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Chapter 1 Nanometer and Micron-Scale Particles and 

Their Applications 

1.1 Introduction – Nanometer and Micron-Scale Particles  

There has been much advancement in engineered particle technology over the 

last decade.  Engineered particles are versatile and are useful tools for various 

applications from sensing and monitoring, medical therapies, imaging, and as catalysts, 

to name a few.  With this versatility, particles systems can be molded to increase 

efficacy of the particles in specific biomedical applications.  I will discuss functional 

properties of such particles in three different systems that were studied: photothermal 

therapy (PTT), photodynamic therapy (PDT), and bacterial detection. 

1.1.1 Particle Components 

The primary reason for using engineered particles is to take advantage of their 

chemical, physical, and biophysical properties to facilitate in experiments, analytical 

measurements, or medical treatments.  After reviewing engineered particle systems, 

there are six major components of particles that can be altered to affect their properties.  

These components include particle size, shape, material composition, structure of the 

material, surface modifications to the particle, and chemical agents added to the 

particles.  Engineered particles can be fine-tuned to an application by tweaking each of 

these components until the desired properties are achieved.  In this section, each of the 

various components of particle will be discussed in more detail, as well as how these 

modifications affect the particle's properties.   
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1.1.1.1 Size 

Particles are primarily categorized by their size, shape, and material composition.  

When discussing particle size, particles are often divided into two main groups: 

nanoparticles and microparticles.  Particle size affects the chemical, physical, and 

biophysical properties of the particle and, therefore, each group has its advantages, 

depending on the application.  Nanoparticles range in size from 1 - 100 nm and have 

been used for hundreds of years.  They are often discussed in biomedical applications 

and in electronics.  In biomedical applications, where the particles need to be 

internalized, smaller particles are often better because the size of the particle will have 

minimal physical effects to the cellular structure. 

Microparticles range from 0.1 - 100 μm, and because of their size they are often 

used for different applications.  They have been used in applications from magnetic 

separation, bacterial detection [1], monitoring bacterial cell growth [2], and, as with 

nanoparticles, drug release studies.  The translational movement of magnetic 

microparticles in magnetic fields has shown to be useful in magnetic separation. [3] [4] 

[5]  The advantage microparticles have over nanoparticles is their large volume to 

surface area. The increased volume of magnetic material in microparticles allows for 

separation of cells without leaving particles behind, as does occur when there is 

inadequate quantity of nanoparticles attached to a cell.  Another application for 

microparticles has been for drug release models. [6]  Microparticles are ideal for these 

two applications and other applications that require higher loads per particle. Larger 

particles also have some major limitations, with the main limitation being their inability to 
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be internalized by cells when internalization is required.  For applications that require 

internalization, nanoparticle systems are required. 

1.1.1.2 Shape 

Particles come various shapes, such as spheres [7], rods [8] [9] [10] [11], 

nanocages [12], prisms [13], hollow spheres [14] [15], spheroids, discs [16], and cubes 

[12].  The shape of metal nanoparticles can be controlled by changing either the 

concentration or type of surfactant, reducing agent, metal precursor, temperature, or 

reaction time. [17]  Depending on the material type of the particle, this can have varying 

effects on the properties of the particles.  The main physical and biophysical properties 

affected include drag coefficients, plasmon absorption, light scattering, fluorescence, 

cytotoxicity, and cellular uptake.   

In biological conditions the shape of particles can affect the way the particles 

interact with cells.   Examples of this include toxicity, cellular uptake, uptake rate, and 

binding efficiency.  Particle shape also affects the drag coefficient of the particle, which 

is very important when using magnetic particles in rotating magnetic fields.   

1.1.1.3 Materials 

Particles can be manufactured from a wide range of materials.  These materials 

can be separated into different categories: metals, inorganic, semiconductors, organic, 

or a combination of two or more materials.  The material composition of the particle 

affects biodegradability, toxicity, structure, ability to adsorb or absorb molecules, ability 

to attach to other molecules, and solubility.  Each material has its own unique 

properties, and these properties can be tuned and tweaked to improve the effectiveness 

of the particles.  Often people forget that not only does the material composition change 
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the functionality of the particle, but also the material structure, i.e. porosity, changes the 

functionality of the particle.  This section will further explain the different materials that 

can be used, give some examples of each, and mention a few of their properties. 

The first category of materials discussed in this thesis is metals.  Some of the 

most common metals used are gold [12] [14] [18] [19] [20], silver [12] [18],  platinum 

[17], and palladium. [17]   Gold and silver nanoparticles are commonly used for imaging 

[19], thermal therapies [19], and microbial detection using SERS [21].  Silver 

nanoparticles are also good reducing agents, which is the reason for their antimicrobial 

properties. [22]  The ability of nanoparticles to function as metal catalysts, i.e. platinum 

and palladium nanoparticles, is often overlooked by those in biological fields.  The 

catalytic properties not only work well in synthesis, but when they occur in the body they 

can lead to side effects too.  

The second major category of particles is inorganic particles.  A few of the most 

common include silica [23], iron oxide [24], zinc oxide [25], and titanium (IV) oxide [25].  

These particles heave been used for applications such as MRI imaging [24], magnetic 

separation [3] [4] [5], bacterial growth dynamics [1], and sunscreen [25].   

The next category is semiconductor particles.  Of special interest are 

semiconductor particles called quantum dots. [26]  Quantum dots are often made with 

two parts, a stabilizing shell such as ZnS, and an internal semiconductor core such as 

CdSe.  These types of particles are easily designed to fluoresce at specific wavelengths 

with a narrow emission band [27] [28].  They have a few advantages over fluorescent 

dyes.  Quantum dots do not photobleach as easily as fluorescent dyes, have a stronger 

luminescence, are easier to tune to fluorescent wavelengths by varying the size of the 
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nanocrystal, and their fluorescent band width is thinner than fluorescent dyes. The 

reason quantum dots have not replaced dyes is because they can be difficult to 

synthesize and can be toxic to cells if not coated.  They are becoming more common as 

they have become more commercially available. 

The last major category is organic nanoparticles, which include (but are not 

limited to) both biological and polymer particles.  Organic particles can be made from 

liposomes [29], micelles, carbon nanotubes [30], fullerene [31] viral derived capsid, 

proteins, other natural polymers [32], and synthetic polymers. [32] [33] [34]  The number 

of polymers that can be used in particle formation is limitless, but some of the more 

popular polymers for biological applications are polyacrylamide (PAA) [7], poly(lactic-co-

glycolic acid) (PLGA) [35] [36], polyethylene glycol (PEG) [32], and polyethylenimine 

(PEI) [37].  Other synthetic polymers that are often used include sol-gel [38], 

polyglutamic acid (PGA), polylactic acid (PLA), polycarprolactone (PCL), and N-(2-

hydroxypropyl\)-methylacrylamide copolymer (HPMA). [32]  Some common natural 

polymers are heparin, dextran, albumin, gelatin, alginate, collagen, and chitosan. [32] 

There are many great reviews available on the different polymers that are used to form 

particles. [32] 

Not only are there different polymers, there are different polymer architectures as 

well: linear, cross-linked, star, and dendrimers, to name a few. Most polymer 

architectures used for particles are random and not extremely uniform, such is the case 

of all the polymers listed above.  Dendrimers, on the other hand, are extremely uniform 

in size but can be very difficult to synthesize and can also be expensive. [39]  In most 

cases, there is no need for the amount of uniformity of dendrimers.  Often it is important 
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to sacrifice some perfection to lower the costs of the therapy.  This increases the 

availability of the product and can lead to higher profits.   

Often the properties of a material are not optimal, and it is necessary to employ a 

combination of the different materials.  For example, many metallic, inorganic, and 

semiconductor nanoparticles will often have polymer coatings to decrease surface 

interactions in biological environments. [35] [36] [40] [41]  In some cases 

organic/inorganic particles are coated with metals, as in gold nanoshells. Gold 

nanoshells have an adsorption band in the infrared, and gold spheres of the same size 

absorb in the green of the visible spectrum. [42]  The capability to combine different 

materials from the various categories increases the ability to tailor the nanoparticle to 

the desired functionality.   

Materials have a range of different architectural structures, such as crystalline, 

amorphous, porous, or gelatinous structures.  As particles can have varying size and 

shapes, particles can have various degrees of a structure type which will also affect the 

properties of the particles.  The structure will have an effect on solubility of particles, 

biodegradability, loading efficiencies, leaching of load, binding affinity, surface 

modifications, and cytotoxicity.  Organic materials are one of the primary materials used 

when a porous particle is required, but other compounds such silicates can also be 

used.  For example, groups have used 130 nm mesoporous silica particles for drug 

delivery of paclitaxel. [23] [43]  This type of particle has about 750 pores on the surface. 

[43]  Some material structures can be easily altered by slight changes to the starting 

materials or quantities used in the composition of particles.  For example, changing the 

quantity of cross-linkers or the length of monomers in a polymer is a common method of 
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changing particle structure with minimal change to surface functionality.  This is the 

technique used to change the porosity of the particle in order to increase the amount of 

compounds loaded into the particle.  Loading will be discussed in greater detail in a later 

section.  

1.1.1.4  Surface Modifications 

During the design phase it is often determined that the current material for the 

particle is not ideal.  Changing the material can be a huge undertaking and it is often 

easier to change the properties of the particle by modifying the surface of the particle.  

Surface modifications can affect solubility, stability, surface charge, the electrical double 

layer around the particles, biodegradability, cytotoxicity, drag, surface activity [17], and 

cellular flow.  Some of these surface modifications have been well studied, making it 

easy to find protocols and other aids to perform the modification.  Surface modifications 

are made by attaching proteins [44], peptides [33] [44] [45], small molecules, polymers 

[35] [36] [40] [41] [46], metals [47], surfactants [48], or inorganic materials to the surface 

of the particle [26].  They are attached by using a variety of covalent bonds, physical 

connections, or intermolecular forces such as ionic, London dispersion, or dipole-dipole.  

The type of connection affects the stability of the modifications, and it also affects other 

properties such as toxicity.  The most common surface modification is the addition of 

polyethylene glycol (PEG).   

Polyethylene glycol can increase biocompatibility [40] [49], limit nonspecific 

binding [49], increase the lifespan of particles in blood [40] [47] [49], and slow the 

uptake by the reticuloendothelial system (RES). [35] [36] [40] [41]  The amount of 

improvement for each of these changes will depend on the particle material, shape, and 
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size.  For example, PEGylated gold particles can have about a 10-fold higher 

concentration in blood after a half hour than unmodified gold particles. [40]   In the case 

of biocompatibility, unmodified liposomes are readily attacked by the body, and it is 

difficult to get enough particles to their destination.  PEGylated liposomes are more 

biocompatible and more will arrive to the destination before being targeted by the body. 

