
Machine Learning for Identification and Optimal
Control of Advanced Automotive Engines

by

Vijay Manikandan Janakiraman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Dionissios N. Assanis, Co-Chair
Professor Long Nguyen, Co-Chair
Professor Jeffrey L. Stein, Co-Chair
Professor IIya V. Kolmanovsky
Associate Research Scientist Stani V. Bohac

112

W+] J+I73 Wi(,$<c#$=> 4'+' (5 *

q$C <'q$C+$<I� Oä.+ µ\$'=+> > 4 P ?@y-`Q?

Ìamo damas tapaÏ ÌaucaÎ kÍÀntir Àrjavam eva ca |

jÈÀnaÎ vijÈÀnam ÀstikyaÎ brahmakarma svabhÀvajam ||18-42||

Wi1 "=] !<"J$© 1� ($¿7�$1C+s 5) 54 > 6 P *

J$C+Dw#\$': ,-.+ µ\$'=4 + P ?@y-`Y?

ÌauryaÎ tejo dhÃtir dÀkÍyaÎ yuddhe cÀpy apalÀyanam |

dÀnam ÁÌvarabhÀvaÌ ca kÍatrakarma svabhÀvajam ||18-43||

.<�M]#©'$<S· ' ;R1.+ µ\$'=+) > 4 P *

7<#(1$á. .+ WVp$<7 µ\$'=+4 4> K P ?@y-``?

kÃÍigorakÍyavÀÉijyaÎ vaiÌyakarma svabhÀvajam |

paricaryÀtmakaÎ karma ÌÂdrasyÀpi svabhÀvajam ||18-44||

µ µ .+81<\#"3 0<0<� �\" C#35 5 54 > > *

µ.+<C#"3 <0<� 1_$ <'�<" "3S4 > 6 ?@y-`e?

sve sve karmaÉy abhirataÏ saÎsiddhiÎ labhate naraÏ |

svakarmanirataÏ siddhiÎ yathÀ vindati tac chÃÉu ||18-45||

1"3 ~'<h\"C 1C 0'<+J ""+) > >K 4 45 P *

µ.+S$ "+�� <0<� <'�<" +$C'34 4 > ?@y-`k?

yataÏ pravÃttir bhÂtÀnÀÎ yena sarvam idaÎ tatam |

svakarmaÉÀ tam abhyarcya siddhiÎ vindati mÀnavaÏ ||18-46||

´1$¬!+H <'MS3 7#!+$öC<�5 6 4 6 "$" P *

µ\$'<C1" .+ .'m$ï]<" <.<ó�+> 4 46 P ?@y-`t?

ÌreyÀn svadharmo viguÉaÏ paradharmÀt svanuÍÊhitÀt |

svabhÀvaniyataÎ karma kurvan nÀpnoti kilbiÍam ||18-47||

0T= .+ .ic1 0J]�+<7 C z="> 4 5 5 P *

0'$#î$ <T J]�S !+C$<Å<#'$'"$34 5 5K) ?@y-`y?

sahajaÎ karma kaunteya sadoÍam api na tyajet |

sarvÀrambhÀ hi doÍeÉa dhÂmenÀgnir ivÀvÃtÀÏ ||18-48||

Every endeavor is covered with defects or problems, just like

fire is covered by smoke. One should not give up his/her

duties even if such work is full of defects or problems .

-Quote from Bhagavad Gita

c© Vijay Manikandan Janakiraman 2013

All Rights Reserved

This thesis is dedicated to my parents, Janakiraman and Dhanakotti, my brother,

Shanmugha Karthik and my fiancée, Priyadharshini

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my parents, Janakiraman and Dhanakotti,

without whose blessings and love, I would not have traveled so far.

The research presented in this document would not be possible without the guid-

ance and support of my advisors Prof. Dennis Assanis and Prof. XuanLong Nguyen.

It was Prof. Assanis who instilled in me, the confidence to perform independent re-

search. Prof. Assanis has a unique ability to “see the big picture”, connect concepts

across multiple domains, and focus on solving high impact problems. I would like to

thank him for the motivation, freedom and direction that he provided me throughout

the course of my doctoral studies.

I am extremely thankful to Prof. XuanLong Nguyen for the enormous technical

guidance that I received, particularly in machine learning. The numerous discussions

with Prof. Nguyen helped me appreciate the concepts behind machine learning more

clearly and also identify a deep interest in the subject. The advice and support that

I received from him have been of catalytic importance for the shaping of my current

endeavors in this field.

I would also like to thank the other committee members, Prof. Jeffrey Stein, Prof.

Ilya Kolmanovsky and Dr. Stani Bohac for their critical feedback and valuable com-

ments. Their insightful advice has been crucial towards creating a solid foundation

for the work presented in this dissertation.

I would like to acknowledge the financial support provided by Robert Bosch Inc.

I would like to thank, in particular, Alan Mond, Li Jiang and Jeff Sterniak for their

iii

constant encouragement and support. I would like to thank Jeff again for setting up

the engine, debugging, performing experiments and answering technical questions.

I would like to thank Dr. Stani Bohac and Dr. Jason Matrz for helping me

schedule the experiments and handling administrative tasks in the lab. I also thank

the powertrain control group students, Shyam Jade and Jacob Larimore for setting

up the control experiments and providing me with experimental data.

Finally, I would like to acknowledge all my friends and colleagues at the University

of Michigan and the W.E. Lay Automotive lab for their interaction and support

whenever I needed. They made my experience in Ann Arbor an enjoyable one. Thank

you all!

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF ABBREVIATIONS . xv

ABSTRACT . xviii

CHAPTER

I. Introduction . 1

1.1 HCCI Engine - Background 1
1.2 Physics Based versus Data Based Modeling 2
1.3 Motivation . 4
1.4 Research Goals . 5
1.5 Contributions . 5
1.6 Organization of Thesis . 6

II. Machine Learning of Dynamic Systems - Background and
Formulations . 9

2.1 Preliminaries . 9
2.1.1 Classification Learning 10
2.1.2 Regression Learning 10
2.1.3 Supervised Training 11
2.1.4 Over-fitting . 11
2.1.5 Risk Minimization and Regularization 12

2.2 Learning the HCCI Dynamic Data 14
2.2.1 Modeling Tasks . 16

2.3 Artificial Neural Networks . 17

v

2.3.1 Multi Layer Perceptron 18
2.3.2 Radial Basis Network 20

2.4 Support Vector Classification 21
2.5 Support Vector Regression 24
2.6 Extreme Learning Machines 27

2.6.1 Difference between Neural Networks and Extreme
Learning Machines 28

2.6.2 ELM - Mathematical Background 28
2.7 Comparison of Learning Algorithms 31

III. HCCI Engine - System, Experiment Design and Data Collec-
tion . 33

3.1 HCCI Engine - Background 33
3.1.1 Modeling Challenges 35

3.2 Experimental Setup . 36
3.3 Steady State Experiments and Mapping 39
3.4 Open Loop Transient Experiments 42
3.5 Closed Loop Transient Experiments 44

IV. Development of HCCI Engine Models using Regression Learn-
ing . 45

4.1 Motivation . 45
4.2 Data Processing . 46
4.3 Model Selection . 48

4.3.1 ANN . 49
4.3.2 SVM . 50
4.3.3 ELM . 51

4.4 Model Evaluation . 53
4.4.1 One-step Ahead Prediction 54
4.4.2 Multiple-step Ahead Prediction 58

4.5 Model Development using Closed-loop Experimental Data . . 65
4.6 Predictions at Different Engine Speeds 65

4.6.1 Interpolation Model Approach 69

V. Modeling the HCCI Operating Envelope using Class Imbal-
ance Learning . 76

5.1 Motivation and Problem Statement 76
5.2 Classification Algorithms . 79

5.2.1 Class Imbalance Learning 80
5.2.2 Logistic Regression 80
5.2.3 Support Vector Machines 82
5.2.4 Extreme Learning Machines 82

vi

5.3 HCCI Engine and Data Processing 83
5.3.1 HCCI System and Experimentation 84
5.3.2 HCCI Instabilities 84
5.3.3 Data Preprocessing and Labeling 86

5.4 Model Development . 88
5.4.1 Model Selection . 89
5.4.2 Prediction Results 97

VI. Stable Online Learning Algorithms for Extreme Learning Ma-
chines and Application to the HCCI Engine System 102

6.1 Motivation and Problem Statement 102
6.2 Existing Methods and Limitations 103

6.2.1 Online Sequential ELM (OS-ELM) 104
6.3 Lyapunov Based Algorithm (L-ELM) 106

6.3.1 Algorithm Derivation 106
6.3.2 Stability Analysis 111
6.3.3 Simulation Results 112
6.3.4 Stability Advantage of L-ELM 119

6.4 Stochastic Gradient Based ELM Algorithm 121
6.4.1 Algorithm Derivation 123
6.4.2 Stability Analysis 125
6.4.3 Simulation 1: Online Classification and Class Imbal-

ance Learning . 127
6.4.4 Simulation 2: Online Regression Learning 129

6.5 Online Regression Learning for HCCI Engine 131
6.6 Online Envelope Learning for HCCI Engine 136

VII. Controls Development - Model Predictive Control using Ex-
treme Learning Machine Models 140

7.1 MPC Formulation using Extreme Learning Machines 140
7.1.1 Calculation of System Matrices 142
7.1.2 MPC Optimization Problem 143

7.2 HCCI Optimal Control . 147
7.2.1 Fast Quadratic Programming 148
7.2.2 Simulations . 150

7.3 MPC with Online Model Adaptation 154

VIII. Conclusions and Future Work 164

8.1 Summary of Research . 164
8.2 Some Precautions in Using Computational Learning 169
8.3 Future Work . 171

vii

APPENDIX . 173
A.1 Loss functions . 174
A.2 Logistic Regression . 175
A.3 Levenberg-Marquardt back-propagation algorithm 176

BIBLIOGRAPHY . 179

viii

LIST OF FIGURES

Figure

2.1 Figure showing a binary classification problem. 10
2.2 Figure showing a regression problem. 11
2.3 Figure showing supervised learning process. 12
2.4 Figure showing model over-fitting. 13
2.5 Series-Parallel architecture. 15
2.6 Parallel Architecture. 16
2.7 Neural network model structure. 18
2.8 Figure showing classification decision boundary separating two classes

of data (marked as stars and spheres), SVM margin and support vec-
tors. 23

2.9 Figure showing the working of support vector regression model. . . 27
2.10 Extreme Learning Machine model structure. 29
3.1 A schematic of the HCCI engine setup and instrumentation (only

relevant instrumentation is shown). 37
3.2 HCCI engine pressure trace showing cycle definition, actuator ranges

of intake valve opening (IVO), exhaust valve closing (EVC), start of
injection (SOI). The crank angle at data recording are also shown. . 38

3.3 Steady state operating region of the HCCI engine. 40
3.4 Predictions of the ELM based steady state model of the HCCI engine. 41
3.5 A subset of experimental data showing the A-PRBS inputs and the

measured engine outputs. Misfire cycles are shown in dotted rectangles. 43
3.6 A subset of closed loop experimental data showing the A-PRBS in-

puts and the measured engine outputs. 44
4.1 A subset of open loop experiments showing A-PRBS inputs and HCCI

engine outputs. Misfires are shown using rectangular dotted lines. . 47
4.2 Comparison of 200 step ahead prediction for IMEP by MLP, RBN

and linear models with actual engine data. 60
4.3 Comparison of 200 step ahead prediction for CA50 by MLP, RBN

and linear models with actual engine data. 61
4.4 Comparison of 200 step ahead prediction for maximum pressure rise

rate (Rmax) by MLP, RBN and linear models with actual engine data. 61

ix

4.5 Comparison of 200 step ahead prediction for EAFR by MLP, RBN
and linear models with actual engine data. 62

4.6 Comparison of IMEP (engine output and SVR prediction). 63
4.7 Comparison of CA50 (engine output and SVR prediction). 63
4.8 Comparison of Maximum rate of pressure rise (engine output and

SVR prediction). 64
4.9 Comparison of Lambda (engine output and SVR prediction). 64
4.10 Input trajectories for simulating the models for performing multi-step

ahead predictions. 67
4.11 Comparison of IMEP predictions by SVM, ANN and ELM models

with the experimental engine data. 67
4.12 Comparison of CA50 predictions by SVM, ANN and ELM models

with the experimental engine data. 68
4.13 Comparison of Rmax predictions by SVM, ANN and ELM models

with the experimental engine data. 68
4.14 Comparison of EAFR predictions by SVM, ANN and ELM models

with the experimental engine data. 68
4.15 Prediction summary of the nonlinear ELM model at 1600 RPM. . . 70
4.16 Prediction summary of the nonlinear ELM model at 1800 RPM. . . 71
4.17 Closed loop experiments by varying engine speed between 1600 and

1800 RPM. This data set is used for validating the interpolation
model approach. 72

4.18 Validation of the interpolation model for IMEP and CA50 predic-
tions. The predictions of 1600 RPM model and 1800 RPM models
do not perform well when the engine speed is varied. 73

4.19 Validation of the interpolation model for Pmax and Rmax predictions.
The predictions of 1600 RPM model and 1800 RPM models do not
perform well when the engine speed is varied. 74

4.20 Validation of the interpolation model for engine torque and EAFR
predictions. The predictions of 1600 RPM model and 1800 RPM
models do not perform well when the engine speed is varied. 75

5.1 A-PRBS inputs and outputs showing misfire regions. 85
5.2 Illustration showing labeling of unstable observations. 87
5.3 Illustration showing labeling of stable observations. 88
5.4 Sensitivity plot for TPR, TNR and Total Accuracy with scaling factor

f for cost-sensitive SVM. 94
5.5 Sensitivity plot for TPR, TNR and Total Accuracy with scaling factor

f for cost-sensitive ELM. 95
5.6 Prediction results of the cost-sensitive ELM. The color code indicates

model prediction - green (and red) indicate stable (and unstable)
prediction by the model. 99

5.7 Prediction results of the cost-sensitive SVM. The color code indicates
model prediction - green (and red) indicate stable (and unstable)
prediction by the model. 100

x

5.8 A small subset of prediction results of the cost-sensitive ELM and
SVM showing CA50, IMEP and one input variable to compare pre-
dictions in perspective to input variables. The green points indicate
stable operation while red points indicate unstable operation. 101

6.1 Comparison of parameter evolution for the L-ELM with OS-ELM and
the linear models for the simple scalar system 114

6.2 Comparison of multi-step ahead predictions for the L-ELM with OS-
ELM, O-ELM and the linear models for the simple scalar system . . 115

6.3 Comparison of parameter evolution for the L-ELM with OS-ELM and
the linear models for the more complex system 118

6.4 Comparison of multi-step ahead predictions for the L-ELM with OS-
ELM, O-ELM and the linear models for the more complex system . 119

6.5 The ill-conditioning of OS-ELM as more number of hidden neurons
(nh) are added compared to bounded parameter evolution of L-ELM. 120

6.6 Comparison of parameter evolution for the online learning models.
The recursive least squares based linear and ELM models exhibit
an ill-conditioning problem which results in undesirable parameter
growth. The parameters of the Lyapunov and Stochastic Gradient
ELM are always bounded. 134

6.7 Comparison of multi-step ahead predictions of IMEP of the online
models. The color codes are as follows - black:OS-ELM, blue:SG-
ELM, green:L-ELM, red:linear and grey:experimental. 135

6.8 Comparison of multi-step ahead predictions of IMEP, CA50, Pmax,
Rmax, Torque and EAFR by all online models. The color codes are as
follows - black:OS-ELM, blue:SG-ELM, green:L-ELM, grey:experimental.137

6.9 Prediction results of the SG-ELM algorithm showing CA50, IMEP
and one input variable (fueling) for 2 unseen data sets. The color
code indicates model prediction - green (and red) indicate stable (and
unstable) prediction by the model. The dotted line in the IMEP plot
indicates misfire limit, dotted ellipse in CA50 plot indicates high
variability instability mode while dotted rectangle indicates a wrong
predictions by model. 139

7.1 MPC Framework . 148
7.2 State trajectories of the HCCI engine model using MPC control. . . 152
7.3 Control trajectories of the HCCI engine model using MPC control.

The upper and lower limits of each actuator is shown in dotted red. 153
7.4 State trajectories of the HCCI engine model (with noise) using MPC

control. 155
7.5 Control trajectories of the HCCI engine model (with noise) using

MPC control. The upper and lower limits of each actuator is shown
in dotted red. 156

7.6 Framework showing model predictive control with online learning. . 157
7.7 Poor control by MPC due to inaccuracies in the ELM model. 157

xi

7.8 Tracking performance of MPC controller with an without online adap-
tation of the models. The plots compare tracking performance of
IMEP and CA50. 159

7.9 Optimal control trajectories of MPC controller with an without online
adaptation of the models. 160

7.10 Tracking performance of MPC controller with OS-ELM adaptation.
The model parameters grows unbounded resulting in unstable MPC
control. 161

7.11 Control trajectories of MPC controller with OS-ELM adaptation. . 162
7.12 Tracking performance of MPC controller with L-ELM and SG-ELM

adaptation. 163
A.1 A comparison of the loss functions of the algorithms used in this

paper with the baseline 0-1 error standard. 175

xii

LIST OF TABLES

Table

2.1 Comparison of algorithm properties for suitability to the HCCI engine
problem. 32

3.1 Specifications of the experimental HCCI engine 37
4.1 The minimum and maximum values of regression variables x and y

determined based on expert knowledge for HCCI conditions. 48
4.2 The optimal values of number of hidden neurons (nh), regularization

coefficient (λ in MLP and σh in RBN) and system order (no) de-
termined using cross-validation. Here Eval represents the minimum
validation error in the grid search. 50

4.3 The optimal values of system order (no=nu=ny, assumed to be the
same), the cost parameter C, kernel parameter ω and SVR parameter
ν determined using cross-validation from the range of listed values. . 52

4.4 The optimal values of number of hidden neurons (nh), regulariza-
tion coefficient (λ) and system order (no) determined using cross-
validation. Here Eval represents the minimum validation error in the
grid search. 53

4.5 Summary of prediction performances of MLP and RBN models. The
results of linear regression model is also included as a baseline. Here
nm and np represents the number of memory units and number of
model parameters required for prediction. The training and testing
errors are for one-step ahead prediction while MSAP RMSE indicates
the root mean squared error for multiple-step ahead prediction. The
minimum error among linear, MLP and RBN models is highlighted
in bold. 55

4.6 Performance comparison of SVR for modeling IMEP, CA50, Rmax

and EAFR. Here, nm and np represents number of memory units and
number of parameters (support vectors) required by the models. . . 57

4.7 Performance comparison of ANN, SVM and ELM models. Here
RMSE refers to root mean squared error, OSAP and MSAP refer
to one-step ahead prediction and multi-step ahead prediction respec-
tively. The minimum error models are highlighted bold. 66

4.8 Modeling summary for experiments at 1600 RPM and 1800 RPM. . 69

xiii

5.1 Grid search results for ELM model selection for the regular ELM,
ELM with under-sampling and ELM with over-sampling (The models
resulting in lowest total accuracy is highlighted in bold). 91

5.2 Grid search results for SVM model selection for the regular SVM,
SVM with under-sampling and SVM with over-sampling (The models
resulting in lowest total accuracy is highlighted in bold). 92

5.3 Grid search results for Cost-sensitive SVM and Cost-sensitive ELM
models (The models resulting in lowest total accuracy is highlighted
in bold). 93

5.4 Cost-sensitive ELM models with different random initialization of
input layer parameters . 95

5.5 Summary of results for SVM and ELM models for all cases (Regular
model, under-sampling, over-sampling and cost-sensitive). The re-
sults of the linear models (logistic regression and linear least squares)
are also compared. The value of hyper-parameters and number of
model parameters np are also included for every model 96

6.1 Performance comparison of L-ELM with OS-ELM and the linear
models for the simple scalar system 115

6.2 Performance comparison of L-ELM with OS-ELM and the linear
models for the more complex system 117

6.3 Benchmark data sets used for classification and class imbalance learn-
ing. 128

6.4 Performance comparison of OS-ELM and SG-ELM in terms of train-
ing time, total positive rate (TPR), total negative rate (TNR), aver-
age accuracy and geometric mean accuracy. The results of a recursive
least squares based linear model is also compared to measure the non-
linearity in the data sets. 130

6.5 Benchmark data sets used for regression learning. 130
6.6 Performance comparison of OS-ELM and SG-ELM in terms of train-

ing time and generalization error. The results of a recursive least
squares based linear model is also compared to measure the nonlin-
earity in the data sets. 132

6.7 Performance comparison of the nonlinear online models (OS-ELM, L-
ELM and SG-ELM) for the regression learning problem. A baseline
linear model and an offline trained ELM model (O-ELM) are also
used for comparison. 135

6.8 Performance comparison of the nonlinear models (OS-ELM and SG-
ELM) for the online class imbalance learning problem. A baseline
linear model and an offline trained ELM model (O-ELM) are also
used for comparison. 138

7.1 Tracking performance of the MPC controller with online adaptation
using L-ELM, SG-ELM and OS-ELM compared against MPC with
no adaptation. 158

xiv

LIST OF ABBREVIATIONS

HCCI - Homogeneous charge compression ignition

SI - Spark ignited

CI - Compression ignited

NOX - Nitrogen oxides

ECU - Engine control unit

OSAP - One step ahead prediction

MSAP - Multiple steps ahead prediction

NARX - Nonlinear auto regressive model with exogenous input

ANN - Artificial neural networks

MLP - Multi-layer perceptron

RBN - Radial basis network

SVM - Support vector machines

SVR - Support vector regression

ELM - Extreme learning machines

LM - Levenberg-Marquardt back-propagation algorithm

EGR - Exhaust gas recirculation

VVT - Variable valve timing

FM - Fuel mass injected per cycle

IVO - Intake valve opening

EVC - Exhaust valve closing

xv

SOI - Start of injection

IMEP - Indicated mean effective pressure (indicator for work output)

CA50 - Crank angle at 50 % mass fraction burned (indicator for combustion phasing)

Pmax - Maximum pressure

Rmax - Maximum rate of pressure rise

EAFR - Equivalent air-fuel ratio

NVO - Negative valve overlap

BDC - Bottom dead center

cTDC - combustion Top dead center

eTDC - exhaust Top dead center

A-PRBS - Amplitude modulated pseudo-random binary sequence

DOE - Design of experiments

RMSE - Root mean squared error

nh - Number of hidden neurons

λ - Regularization coefficient

LS - Least squares

LR - Logistic regression

CIL - Class imbalance learning

TP - Total positive observations

TPR - Total positive rate

TN - Total negative observations

TNR - Total negative rate

OS-ELM - Recursive least squares based ELM algorithm

L-ELM - Lyapunov based ELM algorithm

SG-ELM - Stochastic gradient based ELM algorithm

O-ELM - Offline ELM (batch learning) algorithm

Llin - Linear Lyapunov based estimation algorithm

xvi

RLS - Recursive least squares

SGD - Stochastic gradient descent

MPC - Model predictive control

QP - Quadratic programming

xvii

ABSTRACT

Machine Learning for Identification and Optimal Control of Advanced Automotive
Engines

by

Vijay Manikandan Janakiraman

Co-Chairs: Professor Dennis N. Assanis, Professor XuanLong Nguyen and Professor

Jeffrey Stein

The complexity of automotive engines continues to increase to meet increasing

performance requirements such as high fuel economy and low emissions. The in-

creased sensing capabilities associated with such systems generate a large volume of

informative data. With advancements in computing technologies, predictive models

of complex dynamic systems useful for diagnostics and controls can be developed us-

ing data based learning. Such models have a short development time and can serve as

alternatives to traditional physics based modeling. In this thesis, the modeling and

control problem of an advanced automotive engine, the homogeneous charge com-

pression ignition (HCCI) engine, is addressed using data based learning techniques.

Several frameworks including design of experiments for data generation, identification

of HCCI combustion variables, modeling the HCCI operating envelope and model pre-

dictive control have been developed and analyzed. In addition, stable online learning

algorithms for a general class of nonlinear systems have been developed using extreme

xviii

learning machine (ELM) model structure. The main contributions of this research

can be listed as follows

1. A machine learning framework to perform nonlinear identification of the HCCI

engine is developed. Advanced machine learning algorithms such as recurrent

neural networks, support vector machines, extreme learning machines are ap-

plied to the HCCI engine system.

2. Dynamic simulators of HCCI engine variables such as indicated mean effective

pressure (IMEP), combustion phasing (CA50), maximum pressure and maxi-

mum pressure rise rate, equivalent air-fuel-ratio etc. are developed using tran-

sient experimental data.

3. A model of the transient stable operating envelope is developed for HCCI com-

bustion using class imbalance learning. The model predicts if a future HCCI

combustion cycle is stable/unstable, given the history of engine measurements.

4. Stable online learning algorithms are developed using Lyapunov and stochastic

gradient descent methods. The algorithms use an extreme learning machine

model structure and can be used for online system identification of a general

class of nonlinear systems.

5. An online learning framework is developed for HCCI that can be used to de-

velop engine simulators online (in real-time). In addition, a model of the stable

operating envelope is developed online using the stochastic gradient descent

algorithm.

6. A linearized model predictive control (MPC) framework for the nonlinear HCCI

engine is developed using extreme learning machine models. Further, integra-

tion of the developed online learning algorithms to the MPC framework is per-

formed enabling online adaptation of the engine model for parameter variations.

xix

CHAPTER I

Introduction

1.1 HCCI Engine - Background

In recent years, the requirements on automotive performance, emissions and safety

have become increasingly stringent. In spite of advanced concepts entering the indus-

try, achieving simultaneous benefits in fuel economy, emissions and cost still remain

an arduous task. HCCI engines shifted the spotlight from traditional spark ignited

(SI) and compression ignited (CI) engines owing to its ability to reduce emissions

and fuel consumption significantly [1, 2, 3]. The fuel lean mixtures allow HCCI to

operate with a higher compression ratio similar to diesel engines resulting in high

thermal efficiency [4]. Also, un-throttled operation improves volumetric efficiency.

The fuel and oxidizer are premixed which results in a cleaner combustion and hence

reduced emissions [4]. A characteristic feature of HCCI combustion is that the peak

in-cylinder temperatures are low resulting in low nitrogen oxides (NOX) emissions [5].

The homogeneous mixtures result in reduced soot emissions [4]. However, in spite of

its known advantages, HCCI combustion poses several challenges for implementation.

Control of HCCI combustion is a major challenge for automotive application.

Several factors contribute to the challenge including the absence of a direct trigger for

combustion, narrow operating range and high sensitivity to disturbances. To address

the issue, advanced model based control methods are common where the control

1

actions are often made using a predictive model of the engine [6, 7, 8]. Typically, a

nonlinear high order model of the engine is first developed using physics, capturing

the cycle-by-cycle dynamics of HCCI. The model is then approximated and a low

order linear model is used to derive control laws that are applied in real time. The

performance of the controller is highly dependent on the performance of the models

used. Hence, developing robust and accurate predictive models of HCCI combustion

is of extreme importance.

1.2 Physics Based versus Data Based Modeling

Mathematical models can be developed using two approaches - a first principle

approach or physics based and identification approach or data based. Sometimes, a

combination of the two may be used. A physics based approach may be very useful in

terms of analyzing the controller with the insight of the underlying physics especially

when building a controller for the prototype for the first time. However, such an

approach has its limitations. The controller may be conservative and valid in a small

range of operation because the model parameters are usually calibrated using steady

state experimental data and the models include several ideal behavior assumptions.

Also, sometimes, the first principle models tend to be too simple to describe the

real systems to the necessary degree of precision necessary to meet the increasing

performance requirements [9]. Further, such models require extensive calibration and

frequently they cannot be used for control design, as they are too complex for on-line

use [9]. This motivates the search for an alternative approach to model development

and controls design for HCCI.

A natural alternative to the first principles based controls development is the

identification approach which involves determining the model structure and parame-

ters using experimental data. For simple systems, a linear or close to linear models

such as linear parameter varying models can be used. However, for strong nonlinear

2

systems, linear models fail to describe the system behavior to the required level of

accuracy. In such cases, nonlinear models such as neural networks (NN) are very

popular for engine systems. Identification models for HCCI are not common and

literature is scarce. A subspace based identification was the only reported work [?]

where linear models were developed for HCCI model predictive control. The approach

demonstrates identification based control for HCCI but is too simplistic to operate

in a small region. Several implementations of NN for nonlinear system modeling and

control have been reported in the literature [10, 11, 12]. Automotive implementations

include identification of a diesel locomotive engine using NN [13], virtual sensors to

predict specific quantities like NOX [14], air-fuel ratio [15] and diagnostics [16] etc.

The prime advantages of data based models over physics based models can be listed

as follows.

1. Data based models do not make idealistic assumptions about the system.

2. Data based models capture the complete input-output behavior including dy-

namics associated with sensors and actuators.

3. Data based models like neural nets have a parallelization capability for fast

implementation on board using less computation and memory [17].

4. Online adaptation of data based models is straight forward, with the structure

of the model initially identified.

5. Development time and associated costs are typically less.

However, a poorly developed model can diminish the advantages of the data driven

approach if not completely making it infeasible. For instance, an over-fitted model

gives absurd predictions of the system, an improperly designed algorithm or careless

application might result in wasted time and cost, usage of the models in a region that is

not appropriate for the model may lead to poor performance if not absurd predictions.

3

Thus, it is important to analyze the data, obtain possible expert knowledge from the

system and systematically identify and apply suitable algorithms using theoretical

understanding of the algorithms. The need for model development from data and the

complexity involved is increasing and varies between different application domains.

A dedicated field of research combining ingredients from statistics, computer science

and engineering has been created for performing data based inference and decision

making and is widely known as machine learning.

1.3 Motivation

In spite of the advantages listed in the previous section, machine learning is mostly

at the stage of research and not in the mainstream of automotive production yet. One

of the reasons is the black-box nature of such models. Other, perhaps more compelling

reasons are business conservatism and existing/legacy applications [18]. However,

with advanced systems entering the industry to meet performance requirements, the

complexity of the system increases which necessitates the capabilities of data driven

approaches be included to augment/replace existing conventional approaches. For

instance, developing a physics based model for emissions is a challenging task for

first principle based approach but can be addressed by using data driven models

[19]. A similar situation is the detection of engine misfires onboard which is solved

using a neural network system and is currently in production [18]. The spectrum

of challenging problems that can be solved using data driven models is increasing

and it becomes important to develop and analyze methodologies and algorithms that

can perform data based learning for complex systems in a simple, efficient and stable

manner.

In addition to the above, there is a need to develop fast and accurate predictive

models for HCCI combustion. As mentioned earlier, HCCI control is model-based

and a physics based approach might be insufficient for optimal engine operation. For

4

instance, HCCI engine control between set points determined from offline steady-state

values may be too conservative for competing objectives such as fuel economy and

transient emissions. The capabilities of a data based learning approach could pave

way towards an effective engine control for HCCI.

1.4 Research Goals

One of the goals of this thesis is to gain first insights in the novel application

of advanced machine learning algorithms to the HCCI engine problem in developing

accurate dynamic models in a fast, simple, efficient and stable manner. Using the

developed models, it is also aimed to derive model based optimal control solutions

for HCCI operation.

In addition, using the insights gained using HCCI engine data, the second goal of

this thesis is to develop efficient algorithms for online model adaptation and optimal

control for a general class of non-linear systems with system level constraints such

as limited computation (as in the HCCI engine ECU) as well as with a guarantee on

convergence and stability.

1.5 Contributions

The main contributions of this research can be listed as follows

1. A machine learning framework to perform nonlinear system identification of

the HCCI engine is developed. Advanced machine learning algorithms such

as neural networks, support vector machines, extreme learning machines are

applied to the HCCI engine system for the first time in the literature.

2. Dynamic simulators of HCCI engine variables such as indicated mean effective

pressure (IMEP), combustion phasing (CA50), maximum pressure and maxi-

5

mum pressure rise rate, equivalent air-fuel-ratio etc. are developed using tran-

sient experimental data.

3. A stable operating envelope model for HCCI combustion in transients is de-

veloped using class imbalance learning. The model predicts if a future HCCI

combustion cycle is stable/unstable given the present and past engine mea-

surements, and can be used for predicting engine misfires and high variability

combustion behavior. The transient boundary prediction is a novel application

in the automotive literature.

4. Stable online learning algorithms are developed for nonlinear systems using

Lyapunov and stochastic gradient descent methods. The algorithms use an

extreme learning machine model structure and can be used for online system

identification of a general class of nonlinear systems.

5. An online learning framework was developed for HCCI that can be used to

develop engine simulators online (in real-time). A model of stable operating

envelope is developed using the online imbalanced classification algorithm. The

framework can also correct the offline identified models by processing experi-

mental data and adapting model parameters on-the-fly.

6. A linearized model predictive control (MPC) framework for the nonlinear HCCI

engine is developed using extreme learning machine models. Further, integra-

tion of the online learning algorithms to the MPC framework is performed

enabling online correction of the engine model for parameter variations.

1.6 Organization of Thesis

The upcoming chapters of this thesis are organized as follows.

6

Chapter - 2: Machine Learning of Dynamic Systems - Background and

Formulations

This chapter touches upon some preliminaries on machine learning and system

identification, the state-of-the-art machine learning algorithms that are used in this

research - background, literature, mathematical formulations etc. of artificial neural

networks, support vector machines and extreme learning machines for classification

and regression tasks.

Chapter - 3: HCCI Engine - System, Experiment Design and Data Col-

lection

In this chapter, the considered HCCI system is described along with the rele-

vant sensor variables, experimental setup and experiment design for steady state and

transient experiments. The data collection procedure to obtain sufficiently rich infor-

mation for system identification is described.

Chapter - 4: Development of HCCI Engine Models using Regression

Learning

This chapter details the development of identification models (or system simula-

tors) from experimental data. Since this task is performed offline, the models are

referred to as offline models. The key topics include data processing, model structure

learning, model training, validation and evaluation in terms of prediction accuracy,

memory requirement and potential for online learning.

Chapter - 5: Modeling the HCCI Operating Envelope using Class Imbal-

ance Learning

In this chapter, a model for the stable operating boundary of HCCI engine is

developed using experimental data. Addressing the insufficient data for unstable

class, a class imbalance learning is evaluated to choose between data re-sampling and

cost-sensitive methods. Further, a misfire prediction model for the HCCI engine is

demonstrated.

7

Chapter - 6: Stable Online Learning Algorithms for Extreme Learning

Machines and Application to the HCCI Engine System

This chapter introduces two stable online learning algorithms developed for ex-

treme learning machine models namely the Lyapunov based algorithm and the stochas-

tic gradient based algorithm. The algorithms are evaluated both on benchmark data

sets as well as on the HCCI engine system.

