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Chapter 1 - Introduction 

 

Puberty is the period of time during which a child transitions into a sexually 

mature adult capable of reproduction.  From a biological perspective, it is the 

activation of the hypothalamic-pituitary-gonadal (HPG) axis, culminating in the 

maturation of the brain, pituitary and gonads.  Throughout puberty, there is a 

complex interplay between environmental and endogenous factors that regulate 

the HPG axis.  Despite decades of research, there are still large gaps in our 

understanding of puberty.   

 

How is the timing of puberty onset regulated?   

By which hormones?   

 

What are the underlying neural circuits important for puberty onset?   

Where do these hormones act in the brain to modulate the timing of puberty 

onset?   

 

This literature review summarizes existing studies of how two important 

hormones- estradiol and leptin- produced in the periphery by the ovaries and 

white adipose tissue respectively, act in the brain to affect the timing of puberty 

onset and subsequent sexual maturation. 
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Puberty onset and sexual maturation 

Primates 

Although functional by the end of gestation, the ovaries and testes 

become relatively inactive for a brief period around the time of birth and stop 

secreting gonadal steroid hormones.  Within a few days, however, they become 

active again and remain active until several months after birth when they become 

quiescent again and stop secreting significant amounts of hormones.  This 

suppression of activity is referred to as the juvenile pause and is thought to be 

the result of inhibitory mechanisms in the brain and to a lesser extent at the level 

of the pituitary gland, a small endocrine organ located below the base of the 

brain.  The regulation of gonadal activity throughout childhood is ultimately 

controlled by the brain, and more specifically by an area of the brain called the 

hypothalamus, which functions to link the neuroendocrine system to peripheral 

organ systems via the pituitary gland.  Feedback loops exist between the 

hypothalamus, pituitary gland and the gonads, which together are called the HPG 

axis (Figure 1).  During the juvenile pause, neurons in the brain that produce 

gonadotropin-releasing hormone (GnRH) are relatively inactive and produce very 

little GnRH.  Since pulsatile GnRH secretion is required for the production and 

release of specific hormones from the pituitary, low levels of the pituitary-derived 

gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

are characteristic of the period of time prior to puberty onset 1,2.  Before the 

discorvery of FSH, GnRH was often termed luteinizing hormone releasing 

hormone (LHRH). 
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As an organism matures and approaches puberty, GnRH neurons become 

more active, resulting in increased secretion of GnRH and causing the 

gonadotropes in the anterior pituitary to also become more active.  While young 

prepubertal boys and girls do not exhibit pulsatile LH release, nocturnal LH 

pulses are readily detected in older prepubertal children; the increased nocturnal 

LH levels are characteristic of human puberty onset 1,2.  During puberty, both LH 

and FSH increase in overall levels, pulse frequency and amplitude 1–5.  

The increased pulsatile release of the gonadotropins from the anterior 

pituitary triggers effects in the gonads, including the production of gonadal 

hormones, termed androgens or estrogens.  In females, LH acts on the theca 

cells of the ovaries, resulting in the production of androgenic precursors of 

estradiol, a potent estrogen.  In males, LH acts on the Leydig cells of the testes, 

leading to production of testosterone, a potent androgen.  FSH acts on granulosa 

cells in the ovaries and Sertoli cells in the testes to stimulate gametogenesis and 

gonadal growth.  Additionally, in females FSH acts within the granulosa cells to 

promote the aromatization of thecal androgens to estradiol.  With continued 

stimulation by the gonadotropins LH and FSH, the peripubertal gonads grow and 

secrete sex hormones at steadily increasing rates.   

During puberty, the effects of the rising hormone levels can be seen in a 

variety of tissues in a sex-specific manner.  In females, estrogens are 

responsible for growth of the breasts and maturation of the female genitalia, 

while circulating androgens control the growth of pubic and axillary hair.  In 

males, androgens control not only the development of genitalia and growth of 
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body hair, but also deepen the voice by enlarging the larynx and laryngeal 

muscles.  The development of these secondary sexual characteristics does not 

occur at precisely the same chronological age in all individuals, but the sequence 

of changes is characteristic for each sex and generally the same across 

individuals.     

 

Two mechanisms for the control of puberty onset 

It has been hypothesized that the suppression of GnRH release prior to 

puberty onset is the result of two different mechanisms (which may not be 

equally important or prominent across species).  The first mechanism relies on 

the fact that prior to puberty, the hypothalamus and the pituitary gland are 

extraordinarily sensitive to the negative feedback effect of gonadal steroid 

hormones, which inhibit GnRH and LH release and keep the HPG axis quiescent.  

If this system becomes less sensitive to gonadal hormone feedback, 

gonadotropin secretion can escape from negative feedback, allowing gonadal 

hormone levels to rise as puberty progresses.  This mechanism is often referred 

to as the ‘gonadostat hypothesis,’ and has been attributed to the endocrinologist 

Melvin Grumbach, although his initial description of the phenomenon was 

“gonadal steroid-dependent LHRH increase” 6.  The second mechanism is 

independent of gonadal hormone feedback and instead postulates that there are 

neural mechanisms that restrain the activity of GnRH neurons prior to puberty, 

resulting in low gonadotropin and gonadal hormone levels in prepubertal 

organisms.  This is referred to as the “central drive” hypothesis.  It’s possible that 
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in addition to active restraint of the GnRH neuron there may also be a lack of 

stimulatory inputs to GnRH neurons during this time.  Under this hypothesis, 

puberty begins when the inputs to GnRH neurons change and allow more GnRH 

to be secreted.  

The primary mechanism of puberty initiation seems to vary between 

species and sometimes even between sexes of the same species.  In most 

species, however, a combination of both mechanisms is likely responsible for the 

initiation of puberty.  It has been proposed that the hormone independent 

mechanism may provide coarse control over pubertal timing, whereas the 

hormone dependent mechanism is responsible for fine control.  In addition to the 

two systems described above, there are also numerous other signals that must 

be integrated to permit the pubertal increase in GnRH secretion.  Leptin, a fat-

derived hormone and an indicator of the amount of energy stored in the 

periphery, is one such permissive signal and will be described later in this review. 

In humans, the suppression of GnRH secretion appears to be mostly 

independent of gonadal hormone feedback.  Even though agonadal infants have 

elevated levels of LH and FSH during the first few years of life, they still exhibit 

the same qualitative pattern of quiescence that is observed in gonad-intact 

children in the years preceding puberty onset; levels of gonadotropins decrease 

during the juvenile pause compared to levels at birth 7,8.  Since these individuals 

lack gonads, gonadal steroid hormone feedback can not be responsible for this 

juvenile decrease.   

Around the age at which puberty would normally occur, gonadotropin 



 

6 
 

levels rise in these individuals, despite the fact that they lack gonads and thus 

gonadal hormones.  This suggests a significant contribution of the gonadal 

hormone independent mechanism in the restraint and subsequent activation of 

the GnRH pulse generator in humans.  

 

Rodents 

 Researchers are limited in the manipulations that can be done in humans 

to study the regulation of puberty onset and sexual maturation.  Although they 

have more freedom in non-human primates, the size, cost and relatively long pre-

pubertal juvenile period of non-human primates have led to the development and 

use of other animal models in which to study puberty and reproductive 

maturation.  Mice, rats, and sheep have all been popular models for researchers 

studying the HPG axis. 

Rats are an attractive animal model for studying puberty and reproduction 

due to their rapid growth and sexual maturation as well as easily detectable 

external signs of sexual maturity.  During the first half of the 20th century, studies 

in rats provided insight into the neuroendocrinology of puberty, including the 

identification of ‘substances’ released from the ovaries and the pituitary that 

could accelerate the maturation of juvenile female rats or their gonads (reviewed 

elsewhere 9).  In female rodents, the most common measures of sexual 

maturation are age at vaginal opening and then the presence of cornified 

epithelial cells in a vaginal smear.  Vaginal opening is an estrogen-dependent 

phenomenon and precedes the first appearance of cornified epithelial cells in a 
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vaginal smear, which indicates that circulating estradiol was recently at levels 

capable of causing ovulation.  In male rodents, the separation of the foreskin of 

the penis from the glans, called balanopreputial separation, is generally used as 

a measure of puberty onset 10. 

Although rats have proved useful in the field of reproductive biology over 

the last century, the advent of modern molecular biology techniques has led to an 

increase in the use of laboratory mice.  The laboratory mouse is not without 

limitations as a model of HPG axis regulation, but advances in mouse genetics 

have allowed researchers to investigate reproductive biology in ways that are 

impossible in other organisms.  Before the 1990s, the ‘knockout’ mice available 

to researchers were spontaneous knockouts; that is, mice with naturally 

occurring alterations in specific genes that render the resulting gene product non-

functional.   With the introduction of gene-targeting technology and transgenic 

techniques, researchers can now manipulate genes for which spontaneous 

mutations had never been discovered.  Additionally, in mice, the conditional 

deletion of receptors or proteins from specific cell types or specific areas of the 

body (termed conditional knockouts) has even further revolutionized the field of 

reproductive biology.   

 

Estrogen and its receptors 

Investigations into the gonadal hormone dependent mechanism of puberty 

onset regulation have focused mainly on estrogen action in females.  Two 

nuclear estrogen receptors exist, encoded by two separate genes.  In mice, the 
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genes Esr1 and Esr2 encode estrogen receptor α (ERα) and estrogen receptor β 

(ERβ) respectively; both receptors are class I members of the superfamily of 

nuclear hormone receptors and they share significant sequence homology.  Each 

receptor is composed of 6 functional domains, including a DNA-binding domain 

and a domain capable of both ligand binding and activation of gene transcription.  

The mechanism of action is the same for both receptors: when the receptor binds 

to its ligand, it forms a dimer and migrates from the cell’s cytosol into the nucleus 

where it affects transcription of target genes.  Although their sequence is similar, 

for the most part the two estrogen receptors are expressed in different areas of 

the body, or in different cell types within the same tissue.  Detailed descriptions 

of the distribution of the two receptors have been previously reported 11,12. 

After the Esr1 and Esr2 genes were cloned (Esr1 in 1986 and Esr2 in 

1996), researchers disrupted the normal gene sequence by inserting a copy of 

the neomycin-resistance gene (neo) into one exon of each gene 13–15.  The 

insertion of neo prevents normal expression of the functional receptor throughout 

the entire body, creating global knockout mice.  Since the initial reports of the 

αERKO (lacking ERα globally) and βERKO (lacking ERβ globally) mice, 

numerous studies have investigated the effects of loss of estrogen action on 

specific reproductive tissues, as well as on overall reproductive maturation and 

fertility.  It is important to note that more than one knockout mouse line exists for 

each receptor, and slight differences in the resulting phenotypes have been 

reported.     

While the loss of either receptor is not lethal, both αERKO and βERKO 
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mice have reproductive impairments 13–16.  Female αERKO mice have normal 

ovaries during the neonatal period and prior to puberty, and mature oocytes can 

be generated in young animals with a pharmacologic hormonal manipulation, but 

the success of this manipulation is dependent on which αERKO mouse line is 

used 14,16–18.  As adults, αERKO females have enlarged cystic ovaries that lack 

corpora lutea, the structure that develops from a recently ruptured ovarian follicle 

14–16,19.  The presence of corpora lutea in the ovaries indicates that ovulation has 

recently occurred and that the mouse is fertile.  In αERKO mice, folliculogenesis 

proceeds through the early stages as primary and secondary follicles are visible, 

but they never fully mature and rupture 14–16,19.  Circulating levels of both LH and 

estradiol are profoundly increased in αERKO females 11,19–21.  The elevated 

levels of LH may be the direct cause of some aspects of the αERKO phenotype 

as mice that have targeted transgenic overexpression of LH are also anovulatory 

and share the ovarian phenotype of αERKO females 22,23.  The uterus of αERKO 

females is significantly smaller than a wild-type uterus and is unresponsive to the 

elevated circulating estrogen levels characteristic of these mice 14–16; in a wild-

type female mouse, elevated estrogen levels cause uterine enlargement and fluid 

accumulation.  The mammary glands of αERKO mice are rudimentary and are 

also unresponsive to estrogenic compounds 15,24.   

Female βERKO mice also have impaired overall fertility, but the effect of 

the mutation on the female reproductive axis is quite different from that observed 

in αERKO females 13.  The uterus and the vagina of βERKO females are normal 

and undergo the expected cyclic changes associated with estrogen exposure 13.  
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At a gross level, the ovaries of βERKO females are not different from those of 

wild-type females.  Histological analysis reveals an increased number of early 

atretic (degenerating) follicles and very few corpora lutea, indicating subfertility 

and incomplete folliculogenesis 13.  Not surprisingly, given the reduced number of 

corpora lutea, βERKO females produce fewer litters and less pups per litter than 

wild-type females 13.  In contrast with the reported phenotype of the αERKO 

females, estradiol levels are unaffected, LH levels are only slightly elevated, and 

mammary glands are normal in females lacking ERβ globally 13,20,21.  Elevated 

estradiol levels in αERKO females but unaffected levels in βERKO females 

indicate a requirement of ERα, but not ERβ, in estrogen negative feedback. 

While much information has been gleaned from these whole-animal 

knockouts of ERα and ERβ, the development of new genetic technologies has 

allowed for more site-specific investigation into the differential roles of these two 

receptors.  As noted previously, ERα and ERβ are expressed in many different 

tissues of the body.  For example, ERα mRNA can be found in the pituitary, 

ovary, uterus, oviduct and mammary gland, as well as in multiple locations within 

the brain 25.  The receptors have distinct physiological roles in different tissues 

and the following section of this review will focus exclusively on the central role of 

ERα in estrogen feedback and the use of site-specific ERα deletions to better 

elucidate its function in the brain.  

 

Estrogen feedback control of LH and FSH 

As described earlier, gonad-derived steroid hormones play an important 
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role in the regulation of GnRH and gonadotropin secretion.  These hormones 

have a predominantly inhibitory role (termed negative feedback), but in post-

pubertal females estrogen also has a stimulatory function (positive feedback), but 

only during a specific time of the rodent estrous cycle (similar to the human 

menstrual cycle).  The feedback regulation translates into differential LH 

secretion patterns: tonic release (in males and females) and a surge-like 

secretion (only in females prior to ovulation).  Estrogens have an essential role in 

these feedback loops, but the exact site of estrogen action and the neurons 

responsible for the feedback regulation have remained elusive. 

Since a preovulatory LH surge can be generated in βERKO but not 

αERKO females and estrogen negative feedback is lost in αERKO but not 

βERKO females 19,20,26, research has focused on locating and characterizing the 

ERα-expressing neurons responsible for estrogen feedback.   To do this, 

researchers have looked for ways to selectively ablate ERα from increasingly 

more specific sets of cells.  With specific deletion studies, one can determine the 

physiological function and necessity of ERα in circumscribed subsets of cells, 

either in the central nervous system (CNS) or in the periphery.   

This type of research has been made possible through the use of cre 

recombinase, an enzyme that in vivo can be used to catalyze site-specific DNA 

recombination between DNA sequence repeats called loxP sites.  For instance, 

when the expression of cre recombinase is driven by the endogenous CamKIIα 

promoter (which is highly expressed in forebrain neurons), the recombinase will 

excise any DNA between loxP sites in forebrain neurons.  This mouse line 
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(CamKIIα-cre mice) was bred to a second mouse line that has two loxP sites 

flanking the third exon of Esr1, the murine gene that encodes ERα 26.  This 

breeding scheme results in the excision of the coding sequence for the DNA 

binding domain of ERα from forebrain neurons and leads to production of 

nonfunctional ERα only in those cells in the conditional knockout mice. 

Ablation of functional ERα from all CamKIIα-expressing neurons results in 

infertility 26; knockout female mice exhibited abnormalities in their reproductive 

organs, including grossly enlarged and fluid-filled uteri, and their ovaries lacked 

corpora lutea, suggesting abnormally high estrogen levels and a failure to 

ovulate.  Persistently high estradiol levels are indicative of impaired estrogen 

negative feedback.  Additionally, an LH surge could not be generated in the 

knockout animals using a well-established surge-induction paradigm.  At the time 

of the LH surge in a wild-type female mouse, the product of the immediate early 

gene c-Fos can be readily detected in GnRH neurons and also in neurons 

located in the anteroventral periventricular nucleus (AVPV; an area of the brain 

thought to play a significant role in the generation of the LH surge), indicating 

recent activation of these neurons.  Although there were no changes in the 

number or distribution of GnRH-positive neurons in the knockouts, there was a 

lack of c-Fos immunoreactivity in GnRH neurons after the surge induction 

treatment 26.  C-Fos immunoreactivity was also absent from the AVPV.  

Together, this suggests that estrogen feedback (both positive and negative) 

relies on estrogen action via ERα-expressing forebrain neurons.  Since GnRH 

neurons don’t seem to produce functional ERα 27, there must be neurons located 
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upstream of them that do express ERα and are capable of transmitting 

information about changing estrogen levels to GnRH neurons.  Recent research 

indicates that those neurons may be hypothalamic kisspeptin neurons.    

 

Kisspeptin 

Evidence from numerous studies points to a connection between the 

neuropeptide kisspeptin (product of the gene Kiss1) and reproductive function.  

In 2003, two independent studies illustrated this point, describing absent puberty, 

infertility and hypogonadotropic hypogonadism in humans with loss-of-function 

mutations in the kisspeptin receptor GPR54, product of the gene Kiss1r 28,29.  

Subsequent reports of loss of functional kisspeptin itself have found a similar 

phenotype 30.  The reproductive phenotype described in human patients has 

been reproduced in mice lacking functional GPR54 or kisspeptin, indicating a 

common function of kisspeptin across species 31.  In contrast, activating Kiss1 

and Kiss1r mutations in humans lead to the opposite reproductive phenotype- 

precocious puberty 32,33.  In addition to its role in regulating puberty onset, 

kisspeptin/GPR54 signaling is also essential for the preovulatory LH surge and 

blockade of GPR54 signaling with a kisspeptin antagonist suppresses LH pulses 

in sheep 34–37. 

Within the hypothalamus, there are two distinct populations of kisspeptin-

synthesizing neurons.  The larger population of kisspeptin neurons, located in the 

arcuate nucleus (ARC), expresses ERα and two additional neuropeptides, 

neurokinin B (product of the gene Tac2) and dynorphin A (product of the gene 
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Pdyn).  These neurons have been termed KNDy neurons, reflecting the 

expression of these three peptides (kisspeptin, neurokinin B and dynorphin A) in 

this population of kisspeptin neurons in both rodents and sheep 38–40.  The 

kisspeptin neurons in the second hypothalamic population do not express Tac2 

or Pdyn, and are found predominantly in the anteroventral periventricular nucleus 

(AVPV) but extend caudally along the third ventricle into the periventricular 

nucleus (PeN).  The majority of AVPV/PeN kisspeptin neurons also express ERα, 

and are activated around the time of the preovulatory LH surge 41.   

There is evidence that both populations of kisspeptin neurons synapse on 

GnRH neurons, but the ARC kisspeptin neurons also communicate extensively 

with each other within the ARC 40,42.  What further distinguishes these two 

populations and points to their potential role in estrogen feedback is the effect of 

changing estrogen levels on Kiss1 expression in the two populations.  In a 

gonad-intact adult female, Kiss1 mRNA levels are quite low in the ARC while 

levels are much more robust in the AVPV/PeN 43.  If the ovaries are removed, 

thus significantly lowering circulating estrogen levels, Kiss1 mRNA levels rise in 

the ARC 43, indicating an inhibition of Kiss1 by estrogen in intact females.  If the 

ovariectomized female undergoes estrogen replacement, Kiss1 mRNA levels 

drop in the ARC 43,44.  The opposite effect is observed in the AVPV/PeN: Kiss1 

mRNA levels drop significantly after ovariectomy but return to normal levels if the 

ovariectomized female is treated with estradiol 43,44.   

This differential gene expression response of ARC and AVPV/PeN 

kisspeptin neurons to gonadectomy is also evident in male mice 45.  These 
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effects of changing estrogen levels on Kiss1 mRNA are absent in female αERKO 

mice, suggesting a critical role for ERα in this phenomenon 43.  Interestingly, the 

overall effect is still present in male mice lacking ERα, perhaps suggesting that in 

males the androgen receptor (AR) is capable of effecting the same changes in 

Kiss1 expression as ERα is able to in females.  

Based on their response to changing estradiol levels and the fact that the 

AVPV/PeN kisspeptin neurons are active around the time of the LH surge, many 

researchers have hypothesized that estrogen action on kisspeptin neurons is 

required for estrogen feedback and more specifically that the AVPV/PeN 

kisspeptin neurons are responsible for estrogen positive feedback and the ARC 

KNDy neurons are responsible for estrogen negative feedback.   

To test whether estrogen action via ERα in kisspeptin neurons is truly 

necessary for estrogen feedback, Mayer and colleagues generated a Kiss1 cell-

specific ERα knockout mouse (termed KERKO mice) 46.  Without ERα in 

kisspeptin-producing cells, puberty onset is dramatically advanced, indicating 

that estrogen signaling in kisspeptin neurons acts as a “pubertal brake.”  Since 

female KERKO mice don’t ovulate or achieve estrous cyclicity, the researchers 

concluded that ERα in kisspeptin neurons is required for complete sexual 

maturation.  Although LH levels in the knockouts are significantly higher than 

wild-type controls at early ages, this difference dissipates as KERKO females 

enter adulthood.  The number of kisspeptin-immunoreactive cell bodies is 

diminished in the AVPV/PeN, but Kiss1 mRNA levels in the ARC are significantly 

increased, providing further support for the idea that estrogen action through ERα 
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stimulates AVPV/PeN Kiss1 expression while inhibiting it in the ARC.  A second 

group of researchers performed a similar deletion study and found very 

comparable results 44.  Furthermore, they also describe elevated estradiol levels 

in the knockout females and the expected increase in uterine weight resulting 

from high estrogen levels. 