[41]  The improvements in biocompatibility do not eliminated all toxicity.  In the case of 

13 nm gold nanoparticles in mice, the particles were still toxic after PEGylation. [49]   

Polyethylene glycol is not the only surface polymer modification for particles.  

There is a more detailed list of polymer modifications provided by Grupta et al. [47]  

Surface modifications are not only for biological purposes but can also be used to lower 

surface activity, which has been shown by the difference in catalytic activity between 

platinum nanoparticles and platinum nanoparticles coated with either 

polyvinylpyrrolidone (PVP) or with tetradecyl trimethyl ammonium bromide (TTAB). [17] 

1.1.1.4.1 Uptake 

Surface modifications also affect the rate and quantity of particle uptake by cells.  

The charge of the particle, which can easily be changed by surface modifications, is the 

biggest determinations of cellular uptake.  Positively charged particles gain entry into 

cells more readily than their negatively charged or charge neutral counterparts. [50]  

Manipulating the charge can be accomplished through the adsorption or covalent linking 

of small molecules, polymers, proteins, peptides, and surfactants.  For a positive 

charge, proteins, peptides, etc., are loaded with amine functional groups and then for 

negatively charged particles usually they are loaded with carboxyl functional groups.  

Arginine and lysine based peptides are used in nature to increase the positive charge in 
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order to increase the amount of cellular uptake and the rate of cellular uptake.  A 

commonly used peptide in the laboratory is TAT peptide [33], an arginine rich peptide 

found on the surface of HIV that increases the internalization of the virus.  When 

modifying PAA with TAT peptide, particles have shown to need 4 times shorter 

incubation times. [33]  Other arginine rich peptides, beside TAT peptide, also function 

well at increasing uptake and rate of uptake. [45]  In fact, quantum dots with a 9 residue 

biotinylated L-arginine peptide showed an increase in uptake by about 2 orders of 

magnitude.   

Other surface modifications that have been used to improve cellular uptake 

include (but are not limited to) polyethylenimine (PEI) [23], polylysine, antennapedia 

[51], transportan sequences [52], and citric acid. [53]  These surface modifications do 

not necessarily need to be covalently linked to the surface in order to function.  For 

example, short chain PEI can form complexes with mesoporous silica nanoparticles to 

increase uptake. It is important to remember that surface modifications used to increase 

uptake will affect the toxicity of the particle, as is the case of particles functionalized with 

PEI. [37] [54] [55]     

1.1.1.4.2 Targeting 

Cellular targeting is an important function of particles that is possible because of 

surface modifications.  Targeting has been used for a variety of biomedical applications 

including cell separation, real-time tracking of biomolecules [56], cancer targeting [57], 

imaging, sensing, tumor delineation [58] [59], and drug delivery [39].  Targeting can 

increase the population of particles binding to targeted cells, increase the uptake of 

particles, decrease the minimal effective concentration of particles, and lower the 
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effective cytotoxicity of particles. There are two different types of targeting: passive 

targeting and dynamic targeting.   

Passive targeting takes advantage of leaky vasculatures often encountered in 

tumors.  The primary method that will be discussed will be the enhanced permeability 

and retention (EPR) effect. [41] [60]  The EPR effect is caused by tumor having 

extensive angiogenesis, leaky vasculature, and sometimes poor lymphatic drainage. 

[34] [59] [60] [61] [62] [63]  Because of these attributes of tumors, small particles and 

molecules such as drugs, dyes, and imaging agents, accumulate in tumors faster than 

in most other organs. [60]  Researchers have been taking advantage of the leaky 

vasculature of tumor cells for decades. [62]   

The next method of targeting is active targeting, using targeting moieties to 

increase the concentration of particles attached to specific cells. [58] [64] [65]  Targeting 

moieties can be surface-conjugated proteins, aptamers, small molecules, large 

molecules, or single strand DNA.  In order to target cancer cells selectively, targeting 

moieties need to take advantage of the over-expression of proteins, or any other unique 

attribute of the cell.   

Antibodies are a common tool of targeting, but are expensive to produce.  The 

antibody anti-EGFR (anti-epidermal growth factor) is an example of an antibody that can 

be used to target epithelial cervical cancers.  The cervical cancer over-expresses the 

epidermal growth factor, therefore increasing the binding affinity of particles with anti-

EGFR targeting. Anti-EGFR gold nanoparticles have been used to increase the amount 

of particles binding to SiHa, HOC, and HSC cancerous cells. [14] [15] [66]  Many tumors 
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also over-express vascular endothelial growth factor (VEGF) or its equivalent vascular 

permeability factor (VPF), which also can be used for targeting. [60]   

 Another targeting moiety can be a peptide.  The F3 peptide is a prime example 

of a peptide used to increase the concentration of particles in tumors.  The F3 peptide 

has been used to target angiogenic vasculature in solid tumors as well as certain tumor 

cells. [33] [34]  It interacts with a cell surface receptor called nucleolin.  A common cell 

line MDA-MB-435, a human melanoma, is a good cell line for the F3 peptide because it 

expresses high quantities of nucleolin. [33] [34]  Not only can particles be targeted to 

specific cells they can be targeted to regions in specific cells.  Research has shown that 

30 nm PEGylated gold particles with RGD and NLS peptide (KKKRK) target the nuclei 

of HSC cells, a human oral squamous cell carcinoma, and does not target normal cells. 

[67] 

The last group to be mentioned is aptamers.  Aptamers have a great potential as 

being a faster and easier method of targeting tumors, but they have had limited usage 

because of patents.  There are many methods of targeting particles to various types of 

antigens, and often it is necessary to experiment with various targeting moieties to find 

the ideal targeting moiety.   

It is important to remember when targeting cells that the particle size affects both 

the binding and the uptake into the cell. [68]  Larger targeted particles have smaller kd 

values, or higher binding affinity, than small particles.  Not only does it affect the binding 

affinity, but the increase in binding affinity affects the particle uptake.  Initially, as 

targeted particles increase in size, uptake also increases along with binding.  At even 

larger particle sizes, internalization is hindered.  These two competing effects result in 
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there being a specific size that is optimal for internalization.   Herceptin-GNP is a good 

example of how size of particles affects uptake.  

1.1.1.4.3 Cytotoxicity 

Surface modifications can be used to change the cytotoxicity particles.  In many 

cases, the particles can be adjusted to acceptable toxicity ranges so that collateral 

damage to healthy tissues is minimalized.  This would be the case for drug delivery 

particles that are delivering a very toxic drug.   The most common modification to lower 

the cytotoxicity of particles, as previously mentioned, is attaching PEG.  Another surface 

modification used is polyvinyl alcohol, which has been used with platinum nanoparticles. 

[69]  Even though a modification has functioned well in one case, it does not mean it will 

function for all cases.  This has been observed with iron oxide particles coated in 

polyvinyl alcohol, which can cause apoptosis. [46]  Some surface modifications can be 

altered to become less cytotoxic. For example, PEI toxicity, believed to arise from the 

"proton sponge" effect, increases as the polymer increases in length.  So with PEI it is 

ideal to use shorter polymer chains, under 10 kD. [23] [37]  

Surface modifications affect an array of characteristics such as toxicity, targeting, 

uptake, rate of particle uptake, rate of consumption, surface activity and blood lifetime.  

Adjusting the amount and the type of surface modifications can easily shift particle 

characteristics within their ideal range.   

1.1.1.5 Chemical Agents 

There are many different chemical agents, such as thermal dyes, contrast 

agents, sensing agents, photosensitizers, DNA, or drugs that do not function well by 

themselves in a given environment.  The chemical agents’ environment can result in low 
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solubility, aggregation, chemical debilitation, chemical reactions, short lifetimes, and 

chemical build up at locations other than the target.  Loading chemical agents into the 

particle, or in some cases attaching them onto the surface of the particle, can prevent 

many of the issues that arise from the interaction of the chemical agents with the 

environment.  Generally this is done by loading the chemical agents into chemically and 

biologically inert particles.  Loading efficiency, or binding efficiency, depends on various 

different characteristics of the particle matrix and agent.  The major characteristics are 

the hydrophobicity, size, charge, and functionality. [70]  Another characteristic unique to 

the particle that affects loading is the pore size.  Currently there is a wide range of 

recipes for many of the matrix materials.  The different recipes can alter some the 

characteristics of the particle allowing for some adjustments to increase loading or 

surface attachment.  Surface attachment usually happens after the particles are formed, 

but loading chemical agents into the particles can be either through congruent-loading 

(during synthesis of particles) and post-loading (after synthesis of particles). The three 

main methods of keeping the chemical agent with the particle are physical 

encapsulation, intermolecular forces, and covalent linkage. 

Physical encapsulation is when the structure of the particle prevents the chemical 

agent from leaving the particle, as with air in a balloon.  It is one of the primary 

methodologies of adding chemical agents to particles. With physical encapsulation, the 

chemical agent is either encapsulated during the particle formation (congruent-loading) 

or loaded into the particle after the particle has been formed (post-loading).  Post-

loading is a simple technique of adding the agent to a particle solution, allowing the 

agents to penetrate into the particle.  The addition of chemical agents is highly 
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dependent on the structure of the particle, i.e. porosity and rigidity. The particles are 

than washed to remove any chemical agents that may come out later. Loading 

efficiency depends heavily on the system and sometimes post-loading will have better 

results than congruent-loading.   

Intermolecular forces, such as charge-charge, London dispersion, hydrogen 

bonding, and dipole-dipole interactions, are another method for binding chemical agents 

to particles. This is very similar to a sponge that holds water, since one of the reasons 

that the water stays inside the sponge is because of the interactions the water has with 

the sponge.  There is often a combination of intermolecular forces and physical 

encapsulation used. The intermolecular forces may just slow the leaching of the 

chemical agent into the environment a little, and so it may be necessary to increase the 

physical encapsulation to slow the leaching even more. As with physical encapsulation, 

chemical agents can be added congruently or after synthesis of the particles. 