Chapter - 7: Controls Development - Model Predictive Control using Ex-

treme Learning Machine Models

Finally, the machine learning models are used to develop an optimal controller

using a model predictive control approach. The effectiveness of the method is demon-

strated in simulation. Further, in order to compensate for inaccurate identification

models, an online adaptation using the online learning algorithms is presented.

Chapter - 8: Conclusions and Future Work

The conclusions of this research, some precautionary lessons learned in using black-

box models and possible future directions are included in this chapter.

8

CHAPTER II

Machine Learning of Dynamic Systems -

Background and Formulations

In this chapter, the HCCI system identification task is considered as a machine

learning problem and the related tools and techniques are discussed. Three state-of-

the-art learning algorithms including artificial neural networks, support vector ma-

chines and extreme learning machines are introduced. The literature, mathematical

formulation and technical details of the learning algorithms are summarized.

2.1 Preliminaries

Consider the following data set which is used for machine learning

{(x1, y1), ..., (xN , yN)} ∈
(
X ,Y

)
, (2.1)

where N denotes the number of training samples, X denotes the space of the input

features and Y denotes the predictor labels. In simple terms, the task of developing

inference using the above data is referred to as training or learning. Data could be

labeled or unlabeled and the nature, availability of labels differentiate the learning

problem in hand. For instance, if Y takes integer values {1,2,3,..} then the problem is

referred to as classification and if Y takes real values, it becomes a regression problem.

9

Class B

Class A

Figure 2.1: Figure showing a binary classification problem.

Before introducing the algorithms considered in this work, the important terminology

involved in machine learning and model development is briefed below.

2.1.1 Classification Learning

In a classification task, the goal of learning is to approximate a function that

forms a decision boundary between different classes of data. If there are two classes

of data, it is called a binary classification problem whereas if the problem involves

multiple classes of data, it is called a multi-class classification. Typically labels for a

binary classification problem takes values in {-1,+1} or {0,+1} while it takes values

in {1,2,3,..} for a multi-class classification. An example of a binary classification

problem is shown in Fig. 2.1.

2.1.2 Regression Learning

In a regression problem, the labels take real values and are suitable for function

approximations. An illustration of a regression problem can be shown in Fig. 2.2.

10

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Input Data

P
re

di
ct

io
n

Data
Regression model

Figure 2.2: Figure showing a regression problem.

2.1.3 Supervised Training

The task of developing predictive models of HCCI engine using learning algorithms

falls into the category of supervised learning. Given a set of experimental data as

in (2.1), the task of developing inference from data that is labeled is referred to

as supervised learning. Supervisory learning involves a supervisor that directs the

training process based on availability of model’s performance relative to the system.

For instance, consider the system and model in Fig. 2.3 where an error metric can

be defined based on the data labels and the model predictions which can be used

to train the model. Typically, an optimization problem is solved by minimizing the

defined error metric. The model when trained, can be used to simulate the system

for unknown inputs.

2.1.4 Over-fitting

As mentioned previously, supervised training determines the model parameters by

solving an optimization problem over the training data set. As a result, the model

can memorize the training data too well. Since the data is always noisy, the over

trained models capture both the underlying phenomena as well as the noise. This

11

Model

System

-

Error

(Training signal)

Output Labels

act as supervisors

Inputs

Figure 2.3: Figure showing supervised learning process.

is highly undesirable as an over trained model cannot be used for predictions. This

phenomenon is commonly referred to as over-fitting and can be shown in Fig. 2.4.

Over-fitting may be avoided/reduced either by stopping the training process early

or by reducing the model complexity. Early stopping typically involves dividing the

available data set into a training set and a validation set. As the model is trained,

it is evaluated on the validation set so that any over learning of the training set is

indicated by a poor performance on the validation set. The evaluation on the unseen

validation set is a check for the generalization capability of the model which is the

ultimate goal of learning. Early stopping is a heuristic approach that works fairly well

but in this work, a more systematic approach to avoid over-fitting using regularization

to achieve the right model complexity is employed.

2.1.5 Risk Minimization and Regularization

The ability of a trained model to generalize to any unseen data set is referred to

as generalization. A generalizable model can be used as an emulator for the system

and is a major requirement in this work. Let P (x, y) be an unknown probability

distribution that is to be modeled. Training involves minimizing an expected error

metric, often referred to as a risk function, over the distribution P (x, y). Thus, the

12

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Input Data

P
re

di
ct

io
ns

Data
System behavior
Over−fit model

Figure 2.4: Figure showing model over-fitting.

goal of training is to minimize the expected risk

Eexp(f) =

∫
L(f(x), y)dP (x, y) (2.2)

where f(x) is the function to be identified and L(f(x), y) is a loss function, typi-

cally a squared loss or mean squared error (see appendix A.1 for other loss functions

considered in this work). However, in practice, it is not possible to solve the above

equation and a proxy for expected risk, referred to as the empirical risk, can be used

to perform training. With limited data availability, the empirical risk makes training

from data possible. Let the data (xi, yi), i = 1, 2, .., N be sampled from the unknown

joint probability distribution P (x, y). The empirical risk Eemp is given by

Eemp(f) =
1

N

N∑
i=1

L(f(xi), yi). (2.3)

A detailed explanation of the concepts covered in this section can be found in [20].

Over-fitting can be thought as occurring because of availability of extra degrees

of freedom in the model structure that can capture undesirable noise. Such a model

is considered complex and typically consists of several extra parameters (an over-

13

parameterized model). Regularization is a process in which the extra parameters are

suppressed by moving their values close to zero to give a simpler model in spite of being

over-parameterized. This can be achieved by minimizing the norm of parameters,

referred to as the structural risk function. Hence, in a learning process, a combination

of the empirical risk and structural risk is minimized as shown below

min

{
1

N

N∑
i=1

L(f(xi), yi) + λ‖f(.)‖p

}
(2.4)

where λ is the regularization coefficient and p the dimension of the norm space ‖.‖.

2.2 Learning the HCCI Dynamic Data

In the HCCI modeling problem, both the inputs and the outputs of the engine

are available as sensor measurements and hence supervised learning can be employed.

The HCCI engine is a nonlinear dynamic system and sensor measurements represent

discrete time sequences. The input-output behavior can be modeled using a nonlinear

auto regressive model with exogenous input (NARX) [21] as follows

y(k) = fNARX [u(k − 1), .., u(k − nu), y(k − 1), .., y(k − ny)] (2.5)

where u(k) ∈ Rud and y(k) ∈ Ryd represent the inputs and outputs of the system

respectively, k represents the discrete time index, fNARX(.) represents the nonlinear

function mapping specified by the model, nu, ny represent the number of past input

and output samples required (order of the system) while ud and yd represent the

dimension of inputs and outputs respectively. Let x represent the augmented input

vector obtained by appending the input and output measurements from the system.

x = [u(k − 1), .., u(k − nu), y(k − 1), .., y(k − ny)]T (2.6)

14

(𝑥0,𝑦0)

𝑦�𝑁𝑝𝑝𝑝𝑝 𝑦0 𝑦�1 𝑦�2

(𝑥1,𝑦1) (𝑥2,𝑦2) (𝑥𝑁𝑝𝑝𝑝𝑝 , 𝑦𝑁𝑝𝑝𝑝𝑝)

Model Model Model Model

Figure 2.5: Series-Parallel architecture.

The input measurement sequence can be converted to the form of training data

{(x1, y1), ..., (xN , yN)} ∈
(
X ,Y

)
(2.7)

where N denotes the number of training samples, X denotes the space of the input

features (Here X = Rudnu+ydny and Y = R for regression and Y = {+1,−1} for a

binary classification). The above conversion of system measurements to training data

is a natural definition for a series-parallel model architecture and the models can be

used for a one-step ahead prediction (OSAP) i.e., given a set of measurements until

time index k, the model predicts the output at time k+1 (see equation (2.8) and Fig.

2.5). A parallel architecture on the other hand can be used to perform multiple step

ahead predictions (MSAP) by feeding back the predictions of the OSAP model in a

recurrent manner (see equation (4.2) and Fig. 2.6). The series-parallel and parallel

architectures are well explained in [22].

ŷ(k + 1) = f̂NARX [u(k), .., u(k − nu + 1), y(k), .., y(k − ny + 1)] (2.8)

15

𝑥0 𝑥1 𝑥2 𝑥𝑁𝑝𝑝𝑝𝑝

𝑦�𝑁𝑝𝑝𝑝𝑝 𝑦0 𝑦�1 𝑦�2

Model Model Model Model

Figure 2.6: Parallel Architecture.

ŷ(k + npred) = f̂NARX [u(k + npred − 1), .., u(k − nu + npred),

ŷ(k + npred − 1), .., ŷ(k − ny + npred)] (2.9)

The OSAP model is used for training as existing simple training algorithms can be

used and once the model becomes accurate for OSAP, it can be converted to a MSAP

model in a straightforward manner. The MSAP model can be used for making long

term predictions useful for predictive control discussed in chapters IV and VII.

2.2.1 Modeling Tasks

For the HCCI engine identification, models predicting engine performance vari-

ables such as IMEP, CA50 etc. (see chapter IV) that take real values are required.

Such models can be obtained by solving a regression problem. On the other hand,

for determining the operating envelope of HCCI (see chapter V), decision surfaces

predicting binary valued outputs can be obtained by solving a classification task.

The goal of machine learning is to model the underlying relationship between x

and y by minimizing a risk function R(w) with respect to the model parameters w.

R(w) =
1

N

N∑
i=1

L(yi, ŷi(x,w)) +
λ

2
wTw (2.10)

16

Here, R(w) has two components - the empirical risk minimizing the training error

and the structural risk minimizing the model parameters in order to obtain a simple

model that generalizes well. L represents a loss functional and ŷ(x,w) represents the

model prediction, whose structures are given by the learning algorithm. For instance,

regression problems have a squared loss function while classification problems make

use of a hinge loss or logistic loss (see appendix A.1). The intuition behind loss

function is as follows. For a regression problem, squared errors along positive and

negative directions are penalized equally resulting in a function close to the true func-

tion. Classification problems on the other hand maximizes the margin of separation

(yŷ) between the data classes. A squared loss would penalize a rightly classified data

more (a positive margin in Fig. A.1) while a hinge loss or logistic loss do not penal-

ize the rightly classified data as much and hence efficient in classification problems.

The learning algorithms applied for the HCCI engine problem is summarized in the

following sections.

2.3 Artificial Neural Networks

Motivated by the superior learning ability of the human brain, Artificial Neu-

ral Networks (ANN) were developed to solve early machine learning problems [23].

ANNs are constructed by interconnecting a number of simple decision making ele-

ments called perceptrons. Each perceptron is parameterized by a weight, a bias and

a nonlinear activation function and the parameters are determined by solving a non-

linear optimization problem that minimizes the risk function (2.11). ANNs employ

a squared loss function which makes it more suitable for a regression problem. Two

popular models of ANNs are considered in this work including Multi Layer Percep-

tron and Radial Basis Network models. The general structure of ANN models can be

shown in Fig. 2.7 where some of the inputs are delayed using an unit delay component

17

D

D

D

Input Neurons

Hidden Neurons

Output Neurons

Figure 2.7: Neural network model structure.

D to mimic the dynamic behavior of the system.

R(w) =
1

N

N∑
i=1

‖yi − ŷi(x,w)‖2 +
λ

2
‖w‖2 (2.11)

for i = 1, .., N .

2.3.1 Multi Layer Perceptron

The Multi Layer Perceptron (MLP) model is constructed using several layers

of interconnected perceptron nodes which are connected in a feed-forward manner

between the input and the output layer. MLPs are known as universal function

approximators as they can approximate any smooth function to an arbitrary accuracy

[24, 25]. The network considered in this thesis consists of an input layer, an output

layer and a hidden layer. The predicted output from the network can be expressed as

ŷMLP = f2[b2 +W T
2 f1{b1 +W T

1 (x)}] (2.12)

f1(z) =
2

1 + e−2z
− 1 (2.13)

18

where f1 and f2 represent the activation functions of the hidden and the output layers

respectively. The functions f1 and f2 return outputs of the same dimension as that

of their inputs. A tangential sigmoid function is used to represent f1 (see equation

(2.13)) while a linear function is used to represent f2. The parameters b1 and b2

represent the bias terms of the hidden and output layers while W1 and W2 represent

the weights of the connection between input-hidden layers and hidden-output layers

respectively. The number of input and output neurons corresponds to the dimensions

of X and Y respectively.

The MLP is trained using standard back-propagation via the Levenberg-Marquardt

(LM) algorithm [26] which is more efficient compared to other available gradient

based training algorithms such as the conjugate gradient and the variable learning

rate back-propagation [27]. The sensitivity of the cost function (2.11) with respect

to the network weights are determined and weights updated so that the risk func-

tional (2.11) is minimized (see appendix A.3). Batch training is done where the entire

training data is repeatedly presented to the network. Batch training is more efficient

compared to incremental training but requires all the data to be available for an

off-line training. The activation functions (sigmoid and linear) take finite values for

the entire range of network operation and hence the MLP model requires a relatively

less number of parameters to map complex functions [28]. However training could

become complicated involving heavy computation making the process slow for large

data sets. The MLP is a nonlinear regression problem and training with an iterative

algorithm like the LM, usually finds a local minima. Global optimization methods

such as simulated annealing [29, 30, 31], genetic algorithms [32, 29, 33] etc can be

used in training but convergence is usually slow and may not suit problems with large

input dimensions.

19

2.3.2 Radial Basis Network

The Radial Basis Network (RBN) model is a two layered network where the con-

nections are feed-forward between the input and the output layers similar to the MLP

model. The nodes are connected directly between the input and the hidden layers

(i.e, with unit weights). The hidden layer neurons have a gaussian activation function

f3 (see equation (2.15)) that determines the excitation level of the neurons depending

on how close the input data is located with respect to the center (µh) of the neuron.

Hence a notion of location and similarity is introduced in the RBN model resulting

in local learning. The output layer is linear and hence the output is a linear combi-

nation of the activation levels of the hidden neurons. Hence when the centers of the

activation functions are fixed, the training reduces to determining the hidden-output

layer weights using linear least squares. This usually makes training in RBN models

fast compared to MLP and is an important distinction between the two models. The

predicted output and the activation function of the RBN model can be expressed as

ŷRBN = b4 +W T
4 f3{x} (2.14)

f3h(z) = exp
(
− ‖z − µh‖

2

2σ2
h

)
(2.15)

where µh with the same dimension of x while σh ∈ R are the center and the spread

of the gaussian function for a given hidden neuron h. The spread σh is constant for

all hidden neurons and is considered as a hyper-parameter and is not updated in the

training process.

RBN models are also considered universal approximators [34, 35, 36] and are

popular in regression and classification applications. The training of RBN model

involves two tasks - identifying the neuron centers (µh) and determining the hidden

to output layer weights (W4). Several means of finding the neuron centers include

randomly selecting locations from the input data, unsupervised learning of the input

20

structure using clustering [37, 38, 39], orthogonal least squares [40, 41] among others.

The hidden-output layer weights are determined using linear least squares. In this

paper, the RBN model is trained using the Matlab subroutine where at every training

pass, a new hidden neuron is created at the location of the the input vector that

results in reducing the network error the most. The above process is repeated until

the error reaches a specified goal or the limit for maximum number of hidden neurons

is reached.

2.4 Support Vector Classification

Support Vector Machines (SVM) are state-of-the-art methods for classification,

regression and other estimation problems in machine learning. For classification, SVM

training involves determining the boundary that maximizes the margin between the

data classes based on a hinge loss [42]

Lhinge(w, b) = max(0, 1− yŷ(x,w)). (2.16)

The margin of a binary classifier can be defined as

mc = yŷ(x,w). (2.17)

A positive margin indicates that both y and ŷ(x,w) have the same sign, or the

classifier prediction is right while a negative margin indicates misclassification. SVM

learning translates to finding the optimal model parameters (w∗, b∗) by solving the

following optimization problem

min
w,b,ζi

1

2
wTw + C

N∑
i=1

ζi (2.18)

21

subjected to

yi[〈w, φ(xi)〉+ b] ≥ 1− ζi

ζi ≥ 0

(2.19)

for i = 1, .., N . Here ζi represents the slack variable for data observation i, C repre-

sents the cost penalty hyper-parameter. The slack variables ζi are required in order to

allow for misclassifications in a noisy overlapping data set that cannot be completely

separated by a linear decision boundary. The input vectors x are mapped onto a

higher dimensional subspace by the function φ. By making this transformation, the

nonlinear data is aligned linearly in a high dimensional space where SVM finds a linear

optimal margin separating hyperplane. The transformation is performed implicitly

using kernel matrix K(xi, xj) = [k(xi, xj)]i,j where k(xi, xj) could be any function

satisfying Mercer’s condition [42]. The gaussian kernel function (equation (2.20)) is

used in this work for classification tasks. More details on SVM formulation can be

found in [42].

k(xi, xj) = e−ω‖xi−xj‖
2

, ω > 0 (2.20)

The convex constrained optimization problem in equation (2.18) is in the primal

form, and the variables w, b and ζi are referred to as primal variables. The primal

problem is converted to a dual formulation in equation (2.21) and solved for the dual

variables αi.

max
αi

{
−1

2

N∑
i=1

N∑
j=1

yiyjαiαjK(xi, xj) +
N∑
i=1

αi

}
(2.21)

subjected to

∑N

i=1 αiyi = 0

0 ≤ αi ≤ C

(2.22)

for i = 1, .., N . The SVM hypothesis is given by

ŷ(x) = sgn

(
N∑
i=1

αiyiK(xi, x) + b

)
(2.23)

22

Support vectors
Slack variable

Figure 2.8: Figure showing classification decision boundary separating two classes of
data (marked as stars and spheres), SVM margin and support vectors.

where

sgn(x) =

1 x > 0

−1 x ≤ 0.

(2.24)

The solution to the dual optimization problem yields the lagrange multipliers

αi for each data observation and the SVM model is a weighted combination of the

kernel function values weighted by αi. For a large data set, the number of α, x, y to

be stored is very large. However, it should be noted that most of the αi are zero and

only the data corresponding to the non-zero αi may be stored for predictions. Such a

representation is considered sparse and the non-zero αi data observations are referred

to as support vectors. The support vectors are the data observations that determine

the decision boundary (see Fig. 2.8). The presence of the other data observations are

immaterial to the decision boundary and hence the SVM model.

The above SVM formulation is not designed for an imbalanced data set where

the majority class data outnumbers the minority class data. A cost-sensitive version

23

of the SVM algorithm is used in such cases, where the cost penalty parameter C in

equation (2.18) is modified to minimize the slack variables of the minority class data

more, compared to the majority class data [43, 44]. In this modification, the decision

boundary moves towards distinguishing the minority data well. The cost modification

can be performed as follows

Ci =

C∗f
r

majority class data

C minority class data

(2.25)

where r represents the ratio of number of majority class data to number minority

class data and f represents a scaling factor to be tuned for a given data set. Learning

of imbalanced class data is performed in chapter V.

2.5 Support Vector Regression

The Support Vector Regression (SVR) [45] was developed as an extension to SVM

classification algorithms. The SVR model approximates the given input-output data

by forming an error boundary (error tube) around the data and solving a similar

optimization problem as SVM. The ν-SVR model is considered for regression, as the

tradeoff between model complexity and accuracy (controlled by ν) can be tuned to the

required accuracy and sparseness [46, 47]. Sparseness can be defined as the ratio of

the number of support vectors to the total number of data observations in the model.

The following ε-insensitive loss function is used in this work. The ε-insensitive loss

penalizes data such that any data that falls within the error tube of size ε has a zero

error while the data falling outside is penalized linearly with its distance from the ε

tube.

L(y − ŷ)ε =

0 if | y − ŷ |≤ ε

| y − ŷ | −ε otherwise

(2.26)

24

The goal of SVR training is to determine the optimal model parameters (w∗, b∗)

by solving the following optimization problem

min
w,b,ε,ζi,ζ∗i

1

2
wTw + C(νε+

1

n

N∑
i=1

(ζi + ζ∗i)) (2.27)

subjected to

yi − (〈w, φ(xi)〉+ b) ≤ ε+ ζi

(〈w, φ(xi)〉+ b)− yi ≤ ε+ ζ∗i

ζi, ζ
∗
i , ε ≥ 0

(2.28)

for i = 1, .., N . It should be noted that the slack variables take values of zero when

the points lie inside the error tube. Also, separate slack variables ζ and ζ∗ are as-

signed for points lying outside the error tube on either side of the function. The

above optimization problem is usually referred as the primal problem and the vari-

ables w, b, ζ, ζ∗ and ε are the primal variables. In the above formulation (2.27), ε

is considered as a variable to be optimized along with the model parameters. This

allows ν to set a lower bound on the fraction of data points used in parameterizing

the model [48] and hence by tuning ν one can achieve a tradeoff between model com-

plexity (sparseness) and accuracy. A value of ν close to unity tries to shrink the ε

tube and reduce sparseness (all data points become support vectors) while reducing

ν close to zero will result in a sparse model (very few data points are used in model

parametrization) with possible under-fitting. Such a flexibility is the prime reason

for selecting the ν-SVR algorithm in this work.

On applying the first order optimality conditions, we can convert the primal prob-

lem (equation (2.27) and (2.28)) to the following dual optimization problem

max
αi,α∗

i

N∑
i=1

(α∗i − αi)yi −
1

2

N∑
i=1

N∑
j=1

(α∗i − αi)(α∗j − αj)K(xi, xj) (2.29)

25

subjected to

∑N
i=1 (α∗i − αi) = 0∑N
i=1 (α∗i + αi) ≤ νC

0 ≤ αi ≤ C
N

0 ≤ α∗i ≤ C
N

(2.30)

for i = 1, .., N . Solving the dual problem yields αi and α∗i giving the following SVR

model

ŷ(x) =
N∑
i=1

(α∗i − αi)K(xi, x) + b (2.31)

where ε and b can be determined using (2.28). This is the well known SVR model

and the following are some known properties. The parameter w can be completely

described as a linear combination of functions of the training data (xi) determined

as support vectors. Unlike the SVM algorithm, the support vectors of a SVR algo-

rithm constitutes all the observations that fall outside the error tube. The model

is independent of the dimensionality of X and the sample size n and the model can

be described by dot products between the data. The function φ is not required to

be known but any kernel function that satisfies the Mercer’s condition such as radial

basis functions (2.32), polynomial (2.33) and sigmoidal functions (2.34) can be used.

In this work, along with the above kernels, the linear kernel (pure inner product)

(2.35) is also used.

K(xi, xj) = e−ω‖xi−xj‖
2

, ω > 0 (2.32)

K(xi, xj) = (ω〈xi, xj〉+ c0)deg, ω > 0 (2.33)

K(xi, xj) = tanh(ω〈xi, xj〉+ c0), ω > 0 (2.34)

K(xi, xj) = 〈xi, xj〉 = xTi xj (2.35)

The structure and working of the SVR model can be seen in Fig. 2.9. The data op-

eration inside the dotted rectangle is implicitly performed using the kernel functions.

26

∑
𝒚�(𝒙)

𝑏

𝛼1∗ − 𝛼1

𝛼2∗ − 𝛼2

𝛼𝑁∗ − 𝛼𝑁

𝒙

𝜙 𝑥1

𝜙 𝑥 𝜙(.)

𝜙(.) 𝑥1

𝜙 𝑥2

𝜙 𝑥 𝜙(.)

𝜙(.) 𝑥2

𝜙 𝑥𝑁

𝜙 𝑥 𝜙(.)

𝜙(.) 𝑥𝑁

Kernel Transformation

Figure 2.9: Figure showing the working of support vector regression model.

2.6 Extreme Learning Machines

Extreme Learning Machine (ELM) is an emerging learning paradigm for multi-

class classification and regression problems [49, 50]. The highlight of ELM is that the

training speed is extremely fast (or training is computationally efficient). The key

enabler for ELM’s training speed is the random assignment of input layer parameters

which do not require adaptation to the data. In such a setup, the output layer

parameters can be determined analytically using least squares. Some of the attractive

features of ELM [49] include the universal approximation capability of ELM, the

convex optimization problem of ELM resulting in the smallest training error without

getting trapped in local minima, closed form solution of ELM eliminating iterative

27

training, better generalization capability of ELM.

2.6.1 Difference between Neural Networks and Extreme Learning Ma-

chines

ELM models have the exact same structure of a traditional neural network (see

Section 2.3) but there are subtle differences that make the ELM models significantly

powerful compared to ANNs. In a traditional ANN model, both the input layer

parameters and the output layer parameters are determined in the training process.

As a result, a nonlinear least squares approach is required that has limitations in slow

iterative training and landing in local minima. ELM overcomes these limitations

by decoupling the tuning of the hidden layer parameters from the main training

process. As the input layer parameters are randomly assigned, the training involves

determining the output layer parameters only. The input data is projected onto a high

dimension space using the hidden neurons and the randomly initialized parameters

where the nonlinear data is transformed to a linear pattern. This effect is similar to

using kernel functions in SVM modeling. Finally, the high dimensional linear data is

used to model the outputs using a linear least squares method. Since training involves

a linear least squares and the objective function is convex, the solution obtained by

ELM is extremely fast and is a global optimum. The ELM structure can be seen in

Fig. 2.10.

2.6.2 ELM - Mathematical Background

ELM training involves solving the following optimization problem

min
W

{
‖HW − Y ‖2 + λ‖W‖2

}
(2.36)

HT = ψ(W T
r x(k) + br) ∈ Rnh×1 (2.37)

28

D

D

D

Input Neurons

Hidden Neurons

Linear

Regression

Random

Projection

Output Neurons

ϕ

Wᵣ

W

ŷx

Figure 2.10: Extreme Learning Machine model structure.

where λ represents the regularization coefficient, Y represents the vector of outputs,

ψ represents the hidden layer activation function (a sigmoidal function takes the

same structure as (5.2)) and Wr,W represents the input and output layer parameters

respectively. Here, nh represents the number of hidden neurons of the ELM model,

H represents the hidden layer output matrix.

A prominent feature of ELM is that the nonlinear optimization problem is re-

duced to a linear parameter estimation. This reduction is made possible by the

random assignment of the input layer parameters. The matrix Wr consists of ran-

domly assigned elements that maps the input vector to a high dimensional feature

space while br ∈ Rnh is a bias component assigned in a random manner similar to Wr.

The number of hidden neurons determine the dimension of the transformed feature

space. The elements can be assigned based on any continuous random distribution

[50] and remains fixed during the learning process. The intuition behind the random

parametrization of ELM is as follows. By assigning random weights as described

above, along with an activation function, a regressor φ with several functional com-

binations (with different order terms) of the input feature vector x is obtained. For

29

a complex problem, more hidden neurons are required which can be thought of as

introducing more complex feature mappings. When the regressor φ dimension is suf-

ficiently high with sufficient inclusion of higher order (nonlinear) features, it can be

mapped to the outputs linearly. Hence the training reduces to a single step calcula-

tion given by equation (2.38). The ELM decision hypothesis can be expressed as in

equation (7.3) for classification and equation (2.41) for regression. It should be noted

that the hidden layer and the corresponding activation functions give a nonlinear

mapping of the data, which if eliminated, becomes a linear least squares (Linear LS)

model and is considered as one of the baseline models in chapter V. It is not difficult

to observe from equation (2.36) that a squared loss function is employed and hence

ELM works well for regression but the classification performance may be inferior to

SVM (see results of chapter V).

W ∗ =
(
HTH + λI

)−1
HTY (2.38)

f(x) = sgn
(
W T [ψ(W T

r x+ br)]
)

(2.39)

where

sgn(x) =

1 x > 0

−1 x ≤ 0.

(2.40)

f(x) = W T [ψ(W T
r x+ br)] (2.41)

For classification problems, the above ELM formulation is not designed to handle

imbalanced or skewed data sets. As a modification to weigh the minority class data

more, a simple weighting method can be incorporated in the ELM objective function

(2.36) as

min
W

{
(HW − Y)TΓ(HW − Y) + λW TW

}
(2.42)

30

Γ =

γ1 0 . . 0

0 γ2 . . 0

. . . . 0

0 0 . . γN

γi =

1 majority class data

r.f minority class data

(2.43)

where Γ represents the weight matrix, r represents the ratio of number of majority

class data to number minority class data and f represents a scaling factor to be tuned

for a given data set. This results in the training step given by equation (5.11) and

hypothesis given by equation (5.12).

W ∗ =
(
HTΓH + λI

)−1
HTΓY (2.44)

f(x) = sgn
(
W T [ψ(W T

r x+ br)]
)

(2.45)

where

sgn(x) =

1 x > 0

−1 x ≤ 0.

(2.46)

2.7 Comparison of Learning Algorithms

In this section, the algorithms discussed in this chapter are compared and con-

trasted against each other. Table 2.1 summarizes the main features that are used for

evaluation of the algorithms for efficiency and applicability to the HCCI engine prob-

lem. It can be seen that the ANN models have a non-convex optimization problem

and hence requires iterative tuning methods. The optimal solution is a local minimum

and hence is generally not a very efficient algorithm. The SVM models have a convex

optimization problem but implementation is not simple requiring iterative solvers and

31

more importantly, requires significant memory and are not usually suitable for online

learning. The ELM models, on the other hand, solves a convex optimization prob-

lem and typically using a least squares method resulting in a single step convergence

to the global optimal solution. Further, it is highly attractive for the HCCI engine

problem as it can handle multiple outputs in a straightforward manner and also can

perform efficient online learning as discussed in future chapters.

Table 2.1: Comparison of algorithm properties for suitability to the HCCI engine
problem.

ANN SVM ELM
Nature of Non convex convex convex

optimization problem
Optimization Combined gradient Coordinate least

type and newtons descent squares
(iterative) (iterative) (non-iterative)

Nature of Local Global Global
optimal solution minimum minimum minimum

Handling Direct Indirect (several Direct
multiple outputs single output models)
Online Learning Simple to Complex Complex Simple
Memory required Less More Less to more

(Parameteric) (Non-Parameteric) (Parameteric)

32

CHAPTER III

HCCI Engine - System, Experiment Design and

Data Collection

In this chapter, an overview of HCCI combustion and the relevant modeling chal-

lenges are given with sufficient details. The experimental setup, design of experiments

and sensor measurements for both open loop and closed loop experiments are sum-

marized. The experiments are designed for collecting suitable data for developing

dynamic models of HCCI combustion in the chapters to follow.

3.1 HCCI Engine - Background

Majority of conventional automotive engines fall into two categories - spark ignited

(SI) engines and compression ignited (CI) engines. In a spark ignited engine, the fuel

and air are premixed and combustion is initiated using a spark. The load is controlled

using a throttle which regulates the quantity of air that enters the cylinders. The

throttled operation reduces the volumetric efficiency of the engine. However, the fuel

and air are premixed to form a near-homogeneous mixture that results in a cleaner

combustion with low hydrocarbon emissions. The temperature of combustion is rela-

tively high resulting in high nitrous oxides (NOX) emissions. The CI combustion, on

the other hand, operates un-throttled and thus achieves a higher efficiency. The load

33

is controlled by regulating fuel injection quantity eliminating the need for a throttle.

The combustion is initiated using a spray of fuel injected when the in-cylinder air is

at a high temperature and pressure. The air-fuel mixture is heterogeneous resulting

in high hydrocarbon emissions and particulate matter. Similar to the SI combustion,

the peak temperatures in CI combustion is high leading to high (NOX) emissions.

HCCI combustion attempts to retain the benefits of SI and CI combustion and

eliminate their shortcomings in terms of efficiency and emissions. In a HCCI engine,

the fuel and air are premixed to form a homogeneous mixture similar to the SI engine

and compressed to autoignition similar to a CI engine. Unlike the SI or CI engines,

the HCCI engine does not have a direct trigger for ignition. Hence the properties of

the gas mixtures before combustion dictates the combustion behavior. In order to

keep the peak combustion temperatures low, large volumes of exhaust gas is used.

The process of using exhaust gas from the previous combustion cycles is commonly

referred to as exhaust gas recirculation (EGR). Consequently, HCCI engines result in

a cleaner combustion (homogeneous mixtures), low (NOX) emissions (high EGR) and

high efficiency (un-throttled operation and close to constant volume type combustion).

Owing to these attractive features, HCCI engines have been studied in detail both

in theory as well as in practical implementation. For further reading on SI, CI and

HCCI engines, the reader is referred to [51, 52].

Several means of charge preparation strategies are employed for achieving HCCI

including heating or pre-compressing intake air [3, 53], varying compression ratio [54],

varying Exhaust gas recirculation (EGR) using variable valve timing (VVT) [55, 8].

However, in this thesis, a recompression strategy based HCCI engine is considered

where the EGR from the previous cycle is retained and re-compressed for use in the

next cycle [8]. The role of EGR is twofold - it helps in raising the temperature of

the fuel-air mixture making it easy for autoignition and it controls the temperature

rise within the cylinder. EGR is chemically inert to combustion and acts as a heat

34

sink absorbing heat energy keeping the peak temperatures to a reasonable value in

order to reduce NOX formation. EGR can be varied using a variable valve actuation

(VVA) by closing the exhaust valve appropriately so that the desired volume of EGR

is retained.

3.1.1 Modeling Challenges

HCCI is characterized by several complex phenomena such as gas transport, chem-

ical kinetics, heat transfer, gas mixing etc. The absence of a combustion initiator such

as a spark make HCCI combustion very sensitive to the mixture properties and phys-

ical conditions at which the engine operates [56]. Fundamental HCCI research has

shown that the temperature and concentrations of mixture components at intake valve

closing (IVC) play a major role in determining the auto-ignition phenomenon in HCCI

combustion [1, 57, 58]. It is practically not feasible to measure mixture concentra-

tions and in-cylinder temperatures dynamically. Hence these quantities are typically

modeled using simplified physics and experimental correlations [59]. Also there ex-

ists a cycle-to-cycle coupling in residual affected HCCI as the exhaust gases from

the previous cycle are reused [60, 59, 61, 57]. Hence temperature and concentrations

of the combustion products from the previous cycle affect the combustion behavior

during the present cycle. The knowledge of combustion reactions, heat release behav-

ior, heat transfer, flow dynamics are required to model the residual properties. As

noted earlier, high-fidelity models are able to capture the HCCI behavior accurately

but cannot be used for controls purposes. Typically, a control oriented simplified

model is used which demands long development time and associated cost in addition

to being conservative.