While these two studies point to a critical role for estrogen action via ERα 

in kisspeptin neurons in the regulation of the timing of puberty onset and 

subsequent sexual maturation, they do little to clarify the differential role of the 

two kisspeptin populations.  Taking a different approach, Rance and colleagues 

capitalized on the fact that ARC KNDy neurons (but not AVPV/PeN kisspeptin 

neurons) express Tacr3, the gene that encodes the neurokinin B receptor; they 

ablated all neurons that express NK3r and observed reduced negative feedback 

in their female mice 47.  The ablation did not, however, result in a complete loss 

of negative feedback, likely due to other hypothalamic circuits or unaffected 

negative feedback at the level of the pituitary.  While this is the best evidence to 

date that ARC KNDy neurons are required for estrogen negative feedback, it 

doesn’t definitively implicate estrogen action via ERα as necessary in these 

neurons. 

In order to test the hypothesis that estrogen action via ERα in ARC KNDy 

neurons is absolutely required for estrogen negative feedback, a method for 

eliminating ERα from these neurons (while leaving AVPV/PeN kisspeptin 

neurons unaltered) must be developed.  Capitalizing on the fact that Tac2 is 

expressed in ARC KNDy neurons but not in AVPV/PeN kisspeptin neurons, I 



 

17 
 

investigated the necessity of estrogen action via ERα in ARC KNDy neurons by 

performing a genetic ablation of ERα from all Tac2-expressing cells and 

comparing the resulting phenotype to that of female mice lacking ERα in all Kiss1 

neurons (discussed in detail in Chapter 3).   

 

The reproductive phenotype observed in male αERKO mice (reduced 

testes weight, reduced sperm count, reduced fertility) suggests a role for 

estrogen action via ERα in the control of the male reproductive axis as well 14.  

Similar to females, male mice have ERα-expressing KNDy neurons in the ARC 

and Kiss1 expression within these cells is negatively regulated by estradiol 

treatment 48.  The post-gonadectomy rise in LH can be attenuated by estrogen 

treatment, indicating a role for estrogen in negative feedback in males.   

The requirement of estrogen action via ERα in kisspeptin neurons in male 

has been investigated previously 46.  Although the reported assessment of the 

male phenotype is extraordinarily brief, they found no effect on basal LH levels 

and no changes in testes weight in male KERKO mice.  We sought to more 

completely characterize male mice lacking ERα in all kisspeptin neurons as well 

as compare their phenotype to that of males lacking ERα only in the ARC 

kisspeptin (KNDy) neurons.  I employed the same genetic deletion strategy 

described above to investigate the effect of deletion of ERα from Kiss1- or Tac2-

expressing neurons in the male mouse (discussed in detail in Chapter 4). 

 

While gonad-derived hormones clearly play an important role in the 
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regulation of the HPG axis, they are not the only hormones that regulate 

reproduction and puberty onset; other circulating hormones also function to 

modulate the HPG axis.  Although estrogen is a well-known stimulatory signal for 

puberty onset in females, other signals are considered to be permissive and 

function to fine-tune the timing of puberty onset and sexual maturation.  These 

signals do not dramatically advance puberty onset like estrogen does, but they 

are still necessary regulatory components of the reproductive system.  

Identification of these permissive signals and their neural substrates will be 

necessary if researchers are to fully understand the regulation of mammalian 

puberty onset and sexual maturation. 

 

The link between energy balance and reproduction 

During times of undernutrition or food deprivation, all organisms must halt 

energy-intensive but non-critical activities and direct all their energy toward 

survival until food is readily available again.  These energy-intensive but non-

critical physiological activities include growth, immune function and reproduction.  

The regulatory mechanisms underlying these activities must be able to respond 

to changing levels of metabolic cues.  One such metabolic cue is leptin, a 

hormone secreted by white adipose tissue in proportion to the amount of fat 

stored in the body.  Thus, circulating leptin levels generally reflect the amount of 

energy that an organism has stored in the form of fat.  Leptin acts in the brain to 

mediate not only energy balance and food consumption, but also a variety of 

neuroendocrine processes, including reproduction.  Without leptin or its receptor, 
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energy balance is severely disrupted, resulting in profound obesity and diabetes.  

Additionally, immune function, growth and fertility are negatively impacted.  The 

reported reproductive impairment of humans and mice that have mutations in the 

gene encoding either leptin or its receptor has led to the hypothesis that the 

hormone leptin and its receptor are critical for normal reproductive function.   

 

Mice 

A naturally-occurring single gene mutation causing profound obesity and 

hyperphagia in mice was first described in the literature in 1950 by researchers at 

what would eventually become the Jackson Laboratory 49.  The gene product and 

the site of its synthesis would remain unknown until the mid-1990s.  The mutated 

gene causing the obesity, Lep, was eventually mapped and cloned, and its gene 

product was named leptin 50,51.  Mice lacking either leptin (called ob/ob mice) or 

its receptor (db/db mice) are profoundly obese, hyperphagic, hyperglycemic, 

cold-intolerant and have impaired immune function.  Treating ob/ob mice with 

leptin rapidly and significantly reduces their food intake and body weight, 

confirming that the hyperphagia and obesity are a direct result of the lack of 

circulating leptin 51,52. 

In addition to the impairments described above, homozygous ob/ob mice 

are also infertile, although heterozygote animals have unaffected fertility 49.  The 

reproductive failure in male mice lacking leptin has been attributed to insufficient 

production of LH and testosterone, resulting in increased FSH levels, and 

reduced testes weight 53,54.  The sterility in male ob/ob mice can be reversed with 
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leptin treatment or food restriction- thwarting the ob/ob’s natural predilection for 

over-eating 52,55,56.  While the degree of infertility of the ob/ob mouse is 

somewhat strain-dependent, the fact that it can be reversed with leptin treatment 

indicates a critical role for leptin in the regulation of male reproductive function. 

Similar to their male counterparts, the sterility of female ob/ob mice can be 

corrected with chronic leptin treatment, but can not, however, be reversed with 

food restriction 55,57,58.  Uterine weight, ovarian weight, total follicle number and 

serum LH are all significantly increased in ob/ob adult females after chronic leptin 

treatment 55.  The reproductive axis of ob/ob females responds positively to a 

crude GnRH extract made from pituitary stalk/median eminence, evidence that 

the pituitary gland is functional but lacks appropriate stimulation by secretions 

from the hypothalamus 59.  Ovulation is only possible in ob/ob females after 

gonadotropin treatment, providing further evidence that the reproductive 

impairment in ob/ob females is due to a central deficit in leptin action and not an 

impairment in either the pituitary or gonads 54,60,61.  Together, these data reveal 

an important role for leptin in the central regulation of the female reproductive 

axis in mice.   

As illustrated above, adult mice with congenital deficits in leptin signaling 

have severe reproductive impairments.  Additionally, leptin has an effect on pre-

pubertal animals; leptin treatment slightly accelerates puberty onset in wild-type 

female mice 62,63.  Similar to leptin treatment, transgenic leptin overexpression 

also leads to slightly advanced puberty onset in females 64.  While increasing 

circulating levels of leptin in prepubertal animals – either genetically or 
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pharmacologically – does accelerate puberty onset, the advancement is very 

small and may suggest that in mice, sufficient leptin levels are one of the final 

permissive signals needed for puberty onset.  The magnitude of advancement of 

puberty in these two cases is incomparable to the advancement observed when, 

for example, estrogen feedback to the hypothalamus is disrupted 44,46.  Hence, 

leptin is an important permissive signal for puberty onset, but should not be 

classified as a stimulatory signal. 

 

Humans 

Additional evidence of leptin’s regulation of the reproductive axis has been 

gleaned from rare occurrences of LEP or LEPR (the human genes for leptin and 

its receptor) mutations in the human population.  Although initial mutational 

screenings of large groups of obese individuals failed to identify any individuals 

with mutations in the genes for leptin or the leptin receptor 65,66, there are a scant 

number of documented occurrences of patients with mutations in these genes.  

The first report described two young cousins from a consanguineous family who 

were homozygous for a single nucleotide deletion in LEP, resulting in severe 

obesity and hyperphagia 67.  In these young patients, chronic leptin treatment 

reduced energy intake during a test meal (indicating reduced hyperphagia) and 

produced a remarkable reduction in fat mass 68,69.  The young age of these 

affected individuals initially prevented researchers from drawing any conclusions 

as to leptin’s role in human puberty or fertility, but continued observation and 

treatment did eventually inform researchers of leptin’s role in human reproductive 
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axis function. 

To determine the effect of leptin on the onset of puberty, three pre- or 

peripubertal individuals underwent chronic leptin replacement 69.  Chronic 

treatment of the two prepubertal children previously described did not lead to 

elevation of basal LH and FSH levels and sex steroid levels above the 

prepubertal range.  In contrast, chronic leptin treatment of the third peripubertal 

individual resulted in a gradual increase in gonadotropin and estradiol levels, and 

eventually she developed secondary sexual characteristics and began 

menstruating regularly.  In an additional peripubertal individual with a leptin 

mutation, leptin treatment beginning at age 14 years and 9 months led to a rapid 

rise in basal and stimulated LH and FSH from prepubertal to pubertal levels 70.  

After chronic leptin treatment, her uterine volume and estradiol levels increased 

substantially.  Taken together, data from these four leptin-deficient patients (two 

prepubertal and two peripubertal) reveal that in humans, leptin treatment does 

not stimulate precocious puberty in prepubertal individuals but instead acts in a 

permissive manner; leptin allows puberty to commence at an appropriate time 

and only when all other signals that affect pubertal timing are present. 

Consistent with the notion that leptin is a permissive but necessary signal 

that allows puberty to commence, adults with either leptin or leptin receptor 

mutations not only exhibit profound obesity but also hypogonadotropic 

hypogonadism with severely delayed or absent puberty 71,72.  In one case, three 

sisters in a consanguineous Algerian family all possessed the same single base 

substitution in exon 16 of LEPR, the leptin receptor gene 71.  None of the affected 
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sisters had entered puberty despite the fact that their ages were between 13 and 

19 years.  They had no mammary gland development, sparse pubic hair and no 

axillary hair- all secondary sex characteristics that develop during puberty- and 

they were amenorrhoeic.  Along with their low estradiol and LH levels, all three fit 

the criteria for central hypogonadism.  This absence of sexual maturation due to 

leptin deficiency provides further evidence of the necessity of leptin action for 

normal reproductive function in human females. 

Leptin signaling is also necessary for human male puberty 

commencement and sexual maturation.  The report of an adult male (age 22) 

with a LEP mutation describes hypogonadism in addition to obesity and 

hyperinsulinemia; he never entered into puberty and lacked normal secondary 

sexual characteristics such as pubic and axillary hair 72.  Treatment of this 

affected individual with either human chorionic gonadotropin or GnRH 

significantly increased circulating levels of testosterone and FSH and LH, 

respectively, leading to a correction of his central hypogonadism. 

Additional studies have described other affected adults with 

hypogonadism and delayed/absent puberty who lack secondary sexual 

characteristics as a result of leptin receptor mutations, although due to the nature 

of the mutation (affecting the receptor instead of leptin production), leptin 

administration would be ineffective as a treatment for the hypogonadism 69,71,73.  

Due to their increased fat mass, these individuals already have elevated leptin 

levels, but without a functional leptin receptor, the circulating leptin is ineffective 

at regulating either energy balance or reproduction. 
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In agreement with findings from animal models of impaired leptin action, 

most evidence indicates that in both male and female humans, leptin is 

necessary for puberty commencement and full sexual maturation.  However, a 

report of pregnancy in a woman with a known LEPR mutation has recently called 

into question the necessity of leptin signaling for human fertility 74. 

In both mice and humans, the threshold for the amount of leptin needed 

for normal reproductive capacity and puberty onset seems relatively low 

compared to other physiological functions that require leptin signaling.  Despite 

higher fat mass and decreased circulating leptin, mice that are heterozygous for 

the ob mutation (ob/+ mice) are fertile 75.  This suggests that while one wild-type 

copy of the gene encoding leptin is not sufficient to properly regulate energy 

balance, it is able to support normal function of the reproductive axis.  An 

additional model of decreased leptin action lends support to the previous report 

of spared fertility in mice with low leptin levels; when ob/ob mice were bred to a 

mouse strain that expresses a weak human leptin transgene, the offspring were 

fertile despite the fact that their leptin levels were approximately half that of wild-

type mice 76.  Some but not all other neuroendocrine effects were also corrected 

in the transgenic ob/ob animals, supporting the hypothesis that not all physiologic 

functions that require leptin signaling require the same degree of normal leptin 

action.  In humans, an individual with a heterozygous LEP or LEPR mutation is 

clearly fertile since the homozygous affected individuals described above have 

parents who are unaffected heterozygous carriers of the mutation. 

Insights into leptin’s role in the regulation of the reproductive axis also 
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come from patients with congenital generalized lipodystrophy, a condition 

characterized by a lack of adipose tissue and thus extremely low leptin levels.  

Women with congenital generalized lipodystrophy are infertile; and suffer from 

reproductive symptoms that include hyperandrogenism, oligomenorrhea or 

amenorrhea, and polycystic ovaries 77,78. Severe insulin resistance is also a 

hallmark of congenital generalized lipodystrophy and is likely to be the main 

cause of the excessive ovarian androgen production, whereas the lack of leptin 

may be responsible for the reduced pulsatile gonadotropin release.  Leptin 

administration is a common treatment for affected individuals and corrects not 

only the severe insulin resistance and resulting hyperandrogenism, but also 

improves menstrual cyclicity 77,78.  Chronic leptin treatment has been shown to be 

sufficient to restore fertility and support pregnancy in a lipodystrophic female 

patient 79. 

An additional opportunity to study leptin’s effect on fertility comes from 

situations where leptin levels fall acutely.  A laboratory-controlled starvation 

experiment in adult males illustrated the ability of leptin replacement to strongly 

regulate the HPG axis; leptin treatment was able to fully restore LH pulsatility and 

testosterone levels, despite a 72-hour fast that resulted in a dramatic decrease in 

circulating leptin 80.   In females, amenorrhea due to negative energy balance can 

also be corrected with leptin treatment, as can the reduced LH levels, ovarian 

volume and estradiol levels associated with the reduced leptin levels resulting 

from negative energy flux 81. 

 



 

26 
 

Leptin receptor signaling 

The gene encoding the leptin receptor was cloned and identified shortly 

after leptin, its only known ligand, was cloned and identified 82.  Several leptin 

receptor isoforms exist, all derived from alternative splicing of the Lepr mRNA.  

Five isoforms have been identified in the mouse, differing at the C terminus but 

identical in their ligand-binding and membrane-spanning domains.  Only the 

isoform called Ob-rb or LepRb has a significant intracellular domain 

(approximately 300 amino acids); this intracellular domain contains all the protein 

motifs capable of activating the Jak-STAT signal transduction pathway.  

Transgenic expression of LepRb in the brains of mice lacking all five LepR 

isoforms corrects most of the db/db phenotype 83, confirming the importance of 

this isoform and its central action.  Leptin binding to its receptor activates the 

LepRb-associated Jak2 tyrosine kinase and promotes its autophosphorylation.  

This in turn phosphorylates three intracellular LepRb tyrosine residues: Tyr985, 

Tyr1077 and Tyr1138.  Although the Jak2 tyrosine kinase activity is necessary for 

LepRb signaling, it is not sufficient to mediate most leptin action as LepRb 

mutant mice that can bind and activate Jak2 but lack all three tyrosine residues 

and other intracellular LepRb motifs (termed LepRbΔ65 mice) are virtually 

indistinguishable from db/db mice 84.  Each tyrosine phosphorylation site recruits 

specific SH2 domain-containing effector proteins.   

Phosphorylation of Tyr985 leads to recruitment of SHP2 and SOCS3.  

During leptin signaling in cultured cells, SHP2 participates in ERK activation 85,86.  

In vitro, SOCS3 functions to attenuate LepRb signaling 85–87.  Phosphorylation of 
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Tyr985 does not appear to play a significant role in LepRb’s control of metabolism 

and neuroendocrine physiology as mice homozygous for a TyrLeu mutation at 

985 (named l/l mice) are lean, fertile and are more sensitive to leptin than 

controls 88.  They show no neuroendocrine impairment and actually exhibit 

protection from high-fat diet-induced obesity.  Both male and female l/l mice are 

fertile.  Thus LepRb signaling via phosphorylation of Tyr985 is not necessary for 

normal fertility. 

Phosphorylation of Tyr1077 leads to the activation of the latent transcription 

factor signal transducer and activator of transcription-5 (STAT5).  Mice 

homozygous for a Tyr Phe mutation at Tyr1077 (named f/f mice), exhibit only a 

very mild metabolic phenotype consisting mainly of increased fat mass and an 

increase in food consumption when maintained on a high-fat diet 89, suggesting 

that phosphorylation Tyr1077 plays only a minor role in leptin’s control of 

metabolism.  f/f mice do, however, have slightly impaired reproductive function, 

with females exhibiting long intervals between estrus cycles. 

Phosphorylation of Tyr1138 leads to the activation of the latent transcription 

factor STAT3.  Mice homozygous for a Tyr Ser mutation at Tyr1138 (named s/s 

mice) exhibit hyperphagia and obesity similar to that of db/db animals, but unlike 

db/db mice, they are fertile, have increased body length compared to controls 

and have only slightly elevated glucose levels 90.  In addition to the hyperphagia 

and obesity, s/s mice share other aspects of the db/db phenotype: they have 

difficulty maintaining body temperature in response to acute cold exposure 

(although not to the same degree as db/db animals), equivalently decreased 
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expression of uncoupling protein-1 (UCP1) in brown adipose tissue (BAT), and a 

similar repression of thyroid axis function 91.  Thus, leptin-induced 

phosphorylation of Tyr1138 is indispensable for many physiological functions, but 

not overall fertility. 

In summary, it appears that the three identified tyrosine residues that are 

found on the intracellular domain of the leptin receptor are each responsible for 

different aspects of the physiology of leptin action.  Mice completely devoid of 

leptin signaling are obese, hyperphagic, infertile, and exhibit a wide array of 

neuroendocrine deficits.  Based on the phenotype of the l/l mice, it appears that 

signaling via Tyr985 does not play a large role in either metabolic or 

neuroendocrine control by leptin.  Based on the phenotype of the f/f mice, 

signaling via Tyr1077 plays a role in leptin’s control of the reproductive axis, but 

only a very minor role in leptin’s control of metabolism.  And finally, based on the 

observed phenotype of the s/s mice, signaling via Tyr1138 seems to be integral to 

the obesity and hyperphagia phenotype of db/db mice, as well as many of the 

their neuroendocrine impairments such as decreased thyroid axis function, but 

not their infertility.  

 

Central leptin action 

The major effects of leptin action on metabolism and reproduction appear 

to be mediated by the central nervous system 92–97.  Neurons expressing the long 

form of the leptin receptor, LepRb, are found throughout the brain 98–101, within 

discrete hypothalamic nuclei and also in circumscribed areas of the midbrain and 



 

29 
 

brainstem.  In the hypothalamus, there are a large number of LepRb-expressing 

neurons in the arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), lateral 

hypothalamus (LHA), ventromedial hypothalamus (VMH), posterior 

hypothalamus (PH) and the ventral premammillary nucleus (PMv).   

Although some brain areas that contain LepRb-expressing neurons are 

known to be involved in regulation of the reproductive axis, GnRH neurons do not 

express LepRb 102–104.  Therefore, there must be LepRb-expressing neurons 

located upstream of GnRH neurons, the final output to the neuroendocrine 

reproductive axis.  Since ARC Kiss1 expression is reduced in ob/ob mice and 

leptin treatment ameliorates this deficit, some have postulated that direct leptin 

action on ARC kisspeptin neurons may be the mechanism by which leptin 

regulates the HPG axis 105.  There is some debate over the extent to which 

kisspeptin neurons express LepRb 103,105, but regardless, a genetic deletion of 

LepRb from all Kiss1-expressing neurons did not alter puberty onset or fertility 

106.  This indicates that direct leptin action through LepRb on kisspeptin neurons 

is not the main mechanism for leptin’s effect on puberty regulation or adult 

fertility. 

Using a mouse model that allows us to visualize neurons that are in 

synaptic contact with GnRH neurons, we determined that LepRb-expressing 

neurons in the PMv and the striohypothalamic nucleus (StHy) contact GnRH 

neurons 103.  Although the LepRb-expressing neurons in the StHY have not been 

previously reported to be involved in the control of reproduction, the PMv is 

known to play an important role in the control of the reproductive axis.  Neurons 
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in the PMv project to both GnRH and kisspeptin neurons and lesions to the PMv 

disrupt estrous cyclicity 106–110.  Lesions to the PMv also alter the changes in 

Kiss1 and Gnrh1 expression that are normally part of the proestrus  estrus 

transition in female rodents 111.   