Often the intermolecular forces are simplified even further, and researchers just 

look at the hydrophobicity of the dye and particle.  When choosing a particle matrix, one 

wants the particle to have similar hydrophobicity.  If the chemical agent is hydrophobic, 

then the particle should also be hydrophobic on the inside so that the chemical agent 

stays in the particle. [70] If the hydrophobicity is the opposite the chemical agents will 

often prefer not to be in the particle and will leach out of the particle.  When sensing 

analytes, the hydrophobicity of the matrix material should match that of the analyte.  For 

example, PAA particles work well for ion sensors [71] [72] [73] [74] [75] due to their 

neutral and hydrophilic nature, which allow ions into their matrix; while hydrophobic 

matrices, like organically modified silicate, are better suited for oxygen sensors. [76] [77]  
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Bioaffinity interactions, which also fall under intermolecular forces, can be used to 

attach various agents to the particle surface or to the inside of the matrix. One of the 

most common bioaffinity interactions is the streptavidin biotin interaction.  This has been 

used for decades to attach various molecules, often antibodies, to the surface of 

particles.  As with all of the intermolecular forces, the loading efficiency depends heavily 

on the characteristics of the matrix material and how they match up with the chemical 

agent. 

Covalent linking is the last, and best, method of increasing loading efficiency. 

Unlike the other two, which generally leach the chemical agents, covalently bound 

chemical agents can be designed to never leach.  This method is ideal for systems 

where the chemical agent can be permanently or semi-permanently attached to the 

matrix without affecting the function of the particle.  The chemical agent can either be 

covalently linked to the surface of the particle after particle synthesis, or connected 

internally before or after particle synthesis.  Sometimes it is advantageous to redesign 

the chemical agent to be a monomer unit, so it can be copolymerized with a polymer 

matrix. This can lead to high loading percentages.  Generally the covalent bond 

between chemical agent and particle are done using reactions that combine any 

combination of amine, carboxyl, or thiol functional groups.  There are various coupling 

reagents on the market, such as NHS and sulfo-NHS, to assist in covalently binding 

chemical agents with the particle.  Protocols are well understood and often can be found 

on the websites of the companies that manufacture the coupling reagents.  
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1.1.2 Particle Attributes 

The deeper scientists delve into particles, the more excited they become about 

their many attributes.  Many of these attributes have been discussed previously, but will 

be discussed in further depth in this section.  These attributes are the reason why 

nanoparticles are being used for therapies such as drug delivery, photothermal therapy, 

and also for sensors.  Of the many attributes of particles, there are five major attributes 

that will be discussed: protection, biodegradability, bioelimination, solubility, and effects 

on cells. 

1.1.2.1 Protection 

Protection is a two part functionality of particles.  The particle matrix can shield 

the load from interacting with the environment [78] [79], or shield the cells from 

interacting with the load of the particle [7] [23] [33]. This is most often seen with 

polymers that have chemicals incorporated in to their matrix.  The polymer prevents or 

hinders most cellular materials from entering the matrix, or the payload from exiting the 

polymer.  Since the payload interaction with the cells is limited, the toxicity of the 

payload can be minimized and can also prevent chemical reactions between the 

payload and the body.  This brings in the possibility of introducing toxic chemicals into 

the body and limiting their side effects.  A couple of ideal candidates for decreasing 

toxicity are drugs, such as chemotherapies, and toxic imaging agents. [80]  One 

example of this is Camptothecin, which has a drop in toxicity when it is encapsulated in 

a PEGylated β-cyclodextrin nanoparticle. [80]  Going the other direction, particles have 

shown the ability to shield the payload from enzymes, serum, and leukocytes.  For 

example methylene blue, a photosynthesizer for photodynamic therapy and contrast 
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agent, is not stable in the body because proteins, NADH, and diaphorase, react with it 

to turn it into leukomethylene blue, a white inactive form that cannot produce Reactive 

Oxygen Species (ROS). [7] [38] [71] [73] [79]  This shielding or protection is not limited 

to chemical interactions, but also shields chemical agents from degradation caused by 

electromagnetic radiation.  The G2 dye photobleaches within 3 min when exposed to a 

1.5mW 630 nm laser, but when it is covalently encapsulated in a particle it takes 39 min 

to photobleach the dye. [33]  The protection can be used to prevent other interactions 

with dye that would give false positives when sensing. [71] [73]  The G2 dye, used for 

measuring oxygen through fluorescence, has a critical decrease in accuracy in the 

presence of BSA and NO. [33]  In fact, BSA interferes so much that it can cause a 

550% increase in fluorescence of free G2 dye. [33]  Nitric oxide, though not as extreme, 

can cause a 32% change in fluorescence to free G2 dye. [33]  When the G2 dye is 

covalently linked to a particle, the interference, in similar environments, only causes a 

fluorescent change of less than 0.3% and 2% respectively. [33] 

1.1.2.2 Biodegradability and Bioelimination 

Biodegradability is often described as materials that will degrade in nature, but 

with particles, it usually refers to a particle's ability to degrade in vivo.  There have been 

numerous studies on the bioelimination of particles that biodegrade and particles that do 

not biodegrade, formed with stable bonds. [32] [40] [81] [60] [82] [83]  Particles do not 

necessarily need to biodegrade to be bioeliminated, but particles that are biodegradable 

into fragments smaller than 10 nm can be filtered by the renal system. [61] [84]  The 

particles not eliminated by the renal system are eliminated by the Reticuloendothelial 

System (RES), also known as the Mononuclear Phagocyte System. [32] [60]  The RES 



18 
 

removes foreign material by opsonization followed by phagocytosis by macrophages. 

[60]  Kupffer cells of the RES are liver macrophages that are in direct contact with 

blood, which are the primary cells that remove larger particles to be excreted out with 

feces. [81] [82]  They remove endogenous material such as old or damaged 

erythrocytes, immune complexes, viruses, bacteria, toxins, cancer cells, apoptotic cells, 

and other cellular debris. [81] [82]  The Kupffer cells either degrade the particles in the 

lysosomes, or the particles have to be exocytosed. [82]  Non-biodegradable particles 

that are exocytosed will generally remain within the cells for a considerable time, in 

some cases 6 months, before being exocytosed. [82] [83]  The particles are exocytosed 

to the surrounding hepatocytes and then later release with the bile so that they can be 

eliminated out of the body through the feces. [81] [83]    

The fact that the particles can be bioeliminated is not the important part of 

bioelimination.  The rate of bioelimination, or when bioelimination begins, is also 

important in particle design.  If particles have too short of a blood life, bioelimination 

begins too quickly, the particles may not be therapeutically affective, as has been seen 

with some drug-carrying particles. [41]   There are a few characteristics that affect the 

rate of bioelimination.  RES uptake depends on particle size, surface charge and 

surface hydrophobicity. [60]  The chance of being captured by RES dramatically 

increases as particles become bigger than 100 nm. [32] [60] [84]  Surface modifications 

also affect the biodegradability of the particle.  For smaller particles, renal elimination 

can be prevented by altering the surface charge of the particle to be more neutral or 

anionic. [60]  When trying to avoid RES, the smaller the charge also lowers 

phagocytosis by macrophages.  
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Biodegradation is mainly controlled by the matrix material.  One can choose from 

a variety of matrix materials.  Some of the most common include albumin, chitosan, 

heparin, polylactic acid (PLA), polyglycolic acid (PGA) and polylactic-co-glycolic acid 

(PLGA), with PLGA being the most popular because its by-products are nontoxic and 

can be further metabolized. [41] [60]  PLGA has been used for years in drug delivery 

research.  Some particle matrices can be chemically altered from being extremely 

stable to being biodegradable.  For example polyacrylamide, which has non-

biodegradable bonds between monomer units, can be made with biodegradable or non-

biodegradable cross-linkers.  The biodegradable cross-linkers will not provide a 

pathway for the particles to break down to monomer units, but will allow the matrix to 

break down to a size that can be filtered by the kidneys or ease elimination by the RES.  

Biodegradable linkages can also be used in linking drug molecules to particles.  The 

linkages allow the particle to release the drug at the ideal time after it arrives into the 

tumor. [32]  PH-sensitive linkers, such as hydrozone and cis-aconityl, are prime 

examples of using biodegradable linkages to control the release of drugs. [85] [86] 

1.1.2.3 Solubility 

Solubility issues plague the pharmaceutical world with ideal designer drugs, 

dyes, or imaging agents being insoluble or inadequately soluble to be therapeutically 

effective. Many of these are hydrophobic agents that not only are not very soluble, but 

incorporate themselves into the lipid bilayer or fat.  As mentioned, particle systems can 

be designed to carry both hydrophilic and hydrophobic loads to a source by changing 

the particle matrix. [23]  To increase the load delivered to cells, hydrophobic particles 

need to be modified to have hydrophilic surfaces. Particles are ideal for many drugs, 
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dyes, proteins, and other molecules that have solubilities lower than the desired or 

required concentrations.  Camptothecin, a potential drug for cancer, could not be used 

effectively because of its hydrophobicity. [80]  Using particles, the solubility of 

Camptothecin can be increased 1000 fold.   

1.1.2.4 Particles and Cells 

Much of this dissertation discusses the interaction of particles with various types 

of cells.  The two main subjects that will be discussed are; how particle size, shape, and 

surface chemistry affect cellular-particle interactions, and also methods of getting 

particles into cells. 

1.1.2.4.1 Various Particle Attributes and Cellular Response 

Many of the factors that affect the uptake of particles have been mentioned 

previously.  There are various things that affect cellular uptake and cellular response: 

size of the particle [16] [53] [68] [87], shape of particle [16] [53] [87], surface chemistry 

[8] [16] [23] [88], temperature of the surrounding medium [53], and the cell type [26] 

[46].  This section will mostly review the attributes of particles and how particles affect 

cells, with only minor facts about how temperature and cell type affect uptake and 

cellular response.   

Size has been shown to affect rate of internalization, pathway of cellular uptake 

[16] [53] [68] [87] [89], localization of particles, and toxicity. [53]  Particle size and how it 

affects rate is intuitive: generally, the larger the particles the slower they are taken into 

the cell. [53]  Particles are not only affected by size, but also by surface 

functionalization, leading to a dynamic relationship between the two attributes.  Uptake 

often increases with size, due to improved binding with the surface of the cells. [68]  
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Albumin-coated drug delivery nanoparticles that went through clathrin-mediated 

endocytosis, which will be discussed later, have 5-10 times greater uptake when they 

range in size from 20 to 40 nm in size than their 10 nm counterpart. [90]  Particle uptake 

peaks once the effect from the particle size overcomes the improved uptake from 

increased binding.  The most efficient size for endocytosis ranges from 25-50 nm for 

gold nanoparticles. [53]   

As mentioned, there are size limitations to particle uptake because large particles 

cannot be endocytosed by the cells.  HeLa cells are known to invaginate PRINT 

particles with a dimension up to 3 μm. [16]  PRINT particles are derived from 

trimethyloylpropane ethoxylate triacrylate, polyethylene glycol monomethylether 

monomethacrylate, 2-aminoethylmethacrylate hydrochloride, and 2,2-diethoxyacetophe 

none.  Particle size also affects localization of particles within the cells and the body.  .  