The goal of this research is to model the HCCI behavior using data based learn-

ing. Although the engine prototype is available, experimentation and data collection

are not straightforward owing to the following reasons. A direct measurement of key

35

quantities of HCCI combustion is not possible. Dynamically measuring in-cylinder

temperatures and mixture concentrations is infeasible or very expensive in the time

scale required for transient engine operation [62]. Also, the system is highly nonlinear

and has a narrow region of stable operation [63, 64, 65, 66, 67] which makes design of

experiments a challenging task. The HCCI instabilities and stable operating bound-

ary are detailed in chapter V. The sensitive nature of HCCI combustion coupled

with a narrow region of stable operation makes it extremely challenging to obtain

transient data that contains rich information about the system for identification. In

addition to the above, practical factors pose further challenges in identification and

control including limited available memory and computation on the engine ECU.

Noisy measurements and features with high variability increases further complication

in selecting a robust identification method. However, if the identification process is

made systematic for the HCCI system and benefits proved, it could be a powerful

approach for HCCI engine control which is one of the objectives of this work.

3.2 Experimental Setup

The system considered in this work is a four cylinder gasoline HCCI engine with a

variable valve timing system whose specifications are listed in Table 3.1. A schematic

of the experimental setup and relevant instrumentation is shown in Fig. 3.1. A

snapshot of the cylinder pressure trace of one combustion cycle along with valve

events and fuel injection events are shown in Fig. 3.2. During every combustion

cycle, three distinct events can be defined - the crank angle at intake valve opening

(IVO), crank angle at exhaust valve closing (EVC) and crank angle at start of fuel

injection (SOI). It should be noted that the fuel mass (FM in mg/cyc) is injected in

a region between EVC and IVO defined as the negative valve overlap (NVO). The

valve events are measured in degrees after exhaust top dead center (deg eTDC) while

SOI is measured in degrees after combustion top dead center (deg cTDC).

36

Table 3.1: Specifications of the experimental HCCI engine

Engine Type 4-stroke In-line
Fuel Gasoline

Displacement 2.0 L
Bore/Stroke 86/86 mm

Compression Ratio 11.25:1
Injection Type Direct Injection

Variable Valve Timing with
hydraulic cam phaser having

Valvetrain 119 degree constant duration
defined at 0.25mm lift, 3.5mm peak

lift and 50 degree crank angle
phasing authority

HCCI strategy Exhaust recompression
using negative valve overlap

1. Coolant
thermocouple 𝐶0

2. Exhaust manifold
thermocouple 𝐶0

3. Exhaust manifold
pressure transducer 𝑚𝑚𝑚𝑚

4. Post-turbine
thermocouple 𝐶0

5. Lambda sensor −

6. Air mass flow
sensor 𝑘𝑘/ℎ

7. Spark plug −

1 2
4

3

6

5

7
8

9

11

10

13

12

14

VVT 15

Piston

Crank shaft

Turbocharger

Intake Manifold Exhaust Manifold

Air in

Exhaust out

8. Fuel injector 𝑚𝑚𝑚𝑚

9. Cam phaser −

10,
11.

Cylinder 1 Runner
T and P

𝐶0 , 𝑚
𝑚𝑚𝑚𝑚

12. Intake manifold
thermocouple 𝐶0

13. Intake manifold
pressure transducer 𝑚𝑚𝑚𝑚

14. RPM sensor 𝑅𝑅𝑅

15. In-cylinder pressure
transducer 𝑚𝑚𝑚

Throttle

Figure 3.1: A schematic of the HCCI engine setup and instrumentation (only relevant
instrumentation is shown).

37

−180 0 180 360 540 720 900 1080
−5

0

5

10

15

20

25

30

35

Crank Angle (deg)

In
−

cy
lin

de
r

P
re

ss
ur

e
(b

ar
)

Data
Record

Cycle
(k−1)

Cycle
(k+1)

Cycle
(k)

cTDC eTDCeTDCcTDC

SOI

IVOEVC

Figure 3.2: HCCI engine pressure trace showing cycle definition, actuator ranges of
intake valve opening (IVO), exhaust valve closing (EVC), start of injection (SOI).
The crank angle at data recording are also shown.

As mentioned earlier, HCCI is achieved by auto-ignition of the gas mixture in

the cylinders. The fuel is injected early (during NVO of previous cycle) and given

sufficient time to mix with air forming a homogeneous mixture. A large fraction of the

exhaust gas from the previous combustion cycle is retained to elevate the temperature

and hence the reaction rates of the fuel and air mixture. The variable valve timing

capability of the engine enables trapping suitable quantities of exhaust gas in the

cylinder. The engine is operated with natural aspiration, i.e., all experiments in this

work involve no or negligible boosting.

For the HCCI identification process, the following measurable quantities are con-

sidered as precursors or indicators for the previously mentioned key quantities that

cannot be measured directly.

1. The temperature (Tin), pressure (Pin) and flow rate (ṁin) at intake manifold,

2. The exhaust gas temperature (Tex) and exhaust manifold pressure Pex,

3. Engine coolant temperature (Tc),

4. Controllable quantities such as FM, IVO, EVC and SOI,

38

5. Equivalent air to fuel ratio (EAFR) defined as

EAFR =
(A/F)

(A/F)s
(3.1)

where A/F = mass of air per cycle/mass of fuel per cycle and (A/F)s = (A/F)

at stoichiometric condition and

6. Indicators of combustion behavior such as combustion phasing measured as

the crank angle at 50% mass fraction burned (CA50), combustion work output

measured by indicated or net mean effective pressure (IMEP or NMEP), peak

pressure of a cycle (Pmax) and combustion roughness indicated by maximum

rate of pressure rise (Rmax).

The measurement hardware include a high speed data acquisition system which

records IMEP, CA50, Pmax and Rmax while the low speed data acquisition system

records the other variables listed above. The time scales are different for each mea-

surement and a data post processing is performed to convert the data to a cycle based

sampling rate. For many of the experiments performed in this work, the ETAS rapid

prototyping hardware is used to code complex algorithms for experiment design and

for model learning.

3.3 Steady State Experiments and Mapping

In this section, steady state experiments are performed to develop a map of the

feasible HCCI operation. A design of experiments (DOE) matrix is generated by

uniformly spanning the input space of the engine (engine speed, IVO, EVC, SOI, FM).

The engine is taken to steady state and the minimum and maximum load extremes

are reached by tuning FM. Care is taken to operate the engine within constraints

such as being lean (EAFR > 1), low combustion roughness (Rmax < 6 bar/deg) and

39

avoid late burn or misfire (CA50 < 12 before TDC). The space of permissible input

combinations for stable HCCI in steady state is obtained using the DOE operating

region. The steady state operating region of the HCCI engine can be shown in Fig.

3.3. It should be noted that the engine is capable of running in HCCI beyond the

selected speed range.

1900 2000 2100 2200 2300 2400 2500 2600 2700
1

1.5

2

2.5

3

3.5

Engine Speed (RPM)

N
M

E
P

(b
ar

)

DOE set point
Boundary of stable operation
 at steady state

Figure 3.3: Steady state operating region of the HCCI engine.

The purpose of developing a steady state map is to assist the design of transient

experiments for collecting step response data for system identification. The data from

the steady state DOE is used to develop a steady state map of the engine. A nonlinear

extreme learning machine based model is trained to predict engine variables as shown

in Fig. 3.4. A sigmoidal model with 15 hidden units is built taking engine speed, IVO,

EVC, SOI and FM as inputs. About 55 observations are used for training while the

model is evaluated on 23 unseen test data. The model predicts with a mean squared

error of 0.0656. The modeling procedure for extreme learning machines are discussed

in chapter IV. It can be seen from Fig. 3.4 that the model predicts the HCCI engine

variables reasonably well and the model can be used for transient experiment design.

40

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

E
A

F
R

0 5 10 15 20 25
0

1

2

3

B
M

E
P

 (
ba

r)

0 5 10 15 20 25
0

500

1000

1500

B
S

F
C

 (
g/

kW
hr

)

0 5 10 15 20 25
50

100

150

200

A
ir

flo
w

 (
kg

/h
)

0 5 10 15 20 25
5

10

15

F
ue

l f
lo

w
 (

kg
/h

)

0 5 10 15 20 25
1

2

3

4
IM

E
P

 (
ba

r)

0 5 10 15 20 25
0

5

10

15

C
A

50
 (

de
g

aC
T

D
C

)

0 5 10 15 20 25
25

30

35

40

P
m

ax
 (

ba
r)

0 5 10 15 20 25
0

2

4

6

8

R
m

ax
 (

ba
r/

de
g)

Test Samples
0 5 10 15 20 25

1

1.5

2

2.5

3

Test Samples

C
O

V
 IM

E
P

Experimental
Model Prediction

Figure 3.4: Predictions of the ELM based steady state model of the HCCI engine.

41

3.4 Open Loop Transient Experiments

The goal of this task is to record transient data corresponding to step inputs to

the HCCI engine at a constant speed. For system identification of nonlinear sys-

tems, typically, an amplitude modulated pseudo-random binary sequence (A-PRBS)

is employed to excite the system at several amplitudes and frequencies to obtain suf-

ficiently rich data. The design of excitation signal must satisfy persistent excitation

condition as well as exciting the system at all frequencies and amplitudes [68]. For

this purpose, the A-PRBS design is employed which has shown to perform well for

nonlinear system identification [19].

HCCI has a narrow operating region and a large input excitation close to unstable

regions tend to knock, misfire the engine or operate on limit cycles and makes the

transient DOE a challenging task. For this purpose, prior knowledge about the system

is used to eliminate excitation signals that lead to instability. The steady state

DOE model developed in the previous section is used to eliminate the unstable input

combinations in the A-PRBS matrix of inputs. Every input from the A-PRBS DOE

matrix is used to simulate operating constraints such as Rmax, CA50 and EAFR and

checked for feasibility. Only if the input is found feasible, it is commanded on the

experimental engine.

It should be noted that the steady state DOE filtered inputs are valid only for

steady state operation and might not guarantee stable transients. Hence as a means of

precaution against running the engine in an unstable manner and to avoid restarting

the measurements, a simple feedback was created, which attempts a particular input

combination and if found to be unstable, quickly skips to the next combination in the

A-PRBS sequence. As a first attempt, the CA50 was considered the feedback signal.

During a small time window, any input combination that resulted in a CA50 above

11 (found by observing the CA50 during misfires) is immediately skipped, and the

engine is run on the next combination in the sequence [69]. Several experiments were

42

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

2

4

IM
E

P
 (

ba
r)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−20

0

20

40

60

80

C
A

50
 (

de
g

aT
D

C
)

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

5

10

R
m

ax
 (

ba
r/

de
g)

5200 5300 5400 5500 5600 5700 5800 5900 6000

1

1.5

2

λ
(−

)

5200 5300 5400 5500 5600 5700 5800 5900 6000
7

8

9

10

11

F
ue

l M
as

s
(m

g/
cy

c)

5200 5300 5400 5500 5600 5700 5800 5900 6000

80

100

120

IV
O

 (
de

g
aC

T
D

C
)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−110

−100

−90

−80

E
V

C
 (

de
g

aC
T

D
C

)

5200 5300 5400 5500 5600 5700 5800 5900 6000

280

300

320

340

360

S
O

I (
de

g
aE

T
D

C
)

Figure 3.5: A subset of experimental data showing the A-PRBS inputs and the mea-
sured engine outputs. Misfire cycles are shown in dotted rectangles.

conducted at constant speeds of 2500-3000 RPM and naturally aspirated conditions.

A subset of the data collected from the engine is shown in Fig. 3.5. It can be observed

that in spite of eliminating the unstable excitations using a steady state model, engine

misfires still occur. This is a major drawback of the open loop experiments where the

engine data sets are corrupted with misfire data. A careful post-processing is required

to eliminate the misfire and post-misfire cycles [70] before the data can be used for

modeling. A more simpler approach is to use a feedback controller and perform

the transient experiments in closed-loop. However, this requires the availability of a

closed-loop feedback controller.

43

0 500 1000 1500 2000
8

9

10

11

F
ue

l M
as

s
(m

g/
cy

c)

0 500 1000 1500 2000
−120

−110

−100

−90

E
V

C
 (

de
g

aC
T

D
C

)

0 500 1000 1500 2000
250

300

350

400

S
O

I (
de

g
aE

T
D

C
)

0 500 1000 1500 2000
20

30

40

50

M
ax

 p
re

ss
ur

e
(b

ar
)

Engine Cycles

0 500 1000 1500 2000
2

3

4

IM
E

P
 (

ba
r)

0 500 1000 1500 2000
−20

−10

0

C
A

50
 (

de
g

bC
T

D
C

)

0 500 1000 1500 2000
0

5

10

M
ax

 P
re

ss
ur

e
R

is
e

R
at

e
(b

ar
/d

eg
)

0 500 1000 1500 2000
1

1.2

1.4

E
A

F
R

 (
−

)

Engine Cycles

Figure 3.6: A subset of closed loop experimental data showing the A-PRBS inputs
and the measured engine outputs.

3.5 Closed Loop Transient Experiments

In this section, the above transient experiments are performed with a feedback

controller developed for HCCI [71]. In a similar manner, a DOE matrix is created

that varies reference trajectories of IMEP and CA50 in a uniform random manner

(A-PRBS pattern). The controller is commanded the designed reference trajectories

and the engine response recorded. The closed loop experiments benefit from stable

HCCI operation but the excitations are limited to the controller’s capability. Several

experiments at engine speeds between 1600 and 1800 RPM are conducted. A subset

of the closed loop data can be shown using Fig. 3.6. It can be seen that the data

corresponds to stable HCCI at a lean operation (EAFR above 1.2). Also, the EVC

and SOI are derived from the controller which doesn’t follow the A-PRBS pattern.

44

CHAPTER IV

Development of HCCI Engine Models using

Regression Learning

In this chapter, experimental data from the HCCI engine is used to develop predic-

tive dynamic models of HCCI combustion suitable for use in model based predictive

control. The above task is not straightforward and a systematic procedure using sta-

tistical machine learning techniques is detailed in this chapter. A set of base models

(also referred to as offline models) are developed using experimental HCCI engine

data. The goal is to develop dynamic simulators that are capable of performing pre-

dictions for several steps ahead in time. This chapter is organized as follows. The

motivation and goal of offline learning is summarized followed by appropriate data

processing for HCCI experimental data. The machine learning task is performed

in two parts - model structure learning and model training. Finally, the developed

models are evaluated for one-step ahead and multi-step ahead predictions.

4.1 Motivation

For the model-based controls development considered in this research, it is im-

portant to obtain predictive models that mimic the HCCI combustion. In particular,

the models are aimed to have a short development time, high accuracy, low computa-

45

tional demand and a capability for dynamic system simulations be performed onboard

the engine ECU. This motivates the development of an HCCI engine simulator using

machine learning based identification. It is not trivial to perform this task using ad-

vanced learning algorithms and a framework is necessary to develop predictive models

from HCCI transient data.

4.2 Data Processing

For any machine learning task, the data needs to be appropriately scaled and centered.

This includes normalization of all data, e.g. to lie typically between -1 and +1,

to ensure model parameters are of the same order for numerical stability. For the

HCCI system, additional preprocessing needs to be done before the data becomes

meaningful for learning. The unstable nature of HCCI and designing experiments

to reduce unstable excitations has been discussed in Chapter III. However, it is not

possible to eliminate misfires completely during the open loop experiments and this

data needs to be removed before it is used for learning.

A subset of the HCCI data with misfires (boxed in dotted lines) is shown in Figure

5.1. During a misfire, majority of the fresh air that enters the cylinder appears at

the exhaust as there is no combustion. Hence the value of λ increases indicating

high concentration of air and less fuel. Also, the IMEP (indicator for work output)

drops to zero as no positive work is done. The value of CA50 drops to -30 (set by

the measurement system during no combustion) while Rmax drops to 0 as there is

no significant variations in pressure. During a regular combustion event, some of the

exhaust gas is trapped by the NVO for the next cycle but when a misfire occurs,

there is not enough exhaust gas in the NVO trapped mixture for the subsequent

cycles. Hence even though the sequence following the misfire cycles is stable, it may

not represent a regular HCCI behavior. Hence along with the misfire data, some of

the post-misfire data are eliminated.

46

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

2

4

IM
E

P
 (

ba
r)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−20

0

20

40

60

80

C
A

50
 (

de
g

aT
D

C
)

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

5

10

R
m

ax
 (

ba
r/

de
g)

5200 5300 5400 5500 5600 5700 5800 5900 6000

1

1.5

2

λ
(−

)

5200 5300 5400 5500 5600 5700 5800 5900 6000
7

8

9

10

11

F
ue

l M
as

s
(m

g/
cy

c)

5200 5300 5400 5500 5600 5700 5800 5900 6000

80

100

120
IV

O
 (

de
g

aC
T

D
C

)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−110

−100

−90

−80

E
V

C
 (

de
g

aC
T

D
C

)

5200 5300 5400 5500 5600 5700 5800 5900 6000

280

300

320

340

360

S
O

I (
de

g
aE

T
D

C
)

Figure 4.1: A subset of open loop experiments showing A-PRBS inputs and HCCI
engine outputs. Misfires are shown using rectangular dotted lines.

When chunks of data is removed from a time series, the time connection is lost and

the data set cannot be considered as continuous time series for learning. To overcome

this problem, the time series data is converted to static data and then inappropriate

data observations corresponding to misfires are removed as follows.

The combustion variables can be used to determine the validity of regular HCCI

operation. For instance, a misfire can be identified using a combination of IMEP

and CA50 (refer Chapter V). The identification model structure (2.5) and regressor

definition (2.6)) allows time series data to be converted to feature vectors to be

mapped on to the output variable. Hence, after the regressor conversion, the data

can be treated as static (no time connection between observations). It is for the

same reason that it becomes possible to use static regression models for time series

data. The static data {(x1, y1), ..., (xN , yN)} can be filtered using expert knowledge

about the engine. The minimum and maximum limits of the vectors x and y are

used to identify and eliminate data that does not represent HCCI combustion. The

47

minimum and maximum limits of the variables are shown in Table 4.1. The data is

normalized based on the variable limits to lie between -1 and +1. Any pair (x,y) whose

normalized value lies outside -1 and +1 is considered inappropriate data and removed

from the data set. It should be noted that the above data processing is required for

data collected in open loop where the controller is not used. For the closed loop

experiments, misfires do not occur and the above processing is not required.

Table 4.1: The minimum and maximum values of regression variables x and y deter-
mined based on expert knowledge for HCCI conditions.

Min Max Min Max

FM mg/cyc 6.9 11.2 Pin bar 0.85 1.4
IVO aETDC 78 128 Pex bar 1 1.2
EVC aETDC -119 -69 ṁin kg/h 91 370
SOI aCTDC 270 380 IMP bar 0.5 4
Tc

oC 89 93 CA50 aCTDC 1 11
Tin

oC 49 70 Rmax bar/deg CA 0 6
Tex

oC 349 440 λ - 1 2

4.3 Model Selection

The processed data set is used for model development using algorithms described

in Chapter II. The modeling task involves two stages - model structure learning (tun-

ing of hyper-parameters) and model training (tuning of parameters). For the model

structure learning, a cross-validation based approach is presented which makes no pri-

ori assumptions about the model or the distribution of the data. The cross-validation

process involves the following steps. First, the data is divided into three disjoint sets

- training set, validation set and testing set. A matrix of hyper-parameter combina-

tions are made and for each combination, the model is trained using the training set

and prediction performance evaluated using the validation set. The optimal hyper-

parameters are selected as the combination that resulted in the lowest validation

error. Finally the model is evaluated with the optimal hyper-parameters using the

48

testing set for generalization performance using a root mean squared error metric as

given by (4.1). The hyper-parameters and their effect on learning behavior of the

models considered are briefed below.

4.3.1 ANN

The hyper-parameters of ANNs include number of hidden neurons (nh), regular-

ization coefficient (λ), system order (no = nu = ny) for MLP model and number of

hidden neurons (nh), gaussian spread parameter (σh), system order (no = nu = ny)

for the RBN model. The number of hidden neurons (nh) determines the model com-

plexity, i.e, as more hidden neurons are added, the model has more degrees of freedom

to fit the underlying function and if increased, might result in over-fitting the train-

ing data. In order to have a simpler model, a regularization term is included in the

objective function (2.11) whose importance is determined by λ. A large value of λ

forces the parameters to remain small and close to zero. Hence even if the model is

over-parameterized, several of them move close to zero reducing the effect of the ex-

cess parameters. However, the relative importance given to reduce the mean squared

error is also reduced. Hence a large value of λ reduces over-fitting but may result in

a high bias under-fit model. However, a right combination of nh and λ gives a right

balance between accuracy and having a simple model.

The system order no affects both over-fitting as well as dimension of the feature

vectors. A large value of no increases the dimension of X (see equation (2.6)). In-

crease in the input feature dimension might complicate the learning task by increasing

computational demand, training time and might require more training data to handle

the additional complexities in the additional dimensions. Also, a large no might re-

sult in redundant features and poor generalization performance. The gaussian spread

parameter (σh) indicates the closeness of the data to the given neuron centers. A

large σh increases the spread of the gaussian function. Hence at any given location,

49

Table 4.2: The optimal values of number of hidden neurons (nh), regularization co-
efficient (λ in MLP and σh in RBN) and system order (no) determined using cross-
validation. Here Eval represents the minimum validation error in the grid search.

Hyper- NMEP CA50 Rmax EAFR Parameter
parameter Range

nh 8 10 10 8 {2,..,20}
MLP λ 0.0001 1 0.01 0.01 {0.0001,0.01,0.1,1,10}
model no 2 3 2 4 {1,2,3,4,5}

Eval 0.0316 0.2492 0.2220 0.01 -
nh 200 200 200 120 {2,..,200}

RBN σh 10 1 1 10 {0.0001,0.01,0.1,1,10}
model no 3 2 2 4 {1,2,3,4,5}

Eval 0.0346 0.2484 0.2278 0.01 -

the activation functions overlaps significantly resulting in a global effect. If inappro-

priate, a large σ might add more bias and less variance in predictions. A full grid

search was performed over chosen combinations of no, nh, λ for MLP and no, nh, σ for

RBN and the combination that had the minimum validation error was chosen as the

optimal hyper-parameters. Table 4.2 lists the best combination of hyper-parameters

for IMEP, CA50, Rmax and EAFR which had the minimum validation errors.

4.3.2 SVM

The hyper-parameters of SVM include cost penalty of slack variables (C), kernel

parameter (ω), sparseness coefficient (ν), system order (no = nu = ny) for regres-

sion and cost penalty (C), kernel parameter (ω), system order (no = nu = ny) for

classification problems. The cost penalty C in equation (2.18) influences the effect

of outliers. A high value of C tries to push the value of ζ to zero resulting in the

decision boundary pushed closer to that particular observation. If the observation is

an outlier, a high C pushes the boundary close to the outlier and models an incorrect

decision boundary. The sparseness coefficient (ν) affects the size of the error tube cre-

ated by SVR (see equation (2.27)). A high value of ν shrinks the error tube (ε moves

close to zero) resulting in an aggressive fitting. If the data is very noisy and with high

50

amplitudes, an aggressive error tube could result in several of the noisy data to fall

outside the error tube ending up as support vectors and the representation might be

less sparse. Further, the other components of the objective function in (2.27) is given

less importance resulting in possible over-fitting. The kernel parameter (ω) has the

same effect of gaussian spread parameter in ANN.

A full grid search was performed over the chosen combinations of no, C, ω, ν and

the combination that had the minimum validation error was chosen as the opti-

mal hyper-parameters. Table 4.3 lists the best combination of hyper-parameters for

IMEP, CA50, Rmax and EAFR which had the minimum validation errors. The train-

ing times were very long for polynomial kernel models while the training time for

linear, sigmoidal and gaussian kernels were comparable. Hence the models with lin-

ear, sigmoidal and gaussian kernels were retrained with the optimal hyper-parameters

on the entire training data set while the ones with polynomial kernels were retrained

on a subset of the training set.

4.3.3 ELM

The hyper-parameters of ELM include number of hidden neurons (nh), regular-

ization coefficient (λ), system order (no = nu = ny) similar to ANNs. In addition,

the randomized input layer parameters (Wr and br) can be considered as hyper-

parameters. By varying the random initialization, different network complexity, ac-

curacy and generalization levels can be achieved. However, there is no realizable effect

on one initialization over the other as long as the initializations are done based on

a uniform probability distribution [50]. The effect of different initializations is not

considered in this chapter.

A full grid search was performed over all possible combinations of no, nh, λ in

the selected range and the combination that had the minimum validation error was

chosen as the optimal hyper-parameters. Table 4.4 lists the best combination of hyper-

51

Table 4.3: The optimal values of system order (no=nu=ny, assumed to be the same),
the cost parameter C, kernel parameter ω and SVR parameter ν determined using
cross-validation from the range of listed values.

Kernel Type Hyper- IMEP CA50 Rmax EAFR Range
Parameter

no 2 5 5 4 {1,2,3,4,5}
Linear C 1 0.1 0.1 100 {0.01,0.1,1,10,100}

ν 0.2 0.6 0.4 0.2 {0.1,0.2,..,1}
Eval 0.0727 0.2637 0.2597 0.0162 -
no 2 3 4 4 {1,2,3,4,5}

Polynomial ω 1 1 1 1 {0.001,0.01,0.1,1,10,100}
of degree 2 C 1 1 10 1 {0.01,0.1,1,10,100}

ν 0.4 0.4 0.3 0.5 {0.1,0.2,..,1}
Eval 0.0663 0.2793 0.3098 0.0155 -
no 2 2 1 3 {1,2,3,4,5}

Polynomial ω 0.5 0.2 1 0.5 {0.01,0.1,0.2,..,1,5,10}
of degree 3 C 0.5 0.5 1 1.5 {0.01,0.1,0.2,...,2}

ν 0.5 0.4 0.4 0.3 {0.1,0.2,..,1}
Eval 0.0670 0.2690 0.2583 0.0168 -
no 2 5 5 3 {1,2,3,4,5}
ω 0.01 0.01 0.01 0.01 {0.001,0.01,0.1,1,10,100}

Sigmoidal C 1 1 1 1 {0.01,0.1,1,10,100}
ν 0.6 0.4 0.4 0.4 {0.1,0.2,..,1}
Eval 0.0692 0.3093 0.3054 0.0214 -
no 2 3 1 2 {1,2,3,4,5}
ω 0.1 0.1 1 0.1 {0.001,0.01,0.1,1,10,100}

Gaussian C 1 1 1 1 {0.01,0.1,1,10,100}
ν 0.3 0.4 0.4 0.3 {0.1,0.2,..,1}
Eval 0.0611 0.2525 0.2183 0.0199 -

52

parameters for IMEP, CA50, Rmax and EAFR which had the minimum validation

errors.

Table 4.4: The optimal values of number of hidden neurons (nh), regularization coef-
ficient (λ) and system order (no) determined using cross-validation. Here Eval repre-
sents the minimum validation error in the grid search.

Kernel Type Hyper- IMEP CA50 R max EAFR Range
Parameter

nh 65 90 100 70 {5,..100}
Sigmoidal λ 0.1 0.01 0.01 0.01 {0.001,0.01,0.1,1,10,100}

n0 2 2 3 3 {1,2,3,4}
Eval 0.0582 0.1257 0.1497 0.0257 -
nh 50 55 70 60 {5,..100}

Gaussian λ 0.01 0.01 0.001 0.01 {0.001,0.01,0.1,1,10,100}
n0 2 3 2 3 {1,2,3,4}
Eval 0.0596 0.1265 0.1527 0.0305 -

4.4 Model Evaluation

The models developed in this chapter are intended for use in a predictive con-

trol framework where real time predictions are made in the engine ECU. In order to

evaluate the prediction capability of the models, a root mean squared error (RMSE)

given by equation (4.1) is used. Other evaluation criteria include number of registers

required to store sensor measurements, number of parameters of the model and poten-

tial for online adaptation. The models are trained using a series-parallel architecture

[22] and one-step ahead prediction performance is evaluated on the unseen testing

data set. Finally, the model predictions are evaluated for npred steps ahead in time

using a separate input sequence. Both the testing set as well as the input sequence for

multi-step ahead predictions are never seen by the model during training. This gives

a good measure of the long term predictions as well as the generalization capability

53

of the models to unseen situations.

RMSE =

√√√√ 1

N

N∑
i=1

yd∑
j=1

(yij − ŷij)2 (4.1)

4.4.1 One-step Ahead Prediction

The one-step ahead predictions (OSAP) of the models are evaluated and discussed

in this section. The OSAP performance can be used to evaluate the models in a series-

parallel architecture. Although the ultimate design is a parallel architecture for long

term predictions, the OSAP performance can be used to evaluate the efficiency of

model training. The different variants of the ANN and SVR models (with different

activation functions in ANN and with different kernel functions in SVM) are analyzed

for prediction performance using the open loop experimental data.

4.4.1.1 ANN Model Predictions

It can be observed from Table 4.5 that both MLP and RBF networks are able

to learn the HCCI combustion dynamics to a good accuracy for one-step-ahead pre-

diction. As a baseline, a linear regression model is selected and trained using the

data set after performing cross-validation based hyper-parameter selection similar to

the neural models. All three model structures - MLP, RBN and Linear regression

have a similar order of accuracy for the considered engine variables. It can be seen

that for most of the engine variables, the MLP models achieves a minimum testing

error. Also, the MLP model results in small system orders compared to the other

two architectures. The number of parameters of MLP models are significantly less

compared to RBN models because RBN models store the centers of the radial basis

neurons. It should be noted that the linear regression surprisingly performs well for

one-step-ahead prediction for the considered problem. However, a large system order

is required for the models indicating that the data has to remain in a high dimension

54

Table 4.5: Summary of prediction performances of MLP and RBN models. The
results of linear regression model is also included as a baseline. Here nm and np
represents the number of memory units and number of model parameters required
for prediction. The training and testing errors are for one-step ahead prediction
while MSAP RMSE indicates the root mean squared error for multiple-step ahead
prediction. The minimum error among linear, MLP and RBN models is highlighted
in bold.

NMEP CA50 Rmax EAFR

Training Error 0.0332 0.2335 0.2175 0.0361
MLP Testing Error 0.0374 0.2466 0.2300 0.0374
model nm 22 33 33 22

np 131 161 171 131
MSAP RMSE 0.0671 0.2804 0.2638 0.0742

Training Error 0.0346 0.2375 0.2074 0.0300
RBN Testing Error 0.0424 0.2551 0.2373 0.0361
model nm 22 33 22 22

np 2401 1921 2401 2401
MSAP RMSE 0.1311 0.3918 0.3076 0.0707

Training Error 0.0400 0.2702 0.2423 0.0693
Linear Testing Error 0.0412 0.2778 0.2369 0.0686

Regression nm 55 55 55 11
np 19 18 21 9

MSAP RMSE 0.1510 0.3401 0.2841 0.1375

55

feature space in order for linear models to capture the underlying behavior. More

crucially, the linear models did not perform well under multi-step-ahead predictions

(see MSAP error in Table 4.5 and Figures 4.2-4.5) and hence linear models are found

to be unsatisfactory for identifying the combustion behavior of HCCI. The nonlinear

models (MLP and RBN) perform well for MSAP with the MLP models winning by

a slight margin over the RBN models.

An important comparison between MLP and RBN models can be made with

respect to the memory required (nm) and the total number of parameters (np) used

to fit the data. Memory in this context is referred to as the space required to store

the measurement signals (like FM, SOI, NMEP, CA50 etc.) for prediction on-board

in the engine control unit. The total number of parameters can be thought of as

the static memory space in the ECU that reads the model parameters. The memory

requirement is given by nm = udnu + ydny while the number of parameters is given

by np = ninh + nh + nhyd + yd for MLP network and np = ninh + nhyd + yd for

RBN models. However, it should be noted that the number of hidden neurons, nh is

very large in case of RBN i.e., to achieve similar performance levels of MLP network,

RBN requires extremely large number of parameters to fit the data. With further

increase in the dimension of the signals and the number of observations, the size of

the RBN model can increase significantly which can limit the RBN models from being

implemented on the engine ECU. It should be noted that the RBN model is relatively

faster to train. However the training time is not considered as a metric for comparison

as training can be afforded to be done off-line as presented in this chapter. Hence

the MLP model is considered suitable for the HCCI identification problem both from

prediction accuracy and storage perspectives.

56

4.4.1.2 SVM Model Predictions

Similar to the ANN evaluations, the SVR models are simulated with the unseen

test data set and performance of the models are measured using an RMSE metric as

in (4.1). Table 4.6 compares the performance of the models in terms of training and

testing RMSE, memory units and the number of parameters required. The number of

parameters represent the sparsity as controlled by the parameter ν. Several possible

kernel functions (see Section 2.5) are evaluated for the HCCI engine data and its

suitability evaluated.

Table 4.6: Performance comparison of SVR for modeling IMEP, CA50, Rmax and
EAFR. Here, nm and np represents number of memory units and number of parame-
ters (support vectors) required by the models.

Kernel Type IMEP CA50 Rmax EAFR
Training RMSE 0.0686 0.2621 0.2571 0.0173

Linear Testing RMSE 0.0735 0.2678 0.2555 0.0173
nm 20 50 50 50
np 73502 330825 280335 168212

Training RMSE 0.0693 0.2451 0.2398 0.0127
Polynomial Testing RMSE 0.0663 0.2793 0.3098 0.0155
of degree 2 nm 20 30 40 40

np 46486 70455 79200 125488
Training RMSE 0.0707 0.2651 0.2494 0.0141

Polynomial Testing RMSE 0.0671 0.2691 0.2583 0.0173
of degree 3 nm 20 20 10 30

np 57068 45012 22517 56265
Training RMSE 0.0742 0.3082 0.3103 0.0245

Sigmoidal Testing RMSE 0.0693 0.3093 0.3055 0.0245
nm 20 50 50 30
np 218372 220330 279400 192456

Training RMSE 0.0632 0.2396 0.2079 0.0173
Gaussian Testing RMSE 0.0608 0.2525 0.2181 0.0173

nm 20 30 10 20
np 113652 149787 69861 102982

It can be seen from Table 4.6 that all the considered kernel models capture the

dynamics of IMEP, CA50, Rmax and EAFR to a reasonable accuracy but with different

57

memory and storage requirements. Gaussian kernel outperforms all the other kernels

in terms of both achieving maximum accuracy as well as with relatively low memory

and storage requirements. This can also be seen in Table 4.3 where gaussian kernel

identifies the system with a relatively lower order (no) for all the response variables

considered. The performance of all the kernels are comparable for IMEP with similar

memory requirements. Indeed, the linear kernel uses less parameters compared to

the gaussian kernel. This may be attributed to the simpler mechanism behind IMEP

which strongly depends on the fuel mass injected [72] and can be potentially identified

using linear models. It should be noted that the polynomial kernel models are tested

on a smaller data set and hence the number of parameters are low. Overall, the

gaussian kernel is chosen as appropriate for modeling the HCCI engine behavior.

4.4.2 Multiple-step Ahead Prediction

In order to observe the multi-step-ahead prediction capability of the models, a

completely separate data set is used where only the input trajectories are given to

the model along with the initial conditions of the outputs (delay initial conditions).