Although these studies point to an important role for the PMv in 

modulating the reproductive axis, they don’t necessarily implicate leptin action in 

the PMv as a required component of this regulation.  As many of the LepRb-

expressing neurons in the PMv also express neuronal nitric oxide synthase 

(nNOS, product of the Nos1 gene), we performed a Nos1-specific ablation of 

LepRb 112.  Excision of Lepr exon 17 by cre recombinase causes a frameshift in 

the last exon producing a premature stop codon and a null leptin receptor only in 

cells that express the gene Nos1.  We investigated the metabolic and 

neuroendocrine effects of this Nos1 cell-specific ablation of LepRb (discussed in 

detail in Chapter 2).  Our results suggest that while leptin action in Nos1-

expressing neurons is not necessary for overall female fertility, it does play an 

important role in energy balance and pubertal maturation.  Future studies will be 

needed to determine whether there is a population of LepRb-expressing neurons 

that is absolutely crucial for sexual maturation and if it does exist, where in the 

brain those neurons reside.  It is possible, however, that no such circumscribed 

population exists and that instead, leptin action in a distributed network of 

neurons is responsible for the metabolic control of puberty onset and fertility in 

mice. 
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Puberty and sexual maturation are highly regulated and incredibly 

important aspects of mammalian physiology.  It is imperative that an organism 

not begin to reproduce until all levels of the HPG axis (the hypothalamus, the 

pituitary and the gonads) are fully mature and the organism has sufficient energy 

stores to support gametogenesis and sexual reproduction.  Estrogen and leptin 

are two crucial hormonal signals that function within the hypothalamus to 

regulate the timing of puberty onset and also the completion of puberty.  A better 

understanding of where these signals act and what exactly their function is within 

specific subsets of hypothalamic neurons is necessary if we are to implement 

better treatments for disorders such as precocious or delayed puberty, or other 

diseases with symptoms that include impaired pubertal onset or maturation.  
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Figure 1- The hypothalamic-pituitary-gonadal (HPG) axis 

Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner from 
GnRH neurons residing in the hypothalamus into the hypophyseal portal system 
where it can reach the gonadotropes in the anterior pituitary.  The pituitary 
gonadotropes produce the gonadotropins follicle-stimulating hormone (FSH) and 
luteinizing hormone (LH).  The effects of the gonadotropins on the gonads 
depend on the organism’s sex and the pattern of release of the gonadotropins 
from the pituitary.  Gonadal hormones (as well as many other signals) feed back 
to the hypothalamus and the pituitary gland to modulate the axis. 
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Chapter 2 - Genetic ablation of LepRb from Nos1-expressing 

neurons * 

 

 The fat-derived hormone leptin controls a diverse array of physiological 

processes.  Loss-of-function mutations in the gene for either leptin or its receptor 

(product of the gene Lepr) reveal that leptin action is necessary for proper 

regulation of feeding, energy balance and a variety of other neuroendocrine 

functions 113–115.  Conditional knockout mice have allowed researchers to begin 

to determine the importance and necessity of individual subsets of Lepr-

expressing neurons.  Genetic ablation of Lepr from all hypothalamic neurons, for 

example, leads to increased body mass, adiposity and food intake, confirming 

the importance of hypothalamic leptin action in the regulation of energy balance 

116.  More restricted deletions have uncovered subsets of Lepr-expressing 

neurons that are responsible for satiety 117,118 and Lepr-expressing neurons that 

play a role in dopamine-mediated behaviors 119–122.  While the neurons 

responsible for some aspects of leptin action have been identified, the neuronal 
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populations that control some well-established functions of leptin action remain 

elusive. 

Global Lepr mutants (db/db mice) or Lep mutants (ob/ob mice) of both 

sexes have severe reproductive impairments.  The obesity that results from the 

loss of leptin action is not the cause of the infertility as reducing obesity with food 

restriction does not reverse infertility in ob/ob female mice 57.  In db/db mice, 

infertility can be completely rescued with transgenic expression of the long 

isoform of the leptin receptor (LepRb) exclusively in neurons 97.  While it’s clear 

that the reproductive problems in ob/ob and db/db mice are due to a central 

deficit in leptin action, the location of the LepRb-expressing neurons that 

modulate the reproductive axis has not yet been determined. 

LepRb-expressing neurons are found in many hypothalamic nuclei that 

have a known role in regulating the HPG axis.  While much attention is paid to 

LepRb neurons in the arcuate nucleus (ARC), selective expression of LepRb in 

the ARC of leptin receptor null mice does not rescue their reproductive function 

123, indicating that other brain areas mediate the effects of leptin action on 

reproduction.  Re-expression of LepRb in the ventral premammillary nucleus 

(PMv), however, improves several aspects of reproductive function 106.  There is 

a large population of LepRb-expressing neurons in the PMv, a hypothalamic 

nucleus reciprocally connected with brain regions that are central to reproduction 

including the preoptic nucleus (POA) and the anteroventral periventricular 

nucleus (AVPV) 107,108,124–126.  Lesions to the PMv disrupt the estrous cycle and 

prevent the activation of the HPG axis that occurs at the time of the preovulatory 
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LH surge 109.  Additionally, neurotoxic lesions to the PMv of female ob/ob mice 

prevented leptin from stimulating LH secretion, indicating that direct leptin action 

in the PMv is an important modulator of the reproductive axis 106. 

Based on these data implicating PMv LepRb neurons as an integral 

component in leptin’s regulation of the reproductive axis, we have developed a 

genetic approach to test the necessity of direct leptin action in the PMv. Using a 

unique genetic marker of PMv LepRb neurons (including a small number of 

LepRb neurons elsewhere in the hypothalamus), we have ablated LepRb from a 

subset of hypothalamic neurons and investigated the effects of the deletion on 

reproduction, energy balance and neuroendocrine function.  Our results suggest 

that direct leptin action on Nos1-expressing neurons is necessary for normal 

pubertal maturation and energy balance, but plays only a minor role in 

neuroendocrine function.  
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Methods 

Animals 

All animals were bred in our colony in the Unit for Laboratory Animal 

Medicine at the University of Michigan.  All animals and procedures used were in 

accordance with the guidelines and approval of the University Committee on the 

Care and Use of Animals.   

The generation of the Nos1IRES-cre mice has been previously reported 112.  

Briefly, an IRES-cre cassette was inserted downstream of the STOP codon of the 

Nos1 gene.  Leprflox/flox mice 127, which were initially provided by Dr. Streamson 

Chua and subsequently propagated in our colony, were crossed with Nos1IRES-cre 

mice to produce Nos1-specific Lepr knockout animals 112.  Cre expression during 

early development in some animals led to recombination globally and resulted in 

a Δ (or null) Lepr allele.  Cre-mediated excision of exon 17 causes a frameshift in 

subsequent exons, resulting in obesity that is indistinguishable from the 

phenotype of db/db mice.  Nos1IRES-cre/+;LeprΔ/+ or Nos1IRES-cre/+;Leprflox/+ mice 

were bred to Leprflox/flox mice in order to produce experimental (Nos1IRES-

cre/+;LeprΔ/flox “LeprNos1KO”) and control (LeprΔ/flox and Nos1IRES-cre/+;LeprΔ/+ 

“Control”, Nos1IRES-cre/+;LeprΔ/Δ “LeprKO”) animals.  Genotyping was performed 

as described previously 112. 

 

Phenotypic studies 

  Beginning at weaning (PND 21), mice were housed individually.  Female 

mice were monitored daily for vaginal opening and then vaginal cytology was 
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assessed daily to determine estrous cyclicity.  Body mass was measured and 

recorded prior to dissection when mice were 7-8 weeks old.  After rapid 

decapitation without anesthesia, blood was collected and allowed to clot at room 

temperature for 30 to 90 minutes.  Serum was isolated by centrifugation at 

2,000xg for 15 minutes and stored at -20° C.   

 An additional cohort of female mice was generated to assess overall 

fertility.  7-8 week old females were housed with naïve C57BL/6J males 

purchased from Jackson Laboratory.  For each female mouse, latency to 

produce pups was recorded; females were deemed infertile if no pups were born 

within 90 days of mating. 

 

Brain microdissection and analysis by RT-qPCR 

During the week preceding dissection, mice were briefly handled each 

day.  All dissections took place between 13:00 and 16:00.  At the time of 

dissection, mice were quickly decapitated and the brain was removed from the 

skull.  The brain was placed in a rodent coronal brain matrix (1 mm divisions).  

The ARC and an area of the rostral hypothalamus that includes the AVPV/PeN 

were dissected and immediately frozen in separate tubes on dry ice.   

RNA was extracted from microdissected tissue using Trizol (Invitrogen) 

and then converted to cDNA using SuperScript First-Strand Synthesis system for 

reverse transcriptase PCR.  cDNA was analyzed in triplicate by quantitative 

realtime-PCR on an Applied Biosystems StepOnePlus Real-Time PCR System 

for Gapdh (endogenous control) and each of the following: Pomc, Agrp, Npy, 
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Socs3 and Kiss1.  All Taqman assays were acquired from Applied Biosystems 

(Foster City, CA).   

 

Hormone analysis 

Serum thyroxine levels were analyzed in duplicate by the Michigan 

Diabetes Research and Training Center (MDRTC) Chemistry Laboratory using 

radioimmunoassay (TKT41, Siemens).  Serum corticosterone levels were 

analyzed in duplicate using an enzyme immunoassay kit (K014-H1, Arbor 

Assays).  Absorbance was measured using a Tecan Infinite F200 plate reader. 

 

Image collection, data analysis and statistics 

Gene expression levels were calculated using the 2-ΔΔCT method, 

normalized to expression in control animals.  Corticosterone levels were 

determined by carrying out four parameter logistic curve (4PLC) fitting using 

Magellan Data Analysis Software (Tecan).  One-way ANOVA with Bonferroni 

post-hoc analysis was used to test for significant differences between genotypes.  

Vaginal opening, first estrus and parturition datasets were analyzed using a 

Mantel-Cox (logrank) test.  Differences were deemed significant if p<.05.  Data 

are presented as mean±SEM.  
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Results 

 

Generation of mice lacking LepRb in all Nos1-expressing neurons 

In order to determine the physiological role of PMv LepRb-expressing 

neurons, we generated mice in which cre recombinase was inserted into the 

Nos1 locus by homologous recombination (Figure 2 a).  The restriction of cre 

expression to Nos1-expressing neurons has been previously confirmed 112.  The 

co-expression of cre (Nos1) and LepRb was determined and revealed that nearly 

all PMv LepRb-expressing neurons are Nos1-positive.  Nos1/LepRb neurons are 

also found in the ARC and in the dorsomedial nucleus of the hypothalamus 

(DMH) 112.  

Nos1IRES-cre mice were bred to Lepr-flox mice to eventually generate Nos1 

cell-specific LepRb knockout animals (Figure 2 b).  Intermittent expression of cre 

during early development occasionally led to early recombination (producing 

what we refer to as a “Δ” Lepr allele) around the LoxP sites in the modified Lepr 

allele, precluding the use of Nos1IRES-cre/+;Leprflox/flox mice in the following studies.  

Instead, we compared experimental (Nos1IRES-Cre/+;LeprΔ/flox “LeprNos1KO”) and 

control (LeprΔ/flox and Nos1IRES-Cre/+;LeprΔ/+ “Control”) animals as well as global 

Lepr knockouts (Nos1Cre LeprΔ/Δ “LeprKO”) in some analyses. 

 

Ablation of LepRb from Nos1 neurons results in a reproductive phenotype in 

female mice 

Since the PMv has previously been implicated in the regulation of the 
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reproductive axis 106,107,109–111, we investigated several reproductive parameters 

in our female mice (Figure 3); age at vaginal opening, age at first vaginal estrus, 

and the latency to produce pups were all determined.  While we did not observe 

any differences in the age at vaginal opening when comparing LeprNos1KO 

females to their littermate controls (Figure 3 a), there was a significant effect of 

the deletion on the age at which females had their first estrus (Figure 3 b).   

Despite the observed delay in reaching reproductive maturity, overall fertility was 

not impaired and LeprNos1KO females were capable of producing pups (Figure 3 

c).  

Reports suggest that the neuropeptide kisspeptin may be integral in 

relaying energy balance information to the HPG axis in a variety of species 

103,128–130.  Since Kiss1 expression is regulated by both acute and chronic 

alterations in leptin levels 129,130, we investigated whether Kiss1 levels were 

altered in our LeprNos1KO mice.  In the ARC, Kiss1 levels were completely 

unchanged by ablation of LepRb from Nos1-expressing neurons (Figure 3 d).  

We found that AVPV/PeN Kiss1 levels were significantly reduced in the global 

LeprKOs compared to controls, but there was no significant alteration in 

LeprNos1KOs (Figure 3 e).  While the delay in first estrus suggests a slight deficit 

in pubertal maturation, the spared overall fertility indicates that either leptin action 

in Nos1-expressing neurons is not necessary for fertility or that other neural 

circuits are able to compensate for the loss of direct leptin action on Nos1 

neurons. 

 



 

41 
 

Deletion of LepRb from Nos1 neurons results in impaired energy balance in both 

male and female mice 

Lepr-expressing neurons in many different areas of the brain play a role in 

the regulation of energy balance.  Although there are no prior studies implicating 

the PMv in energy balance regulation, Nos1/LepRb neurons are found in more 

areas than just the PMv, leading us to investigate other physiological parameters 

in the LeprNos1KO animals.  We found that female LeprNos1KO mice are heavier 

than their littermate controls, but not as heavy as the global LeprKOs (Figure 4 

a).  Compared to their littermate controls, the male LeprNos1KOs are also obese, 

but more closely resemble global LeprKOs (although they are still significantly 

lighter) (Figure 4 b).   

 To determine whether the classical regulatory neuropeptides produced in 

the ARC were affected by the deletion of LepRb from Nos1 neurons, we next 

examined mRNA levels of Npy, Agrp, Pomc and Socs3 in the ARC of control, 

LeprNos1KO and LeprKO mice (Figure 5).  In agreement with previous reports 

90,97,131, global loss of leptin signaling resulted in increased expression of Npy and 

Agrp, but reduced expression of Pomc in the ARC (Figure 5 a-c).  Compared to 

controls, LeprNOS1KOs had unchanged Npy and Agrp expression, but significantly 

reduced Pomc, such that they were not different compared to LeprKOs. 

Expression of Socs3, a negative regulator of LepRb signaling is significantly 

decreased in global LeprKOs, but not significantly altered by ablation of LepRb 

from Nos1-expressing neurons (Figure 5 d).   

The obesity (and its severity) observed in LeprNos1KO mice was surprising 
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since the majority of Nos1/LepRb neurons are found in the PMv, an area without 

a known role in energy balance.  Deletion of LepRb from GABAergic neurons 

causes profound obesity, but deletion from glutamatergic neurons has only a 

very minor effect on body mass 132; since the PMv is a mostly glutamatergic 

nucleus, it is likely that extra-PMv GABAergic Nos1/LepRb neurons are 

responsible for the obesity observed in our LeprNos1KO mice. 

 

The neuroendocrine axis is affected in male but not female Nos1-specific Lepr 

knockouts 

 Hypothalamic-pituitary-adrenal (HPA) axis over-activation and elevated 

serum corticosterone levels are known effects of either leptin or leptin receptor 

deficiency 133–136.  The Lepr-expressing neurons responsible for this effect have 

not previously been reported, so we assessed HPA axis activity in our mice 

lacking LepRb in Nos1-expressing neurons.  We found that in females, 

corticosterone levels were not significantly altered in either LeprNos1KO or global 

LeprKOs compared to controls (Figure 6 a).  This is in contrast with previous 

work that has found elevated corticosterone levels in female db/db mice 133.  We 

did, however, find corticosterone levels to be significantly elevated in male global 

LeprKOs, but not LeprNos1KOs (Figure 6 b).  Thus, direct leptin action on Nos1 

neurons is not required for proper regulation of the HPA axis in either females or 

males. 

The hypothalamic-pituitary-thyroid (HPT) axis is also affected by deficient 

leptin signaling; decreased thyroxine (T4) levels have been reported previously in 
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mice lacking either leptin or its receptor 91,137.  Since the neuronal population 

responsible for this effect has not yet been determined, we investigated whether 

serum T4 levels were significantly altered as a result of ablation of LepRb from 

Nos1-expressing neurons.  As expected, we observed significantly lower serum 

T4 levels in LeprKO mice of both sexes compared to littermate controls (Figure 6 

c, d).  T4 levels in female LeprNos1KO mice were not, however, significantly 

changed compared to their littermate controls (Figure 6 c).  In male LeprNos1KOs, 

T4 levels were significantly lower than those of controls, but not as low as what 

we observed in the global LeprKOs (Figure 6 d).  This sexual dimorphism in 

thyroxine deficiency suggests either a sex difference in the neural regulation of 

thyroid function, or that the greater obesity of male LeprNos1KOs has a secondary 

effect on the thyroid gland. 
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Conclusions & Discussion 

 

 When energy stores are limited, organisms must prioritize physiological 

functions.  Immune function, growth and reproduction are often suspended while 

all energy is shifted to food acquisition and consumption.  The suspension of 

reproductive axis function has been described and studied for many decades.  

The hypothesis that a certain body mass is necessary for normal functioning of 

the reproductive axis has largely been supported by research in both humans 

and rodents since its introduction in the 1970s 138.  For example, despite their 

substantial energy stores, db/db mice lack the necessary receptor isoform 

(LepRb) to inform the central nervous system of the amount of energy stored in 

the periphery.  As a result, they exhibit deficits in many of the systems described 

above- immune function, growth and reproduction.  We set out to identify the 

neuronal population which functions to transmit information about energy stores 

to the hypothalamic output neurons of the reproductive axis- the GnRH neurons. 

The leptin receptor isoform LepRb is found throughout the hypothalamus, 

in several nuclei that are known to regulate the reproductive axis.  We chose to 

investigate the necessity of direct leptin action on ventral premammillary nucleus 

(PMv) neurons since numerous studies have identified the PMv as an important 

component of the neural circuitry connecting energy balance to reproduction 

106,109–111.  Because Nos1 is expressed in most PMv LepRb neurons, we 

developed and utilized a Nos1IRES-cre mouse to selectively ablate LepRb from all 

Nos1-expressing neurons.    
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Female mice lacking LepRb in all Nos1 neurons (LeprNos1KO mice) 

exhibited a mild impairment in reproductive maturation; although age at vaginal 

opening (puberty onset) wasn’t affected by our genetic manipulation, LeprNos1KO 

females were older than their littermate controls when they first went into estrus 

(completion of puberty).  While this indicates a delay in reaching reproductive 

maturity, adult knockouts are fertile as evidenced by their ability to successfully 

produce live litters.  Thus, direct leptin action in Nos1 neurons appears to be 

unnecessary for fertility, but does modulate sexual maturation of female mice.  

Given the importance of reproduction to all organisms, it is not surprising that 

there are redundant neuronal pathways or perhaps even pathways that are 

plastic enough to compensate for this loss of direct leptin action on Nos1-

expressing neurons. 

The mechanism by which Nos1/LepRb neurons modulate the reproductive 

axis does not appear to involve changes in expression of the gene that encodes 

the neuropeptide kisspeptin; although decreased Kiss1 expression has been 

postulated to contribute to the reproductive impairments associated with leptin-

deficient states 105, we found ARC Kiss1 levels to be normal in both LeprNos1KO 

females and mice lacking LepRb globally (LeprKO mice).  Kisspeptin neurons are 

also found in the AVPV/PeN, but again, we found unchanged Kiss1 levels in that 

area of LeprNos1KO females.  Thus, it appears that Nos1/LepRb neurons may 

modulate the GnRH neuron directly and don’t rely on kisspeptin neurons as an 

interneuron or that the mechanism doesn’t involve changes in Kiss1 gene 

expression. 
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While the reproductive phenotype in mice lacking LepRb in Nos1-

expressing neurons was not as striking as we had expected, these mice did 

exhibit a dramatic metabolic phenotype.  Both male and female LeprNos1KO mice 

are profoundly obese, although not quite as obese as mice lacking LepRb 

globally.  As the PMv has no known role in energy balance regulation (despite 

the number of LepRb neurons found there), we believe that non-PMv 

Nos1/LepRb neurons are responsible for this metabolic phenotype.  Additionally, 

the loss of LepRb from glutamatergic neurons does not significantly alter energy 

balance and the PMv is a mostly glutamatergic nucleus 132.  As such, GABAergic 

Nos1/LepRb neurons are likely critical regulators of energy balance and should 

be the focus of future investigations into hypothalamic leptin action. 

Leptin deficiency causes significant and well-characterized gene 

expression changes in the ARC.  We assessed what effect, if any, deletion of 

LepRb from Nos1-expressing neurons had on the expression of ARC Agrp, 

Pomc, Npy and Socs3.  While Agrp, Npy and Socs3 expression was unchanged 

in LeprNos1KO mice compared to littermate controls, we found a significant 

decrease in Pomc expression in LeprNos1KO mice.  Pomc/LepRb neurons do not 

express Nos1, so LepRb has not been genetically ablated from them; the change 

in Pomc expression is not an effect of the loss of direct leptin action on ARC 

Pomc neurons.  The change in expression, then, is due to either the effect of 

high circulating leptin in these animals 112, or is an effect of altered neuronal 

inputs to the Pomc neuron as a result of the deletion. 

Other hypothalamic-pituitary axes in addition to the HPG axis are affected 
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by leptin deficiency, so we assessed whether our deletion had any significant 

effects on them as well.  We found no effect of our deletion on circulating 

corticosterone levels, indicating a normally functioning hypothalamic-pituitary-

adrenal (HPA) axis in both sexes.  While global LeprKO males exhibited the 

expected increase in corticosterone as a result of deficient leptin action 133–136,139, 

we did not see the same effect in females, indicating a possible sexual 

dimorphism in the effect of leptin deficiency on the HPA axis.  Activity of the 

hypothalamic-pituitary-thyroid (HPT) axis is suppressed in states of leptin 

deficiency 134,139, so we measured thyroxine levels in LeprNos1KO mice of both 

sexes.  LeprKO male and female mice have diminished thyroxine levels, but we 

saw an effect of our conditional deletion only in males.  This likely reflects a 

sexual dimorphism in leptin’s regulation of the HPT axis, or is an effect of the 

greater obesity in male LeprNos1KO mice. 