Some extremely small particles can pass through the blood-brain barrier.  As mentioned 

previously, size can also affect uptake by the RES or filtration by the renal system.  This 

is seen with dendrimers that are less than 7 nm, which not only allows them to escape 

the vasculature to target tumors, but also allows them be filtered by the renal system for 

removal from the body. [39]   

Toxicity also depends on the size of the particles.  This has been observed with 

silver nanoparticles and microbes.  The microbial response to silver nanoparticles is 

stronger with smaller particles. [22] Another example is with naked gold spheres, or 

spheres without chemicals attached to the surface.  Naked gold spheres are often 

considered nontoxic, but particles 8 to 37 nm do show toxicity. [91]   
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It is important to remember that an increase in particle size can have both 

positive and negative effects to uptake, bioelimination, toxicity, and terminus.  Tuning 

particles to the ideal size can be difficult with all of these variables dependent on size.   

The shape of the particle is also known to affect cellular uptake and cellular 

response. [53]  As mentioned before, some of the more recognized shapes used in 

particle applications include spheres, rods, tubes, cubes, and ellipsoids, sometimes 

referred to as rice.  Rates and quantity of cellular uptake do depend on the shape of the 

particle, but there is no underlining rule known for all types of particles and cell types.  In 

the case of PRINT particles, particles of equal volume were taken up faster when they 

had higher aspect ratios. [16]  The opposite is true for gold nanorods where a higher 

aspect ratio means slower and lower uptake. [53]  In fact, the particle uptake increases 

as the particle becomes more spherical.  

There are many different materials in particles with a core of gold, silver, carbon 

[92], polymers, or iron oxides but it is the surface chemistry and structure of the particle 

that has the most affect on cytotoxicity, amount of uptake, rate of uptake, and where the 

particles accumulate. [8] [16] [23] [53] [88] With this in mind, the cellular response can 

be altered by coating, or modifying the surface of the particles with different polymers, 

metals, proteins, peptides, DNA, aptamers, and small molecules.   

As previously mentioned, the surface charge is one the simplest methods of 

affecting cellular uptake.  The rule of thumb is that as you increase the negative charge, 

the slower the uptake, while an increase of positive charge increases the uptake into the 

cells. [8] [16] [23]  PRINT particles with various charges are a great example of how 

charge affects cellular uptake. [16]  Another good example is capped gold nanorods.  
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Positively capped polyallylamine nanorods showed an uptake of about 2320 particles 

per cell, while negatively charged PAA capped nanorods showed an uptake of about 

270 nanoparticles per cell. [9]  Surfaces of particle are not always stable, which can 

result in abnormal cellular uptake with what would appear to be positively charged 

particles.  In the case of positively charged CTAB (Cetyl trimethylammonium bromide)-

capped gold nanorods, they are introduced to cells with CTAB, but the CTAB is quickly 

replaced by extracellular proteins such as BSA. [9]  Even if the particles remain positive, 

it does not mean that the particles will have better plasma compatibility. [88]   

Sometimes there are trade-offs when manipulating the surface of the particle. 

The cytotoxic cellular response to particles can often be minimalized by altering 

surface chemistry.  Many quantum dots are known to be cytotoxic, and therefore, they 

are coated with molecules such as thioglycerol, cystenamine, and MUA to try to limit 

cytotoxicity. [27]   

Chemicals adsorbed or absorbed by the particles can also be cytotoxic.  These 

chemicals often include drugs, dyes, proteins, peptides, impurities, and remnant starting 

materials, such as surfactants or monomers. Remnant starting materials is the main 

reason most particle synthesis require multiple washings.  Impurities, such as 

endotoxins and starting materials, often result in an induced inflammatory response if 

not removed. [88]   So it is vital in many cases to work in clean environments and be 

diligent in washing the particles.   

Many have misconceptions about the final particle having similar cytotoxic effects 

as the starting materials.  Polyacrylamide is a good example of a particle system in 

which the monomer unit is toxic, but the polymer is not toxic.  This will be discussed in 
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much greater detail later in the chapter.  It is important to be mindful of the different 

materials used in the particle system.  Each chemical can drastically change the cellular 

response to the particle.   

1.1.2.4.2 Particle Delivery into Mammalian Cells 

After choosing the particle matrix, it is necessary to determine how the particle 

will be delivered to the cell.  There are multiple different methods of intracellular delivery 

of nanoparticles.  The different methods can be divided into two different groups: 

physical force and unaided-internalization.   

 

Figure 1.1: These are some various methods of delivering nanoparticles into 
mammalian cells or cells for bioanalysis or therapy. They are separated into two 
major categories of physical insertion (Figure A and B), and unaided-
internalization, or chemically assisted delivery (Figures C-E).  Figure (A) is Gene 
gun, (B) Picoinjection, (C) Endocytosis (nonspecific or receptor mediated), (D) 
Liposomal delivery, and (E) Surface modified particles, with the membrane-
penetration peptide TAT being the example.  [93] 
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1.1.2.4.3 Forced intracellular delivery 

Forced intracellular delivery is when mechanical means are used to force the 

particles into the cell.  The two most common methods that are used are gene gun and 

picoinjection. [38] [71] [76] [94]  Gene gun uses pressurized helium to propel the 

particles that are attached to a carrier disk into the cells, as can be seen by Figure 1.1.  

Even though many would assume that gene gun is extremely invasive, cell viability is 

still about 99%. [95]  Picoinjection is another method of physically inserting particles into 

cells, and is accomplished with a very small needle.  It is ideal to have all the particles 

inserted into the cell, but this method does have its limitations and problems.  First, this 

technique is very invasive to the cell, damaging cell membrane and damaging internal 

cellular structure.  The other issue with this technique is the limitation on the number of 

cells that can be injected, since cells are injected one at a time.  Neither of these two 

methods functions well for in vivo.   

1.1.2.4.4 Unaided-internalization or Chemically Assisted Internalization 

The next method of internalizing particles is unaided-internalization, or chemically 

assisted internalization.  This method has the potential to function well in vivo and in 

vitro, but depends heavily on the type of particle system.  Internalization, or in other 

words, endocytosis, of the particles can be extremely quick and take only minutes, while 

other are extremely slow and can take days to be endocytosed.  If the particle uptake is 

not ideal, surface-conjugated translocation proteins or peptides [58] [96] [97], such as 

the membrane penetrating TAT peptide [56] [98], are prime method of changing uptake.  

Incorporating the particle into liposomes is another method to assist in delivering the 

particles into the cells. [95] The three methods of unaided-internalization and chemically 
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assisted internalization, can be seen in Figure 1.1.   Each of these methods of 

internalization results in negligible physical perturbation.  Even though the particles don't 

cause physical damage to the cell, the particle can still be extremely toxic.   

For unaided-internalization, particles are internalized through the various 

endocytotic pathways.  The two main endocytotic pathways are phagocytosis and 

pinocytosis.  The pinocytotic pathways include macropinocytosis, caveolae-mediated 

endocytosis, clathrin-mediated endocytosis, and caveolae/clathrin independent 

endocytosis. [88]  There are multiple variables that affect the pathway of internalization.  

The pathway can be affected by the energy, cellular environment, cell type, particle 

shape, particle size, and surface functionality of the particle.  Particles don't necessarily 

have to go through just one type of pathway. Particles a 150-200 nm that were formed 

by Particle Replication In Non-wetting Templates (PRINT) went through multiple 

pathways when entering cells. [16]  Carboxyl modified polystyrene nanoparticles of 24 

nm diameter were endocytosed by clathrin, caveolin, and cholesterol independent 

pathways. [53]  There are multiple methods to determine the mannerism of uptake, and 

reviews explaining how to determine and monitor cellular uptake. [99] .   

1.1.2.4.5 Cellular Response 

There are many different ways that cells can respond to particles that may or 

may not lead to cell death.  Particles can cause an adjuvant response, inflammatory 

response, antigenicity, and production of nitric oxide, just to name a few.  Adjuvant 

response is an augmented immune response towards antigens.  One example is lipid-

coated polysaccharide nanoparticles, which induce 4 x production of immunoglobulin G 

when immunized with alum adjuvant. [88]  Cells can also have an inflammatory 
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response and produce cytokines. This has been observed with PLGA based 

nanoparticles, oligonucleotides in T cells, and with unpurified carbon nanotubes. [88]  

The third type mentioned is antigenicity, or an antibody response. Most particles studied 

do not invoke this response, but one of the few that does is fullerene. [88]   Also cells 

can produce NO, as in aortic endothelial cells during uptake of polysiloxane particles. 

[100]  In vivo not only has same response as in vitro but also larger issues can arise 

from interactions of the body with particles.  There is the possibility that microparticles 

could cause strokes. [60]  Not all cellular responses have a negative impact on the 

body.  Particles can be changed to invoke a positive cellular response.  When gold 

colloidal particles were coated with P1 or P2 peptide, they caused angiogenesis, or 

formation of blood vessels, which is important in healing wounds. [101] 

1.1.3 Particle Applications 

Now that particle design, particle attributes, and how they interact with cells has 

been discussed, it is important to discuss how these particle features can be applied in 

research and medicine.  There are four main applications of particle systems that will be 

described.  The applications are analytical measurements, imaging, therapies, and for 

catalytic activity.   

1.1.3.1  Imaging 

Imaging is an important part of understanding how the body works and 

implementing various therapies.  Researchers and medical professionals often use 

nanoparticles in imaging to label cells, parts of cells, and processes occurring within 

cells.  This has been done mostly with dye molecules, but of late many researchers 

have discovered the advantages of using nanoparticles in imaging.  A couple of the 



28 
 

most common problems with imaging cells with dye molecules are that the dye 

molecules photobleach with time and are negatively impacted by cell medium.  Metallic 

particles, which do not photobleach, are one type of particle that can be used in cell 

imaging because of their high scattering ability that can be seen using darkfield 

microscopy. [14] [15] [19] [66]  Dyes incorporated in polymer matrices can also be used 

in enhancing functionality of fluorescent dyes.  As mentioned earlier, the polymer matrix 

protects the dye from interactions with cells, but it can stabilize the dye, slowing 

photobleaching rates. [33]  Quantum dots, a type of inorganic particle, do not 

photobleach and also have thin spectra bands.  By using quantum dots of different 

spectral wavelengths and targeted to different cellular components, multiple cellular 

components can be imaged simultaneously.  Medicinally, particle systems function well 

as contrast agents to distinguish between healthy cells and tumor cells.  Currently 

images of tumors using MRI are being enhanced by magnetic particles, such as iron 

oxide [102] or gadolinium, to aid in diagnosing patients with cancer.  Dye molecules or 

dyes incorporated in a polymer matrix can help surgeons locate and remove tumors. 