The OSAP models (series-parallel architecture) are converted to a MSAP form (par-

allel architecture) by feeding back the predictions of the OSAP model in a recurrent

manner as follows

ŷ(k + npred) = f̂NARX [u(k + npred − 1), .., u(k − nu + npred),

ŷ(k + npred − 1), .., ŷ(k − ny + npred)] (4.2)

where k indicates the present time index. An output feedback is made in the network

to create a parallel architecture as shown in Figure 2.6. The MSAP performance of

the considered models are discussed as follows.

58

4.4.2.1 ANN Model Predictions

The figures 4.2, 4.3, 4.4 and 4.5 compares the 200-cycle predictions of the MLP

and RBN models for unseen input trajectories. In each plot, four different input

trajectories are presented and the predictions compared. The engine variables are

plotted every combustion cycle and each plot shows the predictions for about 8 seconds

of engine data. The RMSE for the multi-step ahead predictions are included in Table

4.5.

It can be seen from Figures 4.2-4.5 and Table 4.5 that the linear models do not

perform in MSAP as well as they did for OSAP. The reason could be insufficient

capability of the linear models to capture nonlinear system behavior. Also, the model

output is fed back for subsequent predictions in a recurrent manner. It is important

that the model possesses sufficient robustness and any poor predictions not affect the

future predictions in a significant manner. The linear models appear to be lacking

this feature compared to the nonlinear models. Another reason could be over-fitting

as the linear models fits the data with a high order when low order models [7, 8] were

found sufficient for the HCCI variables.

It is also surprising to observe that the RBN models do not perform well at

several operating conditions including Figure 4.2 (top left subplot between 100 and

200 cycles, top right subplot between 0 and 50 cycles), Figure 4.3 (bottom left subplot

between 50 and 120 cycles) etc. A possible reason could be the local nature of the

approximation captured by RBN. The local nature of RBNs might result in over-

fitting (inability to generalize) if there are not enough training data in certain regions

of interest. MLP models on the other hand perform reasonably well compared to

the other two architectures. Both the steady-state and transient behavior are well

captured. The good performance of MLP models may be attributed to the global

nature of the sigmoidal activation function. Hence it is concluded that MLP models

are suitable for the considered HCCI modeling problem in terms of both one-step-

59

0 50 100 150 200
2

2.5

3

3.5

N
M

E
P

Combustion Cycles

0 50 100 150 200
2

2.5

3

3.5

N
M

E
P

Combustion Cycles

0 50 100 150 200
1.5

2

2.5

3

3.5

N
M

E
P

Combustion Cycles

0 50 100 150 200
2.2

2.4

2.6

2.8

3

3.2

N
M

E
P

Combustion Cycles

MLP
RBN
Linear Regression
Experiment

Figure 4.2: Comparison of 200 step ahead prediction for IMEP by MLP, RBN and
linear models with actual engine data.

ahead and multi-step-ahead predictions.

4.4.2.2 SVM Model Predictions

Similar to the neural models, the OSAP SVR models are converted to MSAP

models for performing long term dynamic simulations. For MSAP evaluations, the

gaussian kernel models chosen from the previous section has been used. The MSAP

RMSE for the gaussian models are 0.0598, 0.2980, 0.2383 and 0.0636 for IMEP, CA50,

Rmax and EAFR respectively. The 200 cycle ahead predictions of IMEP, CA50, Rmax

and EAFR are compared against measured data from the engine in Figures 4.6 -

4.9. Each figure shows predictions of an output variable for four different cases as

validations in different operating conditions. It can be observed from the figures that

the models are able to predict the HCCI dynamics to a good accuracy and can be

used as engine simulators. It can also be observed that both the steady state values

and the transients are well captured by the models except for a few regions where

60

0 50 100 150 200
0

5

10

15

C
A

50

Combustion Cycles

0 50 100 150 200
2

4

6

8

10

12

C
A

50

Combustion Cycles

0 50 100 150 200
2

4

6

8

10

12

C
A

50

Combustion Cycles

0 50 100 150 200
0

5

10

15

C
A

50

Combustion Cycles

MLP
RBN
Linear Regression
Experiment

Figure 4.3: Comparison of 200 step ahead prediction for CA50 by MLP, RBN and
linear models with actual engine data.

0 50 100 150 200
0

1

2

3

4

5

6

R
m

ax

Combustion Cycles

0 50 100 150 200
1

2

3

4

5

6

R
m

ax

Combustion Cycles

0 50 100 150 200
0

1

2

3

4

5

6

R
m

ax

Combustion Cycles

0 50 100 150 200
0

1

2

3

4

5

6

R
m

ax

Combustion Cycles

MLP

RBN

Linear Regression

Experiment

Figure 4.4: Comparison of 200 step ahead prediction for maximum pressure rise rate
(Rmax) by MLP, RBN and linear models with actual engine data.

61

0 50 100 150 200
0.8

1

1.2

1.4

1.6

λ

Combustion Cycles

0 50 100 150 200
1.1

1.2

1.3

1.4

1.5

λ

Combustion Cycles

0 50 100 150 200
0.8

1

1.2

1.4

1.6

λ

Combustion Cycles

0 50 100 150 200
0.8

1

1.2

1.4

1.6

λ

Combustion Cycles

MLP
RBN
Linear Regression
Experiment

Figure 4.5: Comparison of 200 step ahead prediction for EAFR by MLP, RBN and
linear models with actual engine data.

there is a bias offset owing to poor approximations. Lack of excitations near such

input combinations could be a reason for the bad predictions of the model.

The MSAP accuracies of SVR and ANN models are similar with SVR models

winning by a slight margin. However, it can be noted from Tables 4.5 and 4.6 that the

number of parameters required by the SVR models are significantly high compared

to the neural models (100-1600 times more) because of its non-parametric nature,

i.e., the number of support vectors becomes a fraction of the total data set and if

the data set is large, the number of support vectors can increase dramatically. This

forms a major drawback of the SVR method although it solves a convex optimization

problem and solution is robust. Overall, the SVR models with gaussian kernels are

well suited for HCCI identification but might be computationally expensive for engine

ECU application.

62

0 50 100 150 200
1.5

2

2.5

3

3.5

Engine Combustion Cycles

N
M

E
P

 (
ba

r)

0 50 100 150 200
1

1.5

2

2.5

3

3.5

Engine Combustion Cycles

N
M

E
P

 (
ba

r)
0 50 100 150 200

2

2.5

3

3.5

Engine Combustion Cycles

N
M

E
P

 (
ba

r)

0 50 100 150 200
2.2

2.4

2.6

2.8

3

3.2

Engine Combustion Cycles
N

M
E

P
 (

ba
r)

Prediction
Experimental

Figure 4.6: Comparison of IMEP (engine output and SVR prediction).

0 50 100 150 200
0

5

10

15

Engine Combustion Cycles
0 50 100 150 200

0

5

10

15

Engine Combustion Cycles

0 50 100 150 200
0

5

10

15

Engine Combustion Cycles

0 50 100 150 200
0

5

10

15

Engine Combustion Cycles

Prediction
Experimental

Figure 4.7: Comparison of CA50 (engine output and SVR prediction).

63

0 50 100 150 200
0

1

2

3

4

5

Engine Combustion Cycles
0 50 100 150 200

0

2

4

6

Engine Combustion Cycles

0 50 100 150 200
0

2

4

6

Engine Combustion Cycles

0 50 100 150 200
1

2

3

4

5

6

Engine Combustion Cycles

Prediction
Experimental

Figure 4.8: Comparison of Maximum rate of pressure rise (engine output and SVR
prediction).

0 50 100 150 200
1

1.1

1.2

1.3

1.4

1.5

Engine Combustion Cycles
0 50 100 150 200

1

1.2

1.4

1.6

1.8

Engine Combustion Cycles

0 50 100 150 200
1

1.1

1.2

1.3

1.4

1.5

Engine Combustion Cycles

0 50 100 150 200
0.9

1

1.1

1.2

1.3

1.4

Engine Combustion Cycles

Prediction
Experimental

Figure 4.9: Comparison of Lambda (engine output and SVR prediction).

64

4.5 Model Development using Closed-loop Experimental Data

In this section, the data set obtained from closed-loop experiments (with the

controller ON, see chapter III) is used to develop models for controls development.

The three models considered in this chapter (ANN, SVM and ELM) are used to build

models for IMEP, CA50, Rmax and EAFR. Table 4.7 summarizes the performance of

the considered models. It can be observed that the ELM models outperform the ANN

and SVM models both in terms of prediction accuracy and number of parameters used.

In spite of being less complex and possible local minima, the ANN models perform

similar to the ELM models. However, such high accuracies are not always guaranteed

with ANN models as ANN training might find a local minima for a different data set.

It should be noted that the obtained results for ELM models correspond to a give

set of random parameters of Wr and br. A different set of random parameters would

result in different accuracy and convergent behavior. In this study, the matrices Wr

and br are considered as model hyper-parameters and are chosen from a set of 20

different randomizations using cross-validation.

The multi-step ahead predictions are summarized in Figures 4.11-4.14. The mod-

els are simulated using a predefined input sequence as shown in Figure 4.10. It is

clear that the ELM and ANN predictions are close to the experimental data while

the SVR models have a slight offset as indicated in the RMSE values in Table 4.7

4.6 Predictions at Different Engine Speeds

In the above model building task, the experiments were performed at a constant

engine speed and machine learning models were developed to simulate unknown in-

puts at that particular speed. In this section, the modeling task is extended to include

multiple engine speeds. Ideally, engine speed has to be considered as an input exci-

tation during the experiment design phase, but owing to the absence of the steady

65

Table 4.7: Performance comparison of ANN, SVM and ELM models. Here RMSE
refers to root mean squared error, OSAP and MSAP refer to one-step ahead predic-
tion and multi-step ahead prediction respectively. The minimum error models are
highlighted bold.

Model IMEP CA50 Rmax EAFR

OSAP RMSE 0.0587 0.1329 0.1508 0.0288
MSAP RMSE 0.0505 0.1356 0.1614 0.0481

ANN #parameters 651 101 101 101
model nh 65 10 10 5

λ 0.1 0.01 0.01 0.01
no 2 2 2 2

OSAP RMSE 0.0749 0.1357 0.1624 0.0432
MSAP RMSE 0.0789 0.1384 0.1718 0.0886

SVM #parameters 4776 19072 19088 28596
model ω 0.01 0.01 0.01 0.001

C 1 1 10 1
ν 0.1 0.2 0.2 0.2
no 1 2 2 3

OSAP RMSE 0.0582 0.1257 0.1497 0.0257
MSAP RMSE 0.0536 0.1284 0.1573 0.0407

ELM #parameters 650 900 1400 980
model nh 65 90 100 70

λ 0.1 0.01 0.01 0.01
no 2 2 3 3

66

0 200 400 600 800 1000 1200
18

20

22

24

26

F
ue

l I
np

ut

0 200 400 600 800 1000 1200
−115

−110

−105

−100
E

V
C

0 200 400 600 800 1000 1200
300

320

340

360

Engine Cycles

S
O

I

Figure 4.10: Input trajectories for simulating the models for performing multi-step
ahead predictions.

0 200 400 600 800 1000 1200
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Engine Cycles

IM
E

P
 (

ba
r)

SVM
ANN
ELM
Experimental

Figure 4.11: Comparison of IMEP predictions by SVM, ANN and ELM models with
the experimental engine data.

67

0 200 400 600 800 1000 1200
−15

−10

−5

0

Engine Cycles

C
A

50
 (

de
g

bC
T

D
C

)

SVM
ANN
ELM
Experimental

Figure 4.12: Comparison of CA50 predictions by SVM, ANN and ELM models with
the experimental engine data.

0 200 400 600 800 1000 1200

1

1.5

2

2.5

3

3.5

4

4.5

5

Engine Cycles

R
m

ax
 (

ba
r/

de
g

C
A

)

SVM
ANN
ELM
Experimental

Figure 4.13: Comparison of Rmax predictions by SVM, ANN and ELM models with
the experimental engine data.

0 200 400 600 800 1000 1200
1.15

1.2

1.25

1.3

1.35

Engine Cycles

E
A

F
R

SVM
ANN
ELM
Experimental

Figure 4.14: Comparison of EAFR predictions by SVM, ANN and ELM models with
the experimental engine data.

68

Table 4.8: Modeling summary for experiments at 1600 RPM and 1800 RPM.

Experiments 1600 RPM 1800 RPM
train data size 10000 12000
test data size 4000 5000

nh 180 135
no 2 2
λ 0.1 0.001

OSAP RMSE 0.1074 0.1085
MSAP RMSE 0.1111 0.1092

state engine dynamometer to perform speed transients, the following approach is

used. For demonstration purposes, experimental data at two engine speeds are con-

sidered. Closed loop identification experiments are performed at 1600 and 1800 RPM

and ELM models are developed in a similar manner as decried in this chapter. The

specifications and predictions results are listed in Table 4.8 and multi-step ahead

predictions are shown in Figures 4.15 and 4.16 for 1600 and 1800 respectively.

4.6.1 Interpolation Model Approach

The above models perform well for the corresponding engine speeds. However,

they are not appropriate to be used for predictions at a different engine speed. To

handle this problem, an interpolation based approach is employed. For any speed

between 1600 and 1800 RPMs, the predictions are obtained by a linear interpola-

tion between the two models. A different experiment is conducted on the engine by

manually varying engine speed between the specified RPMs as shown in Fig. 4.17.

The validation of the approach is shown in Figures 4.18 to 4.20. It can be verified

that if the original models are used for speeds between 1600 and 1800 RPM, the

predictions are bad with an offset. The MSAP errors for the 1600 RPM model, 1800

RPM model and the interpolation models are 1.3968, 1.4146 and 1.3245 respectively

which indicates that the interpolation model gives a superior predictions for the in-

termediate speed data. It can be observed from the prediction figures that when the

69

0 100 200 300 400 500 600 700 800 900 1000
2.5

3

3.5

IM
E

P
 (

ba
r)

0 100 200 300 400 500 600 700 800 900 1000
−20

−10

0

C
A

50
(d

eg
 b

C
T

D
C

)

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

P
m

ax
(b

ar
)

0 100 200 300 400 500 600 700 800 900 1000
0

5

R
m

ax
(b

ar
/d

eg
 C

A
)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

T
or

qu
e

(N
m

)

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

Engine Cycles

E
A

F
R

Model Prediction
Experimental Data

Figure 4.15: Prediction summary of the nonlinear ELM model at 1600 RPM.

70

0 100 200 300 400 500 600 700 800 900 1000
2.5

3

3.5

IM
E

P
 (

ba
r)

0 100 200 300 400 500 600 700 800 900 1000
−20

−10

0

C
A

50
(d

eg
 b

C
T

D
C

)

0 100 200 300 400 500 600 700 800 900 1000
20

40

60

P
m

ax
(b

ar
)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

R
m

ax
(b

ar
/d

eg
 C

A
)

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

T
or

qu
e

(N
m

)

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

Engine Cycles

E
A

F
R

Model Predictions
Experimental Data

Figure 4.16: Prediction summary of the nonlinear ELM model at 1800 RPM.

71

0 500 1000 1500 2000 2500 3000 3500 4000
15

20

25

F
ue

l I
np

ut

0 500 1000 1500 2000 2500 3000 3500 4000
−130

−120

−110

−100

E
V

C

0 500 1000 1500 2000 2500 3000 3500 4000
250

300

350

400

S
O

I

0 500 1000 1500 2000 2500 3000 3500 4000
1600

1650

1700

1750

1800

E
ng

in
e

S
pe

ed

Engine Cycles

Figure 4.17: Closed loop experiments by varying engine speed between 1600 and 1800
RPM. This data set is used for validating the interpolation model approach.

engine speed is 1600 RPM (see cycles 2000-2500), the predictions of the 1600 RPM

model is preferred and the solid red plot matches the blue curve which is close to

the experimental values. Similar behavior is observed when the engine speed is 1800

RPM. For the intermediate speeds, the interpolated results are plotted. The approach

approximates speed related behavior as a linear model and further work needs to be

done to determine the appropriate relationship.

72

1500 2000 2500 3000 3500

2.6

2.8

3

3.2

IM
E

P
 (

ba
r)

1500 2000 2500 3000 3500

−12

−10

−8

−6

−4

C
A

50
 (

de
g

bC
T

D
C

)

1500 2000 2500 3000 3500
1500

1600

1700

1800

1900

E
ng

in
e

S
pe

ed
 (

R
P

M
)

Engine Cycles

Experimental 1600 RPM model 1800 RPM model Interpolation model

Figure 4.18: Validation of the interpolation model for IMEP and CA50 predictions.
The predictions of 1600 RPM model and 1800 RPM models do not perform well when
the engine speed is varied.

73

1500 2000 2500 3000 3500
28

30

32

34

36

38

P
m

ax
 (

ba
r)

1500 2000 2500 3000 3500
1

2

3

4

5

R
m

ax
 (

ba
r/

de
g)

1500 2000 2500 3000 3500
1500

1600

1700

1800

1900

E
ng

in
e

S
pe

ed
 (

R
P

M
)

Engine Cycles

Experimental 1600 RPM model 1800 RPM model Interpolation model

Figure 4.19: Validation of the interpolation model for Pmax and Rmax predictions.
The predictions of 1600 RPM model and 1800 RPM models do not perform well
when the engine speed is varied.

74

1500 2000 2500 3000 3500
15

20

25

30

35

T
or

qu
e

(N
m

)

1500 2000 2500 3000 3500
1.05

1.1

1.15

1.2

1.25

1.3

1.35

E
A

F
R

1500 2000 2500 3000 3500
1500

1600

1700

1800

1900

E
ng

in
e

S
pe

ed
 (

R
P

M
)

Engine Cycles

Experimental 1600 RPM model 1800 RPM model Interpolation model

Figure 4.20: Validation of the interpolation model for engine torque and EAFR pre-
dictions. The predictions of 1600 RPM model and 1800 RPM models do not perform
well when the engine speed is varied.

75

CHAPTER V

Modeling the HCCI Operating Envelope using

Class Imbalance Learning

In the previous chapter, an application of machine learning to HCCI engines was

described. Dynamic simulators were developed for engine variables including IMEP,

CA50, Rmax, Pmax, EAFR, Torque etc. In this chapter, another novel application of

machine learning is introduced. HCCI engines have a limited stable operating region

owing to system and operating level constraints. For reasons mentioned in this chap-

ter, it becomes important to identify the stable operating envelope of HCCI especially

during transient operation. Such a task is extremely challenging when approached

from a first principles based approach but adds to an excellent demonstration for a

machine learning approach to engine modeling.

5.1 Motivation and Problem Statement

HCCI engines have been studied in the last decade owing to their ability to reduce

emissions and fuel consumption significantly compared to traditional spark ignition

and compression ignition engines [1, 2, 3]. The highly efficient operation of HCCI is

achieved using advanced control strategies such as exhaust gas recirculation (EGR)

[73], variable valve timings (VVT) [7], intake charge heating [74] among others. As

76

a consequence, complex manipulation of the system results in a highly nonlinear

behavior [75] and narrow region of stable operation [76, 77].

In order to develop controllers and operate the system in a stable manner, it is

imperative that the operating envelope of the system be determined. In general,

the operating envelope can be defined as a region in the input space (of permissible

values of system actuators for different thermal conditions of the engine) that results

in a stable operation of the engine. Knowledge of the operating envelope is crucial for

designing efficient controllers for the following reasons. The developer can get insights

on the actuator extremes (for example, minimum and maximum fuel injection rates

at a given speed and load condition) of the engine especially during transients, for

instance, when the cylinder wall temperatures are changing [73]. Such information can

be used to enforce constraints on the control variables for desired engine operation.

Also, the operating envelope model can act as a filter to perform system identification

by eliminating excitations that might lead the system to be unstable. Further, the

model can be used to alarm the onboard diagnostics if the engine is about to misfire

[78] owing to changes in system or operating conditions.

As mentioned earlier, HCCI engines are very complex systems involving chemical

kinetics and thermal dynamics which requires high-fidelity modeling using numerical

simulations for capturing accurate combustion behavior [79, 80, 81, 56]. Such an ap-

proach is computationally expensive particularly when there are several influencing

variables. The situation is worsened by the transient effects, i.e., the variables along

with its time history affects the system behavior. The operating envelope that de-

pends on the system variables along with its time history [73] can be considered a

dynamic system, and capturing this time varying behavior using conventional meth-

ods becomes intractable. Hence an approach using machine learning is considered in

this chapter where time series data from the sensors are used to model the operating

envelope of the HCCI engine.

77

The problem of identifying the operating envelope using experimental data re-

duces to a classification problem. As discussed in future sections, the labeling of

stable operating data is well defined while instability is chosen with respect to mis-

fires and high variability combustion. As a result, the problem can be posed as a

binary classification and a decision boundary can be modeled using existing classi-

fication algorithms. A support vector machine algorithm was used to identify the

operating envelope of a GDI engine [82] but the boundary was assumed to be a static

system and time history was not considered resulting in a simple binary classification

problem. However, for HCCI engines whose combustion behavior is influenced by

EGR from previous cycles, the importance of considering the time history of mea-

surements becomes significant [73]. Designing a classifier based on dynamic HCCI

data is one of the objectives of this chapter. Also, the experimental data set consists

of a large subset of stable class data with limited unstable class data, as misfiring the

engine is undesirable for the emission control hardware, a regular classification might

not be an appropriate solution since the decision boundary would be biased to one

class of data, resulting in over-fitting. Therefore, the other objective of this work is

to perform imbalanced class learning on the HCCI engine data. The following two

approaches have been compared

1. Heuristic re-sampling of data: apply preprocessing methods such as under-

sampling and over-sampling of data to get a balanced data set.

2. Cost-sensitive approach: modify the objective function of the learning system

to weigh the minority class data more heavily.

Three classification models including support vector machines (SVM), extreme learn-

ing machines (ELM) and logistic regression (LR) have been developed. The models

are compared for generalization accuracy, storage required in the engine ECU and

potential for online learning.

78

This chapter is organized as follows. A brief background on the classification

algorithms along with cost-sensitive modifications is given in Section 5.2. The HCCI

engine experiments and data processing are briefed in Section 5.3 with the envelope

modeling and prediction results discussed in Section 5.4.

5.2 Classification Algorithms

Consider the data set {(x1, y1), ..., (xN , yN)} ∈
(
X ,Y

)
where X denotes the space

of the input features (let X = Rn) while Y takes values in {-1,+1} and N denotes

the number of observations. The goal of the classification algorithm is to model the

underlying boundary separating the data by minimizing a risk function R(w) with

respect to the model parameters w.

R(w) =
1

N

N∑
i=1

L(yi − ŷi(x|w)) +
λ

2
wTw (5.1)

Here, R(w) has two components - the empirical risk minimizing the training error and

the structural risk minimizing the model parameters, L represents a loss functional

and ŷ(x|w, b) represents the model prediction, whose structure is given by the learning

algorithm (see following subsections). The algorithms considered in this study include

logistic regression (a linear model), support vector machines and extreme learning

machines (nonlinear models). Each algorithm is unique in formulation, loss function

used, convergence rates, computation demand, prediction accuracy and potential for

online learning. However, the main criteria used for evaluation in this study are

prediction accuracy, number of parameters used for modeling and potential for online

implementation for the HCCI engine system.

The HCCI classification problem involves identifying the boundary separating the

input space that result in a stable or unstable operation. Also, when the engine

misfires, the excitation command is changed to attempt a stable operation [70]. This

79

results in a class imbalance learning problem as the number of unstable class data is

significantly smaller than the number of stable class data.

5.2.1 Class Imbalance Learning

Class imbalance learning (CIL) is encountered during situations when the number

of instances of one class is very different from the number of instances in others. In

a binary classification problem, the class where the number of observations is large,

is referred to as the majority class (labeled +1) while the other class is referred to

as the minority class (labeled -1). Imbalanced data sets need careful attention as

machine learning (typically an optimization problem) causes the decision boundary

to be favorable to the majority class data while ignoring the minority class data

[83, 44].

Several solutions have been proposed to handle CIL problems including re-sampling

the data where the minority class can be duplicated to be in proportion with the ma-

jority class (referred to as over-sampling) or some majority class data is removed to

match proportions with the minority class (referred to as under-sampling). Although

both sampling methods aim to artificially obtain a balanced data set, under-sampling

is prone to loss of majority class information while over-sampling is prone to over-

fitting [83, 44]. Algorithm level modifications are also common which include cost-

sensitive learning that weights the minority class data more than the majority class

data in the optimization objective function. Other methods such as adjusting the

decision threshold, one-class learning etc. are available in literature, but this work is

restricted to the under-sampling, over-sampling and cost-sensitive methods.

5.2.2 Logistic Regression

Logistic regression (LR) is a classical linear classifier that proves to be effective

especially for large data set problems owing to its computational efficiency. LR makes

80

use of a logistic function given by equation (5.2) which confines the output of the

function to lie between 0 and 1. Unlike the linear regression model which solves a

least squares problem with a squared loss function, LR solves a nonlinear optimization

problem using a logistic loss function (see Figure A.1 in appendix A.1). The logistic

loss function is particularly attractive for classification because the algorithm does

not penalize the correctly classified points (at large positive margin in Figure A.1) as

much as the squared loss improving convergence.

ψ(x) =
1

1 + e−x
(5.2)

The conditional probability of estimating y from x can be expressed in terms of the

model parameters β = [β0 β1]T as

P (Y = y|X = x) =
1

1 + e−y(βT
1 x+β0)

(5.3)

where X and Y represent the input and output random variables. The goal of logistic

regression is to determine β such that P (Y |X, β) is maximized using the following

optimization problem (see appendix A.2)

β∗ = arg min
β

N∑
i=1

log
(

1 + e−y(βT
1 x+β0)

)
(5.4)

The equation (5.4) is nonlinear in β and can be solved by simple iterative methods

[84]. The LR decision hypothesis is given by

f(x) = sgn(βT1 x+ β0) (5.5)

81

where

sgn(x) =

1 x > 0

−1 x ≤ 0.

(5.6)

5.2.3 Support Vector Machines

Support Vector Machines (SVM) involve determining the boundary that maxi-

mizes the margin between the data based on a hinge loss

Lhinge(w, b) = max(0, 1− yf(x)), (5.7)

where yf(x) gives the margin [42]. More details on SVM modeling can be found in

chapter II. It should be noted that the regular SVM formulation is not designed for

an imbalanced data set where the majority class data outnumbers the minority class

data. A cost-sensitive version of the SVM algorithm is used in such cases, where

the cost penalty parameter C in equation (2.18) is modified to weigh more to the

penalties of the minority class data compared to the majority class data [43, 44]. All

implementations of SVM are done using LibSVM [43]. The cost modification can be

performed as follows

Ci =

C majority class data

C(r × f) minority class data

(5.8)

where r represents the ratio of number of majority class data to the number of mi-

nority class data and f represents a scaling factor to be tuned for a given data set.

5.2.4 Extreme Learning Machines

The ELM formulation can be found in chapter II as well. In order to handle

imbalanced class data, i.e., to modify the algorithm to weigh the minority class data

82

more, a simple weighting method can be incorporated in the ELM objective function

(2.36) as

min
W

{
(HW − Y)TΓimb(HW − Y) + λW TW

}
(5.9)

Γimb =

Γimb1 0 . . 0

0 Γimb2 . . 0

. . . . 0

0 0 . . ΓimbN

Γimbi =

1 majority class data

r × f minority class data

(5.10)

where Γimb represents the weight matrix, r represents the ratio of number of majority

class data to number minority class data and f represents a scaling factor to be tuned

for a given data set. This results in the training step given by equation (5.11) and

decision hypothesis given by equation (5.12).

W ∗ =
(
HTΓimbH + λI

)−1
HTΓimbY (5.11)

f(x) = sgn
(
W T [ψ(W T

r x+ br)]
)

(5.12)

5.3 HCCI Engine and Data Processing

For the purpose of identifying the stable operating envelope of HCCI engine, tran-

sient experiments are performed by exciting the engine and recording time sequences

of engine variables similar to the open loop experiments in chapter III. In this section,

the HCCI engine system and experiments performed are briefly explained followed by

a methodology of labeling the data suitable for classification.

83

5.3.1 HCCI System and Experimentation

The system can be controlled using precalculated inputs such as injected fuel mass

(FM in mg/cyc), crank angle at intake valve opening (IVO), crank angle at exhaust

valve closing (EVC), crank angle at start of fuel injection (SOI). Other important

physical variables that influence the performance of HCCI combustion include intake

manifold temperature Tin, intake manifold pressure Pin, mass flow rate of air at

intake ṁin, exhaust gas temperature Tex, exhaust manifold pressure Pex, coolant

temperature Tc, equivalent fuel-air ratio (EAFR) etc. The engine performance metrics

are given by combustion phasing indicated by the crank angle at 50% mass fraction

burned (CA50), combustion work output indicated by net mean effective pressure

(NMEP). Both CA50 and NMEP are determined from the high speed in-cylinder

pressure measurements. The above variables at present time instant k along with their

time histories are considered as inputs to the model (see Section 5.4, equation (5.15)).

The data is pre-processed and labeled to identify stable and unstable observations as

explained in Section 5.3.3.

5.3.2 HCCI Instabilities

A subset of the data collected from the engine is shown in Figure 5.1 where it can

be observed that for some combinations of the inputs (left figures), the HCCI engine

misfires (seen in the right figures where IMEP drops below 0 bar). HCCI operation is

limited by several phenomena that lead to undesirable engine behavior. As described

in [85], the HCCI operating range is conceptually constrained to a small region of

permissible unburned (pre-combustion) and burned (post-combustion) charge tem-

perature states. As previously noted, sufficiently high unburned gas temperatures

are required to achieve ignition in the HCCI operating range without which complete

misfire will occur. If the resulting combustion cannot achieve sufficiently high burned

gas temperatures, commonly occurring in conditions with low fuel to diluent ratios or

84

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

2

4

IM
E

P
 (

ba
r)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−20

0

20

40

60

80

C
A

50
 (

de
g

aT
D

C
)

5200 5300 5400 5500 5600 5700 5800 5900 6000

0

5

10

R
m

ax
 (

ba
r/

de
g)

5200 5300 5400 5500 5600 5700 5800 5900 6000

1

1.5

2

λ
(−

)

5200 5300 5400 5500 5600 5700 5800 5900 6000
7

8

9

10

11

F
ue

l M
as

s
(m

g/
cy

c)

5200 5300 5400 5500 5600 5700 5800 5900 6000

80

100

120
IV

O
 (

de
g

aC
T

D
C

)

5200 5300 5400 5500 5600 5700 5800 5900 6000

−110

−100

−90

−80

E
V

C
 (

de
g

aC
T

D
C

)

5200 5300 5400 5500 5600 5700 5800 5900 6000

280

300

320

340

360

S
O

I (
de

g
aE

T
D

C
)

Figure 5.1: A-PRBS inputs and outputs showing misfire regions.

late combustion phasing, various degrees of quenching can occur resulting in reduced

work output and increased hydrocarbon and carbon monoxide emissions. Under some

conditions, this may lead to high cyclic variation due to the positive feedback loop

existing through the trapped residual gas [86, 87]. Operation with high burned gas

temperature, although stable and commonly reached at higher fueling rates where the

fuel to diluent ratio is also high, yields high heat release and thus pressure rise rates

that may pose challenges for engine noise and durability constraints. A discussion of

the temperatures at which these phenomena occur may be found in [85].

In this work, the considered instabilities include those modes with high cyclic vari-

ability and those with complete misfire characterized by zero work output that can

be readily identified through the two aforementioned cylinder pressure-based com-

bustion features. The other phenomena could be included with the availability of

additional sensing capability or analysis methods, e.g. fast response Flame Ioniza-

tion Detection exhaust sampling equipment and detailed combustion noise analysis.

Finally, it must be noted that control of these burned and unburned gas states, and

85

therefore the potential for undesirable combustion cycles, in a recompression HCCI

engine is very much a function of the engine control variables. For instance, the EVC

timing will determine the trapped residual mass that will be present in the upcoming

cycle, while the IVO affects both the mass of incoming air and the state of the charge

during the compression stroke leading up to the autoignition. The combination of

IVO and EVC (see Fig. 3.2) define a negative valve overlap (NVO) period where ex-

haust gas from the previous cycle is trapped and compressed. A larger NVO period

would necessarily yield a higher trapped residual mass that would tend to increase

the charge temperature and advance CA50. Likewise, the timing and mass of the

fuel injection event can significantly impact the charge temperature by changing the

thermodynamic properties and air-fuel ratio of the charge present during NVO. The

relatively high temperatures present during NVO can even lead to reactions of the

fuel that will impact the temperature and chemical composition of the charge. Suc-

cessful combustion of charge with a higher FM will tend to yield higher residual gas

temperatures, thereby advancing CA50 in the following cycle. Likewise an earlier SOI

in NVO will tend to increase charge temperatures and reduce the ignition delay of

the charge, thereby advancing CA50. As such, an improper combination of control

inputs (IVO, EVC, FM and SOI) in HCCI engines has the potential to shift operation

from stable combustion to combustion with excessive heat release rates, high cyclic

variability or misfires in a single cycle.

5.3.3 Data Preprocessing and Labeling

As mentioned earlier, the goal of this work is to classify the input space as stable

(future HCCI cycles are stable) or unstable (future HCCI cycles misfire or have high

variability). For this purpose, every data observation is labeled as follows. If either

of the following two conditions are met, then the data at time instant k is labeled to

be unstable (see Fig. 5.2) with a label value -1.

86

3750 3800 3850 3900 3950 4000 4050 4100 4150 4200 4250
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

p

1

0.5

0

0.5

1

1.5

2

2.5

𝒌 𝒌 + 𝟏

Misfire
limit

2400 2450 2500 2550 2600 2650 2700 2750

-10

-5

0

5

10

15

20

25

0

5

10

15

𝒌 𝒌 + 𝒑

 0

IM
EP

 (b
ar

)
CA

50
 (d

eg
 a

TD
C)

Engine cycles

Engine cycles

Figure 5.2: Illustration showing labeling of unstable observations.

1. an input (control inputs and past engine measurements up to an order of Nh)

at cycle k results in an IMEP of less than 0.1 bar (chosen misfire limit) for any

cylinder at cycle k + 1.

2. an input at cycle k results in a high variance of CA50 (any cylinder) for cycles

k + 1 to k + p.

Only the first unstable data is considered in a sequence of unstable measurements.

The labeling of stable data is as follows. A window of Nw = 2p combustion cycles

is considered (see Fig. 5.3). If the data at cycle k is obtained as a result of stable

operation in the past p cycles as well as results in stable operation in the next p cycles,

it is labeled stable with a label value of +1. If the time history of Nh is considered,

then the data at cycle k along with the previous Nh samples are considered as inputs.