 

Using a conditional deletion of LepRb from all Nos1-expressing neurons, 

we have uncovered a requirement of leptin action on Nos1 neurons for proper 

energy balance regulation but not for fertility.  Although in males they contribute 

modestly to neuroendocrine function, their main function appears to be control of 

energy balance.  As the distribution of Nos1/LepRb neurons expands into 

multiple hypothalamic nuclei, future studies should focus on further dissection of 

this neuronal population and characterization of individual subpopulations of 

Nos1/LepRb neurons within the hypothalamus. 
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Figure 2 - Generation of LeprNos1KO mice 

(a) An IRES-driven cre coding sequence was inserted in the final Nos1 exon 
between the stop codon and the pA site.  A neomycin cassette has previously 
been removed from the Nos1IRES-cre mice.  (b) Nos1IRES-cre mice were mated with 
Leprflox/flox mice127 to eventually generate LeprNos1KO animals and littermate 
controls.  ATG, start codon; IRES, internal ribosome entry site; pA, 
polyadenylation.
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Figure 3 - Reproductive effects of ablation of LepRb from Nos1-expressing 
neurons 

Percentage of female LeprNos1KO and littermate control mice that have 
undergone (a) vaginal opening (n = 18-24) and (b) first vaginal estrus (n = 17-
23).  Mantel-Cox (logrank) test: **, p<.01.  (c) Percentage of adult female 
LeprNos1KO and littermate control mice that have produced a live litter of pups (n 
= 9-12).  Relative Kiss1 expression in the (d) ARC (n = 9-13) and (e) AVPV/PeN 
(n = 10-15) of adult female controls, LeprNos1KOs and global LeprKOs.  One-way 
ANOVA, Bonferroni post-hoc: **, p<.01.  VO, vaginal opening.  
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Figure 4 - Body mass is increased in both female and male LeprNos1KO mice 

Body mass of (a) female (n = 9-18) and (b) male (n = 12-25) adult littermate 
control, LeprNos1KO and global LeprKO mice.  One-way ANOVA, Bonferroni post-
hoc: *, p<.05; **, p<.01; ***, p<.001.    
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Figure 5 - ARC Pomc gene expression is altered in LeprNos1KO mice 

Relative expression levels of (a) Npy (n = 14-25), (b) Agrp (n = 14-25), (c) Pomc 
(n = 15-25) and (d) Socs3 (n = 15-24) in the ARC of littermate control, 
LeprNos1KO and global LeprKO mice.  One-way ANOVA, Bonferroni post-hoc: *, 
p<.05; **, p<.01; ***, p<.001.    
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Figure 6 - Sexually dimorphic alteration in T4 levels in LeprNos1KO mice 

Serum corticosterone levels in (a) female (n = 8-14) and (b) male (n = 6-12) 
littermate control, LeprNos1KO and global LeprKO mice.  Serum T4 levels in adult 
(c) females (n = 8-16) and (d) males (n = 6-12).  One-way ANOVA, Bonferroni 
post-hoc: *, p<.05; **, p<.01; ***, p<.001.  T4, thyroxine. 
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Chapter 3 - Estrogen acts via ERα in kisspeptin/neurokinin B 

neurons to mediate feedback on the reproductive axis and 

control the onset of puberty in female mice† 

 

Neurons producing the neuropeptide kisspeptin mediate important aspects 

of the neural control of the reproductive axis.  Humans with Kiss1 or Kiss1r (the 

kisspeptin receptor) mutations present with hypothalamic infertility 28,29, 

prompting a multitude of experiments in rodents as well as other mammals 

investigating the precise physiological role of kisspeptin neurons.  Experiments in 

rodents illustrate a critical role for kisspeptin and its receptor in puberty regulation 

and fertility; the importance of kisspeptin neurons in the anteroventral 

periventricular nucleus/periventricular nucleus (AVPV/PeN) in estrogen positive 

feedback and generation of the pre-ovulatory luteinizing hormone (LH) surge has 

been previously reported 41,140.  Kisspeptin-producing neurons are also found in 

the hypothalamic arcuate nucleus (ARC) but the function of these kisspeptin 

neurons is less clear.  Although some have concluded from mRNA experiments 

that ARC kisspeptin neurons control estrogen negative feedback 43, 

                                            

 

†
 In these studies, Dr. Courtney Marsh assisted with collecting the data presented in Figure 10-

Figure 12 and performed some of the quantification of data presented in Figure 9.  Drs. Carol 
Elias and Roberta Cravo generated the data presented in Figure 8. 
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electrophysiological assessments of this population find no evidence of their role 

in negative feedback 141.  Ablation of ARC kisspeptin neurons does, however, 

result in altered feedback on the reproductive axis, providing some evidence that 

they may play a role in estrogen negative feedback 47. 

Both populations of kisspeptin neurons express estrogen receptor alpha 

(ERα), the receptor necessary for both positive and negative estrogen feedback 

40,43.  Manipulation of the kisspeptin neuron’s response (or ability to respond) to 

circulating estrogen will reveal their role in estrogen feedback.  Not surprisingly, 

genetic ablation of ERα from all Kiss1-expressing neurons in the mouse results in 

a dramatic reproductive phenotype; Kiss1 cell-specific ERα knockout females 

have precocious vaginal opening but never reach reproductive maturity as they 

don’t have estrous cycles and are anovulatory 46.  One limitation of this model, 

however, is that ERα was ablated from both populations of kisspeptin neurons 

and doesn’t allow for specific delineation of the function of each population 

individually. 

Kiss1 gene expression is regulated by estrogen differently in the two 

neuronal populations; AVPV/PeN Kiss1 expression is positively regulated by 

estrogen while ARC Kiss1 expression is negatively regulated by estrogen 

treatment 43.  The populations differ not only in their response to circulating 

estrogen and their location in the brain, but also in the other neuropeptides that 

they produce.  ARC kisspeptin neurons also produce neurokinin B (NKB), a 

product of the gene Tac2, and dynorphin A, an endogenous opioid peptide 

produced by the gene Pdyn.  These neurons have been nicknamed KNDy 
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neurons to reflect the coexpression of these three peptides and distinguish them 

from the kisspeptin neurons residing in the AVPV/PeN which do not produce 

NKB or dynorphin A. 

In the present study, we capitalized on the fact that ARC kisspeptin 

neurons express the gene Tac2 and AVPV/PeN kisspeptin neurons do not.  We 

generated a mouse that expresses cre recombinase under the control of the 

endogenous Tac2 promoter and used this mouse line to ablate ERα from the 

ARC KNDy neurons without disturbing estrogen action in the AVPV/PeN 

kisspeptin neurons.  We hypothesized that ERα in ARC KNDy neurons is 

required for restraint of the reproductive axis prior to puberty onset and also for 

normal estrogen negative feedback in adult female mice.  Indeed, our results 

suggest that direct estrogen action on ARC KNDy neurons via ERα is required 

for 1) restraint of the reproductive axis prior to puberty and 2) for proper estrogen 

negative feedback in adult female mice.
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Methods 

 

Animals 

 All animals were bred in our colony in the Unit for Laboratory Animal 

Medicine at the University of Michigan in accordance with the guidelines and 

approval of the University Committee on the Care and Use of Animals.  The 

Esr1-flox mouse line has been previously described 142.  Genotyping primers for 

this mouse line are as follows: For, 5’- aaggctgcaaggctttcttt – 3’; Rev, 5’ – 

gaaattcttagccacagcttc – 3’.  Early recombination around the loxP sites of this 

allele did occasionally occur and could be detected in a tail biopsy using a 

different forward primer: 5’ – gaatccaccagctgctgtag – 3’ and the reverse primer 

described above. 

 

Generation of Kiss1IRES-cre and Tac2IRES-cre mice 

5.6 kb of genomic DNA containing  portions of exon 2 and the 3’ UTR of 

the murine Kiss1 gene was amplified by PCR from R1 ES cells and cloned into a 

plasmid containing a FRT-NEO-FRT-IRES-CRE cassette such that the cassette 

deleted a small sequence located 3’ to the Kiss1 STOP codon but 5’ to the 

polyadenylation site.  The targeting construct was linearized using the NotI 

restriction enzyme and electroporated into R1 mouse embryonic stem cells at the 

University of Michigan Transgenic Animal Model Core.  Neomycin-resistant 

clones were analyzed by quantitative real-time PCR 143 and further confirmed by 

Southern blotting using the restriction enzyme HindIII and an external 580 bp 
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probe.  Correctly-targeted ES cells were injected into C57Bl/6J blastocysts to 

generate chimeras.  Male chimeras were then bred to C57Bl/6J females and 

pups were genotyped to confirm insertion of IRES-cre into the Kiss1 locus.  

Primers used for genotyping are as follows: WT for, 5’ – ccaaggcagggagcttcta – 

3’; common rev, 5’ – gagggtgtgggcatatgagt – 3’; Cre for, 5’ – 

acctggcctggtctggacac - 3’.  To remove the FRT-flanked NEO cassette, mice were 

bred to a Flp recombinase deleter mouse line (Jax 012930) and excision was 

confirmed by PCR. 

5.2 kb of genomic DNA containing portions of exon 6 and the 3’ UTR of 

the Tac2 gene was amplified by PCR from R1 ES cells and cloned into the same 

FRT-NEO-FRT-IRES-CRE containing plasmid as described above.  

Electroporation occurred as described above and resistant clones were analyzed 

by quantitative real-time PCR and then Southern blotting using the restriction 

enzyme EcoRV and an external 560 bp probe.  The targeting construct was 

linearized with NotI.  Chimeras were generated and bred as described above, 

and pups were genotyped for insertion of IRES-cre into the Tac2 locus.  Primers 

used for genotyping: WT for, 5’ – cccccagctttggcatcctc – 3’; common rev, 5’ – 

gcgaatgacagaccatctctcc – 3’; Cre for, 5’ - acctggcctggtctggacac – 3’ (same as 

what is used for Kiss1IRES-cre genotyping).  Removal of the FRT-flanked NEO 

cassette was the same as described above. 

 

Mouse model validation 

 Kiss1IRES-cre/+ and Tac2IRES-cre/+ male mice were bred to homozygous cre-
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inducible eYFP reporter females (Jax 006148) to generate Kiss1eYFP and 

Tac2eYFP animals respectively, allowing visualization and quantification of cre-

expressing cells as eYFP expression is restricted to cells that express cre 

recombinase.  

 

Dual-label immunohistochemistry/in situ hybridization 

Dual-label immunohistochemistry/in situ hybridization (IHC/ISH) was 

performed as previously described 144 on brains from adult female Kiss1eYFP and 

Tac2eYFP mice.  eYFP was detected using a chicken anti-GFP primary antibody 

(Abcam, 1:5000) and riboprobes were generated using the following primers: 

Kiss1 F: 5’- AATTAACCCTCACTAAAGGGAGACTGTGTCGCCACCTATGG - 3'; 

Kiss1 R: 5’-  TAATACGACTCACTATAGGGAGATCTAGAAGCTCCCTGCCTTG - 

3'; Tac2 F: 5’- AATTAACCCTCACTAAAGGGAGAGCTGTCCTCGCCCTCAGCT 

TGGCTTGGA - 3'; Tac2 R: 5’- TAATACGACTCACTATAGGGAGATTTGAGGA 

TGCCAAAGCTGGGGGTG - 3' 

 

Perfusion and immunohistochemistry 

 Blood was drawn from the heart of female mice (age 21 days or 9-10 

weeks) after receiving an overdose of sodium pentobarbital.  They were then 

perfused transcardially with phosphate-buffered saline (PBS, pH 7.4) followed by 

10% formalin.  Blood was allowed to clot for 30 minutes at room temperature and 

then centrifuged for 15 minutes at 2,000 x g and the serum was removed and 

stored at -20° C.  The brain was removed and postfixed in 10% formalin for 2-4 
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hours and then dehydrated in 30% sucrose in PBS until the time of sectioning.  

Brains were cut in 30 µm coronal sections on a sliding microtome, collected in 

four representative series, and stored at -20° C in cryoprotectant.   

For kisspeptin immunostaining, free-floating brain sections were 

pretreated in 1% H2O2 in PBS, then blocked in 3% normal donkey serum 

(NDS)/3% Triton X-100 in PBS and then incubated with primary antibody (rabbit 

anti-kisspeptin, Millipore, 1:2000) overnight.  Sections were thoroughly washed 

with PBS to remove the cryoprotectant, incubated in biotinylated donkey-anti-

rabbit (Jackson ImmunoResearch, 1:200) for 2 hours, followed by avidin-biotin-

complex labeling (Vectastain Elite kit, Vector Laboratories).  Signals were 

developed with diaminobenzidine resulting in a brown precipitate.   

For eYFP and ERα immunostaining, sections were blocked as described 

above and then incubated in primary antibodies (chicken anti-GFP, Abcam, 

1:1000; rabbit anti-ERα, Santa Cruz, 1:1000) overnight.  Brain sections were 

washed and then incubated with Alexa Fluor-conjugated secondary antibodies 

(goat anti-chicken 488 and donkey anti-rabbit 568, Invitrogen, 1:250).  Sections 

were mounted onto gelatin-coated slides and coverslipped with ProLong Antifade 

mounting medium (Invitrogen). 

 

Longitudinal study 

 Cre-positive males (either Kiss1IRES-cre/+ or Tac2IRES-cre/+) were bred to 

ERαflox/flox females.  The resulting Kiss1IRES-cre/+/ERαflox/+ or Tac2IRES-cre/+/ERαflox/+ 

males and ERαflox/+ females were bred to each other to generate Kiss1- or Tac2-
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specific ERα knockouts (Kiss1IRES-cre/+/ERαflox/flox, “ERαKiss1KO” or Tac2IRES-

cre/+/ERαflox/flox, “ERαTac2KO”) and their littermate controls ERαflox/flox and Kiss1IRES-

cre/+ or Tac2IRES-cre/+.   

Females were identified using toe-clipping and checked daily for vaginal 

opening beginning at PND10.  Mice were individually housed beginning at 

PND21 and body weight was recorded weekly.  After vaginal opening, estrous 

cycle phase was determined daily based on vaginal cytology 145.  At 8 weeks of 

age, body composition was determined by a NMR-based Minispec LF90II 

(Bruker Optics) analyzer.  9-week-old mice were dissected (some controls in 

diestrus and some in estrus, based on vaginal cytology).  Blood was collected 

after an overdose of sodium pentobarbital was given and allowed to clot for 30 

minutes at room temperature. It was then centrifuged for 15 minutes at 2,000 x g 

and the serum was collected and stored at -20° C.  Using a mouse brain matrix, 

the ARC and a triangle of tissue containing the AVPV/PeN as well as the preoptic 

area were dissected and individually snap-frozen on dry ice.  Brain tissue was 

stored at -80° for later RNA extraction.  Ovaries and uterus were removed, 

weighed, and fixed overnight in Z-fix (Anatech) and then transferred to 70% 

ethanol for storage.  Ovaries were sectioned and stained with hematoxylin and 

eosin stain (H&E) by the University of Michigan Comprehensive Cancer Center 

Tissue Core.  The total number of follicles or corpora lutea (both ovaries, one 

representative section per ovary) were counted by an individual blind to the 

genotype. 

 RNA was extracted from microdissected brain tissue using TRIzol 
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(Invitrogen) and then converted to cDNA using the iScript cDNA Synthesis Kit 

(Bio-Rad).  Gene expression was analyzed in triplicate by quantitative RT-PCR 

using Gapdh (endogenous control), Kiss1, Pdyn, Tac2 and Gnrh1 Taqman 

assays (Invitrogen).  Relative mRNA expression values were calculated by the 2-

ΔΔCt method, with normalization of each sample’s ΔCt value to the average ΔCt of 

the intact control samples. 

 

Ovariectomy and estradiol treatment 

 Nine week old female mice (ERαKiss1KO, ERαTac2KO and their littermate 

controls) were ovariectomized (“OVX”) under isofluorane anesthesia.  Blood was 

collected in a heparinized capillary tube from the tail vein prior to ovariectomy.  

Estradiol treatment was based on a previously established negative feedback 

induction paradigm 146; after a 12-day recovery from OVX, blood was collected 

again from the tail vein and mice received a sub-cutaneous injection of β-

Estradiol 3-benzoate (1μg/20g body mass, Sigma Aldrich) in sesame oil.  3 hours 

later, blood was collected again.  All blood samples were centrifuged and plasma 

was frozen at -20° C for later analysis.  Seven days after estradiol treatment, all 

mice were dissected and the brains were microdissected as previously 

described.   

 

Microscopy and image analysis 

 Microscopic images were obtained using an Olympus BX-51 microscope 

with a DP30BW camera (Olympus) or a Nikon Eclipse 90i microscope with a DS-
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Fi1 color camera (Nikon) (for color images [ovaries histology, dual IHC/ISH]).  

Images from fluorescent labeling experiments were pseudo-colored and merged 

using Adobe Photoshop.   

   

Hormone analysis 

Serum or plasma was analyzed by the University of Virginia Center for 

Research in Reproduction Ligand Assay and Analysis Core or the University of 

Michigan Chemistry Core.  Estradiol levels were determined by ELISA 

(Calbiotech) while LH and FSH levels were assessed using the Millipore 

MILLIPLEX MAP rat pituitary panel. 

 

Statistics 

Student’s t-test was used when only two groups were compared.  One-

way ANOVA with Bonferroni post-hoc analysis was used when comparing three 

or more groups.  Repeated measures two-way ANOVA was used to analyze 

body weight and serum gonadotropin levels in the ovariectomy experiment.  Data 

were analyzed and graphs were generated using either OriginPro 8 or GraphPad 

Prism software.  Differences were deemed significant if p <.05.  Data are 

presented as mean±SEM.  
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 Results 

 

Generation and validation of Tac2 and Kiss1 cell-specific mouse lines 

To study the effect of the loss of ERα from ARC KNDy neurons, we first 

used gene targeting in embryonic stem cells to develop a knock-in mouse line 

that expresses cre recombinase under the control of the endogenous murine 

Tac2 promoter (Figure 7 a).  An internal ribosome entry site (IRES) followed by 

cre recombinase cDNA was inserted downstream of the Tac2 STOP codon.  In 

Tac2IRES-cre mice, transcription of the modified Tac2 allele yields a bicistronic 

mRNA from which neurokinin B and cre recombinase are independently 

translated.  Tac2IRES-cre mice were first crossed to a cre-activated fluorescent 

reporter mouse line (ROSA26-EYFP mice), generating Tac2eYFP mice and 

allowing us to determine sites of cre expression (Figure 7 b).  To specifically 

ablate ERα from Tac2-expressing neurons, we used a mouse strain in which 

exon 3 of the Esr1 gene, which encodes the ERα binding domain, is flanked by 

loxP sites (Esr1-flox mice 142, Figure 7 c).  Breeding this mouse line to the 

Tac2IRES-cre line described above generated ERαTac2KO animals. 

We also developed a Kiss1 knock-in IRES-cre line (Figure 7 d) in order to 

compare the effect of ERα ablation from just a subset of kisspeptin neurons 

(using the Tac2IRES-cre mice) to the effect of loss of ERα from all kisspeptin 

neurons (using the Kiss1IRES-cre mice).  Kiss1IRES-cre mice were also crossed to the 

ROSA26-EYFP line, generating Kiss1eYFP mice, and to the Esr1-flox line, 

generating ERαKiss1KO animals. 
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To verify that cre expression was restricted to Kiss1- and Tac2-expressing 

cells in the two novel mouse lines, we performed dual-label in situ 

hybridization/immunohistochemistry on hypothalamic sections from Kiss1eYFP and 

Tac2eYFP female mice.  In the ARC of a Tac2eYFP female mouse, most eYFP cells 

express Tac2 mRNA (Figure 8 a) and also Kiss1 mRNA (Figure 8 b).  Although 

we observed strong Kiss1 hybridization lining the third ventricle in the AVPV of a 

female Tac2eYFP female, we found no eYFP cells in that area (Figure 8 c), 

confirming that AVPV/PeN kisspeptin neurons do not express Tac2.  There was 

a high degree of co-localization between hybridized Kiss1 probe and eYFP 

immunoreactivity in the ARC of a Kiss1eYFP mouse (Figure 8 d) confirming that 

cre expression was limited to kisspeptin neurons. 

Using Kiss1eYFP female mice, we determined that in the ARC, nearly all 

eYFP cells express ERα (93±0.8%; n=3) and in the AVPV/PeN, ~65% 

(66.2±7.2%; n=3) of eYFP cells express ERα (Figure 9 a-b).  In Tac2eYFP female 

mice, nearly all ARC eYFP cells express ERα (96.6±0.3%; n=3) but we detected 

no eYFP/ERα cells in the AVPV/PeN (Figure 9 c-d).  While we found scattered 

eYFP/ERα cells elsewhere in the brain of Tac2eYFP mice, they were few in 

number and the ARC eYFP/ERα cells represent 88% of all eYFP/ERα cells.  