This is referred as tumor delineation and will be discussed further in chapter 2.   

1.1.3.2 Analytical Measurements 

Nanoparticles have been used for over a decade in analytical measurements as 

probes [7] [19] [33] [45] [66] or PEBBLES (photonic explorer for biomedical use with 

biologically localized embedding). [103] [104]  Analytical measurements include 

quantification and location of cells, proteins, ions, metabolites, and small molecules 

such as oxygen. [33]  Nanoparticles can also be used to measure distances, 

translocation speeds, translocation rates, cell related forces, and different reaction 
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dynamics. They can also be used to measure distances below the diffraction limit by 

using two different colored nanoparticles. [90]  There is often overlap between cellular 

imaging and analytical measurements.  Many of the particles used for analytical 

measurements can be applied in imaging to locate the items being measured.  There 

are a few main requirements that need to be met to do intracellular measurements.  The 

probe needs to be in a cell-permeable form, inert as much as possible, and sensitive 

enough to do the measurement.  Even after fulfilling these requirements, one must 

remember that the physical presence of the probe might perturb cellular processes, 

decreasing accuracy of the measurement.  Also the intracellular measurements can be 

skewed by sequestration to specific organelles inside a cell, like the lysosomes.  As with 

imaging, one can use fluorescent particles, quantum dots [45], dye filled particles [33], 

and gold particles [19] [66].  Magnetic microparticles also can be useful in detecting 

proteins, DNA, detecting bacteria, and measuring bacterial growth, either by magnetic 

separation techniques or magnetic rotation. 

1.1.3.3 Therapy 

Particles, mostly simple particles like gold, have been used for several decades 

as therapeutic agents.  By 1972, liposomes were used to help inject proteins in to rats 

and radioactive particles to follow liposome concentrations throughout the body. [78]  

There are multiple therapies in use today: drug delivery, gene therapy, photothermal 

therapy (PTT), and photodynamic therapy (PDT).  In this section drug delivery and gene 

therapy will be discussed.  Both PTT and PDT will be discussed in greater detail in later 

sections.   
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Many drugs have very adverse side effects and some of most promising drugs 

are extremely toxic.  In order to limit side effects, scientists have been contemplating 

how to deliver drugs to specific sites in the body and limit the concentration of drugs that 

are in the other parts of the body.  Another issue in delivering drugs is keeping drug 

concentrations in the therapeutic range.  It is difficult to keep drugs in the therapeutic 

range because the concentration of drugs in the body shoots up and then drops after 

each dose.  The rate of increase and decrease is not the same for each person either.  

Another issue of keeping particles in the therapeutic range is when the therapeutic 

range overlaps with toxic range of the drug.  This is often the case with current cancer 

drugs and many promising cancer drugs that have not been used as of yet because of 

their high toxicity.  Last of all drugs are not always hydrophilic and have very low 

solubilities in water, which can make it impossible to get drug concentrations to even 

reach the therapeutic range.  Particles have shown to resolve or lower the severity of 

these issues.   

The concept of particles transporting drugs to cells is not a new idea.  Particles 

have been used since at least 1975 try to increase uptake of drugs. [6]  Liposomes, 1-

10 μm in size, were loaded with radioactive ion 22Na+ and 85Rb+ for cancer therapies. [6]  

Other large particles, micron and larger, have been used for controlled release of drugs.  

Controlling the release of the drugs helps keep the drug concentrations within the 

therapeutic range, as well as keeping the drug concentrations from spiking into, or too 

much into the toxic range.  By varying the synthesis and chemistry of PLGA, 

researchers have determined how to change the rate of release of different drugs. [60]  

Microparticles do have a few advantages for drug release.  First, they have a larger 
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loading capacity than that of smaller particles. [60]  They will also remain in the tissue of 

the injection site, increasing the concentration of drugs at the target location. [60]  This 

is another method of passive targeting, besides using passive or dynamic targeting, to 

increase the drug's effectiveness.  As mentioned earlier, nanoparticles on the other 

hand have higher penetration depth, higher uptake into cells, can enter the tumor 

through EPR effect, can exit the vasculature to enter cells, and are more readily 

bioeliminated. [39]  With the decrease in size, however, other issues arise.  Certain 

tumor cells are known to able to pump out small drug molecules or probes.   

The hydrophilicity of the particle matrix is vital for drug loading, and the 

hydrophilicity of the particle surface is important in determining the solubility of the 

particle in the body.  Hydrophobic drugs, previously unsuitable for drug therapy, can 

now be incorporated in hydrophobic particles with hydrophilic surfaces to make them 

suitable for drug therapy, such as the aforementioned Camptothecin, which had a 1000 

fold increase in solubility. [43] [80]   

Small molecule drugs are not the only therapeutic agent that can be delivered.  

Nanoparticles can also be used in gene therapy to deliver DNA to cells. [20]  The 

release of DNA from gold nanorods was controlled by using light to melt the nanorods. 

This is another method besides biodegradation and pH-sensitive to control the release 

of drugs or genes. [32] [85] [86]  

Particles have shown great potential in future drug applications.  With targeting, 

improving cellular uptake, controlling drug release, and improving solubility, particles 

can be used to decrease toxicity of drugs and improve their effectiveness.   
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1.1.3.4 Catalytic Activity 

Often forgotten by the biological community is the catalytic activity of different 

types of particles, usually metallic particles. For example, palladium is effective as a 

catalyst for hydrogenation of nitrobenzene. [17] Though this work will not discuss this 

further, it is important to remember the different functionalities of particles, in case they 

do affect future results.   

1.1.3.5 Combination 

Each of the aforementioned applications can also be used in conjunction with 

another application.  Imaging and analytical measurements in combination are very 

common.  Also nanoparticles loaded with contrast imaging agents and therapeutic 

agents, instead of sensing elements, can be used. [59] [104] [105]  For example, 

research groups have used dye loaded polymer particles, iron oxide particles, and 

multifunctional quantum dot in vivo for cancer imaging and therapy. [58] [59] [106]  Later 

chapters will discuss combination applications in more detail.   

1.2 Photothermal Therapy 

1.2.1 Introduction 

Mammalian cells have ideal operating temperatures, and once the cell 

undergoes hyperthermia and is heated out of this range, cells begin to die. This is the 

concept behind thermal therapy, the precursor to photothermal therapy.  Though simple, 

as are many ideas in science, taking advantage of this attribute could lead to the cure or 

to effective treatments for many ailments.  Thermal therapy has had its downfalls, and 

with the advent of new methods, such as photothermal therapy, there is renewed 

interest in using thermal therapy as an effective tool in combating cancer.  In this 
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section we will discuss the history of hyperthermia, what is hyperthermia, the cellular 

response to hyperthermia, photothermal therapy as a method of inducing hyperthermia, 

and how the body responses to photothermal therapy. 

1.2.2 Hyperthermia 

1.2.2.1 History of Hyperthermia 

Some of the first work using heat as a therapy was in 1910, and it used 

temperatures ranging from 50-55°C to kill the tumor cells. [107]  Although the initial 

studies ranged from 50-55°C, most of the following studies in the early years ranged 

from 42-43°C. [108]  Initially full body heating tests were done with little or no advantage 

and so most opted for local or regional heating. [109]  Many of these tests were done 

with water baths or semi localized heat sources (heated objects) with some success.  

Other options for localized heating included external microwave applicators, ultrasound 

beams, small magnetic induction coils, and radiofrequency plate applicators. [109] [110] 

[111]  With the minimal success of thermal therapy by itself, researchers began 

exploring it as an adjuvant with other therapies, such as radiation therapy [107] [112], 

alcohol [112], or just simple resection of the tumor.  For example, the radioresistant 

melanoma, S91, can survive x-ray radiation doses of 1000 r.  When the melanoma was 

pretreated with thermal therapy at 44°C for 30 min, there was complete regression in 20 

of the 25 mice. [112]  Likewise, the treatment of S180 sarcoma by just heating the cells 

15 min increased the efficacy from 25 % to 75% cell death at 1000 r. [112]  It was 

shown that the combination of the two therapies were more effective.  Often it was 

difficult to heat the tumor because of location, shape, or size leading to one of the 
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reasons why today in medicine it is not a common practice and is often considered still 

experimental. [113] 

1.2.2.2 What is Hyperthermia 

Hyperthermia is defined as the heating of tissue above standard conditions, 

37.5°C in the case of most mammalian cells.  It has been tested thoroughly in the past, 

and most tests range from 39-45°C. [108] [114] [115] [116] [117] [118] [119]  There is 

mild hyperthermia, ranges from 39-41°C [108] [117] [118] [119], and standard 

hyperthermia, ranges from 42-45 °C. [108] [114] [115] [116] [117] [120]  Changes in 

cellular activity do arise from mild hyperthermia, but cell death isn't noticed until 42°C 

and above. [117]  Any temperature above 45 - 46°C generally causes necrosis and is 

often not discussed when discussing hyperthermia.   

1.2.2.3 Mode of Cell Death 

Before the effects of hyperthermia are discussed, it is important to discuss the 

two main courses of cell death: apoptosis and necrosis.  Apoptosis is an orderly 

programmed cell death and is the common course for cell death.  The main signaling 

pathways for apoptosis include death receptors, mitochondria, and ER (endoplasmic 

reticulum). [121]  During apoptosis, cells release multiple proteases that trigger 

intercellular connections to be eliminated, cells to shrink, cytoplasm to condense, 

cytoskeleton to collapse, nucleus to collapse, and then the cells to bleb. [120]  The 

expression of caspase-8 or caspase-9 proteases initiates this cascade to cell death. 

[122]  After blebbing, the cells are then eliminated by phagocytosis.  The activation of 

cells to express the proteases necessary to cause cell death can be caused by multiple 

factors, such as viral infections, normal cell death, and DNA mutations.  In the case 
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when cells are in state of hyperthermia, apoptosis occurs from 41-46°C. [122] [123] 

[124]  This pathway is the ideal pathway when killing cancer cells with any of the many 

different therapies available.  The reason this pathway is ideal is because there is no 

inflammatory response, which could hinder phagocytotic uptake of the dead cells.   