If Nh is a large value, then the window length Nw can be increased accordingly. In

this study, Nw and Nh correspond to 10 and 2 respectively.

87

3200 3300 3400 3500 3600 3700 3800 3900 4000

1.5

2

2.5

3

3.5

3200 3300 3400 3500 3600 3700 3800 3900 4000

0

2

4

6

8

10

E i l

𝒌 𝒌 + 𝒑 𝒌 − 𝒑

Misfire limit
IM

EP
 (b

ar
)

CA
50

 (d
eg

 a
TD

C)

Engine cycles

Figure 5.3: Illustration showing labeling of stable observations.

5.4 Model Development

The HCCI operating envelope is a function of the engine control inputs and engine

variables such as temperatures and pressures. Also, the envelope is a dynamic system

and hence a predictive model requires the measurement history up to an order of Nh.

The dynamic classifier model can be given by

ŷk+1 = sgn(f(xk)) (5.13)

where

sgn(x) =

1 x > 0

−1 x ≤ 0.

(5.14)

88

where ŷk+1 indicates model prediction for the future cycle k + 1, f can take any

structure depending on the learning algorithm and xk is given by

xk = [IV O,EV C, FM, SOI, Tin, Pin, ṁin, Tex, Pex, Tc, FA, IMEP,CA50]T (5.15)

at cycle k upto cycle k −Nh + 1.

5.4.1 Model Selection

In this section, classification algorithms are developed based on Linear Regression

(LS), Logistic regression (LR), SVM and ELM models. SVM and ELM models have

variants based on performing under-sampling, over-sampling or no-sampling (regular)

on the data set or the cost-sensitive version. The linear models (LR and LS) are

compared as baselines and have their respective variants. The engine measurements

and their time histories (defined by xk) are considered inputs while the stability labels

are considered outputs. The measured variables such as FM, IVO, EVC, SOI, Tc, Tin,

Pin, ṁin, Tex, Pex, NMEP, CA50 and FA along with 2 cycles of history constitute the

feature vector (input dimension n = 39). The measurement set consists of about

17000 observations out of which about 6400 observations are sampled as training

set while about 10200 observations sampled as testing set. The ratio of number of

majority class data to number minority class data (r) for the training set is 17.5 and

for the testing set is 16.7.

For the class imbalance problem considered here, a typical error metric like the

overall misclassification rate cannot be used as it would find a classifier that deem-

phasizes the minor class inaccuracies. Hence the following accuracy metric for skewed

data sets is considered. Let TP and TN represent the total number of positive and

negative class data classified correctly by the classifier. If N+ and N− represent the

total number of positive and negative class data respectively, the true positive rate

89

(TPR) and true negative rate (TNR) and the total accuracy of the classifier can be

defined as follows [88]

TPR =
TP

N+

TNR =
TN

N−

Total Accuracy =
TPR + TNR

2
. (5.16)

Each of the considered models have a set of hyper-parameters (cost penalty C and

kernel parameter σ for SVM while regularization coefficient λ and number of hidden

neurons nh for ELM) which needs tuning to suit the data set. A full grid search

cross-validation is employed where the optimal combination of hyper-parameters are

determined based on observed total accuracy of the classifier. The hyper-parameter

tuning results are shown in Table 5.1 for ELM, Table 5.2 for SVM for the no-sampling

and re-sampling cases. It can be observed that the total accuracy is generally high for

SVM models compared to the ELM models. It can also be observed that by under-

sampling or over-sampling the data, better accuracies can be achieved compared to the

no-sampling case. Also both sampling methods give similar accuracy levels for both

ELM and SVM models. However, an advantage of under-sampling can be realized in

reduced computation as training is performed with a smaller subset of the training

data.

90

Table 5.1: Grid search results for ELM model selection for the regular ELM, ELM with under-sampling and ELM with over-
sampling (The models resulting in lowest total accuracy is highlighted in bold).

Regular ELM ELM with under-sampling ELM with over-sampling

TPR TPR TPR
HHH

HHnh

λ
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

10 0.995 0.995 0.995 0.996 1.000 0.909 0.909 0.912 0.906 0.878 0.925 0.925 0.925 0.925 0.919
30 0.994 0.994 0.995 0.995 0.997 0.917 0.916 0.918 0.923 0.896 0.934 0.934 0.934 0.936 0.936
50 0.995 0.995 0.995 0.995 0.998 0.917 0.918 0.925 0.948 0.915 0.930 0.931 0.932 0.935 0.951
70 0.996 0.996 0.996 0.996 0.996 0.936 0.937 0.931 0.936 0.948 0.944 0.945 0.946 0.946 0.946
90 0.995 0.995 0.995 0.995 0.996 0.915 0.918 0.924 0.929 0.927 0.938 0.938 0.939 0.944 0.942

TNR TNR TNR
HH

HHHnh

λ
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

10 0.333 0.333 0.327 0.258 0.000 0.732 0.734 0.737 0.771 0.743 0.716 0.716 0.716 0.722 0.757
30 0.387 0.389 0.387 0.366 0.160 0.714 0.719 0.730 0.732 0.732 0.727 0.725 0.729 0.735 0.727
50 0.430 0.430 0.423 0.407 0.294 0.771 0.773 0.752 0.735 0.727 0.773 0.773 0.771 0.755 0.724
70 0.426 0.423 0.413 0.404 0.351 0.771 0.770 0.775 0.748 0.704 0.739 0.739 0.739 0.758 0.740
90 0.433 0.430 0.420 0.405 0.356 0.789 0.794 0.784 0.768 0.755 0.763 0.768 0.773 0.775 0.775

Total Accuracy Total Accuracy Total Accuracy
HHH

HHnh

λ
0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

10 0.664 0.664 0.661 0.627 0.500 0.821 0.821 0.825 0.839 0.811 0.820 0.820 0.820 0.824 0.838
30 0.691 0.692 0.691 0.680 0.579 0.815 0.818 0.824 0.828 0.814 0.831 0.830 0.832 0.835 0.832
50 0.712 0.712 0.709 0.701 0.646 0.844 0.846 0.838 0.842 0.821 0.852 0.852 0.851 0.845 0.838
70 0.711 0.709 0.705 0.700 0.674 0.853 0.853 0.853 0.842 0.826 0.842 0.842 0.842 0.852 0.843
90 0.714 0.712 0.707 0.700 0.676 0.852 0.856 0.854 0.848 0.841 0.850 0.853 0.856 0.859 0.858

91

Table 5.2: Grid search results for SVM model selection for the regular SVM, SVM with under-sampling and SVM with over-
sampling (The models resulting in lowest total accuracy is highlighted in bold).

Regular SVM SVM with under-sampling SVM with over-sampling

TPR TPR TPR
HHH

HHC
σ

0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

0.1 1.000 0.996 1.000 1.000 1.000 0.928 0.933 0.767 0.120 0.106 0.966 0.923 0.917 0.899 0.993
1 0.996 0.996 0.994 0.998 1.000 0.965 0.906 0.910 0.782 0.588 0.932 0.931 0.962 0.989 0.999
10 0.996 0.995 0.990 0.997 0.999 0.916 0.915 0.909 0.792 0.618 0.933 0.951 0.976 0.996 0.999
100 0.996 0.990 0.987 0.996 0.999 0.924 0.927 0.896 0.793 0.618 0.935 0.966 0.983 0.996 0.999
500 0.995 0.988 0.985 0.996 0.999 0.925 0.917 0.892 0.793 0.618 0.945 0.971 0.983 0.996 0.999

TNR TNR TNR
HH

HHHC
σ

0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

0.1 0.000 0.374 0.000 0.000 0.000 0.632 0.735 0.931 0.998 0.998 0.667 0.820 0.913 0.958 0.162
1 0.397 0.423 0.552 0.108 0.054 0.668 0.825 0.923 0.967 0.987 0.792 0.884 0.814 0.221 0.082
10 0.423 0.444 0.645 0.145 0.080 0.802 0.882 0.925 0.958 0.975 0.822 0.817 0.732 0.167 0.080
100 0.430 0.567 0.650 0.165 0.080 0.833 0.886 0.915 0.954 0.975 0.848 0.763 0.642 0.165 0.080
500 0.436 0.627 0.637 0.165 0.080 0.853 0.882 0.910 0.954 0.975 0.833 0.724 0.623 0.165 0.080

Total Accuracy Total Accuracy Total Accuracy
HHH

HHC
σ

0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100

0.1 0.500 0.685 0.500 0.500 0.500 0.780 0.834 0.849 0.559 0.552 0.816 0.871 0.915 0.928 0.577
1 0.696 0.710 0.773 0.553 0.527 0.817 0.866 0.916 0.875 0.787 0.862 0.907 0.888 0.605 0.540
10 0.709 0.720 0.818 0.571 0.539 0.859 0.899 0.917 0.875 0.797 0.878 0.884 0.854 0.581 0.539
100 0.713 0.779 0.819 0.580 0.539 0.879 0.906 0.905 0.874 0.797 0.892 0.865 0.812 0.580 0.539
500 0.716 0.808 0.811 0.580 0.539 0.889 0.899 0.901 0.874 0.797 0.889 0.847 0.803 0.580 0.539

92

Table 5.3: Grid search results for Cost-sensitive SVM and Cost-sensitive ELM models (The models resulting in lowest total
accuracy is highlighted in bold).

Cost-sensitive SVM Cost-sensitive ELM

TPR TPR
HHH

HHC
σ

0.001 0.01 0.1 1 10 100
HHH

HHnh

λ
0.01 0.1 1 10 100

0.1 0.000 0.000 0.000 0.000 0.000 0.000 10 0.909 0.909 0.909 0.907 0.901
1 0.984 0.972 0.921 0.918 0.884 0.764 30 0.924 0.924 0.923 0.927 0.927
10 0.995 0.994 0.993 0.988 0.996 0.999 50 0.925 0.925 0.926 0.930 0.936
100 1.000 0.999 0.993 0.987 0.996 0.999 70 0.939 0.939 0.939 0.934 0.931
500 1.000 0.997 0.989 0.985 0.996 0.999 90 0.932 0.932 0.933 0.936 0.930

TNR TNR
0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100

0.1 1.000 1.000 1.000 1.000 1.000 1.000 10 0.742 0.743 0.745 0.753 0.779
1 0.490 0.627 0.806 0.912 0.961 0.972 30 0.737 0.737 0.735 0.740 0.735
10 0.399 0.443 0.489 0.660 0.154 0.080 50 0.778 0.778 0.775 0.771 0.748
100 0.181 0.355 0.495 0.647 0.165 0.080 70 0.770 0.770 0.765 0.779 0.768
500 0.126 0.405 0.554 0.639 0.165 0.080 90 0.786 0.786 0.794 0.784 0.784

Total Accuracy Total Accuracy
0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100

0.1 0.500 0.500 0.500 0.500 0.500 0.500 10 0.825 0.826 0.827 0.830 0.840
1 0.737 0.800 0.863 0.915 0.922 0.868 30 0.830 0.830 0.829 0.833 0.831
10 0.697 0.718 0.741 0.824 0.575 0.539 50 0.852 0.851 0.850 0.851 0.842
100 0.591 0.677 0.744 0.817 0.580 0.539 70 0.854 0.854 0.852 0.857 0.850
500 0.563 0.701 0.771 0.812 0.580 0.539 90 0.859 0.859 0.864 0.860 0.857

93

0 0.5 1 1.5 2 2.5 3 3.5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scaling factor

TPR
TNR

Total
Accuracy

Figure 5.4: Sensitivity plot for TPR, TNR and Total Accuracy with scaling factor f
for cost-sensitive SVM.

The model tuning for cost-sensitive SVM and ELM are summarized in Table 5.3.

It can be observed that the cost-sensitive models find the decision boundary without

re-sampling the data. Also, the total accuracy levels are slightly higher compared

to the re-sampling methods. However, it can be observed that the TPR and TNR

are not close to each other for both ELM and SVM models and the same can be

observed for under-sampling and over-sampling cases too indicating that it could be

a limitation in the data set to classify both classes to similar accuracy. By varying

the scaling factor f , the boundary can be perturbed to suit the application which

require either high TPR or high TNR. Sensitivity plots have been shown in Figure

5.4 and Figure 5.5 for SVM and ELM models respectively to observe the variation of

total accuracy with the scaling factor. By understanding the sensitivity of the weight

factors, an optimal weight for the minority class data (combination of r and f) can

be determined.

As mentioned earlier, the SVM models have a better total accuracy compared to

the ELM models. One reason could be that SVM minimizes a hinge loss while ELM

minimizes a squared loss (as shown in Figure A.1) and hence better regularization

performance. Another reason could be that the ELM models are too simple to iden-

tify the decision boundary accurately. A possibility is to add more hidden neurons.

94

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

Scaling factor

TPR
TNR

Total
Accuracy

Figure 5.5: Sensitivity plot for TPR, TNR and Total Accuracy with scaling factor f
for cost-sensitive ELM.

Table 5.4: Cost-sensitive ELM models with different random initialization of input
layer parameters

TPR TNR Total λ nh f
Accuracy

1 0.932 0.871 0.901 10.000 800.000 1.2
2 0.921 0.879 0.900 10.000 600.000 1.3
3 0.933 0.871 0.902 10.000 900.000 1.3
4 0.930 0.863 0.896 10.000 600.000 1.2
5 0.934 0.859 0.896 10.000 800.000 1.3
6 0.927 0.871 0.899 10.000 800.000 1.2
7 0.939 0.864 0.902 10.000 800.000 1.2
8 0.927 0.869 0.898 10.000 700.000 1.1
9 0.929 0.873 0.901 10.000 1000.000 1.3
10 0.928 0.866 0.897 10.000 900.000 1.3

Also, the ELM solution greatly depends on the random initialization of the input

layer parameters (Wr and br). In an attempt to evaluate models with more hidden

neurons and different random initializations of the input layer parameters, a further

experiment was conducted and results summarized in Table 5.4. It can be observed

that as more hidden neurons are added, the total accuracy of ELM model improves.

Also, different randomization helps in finding a compact model at a given accuracy

level (compare case 2 with case 9 where 400 additional neurons are required for a

negligible improvement). Hence determining an efficient way of initialization of input

layer parameters is required for ELM models and will be considered in the future.

95

Table 5.5: Summary of results for SVM and ELM models for all cases (Regular model, under-sampling, over-sampling and
cost-sensitive). The results of the linear models (logistic regression and linear least squares) are also compared. The value of
hyper-parameters and number of model parameters np are also included for every model

SVM ELM

Regular Under- Over- Cost- Regular Under- Over- Cost- Best
sampling sampling sensitive sampling sampling sensitive ELM model

TPR 0.987 0.909 0.899 0.907 0.995 0.918 0.944 0.933 0.921
TNR 0.650 0.925 0.958 0.954 0.433 0.794 0.775 0.794 0.879

Total Accuracy 0.819 0.917 0.928 0.931 0.714 0.856 0.859 0.864 0.900

λ - - - - 0.010 0.100 10.000 1.000 10.000
nh - - - - 90.000 90.000 90.000 90.000 600.000
f - - - 2.104 - - - 0.909 0.769
C 100 10 0.1 1 - - - - -
σ 1 1 10 10 - - - - -
np 33696 16965 236691 120900 3690 3690 3690 3690 24600

Logistic Regression Linear LS

Regular Under- Over- Regular Under- Over- Cost-
sampling sampling sampling sampling sensitive

TPR 0.995 0.911 0.928 0.996 0.941 0.955 0.875
TNR 0.441 0.791 0.786 0.389 0.704 0.699 0.828

Total Accuracy 0.718 0.851 0.857 0.692 0.822 0.827 0.852
np 40 40 40 40 40 40 40

96

5.4.2 Prediction Results

The models developed using SVM and ELM are compared against baseline linear

models and the results summarized in Table 5.5. The case 2 model in Table 5.4 is

considered as the best ELM model and included in the summary table. From the

modeling results, it can be observed that both re-sampling methods (under-sampling

and over-sampling) as well as cost-sensitive classification are suitable for the problem

considered in this work. The nonlinear models result in better accuracies compared

to the linear models indicating that the HCCI boundary is a nonlinear system and

that nonlinear classification methods are necessary. However the cost paid for se-

lecting a nonlinear model is the additional computation and memory required and

the tradeoff can be evaluated specific to the application based on the importance

of having accurate versus having low complexity models. For instance, the number

of parameters required to identify the classification boundary for different models is

summarized in Table 5.5. It is obvious that the decision boundary identified by linear

models (under-parameterized) is very simple and does not capture the right behavior.

SVM and ELM models on the other hand requires a large number of parameters in

an attempt to capture more complex behavior. SVM is a non-parametric model and

hence the number of parameters grows with number of training data. ELM on the

other hand is a parametric model and hence the number of parameters are fixed and

hence requires about 80% less number of parameters for a loss in accuracy of 3%

compared to SVM. This is a major drawback of SVM for applications onboard the

engine ECU which is limited in memory and computation.

For the engine problem considered here, it was observed that both SVM and

ELM are capable of identifying the stable and unstable boundary of HCCI from

experimental data. However, an important criteria for HCCI engine application is

that the models must be able to be adapted online. As HCCI combustion is sensitive

to other variables like engine speed, ambient temperature, pressure and humidity

97

levels etc., the complexity of experiment design and size of data might increase. In

addition, for reasons mentioned in chapter VI, a system that can learn and adapt

online is of extreme importance. Hence even though SVM outperformed ELM in

terms of accuracy, ELM requires relatively less parameters and is simple and efficient

in implementation for on-line learning and chosen as suitable for the application in

hand.

The most accurate models using ELM and SVM are used to make predictions

on unseen engine inputs and predictions are summarized in Figure 5.6 and Figure

5.7 respectively while quantitative results are included in Table 5.5. Color codes are

used to represent the predictions - a red marker on the plots indicate the model’s

prediction being ”unstable” while a green marker indicates prediction being ”stable”.

It can be seen from the plots that both models predict the HCCI instabilities well.

The dotted line in the IMEP plot indicates misfire limit, dotted ellipse in CA50 plot

indicates high variability instability mode while dotted rectangle indicates a wrong

predictions by model.

In order to get a closer look, subsections of the above figures are plotted in Figure

5.8a and Figure 5.8b for ELM and SVM respectively. It can be observed from Figure

5.8a that the input sample (at cycle 34) along with other input measurements is

predicted unstable and rightly so, the following cycles are unstable as indicated by

CA50 overshooting 10 degree after TDC. This is the primary goal of the proposed

method that predicts if the engine operation is stable/unstable at time k + 1, given

the measurements up to time k. Hence using the model, any given input actuator

setting and history of measurements of key combustion variables, it would be possible

to predict if the subsequent set of combustion cycles misfire or not. A similar plot can

be shown for SVM in Figure 5.8b which has a slightly different prediction compared

to the ELM model. For instance, SVM predicts most of the region beyond cycle 34 to

be unstable but ELM predicts to be stable between cycles 75 and 95. However, these

98

0 500 1000 1500
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 500 1000 1500

0

2

4

N
M

E
P

0 500 1000 1500
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(a)

0 200 400 600 800 1000
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 200 400 600 800 1000

0

2

4

N
M

E
P

0 200 400 600 800 1000
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(b)

0 200 400 600 800 1000
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 200 400 600 800 1000

0

2

4

N
M

E
P

0 200 400 600 800 1000
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(c)

Figure 5.6: Prediction results of the cost-sensitive ELM. The color code indicates
model prediction - green (and red) indicate stable (and unstable) prediction by the
model. 99

0 500 1000 1500
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 500 1000 1500

0

2

4

N
M

E
P

0 500 1000 1500
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(a)

0 200 400 600 800 1000
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 200 400 600 800 1000

0

2

4

N
M

E
P

0 200 400 600 800 1000
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(b)

0 200 400 600 800 1000
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 200 400 600 800 1000

0

2

4

N
M

E
P

0 200 400 600 800 1000
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(c)

Figure 5.7: Prediction results of the cost-sensitive SVM. The color code indicates
model prediction - green (and red) indicate stable (and unstable) prediction by the
model. 100

0 20 40 60 80 100 120
−10

0

10

20

C
A

50
 (

de
g

af
te

r
T

D
C

)

0 20 40 60 80 100 120

0

2

4

N
M

E
P

0 20 40 60 80 100 120
10

20

30

Combustion Cycles
F

ue
l i

np
ut

 (
m

g/
cy

cl
e)

(a) Cost-sensitive ELM

0 20 40 60 80 100 120
−10

0

10

20

C
A

50
 (

de
g

af
te

r
T

D
C

)

0 20 40 60 80 100 120

0

2

4

N
M

E
P

0 20 40 60 80 100 120
10

20

30

Combustion Cycles

F
ue

l i
np

ut
 (

m
g/

cy
cl

e)

(b) Cost-sensitive SVM

Figure 5.8: A small subset of prediction results of the cost-sensitive ELM and SVM
showing CA50, IMEP and one input variable to compare predictions in perspective to
input variables. The green points indicate stable operation while red points indicate
unstable operation.

cycles do not fall into completely stable or completely unstable and hence might be

in between the two classes. Such predictions are to be expected from both models

as training was not performed using a comprehensive data set that had a dense

distribution of data in both classes.

101

CHAPTER VI

Stable Online Learning Algorithms for Extreme

Learning Machines and Application to the HCCI

Engine System

Identification models of HCCI engine variables were developed in the previous

chapter using state-of-the-art machine learning algorithms and offline data processing.

In this chapter, an online learning framework is developed for the HCCI engine. In the

process, stable online learning algorithms including a Lyapunov based estimation law

and a stochastic gradient based estimation law have been developed. The estimation

laws are developed specifically for extreme learning machine models that are generic

and can be applied for identification of any nonlinear system. Simple examples in the

respective sections demonstrate the working of the algorithms while a suitable online

learning algorithm has been identified for the HCCI system and a predictive model

of HCCI is developed from streaming experimental data.

6.1 Motivation and Problem Statement

The availability of data for learning constitutes the primary difference between

offline and online learning approaches. While computational demand is less for on-

line learning owing to processing the data one-by-one, the accuracy of modeling or

102

prediction error convergence is a known issue with such methods. Online (sequen-

tial) learning is suitable for high volume/high velocity data sets, where the task is to

process maximum data in a given time and make predictions whereas offline (batch)

leaning is suitable for limited data sets where time and computation are not typically

a concern. However, a tradeoff between the two can be analyzed to build powerful

models.

For the HCCI engine case, online learning is necessary because of the following

reasons. The models developed offline are valid only in the limited experimental

conditions. For instance, the experiments are performed at a controlled ambient

temperature, pressure and humidity conditions. As a result, the models developed are

valid for the specified conditions and a vehicle application, for instance, would require

the model based control to work in a wide range of climatic conditions. Hence, an

online adaptation to learn the behavior of the system at new/unfamiliar situations is

required. Also, since the models are developed directly from experimental data, they

can perform poorly in certain operating regions where the density of experimental

data is low. As more data becomes available in such regions, an online mechanism

can be used to adapt to such data. Hence an online learning mechanism can have

significant benefits both from a practical perspective as well as handling the high

velocity sensor data.

The problem statement for online learning can be expressed as follows. Given a

continuously operating system, the goal of the online learning algorithm is to process

the data one-by-one and update the model parameters in a recursive manner to

capture the underlying input-output relationship of the system.

6.2 Existing Methods and Limitations

There are several existing algorithms for online learning but most of them come

with severe limitations. The early forms of online learning involved a gradient based

103

parameter update law based on first order information [89]. Owing to slow con-

vergence of training error, second order information was suggested in the recursive

LevenbergMarquardt algorithm [90]. Although convergence may be better than pure

gradient based method, the solution is not guaranteed to achieve global minimum.

Feed-forward networks with RBF nodes including resource allocation network [91],

growing and pruning networks [92, 93] which had the ability to add hidden neurons

for novel incoming data as well as remove insignificant nodes. However, these al-

gorithms require several control parameters to be tuned and for large problems, the

learning speed may be slow [94]. After the arrival of extreme learning machine models

[49, 50], the OS-ELM algorithm [94] emerged as a powerful online learning algorithm

with several impressive properties including processing data both one-by-one and

chunk-by-chunk, discarding the data that is learned and only one tuning parameter,

the number of hidden neurons. OS-ELM algorithm has been shown to perform better

than the above mentioned algorithms for several benchmark data sets [94] and hence

considered as one of the choices for the HCCI engine system.

6.2.1 Online Sequential ELM (OS-ELM)

The OS-ELM is a recursive version of the batch ELM algorithm. Training involves

two steps - initialization step and sequential learning step. During the initialization

step, a set of data observations (N0) are required to initialize the H0 and W0 by

solving the following optimization problem

min
W0

{
‖H0W0 − Y0‖2 + λ‖W0‖2

}
(6.1)

H0 = [g(W T
r x0 + br)]

T ∈ RN0×nh . (6.2)

The solution W0 is given by

W0 = K−1
0 HT

0 Y0 (6.3)

104

where K0 = HT
0 H0. Suppose given another new data x1, the problem becomes

min
W1

∥∥∥∥∥∥∥
 H0

H1

W1 −

 Y0

Y1

∥∥∥∥∥∥∥

2

. (6.4)

The solution can be derived as

W1 = W0 +K−1
1 HT

1 (Y1 −H1W0)

K1 = K0 +HT
1 H1.

Based on the above, a generalized recursive algorithm for updating the least-squares

solution can be computed as follows

Mk+1 = Mk −MkH
T
k+1(I +Hk+1MkH

T
K+1)−1Hk+1Mk (6.5)

Wk+1 = Wk +Mk+1H
T
k+1(Yk+1 −Hk+1Wk) (6.6)

where M represents the covariance of the parameter estimate.

In spite of its known advantages, an over-parameterized ELM suffers from ill-

conditioning problem when recursive least squares type update is performed (as in

OS-ELM). This results in poor regularization behavior [95, 96, 97, 98], which leads

to an unbounded growth of the model parameters and unbounded model predictions.

If decisions are made simultaneously based on the estimated model (as in case of

adaptive control for instance [99]), it is vital for the parameter estimation to be

stable so that model based decisions are valid. Hence a guarantee of stability and

boundedness is of extreme importance. To address this issue, stable online learning

algorithms based on Lyapunov stability theory and stochastic gradient descent are

developed. The goal of the algorithms is to guarantee a bounded prediction from the

estimation model.

105

Notable prior work include a Lyapunov approach applied for identification using

radial basis function neural networks [9] and GLO-MAP models [10]. The parameter

update in such methods involved complex gradient calculation in real time or first

estimating a linear model and then estimating a nonlinear difference using orthonor-

mal polynomial basis functions. The following section describes the developed online

algorithms which take advantage of the convex optimization nature of ELM models

and derive simple update laws along with a stability guarantee on the estimation.

6.3 Lyapunov Based Algorithm (L-ELM)

The L-ELM algorithm is designed for online regression learning of dynamic sys-

tems and time series (system identification). Data mining on dynamic systems has

been as significant as on static systems but often the time connection in a dynamic

system is usually not utilized. For instance, neural networks [21, 28] and support

vector machines [70] have been used in modeling dynamic systems but algorithms

designed for static data with an i.i.d assumption (data sampled from an independent

and identical distribution) are used. The temporal aspects of the data useful for

parameter estimation and decision making for dynamical systems are typically not

taken into account. In this section, a Lyapunov based online learning algorithm is

developed for dynamic systems that is guaranteed to have bounded model predictions.

6.3.1 Algorithm Derivation

Consider a general nonlinear discrete time dynamic system model representing

the underlying phenomena of interest as follows.

z(k + 1) = f(z(k), u(k)) (6.7)

106

The system in (7.1) is assumed to satisfy the following assumptions in order for the

given nonlinear system to be identified via a Lyapunov function [100].

1. The system is completely controllable and completely observable

2. The function f is continuously differentiable and satisfies f(0)=0. The function

also satisfies global Lipschitz’s condition [101] which guarantees existence and

uniqueness of solution to the differential equation (7.1).

3. The function f is stationary; i.e., f(.) does not depend explicitly on time.

Now, the model in (7.1) can be expressed as

z(k + 1) = ALz(k) + g(z(k), u(k)) (6.8)

= ALz(k) +W T
∗ φ(k) + ε (6.9)

In the above expression, z ∈ Rn, n representing the number of states, g(z(k), u(k)) =

f(z(k), u(k)) − ALz(k) represents the system nonlinearity and assuming ELM can

model g(z(k), u(k)) with an accuracy of ε using parameters W∗. The above assump-

tion is valid in theory as ELM is an universal approximator [49]. The matrix AL is

included so as to maintain asymptotic stability of equation (6.9) and can be chosen

as any matrix with eigen values in the unit circle [102]. The parametric model of the

system can be constructed assuming the same structure as equation (6.9) by

ẑ(k + 1) = ALẑ(k) + Ŵ T (k)φ(k) (6.10)

where Ŵ (k) represents the parameter estimate of W∗ at time index k. The state error

is given by the following

e(k + 1) = z(k + 1)− ẑ(k + 1)

= ALe(k) + W̃ T (k)φ(k) + ε (6.11)

107

where W̃ (k) represents the parameter error (W̃ (k) = W∗−Ŵ (k)). It should be noted

that φ(k) is common to both system model and the parametric model which means

the inputs and states of the plant are fed to the model indicating a series-parallel

architecture [22].

A positive definite, decrescent and radially unbounded [103] function V (e, W̃ , k)

(6.12) is used to construct the parameter update law given by equation in equation

(6.13) (See Appendix for full derivation). Lyapunov functions are used to establish

stability of nonlinear systems and a thorough mathematical treatment of Lyapunov

based system identification can be found in [100]. Here ΓL represents the gain of

learning and P is a positive definite matrix.

V (e, W̃ , k) = eT (k)Pe(k) +
1

2
tr(W̃ (k)ΓLW̃

T (k)) (6.12)

Taking the difference in V ,

V (k + 1)− V (k) = eT (k + 1)Pe(k + 1) +
1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))

− eT (k)Pe(k)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

= [ALe(k) + W̃ T (k)φ(k) + ε]TPe(k + 1) +
1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))

− eT (k)Pe(k)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

= eT (k)ATLPe(k + 1) + φ(k)T W̃ (k)Pe(k + 1) + εTPe(k + 1)

+
1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))− eT (k)Pe(k)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

108

= eT (k)ATLP (ALe(k) + W̃ T (k)φ(k) + ε) + φ(k)T W̃ (k)Pe(k + 1) + εTPe(k + 1)

+
1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))− eT (k)Pe(k)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

= eT (k)ATLPALe(k) + eT (k)ATLPW̃
T (k)φ(k) + eT (k)ATLPε

+ φ(k)T W̃ (k)Pe(k + 1) + εTPe(k + 1) +
1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))

− eT (k)Pe(k)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

Let Q ∈ Rn×n be a positive definite matrix which satisfies the following discrete

Lyapunov equation

ATLPAL − P = −Q

V (k + 1)− V (k) = −eT (k)Qe(k) + eT (k)ATLPε+ εTPe(k + 1)

+ eT (k)ATLPW̃
T (k)φ(k) + φT (k)W̃ (k)Pe(k + 1) +

1

2
tr(W̃ (k + 1)ΓLW̃

T (k + 1))

− 1

2
tr(W̃ (k)ΓLW̃

T (k))

= −eT (k)Qe(k)+eT (k)ATLPε+ε
TPe(k+1)+eT (k)ATLPW̃

T (k)φ(k)+φT (k)W̃ (k)Pe(k+1)

+
1

2
tr([W̃ (k) + ∆W̃ (k)]ΓL[W̃ (k) + ∆W̃ (k)]T)− 1

2
tr(W̃ (k)ΓLW̃

T (k))

= −eT (k)Qe(k) + eT (k)ATLPε+ εTPe(k + 1)

+ eT (k)ATLPW̃
T (k)φ(k) + φT (k)W̃ (k)Pe(k + 1) + tr(∆W̃ T (k)ΓLW̃ (k))

109

By converting, eT (k)ATLPW̃
T (k)φ(k) = tr(PALe(k)φT (k)W̃ (k)) and

φT (k)W̃ (k)Pe(k + 1) = tr(Pe(k + 1)φT (k)W̃ (k))

V (k + 1)− V (k) = −eT (k)Qe(k) + eT (k)ATLPε+ εTPe(k + 1)

+ tr(∆W̃ T (k)ΓLW̃ (k) + PALe(k)φT (k)W̃ (k) + Pe(k + 1)φT (k)W̃ (k))

By setting the terms in the trace to be zero, we get

0 = ∆W̃ T (k)ΓLW̃ (k) + PALe(k)φT (k)W̃ (k) + Pe(k + 1)φT (k)W̃ (k)

∆W̃ (k) = −Γ−TL φ(k)[e(k + 1) + ALe(k)]TP

Also, W̃ (k) = W∗ − Ŵ (k), the change in parameter can be given by

∆Ŵ (k) = Γ−TL φ(k)[e(k + 1) + ALe(k)]TP

Ŵ (k + 1) = Ŵ (k) + ∆Ŵ (k)

= Ŵ (k) + Γ−TL φ(k)[e(k + 1) + ALe(k)]TP (6.13)

110

6.3.2 Stability Analysis

The Lyapunov based online learning algorithm is given by (6.13). Now, applying

the update law, the change in Lyapunov function becomes

∆V (k) = −eT (k)Qe(k) + eT (k)ATLPε+ εTPe(k + 1)

= −eT (k)Qe(k) + eT (k)ATLPε+ εTP (e(k) + ∆e(k))

= −eT (k)Qe(k) + eT (k)ATLPε+ εTPe(k)

≤ −|λmaxQ|‖e(k)‖2 + ‖ε‖‖P‖‖e(k)‖+ ‖ε‖‖P‖‖AL‖‖e(k)‖

≤ 0 if ‖e(k)‖ ≥ ‖ε‖‖P‖‖I + AL‖
|λmaxQ|

= Eε (6.14)

When the above condition is satisfied, equation (6.14) can be written as

∆V (k) ≤ −|λmaxQ|‖e(k)‖2 ≤ 0 (6.15)

For all k > 0, V (k)− V (0) ≤ 0 or V (k) ≤ V (0). Also, from the positive definiteness

of V , V (e, W̃ , k) > 0 for all [e, W̃ , k]T > 0. Hence 0 < V (k) ≤ V (0) for all k > 0.

Hence V (k) ∈ L∞, i.e.,

lim
k→∞

V (k) = V∞ <∞ (6.16)

V (k) is a function of e(k) and hence e(k) ∈ L∞. This implies ẑ(k) ∈ L∞ assuming

the states of the plant z(k) are bounded. Hence the states of the estimation model

ẑ(k) do not blow up eliminating possible errors during model based decision making.

