object, so it is

automatically identified and bound to X.

When the mode function is applied to a new state during prediction, the system

checks if each object satisfies the fulfillsρ relation for each role. This requires search-

ing for a valid assignment of objects to the variables in the first-order description,

which is accomplished using the same CSP solver as for mode classification. If a

complete assignment is found, then the role is assigned to the object. This process

is illustrated at the bottom of figure 3.7. In the previous example, there are no un-

bound variables, so no search is required: each object is simply checked to see if it

is a stair and intersects the ball. This is the case in most of our experiments, so the

process is fast. However, in the general case, a first-order description may contain

free variables, and backtracking search would be necessary. Finally, if all roles are

successfully assigned to objects, the mode function is applied on the vector consisting

of only their properties. If some roles are not assigned, the system assumes that the

mode is incorrect and will try another mode.

64



a

Mode function

Role classifiers

t

a b

ab

t

t

Mode function

Role classifiers

a b
t

c
Role classifiers

Mode function

Configuration 1

Configuration 2 & 3

Configuration 4

Figure 3.8: Role classifiers learned for the box pushing domain.

3.5.1 Role classifiers learned in the box pushing domain

Figure 3.8 shows the role classifiers our system learned for each mode of the box

pushing domain. The role classifiers for the truck roles were omitted because they were

trivial, i.e. there is only one truck in the domain to fulfill the role. For configuration

1, the system learns that the box that should fulfill role a is the one that is vertically

(y) aligned with the truck. This makes sense as the other two boxes are above the

truck. For role a in configuration 2, the role classifier requires that the fulfilling box

have something be on top of it. For role b, the role classifier requires that the fulfilling

box have nothing on top of it and that it’s vertically aligned with the truck. The

second conjunct rules out the box that is above a. For configuration 3, because any

box can correctly fulfill any role, the role classifiers are empty.

65



3.6 Prediction using the learned model

Finally, we describe how a prediction is made by a learned model. The prediction

algorithm is shown in figure 1.5. Given a query state vector xq, our system first

extracts the relational state rq in the same way as it did during training. The system

next uses the mode classifier to determine the mode to use for prediction, as discussed

in section 3.4.3. After the appropriate mode is chosen, the system assigns the roles

of the mode function to the correct objects in the environment. This establishes

which object properties to use when evaluating the mode function. Finally, the mode

function is evaluated with the appropriate object properties to produce the final

prediction.

3.7 Discussion

The models learned by our system combine the benefits of propositional and rela-

tional representations. Generally speaking, our algorithm takes simple linear models

learned using standard linear regression techniques and generalizes them with rela-

tional representations in two ways:

1. The propositional representation of the linear function is generalized into a first-

order representation with roles. Instead of corresponding to specific dimensions

of a propositional state, the weights in our mode functions correspond to prop-

erties of roles, and roles can be bound to different objects depending on context.

So a linear function describing the velocity of a ball exiting a bounce can be

used for any object the ball bounces off of.

2. The total behavior of the environment is modeled as a combination of linear

mode functions, conditioned on the relational mode classifier. When the ball

is flying through the air, one linear function is used to describe its behavior.

When it is bouncing against the ground, another function is used to describe

66



its behavior. While many existing methods use this approach, as discussed in

the related works chapter, none of them switch between modes based on the

relationships between objects.

67



CHAPTER IV

Experiments and Results

In the previous chapter, we described the box pushing domain and the models

our system learned in that domain to aid in exposition. This chapter describes ex-

periments we performed to evaluate our model learning algorithm and their results.

We begin with a description of the environment used in the experiments, and then

go on to discuss results obtained in increasingly more complex variations of that

environment.

4.1 The ball-box-ramp domain

This environment consists of a ball, box, and ramp inside a room with 2 walls, a

floor, and a ceiling. We use the Chipmunk physics engine (Lembcke, 2013) to simulate

realistic interactions between the ball and other objects. The positions of the ramp,

box, floor, walls, and ceiling are fixed, but the ball is free to move about. The ball

undergoes three major types of motions: flying, colliding, and sliding. When the

ball is flying, it is not interacting with any other objects, and the only force on it is

gravity. When the ball collides with an object, its velocity is reflected perpendicular

to the surface of the collision and damped according to the elasticity constant of

the object. When the ball slides against a surface, its velocity is damped according

to the Coulomb model of friction. The Coulomb friction model applies a constant

68



deceleration in the opposite direction of the ball’s motion. The magnitude of the

deceleration is affected by the friction constant of the surface, the incline of the

surface, and the mass of the ball. The simulator is not able to simulate ball rolling

behavior, so we did not consider rolling in our experiments. Note that the agent does

not execute actions that affect the environment in any way. Its only task is to observe

environment dynamics and learn a model.

The continuous state of the environment consists of the position, rotation, and

scaling of each object, as required from all environments. In addition, the ball’s x and

y velocities are included in the state vector. The velocities are calculated by taking

the difference in the x (y) coordinates of the ball in the current time step from those

in the previous timestep. The system used the typical relations when computing the

relational state.

The purpose of these experiments is to show that our algorithm can learn accurate

models of realistic physical interactions between rigid objects. Physics simulations

provide a variety of different modes that arise from interactions of objects with differ-

ent shapes and properties such as mass, elasticity, and friction constants. This allows

us to test the performance of the segmentation system. Furthermore, the conditions

under which different interactions occur are non-trivial to learn, usually requiring

conjunctions of several spatial relations. This allows us to test the performance of

the classification system.

4.2 Experimental procedure

The model is trained on a sequence of blocks. In each block, the environment is

initialized in a particular configuration, and then the physics simulation runs its course

for 200 time steps and thus produces 200 training examples. The initial configurations

of the scenarios are generated by varying a number of parameters so that the agent

is exposed to many qualitatively distinct interactions. If we instead only exposed the

69



Parameter Possible values
Ramp placement Left of box, right of box
Ramp and box touching Yes, no
Ball position Leftmost, above left object, between objects,

above right object, rightmost
Ball’s initial direction of travel Left, right

Table 4.1: Environment configuration parameters

agent to a single initial configuration that was run for more time steps, the simulation

would converge to a resting state where no interesting transitions are generated. The

configuration parameters are shown in table 4.2, and some example configurations

are shown in figure 4.1. There are 40 distinct configurations in total.

In addition to the configuration parameters, other factors that affect the environ-

ment are:

1. The random seed. While the configuration parameters establish the relative

positions of objects in the environment, their exact locations and sizes are ran-

domly varied. The random seed controls this variation.

2. Friction and elasticity constants.

3. Ramp incline.

Each distinct value of friction and elasticity constants results in different inter-

actions between the ball and other objects, which in turn results in different modes.

Recall that we assume that objects of the same type behave identically. To satisfy

this assumption, each distinct combination of object shape, friction constant, and

elasticity constant must be a distinct type. For example, the box will have type

box_0.1_0.9 if its friction constant is 0.1 and its elasticity constant is 0.9. The ramp

will have type ramp_0.3_0.8_60 if its friction constant is 0.3, elasticity constant is

0.8, and incline is 60 degrees. We encode the parameter values into the type names

because it guarantees unique names and aids debugging; the learning algorithm does

70



Ramp left of box
Ramp not touching box
Ball above box
Ball traveling left

Ramp right of box
Ramp not touching box
Ball between ramp and box
Ball traveling left

floor

w
al

l

ceiling

w
al

l
boxramp

ball

floor

w
al

l

ceiling

w
al

l

box ramp
ball

Ramp left of box
Ramp touching box
Ball above ramp
Ball traveling right

Ramp right of box
Ramp touching box
Ball at rightmost position 
Ball traveling right

floor

w
al

l

ceiling

w
al

l

boxramp

ball

floor

w
al

l

ceiling

w
al

l

box ramp
ball

Figure 4.1: Some possible initial configurations of the physics simulation domain

71



not extract parameter values from the names or interpret them in any other way.

Therefore, the unique types prevents the learned model from incorrectly generalizing

the modes covering the ball’s interactions with objects having one friction constant

from objects having another friction constant, but the actual functions associated

with those modes still have to be learned without prior knowledge.

A major consequence of using online learning algorithms is that the presentation

order of the configurations in the training sequence affects the accuracy and generality

of the final models. For example, suppose that all objects in the environment have no

friction, so that a ball sliding on a horizontal surface maintains a constant x velocity.

In this case, the most general mode the system can learn is v′x = vx, where vx is the

ball’s x velocity in the current time step, and v′x is its x velocity in the next time

step. Now consider two different orderings for training scenarios. If the learner is first

presented a scenario with a large number of examples of the ball moving with constant

velocity k1, it will learn a mode with the form v′x = k1. Later, the learner may get

a scenario with a large number of examples of the ball sliding at a different constant

velocity k2, and learn a separate mode vx = k2. These modes can only correctly

predict the ball’s x velocity if it were sliding at velocity k1 or k2, but nowhere else.

On the other hand, if the learner first experiences a scenario where the ball bounces

back and forth, it will have examples of the ball moving at different velocities and

will learn the mode vx = v′x, which correctly predicts x velocity for all constant

velocities. Fortunately, this example will not actually occur in practice because the

mode unification algorithm will correctly merge the two overspecific modes into the

general mode vx = v′x. However, there are more complex cases where mode unification

fails and the system cannot recover from a lack of diversity in some window in the

training regime.

To address this concern, we average our results across many distinct random con-

figuration orders. The order of the examples within a single block is not randomized,

72



as this better mimics online data gathering, where the agent cannot uniformly sam-

ple the entire space of examples but must move through the space by taking local

steps. In the following experiments, our results are averaged over 10 different block

orderings, and each ordering is repeated 5 times with different random seeds, for a

total of 50 training batches.

In the following sections, we describe 2 experiments on this domain. In the first

experiment, surfaces will not have any friction, and all training and test examples

will share the same elasticity constants and ramp inclines. In the second experiment,

surfaces will have friction, but all training and test examples will still share the same

friction constants, elasticity constants, and ramp inclines. In the third experiment,

we subject the learning algorithm to objects with different friction constants. This

will result in the model taking on significantly more modes, and serves as a demon-

stration that our algorithm is capable of simultaneously learning models over different

conditions.

4.3 Experiment 1

We begin with the simplest version of the ball-box-ramp environment in which all

objects are frictionless and have the same elasticity constant of 0.9, and the ramp is

always inclined at 30◦. With this setup, the model has to learn a minimum number of

modes while all the learning mechanisms are still exercised. This allows us to analyze

in detail how the algorithm behaves in a real learning scenario.

As discussed previously, each training batch consists of a number of training

blocks, each starting with a different initial configuration and running for 200 time

steps. Since there are 40 different initial configurations, the model should be trained

on 40 × 200 = 8000 training examples in a single batch. However, we found that

examples from certain modes occur relatively rarely in simulation, such as examples

of the ball bouncing against a wall. Training on the 40 blocks once doesn’t present

73



the model with a sufficient number of training examples from these rare modes, so we

repeat each block twice with different random seeds. Therefore, the model is trained

on 80 blocks and 16000 examples in total.

4.3.1 Learned modes

We first analyze in detail the modes learned by the model to better understand how

the learning algorithm works on real data. Because this is not a quantitative analysis,

averaging over the training batches does not make sense. Therefore, the learned

modes shown here are from a single training batch, chosen as the most “correct”

and representative of all the batches. Some of the modes learned in most other

batches had trivial variations from the ones shown here, such as learning the modes

in a different order. A few had important variations such as missing or over-specific

modes. The variations are a consequence of using online algorithms and varying the

order of training blocks.