Necrosis, the other method of cell death, is caused by cellular trauma.  The 

trauma can be caused by such conditions as anaerobic environments, excessive heat, 

extreme cold, or a mechanical damage to the cellular structure.  Necrotic cells 

essentially explode, leaking cellular contents such as cytoplasm, enzymes, and 

cytokines into the interstitial fluid.  Cytokines often induce an inflammatory response, 

which can cause complications in the host.  In thermal therapy, necrosis occurs from 

46-70°C and is often called thermoablation. [10] [122] [123] [124]  As with many rules, 

exceptions have been observed and researchers have shown that sustained 

temperatures of 43°C can also cause necrosis. [125]  Necrosis is also seen when cells 

are killed using micro explosions. [10]  Fundamentally base protein denaturing or 

caused by strong acid and bases as well. [122]  Often there are regions in which 

necrosis is surrounded by a mixture of necrotic cells and apoptotic cells, with the very 

outer layer being apoptotic. [122]   

1.2.2.4 Cellular Responses to Hyperthermia 

Cellular response to hyperthermia is dependent on several variables.  A few of 

the variables include cell type, vasculature, blood flow, and thermotolerance.  Not only 

do these influence the potency of hyperthermia, but many of the variables are also 

affected by hyperthermic conditions.  The heat that is used to target tumors is often 

applied, or spills over, to the healthy surrounding tissues.  Healthy tissue reacts 
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differently than cancerous tissue to hyperthermia.  In this section, the hyperthermic 

effects on blood flow, pH, and oxygen concentrations in tumor cells and healthy cells 

will be compared, and then thermotolerance of cells will be discussed. 

In most studies targeting cancer, healthy cells are inadvertently heated as well.  

When heating healthy cells to 42-45°C for 1 h the blood flow increases 3 to 4 fold, with 

the flow peaking about 1 h after heating. [114] [115]  This has been observed using 

multiple types of tissue. [115]  The increase in blood flow regulates the temperature of 

tissue, making hyperthermia less effective at killing outer cells of the tumor. [115]  Once 

the blood flow increases, the healthy cells temperature lowers 1.0-1.5°C for muscle and 

0.5°C for skin. [115]  Blood flow and oxygen concentrations are correlated, resulting in 

an increase of oxygen uptake, observed skin, lymph nodes, and lung tissue. [117]  The 

pH of the muscle tissue that surrounds a tumor during hyperthermia also increases. 

[115]  All of the mentioned effects are common for healthy tissue during hyperthermia.   

The effects on cancer cells and their vasculature are very dependent on the type 

of tumor and the stage of the tumor.  Before describing the effects of hyperthermia on 

tumor cells, it is important to understand tumor vasculature.  The tumor vasculature is 

similar to that of healthy tissue when it is small, but it changes drastically as it increases 

in size.  First the capillaries of tumors are irregular with a lot bends, twists, distortions, 

and dilations.  Second, as the tumor grows, the capillaries tend to elongate with an 

increased amount of networking.  These two differences from healthy tissue spread the 

pressure away from the host arteriole more than it would with healthy tissue and 

vasculature. [114]  For this reason tumors do not act the same as healthy tissue with 

changes in blood pressure, oxygen concentration, oxygen uptake, and changes in pH.   
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The blood flow to tumors during and after hyperthermia depends on the size of 

the tumor, temperature, time heated, and tumor type. [114] [115] [118]  As previously 

mentioned, the vasculature pressure decreases drastically as the tumor increases.  

Commonly, the blood flow increases a little when heated from 41-42°C but drastically 

decreases when the temperature is greater than 42°C. [114] [115] [118]  With smaller 

tumors, < 0.7 g, blood flow increases even when even heated above 43°C for 1 h. [115]   

The smaller the tumor, the greater the increases in blood flow with heating. [115]  For 

larger tumors heated above 42°C, the blood flow decreases more rapidly with an 

increase in the size of the tumor. [115]  This is what should be expected because the 

vasculature and surrounding environment resembles healthy tissue more and more as 

the tumor decreases in size.  As with healthy cells, changes in blood flow are not 

immediate and they do not return to normal immediately after hyperthermic conditions.  

It is not uncommon for it to require a few hours proceeding hyperthermia for blood flow 

to return to normal.  Knowing this, it may be better to keep the tumor in hyperthermic 

conditions for longer periods of times so that the blood flow is even lower to the tumors, 

and the tumors are under harsh conditions for longer periods. [115]  Another fact that is 

often overlooked is that there are many variations in tumors and they are affected 

differently by hyperthermia.  SCK tumors and Walker tumors under similar conditions 

showed that SCK tumors had a higher blood flow than Walker tumors. [115] 

There are two effects that come from the differences in blood flow between 

tumors and healthy tissue.  Tumor cells will have higher temperature than healthy 

tissue, and it will take longer for tumors to return to normal operating temperatures.  

This is because blood flow regulates the temperature of cells, and the lower blood flow 
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of tumors makes it more difficult to regulate their temperature.  This weakness of tumors 

is one reason that thermal therapies are promising. 

The behavior of oxygen concentration is similar to that of the blood flow.  Oxygen 

concentration increases with temperatures 37-39.5°Cb but decreases with temperatures 

above 42°C - 43°C. [108] [117] [118] [126] [127] [128]  In the intermediate range, ~41°C, 

there are no statistical significant changes in O2 concentration. [129]  Oxygen 

concentrations are dependent on both blood circulation and oxygen consumption rates. 

[130]  The oxygen consumption rate reverses from increasing at temperatures of 41-

42°C, to decreasing at temperatures above 42°C. [128]  As blood flow decreases, 

oxygen consumption also decreases. [129]  The relaxation time in tumors cells can take 

several days to return normal. [117] [131]  When implementing hyperthermia as an 

adjunct therapy, a decrease in oxygen concentration can hinder the functionality of the 

other therapy.  To increase oxygen uptake into cells, there are different drugs, such as 

Nicotinamide, that can be used. [118] [132]  In the case of radio therapy, Nicotinamide 

increases the damage caused by radiation therapy. [118] [132]  Unfortunately, the 

induced increase in oxygen uptake does not appear to change the effectiveness of lone 

hyperthermia. [132]   

Not only do the blood and oxygen levels decrease, so do nutrient levels, rate of 

DNA synthesis, protein synthesis, and the pH level of tumors. [114] [115] [128] [129] 

[133] [134]  Nutrient consumption follows the same pattern as oxygen consumption; it 

increases at lower temperatures, is neutral around 41°C, and it decreases above 42°C. 

[128] [129]  These effects may differ when there are other factors involved, such as 

radiotherapy. [135] 
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Cells are known to be able to adapt to certain changes in their environments.  

Over 50 years ago, Crile discovered that tumors previously heated to hyperthermic 

conditions were more resilient, or thermotolerant, to future increases in temperature. 

[112] [136] [137]  Thermotolerance is not unique to cancerous tissue, and is also seen 

healthy tissue. [112] [115] [116] [137] [138]  It develops after short exposures, around 

30 min, of lethal temperatures ranging from 43-45°C, but it can also occur during 

continuous heating of 3 or more hours at nonlethal temperatures ranging from 39.5-

41.5°C. [120]  These are the common conditions that cause thermotolerance.  Some 

cell lines will deviate from the norm and require more or less heat to become 

thermotolerant. [133]  The period between dosages, usually 0.5 to 12 h, is important in 

determining how much resistance cells will have to future hyperthermic conditions. [108] 

[116] [127] [137]  Thermotolerance can also occur during constant heating, but it 

appears to only slow the rate of death a little. [116]   

Tumor cells are more heat-sensitive than normal tissue due to the lack of blood 

flow, which makes it difficult to compensate for changes in temperature like in healthy 

tissue. [115]  Not being able to conform to changes in heat, the amount of oxygen and 

nutrients to tumor vasculature lower. [114]  In tandem with lower interstitial pH, the 

vasculature collapses with the center of the tumor being the more sensitive to the 

changes than the periphery. [114] [135]  Hyperthermia affects other biological 

processes, such as nitric oxide synthase production and overall tumoural nitric oxide 

production, and there are other sources of information that discusses in greater detail 

the effects of hyperthermia. [108] [118]   Even though there are many similarities 

between tumors, the efficacy of thermal therapy depends on the type of tumor. [112]  
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Various healthy cells also react differently to hyperthermic conditions and can affect 

results in vivo. [112] 

1.2.3 Photothermal Therapy (PTT) 

Photothermal therapy is a type of thermal therapy that uses light to heat tissue.  

The interest in thermal therapy to treat cancer has recently increased because of the 

hype around the properties of gold nanoparticles.  Gold particles have strong absorption 

cross-sections, high scattering ability, are easily tunable, and have minor toxicity (with 

some controversy about toxicity).  The strong absorption cross-section, along with the 

ease of tuning the absorption peak, prompted researchers to test gold nanoparticles as 

possible heat sources when they absorb electromagnetic radiation.  Groups have used 

many varieties of gold nanoparticles; nanorods, spheres, nanocages, and nanoshells. 

[11] [12] [14]  Nanorods are one of the more exciting of the gold particles because of the 

ease of tuning their wavelength by adjusting their aspect ratio.   

Dye molecules, such as Indocyanine Green, have also been used as 

photosensitizers, or light absorbers, in PTT. [139]  Gold particles are considered better 

because of their high absorbing cross-section.  In the case of 40 nm gold sphere, the 

cross section is 5 orders of magnitude greater than Indocyanine Green molecule. [140] 

[141]  This comparison is often made, but the conclusion that many have drawn from it 

is not completely accurate.  Of course a large particle will have a much larger absorbing 

cross-section than a single molecule but there will be more dye molecules than 

particles.  This will be discussed in further detail in chapter 2.   

Photothermal therapy does not require particles to function.  A very strong light 

source, usually a laser, can often heat up the target enough to accomplish the task, as 
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in photothermolysis (e.g. laser hair removal).  The main issue with this technique is that 

targeting is only as good as the aim and the absorption of the target.  The laser light 

scatters through the cellular mediums, which results in collateral damage to surrounding 

tissue.  Particles have a dual utility; they increase absorption at the target and can 

improve targeting.  If the dual utilities are used in conjunction, the light intensity and 

particle concentration can be tuned so that surrounding tissue will never reach the heat 

threshold that causes cell death, but the target will surpass the threshold.   