Also, from equation (6.15),

V (k + 1)− V (k) ≤ −|λmaxQ|‖e(k)‖2

∞∑
k=0

V (k + 1)− V (k) ≤ −|λmaxQ|
∞∑
k=0

‖e(k)‖2

111

⇒
∞∑
k=0

‖e(k)‖2 ≤ V (0)− V∞
|λmaxQ|

<∞ (6.17)

which implies e(k) ∈ L2. From (6.13), (Ŵ (k + 1)− Ŵ (k)) ∈ L2. Using discrete time

Barbalat’s lemma [104],

lim
k→∞

e(k) = 0 (6.18)

lim
k→∞

Ŵ (k + 1) = Ŵ (k) (6.19)

Hence, the adaptive law in (6.13) guarantees that the estimated output ẑ(k) con-

verges to the actual output z(k) and the model parameters Ŵ converge to some

constant values. The parameters converge to the true parameters W∗ only under

conditions of persistence of excitation [103]. For general nonlinear systems whose

persistence of excitation cannot be guaranteed [105], a multi-step signal varying be-

tween extreme values of the inputs are typically used [28, 70]. Hence, intuitively, the

proposed algorithm converges locally (according to the available excitation strength)

to its estimates and as the system is excited more and more, moves towards its true

values. Further, using boundedness of V (k), e(k) ∈ L∞ which guarantees that the

online model predictions are bounded as long as the system output is bounded. As

the error between the true model and the estimation model converges to zero, the

estimation model becomes a one-step ahead predictive model of the nonlinear system.

6.3.3 Simulation Results

In this section, the developed algorithm is applied to two simple nonlinear dy-

namic systems and its working analyzed. The performance of the Lyapunov based

algorithm (L-ELM) is compared against the baseline nonlinear OS-ELM algorithm.

The results of linear identification models based on recursive least squares (RLS) and

linear Lyapunov based method (LLin) are also compared to demonstrate that the

112

chosen examples are truly nonlinear. Also, the results of an offline batch learning

ELM algorithm (O-ELM) is included to evaluate if the L-ELM trades off accuracy

for computational simplicity.

The performance metrics used are one-step ahead prediction (OSAP) and multi-

step ahead prediction (MSAP) root mean squared errors (RMSE). For MSAP, the

models are converted from a series-parallel architecture to a parallel architecture [22]

where the predictions of the model is fed back as inputs along with external excitation

creating a recursive prediction over the prediction horizon. In this way, the evaluation

of the model being close to the actual dynamic system can be performed. Such a

metric is important in model based decision making applications [21, 28].

6.3.3.1 Example - I: Simple Scalar System

Consider the following single input single output (SISO) system

z(k + 1) = sin
(z(k)3

10

)
+
u(k)2

10
(6.20)

z(0) = 0.

Here the augmented vector becomes x(k) = [z(k), u(k)]T . The inputs vary between

-1 and +1 in an uniformly distributed multi step pseudorandom pattern to get in-

formation about majority of the operating regions of the system. The parameters of

identification are chosen as follows: AL = 0.1,nh = 5,Q = 1 and ΓL = 10I5,5.

It can be seen from Fig. 6.1 that the parameters of the L-ELM appear to be

converging to some steady state values which indicates that the nonlinear system

is close to being identified. However, the OS-ELM parameters grow in an unstable

manner and then converge back. Even though the parameters converge, the instability

can be observed. This will be discussed more in Section 6.3.4. The linear models

do not have sufficient degrees of freedom and oscillates without converging (The

113

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2
Parameter convergence of RLS

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2
Parameter convergence of LLin

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−10

0

10
Parameter convergence of OS−ELM

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2
Parameter convergence of L−ELM

Figure 6.1: Comparison of parameter evolution for the L-ELM with OS-ELM and the
linear models for the simple scalar system

oscillations are not seen because the time scale is very large, please refer to Fig. 6.3).

The multi-step ahead prediction performances of the models can be summarized

in Fig. 6.2 respectively where the nonlinear models performed well. The linear

models are clearly unsuitable for MSAP and cannot be used for dynamic simulations.

The high RMSE values indicate the inability of linear models to capture the system

behavior with limited number of degrees of freedom. The multi-step ahead prediction

is done by feeding back the model predictions along with an input of the form u(k) =

0.2 ∗ sin
(

2πk
50

)
+ 0.8 ∗ cos

(
2πk
50

)
so that the input covers the region of operation of the

models.

The prediction RMSE and the norm of the estimated parameters are listed in Table

6.1. It can be seen that the L-ELM achieves a lower norm of parameters compared

114

Table 6.1: Performance comparison of L-ELM with OS-ELM and the linear models
for the simple scalar system

OSAP RMSE MSAP RMSE ‖W‖

RLS 0.0098 0.0494 0.981
Llin 0.0099 0.0556 0.834

OS-ELM 0.0059 0.0008 5.915
L-ELM 0.0028 0.0012 2.412
O-ELM 0.0012 0.0007 3.655

0 50 100
−0.1

−0.05

0

0.05

0.1

x

Predictions of RLS

0 50 100
−0.1

−0.05

0

0.05

0.1

x

Predictions of LLin

0 50 100
−0.1

−0.05

0

0.05

0.1

x

Predictions of OS−ELM

0 50 100
−0.1

−0.05

0

0.05

0.1

x

Predictions of L−ELM

0 50 100
−0.1

−0.05

0

0.05

0.1

x

Predictions of O−ELM

Actual
Predicted

Figure 6.2: Comparison of multi-step ahead predictions for the L-ELM with OS-ELM,
O-ELM and the linear models for the simple scalar system

to the OS-ELM and O-ELM which can be attributed to the stable learning method

which bounds the parameter growth. The results of the offline (batch learning) ELM

model indicates that the performance of the developed online learning algorithm is

comparable to that of batch learning.

It should be noted that the observed results and discussion are for a given random

initialization of the hidden layer parameters (Wr, br), a given initial conditions of the

estimated parameters (W0) and a given set of design parameters of the algorithm

(AL,ΓL, P). A different gain value (ΓL) for instance might lead to a different conver-

gence behavior and might result in different prediction errors and different norm of

parameters.

115

6.3.3.2 Example - II: A more complex system

In this section, a more complex example of a system with two states and two

inputs are considered as follows

x1(k + 1) = sin
(x1(k)

1 + x2
2(k)

+ u1(k)
)

(6.21)

x2(k + 1) = cos
(
1− x1(k)x2(k)

1 + x2
2(k)

− u2(k)
)

(6.22)

x(0) = [0, 0]T (6.23)

Similar to the previous case, the inputs vary between -1 and +1 independently in a

multi-step pseudorandom pattern. The algorithm design parameters are chosen as

follows: AL = 0.1I2,2, nh = 8, Q = I2,2 and ΓL = 10I8,8.

It can be seen from Fig. 6.3 that the parameters of the L-ELM do not converge

completely indicating that either the number of hidden neurons is less or the identifi-

cation time is insufficient to have sufficient excitations. Hence parameter oscillations

are observed. Similarly, the parameters of the LLin model also oscillates indicating

that the linear models do not have enough degrees of freedom to capture the nonlinear

behavior.

An important observation to be made is that the Lyapunov method (for linear

or nonlinear model) solves the error dynamics differential equation (6.11) and finds

the solution to the differential equation (6.13). The use of PRBS type of signal

forces the update law to reduce the error and updates the parameters to only adapt

to the system locally given by that particular excitation. If the excitation signal

had several frequencies simultaneously (sum of sinusoids), the convergence would

be global as in case of linear system identification [103]. However, for nonlinear

systems, sufficient excitation is never completely achieved [103, 21] indicating that

the parameters locally adapt to particular excitations and if carried out for an infinite

time, might achieve global convergence. This is an existing problem to all types of

116

nonlinear identification algorithms and is not addressed in this paper. Hence the

reason for parameter oscillation for L-ELM for this example. A good trick is to slow

down the local learning process using the gain parameter ΓL so that aggressive local

convergence is reduced and global convergence is made faster.

Table 6.2: Performance comparison of L-ELM with OS-ELM and the linear models
for the more complex system

OSAP RMSE MSAP RMSE ‖W‖

RLS 0.147 0.67 0.92
Llin 0.128 0.69 0.83

OS-ELM 0.124 0.32 8.5
L-ELM 0.082 0.235 6.9
O-ELM 0.088 0.295 13.26

The prediction performance is summarized in Fig. 6.4 along with Table 6.2.

The linear models have high RMSE values and hence not suitable for identification

of the given nonlinear system. The multi-step ahead prediction is done by feed-

ing back the model’s predictions along with external inputs of the form u(k) =

[sin
(

2πk
10

)
, cos

(
2πk
10

)
]T . The results of the offline ELM model is included to show that

the performance of the developed algorithm is comparable to the batch learning model

indicating that there is no compromise in accuracy by performing online learning us-

ing the Lyapunov method.

It can be seen from Table 6.2 that the norm of estimated parameters are smaller

for the L-ELM indicating better generalization compared to OS-ELM and O-ELM.

It should be noted that the offline models are developed and validated using the

same data set (sub-sampled to reduce computation) on which the online learning was

performed. In this example, the MSAP RMSE is lower for the L-ELM compared

to the OS-ELM while in the previous example, the MSAP RMSE for OS-ELM was

better indicating that a conclusion cannot be made as which method outperforms the

other in terms of prediction accuracy. However, the prime advantage of the L-ELM

117

0 1 2 3 4 5 6

x 10
5

−2

0

2
Parameter convergence of RLS

0 1 2 3 4 5 6

x 10
5

−1

0

1
Parameter convergence of LLin

0 1 2 3 4 5 6

x 10
5

−10

0

10
Parameter convergence of OS−ELM

0 1 2 3 4 5 6

x 10
5

−2

0

2
Parameter convergence of L−ELM

Figure 6.3: Comparison of parameter evolution for the L-ELM with OS-ELM and the
linear models for the more complex system

118

0 20 40
−1

−0.5

0

0.5

1

x 1

Predictions of RLS

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

x 2

0 20 40
−1

−0.5

0

0.5

1

x 1

Predictions of LLin

0 20 40
−0.2

0

0.2

0.4

0.6

0.8
x 2

0 20 40
−1

−0.5

0

0.5

1

x 1

Predictions of OS−ELM

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

x 2

0 20 40
−1

−0.5

0

0.5

1

x 1

Predictions of L−ELM

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

x 2

Actual
Predicted

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

x 2

0 20 40
−1

−0.5

0

0.5

1

x 1

Predictions of ELM (batch learning)

Figure 6.4: Comparison of multi-step ahead predictions for the L-ELM with OS-ELM,
O-ELM and the linear models for the more complex system

comes from its stable parameter evolution which is briefed in the following subsection.

6.3.4 Stability Advantage of L-ELM

It has been reported that ELM might run into an ill-posed problem when it is over

parameterized or when not properly initialized [95, 96, 97, 98]. A few attempts have

been made to improve the regularization behavior or ELM [97] and OS-ELM [98].

However, when the data is being processed 1-by-1 (as in the case of system identifi-

cation), the regularization improvement suggested by [98] was not found to improve

the situation. Such an unstable parametric evolution can cause fatal problems when

such online models are used in decision making. To address the issue, a Lyapunov

based stable learning algorithm was developed for ELM models. The simulation of

such a scenario is summarized in the Fig. 6.5 for the system considered in example

II. It can be seen that with a small number of hidden neurons (nh=3), the condition

119

0 200 400 600
−5

0

5

O
S

−
E

LM
 p

ar
am

et
er

s

n
h
 = 3

0 200 400 600
−0.6

−0.4

−0.2

0

0.2

0.4

L−
E

LM
 p

ar
am

et
er

s

0 200 400 600
0

50

100

150

C
on

di
tio

n
nu

m
be

r.

0 200 400 600
0

0.5

1

1.5

2

2.5

3
x 10

4
C

on
di

tio
n

nu
m

be
r.

0 200 400 600
−1

−0.5

0

0.5

1

L−
E

LM
 p

ar
am

et
er

s

0 200 400 600
−400

−200

0

200

O
S

−
E

LM
 p

ar
am

et
er

s

n
h
 = 5

0 200 400 600
0

2

4

6

8
x 10

6

C
on

di
tio

n
nu

m
be

r.

0 200 400 600
−0.5

0

0.5

L−
E

LM
 p

ar
am

et
er

s

0 200 400 600
−6000

−4000

−2000

0

2000

4000

O
S

−
E

LM
 p

ar
am

et
er

s

n
h
 = 8

Figure 6.5: The ill-conditioning of OS-ELM as more number of hidden neurons (nh)
are added compared to bounded parameter evolution of L-ELM.

number (of matrix M in equation (6.5)) remains within reasonable values and the

parameters do not diverge. However, as the number of hidden neurons increase, the

condition number grows to a very high value creating an ill-conditioned least squares

problem [95], the solution of which is absurd. For any general case, the solution of

OS-ELM is never guaranteed to be stable. The Lyapunov based algorithm on the

other hand, results in a model that is well regularized where parameter growth can

be controlled using small values for the gain matrix ΓL. The Lyapunov method gives

a stability guarantee and performs well with no undesirable parameter growth even

when the model is over-parameterized. Such a guarantee is necessary for control

related applications. This shows the effectiveness of the method.

120

6.4 Stochastic Gradient Based ELM Algorithm

In this section, the stochastic gradient descent (SGD) based update is developed

for the extreme learning machine models for both classification and regression. SGD

methods have been popular for several decades for performing online learning but

with severe limitations on poor optimization and slow convergence rates. However,

only recently, the asymptotic behavior of SGD methods has been analyzed indicating

that SGD methods can be very powerful in learning from large data sets [106, 107].

SGD type algorithms have been developed for Adaline networks, perceptron models,

K-means, SVM and Lasso [106]. In this work, the SGD algorithm is applied for

extreme learning machine models showing good potential for online learning of high

velocity (streaming) data.

In any learning problem, there are three types of errors namely the approximation

error, the estimation error and the optimization error [106]. As mentioned previously

[chapter II), the expected risk Eexp(f) and the empirical risk Eemp can be given by

Eexp(f) =

∫
l(f(x), y)dP (x, y)

Eemp(f) =
1

N

N∑
i=1

l(f(xi), yi)

Let f ∗ = argminfEexp(f) be the best possible prediction function. In practice,

the prediction function is chosen from a family of parametric functions. Let f ∗F =

argminf∈FEexp(f) be the best prediction function chosen from a parameterized fam-

ily of functions F . When a data set is available, the empirical risk becomes a proxy

for the expected risk for a learning problem [20]. Let f̄ ∗F = argminf∈FEemp(f) be

the solution that minimizes the empirical risk. However, the global solution is not

typically obtained because of computational limitations and hence the solution of the

learning problem is reduced to finding f̄F = argminf∈FEemp(f).

121

Following the above setup, the approximation error (Eapp) is the error introduced

in approximating the true function space with a family of functions F , the estimation

error (Eest) is the error introduced in optimizing over Eemp(f) instead of Eexp(f), the

optimization error (Eopt) is the error induced as a result of stopping the optimization

to f̄F . The total error Etot can be expressed as

Eapp = Eexp(f
∗)− Eexp(f ∗F)

Eest = Eexp(f
∗
F)− Eemp(f̄ ∗F)

Eopt = Eemp(f̄
∗
F)− Eemp(f̄F)

Etot = Eapp + Eest + Eopt

The following observations are taken from the asymptotic analysis of SGD algo-

rithms [106, 108].

1. The empirical risk Eemp(f) is only a surrogate for the expected risk Eexp(f) and

hence an increased effort to minimize Eopt doesn’t equate to better learning. In

fact, if Eopt is very low, there is a good chance that the prediction function will

over-fit the training data.

2. SGD are worst optimization algorithms (in terms of reducing Eopt) but they

need a relatively less time to minimize expected risk. Therefore, in the large

scale setup, when the limiting factor is computational time rather than the

number of examples, SGD algorithms performs asymptotically better.

3. SGD results in faster convergence when the loss function has strong convexity

properties.

ELM models have a squared loss function and when the hidden neurons are ran-

domly assigned and fixed, the training translates to solving a convex optimization

problem. Hence the ELM model can be a good candidate to perform SGD type

122

learning and hence the motivation for this study. The SGD based algorithm can be

derived for the ELM models as follows.

6.4.1 Algorithm Derivation

Let (xi, yi) where i = 1, 2, ..N be the streaming data in consideration. The data

can be considered to be available to the algorithm one-by-one or artificially sampled

one-by-one from a very large data set. Let the ELM empirical risk be defined as

follows

J(W) = min
W

1

2

N∑
i=1

‖yi −W Tφi‖2

= min
W

{
1

2
‖y1 −W Tφ1‖2 +

1

2
‖y2 −W Tφ2‖2 + ..+

1

2
‖yN −W TφN‖2

}
= min

W
{J1(W) + J2(W) + ..+ JN(W)} . (6.24)

Consider the objective for a data observation i,

Ji(W) =
1

2
eTi ei

=
1

2
(yi −W Tφi)

T (yi −W Tφi)

=
1

2
yTi yi +

1

2
φTi WW Tφi − φTi Wyi

∂Ji
∂W

T

= W Tφiφ
T
i − yiφTi = (W Tφi − yi)φTi = −eiφTi

⇒ ∂Ji
∂W

= −φieTi . (6.25)

123

In the regular gradient descent (GD) algorithm, the gradient of J(W) is used to

update the model parameters as follows.

∂J

∂W
=

∂J1

∂W
+
∂J2

∂W
+ ..+

∂JN
∂W

⇒ ∂J

∂W
= −φ1e

T
1 − φ2e

T
2 − ..− φNeTN

Wk+1 = Wk − ΓSG
∂J

∂W

= Wk + ΓSG(φ1e
T
1) + ΓSG(φ2e

T
2) + ..+ ΓSG(φNe

T
N) (6.26)

where k is the iteration count, ΓSG represents the step size or update gain matrix for

the GD algorithm.

It can be seen from equation (6.26) that the parameter matrix W is updated

based on gradients calculated from all the available examples. If the number of

data observations is large, the gradient calculation can take enormous computational

effort. The stochastic gradient descent algorithm considers one example at a time

and updates W based on gradients calculated from (xi, yi) as shown in

Wi+1 = Wi + ΓSG(φie
T
i). (6.27)

From equation (6.26), it is clear that the optimal W is a function of gradients calcu-

lated from all the examples. As a result, as more data becomes available, W converges

close to its optimal value in SGD algorithm. Processing data one-by-one significantly

reduces the computational requirement and the algorithm is scalable to large data

sets. More importantly, for the online learning task considered in this work, the SGD

algorithm becomes a strong candidate.

In order to handle class imbalance learning, the algorithm in (6.27) can be modified

by weighting the minority class data more. The modified algorithm can be expressed

124

as

Wi+1 = Wi + ΓimbΓSG(φie
T
i) (6.28)

where Γimb = r× f , r and f represent the imbalance ratio and the scaling factor that

needs to be tuned.

6.4.2 Stability Analysis

The stability analysis of the SGD based ELM algorithm can be derived as follows.

The ELM structure makes the analysis simple and similar to that of a linear gradient

based algorithm [103].

As defined previously, the instantaneous estimation error can be expressed in

terms of parametric error (W̃ = W∗ −W) as

ei = yi −W Tφi

= W T
∗ φi −W Tφi

= W̃ Tφi (6.29)

where W∗ represents true model parameters. Further, the parametric error dynamics

can be obtained as follows.

W̃i+1 = W∗ −Wi+1

= W∗ −Wi − ΓSGφie
T
i

= W̃i − ΓSGφie
T
i (6.30)

Consider the following positive definite, decrescent and radially unbounded [103]

Lyapunov function V

V (W̃) = tr(W̃ TΓ−1
SGW̃) (6.31)

125

where tr represents the trace of a matrix.

V (W̃i+1)− V (W̃i) = tr(W̃ T
i+1Γ−1

SGW̃i+1)− tr(W̃ T
i Γ−1

SGW̃i)

= tr((W̃i − ΓSGφie
T
i)TΓ−1

SG(W̃i − ΓSGφie
T
i))− tr(W̃ T

i Γ−1
SGW̃i)

= tr(−2W̃ T
i φie

T
i + eiφ

T
i ΓSGφie

T
i)

= tr(−2eie
T
i + eiφ

T
i ΓSGφie

T
i)

= −2eTi ei + eTi eiφ
T
i ΓSGφi

= −2eTi ei + eTi φ
T
i ΓSGφiei

= −eTi MSGei (6.32)

where MSG = 2 − φTi ΓSGφi. It can be seen that Vi+1 − Vi ≤ 0 if MSG > 0 or

2− φTi ΓSGφi > 0 or

0 < λmax(ΓSG) < 2 (6.33)

When (6.33) is satisfied, V (W̃) ≥ 0 is non-increasing in i and the limit

lim
k→∞

V (W̃) = V∞ (6.34)

exists. From (6.32),

Vi+1 − Vi = −eTi MSGei
∞∑
i=0

Vi+1 − Vi = −
∞∑
i=0

eTi MSGei

⇒
∞∑
i=0

eTi MSGei = V (0)− V∞ <∞ (6.35)

(6.36)

Also,
∞∑
i=0

eTi Iei ≤
∞∑
i=0

eTi MSGei <∞ (6.37)

126

when MSG > I or when

λmax(ΓSG) < 1. (6.38)

Hence, when (6.38) is satisfied, ei ∈ L2. From (6.27), (Wi+1 −Wi) ∈ L2 ∩ L∞. Using

discrete time Barbalat’s lemma [104],

lim
i→∞

ei = 0 (6.39)

lim
i→∞

Wi+1 = Wi (6.40)

Hence, the SGD learning law in (6.27) guarantees that the estimated output ŷi

converges to the actual output yi and the model parameters W converge to some

constant values. The parameters converge to the true parameters W∗ only under

conditions of persistence of excitation [103]. Further, using boundedness of Vi, ei ∈

L∞ which guarantees that the online model predictions are bounded as long as the

system output is bounded. As the error between the true model and the estimation

model converges to zero, the estimation model becomes a one-step ahead predictive

model of the nonlinear system.

In the next section, the developed stochastic gradient descent ELM algorithm is

evaluated on several benchmark data sets addressing regression, classification as well

as class imbalance learning problems. The SG-ELM algorithm is compared against

the OS-ELM algorithm for generalization performance as well as computational time.

A baseline linear classification algorithm based on recursive least squares is also used

for comparison.

6.4.3 Simulation 1: Online Classification and Class Imbalance Learning

The following benchmark data sets are obtained from the UCI [109]. The shuttle

data set contains 9 attributes all of which are numerical. Approximately 80% of the

data belongs to class 1 which gives an imbalance ratio of 3.67. The skin data set

127

comprises of randomly sampled blue, green and red values (dimension 3) from face

images of various age groups (young, middle, and old), race groups (white, black,

and asian), and genders obtained from FERET database and PAL database. Total

learning sample size is 245057; out of which 50859 is the skin samples and 194198 is

non-skin samples. The imbalance ratio is about 3.8. The letter recognition data set

consists of image information that is to be classified as one of the 26 English alphabets.

The character images were based on 20 different fonts and each letter within these 20

fonts was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus

was converted into 16 primitive numerical attributes (statistical moments and edge

counts) which were then scaled to fit into a range of integer values from 0 through 15.

The data is 16 dimensional and for the purpose of class imbalance learning, one of

the class is considered as minority class while the rest is considered a majority class

resulting in an imbalance ratio of about 24. The norm data set and the ring data sets

are taken from KEEL repositories [110]. The data sets and their features are listed

in Table 6.3.

Table 6.3: Benchmark data sets used for classification and class imbalance learning.

Data imbalance feature Training data Testing data
sets ratio dimension size size

norm data 1 20 4660 2220
shuttle data 3.67 9 2320 55100

skin data 3.82 3 2400 242600
letter data 24.4 16 3600 16000
ring data 1.02 20 5076 2220

The performance of the algorithms are compared with respect to the training time

in seconds, total positive rate (TPR), total negative rate (TNR), average accuracy

and geometric mean accuracy. The error metrics consider class imbalance learning

and are defined as in chapter V. It can be observed from Table 6.4 that the training

time for SG-ELM is reduced by more than half compared to the OS-ELM. The main

reason for the reduction in training time is because of the simple update for the SG-

128

ELM algorithm. The OS-ELM, on the other hand, updates both the parameter W

and its covariance matrix M and so consuming more computational time and memory.

The computation could be a vital requirement for large data sets and the SG-ELM

algorithm can be a suitable candidate for large scale learning. For the imbalanced data

sets, the scaling factor f was tuned by trial and error to obtain a low generalization

error in terms of TPR, TNR and total accuracy. Also, from Table 6.4, it can be

observed that the SG-ELM algorithm performs well for highly imbalanced data sets.

From the above simulation study, it can be observed that the accuracy of the SG-

ELM algorithm is very comparable to that of the OS-ELM algorithm. Precisely, the

SG-ELM algorithm can be trained faster with less computational demand to reach

slightly inaccurate models compared to OS-ELM. The linear model achieves a high

accuracy on the skin data set indicating that the separating boundary is close to

linear. The nonlinear OS-ELM and SG-ELM models perform equally well. The other

data sets are nonlinear for which the linear models are less accurate.

6.4.4 Simulation 2: Online Regression Learning

The following regression data sets are taken from UCI repository [109] as well. The

auto MPG data set predicts the miles per gallon (MPG) of a given automobile based

on 8 attributes, the concrete data set predicts the compressive strength of concrete

from 8 features, wine quality data set contains data for predicting wine quality based

on physicochemical tests while year prediction data set contains audio features and

the corresponding release year of a song. The year data set is an example for high

dimension learning problem. The delta data set data set is obtained from the task of

controlling the ailerons of a F16 aircraft [110]. The data sets and their features are

listed in Table 6.5.

A similar observation can be made using Table 6.6 for regression learning. The

training time for SG-ELM is reduced by more than half compared to the OS-ELM

129

Table 6.4: Performance comparison of OS-ELM and SG-ELM in terms of training
time, total positive rate (TPR), total negative rate (TNR), average accuracy and
geometric mean accuracy. The results of a recursive least squares based linear model
is also compared to measure the nonlinearity in the data sets.

Data Algorithms Training TPR TNR Average Gmean
sets Time Accuracy Accuracy

SG-ELM 0.11 0.93 0.90 0.92 0.92
norm data OS-ELM 0.27 0.91 0.89 0.90 0.90

Linear 0.25 0.89 0.87 0.88 0.88

SG-ELM 0.06 0.96 0.98 0.97 0.97
shuttle data OS-ELM 0.22 0.99 0.98 0.99 0.99

Linear 0.10 0.97 0.69 0.83 0.82

SG-ELM 0.05 0.93 0.94 0.93 0.93
skin data OS-ELM 0.10 0.96 0.92 0.94 0.94

Linear 0.09 0.88 1.00 0.94 0.94

SG-ELM 0.20 0.90 0.96 0.93 0.93
letter data OS-ELM 0.58 0.93 0.96 0.94 0.94

Linear 0.40 0.85 0.92 0.89 0.89

SG-ELM 0.12 0.82 0.76 0.79 0.79
ring data OS-ELM 0.28 0.74 0.80 0.77 0.77

Linear 0.25 0.64 0.64 0.64 0.64

Table 6.5: Benchmark data sets used for regression learning.

Data feature Training data Testing data
sets dimension size size

auto MPG 7 219 118
concrete 8 650 310

wine 11 4450 1950
year 90 1160 514000
delta 5 4270 2850

130

owing to their simple update law. Also, the generalization accuracy of SG-ELM is

comparable to that of OS-ELM indicating that SG-ELM could be a suitable online

learning algorithm for large regression problems. It has to be noted that for both the

classification and regression problems, the same data and random matrix initializa-

tions were used for both the algorithms. The OS-ELM algorithm requires that the

model initialized offline using a small data set [94] before performing sequential learn-

ing. However, careful tuning is required for both L-ELM and the SG-ELM algorithms

which can be time consuming. The OS-ELM has a particularly attractive feature that

is missing in the L-ELM and SG-ELM is that the OS-ELM updates the covariance

matrix of the estimated parameter which indicates if the estimate has converged or

not. This could be very important in a MPC framework to act as a condition to start

making predictions based on the online model. This will be discussed more in the

next section.

6.5 Online Regression Learning for HCCI Engine

In this section, the stable online learning algorithms namely L-ELM and SG-ELM

are applied in identifying the HCCI engine variables online. The closed loop data

at 1800 RPM is used for demonstration. The inputs to the model include control

actuator signals namely fuel injection mass, fuel injection timing and exhaust valve

opening. The outputs of interest include IMEP, CA50, Pmax, Rmax, Torque and

EAFR. Three online learning schemes namely OS-ELM, L-ELM and SG-ELM are

evaluated for prediction performance and training time. A baseline online linear RLS

based model is also used to evaluate the nonlinear nature of the problem. Further,

the offline ELM (O-ELM) model is compared as well to evaluate the efficiency of the

online learning models in learning the HCCI behavior.

First, the learning performance of IMEP is studied in detail for better under-

standing of the working of the algorithms. An ELM model with 20 hidden units is

131

Table 6.6: Performance comparison of OS-ELM and SG-ELM in terms of training
time and generalization error. The results of a recursive least squares based linear
model is also compared to measure the nonlinearity in the data sets.

Datasets Algotihms Training Testing
Time Error

SG-ELM 0.007 0.26
auto OS-ELM 0.014 0.25

Linear 0.011 0.41

SG-ELM 0.018 0.26
concrete OS-ELM 0.048 0.22

Linear 0.034 0.35

SG-ELM 0.091 0.28
wine OS-ELM 0.201 0.25

Linear 0.170 0.45

SG-ELM 0.273 0.24
year OS-ELM 0.572 0.24

Linear 0.527 0.32

SG-ELM 0.08 0.10
delta OS-ELM 0.17 0.09

Linear 0.13 0.10

132

considered with fixed randomized input layer parameters. About 13400 cycles of data

is considered one-by-one as it is sampled by the engine ECU and model parameters

updated in a sequential manner. After the training phase, the models are evaluated

for the next 3400 cycles of data for one step ahead predictions. Further, to evalu-

ate if the learned models represent the actual HCCI dynamics, the multi-step ahead

prediction of the models are compared using about 1600 cycles of data.

The parameters of the models are tuned to obtain accurate models for the given

data. As required by OS-ELM [94], the model is first initialized using about 200 cycles

of data which gives an initial estimate of the model parameters W0 and covariance

matrix M0 (see equations (6.5) and (6.6)). The parameters of L-ELM and SG-ELM

are as follows. AL = 5 × 10−4 I1, Γ = 0.025 I20 , Q = 0.2 I1, ΓSG = 0.007 I20.

The W for L-ELM and SG-ELM are initialized to zero.

On performing online learning, it can be observed from Fig. 6.6 that even after

initializing the OS-ELM model, the parameters still grow owing to ill-conditioning

but converge back as more data becomes available. However, the L-ELM and SG-

ELM have bounded parameters owing to the stable nature of parameter updates.

It can also be observed that the linear model too has the ill-conditioning problem

because of the recursive least squares based method similar to OS-ELM. Also, the

parameter values for L-ELM and SG-ELM remain small compared to the OS-ELM.

This has a significant implication in the statistical learning theory [42]. A small norm

of model parameters implies a simpler model which results in good generalization.

However, the L-ELM and SG-ELM has a high testing error. This is attributed to the

slow convergence of these algorithms compared to the OS-ELM. As observed earlier

in Section 6.3 as well as in simulations, the Lyapunov based parameter estimate

converges to the local excitation levels. Even for mild nonlinear systems (see Section

6.3.3), the L-ELM required several random step excitations for good convergence.

However, the online learning mechanism is aimed to run along with the engine and

133

0 2000 4000 6000 8000 10000 12000
−100

0

100
Parameter convergence of Linear RLS

0 2000 4000 6000 8000 10000 12000
−4

−2

0

2

4
x 10

5 Parameter convergence of OS−ELM

0 2000 4000 6000 8000 10000 12000
−0.5

0

0.5
Parameter convergence of L−ELM

0 2000 4000 6000 8000 10000 12000
−0.5

0

0.5
Parameter convergence of SG−ELM

Engine Cycles

Figure 6.6: Comparison of parameter evolution for the online learning models. The
recursive least squares based linear and ELM models exhibit an ill-conditioning prob-
lem which results in undesirable parameter growth. The parameters of the Lyapunov
and Stochastic Gradient ELM are always bounded.

hence the slow convergence may not be an issue in a real application. The prediction

results as well as training time for the online models are compared in Table 6.7. It can

be observed that the computational demand for L-ELM and SG-ELM are significantly

less compared to OS-ELM indicating faster learning. Although the linear model

performs well for one-step ahead predictions, it fails to mimic the dynamic nature of

the system as evaluated in multi-step ahead predictions. The OS-ELM, in spite of

exhibiting the ill-conditioning problem, performs well both in OSAP and MSAP. The

OS-ELM performance is the closest to the offline trained models that are expected to

have learned better (as there is no limitation on computation or data). The L-ELM

134

0 200 400 600 800 1000 1200

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Engine Cycles

IM
E

P

IMEP prediction comparison

SG−ELM
L−ELM
OS−ELM
Linear
Experimental

Figure 6.7: Comparison of multi-step ahead predictions of IMEP of the online mod-
els. The color codes are as follows - black:OS-ELM, blue:SG-ELM, green:L-ELM,
red:linear and grey:experimental.

and SG-ELM are less accurate than the OS-ELM but with further continuation of

the online learning task, is expected to improve. The multi-step ahead predictions of

the models are compared in Fig. 6.7.

Table 6.7: Performance comparison of the nonlinear online models (OS-ELM, L-ELM
and SG-ELM) for the regression learning problem. A baseline linear model and an
offline trained ELM model (O-ELM) are also used for comparison.

Training OSAP MSAP
Time RMSE RMSE

Linear 0.415 0.081 0.132
OS-ELM 0.731 0.091 0.061
L-ELM 0.467 0.099 0.107

SG-ELM 0.344 0.100 0.105
O-ELM - 0.060 0.053

Similarly, the online models are developed for CA50, Pmax, Rmax, Torque and

EAFR. The predictions are compared in Fig. 6.8. This task is a case of multi-

input multi-output modeling which adds some limitations of the L-ELM and SG-ELM

methods. When the model complexity increases, the L-ELM and SG-ELM require

more excitations for convergence, further decreasing the convergence rate. Also, for

multiple variables with different noise characteristics, the L-ELM requires separate

135

tuning of the parameters AL,Γ and Q. This is a time consuming task if done by trial

and error. The OS-ELM on the other hand, requires much less tuning and extension

to a multi-output task is straight forward. Further, an important advantage of the

OS-ELM algorithm is as follows. The covariance matrix contains useful information

on the parameter convergence levels. Several values close to zero would imply the

corresponding parameters are close to convergence. This information can be used

in real applications to identify if the online learning is completed and if the models

can be used for prediction purposes. Such information may not be available with the

L-ELM and SG-ELM algorithms.