The learned modes are shown in table 4.2. The first column in the table numbers

the modes. The second column of the table labels each mode with the behavior we

think it is trying to describe. This was determined by manually inspecting the train-

ing examples covered by the modes. The third column lists the number of training

examples assigned to each mode. The fourth column shows the function learned for

the mode. In the functions, vx and vy are independent variables corresponding to the

x and y velocities of the ball in the current time step, and v′x and v′y are the predicted

velocities in the next time step. A manual inspection of the functions confirm that

they make sense. For example, when the ball is flying through the air, its x velocity

does not change (there is not air resistance), while its y velocity decreases at a con-

stant rate based on the gravitational constant. This is consistent with the functions

v′x = vx and v′y = vy − 9.8 × 10−4. It also makes sense that the bouncing modes are

v′x = −0.9vx and v′y = −0.9vy, since we set the elasticity constants of all objects at

74



# Behavior Num. Mode function
examples

x velocity model
0 Noise 7 -
1 Slide on horiz. surf./fly 15574 v′x = vx
2 Bounce on vert. surf. 295 v′x = −0.9vx
3 Bounce/slide on ramp 124 v′x = 0.525vx − 0.823vy + 4.24× 10−4

y velocity model
0 Noise 10 -
1 Fly (in gravity) 9169 v′y = vy − 9.8× 10−4

2 Slide on horiz. surf. 6355 v′y = 0
3 Bounce on horiz. surf. 334 v′y = −0.9vy
4 Bounce/slide on ramp 132 v′y = −0.823vx − 0.425vy − 2.45× 10−4

Table 4.2: Modes learned for x and y velocities of ball in environments with no
friction, 0.9 elasticity, and 30◦ ramps.

0.9, and the negation indicates a reflection in the direction of travel after the bounce.

Furthermore, note that all the functions only depend on vx and vy, meaning they

are independent of the positions of any objects and even of the ball itself. All these

factors suggest that the segmentation algorithm has produced the most general set

of modes possible for this environment.

4.3.2 Learned mode classifier

We now discuss in detail the classifiers learned to distinguish the x and y velocity

modes. As described in section 3.4, the mode classifier predicts the mode the modeled

quantity will exhibit in the next time step given the relational and continuous states

of the current time step. The mode classifier is a multi-class classifier composed of

N(N − 1) binary classifiers, each trained to discriminate between two modes. Each

binary classifier is learned with FOIL and composed of a disjunction of clauses, with

each clause being a conjunction of variablized spatial relations. A clause whose false

positive rate is too high suggests that the preconditions for a mode are not sufficiently

captured by spatial relations, so a decision tree classifier that tests the continuous

state is learned to augment the clause.

75



Clause Num. Num. Numeric
correct incorrect classifier?

Mode 1 vs. 2 (train perf. .9984)
¬intersect(A, ∗) 9016 0 No
¬y–aligned(A, ∗) 6464 0 No
x–aligned(A,B) ∧ ramp(B) 57 0 No
¬y–greater–than(A, ∗) ∧ floor(B) 11 0 No
Negative 295 26 No
Mode 1 vs. 3 (train perf. .9964)
¬intersect(A, ∗) 9016 0 No
¬y–aligned(A, ∗) 6464 0 No
x–greater–than(B,A) 16 0 No
x–greater–than(A,B) 8 0 No
¬ramp(∗) 13 0 No
Negative 124 57 No
Mode 3 vs. 2 (Negated) (train perf. 1)
x–aligned(A,B) ∧ ramp(B) 124 0 No
Negative 295 0 No

Table 4.3: Clauses learned for x velocity classifier

Table 4.3 shows the binary classifiers learned for the model of x velocity after

the learning algorithm has seen all 16000 training examples. The table follows the

same style as table 3.2 explained in section 3.4.6. The only new entity is the special

variable ∗ which serves as an universal quantifier. For example, ¬intersect(A, ∗)

is only satisfied if ∀B¬intersect(A,B), or in other words, the target object doesn’t

intersect any other object.

Interpreting the learned clauses is instructive for what FOIL is actually doing.

Consider the binary classifier that distinguishes between modes 1 and 2. The first

clause, ¬intersect(A, ∗), states that if the ball is not intersecting anything, then it is in

mode 1 because it is flying. The second clause, ¬y–aligned(A, ∗), covers cases where

the closest object to the ball does not occupy the same vertical space. For example,

if the ball is bouncing against a wall, then the wall would be y− aligned with it and

this would not be a case of bouncing against a vertical surface rather than horizontal

sliding. If the ball is bouncing against a ramp, the ramp would also be y–aligned

76



Clause Num. Num. Numeric
correct incorrect classifier?

Mode 1 vs. 2 (train perf. .9281)
x–greater–than(B,A) 145 0 No
x–greater–than(A,B) 129 0 No
Negative 124 21 No

Table 4.4: Binary classifier learned using mode 2 as the positive class.

with it. On the other hand, if the ball is sliding on a horizontal surface such as the

top of the box or floor, then that object’s greatest y coordinate will be slightly below

the ball, and it will not be y–aligned. The third clause, x–aligned(A,B)∧ ramp(B),

catches edge cases where the ball bounces against the ramp at a certain angle such

that its x velocity doesn’t change as it should in the majority of collisions with the

ramp. Notice that because this binary classifier is only responsible for distinguishing

between modes 1 and 2, it doesn’t have to add extra literals to this clause to rule

out mode 3 (ramp bouncing) examples, which would otherwise be included under

this clause. The last clause, ¬y–greater–than(A, ∗)∧ floor(B), catches another edge

case where ball has penetrated into the floor during a bounce due to imperfections

in the physics simulation. If the physics simulator were perfect, the ball would never

penetrate the ground, and these examples would fall under the second clause. As it

stands, the penetration is deep enough that the ball is considered y–aligned with the

ground, so an extra clause is needed to cover the examples.

The last binary classifier, mode 3 versus 2, is a negated classifier. This is because

the set of clauses required to cover the mode 3 examples is simpler and more accurate

than that needed to cover the mode 2 examples: only a single clause is needed to

perfectly distinguish between the two modes. On the other hand, table 4.4 shows the

non-negated binary classifier. It requires two clauses and has a higher training error.

This is an example of asymmetry in simplicity of description that was discussed in

section 3.4.5.

Table 4.5 shows the classifier learned for the y velocity model. The most notable

77



Clause Num. Num. Numeric
correct incorrect classifier?

Mode 1 vs. 2 (train perf. 0.9978)
¬intersect(A, ∗) ∧ y–aligned(A,B) 6702 0 No
¬x–aligned(A, ∗) 442 0 No
¬intersect(A, ∗) ∧ ¬floor(∗) 473 0 No
¬intersect(A, ∗) 1428 16 No
¬y–greater–than(A, ∗) 69 0 No
Negative 6537 19 No
Mode 1 vs. 3 (train perf. 0.9971)
¬intersect(A, ∗) 8957 0 No
¬x–aligned(A, ∗) 88 0 No
¬y–aligned(A, ∗) 16 0 No
¬ramp(∗) 13 0 No
Negative 124 72 Yes
Mode 1 vs. 4 (train perf. 0.9981)
¬intersect(A, ∗) 8957 0 No
¬x–aligned(A, ∗) 88 0 No
ramp(B) 59 0 No
wall(B) 6 0 No
Negative 183 18 No
Mode 3 vs. 2 (Negated) (train perf. 1.0000)
¬y–greater–than(A, ∗) 113 0 No
y–aligned(A,B) ∧ x–aligned(A,B) 11 0 No
Negative 6553 0 No
Mode 2 vs. 4 (train perf. 0.9978)
y–greater–than(A,B)∧ 211 3 No

y–aligned(A,C)
¬y–aligned(A, ∗) ∧ ¬on–top(A, ∗) 228 0 No
¬y–aligned(A, ∗) ∧ floor(B) 6114 12 No
Negative 168 0 No
Mode 3 vs. 4 (Negated) (train perf. 0.9967)
ramp(B) 124 1 No
Negative 182 0 No

Table 4.5: Clauses learned for y velocity classifier

78



Clause Num. Num. Numeric
correct incorrect classifier?

Mode 2 vs. 3 (train perf. 0.9988)
¬y–aligned(A, ∗) 6342 0 No
x–greater–than(B,A) 104 0 No
x–greater–than(A,B) 99 0 No
Negative 124 8 No

Table 4.6: Non-negated binary classifier for y velocity modes 2 and 3.

feature is that the binary classifier for modes 2 and 3 is negated. Here the “positive”

mode is 3, the mode of the ball bouncing against the ground, and the “negative”

mode is 2, the mode of the ball sliding on a horizontal surface. It was easier for

FOIL to identify the bouncing mode (3) by testing for the penetration of the ball into

the surface it bounces off of with ¬y–greater–than(A, ∗), which covers a majority

of the examples. The 11 examples covered by the second clause, y–aligned(A,B) ∧

x–aligned(A,B), are not of the ball bouncing, but rather the edge case where the ball

slides from a flat surface to the lip of the ramp. Since the ball’s y velocity increases

as a result of hitting the ramp, the system considers it a bounce. This is arguably

incorrect, but these cases occur so rarely (only 11 examples in a total of 16000) that

they don’t warrent the model to learn a new mode. The rest of the examples are

correctly classified by the fall-through condition as the rolling mode (mode 2).

Table 4.6 shows the non-negated binary classifier for modes 2 and 3. It has one

more clause than the negated version, making it more complex. It also incorrectly

classifies 8 examples, whereas the negated version does not misclassify any exam-

ples. Furthermore, it’s not apparent why the dual clauses x–greater–than(B,A) and

x–greater–than(A,B) are learned, and whether they would generalize correctly to

test examples or are simply overfitting the training data.

Another notable feature in table 4.5 is the numeric classifier learned for the neg-

ative case of modes 1 and 3. Recall that the numeric classifier is learned when a

clause’s false positive rate is too high, or the binary classifier’s false negative rate is

79



vy < 0.0095

mode 3 mode 1

noyes

Figure 4.2: Decision tree learned to distinguish between modes 1 and 3 in the y
velocity model.

too high, which is this case. Figure 4.2 shows the decision tree learned as the nu-

meric classifier. However, further inspection of why the symbolic clauses do not cover

all positive cases correctly shows that all the errors are due to imperfections in the

physics simulator. Therefore, the decision tree doesn’t make sense. More meaningful

numeric classifiers will be discussed in experiment 2.

4.3.3 Prediction accuracy

We now present results on the prediction accuracy of the learned models. 24000

testing scenarios are generated in the same way as the training scenarios, but using

three different random seeds from the training examples. This means that even though

the training and testing examples are qualitatively similar, the absolute positions and

sizes of objects in each are different. Furthermore, the entire configuration in each

training and testing scenario is shifted in a random direction by a random distance,

so that the absolute positions of objects can vary significantly.

At specific intervals in this training sequence, we take the model learned up to

that point and test its accuracy on all 24000 test examples. The model does not

learn during testing. The intervals we chose are after the 1st, 16th, 32nd, 48th, 64th,

and 80th training blocks. As previously mentioned, the results are averaged over 10

different training block orders and 5 different sets of random seeds, for a total of 50

training batches.

Figure 4.3 shows the overall accuracy of the models learned for predicting x and

y velocities. The x axis marks the number of training scenarios given to the model.