In order to minimize collateral damage, a couple of strategies should be 

observed.  First, the light source should be focused on to the target to minimize damage 

to the surrounding tissue.  In the case of particles, the light should not be absorbed by 

the cells, but by the particles that have been targeted to the tumors. The stray light not 

absorbed by particles will also diffuse over a larger volume before being absorbed.  This 

way, any stray light will not heat up the surrounding cells much and it can penetrate 

deeper.  Some groups say the optical window of tissue is between 650 nm to 900 nm, 

but it depends on the type of tissue. [142] [143] [144]   Other groups say the optical 

window is closer 700 nm to 1100 nm [30] or 600 to 1300 nm. [145] [146] [147]  The 

ability of the system to kill tumors increases if the particles are tuned to absorb in this 

range and a light source emits in this range.     

When considering a particle, it is important to remember some of the previously 

mentioned attributes of particles.  Particles should be designed to minimize toxicity, 

increase bioelimination, and maximize absorption at the target site.  The matrix material, 

surface coatings, size, and shape all need to be adjusted to minimize toxicity and 

improve bioelimination.  Particles may need to be actively targeted to be effective and 
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prevent damage to other surrounding tissue. [125]  In the case of tumors, passive 

targeting through the EPR effect may be sufficient.  Surface chemistry is the major 

variable in EPR uptake.   

The particle density from the amount of particles taken in affects the total 

absorption.  With a higher absorption comes a higher temperature, which makes the 

particles more efficient at killing cells.   Changes in size, shape, and an increase in dye 

loading can also increase absorption.  Size and shape changes not only change the 

absorption cross-section of particles, but they also affect cellular uptake of the particles.    

Increasing the dye loading usually will increase the absorbing cross-section of the 

particle.  If there is too much dye, the dye molecules can interact, effectively lower their 

absorption.  This is very dependent on the dye molecule, as well as on the matrix 

material.    

There will be differences between in vivo and in vitro results caused by blood 

flow, heterogeneity of tissue, variations in optical window, scattering, and deviations in 

particle concentrations. These differences need to be taken into consideration when 

adapting the system to in vivo.   

1.2.3.1 Coomassie Blue Polyacrylamide Nanoparticles for PTT (Discussed in 

Chapter 2) 

Currently gold is the primary method for particle PTT, and chapter 2 will discuss 

the results of a competing method using Coomassie Blue conjugated in a 

polyacrylamide nanoparticle.  Competing treatment methods are often used for different 

scenarios such as hypersensitivity, lower costs, lower toxicity, alternative side effects, 

improved bioelimination, improved functionality, lower long term effects, ease of use, 
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and some nonsensical reasons such as pretty color and name.  Some of these reasons 

will be discussed in greater detail in chapter 2.  A Coomassie Blue derivative was 

synthesized to copolymerize with polyacrylamide.  Nanoparticles were synthesized 

using reverse micelle, and cross linked with a biodegradable cross-linker, N-(3-

Aminopropyl) methacrylamide hydrochloride (APMA).  Particles had an average size of 

96 nm, with a large size distribution.  The particles were incubated with HeLa cells of 

varying concentrations for approximately 24 h before being excited with a LED array.  

CB-PAA particles showed promising results and were able to kill almost all of the cells.  

Cell death was dependent on particle concentration and exposure time, as would be 

assumed.  Methods of improving the technique and particle system will be discussed in 

greater detail in chapter 2.    

1.3 Photodynamic Therapy 

1.3.1 Introduction 

Photothermal therapy is one possible method to fight diseases, but another 

alternative is photodynamic therapy (PDT).  Advancements in photodynamic therapy 

have led to new therapies that are currently going through FDA trials or are currently in 

use.  PDT is a three-component system that produces reactive oxygen species when 

they are all present:  photosensitizer (PS), excitation source, and oxygen. [148]  The 

therapy is based on energy transfer from a photosensitizer, which has been excited by a 

light source, to oxygen.  This creates a reactive oxygen species (ROS), singlet oxygen 

in this case, that is toxic.  The unstable ROS species can be used as therapeutic agent 

to combat cancer or bacterial infections. This section will discuss the production of dyes, 

singlet oxygen production, and PDT.   
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1.3.2 Dyes 

There are several different dyes that have been used as photosensitizers.  One 

of the initial and most popular dye was Photofrin®, which is FDA approved. [146]  Other 

PS dyes include toluidine blue O, methylene blue, chlorin e6, 5-aminolevulinic acid 

(ALA), naphthalocyanines, HPPH, phthalocyanines, Levulan®, Radachlorin®, 

Visudyne®, and Foscan®. [146] [149] [150] [151] [152]  Photosensitizers will have 

varying quantum efficiencies, excitation frequencies, excitation bandwidths, cellular 

stability, dark toxicity (cytotoxicity of the dye when there is no excitation), and potential 

to photobleach.  Each of the attributes has to be taken into account when determining 

which photosensitizer will function best.  Another dye that has been used is Indocyanine 

Green (ICG).  Indocyanine Green has absorption peak around 810 nm, with quantum 

yield of 10-20 %.  It functions as a photosensitizer for both PDT and PTT by changing 

between CW lasers and a high energy pulsed laser. [139] [153]  It is important to 

remember that photodynamic PS dyes will also create heat when excited.  Not all 

energy will result in a ROS because of quantum efficiency, and so a lot of the absorbed 

light will be converted into heat.  Cells may not heat enough to kill cells, but the heat 

produced during illumination can affect results.   

1.3.3 Singlet Oxygen Production 

There are two types of ROS species generated.  Type I produces free radicals, 

or superoxide ions, from hydrogen or electron transfer.  Type II is an inversion of the 

spin of one of the electrons in π* orbitals making the electrons paired in the highest 

occupied orbital.  This is the case of singlet oxygen, the main ROS that will be 

discussed.  Singlet oxygen production is dependent on three components: 
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photosensitizer (PS), oxygen, and excitation source. [148]  In the presence of PS and 

excitation source, the PS can absorb photons to excite it from an electronic ground state 

to a short-lived electronic excited state (S1 ~ 10-6 s). [148]  In the excited state, the PS 

can decay back to the ground state through fluorescence, or it can be converted into an 

electronically excited triplet state.  In the triplet state, (T1~10-2 s), there can be 

phosphorescence back to ground state, or an energy transfer to triplet oxygen when 

oxygen is present.  The energy transfer converts triplet oxygen to a higher energy 

singlet state (Figure 1.2). 

 

Figure 1.2: This is a Jablonski diagram showing the energy states of the 
photosensitizer and the energy transfer to oxygen. The photosensitizer is in the 
singlet state and can absorb a band of frequencies. Fluorescence is the most 
common pathway, but there can be an intersystem crossing to a triplet state. The 
energy transition back to the singlet ground state is forbidden and slower than 
fluorescence, which allows for the energy transfer to triplet oxygen.  This 
converts triplet oxygen to a higher energy and unstable singlet state.  In the 
singlet state, the electrons are paired instead of being unpaired in the π* orbital. 

The ability of photosensitizer at converting absorbed light to into singlet oxygen is 

represented by the quantum yield.  For example, methylene blue has a quantum yield of 
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ΦΔ ~ 0.5 [34], and Rose Bangel red has a quantum yield of ΦΔ = 0.75 [154].  The closer 

the quantum yield is to 1, the more efficient the PS at transferring energy. The higher 

the quantum yield, the better it is because less PS is required to accomplish the same 

goal.   

Singlet oxygen is highly unstable, very reactive, and at high enough 

concentrations, it is very toxic.  The life span of singlet oxygen is dependent on 

environmental conditions, and generally ranges from 3.1-4.6 μs in water. [155]  In 

organic solvents, the lifetimes are anywhere from a few microseconds, all the way up to 

a few milliseconds, but most are in the 10-500 μs range. [155]  For cellular systems, the 

lifetimes are 100 ns in lipids and 250 ns in cytoplasm [146].  Because of the short 

lifespans, singlet oxygen activity is restricted to 10 nm in organic solvents and it is 

predicted to be 45 nm in cellular media, but it is not clear how the authors arrived at this 

number. [146] [156]  One of the methods of measuring singlet oxygen production can be 

done by using anthracene-9,10-dipropionic acid disodium salt, a singlet oxygen 

sensitive dye.   

1.3.4 Photodynamic Therapy 

The three components photosensitizer, excitation source, and oxygen, required 

for singlet oxygen production have already been mentioned, but for photodynamic 

therapy there are a few more requirements.  Requirements include singlet oxygen 

production in the correct location, system that produces reactive oxygen species (ROS) 

at correct wavelength, dye that has a high enough quantum yield, a strong enough light 

source, and ROS concentrations within therapeutic range.  Producing the singlet 

oxygen in the correct location is paramount on functionality.  Since singlet oxygen has 
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such a short lifespan, the dye or particle must be close enough to actually affect the 

target.  In the case of bacteria, researchers use dyes that penetrate into the bacteria 

because of the difficulty of killing the bacteria from the outside.  This is the same with 

mammalian cells and particles entering the cells.  The ideal wavelength for most 

applications is within the optical window, as described in the PTT section.  This allows 

for higher concentrations of singlet oxygen production at further depths from the 

surface.  The light source also has to be tuned to that wavelength.  The dye used within 

the particle, or as free dye, also needs to have a high quantum yield.  When the dye has 

a low quantum yield it may be difficult to get enough dye, or dye loaded particles, at the 

correct location to be effective.  The light source not only needs to be tuned to the dye, 

but it also need to emit a high enough intensity to produce enough singlet oxygen at the 

required depths.  Just as with PTT, lasers are the most common method with a few 

groups working with LED arrays.  Taking the previous four requirements into account, 

the particle or dye system can produce enough singlet oxygen to be therapeutic.  

Altering them can increase the effectiveness of the system that is being used.   

There are currently a lot of different systems in use today.  Both dyes and particle 

systems have been used in photodynamic therapy to fight a various range of cancers 

and bacterial infections.  Figure 1.3 is a prime example of a particle system that was 

designed and tested by our group to combat brain tumors.  It uses a methylene blue dye 

incorporated into a polyacrylamide matrix. The PEG is attached to the surface to 

increase biocompatibility and lifetime in blood.   F3 peptide is attached to the surface to 

target the tumor.  ICG is another known system that has been used multiple times to 

treat cancer. [139] [141] [157] 
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Figure 1.3: Example of a therapeutic nanoparticle used for photodynamic therapy 
on tumor cells.  In this example the methylene blue photosensitizer is loaded into 
a polyacrylamide matrix.  The polymer matrix can be functionalized with many 
different molecules, such as is represented by the PEG.  These surface 
molecules can change the behavior of the particle, such as PEG is used to 
increase plasma half-life and reduce nonspecific binding.  Other groups can be 
functionalized to the surface, such as targeting moieties. In the figure above, the 
F3 peptide is used as a targeting moiety so that the particle targets tumor cells. 
[93] 

1.3.5 PDT on Bacteria (Discussed in Chapter 3) 

Nonconjugated methylene blue polyacrylamide particles have been used 

previously in photodynamic therapy. [158]  In chapter 3, a conjugated methylene blue 

polyacrylamide nanoparticle was fabricated to test for improvements in effectiveness in 

killing bacteria.  It was hypothesized that conjugating methylene blue could increase the 

singlet oxygen around the cells by increasing the concentration of methylene blue.  