6.6 Online Envelope Learning for HCCI Engine

In chapter V, a class imbalance learning was performed to identify the stable

operating envelope of HCCI engine. In this section, this task is performed online. As

noted previously, the HCCI operating envelope is a function of HCCI measurement

variables like pressures and temperatures of the manifolds and the cylinders. In

addition to the engine thermal conditions, HCCI operation depends on the ambient

conditions including temperature, pressure and humidity [111]. Also, the envelope

is a function of engine speed (which is held constant in the previous sections). In

a vehicle level application, it is important to capture the effects of such constrained

variables on the stabile operating boundary. Hence, there is a need for a framework

that can adapt online.

The online learning problem translates to an online classification task for which

the following algorithms are used namely, the OS-ELM algorithm and the SG-ELM

algorithm. The L-ELM cannot be used for a classification task as a state space

representation of the dynamic classifier (see equation (5.15)) is not easy to achieve.

A RLS based linear classification algorithm is also used as a baseline comparison.

A weighted classification version of the algorithms is developed to handle the class

136

0 200 400 600 800 1000 1200
2.5

3

3.5

IM
E

P

0 200 400 600 800 1000 1200
−15

−10

−5

0

C
A

50

0 200 400 600 800 1000 1200
20

30

40

50

P
m

ax

0 200 400 600 800 1000 1200
0

2

4

6

R
m

ax

0 200 400 600 800 1000 1200
10

20

30

40

T
or

qu
e

0 200 400 600 800 1000 1200
1

1.2

1.4

Engine Cycles

λ

Figure 6.8: Comparison of multi-step ahead predictions of IMEP, CA50, Pmax, Rmax,
Torque and EAFR by all online models. The color codes are as follows - black:OS-
ELM, blue:SG-ELM, green:L-ELM, grey:experimental.

137

imbalance problem. A subset of the data set used in chapter V with a modified

imbalance ratio used for offline classification has been used to simulate online learning

by processing data one-by-one.

The engine data set is a 13 dimension problem with an imbalance ratio of about

5.3. Online learning is performed using about 14300 cycles of data streaming from

the engine. The models are evaluated using the next 6200 cycles of data. An ELM

model with 10 hidden neurons are used for all the nonlinear models. The parameters

of SG-ELM take values as ΓSG = 0.001 I10 and f = 4. About 140 cycles of data are

used to initialize the parameters and covariance matrix of OS-ELM. After performing

online learning, the prediction performance of the algorithms are evaluated using

the unseen test data stream. Table 6.8 summarizes the computational time as well

as the accuracies of prediction for the considered models. It can be observed that

the online models perform well for the HCCI boundary identification problem. The

problem is mildly nonlinear as linear models achieve a slightly inferior accuracy. Both

OS-ELM and SG-ELM perform well and achieve results similar to an offline model

indicating completeness of learning. The SG-ELM has significant advantages in terms

of computational efficiency. The algorithm is simple and requires less than half of the

time required to train OS-ELM. Further, for the considered classification problem,

the prediction accuracy of SG-ELM is slightly better than OS-ELM indicating the

suitability of SGD based online learning for the HCCI problem. The predictions of

the online SG-ELM model is shown in Fig. 6.9.

Table 6.8: Performance comparison of the nonlinear models (OS-ELM and SG-ELM)
for the online class imbalance learning problem. A baseline linear model and an offline
trained ELM model (O-ELM) are also used for comparison.

Algorithms Training TPR TNR Average Gmean
Time Accuracy Accuracy

SG-ELM 0.29 0.89 0.81 0.85 0.85
OS-ELM 0.63 0.83 0.83 0.83 0.83
O-ELM - 0.85 0.85 0.85 0.85
Linear 0.64 0.95 0.65 0.80 0.79

138

0 100 200 300 400 500 600 700 800 900
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 100 200 300 400 500 600 700 800 900

0

2

4

N
M

E
P

0 100 200 300 400 500 600 700 800 900
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(a)

0 200 400 600 800 1000
−10

0

10

20

C
A

50
(d

eg
 a

fte
r

T
D

C
)

0 200 400 600 800 1000

0

2

4

N
M

E
P

0 200 400 600 800 1000
10

20

30

Combustion Cycles

F
ue

l i
np

ut
(m

g/
cy

cl
e)

(b)

Figure 6.9: Prediction results of the SG-ELM algorithm showing CA50, IMEP and
one input variable (fueling) for 2 unseen data sets. The color code indicates model
prediction - green (and red) indicate stable (and unstable) prediction by the model.
The dotted line in the IMEP plot indicates misfire limit, dotted ellipse in CA50 plot
indicates high variability instability mode while dotted rectangle indicates a wrong
predictions by model.

139

CHAPTER VII

Controls Development - Model Predictive Control

using Extreme Learning Machine Models

In this chapter, a control framework is developed for HCCI engines that makes use

of the machine learning models developed in the previous chapters. Although black-

box models do not give any physical insight for controls development, can be used

for evaluating optimal control trajectories as in a model predictive control (MPC)

method. The MPC method is a powerful method especially for black box based

models for computing optimal control in the presence of system level and operating

level constraints [112, 9]. The ELM based models are preferred over the ANN and

SVM based models for its ease of training and superior generalization capability (see

chapter IV) and are used in designing MPC controller in this chapter.

7.1 MPC Formulation using Extreme Learning Machines

In this section, the MPC problem is formulated based on general predictive control

principles [112, 113]. Let the state space representation of a discrete time nonlinear

140

model of the underlying phenomenon of interest be given by

z(k + 1) = f(z(k), u(k))

y(k) = g(z(k)) (7.1)

where z ∈ Rn, u ∈ Rm, y ∈ Rp, k the time index, n,m and p represent the number of

states, inputs and outputs respectively. f(.) and g(.) are continuously differentiable

and globally Lipschitz [101] nonlinear functions modeled offline using ELM. Around

any operating point (z0, u0), the models can be linearized using Taylor’s series expan-

sion as follows

z(k + 1) = f(z0(k), u0(k)) + A(z(k)− z0(k)) +B(u(k)− u0(k)) + εz,ho

y(k) = g(z0(k)) + C(z(k)− z0(k)) + εy,ho

A =

[
∂f

∂z
(z(k), u(k))

]
z0(k),u0(k)

B =

[
∂f

∂u
(z(k), u(k))

]
z0(k),u0(k)

C =

[
∂g

∂z
(z(k), u(k))

]
z0(k),u0(k)

where A,B and C represent the partial derivatives of the ELM models in the Taylor’s

expansion, εz,ho and εy,ho represent higher order terms. The linearized model can be

further written as

z(k + 1) = Az(k) +Bu(k) + d1(k)

y(k) = Cz(k) + d2(k) (7.2)

141

where

d1 = f(z0(k), u0(k))− (Az0(k) +Bu0(k)) + εz,ho

d2 = g(z0(k), u0(k))− Cz0(k) + εy,ho

The following subsections describe the calculation of the system matrices A,B and

C followed by the MPC optimization problem formulation.

7.1.1 Calculation of System Matrices

The matrices A,B and C in equation (7.2) can be determined by exploiting the

structure of the ELM model as follows. Let the augmented input vector to ELM be

given by x(k) = [u(k), z(k)]T ∈ Rn+m. The matrices A,B and C can be determined

by calculating the Jacobian of f(.) and g(.) with respect to the augmented input

vector x(k). The ELM model structure can be expressed as

ẑ(k + 1) = W T [ψ(W T
r x(k) + br)] (7.3)

where ψ represents the hidden layer activation function and Wr ∈ Rn+m×nh ,W ∈

Rnh×n represents the input and output layer parameters respectively. Here, nh rep-

resents the number of hidden neurons of the ELM model, φ(k) = ψ(W T
r x(k) + br) ∈

Rnh×1 represents the hidden layer output matrix as termed in literature (see Fig.

2.10). The matrix Wr consists of randomly assigned elements that maps the input

vector to a high dimensional feature space while br ∈ Rnh is a bias component as-

signed in a random manner similar to Wr. The elements can be assigned based on any

continuous random distribution [50] and remains fixed during the learning process.

The number of hidden neurons determine the dimension of the transformed feature

space and the hidden layer is equipped with a nonlinear activation function similar to

traditional neural network architecture. In this paper, a sigmoidal activation function

142

is considered.

Note that the ELM model in (7.3) is defined for inputs and outputs normalized

to lie between [−1,+1]. Expressing the model in (7.3) along with the normalization

and de-normalization terms,

ẑ(k + 1) = zmin +

(
zmax − zmin

2

){
1 +W Tφ(k)

}
φ(k) =

1

1 + e
−
{
WT

r

[
2
(

x(k)−xmin
xmax−xmin

)
−1
]
+br

} (7.4)

Then, Jacobian matrix ∂f
∂x

can be derived (ignoring the time index k) as

∂f

∂x
=

(
zmax − zmin

2

)
W T ∂φ

∂x
(7.5)

∂φi
∂xj

=
2Wr(j, i)e

−
{
WT

r,1

[
2
(

x−xmin
xmax−xmin

)
−1
]
+br,1

}

(xmax,j − xmin,j)
(

1 + e
−
{
WT

r,1

[
2
(

x−xmin
xmax−xmin

)
−1
]
+br,1

})2

where Wr,i represents the ith column of Wr and br,i represents the ith element of br,

∂φ
∂x
∈ Rnh×n+m. Since the augmented vector is defined as x(k) = [u(k), z(k)]T , the

matrices A and B can be extracted from the Jacobian ∂f
∂x

as

[
∂f

∂x

]
n×n+m

= [Bn×m|An×n]. (7.6)

A similar jacobian calculation can be done for g(.) and also for other type of activation

functions ψ(.). The above calculations are algebraic and can be efficiently performed

online.

7.1.2 MPC Optimization Problem

The goal of MPC is to force the system output y(k) track a given reference r(k)

and also penalize any large excursion in the input signal u(k). This is obtained by

143

solving the following optimization problem at every time instant k

J(k) =

Ny∑
j=1

‖r(k + j|k)− y(k + j|k)‖2
Q1

+
Nu−1∑
j=0

‖∆u(k + j|k)‖2
Q2

(7.7)

subjected to

umin ≤ u(k + j|k) ≤ umax

∆umin ≤ ∆u(k + j|k) ≤ ∆umax

ymin ≤ y(k + j|k) ≤ ymax

(7.8)

where r(k+ j|k), y(k+ j|k),∆u(k+ j|k) represents the reference, system output and

control increment respectively. The argument (k + j|k) indicates the signal from

time index k until k + j being used for solving the optimization problem at time

index k. Here ∆u(k + j|k) = u(k + j|k)− u(k − 1 + j|k), Ny and Nu are prediction

horizon (Ny ≥ 1) and control horizon (0 < Nu ≤ Ny) respectively, ‖.‖Q1 and ‖.‖Q2

denote weighted Euclidean norm weighted by matrices Q1 and Q2 respectively. The

minimum and maximum constraints for u, ∆u and y are given as in equation (7.8).

By defining the following vectors,

Y (k) = [y(k + 1|k), y(k + 2|k), .., y(k +Ny|k)]T

∆U(k) = [∆u(k|k),∆u(k + 2|k), ..,∆u(k +Nu − 1|k)]T

R(k) = [r(k + 1|k), r(k + 2|k), .., r(k +Ny|k)]T

and calculating y(k + j|k) recursively using equation (7.2), the vector Y (k) can be

expressed as

Y (k) = Z(k)z(k) + U(k)∆U(k) + V(k)u(k − 1) +D1(k)d1(k) +D2(k)d2(k) (7.9)

144

where

U =

CB . . 0

CB + CAB . . .

. . . .

CB + ..+ CANu−1B . . CB

CB + ..+ CANuB . . CB + CAB

. . . .

CB + ..+ CANy−1B . . CB + ..+ CANy−NuB

V =

CB

CB + CAB

.

.

CB + CANy−1B

,Z =

CA

CA2

.

.

CANy

,D1 =

C

C + CA

.

.

C + CANy−1

,D2 =

Ip

Ip

.

.

Ip

Here, Q1 ∈ RNyp×Nyp, Q2 ∈ RNum×Num, Y ∈ RNyp×1,∆U ∈ RNum×1, R ∈ RNyp×1,

U ∈ RNup×Num,V ∈ RNyp×m,Z ∈ RNyp×n,D1 ∈ RNyp×n,D2 ∈ RNyp×p.

The optimization problem in equation (7.7) can now be expressed in vector form

as

min
∆U(k)

{
∆Y T (k)Q1∆Y (k) + ∆UT (k)Q2∆U(k)

}
(7.10)

where

∆Y (k) = R(k)−Y (k) = R(k)−Z(k)z(k)−U(k)∆U(k)−V(k)u(k−1)−D1(k)d1(k)−D2(k)d2(k)

Expressing as a quadratic programming problem, the above formulation reduces to

min
∆U(k)

{
1

2
∆UT (k)W1(k)∆U(k) +W T

2 (k)∆U(k)

}
(7.11)

subjected to E(k)∆U(k) ≤ F (k) (7.12)

145

where

W1(k) = 2[UT (k)Q1U(k) +Q2]

W2(k) = −2UT (k)Q1[R(k)−Z(k)z(k)

−V(k)u(k − 1)−D1(k)d1(k)−D2(k)d2(k)]

E(k) = [INum − INum H −H U(k) − U(k)]T

F (k) =

∆Umax

−∆Umin

Umax − Uk−1

−{Umin − Uk−1}

Ymax −Z(k)z(k)− V(k)u(k − 1)

−D1(k)d1(k)−D2(k)d2(k)

−{Ymin −Z(k)z(k)− V(k)u(k − 1)

−D1(k)d1(k)−D2(k)d2(k)}

H =

Im 0 . . 0

Im Im . . 0

.

.

Im Im . . Im

146

Umin = [umin umin..umin]T

Umax = [umax umax..umax]
T

∆Umin = [∆umin ∆umin..∆umin]T

∆Umax = [∆umax ∆umax..∆umax]
T

Uk−1 = [u(k − 1) u(k − 1)..u(k − 1)]T

Ymin = [ymin ymin..ymin]T

Ymax = [ymax ymax..ymax]
T

Here, Im, Ip and INum represents identity matrices in Rm×m, Rp×p and RNum×Num

respectively. The above problem can be solved using commercial quadratic program-

ming solvers that are efficient [112]. The first value of the optimal control increment

∆U(k) is applied at the present time instant k and the optimization is solved again

for the next time index. This is done to handle any model inaccuracies and external

disturbances.

7.2 HCCI Optimal Control

In this section, the design and development of an optimal tracking controller for

HCCI engine is discussed. The MPC framework is shown in Figure 7.1. An offline

trained nonlinear model of the HCCI engine is used. The model is developed as a

first order system with 20 hidden neurons. The dynamic equations of the model can

147

be expressed as in (7.1) where

z(k) = [IMEP (k) CA50(k) Pmax(k) Rmax(k) Tb(k) λ(k)]T ∈ R6

u(k) = [rk(k) evc(k) soi(k)]T ∈ R3

y(k) = [IMEP (k) CA50(k)]T ∈ R2

Using the engine model, the controller is designed using simulations.

Linearized

ELM

Constraints

Cost

function Quadratic

Program

Offline trained

nonlinear model

HCCI

Engine

Linearization

𝑢∗ 𝑦

Figure 7.1: MPC Framework

7.2.1 Fast Quadratic Programming

The MPC problem involves solving a quadratic programming subproblem of the

form given by equation (7.11). The generic quadratic programming solver demands

computation and memory owing to iterative interior point, active sets or trust region

approximations and becomes infeasible for implementation on the engine ECU. In

order to reduce the computation and memory, an efficient and fast QP algorithm is

adopted in this work [114]. The algorithm can be derived as follows.

Restating the MPC quadratic programming problem from (7.11),

min
∆U(k)

{
1

2
∆UT (k)W1(k)∆U(k) +W T

2 (k)∆U(k)

}
(7.13)

148

subjected to E(k)∆U(k)− F (k) ≤ 0 (7.14)

where W1(k) is a symmetric positive definite matrix and the objective function is

strictly convex. The lagrangian dual problem can be formulated as

max
λL

inf

{
1

2
∆UT (k)W1(k)∆U(k) +W T

2 (k)∆U(k) + λL(E(k)∆U(k)− F (k))

}
(7.15)

where λL ≥ 0. Taking the derivative with respect to ∆U ,

W1(k)∆U(k) +W2(k) + ET (k)λL = 0. (7.16)

The dual problem can be expressed as

max
λL

{
1

2
∆UT (k)W1(k)∆U(k) +W T

2 (k)∆U(k) + λL(E(k)∆U(k)− F (k))

}
(7.17)

subjected to W1(k)∆U(k) +W2(k) + ET (k)λL = 0 (7.18)

y ≥ 0 (7.19)

Since W1(k) is positive definite, W1(k)−1 exists and equation (7.16) can be solved as

follows

∆U∗ = −W1(k)−1(W2(k) + ET (k)λL). (7.20)

Following a direct substitution of (7.20) in (7.17), the problem becomes

max
λL

{
1

2
λTLΛ1λL + λTLΛ2 −

1

2
W T

2 (k)W−1
1 (k)W2(k)

}
(7.21)

subjected to y ≥ 0 (7.22)

where Λ1 = −E(k)W−1
1 (k)ET (k) and Λ2 = −F (k)−E(k)W−1

1 (k)W2(k). The problem

149

in (7.21) can be solved using a simple gradient ascent method as follows.

λLk+1
= λLk

+ λstep(Λ1λL + Λ2). (7.23)

In order to satisfy the constraint in (7.22), the following modification is made

λLk+1
= max(λLk

+ λstep(Λ1λL + Λ2), 0) (7.24)

where λstep defines the step size. The solution of (7.24) gives the optimal λ∗L which

can be substituted in (7.20) to get the optimal MPC output ∆U∗. The strictly convex

property of the MPC problem is made use of in solving the quadratic programming

subproblem efficiently.

7.2.2 Simulations

In this section, the design of the MPC controller and tuning of parameters and

controller gains have been discussed. The offline trained nonlinear model is considered

as the true HCCI engine plant and controller is designed. The goal of the controller

is to track the reference IMEP and CA50 trajectories with minimum error and with

minimum change in control input (see (7.7)). The reference trajectory is designed

offline depending on the allowable operating regions of HCCI and the valid region of

the HCCI engine model. The step references are designed to vary between 2.6 and

3.2 bar IMEP and between -4 and -10 deg CA50 defined in degrees before combustion

TDC. This almost covers the range defined by the experimental data used for training

150

the model. The MPC constraints are defined as follows.

umin = [19 − 121 272]T

umax = [25 − 100 375]T

∆umin = [−6 − 22 − 103]T

∆umax = [6 22 103]T

ymin = [2.1 − 14]T

ymax = [3.55 − 2]T

At every simulation step, the HCCI model is linearized around sampled inputs

and outputs of the plant. The linear model is used in the online MPC algorithm to

determine the optimal control increment to be given to the plant. The prediction

and control horizons take values Ny = 3 and Nu = 3 are tuned for minimum tracking

error. Similarly, the gain matrices are tuned to be

Q1 =

800 0 0 0 0 0

0 10 0 0 0 0

0 0 800 0 0 0

0 0 0 10 0 0

0 0 0 0 800 0

0 0 0 0 0 10

, Q2 = I8×8.

It should be noted that the gains are tuned for a very close tracking of the refer-

ence. In the experimental setup, the gains take smaller values to avoid noise amplifi-

cation. The tracking performance of the MPC controller is shown in Fig. 7.2. It can

be seen that the controller tracks the references with an accuracy of 0.036 and 0.192

for IMEP and CA50 respectively measured as root mean squared error (RMSE). The

corresponding control trajectories can be seen in Fig. 7.3. The control trajectories

fall within the actuator limits as defined by the constraints above.

151

0 200 400 600 800 1000 1200 1400 1600 1800

2.6

2.8

3

3.2

IM
E

P
 (

ba
r)

Tracking performance

0 200 400 600 800 1000 1200 1400 1600 1800

−10

−8

−6

−4

C
A

50
 (

de
g

bT
D

C
)

Tracking performance

0 200 400 600 800 1000 1200 1400 1600 1800
30

35

40

P
m

ax
 (

ba
r)

0 200 400 600 800 1000 1200 1400 1600 1800
1

2

3

4

5

R
m

ax
 (

ba
r/

de
g)

0 200 400 600 800 1000 1200 1400 1600 1800
20

25

30

35

T
 (

N
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
1.1

1.2

1.3

La
m

da
 (

−
)

Engine Cycles

System State
Reference

Figure 7.2: State trajectories of the HCCI engine model using MPC control.

152

0 200 400 600 800 1000 1200 1400 1600 1800 2000
19

20

21

22

23

24

25

rk

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−125

−120

−115

−110

−105

−100

−95

ev
c

0 200 400 600 800 1000 1200 1400 1600 1800 2000
260

280

300

320

340

360

380

so
i

Engine Cycles

Figure 7.3: Control trajectories of the HCCI engine model using MPC control. The
upper and lower limits of each actuator is shown in dotted red.

153

In order to evaluate the controller’s robustness to noise, white noise signals of zero

mean and variances 0.0011 and 2.34 are injected at the outputs of IMEP and CA50

respectively. The noise parameters are determined from the actual experimental data.

The Figures 7.4 and 7.5 summarize the performance of the MPC controller.

7.3 MPC with Online Model Adaptation

In this section, the online learning algorithms developed for nonlinear systems are

used in conjunction with the MPC algorithm to develop an adaptive MPC strategy

for the HCCI engine control. The adaptive control framework can be shown in Fig.

7.6.

As mentioned earlier in chapter VI, online learning might be necessary to handle

the following situations. The identification model developed using experimental data

may involve inaccuracies owing to lack of experimental data at some operating regions.

Also, the models are developed at constrained experimental conditions, for instance,

at constant ambient temperature, pressure and humidity. Under such conditions,

there might exist a slight difference between the engine’s behavior and the model’s

prediction. Since the controller is model based, it is important to adapt the model

for such parametric changes. In this demonstration, the online learning algorithms

discussed in chapter VI is used to adapt the models online for parametric variations

and simultaneously determining optimal control using MPC.

A parametric variation of 10% is considered in the offline estimated models. The

variations introduces inaccuracies in the model which results in poor tracking by the

MPC controller as shown in Fig. 7.7. Now, the online learning algorithms namely

OS-ELM, SG-ELM and L-ELM are implemented to correct the inaccurate model.

The parameter matrix W is adapted online and the updated matrix is used in MPC

for linearizing the model and obtaining system matrices A,B and C. Using the

adapted matrix, the MPC is performed in a similar manner. The parameters of L-

154

0 200 400 600 800 1000 1200 1400 1600 1800

2.5

3

3.5

IM
E

P
 (

ba
r)

Tracking performance

0 200 400 600 800 1000 1200 1400 1600 1800
−14

−12

−10

−8

−6

−4

−2

C
A

50
 (

de
g

bT
D

C
)

Tracking performance

System State
Reference

0 200 400 600 800 1000 1200 1400 1600 1800
20

30

40

50

P
m

ax
 (

ba
r)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

R
m

ax
 (

ba
r/

de
g)

0 200 400 600 800 1000 1200 1400 1600 1800
20

25

30

35

T
 (

N
m

)

0 200 400 600 800 1000 1200 1400 1600 1800
1

1.2

1.4

La
m

da
 (

−
)

Engine Cycles

Figure 7.4: State trajectories of the HCCI engine model (with noise) using MPC
control.

155

0 200 400 600 800 1000 1200 1400 1600 1800
19

20

21

22

23

24

25

rk

0 200 400 600 800 1000 1200 1400 1600 1800
−125

−120

−115

−110

−105

−100

−95

ev
c

0 200 400 600 800 1000 1200 1400 1600 1800
260

280

300

320

340

360

380

so
i

Engine Cycles

Figure 7.5: Control trajectories of the HCCI engine model (with noise) using MPC
control. The upper and lower limits of each actuator is shown in dotted red.

156

ELM nonlinear
model (Offline)

HCCI
Engine

Linearized
ELM

Constraints

Cost
function Quadratic

Program

Online
learning

Figure 7.6: Framework showing model predictive control with online learning.

0 100 200 300 400 500 600 700 800 900

2.4

2.6

2.8

3

3.2

3.4

IM
E

P
 (

ba
r)

Tracking performance

System State
Reference

0 100 200 300 400 500 600 700 800 900
−14

−12

−10

−8

−6

−4

−2

C
A

50
 (

de
g

bT
D

C
)

Tracking performance

Figure 7.7: Poor control by MPC due to inaccuracies in the ELM model.

157

ELM and SG-ELM are as follows. AL = 1 × 10−4 I6, Γ = 0.1 I20 , Q = 3 I6,

ΓSG = 0.3 I20. Compared to no adaptation, the MPC performs better for the cases

with online adaptation as indicated by the tracking RMSE of IMEP and CA50 in

Table 7.1. The MPC performance can be shown in Fig. 7.8 and the optimal control

Table 7.1: Tracking performance of the MPC controller with online adaptation using
L-ELM, SG-ELM and OS-ELM compared against MPC with no adaptation.

IMEP RMSE CA50 RMSE
no adaptation 0.0268 0.8257

L-ELM 0.0034 0.3562
SG-ELM 0.0029 0.3537
OS-ELM 0.0088 0.3633

trajectories are shown in Fig. 7.9. It can be observed that, when online adaptation

is done, the MPC tracks the reference with a better accuracy compared to the case

without online learning. All three algorithms perform equally well with a slight

accuracy advantage for SG-ELM as seen in Table 7.1.

The MPC simulation is extended for a long time period to evaluate the robust-

ness of the algorithms in terms of stability in predictions. The behavior of L-ELM

and SG-ELM were stable as expected. However, the OS-ELM suffered form the ill-

conditioning problem (see chapter VI) and resulted in unstable parameter evolution

which led to poor MPC tracking performance as shown in Figures 7.10 and 7.11. The

performance of the SG-ELM and L-ELM are shown in Fig. 7.12.

158

0 100 200 300 400 500 600 700 800 900

2.4

2.6

2.8

3

3.2

3.4

IM
E

P
(b

ar
)

Tracking performance

0 100 200 300 400 500 600 700 800 900
−14

−12

−10

−8

−6

−4

−2

C
A

50
 (

de
g

bT
D

C
)

Engine Cycles

Tracking performance

Reference trajectory
No adaptation
L−ELM adaptation
SG−ELM adaptation
OS−ELM adaptation

Figure 7.8: Tracking performance of MPC controller with an without online adapta-
tion of the models. The plots compare tracking performance of IMEP and CA50.

159

0 100 200 300 400 500 600 700 800 900 1000
18

20

22

24

26

Fu
el

 I
np

ut

0 100 200 300 400 500 600 700 800 900 1000
−130

−120

−110

−100

−90

E
V

C

0 100 200 300 400 500 600 700 800 900 1000

346

348

350

352

SO
I

Engine Cycles

No adaptation Upper bound Lower bound L−ELM SG−ELM OS−ELM

Figure 7.9: Optimal control trajectories of MPC controller with an without online
adaptation of the models.

160

2000 2500 3000 3500 4000 4500

2.4

2.6

2.8

3

3.2

3.4

IM
E

P
 (

ba
r)

Tracking performance

System State
Reference

2000 2500 3000 3500 4000 4500
−14

−12

−10

−8

−6

−4

−2

C
A

50
 (

de
g

bT
D

C
)

Tracking performance

2000 2500 3000 3500 4000 4500 5000
−50

0

50
Parameter convergence of OS−ELM

Engine Cycles

Figure 7.10: Tracking performance of MPC controller with OS-ELM adaptation. The
model parameters grows unbounded resulting in unstable MPC control.

161

2000 2500 3000 3500 4000 4500 5000
10

15

20

25

Fu
el

 I
np

ut

2000 2500 3000 3500 4000 4500 5000
−130

−120

−110

−100

−90

E
V

C

2000 2500 3000 3500 4000 4500 5000
250

300

350

400

SO
I

Engine Cycles

Figure 7.11: Control trajectories of MPC controller with OS-ELM adaptation.

162

2000 2500 3000 3500 4000 4500 5000

2.4

2.6

2.8

3

3.2

3.4

IM
E

P
(b

ar
)

Tracking performance

SG−ELM
L−ELM
Reference

2000 2500 3000 3500 4000 4500 5000
−14

−12

−10

−8

−6

−4

−2

C
A

50
 (

de
g

bT
D

C
)

Engine Cycles

Tracking performance

Figure 7.12: Tracking performance of MPC controller with L-ELM and SG-ELM
adaptation.

163

CHAPTER VIII

Conclusions and Future Work

8.1 Summary of Research

This thesis develops novel algorithms and frameworks to solve some of the model-

ing and control problems encountered in a homogeneous charge compression ignition

engine. Several insights have been generated with respect to experimentation, data

processing, model selection and efficient learning from HCCI engine data. A machine

learning modeling approach is considered in this work demonstrating its capabilities

in terms of having a short development time, having high accuracies, solving complex

problems, and possessing beneficial design properties like generalization and stabil-

ity. Application frameworks for answering complex questions in HCCI modeling and

control were developed. Novel online learning algorithms and model based optimal

control algorithms were developed for any generic nonlinear system and application

to the HCCI system demonstrated.

Chapter 2 introduces some key ideas in nonlinear system identification. Prelim-

inaries on learning from dynamic data, supervised learning process, model architec-

tures for one-step ahead and multi-step ahead predictions are briefed. A detailed

description of the learning models considered in this work is included along with

literature review and mathematical formulations. Although neural networks are ef-

fective for many applications, they are prone to finding a local optimal solution and

164

with a slow convergence rate which limits itself to relatively simpler tasks. SVM is

designed to solve a convex optimization problem but the computation and memory

required is high and becomes infeasible for the HCCI engine problem. ELM models

on the other hand, are more efficient in terms of computation as well as optimality,

are used as base model structures for the algorithms developed in this thesis.

A key component of system identification is to excite the system and obtain suffi-

ciently rich data. The HCCI engine being both a nonlinear system and with a narrow

stable region of operation creates a bottleneck for experiment design. The experimen-

tal setup and experiment design for identification of the HCCI engine is summarized

in Chapter 3. A multi level random sequence is designed to obtain transient response

of HCCI combustion. In order to reduce engine misfires, a steady state model was

developed using extreme learning machines and used as a filter to eliminate unstable

excitations during the transient experiments. Further, with a controller availability,

the transient experiments were performed with a feedback controller in closed-loop.

Chapter 4 summarizes the frameworks for constructing HCCI engine simulators

using three state-of-the-art machine learning algorithms namely neural networks, sup-

port vector machines and extreme learning machines. A systematic procedure is de-

tailed for offline system identification of the HCCI engine variables including IMEP,

CA50, Pmax, Rmax, engine torque, EAFR etc. Cross-validation is used to perform

model structure learning and the model parameters are determined using established

algorithms in literature. The summary of model evaluations is as follows. The ELM

models outperform the ANN and SVM models both in terms of accuracy in one-step

ahead predictions and multi-step ahead predictions. The ANN models call for a high

computational overhead for calculating the Jacobian of high dimensional data sets.

Similar computational overhead is required by the SVR models. Even though training

time is not considered, the quick training by ELM enabled efficient model develop-

ment and tuning thanks to the ELM model’s random projection step which enabled

165

handling high dimensional data sets with ease. Further, ELM models can handle

multiple outputs directly compared to ANN and SVM models which reduces training

time significantly. An interpolation based approach is adopted for predicting HCCI

engine behavior at different engine speeds and initial results are validated. Finally,

the ELM models have a simple online adaptation algorithm (see chapter VI) suitable

for onboard engine applications constrained by computational resources. Hence, ELM

models are chosen as suitable model structures in this work.

Complex and highly sensitive systems such as HCCI engines have a narrow region

of stable operation and it is important to gain knowledge about the stable operating

envelope for diagnostics and controls development. In chapter 5, a novel solution using

machine learning has been developed that predicts if the future HCCI combustion

events are stable or not based on past and present measurements along with excitation

inputs. The algorithm could potentially be used as a misfire prediction tool for HCCI

combustion. A classification problem has been formulated and solved using linear

and nonlinear methods such as logistic regression, linear regression, SVM and ELM.

In order to handle the imbalance in class proportions in the experimental data, class

imbalance modifications are made in the algorithms to enable cost-sensitive learning.

Data re-sampling methods including under-sampling and over-sampling have been

performed as well. Re-sampling methods are found to work well but cost-sensitive

methods have a slightly better accuracy and do not modify data distributions. A

modification to the ELM algorithm has been made by weighting the minority class

data more to handle the imbalance in the data set. The cost-sensitive SVM classifier

outperforms the other algorithms in terms of accuracy but requires a large fraction of

the data to be stored for predictions, typical of non-parametric methods. ELM models

result in an inferior accuracy compared to SVMs but preferred for their simplicity

(less number of parameters) and potential for online learning.

The simulators developed in chapter 4 and 5 require online adaptation owing to

166

inaccuracies and parametric variations. In chapter 6, novel online learning algorithms

using extreme learning machine models have been developed using a Lyapunov based

approach and stochastic gradient based approach. The working of the algorithms

are demonstrated using simple examples and benchmark data sets for classification,

regression and nonlinear system identification. The algorithms have been applied

to develop HCCI engine simulators online with the following conclusions. For sim-

ple HCCI behavior such as dynamics at a constant speed can be modeled with high

accuracy using the developed online learning algorithms. The L-ELM and SG-ELM

have a stable parameter evolution unlike the OS-ELM which runs into ill-conditioning

problems. The computational requirements for L-ELM and SG-ELM are significantly

less compared to OS-ELM which demonstrates its suitability in learning from large

data sets and streaming data from engine sensors and with limited onboard ECU.

OS-ELM, on the other hand, achieves superior convergence rates and also provides

convergence indication using the covariance matrix but at the cost of possible instabil-

ities in parameter evolution. If the online learning task is the only objective, OS-ELM

can be considered as a suitable algorithm for HCCI online learning. However, if an

adaptive control scheme is required as in chapter 7, where decisions are made on the

fly using partially converged models, the L-ELM or SG-ELM may be a better choice.

In chapter 7, a model predictive control framework has been developed using ma-

chine learning models. The developed HCCI engine simulators using ELM models are

used to simulate IMEP and CA50 for given input trajectories of FM, EVC and SOI.