80



Avg change
95 percentile

x velocity

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

y velocity

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Figure 4.3: Prediction accuracy for x velocity and y velocity models

The numbers on the x axis can be multiplied by 200 to obtain the number of training

examples given to the model. The y axis marks the absolute error of the prediction

and is in log scale. The thick line indicates the 95th percentile of the prediction errors

made by the model, meaning 95% of the errors fall below the line. The dashed line

that runs across the entire graph represents the average magnitude of change in the

predicted property. This is to give a sense of scale for how much the property is

varies, and what would be considered an accurate prediction.

Figure 4.3 suggests that the learned models are very accurate, such that after

seeing just sixteen training scenarios, they achieve a prediction error of less than

1.0 × 10−12 on at least 95% of the test examples. Informal experiments suggest

that comparable error rates are actually achieved much sooner, after just two or

three training scenarios. These plots are misleading: the test examples are unevenly

distributed across the different modes, with the majority of the examples coming

from the simplest modes. For the x velocity model, the flying/horizontal sliding

mode where the x velocity doesn’t change takes up 23495 of the 24000 examples.

For the y velocity model, the flying mode where the y velocity is constantly reduced

by gravity and the horizontal sliding mode where the y velocity is always 0 make

up 23660 of the 24000 examples together. Since these modes are easy to learn, the

81



models can predict them with near zero error after training on just a few scenarios,

so the majority of the prediction errors are close to 0. These easy predictions obscure

how the models perform on more difficult modes.

To visualize how the model performs on other modes, we graph the prediction

errors separately for each mode. This is shown in figures 4.4 and 4.5. We switch to

box-and-whisker plots for these figures to better depict the distribution of errors. The

boxes in each plot span the first and third quartiles of the errors, and the whiskers

span the 5th and 95th percentiles. The horizontal line inside each box indicates

the median. The dashed horizontal lines represent the average magnitude of change

of the velocity within each mode. Note that the models’ prediction errors on the

horizontal/vertical bouncing modes and the modes involving the ramp remain high

for many more training scenarios. One reason for this is that there are simply too few

training examples for these modes in the entire training set, so the model doesn’t see

enough examples to learn the modes until it has trained on many more scenarios. The

other reason is that the classifiers for these modes are difficult to learn, and generalize

poorly to qualitatively different scenarios that the models have not been trained on.

In any case, the models do achieve low prediction errors after seeing all 80 training

scenarios.

We conjecture that the extremely asymmetric distribution of examples from dif-

ferent modes demonstrated here is characteristic of real-world environments. Many

physical processes spend most of their time in steady states and only occasionally

encounter boundary conditions. This reinforces the importance of online learning

algorithms in such domains. Online learners are able to build accurate models of the

most common modes quickly and use them to improve performance without having

to wait for examples of uncommon modes. This is the behavior demonstrated by our

system in figures 4.4 and 4.5. On the other hand, batch learners have to wait to col-

lect a representative distribution of examples before they build any models, hurting

82



Fly/flat roll

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Horizontal bounce

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Slide/bounce on ramp

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Figure 4.4: Prediction accuracy for x velocity, by mode

performance in the short term.

4.3.4 Classification accuracy

Prediction errors come from two sources. First, if the required modes have not

been learned, or the mode functions are inaccurate, then the model will not be able to

make the correct prediction. Second, even if the modes and mode functions are learned

accurately, the classifier must still choose the correct mode to use when making a

prediction. In this experiment, we have found that most of the prediction errors are

due to the latter case.

We can separate these two sources of error by checking each test example for

83



Fly

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Flat roll

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Vertical bounce

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Roll/bounce on ramp

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Figure 4.5: Prediction accuracy for y velocity, by mode

84



Incorrect
Missing

x velocity

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0

0.1

Number of training scenarios
1 16 32 48 64 80

Incorrect
Missing

y velocity

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0

0.1

Number of training scenarios
1 16 32 48 64 80

Figure 4.6: Classification error rates for x velocity and y velocity models.

Predicted Correct mode Total
mode 1 2 3
1 - 12 1 13
2 26 - 17 43
3 63 1 - 64
Total errors 89 13 18 120
Num. Examples 23495 318 187 24000
Error rate .000 .041 .096 .005

Table 4.7: Number of classification errors made by x velocity model for each pair of
predicted/correct modes.

the prediction error that would result from using each possible mode. For each test

example, we consider the mode that results in the lowest error to be the correct mode

for that example. We then compare the correct modes obtained in this way with the

modes chosen by the classifier to obtain classification error rates.

The classification error rates for both models are shown in figure 4.6. The striped

bars in the figure indicate classification errors due to the correct mode not having

been learned. The gray bars indicate classification errors where the correct mode has

been learned but the classifier selected a different mode. The first bar for y velocity

reaches a value of 0.2. This was not shown to maintain a reasonable scaling for the

later bars. Note that classification errors after all 80 training scenarios have been

seen is still at 2%.

85



Predicted Correct mode Total
mode 1 2 3 4
1 - 69 0 0 69
2 6 - 91 0 97
3 4 0 - 1 5
4 75 12 1 - 88
Total errors 85 81 92 1 259
Num. examples 13530 9768 515 187 24000
Error rate .006 .008 .179 .005 .011

Table 4.8: Number of classification errors made by y velocity model for each pair of
predicted/correct modes.

Tables 4.7 and 4.8 show the types of classification errors being made by the x and

y velocity models, respectively. The entry (i, j) in the table represents the number

of times the model classifier chose mode i when the correct mode is j, where i is the

row of the entry and j is the column of the entry. Note that these are results from

a single model after being trained on all scenarios. There are small variations across

other models learned with different random seeds and configuration orders. The most

interesting feature to note is the high error rate for mode 3 (bouncing on horizontal

surface) of the y velocity model. This explains why the prediction error for that mode

is the highest amongst all modes, as shown in figure 4.5.

We can also see that the classifier frequently confuses mode 3 for mode 2. This

is consistent with the relatively high training error of the binary classifier responsible

for distinguishing between modes 2 and 3, as seen in table 4.5. Since mode 2 describes

the ball sliding on a horizontal surface and mode 3 describes the ball bouncing off

the same type of surface, no spatial relationship can distinguish between them. To

lower the classification error between modes 2 and 3, the system must learn a numeric

classifier that tests whether the y velocity of the ball in the current time step is zero

(indicating it will slide) or negative (indicating it will bounce). However, the numeric

classifier was not learned here because the false negative rate for the binary classifier

did not exceed the threshold put in place to guard against overfitting the training

86



A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 16 32 48 64 80

Figure 4.7: y velocity prediction error for bouncing on horizontal surface with perfect
classifier.

data, as discussed in section 3.4.4. If the training examples had been distributed

differently such that the system was trained on more examples of the ball bouncing,

the false negative rate would have exceeded the threshold and the numeric classifier

would have been learned. This is a shortcoming of our system that needs to be

addressed in future work.

Finally, we can confirm that most of the prediction error is due to classification

errors by looking at prediction accuracy if the correct mode is always chosen. Figure

4.7 plots prediction error for the y velocity model on test examples exhibiting mode

3 if the classifier always chose the correct mode. The high error up to 32 training

scenarios is due to the correct mode not having been learned, but afterwards the error

drops to essentially zero. This can be compared to figure 4.5 where the median error

approaches zero after 32 training scenarios but the third quartile never improves.

4.4 Experiment 2

In the next experiment, we introduce friction into the simulation and also change

some other simulation parameters. Friction constants for objects other than the

ball are set at 0.2, elasticity constants have been changed to 0.95, and the ramp’s

87



incline has been changed to 45◦. The presence of friction requires the system to learn

additional modes to describe the ball’s behavior completely. Specifically, the ball’s

x velocity model now requires a different mode for each direction it slides in. This

is because the Coulomb friction model imposes a constant amount of deceleration in

the direction opposite to the ball’s direction of movement. If the ball is sliding to

the right (positive x direction), a negative constant is added to its x velocity at each

time step. If the ball is sliding to the left (negative x direction), a positive constant

is added to its x velocity at each time step.

As will be discussed in more detail, the main consequence of introducing friction

to the environment was an increase in the number of different modes the environment

exhibited. A consequence of this increase is the number of training examples belonging

to each mode decreases for a fixed size training set. In several cases, this resulted in the

model not being able to learn certain modes whose examples occur infrequently during

simulation, such as certain types of bounces. To account for this, we increased the

training set size by repeating the same 40 block training set four times with different

random seeds instead of only two times like we did in the frictionless experiments.

This results in a total of 40 × 4 × 200 = 32000 training examples in each training

batch. We still use 10 reorderings and 5 sets of random seeds for a total of 50 training

batches.

4.4.1 Learned modes

Table 4.9 shows the modes learned in the majority of training batches. For the x

velocity model, adding friction to environment splits the behavior that was previously

covered by a single mode (mode 1 in table 4.2) into three modes. The mode where x

velocity remains constant (mode 3) now only describes the behavior of the ball when

not contacting any surface. The interactions between the ball and horizontal surfaces,

including both sliding and bouncing, are covered by modes 1 and 2, which we discuss

88



# Behavior Num. Mode function
examples

x velocity model
0 Noise 65 -
1 Slide/bounce left on 6477 v′x = vx − 0.39vy + 1.96× 10−4

horizontal surface
2 Slide/bounce right on 6094 v′x = vx + 0.39vy − 1.96× 10−4

horizontal surface
3 Fly 18882 v′x = vx
4 Bounce on vert. surf. 347 v′x = −0.95vx
5 Halt from friction 93 v′x = 0
6 Bounce/slide on ramp 42 v′x = −0.17vx − 1.17vy + 5.88× 10−4

y velocity model
0 Noise 64 -
1 Fly (in gravity) 17151 v′y = vy − 9.8× 10−4

2 Slide on horiz. surf. 13639 v′y = 0
3 Bounce on horiz. surf. 308 v′y = −0.95vy
4 Bounce on vert. surf. 437 v′y = 0.39vx + vy − 9.8× 10−4

5 Bounce on vert. surf. 359 v′y = −0.39vx + vy − 9.8× 10−4

6 Slide/bounce on ramp 42 v′y = −0.78vx + 0.22vy − 5.88× 10−4

Table 4.9: Modes learned for x and y velocities of ball in environments with 0.2
friction, 0.95 elasticity, and 45◦ ramps.

89



Positive x velocity
Negative y velocity
Negative friction

vx

vy

f

Negative x velocity
Negative y velocity
Positive friction

vx

vy

f

Mode 1 Mode 2

Figure 4.8: Possible cases of the ball bouncing on a horizontal surface.

in detail.

The functions for modes 1 and 2 in the x velocity model each cover two major

cases - sliding and bouncing. In the sliding case, the y velocity of the ball (vy) is zero,

so the second term in the function drops out, leaving v′x = vx ± 1.96 × 10−4. The

constant 1.96× 10−4 is due to a constant damping of the x velocity due to Coulomb

friction, in the opposite direction of the ball’s motion. Therefore, the constant is

positive when the ball is moving left (negative x velocity) and negative when the ball

is moving right (positive x velocity). The exact value is a combination of the friction

constants of the interacting objects and a constant downard normal force that in turn

depends on the ball’s mass and the gravity constant.