 

Generation and initial characterization of ERαKiss1KO and ERαTac2KO females 

 To generate Kiss1-specific ERα knockout mice, we first crossed Kiss1IRES-

cre heterozygotes to Esr1-flox homozygotes (ERαflox/flox) and then crossed the 

resultant  Kiss1IRES-cre/+/ERαflox/+ males to ERαflox/+ females.  The F2 progeny 
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consisted of Kiss1IRES-Cre/+/ERαflox/flox (“ERαKiss1KO”) mice, ERαflox/flox mice (without 

the modified Kiss1 allele) and Kiss1IRES-Cre/+ mice (without a modified Esr1 allele).  

The latter two genotypes were used as littermate controls to the ERαKiss1KO 

animals in all studies.  When appropriate, Kiss1IRES-cre/+ and ERαflox/flox female 

mice were combined into one larger control group.  The same strategy was used 

to generate Tac2-specific ERα knockout mice, eventually generating littermate 

Tac2IRES-Cre/+/ERαflox/flox (“ERαTac2KO”) mice, ERαflox/flox mice (without the modified 

Tac2 allele) and Tac2IRES-Cre/+ mice (without a modified Esr1 allele).   

The body mass of ERαKiss1KO females was not significantly altered 

compared to littermate controls at early ages, but at 8 weeks of age ERαKiss1KO 

females were very slightly but significantly heavier than control littermates 

(Figure 10 a).  A similar effect was observed in ERαTac2KO females; they were 

slightly but significantly heavier than their littermate controls at 5, 6, 7, and 8 

weeks of age (Figure 10 c).   

Body composition analysis of 8-week-old females revealed that both 

ERαKiss1KO and ERαflox/flox mice both had lower body fat percentage than 

Kiss1IRES-cre/+ mice and also that ERαKiss1KO females have increased fluid 

percentage compared to both littermate control genotypes (Figure 10 b).  The 

same effect was observed in ERαTac2KO mice and their littermate controls; 

Tac2IRES-cre/+ mice have significantly higher fat percentage compared to both 

ERαflox/flox and ERαTac2KO animals and we found increased fluid percentage in 

ERαTac2KO females compared to both littermate control genotypes (Figure 10 d). 
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Puberty onset and reproductive phenotype of ERαKiss1KO and ERαTac2KO 

females 

 Vaginal opening is an external signal of puberty onset in rodents and can 

be significantly accelerated by a variety of different manipulations, including 

treatment with exogenous kisspeptin or estrogenic compounds 147–149.  We found 

vaginal opening to be significantly and profoundly advanced to a similar extent in 

mice lacking ERα in either Kiss1 (Figure 11 a) or Tac2 (Figure 11 f) neurons 

compared with their littermate controls.   Vaginal cytology revealed a lack of 

estrous cyclicity in ERαKiss1KOs; they spent significantly less time in diestrus or 

metestrus and significantly more time in estrus than their littermate controls 

(Figure 11 b & e).  While Kiss1IRES-cre/+ (Figure 11 c) and ERαflox/flox (Figure 11 

d) showed all stages of estrous cyclicity, ERαKiss1KO females exhibited constant 

vaginal cornification for the entire extent of the study (Figure 11 e).  A similar 

lack of estrous cyclicity was also observed in ERαTac2KO females (Figure 11 g & 

j); they exhibited persistent vaginal cornification while Tac2IRES-cre/+ (Figure 11 h) 

and ERαflox/flox (Figure 11 i) mice showed all stages of estrous cyclicity. 

In addition to their impaired estrous cyclicity, both ERαKiss1KO and 

ERαTac2KO females exhibit the same striking abnormalities in their reproductive 

organs (Figure 12).  The uterus of ERαKiss1KO animals was significantly enlarged 

and filled with fluid (Figure 12 a).  Additionally, in these animals we observed an 

increase in the total number of follicles within the ovary but a stark reduction in 

the number of corpora lutea (Figure 12 b).  Histological analysis of the ovary 

from a representative control adult female (Figure 12 c) revealed several corpora 
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lutea while the representative ovary from an age-matched ERαKiss1KO female 

(Figure 12 d) contained a hemorrhagic cyst and no corpora lutea.   

The same effect was observed in the ERαTac2KO females.  We found 

enlarged, fluid-filled uteri in the knockouts (Figure 12 e), an increase in the total 

number of follicles and a nearly complete lack of corpora lutea (Figure 12 f).  

Histological analysis of representative ovary sections from a control adult female 

(Figure 12 g) revealed a typical-looking ovary with several corpora lutea while a 

section from an ERαTac2KO animal (Figure 12 h) contained an increased number 

of follicles, several hemorrhagic cysts, and no corpora lutea. 

 Ablation of ERα from either Kiss1- or Tac2-expressing neurons results in 

accelerated puberty onset but incomplete sexual maturation.  Their ovarian and 

uterine histology suggest a hyperstimulation of the HPG axis, possibly due to 

reduced negative feedback on gonadotropin secretion. 

 

Gonadotropins and gonadal hormones 

To assess whether deletion of ERα from either Kiss1 or Tac2 neurons 

altered feedback on gonadotropin and gonadal hormone levels, we analyzed 

serum from adult (9-week-old) (Figure 13) female knockouts and their littermate 

controls.  Due to the fact that both ERαKiss1KO and ERαTac2KO adult females 

showed persistent vaginal cornification, a group of littermate controls were 

dissected in estrus and analyzed alongside the knockouts and the controls 

dissected in diestrus.  We found LH levels to be slightly higher in ERαKiss1KO 

adult females only when compared to estrus controls but not when compared to 
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diestrus controls (Figure 13 a).  FSH levels were completely unchanged (Figure 

13 b).  Estradiol levels in ERαKiss1KO adult females were approximately three 

times higher than levels in either control group (Figure 13 c).   

 A similar but slightly more profound effect was observed in ERαTac2KO 

females.  When gonadotropin levels were assessed in adult females, we found a 

significant elevation in serum LH in the ERαTac2KOs compared to both control 

groups (Figure 13 d).  As we saw in the ERαKiss1KOs, FSH levels were not 

significantly changed between ERαTac2KOs and the two control groups (Figure 

13 e).  The estradiol levels of the ERαTac2KO females were, however, significantly 

elevated (Figure 13 f), and to the same extent as what we observed in the 

ERαKiss1KO females.  

 While the increase in LH levels in the ERαTac2KO adults was significant, 

the small magnitude of the difference led us to investigate the hormonal milieu in 

animals around the time of puberty; it is possible that developmental 

compensation may explain the relatively small elevation in LH levels in our adult 

ERαTac2KOs and the surprisingly normal levels in ERαKiss1KOs.   

When gonadotropin levels were assessed in juvenile animals, we saw a 

profound elevation in the ERαKiss1KO females’ serum LH concentration compared 

to littermate controls (Figure 14 a), but no effect on FSH (Figure 14 b).  Not 

surprisingly, given their precocious vaginal opening, juvenile ERαKiss1KO females 

also had significantly higher estradiol levels than their littermate controls (Figure 

14 c).  We observed the same effect on serum LH (Figure 14 d) and estradiol 

(Figure 14 f) in the ERαTac2KO females, but unlike ERαKiss1KO juveniles, they 
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also had significantly elevated FSH levels (Figure 14 e).   

 While these data suggest reduced negative feedback on the reproductive 

neuroendocrine system, we also wanted to assess the effect of ovariectomy and 

acute estradiol treatment in the knockout females (Figure 15).  Since 

ovariectomy is a complete removal of estrogen feedback, the extent of the 

disrupted negative feedback in our knockout females could be determined by 

comparing their gonadotropin levels to those of ovariectomized females.  As a 

result of ovariectomy, both LH (Figure 15 a) and FSH (Figure 15 b) levels rose 

in both ERαKiss1KOs and their littermate controls, although the elevation of FSH 

was significantly blunted in the conditional knockouts.  Acute estradiol treatment 

was effective in reducing LH levels equally well in both ERαKiss1KOs and their 

littermate controls, but FSH levels remained lower than those of controls.   

The same effect was observed in ERαTac2KOs; LH (Figure 15 c) and FSH 

(Figure 15 d) rose in both the knockouts and controls after ovariectomy, but the 

effect on FSH was blunted in ERαTac2KOs compared to controls.  Acute estradiol 

treatment reduced LH levels similarly in both ERαTac2KOs and controls, although 

FSH levels remained lower than littermate controls.  Thus, despite our 

observations of reduced estrogen negative feedback in both ERαKiss1KO and 

ERαTac2KO intact females, ovariectomy revealed that neither knockout had 

completely lost negative feedback on gonadotropin secretion.  Both knockout 

mouse lines were also still sensitive to the negative feedback effects of acute 

estradiol treatment. 
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Hypothalamic gene expression 

 ERα belongs to a class of receptors that when bound to their ligands act 

as transcription factors, translocating to the nucleus and regulating gene 

expression.  In both the ARC and the AVPV/PeN, expression of Kiss1 is affected 

by fluctuating estrogen levels 43,44.  To determine how gene expression was 

affected by ablation of ERα from either Kiss1- or Tac2-expressing neurons, we 

extracted RNA from microdissected tissue (ARC and rostral hypothalamus), 

converted it to cDNA and then determined relative gene expression levels.  We 

found that ablation of ERα from kisspeptin neurons significantly altered the 

expression of the genes encoding the three neuropeptides found in ARC KNDy 

neurons, all of which are known to be estrogen-responsive (Figure 16).  Relative 

expression of Kiss1 (Figure 16 a), Tac2 (Figure 16 b) and Pdyn (Figure 16 c) 

were all significantly higher in the ARC of ERαKiss1KO adult females compared to 

littermate controls dissected in either diestrus or estrus.   

The same effect was observed when ERα was ablated from all Tac2-

expressing neurons; relative expression of Kiss1 (Figure 16 d), Tac2 (Figure 16 

e) and Pdyn (Figure 16 f) in the ARC were all also significantly elevated in 

ERαTac2KO adult females compared to controls.  The relatively small magnitude 

of the difference in Tac2 levels between ERαTac2KOs and controls appears to be 

due to an effect of the insertion of the IRES-cre sequence into the Tac2 gene as 

expression was diminished in Tac2IRES-cre/+ controls relative to ERαflox/flox controls 

(data not shown).  Since the changes in ARC gene expression are the same 

between ERαKiss1KOs and ERαTac2KOs, we believe this effect to be due to loss of 
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ERα from ARC KNDy neurons since this is common to both knockout lines 

studied here. 

 Gene expression in the rostral hypothalamus, where the AVPV/PeN 

kisspeptin neurons and GnRH neurons are found, was altered by ablation of ERα 

from all Kiss1-expressing neurons but not by ablation of ERα from Tac2-

expressing neurons (Figure 17).  In stark contrast to what we observed in the 

ARC, relative expression of AVPV/PeN Kiss1 in ERαKiss1KO females was 

substantially diminished compared to controls (Figure 17 a).  Despite all 

indications that the reproductive axis in these mice is overactive, we found no 

changes in Gnrh1 gene expression (Figure 17 b).   

Unlike what we observed in ERαKiss1KO mice, ERαTac2KO females 

exhibited no changes in Kiss1 expression in the AVPV/PeN (Figure 17 c).  Again 

we saw no effect of ablation of ERα from Tac2 neurons on Gnrh1 expression 

(Figure 17 d).  Since we saw a change in AVPV/PeN Kiss1 expression in the 

ERαKiss1KOs but not in the ERαTac2KOs, we believe this effect to be due to the 

ablation of ERα from AVPV/PeN Kiss1-expressing neurons. 

 While the ablation of ERα from either Kiss1- or Tac2-expressing neurons 

prevents direct estrogen action, we wanted to assess whether the gene 

expression changes we observed in intact ERαKiss1KO and ERαTac2KO were 

identical to the changes that would occur as a result of ovariectomy, a complete 

loss of estrogen negative feedback.  To do this, we compared the expression of 

hypothalamic Kiss1, Tac2, Pdyn and Gnrh1 in intact controls to levels in 

ovariectomized controls, intact knockouts and ovariectomized knockouts.   
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We found that in the ARC, Kiss1 expression rose dramatically as a result 

of ovariectomy, to levels that were indistinguishable from those of intact and 

ovariectomized ERαKiss1KO females (Figure 18 a).  Although we previously were 

able to detect a significant increase in ARC Tac2 in the ERαKiss1KO mice (Figure 

16 b), we found no significant changes in Tac2 when comparing intact controls to 

ovariectomized controls, intact knockouts or ovariectomized knockouts due to 

problems specifically with the Tac2 assay (Figure 18 b).  ARC Pdyn expression 

was elevated in ovariectomized control animals to the same extent as intact 

ERαKiss1KOs (Figure 18 c).  Of the genes that we analyzed, none were 

significantly different between ovariectomized controls and intact ERαKiss1KOs, 

suggesting that the alterations in ARC gene expression resulting from 

ovariectomy are due to loss of direct estrogen action on Kiss1-expressing 

neurons. 

ARC Kiss1 was elevated in ovariectomized controls to the same extent as 

what we observed in both intact and ovariectomized ERαTac2KO females (Figure 

18 d).  Again, even though we had previously detected a significant increase in 

ARC Tac2 expression in ERαTac2KO females compared to littermate controls 

(Figure 16 e), a problem with the assay prevented us from finding any possible 

differences when comparing intact controls to ovariectomized controls, intact 

knockouts or ovariectomized knockouts (Figure 18 e).  There was a significant 

increase in Pdyn expression as a result of ovariectomy, but no difference 

between ovariectomized controls and intact ERαTac2KOs and no additive effect of 

ovariectomy on Pdyn levels in the knockouts (Figure 18 f).  Furthermore, the fact 
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that expression of all three of these genes are altered similarly between 

ovariectomized controls and intact ERαTac2KOs suggests that the increases in 

ARC gene expression resulting from ovariectomy are due to loss of direct 

estrogen action from not just Kiss1-expressing neurons but more specifically 

from the loss of ERα from ARC KNDy neurons specifically. 

 We next wanted to determine the effect of ovariectomy on gene 

expression in the rostral hypothalamus of control and Kiss1- or Tac2-specific 

ERα knockouts (Figure 19).  As we found previously, AVPV/PeN Kiss1 

expression was severely diminished in ERαKiss1KO females, but we did not 

observe a significant reduction in controls as a result of ovariectomy as has been 

previously reported 43 (Figure 19 a).  Ovariectomy did, however, reduce 

AVPV/PeN Kiss1 levels in ERαKiss1KO females even further to undetectable 

levels.  Gnrh1 expression was not affected by ovariectomy or by ablation of ERα 

from all Kiss1 neurons (Figure 19 b).  The substantial reduction in AVPV/PeN 

Kiss1 as a result of either ovariectomy or ERα deletion confirms the loss of 

positive regulation by direct estrogen action on AVPV/PeN kisspeptin neurons. 

We detected a profound and significant decrease in Kiss1 expression as a 

result of ovariectomy when we analyzed the littermate controls of the 

ERαTac2KOs, but as we found before, ablation of ERα from Tac2 neurons does 

not significantly affect AVPV/PeN Kiss1 expression (Figure 19 c).  Our analysis 

revealed that Gnrh1 expression was unaffected by ovariectomy or by the ablation 

of ERα from Tac2 neurons (Figure 19 d).  The reduction in AVPV/PeN Kiss1 

levels in ERαKiss1KO but not ERαTac2KO mice provides even more evidence that 
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1) our deletion is specific for ARC kisspeptin neurons and doesn’t directly affect 

AVPV/PeN kisspeptin neurons, and 2) the severe reproductive phenotype of 

ERαTac2KO females is a result of affected ARC kisspeptin neuron function. 

 

Analysis of kisspeptin peptide levels in the ARC and AVPV/PeN 

The dramatic changes in hypothalamic Kiss1 gene expression that we 

discovered in the conditional ERα knockouts prompted us to investigate whether 

these changes led to significant alterations in kisspeptin peptide as well.  In 

young (21-day-old) animals, we found that ablation of ERα from all kisspeptin 

neurons had no effect on ARC kisspeptin peptide immunoreactivity (Figure 20 a 

& b).  Despite the fact that Kiss1 mRNA levels are dramatically increased in 

ERαKiss1KO adult females, we found no changes in ARC kisspeptin peptide 

staining in adults (~ 9 weeks old) (Figure 20 e & f).  Similarly, in both young and 

adult ERαTac2KOs, we observed no changes in ARC kisspeptin staining (Figure 

20 c & d, g & h). 

In the AVPV/PeN, we saw the expected changes in kisspeptin peptide 

staining based on previously published data and our own gene expression 

findings 46 (Figure 21).  In young ERαKiss1KOs and their littermate controls, we 

saw very little kisspeptin immunoreactivity (Figure 21 a & b), but kisspeptin 

staining was significantly diminished in adult ERαKiss1KO females compared to 

littermate controls, in agreement with our gene expression data (Figure 21 e & 

f).  In young ERαTac2KO females, however, we saw a slight increase in 

AVPV/PeN kisspeptin immunoreactivity compared to their littermate controls 
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(Figure 21 c & d).  In contrast with the diminished amount of kisspeptin in the 

AVPV/PeN of ERαKiss1KO adult females, there was no effect of ERα ablation from 

Tac2 neurons on adult AVPV/PeN kisspeptin staining (Figure 21 g & h). 

In summary, while we saw no effect of either deletion on the amount of 

ARC kisspeptin peptide immunoreactivity, AVPV/PeN kisspeptin 

immunoreactivity was diminished in ERαKiss1KO adults and increased in young 

ERαTac2KOs.  
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Conclusions & Discussion 

 

While substantial progress has been made in understanding how the 

female HPG axis functions, there are still many unanswered questions.  Central 

estrogen action via ERα is required for normal reproductive function in female 

rodents; without it, female mice exhibit reproductive organ anomalies and 

impaired estrogen feedback, resulting in anovulation and infertility 26.  Although 

the GnRH neurons are the final output of the hypothalamus, regulating the 

reproductive axis, they don’t express detectable levels of ERα.  Thus, there must 

be ERα-expressing neurons that reside upstream of the GnRH neurons that are 

critical for normal regulation of the female reproductive axis.  The location and 

identity of those neurons are one of those remaining unanswered questions in 

the field of reproductive biology. 

We used a genetic approach to test the necessity of direct estrogen action 

via ERα in either all Kiss1-expressing neurons or within a subset of kisspeptin 

neurons (the ARC KNDy neurons).  Ablation of ERα from all Kiss1 neurons or 

from only the ARC KNDy neurons resulted in the same dramatic acceleration of 

puberty onset in female mice, in agreement with previous reports that ablated 

ERα from all kisspeptin neurons 44,46.  As adults, both conditional knockout 

genotypes exhibited a complete lack of estrous cyclicity and reduced ovarian 

function; we found few corpora lutea and an increased total number of follicles in 

addition to a number of hemorrhagic cysts.  Although the ERαKiss1KO and 

ERαTac2KO females entered puberty earlier than littermate controls, their lack of 
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cyclicity or ovulation suggests a failure to reach sexual maturity.  The nearly 

identical phenotype suggests that the defect in sexual maturation is due to the 

loss of ERα from the ARC KNDy neurons since this is common to both knockout 

lines.  

When we investigated the hormonal milieu in these mice around the time 

of puberty onset, we found that both ERαKiss1KO and ERαTac2KO juvenile females 

had elevated LH and estradiol levels.  While the increased estradiol explains the 

early vaginal opening, elevated LH levels in the face of elevated circulating 

estradiol indicates impaired estrogen negative feedback in both knockout mouse 

lines.  Serum analysis was performed in adult females as well; again, we found 

elevated LH levels in ERαTac2KOs, but the LH levels in adult ERαKiss1KOs were 

now unchanged compare to littermate controls.  Since estradiol levels were 

profoundly elevated in both adult ERαKiss1KO and adult ERαTac2KO female mice, 

the unchanged and elevated LH levels, respectively, suggest a reduction in 

estrogen negative feedback.   

Ovariectomy results in a complete loss of estrogen negative feedback and 

gonadotropin levels rise quickly and dramatically.  Even though LH levels were 

significantly elevated in ERαTac2KO adult females, they were not as high as what 

we observed in ovariectomized females and in fact LH levels in these animals 

rose even further upon ovariectomy.  After ovariectomy, acute administration of 

exogenous estradiol suppressed gonadotropin levels in both conditional 

knockouts.  This implies additional redundant or compensatory negative 

feedback systems which can partially restrain LH levels in an intact animal and 
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upon acute estradiol treatment after ovariectomy, but are not able to properly 

restrain puberty onset or allow normal estrous cyclicity.  Thus, while estrogen 

action via ERα in ARC KNDy neurons may not be the only estrogen negative 

feedback system in the mouse, its loss can not be completely compensated for 

by other systems under normal physiological conditions. 

mRNA levels of several genes within the hypothalamus of the mouse are 

sensitive to estrogen feedback.  Ablation of ERα from either all kisspeptin 

neurons or only ARC kisspeptin neurons resulted in a complete loss of negative 

feedback on ARC Kiss1 and Pdyn gene expression, mimicking the levels found 

in ovariectomized animals.  While we could detect a significant increase in ARC 

Tac2 expression in both ERαKiss1KO and ERαTac2KO mice compared to littermate 

controls, technical difficulties with the gene expression assay prevented us from 

determining whether those levels were comparable to what is observed in an 

ovariectomized mouse.  These findings indicate that while additional negative 

feedback systems may exist for the restraint of LH levels, loss of ERα from ARC 

KNDy neurons results in a complete loss of regulation of Kiss1 and Pdyn and 

possibly Tac2 as well. 