The MPC solves a real-time optimization problem involving objectives for tracking

reference IMEP and CA50, reducing control effort and observing constraints on actu-

ators. A fast quadratic programming has been applied for potential implementation

of the developed MPC algorithm on the engine ECU. A simulation study has been

conducted to demonstrate the working of the linearized MPC algorithm on a non-

linear HCCI engine simulator. Further, the online learning mechanisms developed in

167

chapter 6 has been used in conjunction with the MPC algorithm for online adaptation

for model inaccuracies. A simplified demonstration shows that the L-ELM and SG-

ELM algorithms are suited for the online adaptation against an OS-ELM algorithm

which might run into ill-conditioning problems leading to instability in control.

The data based modeling framework developed in this thesis demonstrates a pow-

erful alternative to the physics based modeling, which is the present state-of-the-art

for HCCI engines and many other automotive systems. The framework can be eas-

ily adapted for modeling a different combustion engine. The nonlinear models used

have a general structure and can be re-trained using a new data set with ease. The

framework can be used to develop models very quickly and with good prediction ca-

pabilities which might rank this approach higher than the state-of-the-art for systems

that are well understood and are in production. Further, HCCI operating envelope

identification using transient data is completely novel and with further analysis and

validation, can become a potential tool for commercial vehicles. The present state-of-

the-art for HCCI control involve a conservative approach by using transient models

parameterized using steady-state experimental data. The MPC based control demon-

strated in this thesis has the potential to operate the engine over a wider operating

range taking advantage of the nonlinear models. However, this has to be practically

evaluated on the engine.

In comparison to the present state-of-the-art for online learning algorithm using

ELM, the algorithms developed in this thesis (Lyapunov and Stochastic gradient de-

scent methods) are superior in terms of stability of parameter evolution but inferior

in terms of learning speed (parameter convergence). The application of such efficient

algorithms for online parameter adaptation is novel for the HCCI engine problem.

Although the developed algorithms perform well over the existing state-of-the-art

algorithms for the benchmark problems and HCCI system, extensive studies are re-

quired to fully understand the pros and cons of the developed algorithms.

168

8.2 Some Precautions in Using Computational Learning

The approach considered in this research demonstrates the power of advanced data

based models in solving complex modeling problems. However, such models rarely

give any insight into the underlying physics. An inappropriate use of the approach

can create more problems than benefits and is a major reason for the lack of adoption

in several disciplines. Below are some precautions and qualitative observations from

this work that might be useful for data based model development.

1. Pre- and post-processing of data - Data processing is important to achieve

efficient models from data. This include elimination of inappropriate data,

scaling and normalization to improve numerical stability of algorithms. Also,

when the input data dimension is large, preprocessing methods such as principal

component analysis can be used for feature selection with possible benefits in

reducing model complexity and improving generalization.

2. Use of expert knowledge - Expert knowledge or domain understanding must be

included whenever possible at every stage of model development. This include

use of appropriate sensor information for the process to be modeled/controlled.

Experiment design is a key component and expert knowledge can be used to de-

sign excitation signals for the concerned region of operation. Expert knowledge

can also be used to determine the right number of signal orders and sampling

rates to be used. The data can contain slow signals with slow dynamics and

fast dynamics and an appropriate order selection is vital for capturing the right

system behavior.

3. Appropriate model structure - A major problem in a complete black-box type

modeling is to determine an appropriate model structure. Expert knowledge can

be and must be used if known but during most situations, it is important to move

bottom-up in terms of complexity. For instance, a simple linear model must be

169

the first attempt and only when the performance needs are not satisfied, one

should resort to nonlinear models. General purpose nonlinear models such as the

ones used in this work exist but care must be taken to identify a simple structure

that ensures good generalization capability. Model complexity can be handled

using cross-validation techniques and monitoring over-fitting performance.

4. Appropriate training methods - Even if an appropriate structure is known or

identified, the model parameters need to be determined in an efficient manner.

Typically the parameters evolve as solutions to an optimization problem. An

ill-posed problem or a non-convex formulation typically leads to sub-optimal

(or bizarre) behavior. Also, special cases such as the imbalance class learning

discussed in chapter 5 call for modifications in the optimization problem and

one needs to give attention to the design of the learning algorithm.

5. Design for generalization - An important aspect of machine learning is to de-

velop models that can generalize well to unseen situations. A model is only

trained to perform well on a representative data set of the system but expected

to perform well in general. Typically, the trained models are evaluated on an

unseen test data set. It should be noted that a test set is another representative

of the system and there is no guarantee that the model can perform well in

general. Hence, several validations need to be done to build maximum confi-

dence in the model validity. Also, validations need to be problem specific. For

instance, a model validated for one-step ahead predictions may not perform well

for multi-step ahead predictions when developing a simulator. Further, appli-

cation specific contingency plan is required to monitor and compensate for any

undesirable behavior resulting from the model’s behavior. Although this is not

a focus in the present work, it could be a very good direction for the future.

6. Region of validity - It is very important to know the region of validity for the

170

developed model. An engine model developed from experiments at 2500 RPM

may not be a good simulator for the engine at 3000 RPM. Also, care needs to

be taken during model interpolations and more crucially during extrapolations.

Typically, nonlinear black box models are not valid outside the region for which

it is trained. Also, care must be taken when switching between different models

based on operating region.

The above list is not comprehensive and problem specific concerns always arise

and precautions need to be observed.

8.3 Future Work

The research presented in this thesis can be considered to be the first application of

some of the machine learning algorithms to the HCCI engine modeling and controls

problem. Although some interesting problems both in algorithm development and

applications have been addressed in this work, there are several other opportunities

to extend the work in the future.

The engine simulators developed are validated on several data sets at different

operating conditions. However, a robust mechanism to determine a confidence metric

for the models can be very useful in controls applications. For example, a bayesian

approach or bootstrapping method can be used to develop confidence intervals. Fur-

ther, application specific contingency plan might be useful to monitor and compensate

for any undesirable behavior resulting from the model’s behavior.

It is demonstrated in this work that engine operating boundaries can be identified

for partially stable combustion systems like the HCCI engine. However, extending

the algorithm to solve application related problems including developing an onboard

diagnostics unit to detect engine misfires for emission regulations, using the model

to design excitation signals for system identification without misfiring the engine,

171

implementing the model in the MPC framework to identify actuator extremes for

extending the operating region of HCCI etc. can serve fruitful in automotive research.

Also, more unstable modes of HCCI including different modes of misfires, knocking

and ringing can be included.

The L-ELM and SG-ELM algorithms are shown to work well for the HCCI engine

and several other benchmark data sets but they have been observed to converge

to local excitations. A theoretical study/convergence analysis for use in nonlinear

system identification to evaluate local vs global convergence of parameters can answer

algorithm related questions.

The MPC solution developed in this work considers reference tracking and control

effort as objectives. In future, a more comprehensive controller can be developed with

sufficient availability of sensing capability to add emissions, vehicle drivability etc. in

the MPC objective function. Further, several experiments need to be conducted to

evaluate the MPC control framework on the experimental HCCI engine to prove its

potential for adoption in real applications.

172

APPENDICES

173

APPENDIX A

Appendix

A.1 Loss functions

A plot showing the different loss functions used for classification can be shown

in Fig. A.1. The 0-1 loss is the most efficient loss function for binary classification

but is non-differentiable and hence not used in developing algorithms. A logistic loss

is given by equation (A.1) is used in logistic regression algorithm while a hinge loss

(equation (A.2)) and squared loss (equation (A.3)) are implemented in SVM and

ELM algorithms respectively.

Llogistic = log(1 + e−yf(x)) (A.1)

Lhinge = max(0, 1− yf(x)) (A.2)

Lsquared = (1− yf(x))2 (A.3)

174

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

Margin y.f(x)

Lo
ss

0−1 loss
Logistic loss
Squared loss
Hinge loss

Figure A.1: A comparison of the loss functions of the algorithms used in this paper
with the baseline 0-1 error standard.

A.2 Logistic Regression

Logistic regression (LR) is a classical linear classifier that proves to be effective

especially for large data set problems owing to its computational efficiency. LR makes

use of a logistic function given by equation (5.2) which confines the output of the

function to lie between 0 and 1. Unlike linear regression model which solves a least

squares problem with a squared loss function, LR solves a nonlinear optimization

problem using a logistic loss function (see Figure A.1 in appendix A.1). The logistic

loss function is particularly attractive for classification because the algorithm do not

penalize the correctly classified points (at large positive margin in Figure A.1) as

much as the squared loss.

ψ(x) =
1

1 + e−x
(A.4)

The conditional probability of estimating y from x can be expressed in terms of the

model parameters β = [β0 β1]T as

P (Y = y|X = x) =
1

1 + e−y(βT
1 x+β0)

(A.5)

175

where X and Y represent the input and output random variables. The goal of logistic

regression is to determine β such that P (Y |X, β) is maximized using the following

optimization problem

β = arg max
β

P (Y |X, β) = arg max
β

ΠN
i=1P (yi|xi, β) (A.6)

Expressing the above in log likelihood form, the optimization problem becomes

β = arg max
β

log{ΠN
i=1P (yi|xi, β)}

= arg max
β

N∑
i=1

logP (yi|xi, β)

= arg max
β

N∑
i=1

log
1

1 + e−y(βT
1 x+β0)

= arg max
β
−

N∑
i=1

log 1 + e−y(βT
1 x+β0)

= arg min
β

N∑
i=1

log
(

1 + e−y(βT
1 x+β0)

)
(A.7)

The LR decision hypothesis is given by

f(x) = sgn(βT1 x+ β0) (A.8)

A.3 Levenberg-Marquardt back-propagation algorithm

The training data is a set of n examples {(u1, y1), (u2, y2),, (un, yn)} obtained

as time sequence from the HCCI combustion process. The objective of training is to

approximate the system f(.) by minimizing the cost function

L(w) =
1

2

n∑
i=1

yd∑
j=1

(yij − ŷij)2 +
N∑
k=1

w2
k (A.9)

176

where w ∈ RN represents the network parameters (weights and biases). The first

term represents the sum squared error (SSE) between system outputs and model out-

puts while the second term is used for regularization and λ represents regularization

constant. The cost function can be expressed in vector form as

L(w) =
1

2
ETE +

λ

2
W TW (A.10)

In order to derive the regularized LM algorithm, the gradient (G) of L(w) with

respect to W and the Jacobian (J) of E with respect to W has to be determined.

The regularized LM algorithm update algorithm is given by

wi+1 = wi − [JTi Ji + µdiag(JTi Ji) + λI]−1Gi (A.11)

Gi = JTi Ei + λIwi (A.12)

where i represents update counter, µ the stability factor, and J is given by

J =

∂e11

∂w1

∂e11

∂w2
· · · ∂e11

∂wN

∂e21

∂w1

∂e21

∂w2
· · · ∂e21

∂wN

...
...

. . .
...

∂eyd
1

∂w1

∂eyd
1

∂w2
· · · ∂eyd

1

∂wN

∂e12

∂w1

∂e12

∂w2
· · · ∂e12

∂wN

∂e22

∂w1

∂e22

∂w2
· · · ∂e22

∂wN

...
...

. . .
...

∂eyd
2

∂w1

∂eyd
2

∂w2
· · · ∂eyd

2

∂wN

...
...

. . .
...

∂eyd
n

∂w1

∂eyd
n

∂w2
· · · ∂eyd

n

∂wN

∈ RnydxN (A.13)

When µ aproaches zero, the Gauss-Newton algorithm is obtained while a large

177

µ gives the gradient descent method. Hence when the error goes down following

an update, it indicates that the quadratic approximation on L(w) is right and µ

is reduced to perform Gauss-Newton type update while if the error goes up, µ is

increased so that the search is done along reducing gradient with small step size.

The regularization constant λ can be tuned using a hold-out training set to avoid

over-fitting.

The network trained using the above procedure represents a series-parallel struc-

ture [22]. The advantage of using a series-parallel structure for training is that the

system’s true output is used for training compared to the parallel structure where

the model estimate is used during training [22]. This prevents the inaccuracies of the

model to be fed back during training making it efficient. However during testing, the

series-parallel structure is converted to a parallel structure (Fig. 2.6) by feeding back

the model outputs as initial conditions for the next prediction. Now the model can

predict the output based on the provided inputs and the initial conditions of delay

units. Hence even before the inputs are given to the actual system, the model can

be used to check whether the future input trajectory is optimal and/or if the inputs

cause instabilities for a system like HCCI.

178

BIBLIOGRAPHY

179

BIBLIOGRAPHY

[1] R. Thring, “Homogeneous Charge Compression Ignition engines,” 1989, SAE
paper 892068.

[2] M. Christensen, P. Einewall, and B. Johansson, “Homogeneous charge compres-
sion ignition using iso-octane, ethanol and natural gas- a comparison to spark
ignition operation,” in International Fuels & Lubricants Meeting & Exposition,
Tulsa, OK, USA, Oct 1997, SAE paper 972874.

[3] T. Aoyama, Y. Hattori, J. Mizuta, and Y. Sato, “An experimental study
on premixed-charge compression ignition gasoline engine,” in International
Congress & Exposition, Detroit, MI, USA, Feb 1996, SAE paper 960081.

[4] K. Epping, S. Aceves, R. Bechtold, and J. Dec, “The potential of HCCI combus-
tion for high efficiency and low emissions,” in SAE Powertrain & Fluid Systems
Conference & Exhibition, ser. SAE Technical Paper 2002-01-1923, San Diego,
CA, Oct 2002.

[5] G. H. Abd-Alla, “Using exhaust gas recirculation in internal combustion en-
gines: a review,” Energy Conversion and Management, vol. 43, no. 8, pp. 1027–
1042, 2002.

[6] C. Chiang and C. Chen, “Constrained control of homogeneous charge compres-
sion ignition (HCCI) engines,” in 5th IEEE Conference on Industrial Electronics
and Applications (ICIEA), 2010.

[7] J. Bengtsson, P. Strandh, R. Johansson, P. Tunestal, and B. Johansson, “Model
predictive control of homogeneous charge compression ignition (HCCI) engine
dynamics,” in 2006 IEEE International Conference on Control Applications,
2006.

[8] N. Ravi, M. J. Roelle, H. H. Liao, A. F. Jungkunz, C. F. Chang, S. Park, , and
J. C. Gerdes, “Model-based control of HCCI engines using exhaust recompres-
sion,” in IEEE Transactions on Control Systems Technology, 2009.

[9] L. Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky, Automotive
Model Predictive Control: Models, Methods and Applications, ser. Lecture Notes
in Control and Information Sciences. Springer, 2010.

180

[10] Chak, C. Kwong, G. Feng, and J. Ma, “On the approximation capability of
neural networks - dynamic system modeling and control,” Asian Journal of
Control, pp. 122–130, 2001.

[11] M. Beham and D. L. Yu, “Modeling a variable valve timing spark ignition engine
using different neural networks,” Journal of Automobile Engineering, vol. 218,
pp. 1159–1171, 2004.

[12] Y. Tan and M. Saif, “Nonlinear dynamic modeling of automotive engines using
neural networks,” in IEEE International Conference on Control Applications,
1997, pp. 408–410.

[13] L. Biao, L. Qing-chun, J. Zhen-hua, and N. Sheng-fang, “System identification
of locomotive diesel engines with autoregressive neural network,” in 4th IEEE
Conference on Industrial Electronics and Applications, May 2009, pp. 3417–
3421.

[14] I. Arsie, C. Pianese, and M. Sorrentino, “Development of recurrent neural net-
works for virtual sensing of nox emissions in internal combustion engines,” SAE
International Journal of Fuels and Lubrication, vol. 2, no. 2, pp. 354–361, 2010.

[15] I. Arsie, S. D. Iorio, C. Pianese, G. Rizzo, and M. Sorrentino, “Recurrent neural
networks for air-fuel ratio estimation and control in spark-ignited engines,” in
IFAC World Congress, Elsevier, Ed., Jul 2008.

[16] D. V. Prokhorov, “2008 special issue: Toyota prius hev neurocontrol and diag-
nostics,” Neural Netw., vol. 21, no. 2-3, pp. 458–465, Mar. 2008.

[17] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities,” Proceedings of the National Academy of Sciences,
vol. 79, no. 8, pp. 2554–2558, 1982.

[18] D. Prokhorov, “Neural networks in automotive applications,” in Computational
Intelligence in Automotive Applications, ser. Studies in Computational Intelli-
gence, D. Prokhorov, Ed. Springer Berlin Heidelberg, 2008, vol. 132, pp.
101–123.

[19] R. Johri, A. Salvi, and Z. Filipi, “Real-Time Transient Soot and NOx Virtual
Sensors for Diesel Engineusing Neuro-Fuzzy Model Tree and Orthogonal Least
Squares,” Journal of Engineering for Gas Turbines and Power, 2012.

[20] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer,
1995.

[21] O. Nelles, Nonlinear System Identification: From Classical Approaches to Neu-
ral Networks and Fuzzy Models. Springer, 2001.

[22] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” vol. 1, no. 1, pp. 4–27, Mar. 1990.

181

[23] S. Haykin, Neural Networks and Learning Machines, ser. Neural networks and
learning machines. Pearson Prentice Hall, 2009, no. v. 10.

[24] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, Jan.
1989.

[25] V. Kůrková, “Kolmogorov’s theorem and multilayer neural networks,” Neural
Netw., vol. 5, no. 3, pp. 501–506, Mar. 1992.

[26] A. Ranganathan, The Levenberg-Marquardt Algorithm, 2004.

[27] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6,
pp. 989–993, Nov. 1994.

[28] V. M. Janakiraman, X. Nguyen, and D. Assanis, “Nonlinear identification of a
gasoline HCCI engine using neural networks coupled with principal component
analysis,” Applied Soft Computing, vol. 13, no. 5, pp. 2375 – 2389, 2013.

[29] R. S. Sexton, R. E. Dorsey, and J. D. Johnson, “Optimization of neural net-
works: A comparative analysis of the genetic algorithm and simulated anneal-
ing,” European Journal of Operational Research, vol. 114, no. 3, pp. 589 – 601,
1999.

[30] N. Barnes, A. O’Neill, and D. Wood, “Rapid, supervised training of a two-layer,
opto-electronic neural network using simulated annealing,” Optics Communi-
cations, vol. 87, no. 56, pp. 203 – 206, 1992.

[31] B. Cohen, D. Saad, and E. Marom, “Efficient training of recurrent neural net-
work with time delays,” Neural Networks, vol. 10, no. 1, pp. 51 – 59, 1997.

[32] A. Blanco, M. Delgado, and M. Pegalajar, “A real-coded genetic algorithm for
training recurrent neural networks,” Neural Networks, vol. 14, no. 1, pp. 93 –
105, 2001.

[33] R. S. Sexton and J. N. Gupta, “Comparative evaluation of genetic algorithm
and backpropagation for training neural networks,” Information Sciences, vol.
129, no. 14, pp. 45 – 59, 2000.

[34] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, Jun. 1991.

[35] E. Hartman, J. D. Keeler, and J. M. Kowalski, “Layered neural networks with
gaussian hidden units as universal approximations,” Neural Comput., vol. 2,
no. 2, pp. 210–215, Apr. 1990.

[36] T. Chen and R. Chen, “Approximation capability to functions of several vari-
ables, nonlinear functionals and operators by radial basis function neural net-
works,” IEEE Transactions on Neural Networks, 1995.

182

[37] A. D. Niros and G. E. Tsekouras, “A novel training algorithm for rbf neural
network using a hybrid fuzzy clustering approach,” Fuzzy Sets and Systems,
vol. 193, no. 0, pp. 62 – 84, 2012.

[38] A. Alexandridis, H. Sarimveis, and G. Bafas, “A new algorithm for online struc-
ture and parameter adaptation of rbf networks,” Neural Networks, vol. 16, no. 7,
pp. 1003 – 1017, 2003.

[39] A. Staiano, R. Tagliaferri, and W. Pedrycz, “Improving rbf networks perfor-
mance in regression tasks by means of a supervised fuzzy clustering,” Neuro-
computing, vol. 69, no. 1315, pp. 1570 – 1581, 2006.

[40] J. Gomm and D. Yu, “Selecting radial basis function network centers with re-
cursive orthogonal least squares training,” Neural Networks, IEEE Transactions
on, vol. 11, no. 2, pp. 306 –314, mar 2000.

[41] D.-S. Huang and W.-B. Zhao, “Determining the centers of radial basis proba-
bilistic neural networks by recursive orthogonal least square algorithms,” Ap-
plied Mathematics and Computation, vol. 162, no. 1, pp. 461 – 473, 2005.

[42] V. Vapnik, The Nature of Statitical Learning Theory. Springer-Verlag GmbH,
1995.

[43] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–
27:27, 2011.

[44] K. Veropoulos, C. Campbell, and N. Cristianini, “Controlling the sensitivity of
support vector machines,” in Proceedings of the International Joint Conference
on AI, 1999, pp. 55–60.

[45] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support
vector regression machines,” in ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS 9. MIT Press, 1997, pp. 155–161.

[46] B. Schlkopf, P. Bartlett, A. Smola, and R. Williamson, “Support vector regres-
sion with automatic accuracy control,” in Proceedings of ICANN’98, Perspec-
tives in Neural Computing, 1998.

[47] A. J. Smola and B. Schlkopf, “A tutorial on support vector regression,” Statis-
tics and Computing, Tech. Rep., 2003.

[48] B. Schlkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support
vector algorithms,” in Neural Computation. MIT Press, 2000.

[49] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing, vol. 70, pp. 489–501, 2006.

183

[50] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for
regression and multiclass classification.” IEEE Transactions on Systems, Man,
and Cybernetics, Part B, vol. 42, no. 2, pp. 513–529, 2012.

[51] J. Heywood, Internal combustion engine fundamentals, ser. McGraw-Hill series
in mechanical engineering. McGraw-Hill, 1988.

[52] F. Zhao, T. N. Asmus, D. N. Assanis, J. E. Dec, J. A. Eng, and P. M. Najt, Ho-
mogeneous Charge Compression Ignition (HCCI) Engines. SAE International,
March 2003.

[53] J. Martinez-Frias, S. M. Aceves, D. Flowers, J. R. Smith, and R. Dibble, “HCCI
engine control by thermal management.” SAE International, 10 2000.

[54] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, “HCCI combustion
phasing in a multi cylinder engine using variable compression ratio.” SAE
International, 10 2002.

[55] M. Y. Au, J. W. Girard, R. Dibble, D. Flowers, S. M. Aceves, J. Martinez-
Frias, R. Smith, C. Seibel, and U. Maas, “1.9-liter four-cylinder HCCI engine
operation with exhaust gas recirculation,” 05 2001.

[56] M. Yao, Z. Zheng, and H. Liu, “Progress and recent trends in homogeneous
charge compression ignition (HCCI) engines,” Progress in Energy and Combus-
tion Science, vol. 35, no. 5, pp. 398 – 437, 2009.

[57] X. Lu, W. Chen, and Z. Huang, “A fundamental study on the control of the
HCCI combustion and emissions by fuel design concept combined with control-
lable EGR. part 2. effect of operating conditions and EGR on HCCI combus-
tion,” Fuel, vol. 84, no. 9, pp. 1084–1092, 2005.

[58] J. E. Dec and M. Sjberg, “Isolating the effects of fuel chemistry on combustion
phasing in an HCCI engine and the potential of fuel stratification for ignition
control,” 03 2004.

[59] G. M. Shaver, J. C. Gerdes, and M. J. Roelle, “Physics-based modeling and
control of residual-affected HCCI engines,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 131, no. 2, p. 021002, 2009.

[60] C. Chiang and A. Stefanopoulou, “Dynamics of homogeneous charge compres-
sion ignition (HCCI) engines with high dilution,” in American Control Confer-
ence, 2007. ACC ’07, july 2007, pp. 2979 –2984.

[61] G. M. Shaver, “Stability analysis of residual-affected HCCI using convex op-
timization,” Control Engineering Practice, vol. 17, no. 12, pp. 1454 – 1460,
2009.

184

[62] M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and
exhaust-gas recirculation-measurements in a homogeneous charge-compression
ignition engine by use of pure rotational coherent anti-stokes raman spec-
troscopy,” Appl. Opt., vol. 45, no. 15, pp. 3646–3651, May 2006.

[63] Y. Urata, M. Awasaka, J. Takanashi, T. Kakinuma, T. Hakozaki, and A. Umem-
oto, “A study of gasoline-fuelled HCCI engine equipped with an electromagnetic
valve train,” 06 2004.

[64] R. Scaringe, C. Wildman, and W. K. Cheng, “On the high load limit of boosted
gasoline HCCI engine operating in NVO mode,” SAE Int. J. Engines, vol. 3,
pp. 35–45, 04 2010.

[65] M. M. Andreae, W. K. Cheng, T. Kenney, and J. Yang, “On HCCI engine
knock,” 07 2007.

[66] T. Johansson, B. Johansson, P. Tunestal, and H. Aulin, “HCCI operating range
in a turbo-charged multi cylinder engine with vvt and spray-guided di,” SAE,
vol. 2009-01-04, no. 2009-01-0494, 2009.

[67] J. Hyvnen, G. Haraldsson, and B. Johansson, “Supercharging HCCI to extend
the operating range in a multi-cylinder VCR-HCCI engine,” 10 2003.

[68] K. Godfrey, Perturbation signals for system identification, ser. Prentice Hall
international series in acoustics, speech, and signal processing. Prentice Hall,
1993.

[69] V. Janakiraman, J. Sterniak, and D. Assanis, “Support vector machines for
identification of HCCI combustion dynamics,” in 9th International Conference
on Informatics in Control, Automation and Robotics (ICINCO), July 2012.

[70] V. M. Janakiraman, X. Nguyen, and D. Assanis, “A system identification
framework for modeling complex combustion dynamics using support vector
machines,” Lecture Notes in Electrical Engineering - Informatics in Control,
Automation and Robotics, 2012.

[71] S. Jade, E. Hellström, L. Jiang, and A. G. Stefanopoulou, “Fuel governor
augmented control of recompression HCCI combustion during large load tran-
sients,” in Proc. American Control Conference, 2012, pp. 2072–2077.

[72] N. Ravi, M. J. Roelle, H. H. Liao, A. F. Jungkunz, C. F. Chang, S. Park, and
J. C. Gerdes, “Model-based control of HCCI engines using exhaust recompres-
sion,” in IEEE Transactions on Control Systems Technology, 2009.

[73] K. Chang, A. Babajimopoulos, G. A. Lavoie, Z. S. Filipi, and D. N. Assanis,
“Analysis of load and speed transitions in an HCCI engine using 1-d cycle
simulation and thermal networks.” SAE International, 04 2006.

185

[74] Y. Wang, S. Makkapati, M. Jankovic, M. Zubeck, and D. Lee, “Control oriented
model and dynamometer testing for a single-cylinder, heated-air HCCI engine.”
SAE International, 04 2009.

[75] C. Chiang, A. G. Stefanopoulou, and M. Jankovic, “Nonlinear observer-based
control of load transitions in homogeneous charge compression ignition engines,”
Control Systems Technology, IEEE Transactions on, vol. 15, no. 3, pp. 438–448,
2007.

[76] Y. Urata, M. Awasaka, J. Takanashi, T. Kakinuma, T. Hakozaki, and A. Umem-
oto, “A study of gasoline-fuelled HCCI engine equipped with an electromagnetic
valve train,” 06 2004.

[77] R. Scaringe, C. Wildman, and W. K. Cheng, “On the high load limit of boosted
gasoline HCCI engine operating in NVO mode,” SAE Int. J. Engines, vol. 3,
pp. 35–45, 04 2010.

[78] A. Soliman, G. Rizzoni, and V. Krishnaswami, “The effect of engine misfire on
exhaust emission levels in spark ignition engines.” SAE International, 02 1995.

[79] S.-C. Kong, “A study of natural gas/DME combustion in HCCI engines using
CFD with detailed chemical kinetics,” Fuel, vol. 86, no. 1011, pp. 1483 – 1489,
2007.

[80] Z. Zheng and M. Yao, “Charge stratification to control HCCI: Experiments and
CFD modeling with n-heptane as fuel,” Fuel, vol. 88, no. 2, pp. 354 – 365, 2009.

[81] Z. Wang, S. Shuai, J. Wang, and G. Tian, “A computational study of direct
injection gasoline HCCI engine with secondary injection,” Fuel, vol. 85, no.
1213, pp. 1831 – 1841, 2006.

[82] I. V. Kolmanovsky and E. G. Gilbert, “Support vector machine-based determi-
nation of gasoline direct injected engine admissible operating envelope.” SAE
International, 03 2002.

[83] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. on
Knowl. and Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.

[84] A. Dobson, An Introduction to Generalized Linear Models, Second Edition, ser.
Texts in Statistical Science Series. Taylor & Francis, 2010.

[85] G. A. Lavoie, J. Martz, M. Wooldridge, and D. Assanis, “A multi-mode combus-
tion diagram for spark assisted compression ignition,” Combustion and Flame,
vol. 157, no. 6, pp. 1106 – 1110, 2010.

[86] G. T. Kalghatgi and R. A. Head, “Combustion limits and e?ciency in a ho-
mogeneous charge compression ignition engine,” Int. J. Engine Res, vol. 7, pp.
215–236, 2006.

186

[87] M. Shahbakhti and C. R. Koch, “Characterizing the cyclic variability of ig-
nition timing in a homogenous charge compression ignition engine fueled with
n-heptane/iso-octane blend fuels,” Int. J. Engine Res, vol. 9, pp. 361–397, 2008.

[88] K.-A. Toh, “Deterministic neural classification,” Neural Comput., vol. 20, no. 6,
pp. 1565–1595, Jun. 2008.

[89] Y. LeCun, L. Bottou, G. Orr, and K.-R. Mller, “Efficient backprop,” in Neural
Networks: Tricks of the Trade, ser. Lecture Notes in Computer Science, G. Orr
and K.-R. Mller, Eds. Springer Berlin Heidelberg, 1998, vol. 1524, pp. 9–50.

[90] L. Ngia, J. Sjoberg, and M. Viberg, “Adaptive neural nets filter using a recursive
levenberg-marquardt search direction,” in Signals, Systems amp; Computers,
1998. Conference Record of the Thirty-Second Asilomar Conference on, vol. 1,
1998, pp. 697–701 vol.1.

[91] J. Platt, “A resource-allocating network for function interpolation,” Neural
Comput., vol. 3, no. 2, pp. 213–225, Jun. 1991.

[92] G. Huang, P. Saratchandran, and N. Sundararajan, “An efficient sequential
learning algorithm for growing and pruning rbf (gap-rbf) networks,” Trans.
Sys. Man Cyber. Part B, vol. 34, no. 6, pp. 2284–2292, Dec. 2004.

[93] ——, “A generalized growing and pruning rbf (ggap-rbf) neural network for
function approximation,” IEEE Transactions on Neural Networks, vol. 16, pp.
57–67, 2005.

[94] N. Liang, G. Huang, P. Saratchandran, and N. Sundararajan, “A fast and
accurate online sequential learning algorithm for feedforward networks,” Neural
Networks, IEEE Transactions on, vol. 17, no. 6, pp. 1411–1423, 2006.

[95] G. Zhao, Z. Shen, C. Miao, and Z. Man, “On improving the conditioning of
extreme learning machine: A linear case,” in Information, Communications
and Signal Processing, 2009. ICICS 2009. 7th International Conference on,
dec. 2009, pp. 1 –5.

[96] F. Han, H.-F. Yao, and Q.-H. Ling, “An improved extreme learning machine
based on particle swarm optimization,” in Bio-Inspired Computing and Appli-
cations, ser. Lecture Notes in Computer Science.

[97] M. T. Hoang, H. Huynh, N. Vo, and Y. Won, “A robust online sequential
extreme learning machine,” in Advances in Neural Networks, ser. Lecture Notes
in Computer Science.

[98] H. T. Huynh and Y. Won, “Regularized online sequential learning algorithm for
single-hidden layer feedforward neural networks,” Pattern Recognition Letters,
vol. 32, no. 14, pp. 1930 – 1935, 2011.

187

[99] V. Akpan and G. Hassapis, “Adaptive predictive control using recurrent neu-
ral network identification,” in Control and Automation, 2009. MED ’09. 17th
Mediterranean Conference on, june 2009, pp. 61 –66.

[100] S. Lyashevskiy and L. Abel, “Nonlinear systems identification using the lya-
punov method,” System identification (SYSID’94) : a postprint volume from
the IFAC symposium, Copenhagen, Denmark, 4-6 July 1994, vol. 1, July 1994.

[101] K. Ross, Elementary Analysis: The Theory of Calculus, ser. Undergraduate
Texts in Mathematics. Springer, 1980.

[102] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[103] P. Ioannou and J. Sun, Robust adaptive control.

[104] J. Spooner, M. Maggiore, R. Ordóñez, and K. Passino, Stable Adaptive Con-
trol and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator
Techniques, ser. Adaptive and Learning Systems for Signal Processing, Com-
munications and Control Series. Wiley, 2004.

[105] R. Nowak and B. Van Veen, “Nonlinear system identification with pseudoran-
dom multilevel excitation sequences,” in Acoustics, Speech, and Signal Process-
ing, 1993. ICASSP-93., 1993 IEEE International Conference on, vol. 4, april
1993, pp. 456 –459 vol.4.

[106] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in Proceedings of COMPSTAT’2010, Y. Lechevallier and G. Saporta, Eds.
Physica-Verlag HD, 2010, pp. 177–186.

[107] N. Le Roux, M. Schmidt, and F. Bach, “A Stochastic Gradient Method with an
Exponential Convergence Rate for Strongly-Convex Optimization with Finite
Training Sets,” INRIA, Tech. Rep. arXiv:1202.6258v1, 2012.

[108] S. Shalev-Shwartz and N. Srebro, “Svm optimization: inverse dependence on
training set size,” in Proceedings of the 25th international conference on Ma-
chine learning, ser. ICML ’08. New York, NY, USA: ACM, 2008, pp. 928–935.

[109] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[110] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. Garćıa, “Keel data-
mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework,” Multiple-Valued Logic and Soft Computing, vol. 17,
no. 2-3, pp. 255–287, 2011.

[111] M. M. Andreae, “Effect of ambient conditions and fuel properties on homo-
geneous charge compression ignition engine operation,” in PhD Dissertation.
Massachusetts Institute of Technology. Dept. of Mechanical Engineering., 2006.

188

[112] J. MacIejowski, Predictive Control: With Constraint, ser. Pearson Education.
Prentice Hall, 2002.

[113] M. Lawrynczuk, “Neural networks in model predictive control,” in Intelligent
Systems for Knowledge Management, ser. Studies in Computational Intelli-
gence. Springer Berlin Heidelberg, 2009, vol. 252, pp. 31–63.

[114] S. Effati and M. Ranjbar, “A novel recurrent nonlinear neural network for
solving quadratic programming problems,” Applied Mathematical Modelling,
vol. 35, no. 4, pp. 1688 – 1695, 2011.

189