In the bouncing case, there is an additional downward force proportional to the

ball’s y velocity that contributes to frictional drag. This is represented by the ±0.39vy

term in the functions for modes 1 and 2. Figure 4.8 illustrates why the vy coefficient

is negative in mode 1 and positive in mode 2. Because y velocity is alway negative

when bouncing on a horizontal surface (the ball never bounces against the ceiling

during the experiments), the sign of the coefficient is always the opposite of the sign

of the actual frictional force.

Mode 4 is the same as the horizontal bounce mode in the frictionless surface since

friction doesn’t affect x velocity in these cases. However, the coefficient is −0.95

instead of −0.9 because of the change in elasticity constant. Mode 5 describes an edge

90



case that occurs just as the ball comes to a halt due to friction. Mode 6 describes the

behavior of the ball as it bounces or slides against the inclined surface of the ramp.

Its coefficients have changed from the ramp mode in experiment 1 due to the change

in ramp angle from 30◦ to 45◦.

The y velocity model has also gained more modes. The first three modes are the

same as in the frictionless case, except the mode for bouncing against a horizontal

surface has a different constant due to the changed elasticity constant. Modes 4 and

5 are describe the motion of the ball as it bounces against a vertical surface such as

the walls or side of the box as it is flying through the air. Like modes 1 and 2 in the

x velocity model, the surface friction of the bounce damps the y velocity of the ball

proportional to the normal force against the surface, which is in turn proportional to

the x velocity of the ball. Unlike the bouncing cases x velocity model, where y velocity

was always negative, the x velocity of the ball can be positive or negative during these

bounces, in addition to the y velocity being positive or negative. Therefore, there are

four cases to consider in explaining the sign of the vx term, as illustrated in figure

4.9.

In configurations A and B in the figure, the sign of the x velocity is the same as

the sign of the frictional force, so they are covered by mode 4, where the coefficient

is positive. In configurations C and D, the sign of the x velocity is the opposite of

the sign of the frictional force, so they are covered by mode 5, where the coefficient

is negative.

4.4.2 Learned classifier

Due to the larger number of modes, the number of binary classifiers learned to

distinguish between modes has also increased. The complete classifiers are shown in

tables 4.10, 4.11, 4.12, 4.13, 4.14. We will not go into detail about the meaning of

each binary classifier, as the analysis is similar to experiment 1. The major difference

91



Negative x velocity
Negative y velocity
Positive friction

vx

vy

f

Positive x velocity
Positive y velocity
Negative friction

vx

vy

f

Positive x velocity
Negative y velocity
Positive friction

vx

vy

f

Negative x velocity
Positive y velocity
Negative friction

vx

vy

f

Mode 4

Mode 5

A B

CD

Figure 4.9: Four possible collision configurations.

vx < -1.246×10-5

mode 1 mode 2

noyes

Figure 4.10: Decision tree distinguishing between modes 1 and 2 of the x velocity
model.

we want to discuss is the presence of numeric classifiers.

The presence of friction has created pairs of modes that can only be distinguished

by the sign of the ball’s velocity. For example, modes 1 and 2 describe sliding or

bouncing left and right on a horizontal surface. The only property that can distinguish

examples in these two modes is whether the ball’s x velocity is negative or positive.

Since the system doesn’t have a relation that tests this property, it must learn a

numeric classifier. Table 4.10 shows that the one clause learned for the binary classifier

for modes 1 and 2 only correctly classifies five examples, while the rest is left to the

numeric classifier. In fact, the single learned clause is probably incorrect, and may

cause misclassifications on test examples.

92



Clause Num. Num. Numeric
correct incorr. class.?

Mode 1 vs. 2 (train perf. 1)
¬intersect(A, ∗) ∧ box(B) 5 0 No
Negative 6094 6472 Yes
Mode 1 vs. 3 (Negated) (train perf. .9571)
¬intersect(A, ∗) ∧ y–aligned(A,B) 11083 0 No
¬x–aligned(A, ∗) 564 0 No
ramp(B) 77 0 No
¬intersect(A, ∗) ∧ box(B) 1161 3 No
¬intersect(A, ∗) ∧ floor(B) 4947 34 No
Negative 6440 1050 No
Mode 1 vs. 4 (train perf. .9996)
¬y–aligned(A, ∗) 6469 0 No
¬on–top(A, ∗) ∧ floor(B) 5 0 No
Negative 347 3 No
Mode 1 vs. 5 (train perf. .9965)
box(B) 481 0 No
x–greater–than(B,A) 3 0 No
on–top(A,B) 5858 23 No
¬intersect(A, ∗) 130 0 No
y–aligned(A,B) 5 0 No
Negative 70 0 No
Mode 1 vs. 6 (train perf. 1.0)
¬y–aligned(A, ∗) 6469 0 No
x–greater–than(B,A) 3 0 No
¬on–top(A, ∗) ∧ floor(B) 5 0 No
Negative 42 0 No
Mode 2 vs. 3 (Negated) (train perf. 0.9573)
¬intersect(A, ∗) ∧ y–aligned(A,B) 11083 0 No
¬x–aligned(A, ∗) 564 0 No
¬intersect(A, ∗) ∧ ¬floor(∗) 1236 0 No
¬intersect(A, ∗) 4947 14 No
Negative 6080 1052 No
Mode 2 vs. 4 (train perf. 0.9995)
¬y–aligned(A, ∗) 6071 0 No
¬on–top(A, ∗) ∧ floor(B) 20 0 No
Negative 347 3 No

Table 4.10: Clauses learned for x velocity classifier, part 1

93



Clause Num. Num. Numeric
correct incorr. class.?

Mode 2 vs. 5 (train perf. 0.9934)
box(B) 291 0 No
x–greater–than(A,B) 2 0 No
on–top(A,B) 5739 20 No
¬on–top(A, ∗) ∧ y–greater–than(A,B) 42 1 No
Negative 72 20 No
Mode 2 vs. 6 (train perf. 1.0)
¬y–aligned(A, ∗) 6071 0 No
¬on–top(A, ∗) ∧ floor(B) 20 0 No
x–greater–than(A,B) 3 0 No
Negative 42 0 No
Mode 3 vs. 4 (train perf. 0.9995)
¬intersect(A, ∗) 17820 0 No
¬y–aligned(A, ∗) 1048 0 No
¬y–greater–than(A, ∗) ∧ x–aligned(A,B) 4 0 No
Negative 347 10 No
Mode 3 vs. 5 (train perf. 0.9972)
¬intersect(A, ∗) ∧ y–aligned(A,B) 11083 0 No
¬intersect(A, ∗) 6737 0 No
Negative 93 1062 Yes
Mode 3 vs. 6 (train perf. 0.9998)
¬intersect(A, ∗) 17820 0 No
¬y–aligned(A, ∗) 1048 0 No
¬x–aligned(A, ∗) 10 0 No
Negative 42 4 No
Mode 4 vs. 5 (train perf. 1.0)
¬floor(∗) 123 0 No
y–aligned(A,B) ∧ on–top(A,C) 224 0 No
Negative 93 0 No
Mode 4 vs. 6 (train perf. 0.9923)
x–greater–than(B,A) 186 0 No
x–greater–than(A,B) 140 0 No
¬ramp(∗) 18 0 No
Negative 42 3 No
Mode 5 vs. 6 (train perf. 1.0)
¬y–aligned(A, ∗) 85 0 No
¬on–top(A, ∗) ∧ floor(B) 8 0 No
Negative 42 0 No

Table 4.11: Clauses learned for x velocity classifier, part 2

94



Clause Num. Num. Numeric
correct incorr. class.?

Mode 1 vs. 2 (train perf. 0.9969)
¬intersect(A, ∗) ∧ y–aligned(A,B) 11016 0 No
¬intersect(A, ∗) ∧ ¬x–aligned(A, ∗) 553 0 No
¬intersect(A, ∗) ∧ ramp(B) 75 0 No
¬intersect(A, ∗) ∧ box(B) 1160 1 No
¬intersect(A, ∗) ∧ floor(B) 4306 52 No
Negative 13586 41 No
Mode 1 vs. 3 (train perf. 0.9982)
¬intersect(A, ∗) 17110 0 No
¬x–aligned(A, ∗) 10 0 No
Negative 308 31 No
Mode 1 vs. 4 (train perf. 0.9935)
¬intersect(A, ∗) ∧ ramp(B) 5594 0 No
x–greater–than(A,B) ∧ box(B) 930 1 No
¬x–aligned(A, ∗) ∧ y–greater–than(A,B) 270 0 No
¬intersect(A, ∗) ∧ x–greater–than(B,A) 1723 1 No
∧wall(B)

¬intersect(A, ∗) ∧ x–greater–than(A,B) 983 4 No
¬intersect(A, ∗) ∧ box(B) 3304 7 No
y–greater–than(A,B) ∧ intersect(A,C) 28 0 No
y–greater–than(A,B) 4306 88 No
Negative 337 13 No
Mode 1 vs. 5 (train perf. 0.9953)
ramp(B) 5598 0 No
¬x–aligned(A, ∗) ∧ y–greater–than(A,B) 547 0 No
¬intersect(A, ∗) ∧ x–greater–than(A,B) 1636 1 No
¬intersect(A, ∗) ∧ box(B) 3304 0 No
wall(B) ∧ ¬intersect(A, ∗) 1723 3 No
y–greater–than(A,B) ∧ intersect(A,C) 28 0 No
y–greater–than(A,B) 4306 70 No
Negative 285 9 No
Mode 1 vs. 6 (train perf. 0.9998)
¬intersect(A, ∗) 17110 0 No
¬y–aligned(A, ∗) 28 0 No
¬x–aligned(A, ∗) 10 0 No
Negative 42 3 No

Table 4.12: Clauses learned for y velocity classifier, part 1

95



Clause Num. Num. Numeric
correct incorr. class.?

Mode 2 vs. 3 (train perf. 0.9949)
¬intersect(A, ∗) 195 0 No
x–greater–than(B,A) 133 0 No
x–greater–than(A,B) 109 0 No
¬y–aligned(A, ∗) ∧ ¬on–top(A, ∗) 462 0 No
¬y–aligned(A, ∗) ∧ floor(B) 12584 28 No
Negative 280 156 Yes
Mode 2 vs. 4 (train perf. 0.9943)
on–top(A,B) 12960 0 No
intersect(A,B) ∧ y–greater–than(A,C) 464 0 No
Negative 437 215 Yes
Mode 2 vs. 5 (train perf. 0.9856)
on–top(A,B) 12960 0 No
intersect(A,B) ∧ y–greater–than(A,C) 464 0 No
Negative 359 215 Yes
Mode 2 vs. 6 (train perf. 0.9999)
¬y–aligned(A, ∗) 13388 0 No
x–greater–than(B,A) 133 0 No
x–greater–than(A,B) 109 0 No
box(B) 7 0 No
Negative 42 2 No
Mode 3 vs. 4 (train perf. 1.0000)
on–top(A,B) 274 0 No
intersect(A,B) ∧ floor(B) 34 0 No
Negative 437 0 No
Mode 3 vs. 5 (train perf. 1.0000)
on–top(A,B) 274 0 No
intersect(A,B) ∧ floor(B) 34 0 No
Negative 359 0 No
Mode 3 vs. 6 (train perf. 0.9914)
¬y–aligned(A, ∗) 271 0 No
¬on–top(A, ∗) ∧ floor(B) 34 0 No
Negative 42 3 No
Mode 4 vs. 5 (train perf. 0.8445)
Negative 359 437 Yes

Table 4.13: Clauses learned for y velocity classifier, part 2

96



Clause Num. Num. Numeric
correct incorr. class.?