In the rostral hypothalamus, AVPV/PeN kisspeptin neurons reside in close 

proximity to GnRH neurons.  From the same microdissected tissue sample, we 

were able to assess expression levels of both Kiss1 and Gnrh1.  While Kiss1 

expression in the AVPV/PeN was not affected by loss of ERα from ARC KNDy 

neurons, it was significantly decreased as a result of ablation of ERα from all 

kisspeptin neurons.  This reduction mimics what we observed in ovariectomized 
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mice, indicating the necessity of direct estrogen action via ERα on AVPV/PeN 

kisspeptin neurons for proper maintenance of Kiss1 expression in those neurons. 

 While we saw dramatic increases in adult ARC Kiss1 expression in both 

conditional knockout mouse lines, this effect was not apparent at the peptide 

level when we performed immunohistochemistry.  This may be due to limitations 

in the ability to quantify IHC staining, so future studies should address whether 

ARC kisspeptin neurons produce and release more kisspeptin as a result of ERα 

ablation.  In the AVPV/PeN we observed the expected decrease in kisspeptin in 

ERαKiss1KO but not ERαTac2KO females.  While there appeared to be a slight 

increase in kisspeptin immunoreactivity in the AVPV/PeN of juvenile ERαTac2KOs, 

IHC is likely not the best way to quantify an increase in peptide levels and future 

studies are needed to confirm this finding.  Regardless, this potential increase in 

kisspeptin peptide is not likely to be the cause of the precocious vaginal opening 

or elevated LH and estradiol in juvenile animals since these effects were 

common to both knockout lines and we didn’t see the same peptide change in 

juvenile ERαKiss1KO females.  

Interestingly, the phenotype that we have described here in the 

ERαKiss1KO and ERαTac2KO female mice is quite similar to that described by 

Singh and colleagues when they performed a selective deletion of ERα from the 

pituitary 150.  They found fewer corpora lutea and more atretic follicles and cysts 

in the ovary, as well as elevated LH and estradiol levels.  They similarly found no 

change in Gnrh1 expression despite an obvious reduction in estrogen negative 

feedback.  Interestingly, while this selective deletion of ERα from the pituitary 
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resulted in decreased estrogen negative feedback, a different group performing a 

similar genetic deletion found no evidence of impaired estrogen feedback in their 

mice 151. 

 While we are the first to perform a genetic ablation of ERα selectively from 

ARC KNDy neurons, others have investigated the overall necessity of those 

neurons 47.  Surprisingly, mice lacking ARC KNDy neurons don’t exhibit elevated 

basal LH levels, implying intact estrogen negative feedback.  Taking into account 

our data which illustrates a reduction in negative feedback when ARC KNDy 

neurons lose ERα, this implies that the increase in LH as a result of decreased 

estrogen negative feedback requires ARC KNDy neurons.  The precise manner 

by which the unrestrained KNDy neurons affect GnRH output to increase LH 

levels was not investigated here but should be the focus of future work. 

 

Here, we show for the first time a clear reduction in estrogen negative 

feedback after loss of direct estrogen action via ERα in ARC KNDy neurons.  

This is in contrast with only a slight reduction in negative feedback on 

gonadotropin secretion in mice lacking ERα in all kisspeptin neurons.  Despite 

the differences in the magnitude of feedback reduction between the two 

conditional knockout mouse lines, the overall reproductive phenotype is nearly 

identical.  The regulation of puberty onset and sexual maturation is extremely 

sensitive to alterations in gonadal steroid feedback, and ERα in ARC KNDy 

neurons is a critical aspect of this system.    
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Figure 7- Generation of mice to study Kiss1- and Tac2-expressing neurons 

(a) Tac2IRES-cre mice carry an IRES-cre cassette in the 3’ UTR of the endogenous 
murine Tac2 gene.  (b) Tac2eYFP mice were generated by crossing the Tac2IRES-

cre mouse to a commercially available ROSA26 fluorescent reporter strain (Jax 
006148), which after recombination around the loxP sites results in eYFP 
production in all cre-expressing cells and thus fluorescent labeling of Tac2-
expressing cells.  (c) Tac2-specific ERα knockout animals (“ERαTac2KO”) were 
generated by crossing the Tac2IRES-cre mice to Esr1-flox mice  which have loxP 
sites flanking exon 3 which contains the sequence for the DNA binding domain of 
the receptor 142.  Cre-mediated recombination around the loxP sites results in a 
Tac2 cell-specific ERα null mouse.  (d) Kiss1IRES-cre mice carry the same IRES-
cre cassette in the 3’ UTR of the murine Kiss1 gene.  They were used to 
generate Kiss1eYFP and ERαKiss1KO mice.  IRES, internal ribosome entry site; pA, 
polyadenylation site; frt, flippase recognition target. 
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Figure 8 – Dual-label in situ hybridization/immunohistochemistry in 
Tac2eYFP and Kiss1eYFP female mice 

(a) Most eYFP-ir (brown) neurons in the ARC of a female Tac2eYFP mouse 
express Tac2 mRNA (black dots) and (b) Kiss1 mRNA (black dots).  (c) In the 
AVPV/PeN of a female Tac2eYFP mouse, there are no eYFP-ir neurons (brown) 
co-localizing with the Kiss1 mRNA (black dots) along the third ventricle.  (d) In 
the ARC of a Kiss1eYFP mouse, most eYFP-ir (brown) neurons express Kiss1 
mRNA.  Scale bars in (a,b,d) are 100 μm. Scale bar in (c) is 200 μm.  3V, third 
ventricle; ME, median eminence.   
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Figure 9 – Co-expression of ERα and eYFP in Tac2eYFP and Kiss1eYFP female 
mice 

eYFP and ERα immunoreactivity (pseudocolored green and purple respectively) 
in the (a) ARC and the (b) PeN of a Kiss1eYFP mouse.  eYFP and ERα 
immunoreactivity in the (c) ARC and (d) PeN of a Tac2eYFP mouse.  Neurons 
expressing both eYFP and ERα appear white.  ARC, Arcuate nucleus; PeN, 
periventricular nucleus; 3V, third ventricle; ME, median eminence.
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Figure 10 - Body mass and composition of female mice lacking ERα in either Kiss1- or Tac2-expressing neurons 

(a) Body mass of littermate controls (Kiss1IRES-cre/+ and ERαflox/flox; “Control”; filled squares) and Kiss1-specific ERα 
knockout (“ERαKiss1KO”; open circles) mice from 3-9 weeks of age (n = 6-16).  (b) Body composition of 8-week-old control 
and ERαKiss1KO mice (n = 10 each group).  (c) Body mass of littermate controls (Tac2IRES-Cre/+ and ERαflox/flox; “Control”; 
filled squares) and Tac2-specific ERα knockout (“ERαTac2KO”; open circles) mice from 3-9 weeks of age (n = 10-18).  (d) 
Body composition of 8-week-old control and ERαTac2KO mice (n = 8-9).  (a & c) Repeated measures ANOVA, Bonferroni’s 
multiple comparisons test: *, p<.05; **, p<.01.  (b & d) One-way ANOVA, Bonferroni post-hoc: *, p<.05; **, p<.01; ***, 
p<.001.  
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Figure 11- Precocious but incomplete reproductive maturation in the 
absence of ERα from either Kiss1- or Tac2-expressing neurons 

(a) Average age at vaginal opening and first vaginal estrus of littermate controls 
and ERαKiss1KO females (n = 9-10).  (b) Percentage of time spent in 
diestrus/metestrus and estrus from the time of vaginal opening until 8 weeks of 
age (n = 5-8).  Representative vaginal cytology of (c) Kiss1IRES-Cre/+, (d) ERαflox/flox 
and (e) ERαKiss1KO females.  (f) Average age at vaginal opening and first vaginal 
estrus of littermate controls and ERαTac2KO females (n = 7-11).  (g) Percentage 
of time spent in diestrus/metestrus and estrus (based on vaginal cytology) from 
the time of vaginal opening until 8 weeks of age (n = 3-6).  Representative 
vaginal cytology of 2 individual (h) Tac2IRES-Cre/+, (i) ERαflox/flox and (j) ERαTac2KO 
females, beginning at the time of vaginal opening.  One-way ANOVA, Bonferroni 
post-hoc: *, p<.05; **, p<.01; ***, p<.001.  VO, vaginal opening; VE, first vaginal 
estrus; D/M, diestrus/metestrus; E, estrus; C, cornified epithelials; N, nucleated 
epithelials; L, leukocytes; ND, not determined. 
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Figure 12 – Ovarian and uterine phenotype of adult female mice lacking 
ERα in Kiss1- or Tac2-expressing neurons 

(a) Uterine mass [normalized to body mass (g/g)] of 9-week-old control 
(Kiss1IRES-Cre/+ and ERαflox/flox females dissected in diestrus/metestrus), estrus 
control (littermate controls dissected in estrus) and ERαKiss1KO females (n = 7-
18).  (b) Number of follicles and corpora lutea per two representative sections 
from each mouse (n = 7-18).  Representative H&E-stained ovary sections from 
(c) a littermate control and (d) an ERαKiss1KO.  Yellow asterisks designate 
corpora lutea.  (e) Uterine mass of control, estrus control and ERαTac2KO females 
(n = 8-16).  (f) Quantification of the number of follicles and number of corpora 
lutea per two representative ovary sections from each mouse (n = 11-14).  
Representative H&E-stained ovary sections from (g) a littermate control and (h) 
an ERαTac2KO.  One-way ANOVA, Bonferroni post-hoc: ***, p<.001.  Student’s t 
test: *, p<.05; **, p<.01; ***, p<.001. 
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Figure 13 - Gonadotropin and gonadal hormone levels of intact adult 
females 

Serum (a) LH (n = 7-29), (b) FSH (n = 7-30) and (c) estradiol (7-18) levels of 9-
week-old control [littermate controls (Kiss1IRES-Cre/+ and ERαflox/flox) in diestrus at 
the time of blood collection], estrus control (littermate controls in estrus) and 
ERαKiss1KO females.  (d) LH (n = 6-36), (e) FSH (n = 6-35) and (f) estradiol (n = 
5-18) levels of 9-week-old control and ERαTac2KO females.  One-way ANOVA, 
Bonferroni post-hoc: *, p<.05; **, p<.01; ***, p<.001.  LH, luteinizing hormone; 
FSH, follicle-stimulating hormone. 
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Figure 14 - Gonadotropin and gonadal hormone levels of intact juvenile 
females 

Serum (a) LH (n = 9-10), (b) FSH (n = 9-10) and (c) estradiol (n = 9-10) levels of 
3-week-old control (Kiss1IRES-Cre/+ and ERαflox/flox) and ERαKiss1KO females.  (d) 
LH (n = 8-10), (e) FSH (n = 9-10) and (f) estradiol (n = 8-10) levels of 3-week-old 
control and ERαTac2KO females.  Student’s t test: *, p<.05; **, p<.01; **, p<.01; 
***, p<.001.  LH, luteinizing hormone; FSH, follicle-stimulating hormone.  
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Figure 15 - Effect of ovariectomy and acute estradiol treatment on LH and 
FSH levels 

Effect of OVX and subsequent acute estradiol treatment on serum (a) LH and (b) 
FSH levels in ERαKiss1KO adult females (open circles) and their littermate 
controls (filled circles) (n = 8-10).  Effect of the same treatment on serum (c) LH 
and (d) FSH levels of ERαTac2KO adult females (open circles) and their littermate 
controls (filled circles) (n = 8-10).  Repeated measures ANOVA, Bonferroni’s 
multiple comparisons test: *, p<.05; ***, p<.001.  LH, luteinizing hormone; FSH, 
follicle-stimulating hormone; OVX, ovariectomy.  
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Figure 16 - Altered ARC gene expression in intact female mice lacking ERα 
in either Kiss1- or Tac2-expressing neurons 

Relative expression of (a) Kiss1, (b) Tac2 and (c) Pdyn in the ARC of adult 
female littermate controls [in either diestrus/metestrus (“Control”) or estrus 
(“Estrus control”) at the time of tissue collection] and ERαKiss1KOs (n = 7-19).  
Relative expression of (d) Kiss1, (e) Tac2, and (f) Pdyn in the ARC of adult 
ERαTac2KO females and littermate controls (n = 6-19).  Expression levels in 
estrus controls and KO animals are normalized to control (diestrus/metestrus) 
levels.  One-way ANOVA, Bonferroni post-hoc: **, p<.01; ***, p<.001.  ARC, 
arcuate nucleus.  
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Figure 17 – Kiss1 expression in the AVPV/PeN of intact females is 
diminished only in ERαKiss1KOs 

Relative expression of (a) Kiss1 and (b) Gnrh1 in the rostral hypothalamus of 
control [littermate controls in either diestrus/metestrus (“Control”) or in estrus 
(“Estrus control”) at the time of tissue collection] and ERαKiss1KO adult females (n 
= 8-17).  (c) Kiss1 and (d) Gnrh1 expression in the rostral hypothalamus of 
control and ERαTac2KO adult females (n = 8-19).  Expression levels in estrus 
controls and KO animals are normalized to control (diestrus/metestrus) levels.  
One-way ANOVA, Bonferroni post-hoc: *, p<.05.  AVPV/PeN, anteroventral 
periventricular nucleus/periventricular nucleus.  
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Figure 18 – Ovariectomy results in gene expression changes in the ARC 
that mimic loss of ERα from either Kiss1- or Tac2-expressing neurons 

Relative expression of (a) Kiss1 (n = 6-8), (b) Tac2 (n = 4 per group), and (c) 
Pdyn (n = 7-8) in the ARC of adult female ERαKiss1KO and littermate controls 
(Kiss1IRES-Cre/+ and ERαflox/flox), either intact or ovariectomized.  Relative 
expression of (d) Kiss1 (n = 7-8), (e) Tac2 (n = 1-4), and (f) Pdyn (n = 6-8) in the 
ARC of adult female ERαTac2KO and littermate controls, either intact or 
ovariectomized.  One-way ANOVA, Bonferroni post-hoc: *, p<.05; **, p<.01; ***, 
p<.001.  OVX, ovariectomized; ARC, Arcuate nucleus.  
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Figure 19 – AVPV/PeN Kiss1 expression is diminished as a result of 
ovariectomy or ablation of ERα from all Kiss1-expressing neurons 

Relative expression of (a) Kiss1 (n = 5-7) and (b) Gnrh1 (n = 8 per group) in the 
rostral hypothalamus of adult female ERαKiss1KO and littermate controls 
(Kiss1IRES-Cre/+ and ERαflox/flox), either intact or ovariectomized.  Relative 
expression of (c) Kiss1 (n = 5-7) and (d) Gnrh1 (n = 7-8) in the rostral 
hypothalamus of adult female ERαTac2KO and littermate controls, either intact or 
ovariectomized.  One-way ANOVA, Bonferroni post-hoc: *, p<.05; **, p<.01.  
AVPV/PeN, anteroventral periventricular/periventricular nucleus; OVX, 
ovariectomized; ND, not determined; NS, not significant. 
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Figure 20 - ARC kisspeptin peptide levels are unchanged by ablation of ERα from either Kiss1- or Tac2-
expressing neurons 

Kisspeptin immunoreactivity in the ARC of a juvenile (21-day-old) (a) littermate control and a (b) ERαKiss1KO female.  
Kisspeptin immunoreactivity in the ARC of a juvenile (c) control and a (d) ERαTac2KO female.  Kisspeptin immunoreactivity 
in the ARC of an adult (≈ 9 weeks old) (e) control and a (f) ERαKiss1KO female.  Kisspeptin immunoreactivity in the ARC of 
an adult (g) control and a (h) ERαTac2KO female.  ARC, Arcuate nucleus.  
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Figure 21 – AVPV/PeN kisspeptin peptide levels are reduced when ERα is ablated from Kiss1-expressing neurons 

Kisspeptin immunoreactivity in the AVPV of a juvenile (21-day-old) (a) control and a (b) ERαKiss1KO female.  Kisspeptin 
immunoreactivity in the AVPV of a juvenile (c) control and a (d) ERαTac2KO female.  Kisspeptin immunoreactivity in the 
AVPV of an adult (≈ 9 weeks old) (e) control and a (f) ERαKiss1KO female.  Kisspeptin immunoreactivity in the AVPV of an 
adult (g) control and a (h) ERαTac2KO female.  AVPV/PeN, anteroventral periventricular/periventricular nucleus.  
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Chapter 4 – Direct estrogen action on Kiss1/ERα neurons is 

required for negative feedback on the reproductive axis of male 

mice‡ 

 

In males, the testes exert negative feedback effects on the hypothalamo-

pituitary system, modulating the release of gonadotropin-releasing hormone 

(GnRH) from the hypothalamus and the subsequent release of the gonadotropins 

luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior 

pituitary (Figure 1).  This effect is demonstrated by experiments in which removal 

of the testes (and thus circulating testosterone) results in substantial increases in 

LH and FSH levels; the increase in gonadotropin levels can be attenuated by 

administration of testosterone 152–154.  As testosterone can act either directly 

through the androgen receptor (AR) or be aromatized to estradiol and then act 

through either isoform of the estrogen receptor (ERα or ERβ), many studies have 

sought to determine which effects of testosterone require action via AR and 

which require one of the estrogen receptor isoforms.   

The suppression of LH levels by testosterone treatment in a castrated 

                                            

 

‡
 In these studies, Dr. Courtney Marsh performed the quantification of the colocalization of ERα 

and eYFP in both mouse lines as well as assisting with the dissections at the end of the 
longitudinal study.  Luhong Wang performed the gene expression analysis. 
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male is actually an estradiol-dependent phenomenon since it doesn’t occur if 

dihydrotestosterone (DHT), a non-aromatizable androgen, is administered 

instead of testosterone 152.  The elevated LH levels in a castrated male can be 

suppressed using estradiol treatment in wild-type, but not in mice lacking ERα 

globally (αERKO mice) 48,152, implicating ERα in gonadal hormone negative 

feedback in the male.  As fertility is not affected in male mice lacking ERβ 

globally, ERα appears to be the estrogen receptor isoform that plays a critical 

role in the male reproductive axis 13.  It’s generally accepted that GnRH neurons 

themselves don’t possess functional ERα, so the identity of the ERα-expressing 

neurons in the hypothalamus that relay sex steroid signals to the GnRH neurons 

has not yet been elucidated. 

It has been proposed that neurons in the arcuate nucleus (ARC) that 

synthesize the neuropeptide kisspeptin may be the ERα-expressing neurons 

responsible for negative feedback regulation of GnRH neurons in male mice 45.  

This hypothesis is based solely on the regulation of ARC Kiss1 mRNA levels by 

testosterone; while castration leads to increased Kiss1 expression, treatment 

with testosterone after the castration significantly reduces Kiss1 levels 45.  While 

DHT treatment also reduces ARC Kiss1 levels, the small magnitude of this 

reduction suggests that the majority of the negative regulation of ARC Kiss1 

expression requires an estrogen receptor.  As is the case in females, the majority 

of ARC kisspeptin neurons in the male produce two other neuropeptides: 

neurokinin B (product of the gene Tac2) and dynorphin A (product of the gene 

Pdyn) 48.  As a result, these neurons have been termed KNDy neurons. 
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There is a second population of hypothalamic kisspeptin neurons in the 

anteroventral periventricular/periventricular nucleus (AVPV/PeN) which does not 

express either Tac2 of Pdyn.  Changing testosterone levels have the opposite 

effect on Kiss1 mRNA levels in the AVPV/PeN; castration reduces Kiss1 levels 

while testosterone or estrogen- but not DHT- treatment normalizes them 45.  The 

physiological relevance of this differential regulation of Kiss1 expression in males 

is unknown at this time, although some have suggested that the ARC kisspeptin 

neurons may be involved in testosterone-mediated negative feedback control of 

gonadotropin secretion, whereas the AVPV/PeN kisspeptin neurons are simply a 

remnant of the estrogen positive feedback system that is present only in females 

for the purpose of generating the preovulatory LH surge 45. 

In order to test whether ERα in ARC kisspeptin neurons is required for 

proper regulation of gonadotropin secretion and overall function of the male 

reproductive axis, we performed a conditional genetic deletion of ERα from all 

Kiss1-expressing neurons and compared the resulting phenotype to that of mice 

lacking ERα only in ARC KNDy neurons.  Our results do not support the 

hypothesis that ERα in ARC KNDy neurons functions as part of the gonadal 

negative feedback system.  Instead, it appears that a population of non-Tac2-

expressing kisspeptin/ERα neurons is responsible for estrogen negative 

feedback in the male. 
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Methods 

Animals 

 All animals were bred in our colony in the Unit for Laboratory Animal 

Medicine at the University of Michigan.  All animals and procedures used were in 

accordance with the guidelines and approval of the University Committee on the 

Care and Use of Animals. 

 

Generation of Kiss1IRES-cre and Tac2IRES-cre mice 

 The generation of mouse lines containing IRES-cre coding sequence 

knocked in to the 3’ untranslated regions of the endogenous mouse Kiss1 and 

Tac2 alleles has been described previously (see Chapter 3). 

 

Mouse model validation 

 Kiss1IRES-cre/+ and Tac2IRES-cre/+ male mice were bred to homozygous cre-

inducible eYFP reporter females (Jax 006148) to generate Kiss1eYFP and 

Tac2eYFP animals respectively, allowing visualization and quantification of cre-

expressing cells as eYFP expression is restricted to cells that express cre 

recombinase.  

 

Perfusion and immunohistochemistry 

 Adult and juvenile (3-week-old) mice received an overdose of sodium 

pento-barbital and were then perfused transcardially with phosphate-buffered 

saline (PBS, pH 7.4) followed by 10% formalin.  Testes and seminal vesicles 
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(from adult animals only) were isolated and weighed.  The brain was removed 

and post-fixed in 10% formalin for 2-4 hours and then dehydrated in 30% sucrose 

in PBS until the time of sectioning.  Brains were cut in 30 µm coronal sections on 

a sliding microtome, collected in four representative series, and either stored at -

20° C in cryoprotectant.   