Mode 4 vs. 6 (train perf. 0.9979)
¬intersect(A, ∗) 388 0 No
¬x–aligned(A, ∗) 43 0 No
box(B) 5 0 No
Negative 42 1 No
Mode 5 vs. 6 (train perf. 1.0000)
¬intersect(A, ∗) 308 0 No
¬x–aligned(A, ∗) 47 0 No
¬ramp(∗) 4 0 No
Negative 42 0 No

Table 4.14: Clauses learned for y velocity classifier, part 3

vy ≤ 0.0083

noyes

vx ≤ -0.0047 vx ≤ 0.0229

mode 4mode 5 mode 4 mode 5

yes no yes no

Figure 4.11: Decision tree distinguishing between modes 4 and 5 of the y velocity
model.

97



As previously mentioned, we use a decision tree learner to learn numeric classifiers.

The decision tree for modes 1 and 2 of the x velocity model is shown in figure 4.10.

The decision tree has learned correctly that a negative x velocity suggests mode 1,

while a positive x velocity suggests mode 2, as was illustrated in figure 4.8. The

root node of the tree checks vx against a small negative value instead of 0 because

the decision tree learning procedure sets the tested value midway between two data

points from different modes. Figure 4.11 shows a larger tree learned to distinguish

between the four vertical friction cases for the y velocity model illustrated in figure

4.9.

The binary classifier for x velocity modes 3 and 5 also has a numeric classifier.

But these modes are not distinguished by friction. Instead, notice that once the

ball’s x velocity reaches 0 and it stops, its behavior can be described by either mode

3 (v′x = vx) or mode 5 (v′x = 0) equally accurately, so the algorithm arbitrarily

assigns each such example to either mode. The result is that the two modes cannot

be correctly distinguished by clauses, so a numeric classifier is learned. Even though

the numeric classifier gives a lower training error, it is most likely overfitting the

data and will not perform well on test examples. The root of the problem is the

unprincipled way in which our algorithm deals with examples that can be assigned

to multiple modes. This is a weakness of the algorithm that should be addressed in

future work.

4.4.3 Prediction accuracy

We now present results for the overall prediction accuracy of the learned models.

These results were obtained using the same testing procedure as in the previous

experiment, except the number of training examples was increased, as discussed at

the beginning of this section.

As in experiment 1, we show the overall prediction accuracy of the models (figure

98



Avg change
95 percentile

x velocity

A
bs

ol
ut

e 
er

ro
r

10−18

10−9

1

Number of training scenarios
1 32 64 96 128 160

y velocity

A
bs

ol
ut

e 
er

ro
r

10−18

10−9

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.12: Prediction accuracy for x velocity and y velocity models

4.12), as well as accuracy within individual modes (figures 4.13 and 4.14). Also as in

experiment 1, we see that most modes are learned very quickly, but a few modes are

difficult to learn. Specifically, predictions for the halt mode of the x velocity model

and the bouncing on horizontal surface mode in the y velocity model have consistently

high errors throughout the training sequence. Again, these errors are mostly due to

high misclassification rates for those modes, as we will discuss in the next section.

4.4.4 Classification accuracy

Here we analyze the performance of the learned classifiers in the same fashion as

in experiment 1. We first show overall classification error rates for x and y velocity

models in figure 4.15. The error rates are significantly higher than those obtained in

experiment 1, which is expected due to the increased complexity of the environment

and the increase in number of modes from 3 to 6. After seeing all training examples,

the x velocity classifier achieves an error rate of 3.6%, while the y velocity classifier

achieves an error rate of 1.3%.

Tables 4.15 and 4.16 show how classification errors are distributed across the

individual modes. For x velocity, the highest absolute number of errors result from

classifying mode 3 examples as mode 2 examples, while the highest percentage of

99



Slide/bounce left on horiz. surf.

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Slide/bounce right on horiz. surf.

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Fly

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce on vertical surface

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Halt from friction

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce/slide on ramp

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.13: Prediction accuracy for x velocity, by mode

100



Fly

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Slide on horizontal surface

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce on horizontal surface

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce on vert. surf. (mode 4)

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce on vert. surf. (mode 5)

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Bounce/slide on ramp

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.14: Prediction accuracy for y velocity, by mode

101



Incorrect
Missing

x velocity

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0

0.1

Number of training scenarios
1 32 64 96 128 160

Incorrect
Missing

y velocity

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0

0.1

Number of training scenarios
1 32 64 96 128 160

Figure 4.15: Classification error rates for x velocity and y velocity models.

errors result from classifying mode 5 examples as mode 1 or mode 2 examples. The

latter result explains why the prediction accuracy for mode 5 (the halting mode) is

significantly higher than the other modes, as seen in figure 4.13. We hypothesize

that this high classification error rate is due to the asymmetry in the number of

examples of each mode the learning algorithm experiences. Because the algorithm

sees several thousand examples each of modes 1 and 2 but less than 100 examples

of mode 5, a small number of misclassifications of mode 5 are ignored in favor of

obtaining short clauses that cover large numbers of mode 1 and 2 examples correctly.

The clauses shown in tables 4.10 and 4.11 for mode 1 versus 5 and mode 2 versus 5

support this hypothesis. In each of those binary classifiers, the clause that covers the

most positive examples is on–top(A,B). This clause simply says that whenever the

ball is on a surface, classify it as sliding under friction rather than halting. This is

clearly overgeneral, as many examples of halting occur when the ball is on top of a

surface.1 If an equal number of halting versus sliding examples were presented to our

algorithm, we expect that such an overgeneral clause would result in an unacceptable

1Actually, all the examples of halting occur when the ball is on a surface. However, in many of
the cases the ball has penetrated into the surface due to imperfections in the physics simulation,
to the degree where our definition of on–top no longer holds. This is an example of the algorithm
overfitting artifacts in the physics simulator.

102



Predicted Correct mode Total
mode 1 2 3 4 5 6
1 - 0 3 0 20 0 23
2 0 - 620 0 43 0 663
3 32 16 - 0 0 0 48
4 5 2 0 - 0 0 7
5 0 25 0 0 - 0 25
6 0 0 3 11 0 - 14
Total errors 37 43 626 11 63 0 780
Num. Examples 4746 4976 13936 199 67 30 23954
Error rate 0.008 0.009 0.045 .055 0.940 0 0.033

Table 4.15: Number of classification errors made by x velocity model for each pair of
predicted/correct modes.

Predicted Correct mode Total
mode 1 2 3 4 5 6
1 - 48 0 0 0 0 48
2 12 - 138 1 0 0 151
3 0 0 - 0 0 0 0
4 0 1 0 - 1 0 2
5 1 10 0 5 - 0 16
6 15 69 138 7 5 - 234
Total errors 15 69 138 7 5 0 234
Num. Examples 13325 10337 210 23 30 30 23955
Error rate 0.001 0.007 0.657 .304 0.167 0 0.010

Table 4.16: Number of classification errors made by y velocity model for each pair of
predicted/correct modes.

false positive rate and be rejected. The correct distinguishing feature should be a

decision tree that tests whether the x velocity is below a threshold such that friction

will cause it to go to 0 in the next time step.

4.5 Experiment 3

The primary purpose of this experiment is to show that our system can handle

a larger number of modes than in the previous experiments. To do this, we train

the model on two different environments, with all objects having friction coefficients

of 0.1 or 0.2. The training and testing procedures are the same as in experiment 2,

103



except with two different sets of environments with different friction coefficients.

In order to distinguish between objects with different friction coefficients, the

coefficient is encoded in the object types. Therefore, a ramp with friction coefficient

0.1 has type ramp-0.1, whereas one with friction coefficient 0.2 has type ramp-0.2.

The obvious alternative is to encode the friction coefficient as a property of the

object, so that all ramps have type ramp, but have either 0.1 or 0.2 for their “friction

coefficient” property. The problem with this alternative encoding is that it would

introduce non-linear terms into the mode functions, such as k · vx · Cf , where vx is

the ball’s x velocity and Cf is another object’s friction coefficient. By appending

the friction coefficient to the object type, the mode functions will remain linear, and

interactions between objects with different friction coefficients will result in distinct

modes.

Table 4.17 shows the x velocity modes learned by the system. In addition to

the modes from experiment 2, the system has learned an additional set of modes

for the environments with 0.2 friction. This is the expected behavior. The model

also learned two spurious modes (14 and 15). Figures 4.16 and 4.17 show the overall

prediction error rate and mode classification error rate for the model when tested

on environments with both friction coefficients. The testing procedure is the same

as that of experiment 2. The plots show that classification error rate has increased

slightly, as to be expected from the model having twice as many modes and an order

of magnitude more binary classifiers. Overall, the system is able to accommodate the

extra modes.

4.6 Noise Tolerance

As discussed in section 3.2.2, the expected amount of variance in the training

examples due to noise is controlled by the parameter σ. Here, we will show how the

system behaves under different settings of expected and real variance in the obser-

104



# Behavior Num. Mode function
ex.

0 Noise 179 -
1 Slide right, 0.1 fric. 5253 v′x = vx − 9.8× 10−5

2 Slide left, 0.1 fric. 4766 v′x = vx + 9.8× 10−5

3 Slide right, 0.2 fric. 6343 v′x = vx − 1.96× 10−4

4 Slide left, 0.2 fric. 6623 v′x = vx + 1.96× 10−4

5 Fly 46031 v′x = vx
6 Bounce on vert. surf. 1191 v′x = −0.95vx
7 Halt from friction 7892 v′x = 0
8 Bounce right, 0.1 fric. 4318 v′x = vx + 0.195vy − 9.8× 10−5

9 Bounce right, 0.2 fric. 2656 v′x = vx + 0.39vy − 1.96× 10−4

10 Bounce left, 0.1 fric. 6358 v′x = vx − 0.195vy + 9.8× 10−5

11 Bounce right, 0.2 fric. 4151 v′x = vx − 0.39vy + 1.96× 10−4

12 Ramp bounce, 0.1 fric. 79 v′x = −0.0725vx − 1.0725vy + 5.39× 10−4

13 Ramp bounce, 0.2 fric. 63 v′x = −0.17vx − 1.17vy + 5.88× 10−4

14 Ramp bounce, 0.1 fric. 50 v′x = −0.475vx − 0.475vy
15 Ramp bounce, 0.1 fric. 47 v′x = 0.1225vx − 0.8775vy + 4.41× 10−4

Table 4.17: Modes learned for x velocity of ball in environments with 0.1/0.2 friction,
0.95 elasticity, and 45◦ ramps.

Avg change
95 percentileA

bs
ol

ut
e 

er
ro

r

10−18

10−9

1

Number of training scenarios
1 120 240 360 480

Figure 4.16: Prediction error of x velocity model in environments with 0.1/0.2 friction,
0.95 elasticity, and 45◦ ramps.

105



Incorrect
Missing

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0

0.1

Number of training scenarios
1 120 240 360 480

Figure 4.17: Classification error of x velocity model in environments with 0.1/0.2
friction, 0.95 elasticity, and 45◦ ramps.

vation noise. We use the frictionless ball-ramp-box domain in this experiment. We

train and test the models in the same way as in section 4.3, but sweep the variance

of the noise distribution used to corrupt the values in the state vector. The values

swept over are 10−20, 10−15, 10−10, 10−8, and 10−5. We also sweep σ at the same

intervals. Model accuracy is only tested after all 80 training scenarios are presented.

The experiment was repeated 15 times with different reorderings and random seeds.

The result is shown in figure 4.18.

In the figure, the x axis marks the true variance of the environment noise. The y

axis is different from the previous experiments. Instead of absolute error, the y axis

now shows what we will call mode averaged median error. The mode averaged median

error compensates for the uneven distribution of training examples amongst the modes

by calculating the median error of each mode individually, and then taking their

average. This way, all modes are represented equally regardless of their membership

size. Each line corresponds to the median errors of a y velocity model obtained with

one setting of σ.

Consider the lines representing σ = 10−15 and σ = 10−10. Their error rates

are approximately the same until the real noise variance significantly exceeds the

106



1e-5
1e-8
1e-10
1e-15

M
od

e 
av

er
ag

ed
 m

ed
ia

n 
er

ro
r

10−15

10−12

10−9

10−6

10−3

1

Environment noise variance
10−20 10−15 10−10 10−8 10−5

Figure 4.18: Model accuracy for different settings of environment and expected noise
variance.

107



expected variance at an x value of 10−8. Then the error rate of σ = 10−15 becomes

significantly higher than σ = 10−10. Manual inspection of the learned models shows

that σ = 10−15 model does not learn the ramp bouncing mode correctly at this point,

while the σ = 10−10 model still learns it in most cases. Therefore, a σ setting that is

significantly lower than the real environment noise variance disrupts mode learning.

Note that the right-most plot point for these two lines is artificial. At an environment

noise variance setting of 10−5, these two models did not learn any modes at all and

considered all training examples to be noise. This is arguably a desirable behavior,

since any modes learned under a large amount of noise will probably not be accurate

anyway.

On the other hand, the σ = 10−5 line suggests that a sigma setting that is too

high also hurts accuracy. In this case, the higher σ value results in a larger acceptable

margin of error for a training example to be considered to belong to a mode, causing

the algorithm to overfit the data and learn spurious modes that are over-general. In

the worst case, the model learns a single mode that covers the majority of the training

examples. This is essentially like not distinguishing between modes at all, and the

prediction accuracy suffers because the single mode is an average over the behaviors

of the real modes, and does not predict any one mode accurately.

The most interesting line is σ = 10−8, as it has high error at both extremes of

environment noise but low error in the middle. Inspection of the learned models shows

that this setting always learns the flying and bouncing against a horizontal surface

modes correctly, except when environment noise was at 10−5. The large variation in

accuracy is primarily due to whether the ramp bouncing mode was learned correctly.

When environment noise is set to 10−20, the algorithm overfit the data and learned

spurious modes. At noise levels of 10−15, 10−10, and 10−8, there was enough noise to

prevent overfitting, and the algorithm was able to learn the correct model. Therefore,

a small amount of environment noise actually helped to prevent overfitting. At a noise

108



level of 10−5, the algorithm learned some of the modes correctly, but also learns some

spurious modes due to the high amount of real noise.

4.7 Comparison to other techniques

In this section, we compare the performance of our algorithm to other model

learning techniques.

4.7.1 Prediction accuracy compared to LWR

We first compare the overall prediction accuracy of models learned by our al-

gorithm with those learned by Locally Weighted Regression. The comparison was

made in the environment described in experiment 2: the ball-box-ramp environment

with friction. The LWR model was trained in the same way as our algorithm. Like

in experiment 2, the data is aggregated over 50 different training batches generated

from 10 different reorderings and 5 different random seed sets. We used 50 neigh-

bors for each prediction of LWR, and weighed the neighbors with the kernel function

d−3, where d is the Euclidean distance of the neighbor from the point being predicted.

Through informal experimentation, we found that increasing the number of neighbors

decreases worst-case prediction errors but increases median prediction errors. This is

because LWR smoothes the prediction over all neighbors without regard to different

behavioral modes.

Recall that for each training and test example, we shift the positions of all objects

in the environment by a random amount and in a random direction with respect to the

coordinate origin. This was to prevent our algorithm from learning mode functions

that condition on incidental invariances in the object coordinates. These random

shifts are harmful to LWR because it uses the Euclidean distance between examples

as a measure of similarity. With random shifts, examples that are otherwise identical

would be considered very far apart, while examples that are different in configuration

109



LWR 95%
LWR 3rd qt
LWR median
MM 95%
Avg change

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.19: Comparison of prediction accuracy of our algorithm with LWR

but shifted to the same origin would appear relatively more similar. In order to

make the distance metric agnostic to the random shifts and therefore improve the

performance of LWR, we centered the position coordinates of each object on the

target object, which is the ball in this case.

LWR’s prediction accuracy and a comparison to our system is shown in figure

4.19. The thick line represents the 95th percentile of our algorithm’s accuracy for the

x velocity model, which is reproduced from figure 4.12. The thin lines represent the

95th percentile, 3rd quartile, and median accuracies of the LWR model. The graph

shows that LWR’s prediction errors are significantly higher than our model’s. The

median error of LWR is much higher than our 95 percentile error for most of the

training sequence, and the 3rd quartile is never lower than the average magnitude

of change. Although it’s difficult to understand what LWR is doing, we hypothesize

that its poor performance is due to the following reasons. First, LWR generalizes

110



training examples to test examples poorly because it uses Euclidean distance as a

similarity measure. Euclidean distance doesn’t capture spatial relationships between

objects, which is what really determines behavior in this domain. Therefore, LWR is

generalizing from the wrong training examples to test examples.

Second, LWR smoothes over training examples close to each query point, regard-

less of the mode they exhibit. Training examples from flying, bouncing, and sliding

modes all contribute to each prediction, making the prediction an average over these

qualitatively different behaviors. This average prediction does not accurately predict

any example from any of the modes. This phenomenon is reflected in the sudden

decrease in median error at the 128 training scenarios mark. We believe this decrease

occurs because there are enough training examples from the most common mode

(ball flying) that they saturate the 50 closest neighbor slots used to predict each test

example. Since the test examples are also predominantly from the most common

mode, the median prediction error decreases dramatically. But prediction errors for

test examples from all other modes are still poor, so the 3rd quartile error does not

decrease by the same magnitude. We also tried using 25 neighbors for each LWR

prediction, and as expected this resulted in the median error dip occurring earlier

in the training sequence. However, this also resulted in increased 3rd quartile errors

across the board.

We can see these effects amplified if we don’t center the positions of objects around

the ball in the training and test data. This is shown in figure 4.20. Centering object

positions makes their position coordinates correlate with their distance from the ball,

which correlates with important relationships such as intersection. Therefore, a lower

Euclidean distance between two examples makes it more likely that the objects in

the examples have the same relationship with the ball, so it becomes a more useful

similarity metric. When objects are not centered, the Euclidean distance much less

correlated with relationships with the ball, and performance of LWR suffers.

111



LWR 95%
LWR 3rd qt
LWR median
LWR 1st qt
MM 95%
Avg change

A
bs

ol
ut

e 
er

ro
r

10−18

10−12

10−6

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.20: Comparison of prediction accuracy of our algorithm with uncentered
LWR

112



4.7.2 Classifier accuracy

To demonstrate the benefit of using spatial relations to classify modes, we compare

our combined FOIL/decision tree classifier to support vector machine (SVM) and K

nearest neighbor (KNN) classifiers (Hastie et al., 2002). We used the MATLAB

(2010) built-in functions svmtrain and svmclassify with a quadratic kernel for

training the SVM classifier. We set K = 10 for the KNN classifier. We found that

using 10 neighbors is significantly better than using 1 neighbor, but more than 10

neighbors did not improve performance. All classifiers were trained and tested in the

environment used in section 4.4, using the same set of training and test examples. The

classification problem is to determine which of the modes listed in table 4.9 the ball

exhibits in any example. To generate ground truth mode labels for each training and

test example, we used the mode functions listed in table 4.9 to predict the outcome of

each example. The mode function that gave the lowest prediction error was considered

the true mode for that example. For both SVM and KNN classifiers, we centered the

positions of all objects on the ball as we did in the LWR comparison, to increase

the accuracy of those methods. We again averaged the data over 50 training batches

consisting of 10 permutations of the configuration ordering, each repeated 5 times

with different sets of random seeds. The results are shown in figure 4.21.

In the figure, the x axis marks the number of training scenarios seen, with each

scenario consisting of 200 training examples as usual. The y axis as a log scale and

marks the rate at which the classifier misclassified test examples, averaged over the

50 training batches. The plot shows that the FOIL classifier converges faster than the

SVM and KNN classifiers, and also at a lower error rate. After 32 training scenarios,

the error rate of the FOIL classifier is at approximately 4.1%, while that of the SVM

classifier is at 17.7% and the KNN classifier is at 30.7%. The error rate of FOIL ends

at around 3.5% after 160 training scenarios while that of SVM ends at 8.2% and KNN

ends at 25.9%.

113



FOIL SVM KNN

x velocity

C
la

ss
if

ic
at

io
n 

er
ro

r r
at

e

0.01

0.1

1

Number of training scenarios
1 32 64 96 128 160

Figure 4.21: Comparison of accuracy for FOIL, SVM, and KNN classifiers.

We hypothesize that the reason for these differences in performance is that modes

in spatial environments are determined primarily by the relationships between objects,

not by their absolute positions in the coordinate system. The SVM classifier with its

quadratic kernel can capture those relationships to some extent: the product of the

coordinates of the ball and another object correlates to some degree to the distance

between them, and hence whether they intersect, but the correlation is weak. The

KNN classifier on the other hand only considers the positions of the objects in the

coordinate system. Even though we centered the coordinate system on the ball and

therefore correlate the positions of the other objects with their distance to the ball

to some extent, the KNN classifier still does not correctly generalize over irrelevant

characteristics such as the positions of objects far away from the ball that do not

affect its behavior at all.

4.8 Model accuracy for multiple step predictions

In the previous experiments, we evaluated the accuracy of the learned models in

making single step predictions. Many applications of action models such as planning

and look-ahead search require making predictions multiple time steps into the future.

114



In a multi-step prediction, the model’s prediction for time step i is based on the state

at time step i−1, so prediction error accumulates over time. Specifically, if the model

makes a large prediction error at time step i, all subsequent predictions will have at

least that much error, even if individually they were perfectly accurate.

In this experiment we test the accuracy of the models learned in experiment 1 (ball-

box-ramp domain without friction) in multi-step predictions. The model is trained

in the same way as in experiment 1. When testing, the environment is initialized to

one of the 40 initial configurations, and the model is used to predict the trajectory

of the ball for 200 time steps. This is achieved as follows. At time step i, the system

predicts the x and y velocities of the ball in time step i+ 1 using the learned models.

It then predicts the x and y coordinates of the ball by adding the predicted velocities

to the x and y coordinates at time i. The scene graph is then updated with the new

position values, and the relational state is extracted for time i + 1. This relational

state is used for mode classification and role assignments in the prediction for the

next time step. The model is tested on all 40 initial configurations, with 2 random

seeds, for a total of 80 trials. All results were obtained from a single pair of x and

y velocity models, since averaging multi-step predictions doesn’t make sense. These

were both the most accurate and most common models obtained in the 50 training

batches from experiment 1.