For eYFP, kisspeptin and ERα immunostaining, sections were washed, 

blocked in normal donkey serum and then incubated in primary antibodies 

(chicken anti-GFP, Abcam, 1:1000; rabbit anti-ERα, Santa Cruz, 1:1000; rabbit 

anti-kisspeptin, Millipore, 1:2000) overnight.  Brain sections were then thoroughly 

washed and incubated with Alexa Fluor-conjugated secondary antibodies (goat 

anti-chicken 488 and donkey anti-rabbit 568, Invitrogen, 1:250) for two hours.  

Sections were mounted onto gelatin-coated slides and coverslipped with 

ProLong Antifade mounting medium (Invitrogen). 

 

Longitudinal study 

 Cre-positive males (either Kiss1IRES-cre/+ or Tac2IRES-cre/+) were bred to 

ERαflox/flox females.  The resulting Kiss1IRES-cre/+/ ERαflox/+ or Tac2IRES-cre/+/ ERαflox/+ 

males and ERαflox/+ females were bred to each other to generate Kiss1- or Tac2-

specific ERα knockouts (Kiss1IRES-cre/+/ ERαflox/flox, “ERαKiss1KO” or Tac2IRES-cre/+/ 

ERαflox/flox, “ERαTac2KO”) and their littermate controls ERαflox/flox and Kiss1IRES-cre/+ 

or Tac2IRES-cre/+.  Genotyping was performed as previously described for the 

females (Chapter 3).   

Male mice were individually housed beginning at PND21 and body weight 
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was recorded weekly.  Body composition at 8 weeks of age was determined by a 

NMR-based Minispec LF90II (Bruker Optics) analyzer.  At 9 weeks of age, mice 

were dissected between 13:00 and 16:00.  Blood was collected after an overdose 

of sodium pentobarbital was given and allowed to clot for 30 minutes at room 

temperature. It was then centrifuged for 15 minutes at 2,000 x g and the serum 

was collected and stored at -20° C.  Using a mouse brain matrix, the ARC and a 

block of tissue containing the AVPV/PeN as well as the preoptic area were 

dissected and individually snap-frozen on dry ice.  Brain tissue was stored at -80° 

for later RNA extraction.   

 RNA was extracted from microdissected brain tissue using TRIzol 

(Invitrogen) and then converted to cDNA with the iScript cDNA Synthesis Kit 

(Bio-Rad).  cDNA was analyzed in triplicate by quantitative realtime-PCR using 

Gapdh (endogenous control), Kiss1, pDyn, Tac2 and GnRH Taqman assays 

(Invitrogen).  Relative expression levels were calculated using the 2-ΔΔCt method, 

with normalization of each sample’s ΔCt value to the average ΔCt of the control 

samples. 

 

Microscopy and image analysis 

 Microscopic images were obtained using an Olympus BX-51 microscope 

with a DP30BW camera (Olympus).  Dual-channel images were pseudo-colored 

and merged using Adobe Photoshop.   

   

Hormone analysis 
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Serum was analyzed by the Ligand Assay and Analysis Core of the 

University of Virginia Center for Research in Reproduction or the University of 

Michigan Chemistry Core.  Testosterone levels were determined by RIA (catalog 

# TKTT2, Siemens) while LH and FSH levels were determined using the Millipore 

MILLIPLEX MAP rat pituitary panel. 

 

Statistics 

Student’s t-test was used when only two groups were compared.  One-

way ANOVA with Bonferroni post-hoc analysis was used when comparing three 

or more groups.  Repeated measures two-way ANOVA was used to analyze 

longitudinal body weight.  Data was analyzed and graphs were generated using 

either OriginPro 8 or GraphPad Prism software.  Differences were deemed 

significant if p <.05.  Data are presented as mean±SEM. 
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Results 

 

Generation of mouse models to study Kiss1- and Tac2-expressing neurons in the 

male mouse brain  

To study the physiological role of hypothalamic ERα in the male mouse, 

we utilized the same mouse models described previously (Chapter 3).  Briefly, 

the coding sequence for an IRES-cre cassette was knocked in to the 

endogenous Tac2 (Figure 22 a) and Kiss1 (Figure 22 d) loci.  This results in the 

production of cre recombinase specifically in cells that express either of those 

genes.  To visualize the pattern of cre expression, Kiss1IRES-cre and Tac2IRES-cre 

mice were bred to commercially available cre-mediated fluorescent reporter mice 

(Figure 22 b).  Excision of the transcriptional blocker located between the loxP 

sites allows production of the fluorescent protein eYFP in all cre-expressing cells.  

The two cre-expressing mouse lines were also crossed to a mouse line that 

contains loxP sites flanking the third exon of the Esr1 gene (Figure 22 c).  Cre-

mediated recombination around these sites results in excision of the coding 

sequence for the DNA binding domain of ERα, resulting in ablation of ERα in all 

cre-expressing neurons. 

 We assessed the pattern of cre expression in both Tac2eYFP and Kiss1eYFP 

male mice (Figure 23).  As expected, we saw eYFP immunoreactivity in the ARC 

(Figure 23 a) and PeN (Figure 23 b) in a Kiss1eYFP male brain.  In this mouse 

line, 96±0.2% (N = 5) of eYFP cells in the ARC and 20±2.8% (N = 5) of eYFP 

cells in the AVPV/PeN co-express ERα.  In agreement with the known 
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expression of Tac2, the expression of eYFP in a Tac2eYFP male brain was more 

extensive than what we observed in Kiss1eYFP mice, but the colocalization of 

eYFP and ERα was mostly restricted to the ARC (Figure 23 c), where 95±0.5% 

(N = 3) of Tac2 cells also express ERα.  We did not identify any eYFP/ERα cells 

in the AVPV/PeN of the Tac2eYFP male brain (Figure 23 d).  

In the adult Kiss1eYFP brain, not all eYFP cells contained detectable 

kisspeptin peptide, although the presence of eYFP suggests that expression of 

Kiss1 is transient in these cells.  Although staining in the ARC of a Kiss1eYFP 

male reveals an abundance of kisspeptin-immunoreactive fibers (data not 

shown), staining in the vicinity of the AVPV/PeN revealed no kisspeptin-ir cells 

and few fibers but several eYFP-ir cells (Figure 24 a).  The absence of 

kisspeptin immunoreactivity in males is not because of technical issues because 

we can readily detect kisspeptin cells and fiber in the AVPV/PeN of female 

Kiss1eYFP mice using the same experimental method (Figure 24 b).  We also 

detect some eYFP cells in the female that aren’t currently producing detectable 

levels of kisspeptin peptide.  These findings reflect the fact that there are neurons 

in the vicinity of the AVPV/PeN that only transiently express Kiss1, but may 

express ERα and thus still play a role in the regulation of the reproductive axis. 

 

Generation of Kiss1- and Tac2-specific ERα knockout animals 

To generate Kiss1-specific ERα knockout mice, we first crossed Kiss1IRES-

cre heterozygotes to Esr1-flox homozygotes (ERαflox/flox mice) and then crossed 

the resultant Kiss1IRES-cre/+/ERαflox/+ males to ERαflox/+ females.  The F2 progeny 
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consisted of Kiss1IRES-Cre/+/ERαflox/flox (“ERαKiss1KO”) mice, ERαflox/flox mice (without 

the modified Kiss1 allele) and Kiss1IRES-Cre/+ mice (without a modified Esr1 allele).  

The latter two genotypes were used as littermate controls to the ERαKiss1KO 

animals in all studies.  When appropriate, the two groups of control genotypes 

were combined into one larger group.  The same breeding strategy was used to 

generate Tac2-specific ERα knockout mice, eventually generating littermate 

Tac2IRES-Cre/+/ERαflox/flox (“ERαTac2KO”) mice, ERαflox/flox mice (without the modified 

Tac2 allele) and Tac2IRES-Cre/+ mice (without a modified Esr1 allele). 

 

Body mass and body composition 

Global ERα knockout male mice have slightly decreased body mass but 

increased white adipose tissue mass 155,156.  We assessed body mass in our 

male mice from the time of weaning (3 weeks) until the time of dissection and 

body composition was determined in adult animals prior to dissection (Figure 

25).  We found absolutely no effect of ablation of ERα from Kiss1-expressing 

cells on body mass (Figure 25 a) or adult body composition (Figure 25 b).  

Similarly, ablation of ERα from all Tac2-expressing cells had no effect on body 

mass (Figure 25 c) or adult body composition (Figure 25 d).  Thus estrogen 

action through ERα in Kiss1 or Tac2 cells is not necessary for the proper 

regulation of body mass or body composition in males.   

 

Reproductive organ weights 

The effect of global deletion of ERα on reproductive organ weights in 
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males has yielded mixed results 155,157,158.  We found testes weight to be 

unchanged in adult ERαKiss1KO males compared to their littermate controls 

(Figure 26 a).  The seminal vesicles (accessory sex glands that produce the fluid 

that becomes the copulatory plug) are enlarged as a result of ablation of ERα 

from Kiss1 neurons (Figure 26 b).  This effect on seminal vesicle weight is not 

seen in global ERα knockouts 152,158.  Since we had observed early puberty onset 

in females lacking ERα in either Kiss1 or Tac2 neurons (Figure 11), we 

measured testes weight of 3 week old male mice as an indicator of sexual 

maturation.  We found that the testes of young ERαKiss1KO males weighed more 

than those of their littermate controls (Figure 26 c).  While adult male ERαTac2KO 

mice had unaffected testes (Figure 26 d) and seminal vesicle (Figure 26 e) 

weights, we saw increased testes weight in juvenile ERαTac2KOs compared to 

their littermate controls (Figure 26 f).  These significant changes in juvenile 

testes weight indicate a potential acceleration in sexual maturation as a result of 

selective ERα ablation. 

 

Gonadotropin and gonadal steroid hormone levels 

 Alterations in gonadotropin and gonadal hormone levels have been 

reported in male mice with decreased estrogen action, but the findings are 

inconsistent 152,158.  In adult ERαKiss1KO males, we found significantly elevated 

LH levels, decreased FSH levels and elevated testosterone levels (Figure 27 a-

c).  In contrast, we found no significant changes in any of these hormones in 

ERαTac2KO adults (Figure 27 d-f), suggesting the existence of a population of 
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Kiss1/ERα neurons which are critical for estrogen negative feedback on 

gonadotropin secretion but are separate from ARC Kiss1/Tac2 neurons.  

 

Gene expression 

 Expression of certain reproduction-related genes in the ARC and in the 

rostral hypothalamus are sensitive to gonadal steroid levels in the male mouse 

45,48,152.  Since testosterone can act not only directly through the androgen 

receptor but also be aromatized to estrogen and act through ERα, we assessed 

relative expression levels of Kiss1, Tac2 and Pdyn in the ARC and Kiss1 and 

Gnrh1 in the rostral hypothalamus in our mice.  In mice lacking ERα in all Kiss1-

expressing neurons, we found no effect on expression of Kiss1 or Gnrh1 in the 

rostral hypothalamus (Figure 28 a) or on expression of Kiss1, Tac2 or Pdyn in 

the ARC (Figure 28 b).  Although we observed a significant increase in 

AVPV/PeN Kiss1 expression in ERαTac2KO males compared to littermate 

controls, the magnitude of this increase is very small (Figure 28 c).  Similar to 

what we found in the ERαKiss1KO males, we observed no effect on Gnrh1 

expression (Figure 28 c) in ERαTac2KO males, or any of the three genes (Kiss1, 

Tac2, Pdyn) we investigated in the ARC (Figure 28 d).  Thus, ablation of ERα 

from either all Kiss1-expressing neurons or just from Tac2-expressing neurons 

has no virtually no detectable effect on the expression of genes in the 

hypothalamus that are known to be important modulators of GnRH neuron 

function. 
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Conclusions & Discussion 

  

Studies in a multitude of species have shown that the central actions of 

estradiol, the aromatization product of testosterone, play a critical role in the 

regulation of pulsatile gonadotropin release and thus the entire male reproductive 

axis.  Yet the identity and location of the estrogen receptor-expressing neuronal 

population required for this effect has not yet been uncovered.  As it doesn’t 

appear that GnRH neurons themselves are responsible for this effect of estradiol 

on the system, we hypothesized that neurons producing the neuropeptide 

kisspeptin could be the critical population.  To address the putative contribution 

of direct estrogen action on kisspeptin neurons to the regulation of the 

reproductive axis, we used cre-loxP technology to genetically ablate ERα from 

either all Kiss1 neurons or from only the ARC kisspeptin neurons which co-

express Tac2. 

 We saw almost no effect of deletion of ERα from only ARC KNDy neurons 

in males.  While juvenile (3-week-old) ERαTac2KO males had slightly elevated 

testes weight, this difference was absent in adults.  Although this may indicate 

accelerated puberty onset, the age at balano-preputial separation was not 

assessed in these studies and should be addressed in the future.  The adult 

ERαTac2KO males exhibited no significant hormonal changes and only a very 

slight (but significant) increase in Kiss1 expression in the AVPV/PeN. 

In contrast with the underwhelming phenotype of the ERαTac2KO males, 

ERαKiss1KO males do show signs of impaired negative feedback on the 
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reproductive system.  Adult ERαKiss1KO males have elevated LH and 

testosterone levels, indicating reduced restraint on the anterior pituitary.  This 

was surprising since Mayer and colleagues previously found no changes in LH in 

their adult knockouts 46.  This discrepancy may be due to subtle differences in cre 

expression between the two different Kiss1IRES-cre lines used or slightly different 

study conditions.  In agreement with previous studies of αERKO males, we did 

not observe any changes in adult testes weight but their seminal vesicles were 

significantly heavier than their littermate controls.  The ERαKiss1KOs’ elevated 

testosterone levels may be the cause of this effect since seminal vesicle weight 

is sensitive to circulating testosterone 152.   

When we investigated the effect of conditional ERα deletion on 

hypothalamic gene expression we found a small but significant increase in 

AVPV/PeN Kiss1 expression in ERαTac2KO males.  This is likely due to the 

slightly (but not significantly [p = .08]) elevated testosterone levels in these mice, 

which stimulates Kiss1 expression in this area in an aromatase-dependent 

manner 45.  There were no significant alterations in any of the other genes we 

analyzed in the hypothalamus of ERαKiss1KO males.  If the loss of estrogen action 

through ERα on kisspeptin neurons resulted in a complete loss of negative 

feedback, we would expect effects on gene expression that mimic the effect of 

castration.  This result was unlikely in our mouse models since negative 

feedback also occurs through the androgen receptor which we have not 

manipulated here. 

While others have reported that there are more Tac2-expressing neurons 
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in the male ARC than there are Tac2/Kiss1 neurons 48, we didn’t observe any 

evidence of this in our comparison of Tac2eYFP and Kiss1eYFP mice.  The neurons 

affected by our deletion of ERα from all Kiss1 neurons include all those affected 

by the Tac2-specific deletion with the addition of any non-Tac2-expressing 

Kiss1/ERα neurons.  We believe that the phenotypic differences between our two 

conditional ERα knockouts are a result of the non-Tac2-expressing Kiss1/ERα 

cells in the AVPV/PeN that expressed Kiss1 at some point during development, 

but no longer produce detectable levels of the peptide.  More work is needed to 

characterize these neurons and better determine their function in the regulation 

of the male reproductive system.  Additionally, the development of an inducible 

Kiss1IRES-cre mouse line would allow researchers to further investigate this system 

without the potential confound of the neurons that only transiently express Kiss1 

at some point during development. 

 

Using mouse models that allow genetic manipulation of either all Kiss1-

expressing or only ARC Kiss1/Tac2 neurons, we have uncovered a critical role of 

direct estrogen action on non-Tac2-expressing Kiss1/ERα neurons in negative 

feedback on the male reproductive system.  Further study of these neurons is 

needed in order to determine the mechanism by which they affect GnRH output 

from the hypothalamus and thus regulate the functioning of the male reproductive 

axis. 
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Figure 22 - Generation of mouse models to study Kiss1- and Tac2-
expressing neurons in males 

(a) Tac2IRES-cre mice carry an IRES-cre cassette in the 3’ UTR of the endogenous 
murine Tac2 gene.  (b) Tac2eYFP mice were generated by crossing the Tac2IRES-

cre mouse to a commercially available ROSA26 fluorescent reporter strain (Jax 
006148), which after recombination around the loxP sites results in eYFP 
production in all cre-expressing cells and thus fluorescent labeling of Tac2-
expressing cells.  (c) Tac2-specific ERα knockout animals (“ERαTac2KO”) were 
generated by crossing the Tac2IRES-cre mice to Esr1-flox mice  which have loxP 
sites flanking exon 3 which contains the sequence for the DNA binding domain of 
the receptor 142.  Cre-mediated recombination around the loxP sites results in a 
Tac2 cell-specific ERα null mouse.  (d) Kiss1IRES-cre mice carry the same IRES-
cre cassette in the 3’ UTR of the murine Kiss1 gene.  They were used to 
generate Kiss1eYFP and ERαKiss1KO mice.  IRES, internal ribosome entry site; pA, 
polyadenylation site; frt, flippase recognition target. 
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Figure 23 – Co-expression of eYFP and ERα in the hypothalamus of male 
Kiss1eYFP and Tac2eYFP mice 

eYFP and ERα immunoreactivity (pseudocolored green and purple respectively) 
in the (a) ARC and the (b) PeN of a male Kiss1eYFP mouse.  eYFP and ERα 
immunoreactivity in the (c) ARC and (d) PeN of a male Tac2eYFP mouse.  
Neurons expressing both eYFP and ERα appear white and some are indicated 
with a white arrow.  3V, third ventricle; ME, median eminence.  Scale bar = 200 
μm.  
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Figure 24 - Kisspeptin immunoreactivity in the rostral hypothalamus of Kiss1eYFP male and female mice 

eYFP (pseudo-colored green) and kisspeptin (pseudo-colored purple) immunoreactivity in the vicinity of the AVPV/PeN of 
a male (a) and a female (b) Kiss1eYFP adult mouse.  Neurons expressing both eYFP and kisspeptin appear white and 
some are denoted with a white arrow.  3V, third ventricle.  Scale bar = 200 μm.  
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Figure 25 - Body mass and composition are unchanged in ERαKiss1KO and ERαTac2 KO male mice 

(a) Body mass of littermate controls (Kiss1IRES-Cre/+ and ERαflox/flox; “Control”; filled squares) and Kiss1-specific ERα 
knockout (“ERαKiss1KO”; open circles) male mice from 3-9 weeks of age (n = 10-11).  (b) Body composition of 8-week-old 
control and ERαKiss1KO mice (n = 10-11).  (c) Body mass of littermate controls (Tac2IRES-Cre/+ and ERαflox/flox; “Control”; 
filled squares) and Tac2-specific ERα knockout (“ERαTac2KO”; open circles) mice from 3-9 weeks of age (n = 8-20).  (d) 
Body composition of 8-week-old control and ERαTac2KO mice (n = 8-9).
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Figure 26 – Male reproductive organ weights are affected by ablation of 
ERα from either Kiss1- or Tac2-expressing neurons 

(a) Testes and (b) seminal vesicle weights of adult (≈ 9 weeks old) ERαKiss1KO 
and littermate controls (Kiss1IRES-Cre/+ and ERαflox/flox) (n = 10-14).  (c) Testes 
weight of juvenile (3-week-old) ERαKiss1KO and littermate controls (n = 8-13).  (d) 
Testes and (e) seminal vesicle weights of adult (≈ 9 weeks old) ERαTac2KO and 
littermate controls (n = 8-12).  (f) Testes weight of juvenile (3-week-old) 
ERαTac2KO and littermate controls (n = 7-8).  All tissue weights are normalized to 
body weight (g/g).  Student’s t test: **, p<.01; ***, p<.001.  
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Figure 27 – Gonadotropin and gonadal hormone levels are altered by 
ablation of ERα from all Kiss1- but not Tac2-expressing neurons 

Serum (a) LH (n = 11-17), (b) FSH (n = 10-20) and (c) testosterone (n = 11-15) 
levels in adult ERαKiss1KO and littermate control (Kiss1IRES-Cre/+ and ERαflox/flox) 
males.  Serum (d) LH (n = 9-19), (e) FSH (n = 10-19) and (f) testosterone (n = 
10-18) levels in adult ERαTac2KO and littermate control males.  Student’s t test: *, 
p<.05; **, p<.01.  LH, luteinizing hormone; FSH, follicle-stimulating hormone. 
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Figure 28 - Gene expression in the rostral hypothalamus and ARC 

(a) Kiss1 and Gnrh1 expression in the rostral hypothalamus of ERαKiss1KO and 
littermate control males (n = 11-20).  (b) Kiss1, Tac2 and Pdyn expression in the 
ARC of ERαKiss1KO and littermate control (Tac2IRES-Cre/+ and ERαflox/flox) males (n 
= 10-20).  (c) Relative expression of Kiss1 and GnRH in the rostral hypothalamus 
of ERαTac2KO and littermate control males (n = 9-19).  (d) Kiss1, Tac2 and Pdyn 
expression in the ARC of ERαTac2KO and littermate control males (n = 8-19).  
Expression levels in KO animals are normalized to Control levels.  Student’s t 
test: **, p<.01.  ARC, arcuate nucleus. 
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Chapter 5 – Summary & Conclusions 

  

The mammalian hypothalamic-pituitary-gonadal (HPG) axis is a tightly 

regulated system responsible first for the transition from a child to a sexually 

mature adult and subsequently for maintenance of fertility throughout adulthood.  