Figure 4.22 and 4.23 plot the prediction errors for the x and y coordinates of

the ball over time. The x axis indicates the time step into the prediction. The

y axis indicates the absolute prediction error. Each line represents one series of

200 step predictions. The models predicted most of the steps accurately, but failed

on a few types of interactions. Unfortunately, because of the cumulative nature of

the predictions, an error at a single time step will ruin the accuracy of all future

predictions, as the lines in the plots show. One type of prediction error was manually

corrected in the experiments and not reflected in these figures, as will be explained

115



A
bs

ol
ut

e 
er

ro
r

10−9

10−6

10−3

1

Time step
0 50 100 150 200

Figure 4.22: Extended prediction error for the x position of the ball

A
bs

ol
ut

e 
er

ro
r

10−9

10−6

10−3

1

Time step
0 50 100 150 200

Figure 4.23: Extended prediction error for the y position of the ball

116



below. In total, 26 of the 80 trials contained one significant prediction error. We now

discuss the types of prediction errors encountered.

The first type of failure is due to an artifact of how the physics simulator han-

dles collisions. Because the simulation is executed in discrete time steps, a collision

between two objects is not detected until the time step when the two objects have

overlapped. In the next time step, forces are exerted on the objects to push them

apart in a process called collision resolution. The model therefore learns that when-

ever the ball intersects another object, it will exhibit the bouncing mode and its

velocity will be reflected away from the object. In most cases this works correctly

and the model predicts bounces accurately. However, in rare cases, collision resolu-

tion does not move objects sufficiently far apart in one time step, resulting in the

objects still intersecting in the time step after the initial collision. The model has

trouble with these cases because in the relational state space they resemble additional

collisions. Therefore, when the ball is still intersecting an object in the second time

step, the model predicts another bounce and another reflection in its velocity, this

time toward the object being penetrated. This leads to the model predicting that

the ball gets stuck in an infinite number of consecutive bounces. This type of error

occurred when the ball bounced against a vertical surface, such as the side of the box

or wall, or the slanted side of the ramp, but never when bouncing against the floor.

Figure 4.24 illustrates this type of error. In the figure, each panel shows the actual

(black) and predicted (gray) positions of the ball at a certain time step.

This type of prediction error occurred 22 times total in the experiment. 13 of

those occurrences were when the ball bounced on a vertical surface, and the other

9 were when the ball bounced against the slanted side of the ramp. This is quite

rare considering the ball bounced against vertical surfaces 205 times and the slanted

side of the ramp 108 times total in the experiment. Because this type of error is

arguably an artifact of the physics simulator and would not occur in the real world,

117



step 0 step 7

step 22 step 38

step 48 step 74

Figure 4.24: Actual (black) and predicted (gray) positions of the ball getting stuck
in the wall due to imperfect collision resolution.

118



Error type Num. Occurrences
Bad collision resolution, vertical 9 (out of 205 similar bounces)
Bad collision resolution, ramp slant 9 (out of 108 similar bounces)
Bounce against corner 4
Misclassified ramp bounce 5
Delayed falling 7

Table 4.18: Frequencies of prediction errors encountered in multi-step predictions.

we manually corrected them in the results shown in figures 4.22 and 4.23.

The second type of interaction that the model fails to predict correctly is the ball

bouncing against sharp corners. This is to be expected as the ball’s exit velocity from

this type of bounce is a non-linear function of the angle of incidence. In some cases

this will result in a slight prediction error in the bounce, which is then propagated

into future predictions, as in figure 4.25. In other cases, the error results in the ball

getting stuck in the corner, much like the issue discussed previously, which results in

more severe prediction errors, as shown in figure 4.26. This type of error occurred 4

times in the experiments.

The model experienced another type of failure when the ball bounced against the

vertical side of the ramp while the mode classifier predicted it was in the mode of

bouncing against the slanted side of the ramp. This results in a prediction of the ball

penetrating deeper into the ramp’s side and then getting stuck in an endless sequence

of bounces. A final type of prediction error occurs as the ball slides off the top of the

box: the model would predict that the ball begins falling one time step later than it

should. This results in minor prediction inaccuracies but no qualitative error. The

number of occurrences of these errors are listed in table 4.8.

These results show that the models learned by our system can make accurate

predictions many time steps into the future. The most prevalent modes, such as

flying and sliding on a horizontal surface, are accurately predicted in almost all cases,

and more difficult modes such as bouncing are predicted correctly in most cases. Of

all the error types listed in table 4.8, the only one that cannot be avoided with better

119



step 0 step 8

step 38 step 103

step 117 step 145

Figure 4.25: Actual and predicted positions of the ball bouncing against a corner,
low prediction error.

120



step 102 step 137

step 157 step 173

step 187 step 200

Figure 4.26: Actual and predicted positions of the ball bouncing against a corner,
high prediction error.

121



training or algorithm tuning is bouncing against corners, as it requires a complex

non-linear function to model accurately. Since these transitions cannot be predicted

accurately, it would be beneficial for the model to report when it is not confident

about its predictions. One way to achieve this is to modify the mode classifier to

output the noise mode when a situation does not match any of the existing modes,

as is the case with bouncing against corners. This would involve learning binary

classifiers between each existing mode and the noise mode, and including the noise

mode in the one-against-one voting process (see section 3.4.2).

4.9 Transfer to domains with different numbers of objects

One of the main advantages relational models have over propositional ones is that

relational models can be applied to environments with different numbers of objects

as the ones it was trained on. Since a change in the number of objects means a

change in the number of dimensions in the continuous state vector, there is no way

a propositional model can handle this transfer without additional knowledge about

how the dimensions in the training environment map to the dimensions in the test

environment. On the other hand, our algorithm is able to handle such cases because

the propositional linear models are generalized with relational role classifiers and

mode preconditions.

In this experiment, we show how models transfer between environments with

different numbers of objects. We again use the frictionless ball-box-ramp domain as

our environment. We train models in environments with only the box or the ramp,

and test its performance in an environment with both box and ramp. The training

methodology is the same as in section 4.3, except the appropriate object is removed

from the environment. Figures 4.27, 4.28, and 4.29 show the prediction errors of the

models in the test environment (with both box and ramp). As before, the boxes

indicate the first and third quartiles, the whiskers the 5 and 95 percentiles, and the

122



A
bs

ol
ut

e 
pr

ed
ic

tio
n 

er
ro

r

10−18

10−6

1

Mode
fly / horiz. slide vert. bounce ramp bounce

Figure 4.27: Prediction error for each mode of x velocity model trained in box-only
environment.

line in the box the median of the data. The data was aggregated over 20 batches.

Figure 4.27 shows the prediction error of models trained in the box-only envi-

ronment. As expected, the model learns the horizontal sliding/flying mode and the

vertical bounce modes (modes 1 and 2 in table 4.2) correctly. It does not learn the

ramp bouncing/sliding mode as it never encounters any examples of this. Therefore,

the model’s prediction error is low for the first two modes and high for the last mode.

The point to note here is that the model is able to correctly predict the interactions

that were present in its training data instead of failing catastrophically for all modes.

Figure 4.28 shows the prediction error of models trained in the ramp-only environ-

ment. The system learns all three modes listed in table 4.2 correctly. It was able to

learn the vertical bouncing mode correctly because one side of the ramp has a vertical

surface, as well as the walls. However, the prediction error for the vertical bouncing

mode is higher than that of the model trained in the box-only environment because

some of the learned mode classifiers misclassified vertical bounces against a box as

ramp bounces. There were other cases where the system learned mode classifiers that

were able to correctly predict vertical bounces against boxes, which demonstrates the

123



A
bs

ol
ut

e 
pr

ed
ic

tio
n 

er
ro

r

10−18

10−6

1

Mode
fly / horiz. slide vert. bounce ramp bounce

Figure 4.28: Prediction error for each mode of x velocity model trained in ramp-only
environment.

A
bs

ol
ut

e 
pr

ed
ic

tio
n 

er
ro

r

10−18

10−6

1

Mode
fly / horiz. slide vert. bounce ramp bounce

Figure 4.29: Prediction error for each mode of x velocity model trained in box-only,
then ramp-only environments.

124



generality of using first-order Horn clauses.

Figure 4.29 shows the prediction error of models first trained in the box-only

environment, then in the ramp-only environment. Its accuracy is approximately equal

to that of the models trained in just the ramp-only environment. Again, all modes

were learned correctly. An unintuitive result is that the mode 2 prediction error is

not lower than that when the model was just trained on the ramp-only environment.

We hypothesize that since ramps and boxes never show up together in the training

examples, FOIL does not add literals to clauses to distinguish between them, leading

to classification errors.

125



CHAPTER V

Conclusion

In the previous chapters, we have developed an action modeling algorithm that

exploits both the continuous and relational structure of spatial, object-based environ-

ments. We demonstrated the algorithm’s performance in two environments, one of a

truck pushing stacked boxes under the influence of friction, and a realistic physics sim-

ulation in which a ball bounces around a room with a box and a ramp. We showed

that the algorithm outperforms Locally Weighted Regression in the ball-box-ramp

domain. We also demonstrated how the algorithm performed when the environment

signal was degraded with different amounts of Gaussian noise.

Our system exploits both continuous and relational regularities of spatial domains.

Continuous regularities are embodied as modes of behavior in training data that de-

scribe qualitatively distinct interactions between objects as piecewise linear functions.

Modes are discovered by clustering training examples in the continuous state space

based on shared linear regularities. Relevant object roles in each mode are also explic-

itly identified in this process. The modes and roles discovered in the training data are

then generalized into relational descriptions by learning classifiers that identify regu-

larities in the relational state space shared by the modes and roles. General relational

descriptions of when each mode manifests are learned using the FOIL algorithm and

embodied in the mode classifier. The mode classifier predicts the correct mode to ap-

126



ply based on spatial relationships that are invariant to incidental encoding variations

such as different coordinate systems, different object names, or different object scales.

Relational role classifiers are learned that are able to assign the appropriate object to

each role based on spatial relationships, decoupling modes from the specific objects

in training examples. This allows mode functions to be applied in new contexts.

A strength of our algorithm is that it learns online and does not need a compre-

hensive training set before it can build models of individual modes. This is especially

beneficial in domains where some modes are rarely encountered, such as the bouncing

modes in the ball-box-ramp domain used in our experiments. The learner was able

to achieve high predictive accuracy on common modes like flying and sliding early

on, whereas uncommon modes like bouncing were identified later when a sufficient

number of examples were collected. Overfitting due to committing to modes too early

is corrected by unification.

The major contribution of this thesis is the development of an algorithm that

learns continuous piecewise-linear action models with relational roles and precondi-

tions. To our knowledge, our algorithm is the first that combines continuous propo-

sitional representations and learning techniques with relational representations and

learning techniques for action modeling. These properties are important for learning

general models with few training examples in spatial domains with multiple objects.

Modeling changes of continuous properties is necessary for continuous environments,

such as robotics tasks. It also avoids the ramification problem suffered by relational

action modeling approaches. Having relational roles and preconditions allow learned

models to predict the behavior of any object that satisfies relational constraints. This

allows model learning to generalize faster when the same qualitative behaviors are

repeated by different sets of objects or in different situations. More specific contribu-

tions are:

• Identifying the benefit of relational representations in continuous action mod-

127



els. Previous work in action modeling considered relational representations or

propositional representations individually. Our system models the effects of

actions in the continuous, propositional state representation most natural for

continuous domains, but exploits first-order relational representations that com-

pactly and naturally capture the higher-level structure of such domains. This

increases the generality of the action models learned by our system.

• Novel application of FOIL to discover relational preconditions of modes. Repre-

senting preconditions as sets of first-order Horn clauses that test spatial relations

aligns well with the regularities of object-based environments, where behaviors

are conditioned on object interactions. We showed that purely continuous clas-

sifiers are not as accurate in distinguishing modes (section 4.7.2).

• A novel combination of relational and continuous classification. We showed

that purely relational classifiers were not sufficiently discriminative in many

circumstances, and developed a combined relational-continuous classification

method.

• Identification of roles in propositional functions and learning descriptions of

roles with FOIL. Roles generalize propositional linear functions so that they

can apply to any objects that fit the role requirements. This allows a mode

function learned for one set of objects to predict the behavior of another set

of analogous objects, and to combine training examples from multiple sets of

objects to train one model.

5.1 Future work

The work presented in this thesis considers action modeling as a stand-alone pro-

cess. In real applications, action modeling would be integrated in an end-to-end

agent architecture such as a robot. This would provide opportunities to extend the

128



algorithm, such as by incorporating active learning techniques. Active learning is an

important aspect of action modeling since the agent has direct control over which

training examples it receives by choosing its actions, and can bias its actions to speed

up learning. QLAP(Mugan and Kuipers , 2012) is an example of a system that per-

forms active learning. Active learning can be incorporated into our system in many

ways. For example, the agent can speed up mode discovery by actively seeking out

training examples that don’t belong to any existing modes. This can overcome the

problem of uneven distributions of examples among modes, such as that encountered

in the ball-box-ramp domain. The agent can also try to bring objects into specific

relationships with each other to try to discover new modes of interaction, or use

analogical reasoning to hypothesize the existence of modes for novel objects.

A complete agent will also use the learned model for planning. Sampling-based

planning algorithms such as RRT (LaValle and Kuffner , 2001) are common in robotic

domains, and these planners require fast roll-outs to keep planning time to a mini-

mum. Even though prediction times for the models learned in our experiments were

on the order of tens of milliseconds, they may grow significantly in more complex do-

mains. Prediction in our model involves nontrivial operations including solving CSPs

to find role assignments and extracting all spatial relations in the relational state.

Many of these operations can be avoided by caching results between time steps. For

example, we can assume that the same role assignments will persist across time steps

until a different mode is encountered.

The learning portion of our algorithm presents more severe performance issues

since many of the algorithms used are not incremental. Specifically, the FOIL learner

used for learning role and mode classifiers takes on the order of tens of minutes to

run in the worst cases in our experiments. These problematic cases arise when input

into mode and role classifier learning components are overly complex. For example,

if the environment signal is corrupted by a large amount of noise, our system may

129



overfit the noise and learn a large number of modes. Since one binary classifier is

learned for each pair of modes, this results in a quadratic increase in the number

of times our system runs FOIL. Furthermore, since the modes are overfit and do

not correspond to actual qualitative behaviors in the environment, there is usually

not a clear set of clauses that can distinguish them, causing each run of FOIL to

slow down further as it tries to build large clauses. An analogous situation can arise

with role classifiers: an overfit mode function may have a large number of spurious

roles, and FOIL must be run for each. These issues suggest that our system should

have more safeguards against overfitting noisy data, although this usually leads to

additional free parameters and accuracy trade-offs. Furthermore, the system should

use an incremental inductive learner instead of FOIL (Muggleton and Raedt , 1994).

Another major shortcoming is that mode functions are restricted to linear func-

tions. This restriction was made to avoid having to trade off between having fewer

complex modes with having more simple modes. Higher order regression algorithms

are more susceptible to overfitting than linear regression, and may cluster into sin-

gle modes examples that belong in separate modes. On the other hand, when the

environment exhibits truly non-linear modes, linear regression will either consider it

to be noise, or overfit incidentally linear portions of the mode. The online learning

context makes this balance even harder to establish, since the system doesn’t have a

representative global sample of the data that it can use to minimize overall error.

130



BIBLIOGRAPHY

131



BIBLIOGRAPHY

Aha, D. W., D. F. Kibler, and M. K. Albert (1991), Instance-based learning algo-
rithms, Machine Learning, 6, 37–66.

Akaike, H. (1974), A new look at the statistical model identification, Automatic Con-
trol, IEEE Transactions on, 19 (6), 716–723, doi:10.1109/TAC.1974.1100705.

Atkeson, C., A. Moore, and S. Schaal (1997a), Locally weighted learning, AI Review,
11, 11–73.

Atkeson, C., A. Moore, and S. Schaal (1997b), Locally weighted learning for control,
AI Review, 11, 75–113.

Carbonell, J. G., and Y. Gil (1996), Learning by experimentation: The operator re-
finement method, Machine Learning: An Artificial Intelligence Approach, 3, 191—
213.

Diuk, C., A. Cohen, and M. L. Littman (2008), An object-oriented representation for
efficient reinforcement learning, in ICML, pp. 240–247.

Fischler, M. A., and R. C. Bolles (1981), Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography,
Commun. ACM, 24 (6), 381–395, doi:10.1145/358669.358692.

Forbus, K. D. (1984), Qualitative process theory, Artificial Intelligence, 24, 85–168.

Getoor, L., and B. Taskar (Eds.) (2007), Introduction to Statistical Relational Learn-
ing, The MIT Press.

Ghallab, M., A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins (1998), Pddl - the planning domain definition language, version 1.2,
Tech. Rep. CVC TR-98-003, Yale Center for Computational Vision and Control.

Ginsberg, M. L., and D. E. Smith (1988), Reasoning about action i: A possible worlds
approach, Artificial intelligence, 35 (2), 165–195.

Hastie, T., R. Tibshirani, and J. Friedman (2002), The Elements of Statistical Learn-
ing, Springer.

Hsu, C.-W., and C.-J. Lin (2002), A comparison of methods for multiclass support
vector machines, IEEE Transactions on Neural Networks, 13 (2), 415–425.

132



Huffman, S. B., and J. E. Laird (1992), Using concrete, perceptually based represen-
tations to avoid the frame problem, in AAAI Spring Symposium on Reasoning with
Diagrammatic Representations.

Kaelbling, L. P., H. M. Pasula, and L. S. Zettlemoyer (2007), Learning symbolic
models of stochastic domains, Journal of Artificial Intelligence Research, 29, 309–
352.

Kuipers, B. (1994), Qualitative Reasoning, The MIT Press.

Lange, K. (2010), Numerical analysis for statisticians 2nd edition, Springer, New
York, NY [u.a.].

LaValle, S. M., and J. J. Kuffner (2001), Randomized kinodynamic planning, The
International Journal of Robotics Research, 20 (5), 378–400.

Lembcke, S. (2013), Chipmunk2d, http://chipmunk-physics.net, accessed September
2013.

Ly, D. L., and H. Lipson (2012), Learning symbolic representations of hybrid dynam-
ical systems, Journal of Machine Learning Research, 13, 35853618.

MATLAB (2010), version 7.10.0 (R2010a), The MathWorks Inc., Natick, Mas-
sachusetts.

Mitchell, T. M. (1997), Machine Learning, McGraw-Hill.

Moore, A. W., and C. G. Atkeson (1993), Prioritized sweeping: Reinforcement learn-
ing with less data and less time, in Machine Learning, pp. 103–130.

Mugan, J., and B. Kuipers (2012), Autonomous learning of high-level states and
actions in continuous environments, IEEE Transactions on Autonomous Mental
Development (TAMD), 4 (1), 70–86.

Muggleton, S., and L. D. Raedt (1994), Inductive logic programming: Theory and
methods, The Journal of Logic Programming, 19, 629–679.

Nguyen-tuong, D., and J. Peters (2008), Local gaussian process regression for real
time online model learning and control, in In Advances in Neural Information
Processing Systems 22 (NIPS).

Nguyen-Tuong, D., and J. Peters (2011), Model learning for robot control: a survey,
Cognitive processing, 12 (4), 319–340.

Potts, D. (2005), Incremental learning of linear model trees, in Machine Learning,
pp. 5–48, Springer.

Quinlan, J. R. (1990), Learning logical definitions from relations, Machine Learning,
5, 239–266.

133



Quinlan, R. J. (1992), Learning with continuous classes, in 5th Australian Joint Con-
ference on Artificial Intelligence, pp. 343–348, World Scientific, Singapore.

Rasmussen, C. E., and C. K. I. Williams (2005), Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning), The MIT Press.

Russell, S. J., and P. Norvig (2003), Artificial Intelligence: A Modern Approach
Second Edition, Pearson Education.

Schmidt, M., and H. Lipson (2010), Symbolic regression of implicit equations, in
Genetic Programming Theory and Practice VII, edited by R. Riolo, U.-M. O’Reilly,
and T. McConaghy, Genetic and Evolutionary Computation, pp. 73–85, Springer
US.

Sutton, R. S. (1991), Dyna, an integrated architecture for learning, planning, and
reacting, SIGART Bulletin, 2 (4), 160–163.

Toussaint, M., and S. Vijayakumar (2005), Learning discontinuities with products-
of-sigmoids for switching between local models, in Proceedings of the 22nd interna-
tional conference on Machine Learning, pp. 904–911, ACM Press.

Vijayakumar, S., A. D’souza, and S. Schaal (2005), Incremental online learn-
ing in high dimensions, Neural Computation, 17 (12), 2602–2634, doi:10.1162/
089976605774320557.

Wang, X. (1995), Learning by observation and practice: An incremental approach for
planning operator acquisition, in Proceedings of the 12th International Conference
on Machine Learning, pp. 549–557, Morgan Kaufmann.

Xu, J. Z., and J. E. Laird (2010), Instance-based online learning of deterministic
relational action models, in Proceedings of the 24th AAAI Conference on Artificial
Intelligence.

Xu, J. Z., and J. E. Laird (2011), Combining learned discrete and continuous action
models, in Proceedings of the 25th AAAI Conference on Artificial Intelligence.

134


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Action models
	Environment characterization
	Continuous State
	Relational State
	Action modeling in this representation
	Influences and behavioral modes
	Role identification and assignment
	Summary of Assumptions

	Requirements for model learning
	Approach Overview

	Related Work
	Single continuous function learners
	Locally weighted regression
	Gaussian process regression
	Discussion

	Input space partitioning continuous learners
	Model trees
	Mixture of sigmoids approach
	Multi-Modal Symbolic Regression
	Discussion

	Relational action model learning
	Object-Oriented Markov Decision Processes

	System description
	The box pushing domain
	Clustering
	Learning mode functions
	New mode discovery
	Identifying roles in mode functions
	Fitting examples to existing modes
	Mode unification
	Modes learned in the box pushing domain

	Relational state extraction
	Mode classification
	FOIL
	Using FOIL to learn mode classifiers
	Predicting modes
	Combined symbolic and numeric classification
	Overcoming positive bias in FOIL
	Mode classifiers learned in the box pushing domain

	Role classification
	Role classifiers learned in the box pushing domain

	Prediction using the learned model
	Discussion

	Experiments and Results
	The ball-box-ramp domain
	Experimental procedure
	Experiment 1
	Learned modes
	Learned mode classifier
	Prediction accuracy
	Classification accuracy

	Experiment 2
	Learned modes
	Learned classifier
	Prediction accuracy
	Classification accuracy

	Experiment 3
	Noise Tolerance
	Comparison to other techniques
	Prediction accuracy compared to LWR
	Classifier accuracy

	Model accuracy for multiple step predictions
	Transfer to domains with different numbers of objects

	Conclusion
	Future work

	BIBLIOGRAPHY