The reproductive axis is modulated by a variety of signals, including but not 

limited to gonadal steroid hormones, stress hormones, circadian signals, and 

metabolic hormones.  While the GnRH neurons are the final output from the 

hypothalamus, they are not capable of integrating the wide variety of signals 

known to act centrally and modulate the reproductive axis via GnRH neurons.  

We and others have sought to identify and characterize the neurons that are 

capable of responding to those signals and transmitting necessary information to 

GnRH neurons. 

 

The role of direct leptin action on Nos1-expressing hypothalamic neurons 

When an organism’s energy stores are limited, physiological functions 

must be prioritized.  This phenomenon has been described by researchers for 

many decades, most notably by Frisch and McArthur who are credited with the 

“critical weight hypothesis” 138.  They proposed that a certain threshold level of 

body mass is required in order for females to achieve menarche and maintain 

normal ovulatory menstrual cycles.  While some progress has been made in 
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identifying and detailing the mechanisms that control the reproductive axis and 

those mechanisms that control energy balance, relatively little headway has been 

made in describing the intersection of these two processes. 

The fat-derived hormone leptin controls a variety of physiological 

functions, including energy expenditure and food intake, but also reproduction.  

Mice lacking either leptin or its receptor (ob/ob or db/db mice respectively) are 

both infertile, but restoration of leptin signaling selectively in neurons of the CNS 

rescues the infertility, indicating a critical role for central leptin action 97.  While 

several leptin receptor isoforms exist, the isoform known as LepRb is the only 

known isoform with a long intracellular domain and the only isoform capable of 

intracellular signaling.  LepRb-producing neurons are found throughout the brain, 

with a large concentration found in the hypothalamus.  As there are a large 

number of LepRb neurons in the ventral premammilary nucleus (PMv), an area of 

the brain known to be involved in the control of the reproductive axis, we 

investigated the necessity of direct leptin action in the PMv (Chapter 2) for 

regulation of puberty onset, sexual maturation, and a variety of other measures. 

Since most of the LepRb neurons in the PMv also express Nos1, we 

developed a mouse that expresses cre recombinase under the control of the 

endogenous Nos1 promoter.  We used cre recombinase activity in Nos1-

expressing neurons to delete exon 17 of the Lepr gene and abolish direct leptin 

action via LepRb specifically in Nos1-expressing neurons.  In females, the loss of 

direct leptin action in Nos1 neurons had no effect on the age at vaginal opening, 

the first sign of puberty in the female mouse, but did substantially delay first 
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estrus, indicating delayed sexual maturation.  Despite this delay, overall fertility is 

spared as evidenced by the ability of females to produce live litters with the same 

latency as control females with intact leptin action in Nos1-expressing neurons.  

In many physiological systems, including the reproductive system, multiple 

pathways exist that are capable of compensating for the loss of one pathway or 

in some systems, these pathways may be completely redundant and thus the 

loss of one has very little effect on the overall function of the system.  

Since the expression of Kiss1 (which encodes the reproductive 

neuropeptide kisspeptin) is diminished in the arcuate nucleus (ARC) of ob/ob 

mice 105, we hypothesized that changes in Kiss1 expression in our mice could be 

responsible for the delay in sexual maturation.  Interestingly, we saw no changes 

in ARC Kiss1 expression, even in our global Lepr knockouts, although Kiss1 

levels in the AVPV/PeN were significantly reduced.  The Nos1-specific Lepr 

knockouts did not exhibit any changes in AVPV/PeN Kiss1 levels.   Thus, 

changes in hypothalamic Kiss1 gene expression are not likely to be the cause of 

the reproductive phenotype of LeprNos1KO females, although changes to the 

kisspeptin system other than mRNA levels may.  Further investigation is needed 

to determine whether the PMv Lepr/Nos1 neurons directly modulate GnRH 

neurons instead of relying on the intermediary kisspeptin neurons or if the 

changes to the kisspeptin neurons are independent of mRNA changes. 

While the reproductive phenotype in LeprNos1KO females was not 

especially striking, both male and female knockouts exhibited a dramatic 

disruption of energy balance.  Mice of both sexes were profoundly obese; this 
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was surprising since the PMv has no known role in feeding or energy 

expenditure.  Additionally, the PMv is a mostly glutamatergic hypothalamic 

nucleus and studies have shown that loss of leptin action in all glutamatergic 

neurons does not lead to obesity of the magnitude that we observed in the 

LeprNos1KO mice.  Thus, it’s likely that non-PMv Lepr/Nos1 neurons are 

responsible for this effect, perhaps in the dorsomedial hypothalamic nucleus 

(DMH), which contains some non-glutamatergic Lepr/Nos1 neurons and has a 

known role in energy balance regulation 112,159–163. 

The arcuate nucleus has long been considered an important site of energy 

balance regulation.  It contains two populations of first-order, leptin-responsive 

neurons: orexigenic Agrp/Npy neurons and anorexigenic Pomc/Cart neurons 164.  

Since expression of Agrp and Npy is increased and Pomc expression is 

decreased in mice with deficient leptin signaling 165–168, we investigated whether 

our mice had similar changes in gene expression.  We saw absolutely no effect 

of our deletion on either Agrp or Npy mRNA levels, which was not surprising 

given that Nos1 does not seem to be expressed in these neurons 112.  

Interestingly, even though our genetic deletion did not target Pomc-expressing 

neurons directly, we still saw a significant decrease in Pomc expression in the 

ARC, such that expression levels in the LeprNos1KO mice were not significantly 

different from mice lacking Lepr globally (LeprKO mice).  This raises the question 

as to how much of the change in Pomc neuron function in ob/ob or db/db mice is 

a result of loss of direct leptin action versus indirect leptin action on these 

neurons specifically. 
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Lastly, we assessed function of the hypothalamic-pituitary-adrenal (HPA) 

and hypothalamic-pituitary-thyroid (HPT) axes in our Nos1-specific Lepr 

knockouts.  While serum corticosterone levels were significantly elevated in male 

global Lepr knockouts (in agreement with previous studies 133–136) our specific 

deletion of LepRb from only Nos1-expressing neurons did not affect 

corticosterone levels in either sex.  Thus, direct leptin action in Nos1 neurons is 

dispensable for proper regulation of the HPA axis.  In agreement with previous 

studies, we found that serum thyroxine (T4) levels were significantly diminished 

in global Lepr knockouts of both sexes 91,137.  Our more specific deletion did not 

affect T4 levels in females, but it did result in significantly lower T4 levels in 

males, indicating a possible sexual dimorphism in the hypothalamic control of 

thyroid function.  The T4 levels in the LeprNos1KO males were not decreased to 

the same extent as they were in global Lepr knockouts, so Nos1/LepRb neurons 

must not be the only Lepr-expressing neurons that modulate the HPT axis. 

 

In this study, genetic ablation of LepRb from Nos1-expressing neurons 

revealed multiple physiological functions of direct leptin action from nNos-

producing neurons.  The multitude of effects of this deletion is not unexpected 

given the somewhat diffuse anatomical distribution of Nos1/Lepr neurons in the 

brain.  Although the majority of the neurons affected by the deletion are in the 

PMv, the contribution of LepRb loss from extra-PMv neurons can not be ignored 

and may in fact be responsible for much of the metabolic and neuroendocrine 

phenotype of the LeprNos1KO mice.  Future genetic dissection of specific 
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individual leptin-responsive neuronal populations will hopefully clarify the precise 

contribution of PMv LepRb neurons (and other hypothalamic nuclei) to overall 

leptin action in the brain.     

 

Regulation of the reproductive axis by estrogen action via ERα on 

kisspeptin neurons 

Since the reports of delayed or absent puberty and infertility in humans 

and mice with loss-of-function mutations in the genes for kisspeptin or its 

receptor (KISS1 and KISS1R respectively in humans) 28,29, there has been a 

monumental effort to characterize and understand the kisspeptin system.  One of 

the more interesting findings regarding these neurons is the manner in which 

Kiss1 gene expression is differentially affected by circulating gonadal steroid 

hormones in the two hypothalamic populations, one in the ARC and the other in 

the AVPV/PeN.  In both males and females, gonadal steroid hormones act in an 

inhibitory manner on Kiss1 gene expression in the ARC, while acting in a 

stimulatory manner in the AVPV/PeN 43,45.   

This effect, along with other evidence, has led to the hypothesis that the 

AVPV/PeN kisspeptin neurons are critical for the female pre-ovulatory LH surge 

via their regulation of GnRH-producing neurons.  And more specifically that the 

elevated pre-ovulatory estradiol levels act through ERα on these AVPV/PeN 

neurons to elicit this effect.  The physiological role of the second population- the 

ARC kisspeptin neurons that have been nicknamed KNDy neurons due to the co-

expression of neurokinin B and dynorphin A in addition to kisspeptin- is clear.  
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While some have assumed that since they are negatively regulated by gonadal 

steroid hormones they must be responsible for negative feedback on the 

reproductive axis, there are only a handful of studies that have attempted to 

actually test this hypothesis. 

Building on those few studies that have investigated the necessity of direct 

estrogen action on ARC KNDy neurons for estrogen negative feedback, we 

employed a genetic strategy to ablate ERα from either all Kiss1-expressing 

neurons or selectively in ARC KNDy neurons in both female and male mice 

(Chapters 3 & 4 respectively).  While previous studies had developed and 

utilized mouse models to study and manipulate all kisspeptin neurons, we 

developed a novel mouse model in order to specifically manipulate the ARC 

KNDy neurons without affecting the AVPV/PeN population.  Since the gene Tac2 

is expressed in ARC KNDy neurons but not in AVPV/PeN kisspeptin neurons, the 

development of a mouse that produces cre recombinase in all Tac2 neurons 

allowed us to ablate ERα from the ARC KNDy neurons but leave the Esr1 allele 

unperturbed in the other population of kisspeptin neurons. 

  

Females 

  In females lacking ERα in either all Kiss1- or only Tac2-(KNDy) neurons, 

we observed a dramatic advancement in age at vaginal opening, indicating a loss 

of prepubertal restraint on the reproductive axis.  Both knockout genotypes also 

showed a complete absence of estrous cyclicity; although their vaginal cytology 

indicated that they were constantly in estrus, the ERαKiss1KO females appeared 
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to have reduced ovulatory function (few corpora lutea in the ovaries) and the 

ERαTac2KO females were completely anovulatory.  Since the early puberty onset 

and lack of complete sexual maturation are identical whether ERα was ablated 

from only one or from both kisspeptin populations, we concluded that these 

effects are due to loss of ERα from ARC KNDy neurons. 

The early puberty onset and impaired ovulation led us to investigate the 

hormonal milieu in ERαKiss1KO and ERαTac2KO females both as adults and also 

as juveniles, around the time of puberty onset.  In agreement with previous 

studies, we did find elevated LH levels in not only juvenile female ERαKiss1KO 

mice, but also in ERαTac2KO mice.  At this same age, estradiol levels were 

significantly elevated in both mouse lines, explaining their early vaginal opening, 

but in contrast with their elevated LH.  Elevated LH levels in the face of elevated 

estradiol indicate impaired estrogen negative feedback in the juvenile females. 

In adult ERαTac2KO female mice, we also found substantially and 

significantly elevated LH levels, confirming a substantial loss of estrogen 

negative feedback.  In contrast (but in agreement with previous studies 44,46), LH 

levels in adult ERαKiss1KO females were unchanged compared to their littermate 

controls.  The knockouts’ LH levels are actually inappropriately normal, 

considering their significantly elevated estradiol levels and reflect slightly 

impaired estrogen negative feedback.  If estrogen negative feedback was 

functioning normally in these mice, their LH levels should be suppressed by their 

elevated estradiol levels.  The impairment in estrogen negative feedback appears 

to be common to both conditional knockouts that we studied, but the magnitude 
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of the effect is larger in ERαTac2KO females. 

Surgical removal of the ovaries (ovariectomy) results in a complete loss of 

gonadal hormone restraint on the hypothalamic-pituitary system.  In animals 

completely lacking estrogen feedback, such as the αERKO females, intact LH 

levels are indistinguishable from those of ovariectomized wild-type females, and 

no further rise in LH as a result of ovariectomy is observed 20.  While the intact 

ERαTac2KO females had significantly elevated LH levels compared to their 

littermate controls, these levels were lower than what we observed in 

ovariectomized wild-type females.  Additionally, ovariectomy of ERαTac2KO 

females led to a further elevation in circulating LH that could be significantly 

reduced by acute estradiol treatment.  Taken together, this suggests that another 

estrogen negative feedback system (or perhaps several) is still intact and 

functioning in these animals.  This is surprising given their lack of estrous 

cyclicity, anovulation and severely elevated estradiol levels.  Determining 

whether the remaining negative feedback system is in the hypothalamus or in the 

pituitary of the ERαTac2KO females should be a goal of future research. 

Although their circulating LH levels were not as high as what we observed 

in ovariectomized controls, the expression of Kiss1 and Pdyn in the ARC of both 

knockout genotypes was elevated to levels similar to what we found in 

ovariectomized controls.  Unfortunately, technical issues with the Tac2 

expression assay prevented us from performing the same analysis on the 

expression of that gene in ovariectomized animals, although Tac2 expression 

was significantly elevated in the ARC of intact females of both knockout 
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genotypes.  Thus, deletion of ERα from ARC KNDy neurons causes a complete 

loss of estrogen feedback on the expression of Kiss1 and Pdyn (and potentially 

Tac2) in the ARC.   

Surprisingly, we saw no change in Gnrh1 expression in the rostral 

hypothalamus as a result of either ovariectomy or ablation of ERα from either all 

Kiss1-expressing neurons or all KNDy neurons.  This is in contrast to what has 

been reported previously by Dorling et al., who saw an increase in Gnrh1 mRNA 

per cell after ovariectomy 20.  Methodological differences in the quantification of 

Gnrh1 expression may be the cause of this inconsistency.   

As expected, deletion of ERα from Tac2-expressing neurons had no effect 

on Kiss1 expression in the AVPV/PeN, while ovariectomy significantly decreased 

Kiss1 expression in that area.  This is in stark contrast with the extremely 

diminished Kiss1 levels that we observed in the AVPV/PeN of ERαKiss1KO 

females.  Direct estrogen action through ERα on AVPV/PeN kisspeptin neurons 

appears critical for maintenance of appropriate Kiss1 expression in intact animals 

such that without it, AVPV/PeN Kiss1 expression levels drop to ovariectomized 

levels. 

In contrast with the elevated Kiss1 expression in the ARC of both 

knockout genotypes, we found no overt changes in peptide expression in either 

ERαKiss1KO or ERαTac2KO females.  This indicates that either the regulation of 

Kiss1 translation compensates for the increased gene expression or that there 

are limitations in our method for quantifying peptide levels.  We did, however, 

observe the expected decrease in kisspeptin peptide in the AVPV/PeN of 
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ERαKiss1KO adults, confirming our previous gene expression result.  While we 

saw increased kisspeptin staining in the AVPV/PeN of 3-week-old ERαTac2KO 

females, the same change was not apparent in ERαKiss1KO females of the same 

age, likely due to the loss of ERα from these neurons.  The early production of 

kisspeptin peptide in the AVPV/PeN in ERαTac2KO females can’t be the direct 

cause of the precocious vaginal opening since ERαKiss1KOs exhibit the same 

vaginal opening phenotype without the change in peptide levels.  Both the early 

vaginal opening and the early kisspeptin production in the AVPV/PeN may be 

due to the elevated estradiol levels in the 3-week-old females but the peptide 

change is only apparent in ERαTac2KOs because ERα is intact in the AVPV/PeN 

kisspeptin neurons. 

 In conclusion, we have shown that on a gross level, female mice lacking 

ERα either in all kisspeptin neurons or just in the ARC kisspeptin (KNDy) neurons 

have a very similar phenotype.  In both cases, we saw precocious puberty onset, 

lack of estrous cyclicity, and evidence of estrogen excess.  Importantly, only the 

mice lacking ERα in ARC KNDy neurons had significantly elevated adult LH 

levels although both knockout genotypes exhibited impaired feedback on LH 

secretion as juveniles.  This data supports our hypothesis that direct estrogen 

action on ARC KNDy neurons via ERα is a critical component of estrogen 

negative feedback on the female reproductive axis.  While it’s not the only 

negative feedback system, the severity of the phenotypes presented here does 

indicate that it is an extremely important component of the overall regulation of 

the HPG axis under physiological conditions. 
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Males 

Similar to what we observed in females, male mice lacking ERα in all 

Kiss1-expressing neurons exhibit evidence of impaired negative feedback on the 

reproductive system.  Juvenile ERαKiss1KO males had enlarged testes which may 

indicate precocious sexual maturation.  While we did not observe this same 

effect on testes weight in adults, they did have enlarged seminal vesicles, an 

accessory sex organ which is sensitive to circulating testosterone levels 152.  This 

is in contrast with the males lacking ERα only in Tac2-expressing neurons and 

thus only in ARC KNDy neurons.  While the young ERαTac2KO males showed the 

same small increase in testes weight, seminal vesicle weights in the adults were 

unchanged as a result of the deletion.  Since we did not directly assess puberty 

onset in either mouse line, future studies should determine whether the males 

enter puberty at an earlier age than controls, consistent with what we observed in 

the female knockouts. 

In order to determine whether negative feedback on the anterior pituitary 

was affected by our genetic ablation of ERα from all kisspeptin neurons, we 

analyzed serum gonadotropin and gonadal steroid hormone levels in the adult 

males.  Consistent with our hypothesis that direct estrogen action through ERα in 

kisspeptin neurons is required for negative feedback, we found elevated LH and 

testosterone levels in the ERαKiss1KO males.  In mice with an intact negative 

feedback system, high levels of testosterone should function to reduce LH 

secretion.  In the ERαKiss1KO males, we found reduced FSH levels, perhaps due 

to increased inhibin production by the testes in response to elevated testosterone 
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although circulating inhibin levels were not determined in this study.  In contrast 

with these findings, we found that ERαTac2KO adult males have no significant 

changes in LH, FSH or testosterone compared to their littermate controls, 

although a trend toward elevated testosterone was observed.  Thus, the loss of 

negative feedback that we observed in ERαKiss1KO males must be the result of 

deletion of ERα from non-Tac2-expressing kisspeptin neurons. 

Since the expression of many hypothalamic genes is regulated by 

circulating gonadal hormone levels, we hypothesized that some of them would be 

significantly altered by ablation of ERα from either Kiss1- or Tac2-expressing 

neurons.  Surprisingly, we saw no effect of our deletion on Kiss1 or Gnrh1 

expression in the rostral hypothalamus of ERαKiss1KO males.  Since estrogen 

treatment affects Kiss1 expression in this area of castrated males 30, this 

phenomenon is either specific to castrated males, or isn’t a result of direct 

estrogen action through ERα on these neurons.  The additional confound of 

elevated testosterone levels and intact AR in these males may also be masking 

any effects of the loss of ERα from the kisspeptin neurons in the rostral 

hypothalamus.  

In the ARC, expression of the three genes co-expressed within the KNDy 

neurons is completely unchanged as well.  This was surprising as well, because 

in castrated animals, estrogen treatment significantly reduces the expression of 

Kiss1, Tac2 and Pdyn in the ARC 48.  Without estrogen negative feedback on 

gene expression within ARC KNDy neurons, we would expect to see elevated 

expression of all three genes.  Again, either the increased expression that others 
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have found is 1) specific to castrated males, 2) doesn’t require direct estrogen 

action in ARC kisspeptin neurons via ERα or 3) can be compensated for by the 

remaining androgen receptor in these neurons. 

Overall, we saw the same lack of gene expression changes in the 

ERαTac2KO males with one exception.  In the rostral hypothalamus, we saw a 

very slight but significant increase in the expression of Kiss1 in mice lacking ERα 

in all Tac2-expressing neurons.  We attribute this effect to the trend toward 

elevated testosterone levels and intact ERα in the AVPV/PeN kisspeptin neurons 

in these mice.  This is consistent with previous reports showing an increase in 

AVPV/PeN Kiss1 levels after either testosterone or estradiol treatment 45. 

In summary, in this study we have shown that while loss of ERα from the 

ARC KNDy neurons has very little effect on the male reproductive system, the 

loss of ERα from all kisspeptin neurons, including non-Tac2-expressing 

kisspeptin cells, results in a significant loss of gonadal steroid negative feedback.  

These critical Kiss1/ERα neurons may be located in the AVPV/PeN; while they 

do not produce detectable levels of kisspeptin peptide, they appear necessary for 

proper regulation of gonadotropin secretion, as well as testosterone production. 

 

 

  Despite the evolutionary necessity of reproduction, there are still many 

gaps in our understanding of the mammalian reproductive system- especially at 

the level of the hypothalamus.  While it is clear that the secretion of GnRH is the 

critical final output of the central nervous system with regard to reproduction, the 
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mechanisms by which the multitude of central signals that modulate the function 

of the axis are integrated in the hypothalamus remain unclear.  The studies 

described here have identified neuronal populations in the hypothalamus that are 

important and necessary components of this system.  While some hypothalamic 

neurons relay information to the GnRH neurons about how much energy is 

stored in the body, others function to restrain the axis prior to puberty and also in 

adulthood in an estrogen-dependent manner.  As our understanding of how the 

HPG axis functions improves, we will be better able to treat and potentially 

prevent the numerous disorders of the reproductive system, ranging from 

precocious or delayed puberty to adult infertility. 
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