Targeting particles to specific cells could also be used to increase the therapeutic ability 

of the particles.  In both cases results were contrary to the hypothesized results.  There 

were issues with both results that might explain what had happened.  They will be 

discussed more in chapter 3.   
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1.4 Nonlinear Rotation 

Magnetic particles have been used over the past several years for multiple 

purposes.  One of their most common uses is the magnetic separation of analytes, 

ranging from bacteria cells, peptides, proteins, and DNA, through translational motion.  

Magnetic particles do not only move side to side but they can also rotate in a magnetic 

field.  The rotation dynamics, when the particle cannot rotate the same speed as the 

magnetic field due to drag, allows one to measure changes in drag caused by viscosity 

changes, shape changes, temperature changes, etc.  This section will describe the 

dynamics of particle rotation in a magnetic field, types of particles, and some of the work 

that has been done in the field.   

1.4.1 Rotation of Magnetic Particles  

When ferromagnetic, superparamagnetic, or paramagnetic particles are placed in 

a rotating magnetic field, the particles will rotate.  The magnetic dipole, permanent or 

induced, will always want to align itself with the magnetic field.  When the magnetic field 

is rotating, the particle will also try to rotate.  This is best described by the figure below, 

where φ represents the phase lag, β represents the magnetic field, and m represents 

the dipole moment of the particle (permanent for ferromagnetic, or induced for 

paramagnetic or superparamagnetic particles).  
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Figure 1.4: This is a simple magnetic particle in a magnetic field.  During rotation 
the magnetic moment (m) lags behind the magnetic field (β) by the angle (φ).    

There are two phases for the rotation dynamics of the magnetic particles.  The 

first phase is the linear phase, also called the synchronous regime, where the particle 

rotates at the same frequency as the rotating magnetic field.  It is best represented by 

the following equation 

 
⟨ ̇⟩           (1.1) 

where ⟨ ̇⟩ is the particle’s average rotation rate, Ω is the driving frequency of the 

external magnetic field, and Ωc is the critical slipping frequency.  In this regime, the 

phase lag is fixed with only minor fluctuations, depending on the drag caused by the 

solution’s interaction with the particle.  If the magnetic field rotation frequency is 

increased, so does the lag between the magnetic dipole of the particle and the magnetic 

field.  As the particle increases in frequency, the phase lag will increase until the phase 

lag is over 180° and the particle will prefer to rotate in the opposition direction to align 

itself with the magnetic field.  This point in the change of rotation dynamics, or slip in the 
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rotation of the particle, is called the critical slipping frequency (Ωc).  Mathematically, for 

a sphere, it can be represented by the following equation below.  

 
   

  

   
 (1.2) 

In the equation m is the strength of the magnetic moment of the sphere, B is the 

external magnetic field amplitude, κ is the shape factor, η is the dynamic viscosity of the 

surrounding fluid, and V is the volume of the particle.  This equation only holds true to 

particles with low Reynolds number ( << 1), or in other terms, the particle moment of 

inertia is negligible and does not affect particle rotation.   

The regime where the particle rotation is slipping is described as the nonlinear 

phase, or the asynchronous phase.  The following equation describes the rotation 

dynamics of particle. 

 

〈 ̇〉    √     
         (1.3) 

The nonlinear rotational dynamics of a magnetic particle, when driven by a rotating 

magnetic field, depends both on environmental conditions and on properties of the 

particle. [159] [160] [161]  In the nonlinear phase, the magnetic torque on the particle is 

not great enough to keep the particle in phase with the magnetic field because of the 

drag.  The particle continues to rotate in the state but just at slower frequency than the 

magnetic field, which can be seen in Figure 1.5. [162] [163]  It often appears as a 

oscillating particle, where the magnetic dipole is slowly making a full rotation.  This 

regime is dependent on the particle volume, drag, and shape factor.  Because of this 

dependence, particles can be used to measure changes in volume, drag, or shape 

factor.   
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Figure 1.5: The diagram shows the behavior of a magnetic particle rotating 
asynchronously.  The particle’s magnetic moment is represented by the red 
arrow, and the magnetic field is represented by the blue arrow.  Initially the 
rotation starts in phase, but by the 8th image, the particle is rotating in the other 
direction.  In this case, the magnetic field rotates about eight times before the 
particle completes one full revolution. 

There are various types of magnetic particles: particles with a solid magnetic 

core, particles with multiple smaller magnetic particles within the particle matrix, and 

particles coated with magnetic material. The most common magnetic material is iron 

oxide, but nickel and cobalt also work.  Each of the particle types has their advantages.  

For example, nonmagnetic particles can be coated on one side of the particle with vapor 

deposition creating Janus particles or MagMOONs.  MagMOONs can be used to 

increase the signal-to-noise ratio by locking on to the frequency of rotating particles at a 

known rotating frequency. [164]   

1.4.2 Nonlinear Rotation Results 

As previously mentioned, bacteria strains are becoming more antibiotic resistant.  

A possible solution is to determine the antibiotic that actually works, instead of 

determining the bacterial phenotype.  The best method to do this is by monitoring the 
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cellular growth and division of the bacteria in an antibiotic solution of varying 

concentrations.  No cellular growth means cell death has occurred or cell division has 

been inhibited.  In the research, we worked on determining the cellular growth of varying 

bacteria strains using magnetic particle rotation in the asynchronous phase, or nonlinear 

phase.  Included in this chapter are magnetic particles, magnetic particle rotation, and a 

summary of results.   

1.5 Summary of Remaining Chapters 

In summary, photothermal therapy tests on cancer cells are described and 

discussed in Chapter 2, photodynamic therapy tests on bacteria are described and 

discussed in Chapter 3, detection of bacterial binding using magnetic microparticles is 

described in Chapter 4, and overall conclusions and suggestions for future work are 

given in Chapter 5.  

Some figures of this thesis have been taken from published works: 

Chapter 1- Yong-Eun Koo Lee, Raoul Kopelman, and Ron Smith, “Nanoparticle 

PEBBLE Sensors in Live Cells and in Vivo”, Annual Review of Analytical Chemistry 

2009, 1(2):57-76.  Chapter 4 - Brandon H. McNaughton, Rodney R. Agayan, Roy 

Clarke, Ron G. Smith, and Raoul Kopelman , “Single bacterial cell detection with 

nonlinear rotational frequency shifts of driven magnetic microspheres”,  Applied Physics 

Letters, 2007,  91, 224105. 
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Chapter 2 Photothermal Therapy using CB-PAA 

Nanoparticles on HeLa Cells 

2.1 Abstract 

A Coomassie Blue derivative was synthesized with a PAA nanoparticle delivery 

system to be used for photothermal therapy (PTT) on tumor cells.  The Coomassie Blue 

derivative was synthesized in the lab, and was then copolymerized with acrylamide to 

form a nanoparticle, with Coomassie Blue accounting for 17% of total mass.  Using 

endocytosis, the Coomassie Blue polyacrylamide (CB-PAA) particles were internalized 

by HeLa cells, and then exposed to a 590 nm LED light source.  Cell death was 

measured using varying light intensities, exposure times, and concentrations of CB-

PAA.  When the cells were incubated with 1.2 mg/mL of CB-PAA nanoparticles and 

exposed to 25.4 ± 1.6 mW/cm2 for 40 minutes, there was 97% cell death using a Live 

Dead assay.  Cell death took approximately 2.5 h to complete.  

2.2 Introduction 

There have been many advances in the field of photothermal therapy to treat 

cancer.  Groups have mostly emphasized gold particles, specifically gold nanorods, as 

the photosensitizer.  With very little research done outside of gold nanoparticles, there is 

a great chance of finding a viable option to gold.  It was hypothesized that Coomassie 

Blue polyacrylamide particle, which has a strong absorption band on the edge of the 

visible range, could be used to transfer heat to kill the cancer.  The particle matrix was 
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used as a delivery system that can increase targeting ability of the dye to tumor cells, 

and minimalize the dyes interaction with the body.  This chapter will discuss some 

general information of why new therapies are important to combat cancer, some 

properties of cancer, other cancer therapies, information about HeLa cells, properties of 

polyacrylamide (PAA), and toxicity.  Then it will discuss the experiment and the results 

of using Coomassie Blue polyacrylamide (CB-PAA) nanoparticles to kill HeLa cell.   

2.2.1 Cancer 

In the year 2008 there was an estimated 7.6 million people that die from cancer 

worldwide. [165]  Of these 7.6 million, there were nearly 114,000 brain nervous system 

tumors in the developing countries alone.  Cancer is genetic mutated cells that grow 

uncontrollably, and can often metastasize to other parts of the body, killing the host.  

The origins of cancer and its classifications are going to be discussed, not only to be 

informative, but to better understand how to design therapies to target cancer.  Many of 

the best therapies come from understanding the origins of the disease. 

2.2.1.1 Characterization 

There are over a hundred different types of cancer, and also multiple different 

ways of categorizing cancer. [166]  Cancer is usually categorized by the location of the 

tumor.  There are different terms to describe the location of the tumor.  Examples 

include leukemia (bone marrow or blood cancer), carcinomas (cancer of tissue that 

separate the body from the outside, like lung and prostate cancer), adenocarcinoma 

(cancer in the glands as in breast cancer), lymphoma (cancer of the lymphatic system), 

sarcoma (cancer of connective tissue), colon cancer, brain cancer, and many more.  

There are also many subcategories, such as small cell lung cancer (SCLC) and non-
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small cell lung cancer (NSCLC), of which SCLC grows faster and metastasizes earlier. 

[167]  Tumors can be found as single cells, strands, files, clusters, or sheets. [168]  

They are categorized into two main categories: malignant and nonmalignant.  Malignant 

tumors grow uncontrollably (cancer), and nonmalignant, or benign tumors, are confined, 

as in moles.  Most, about 90%, of cancer related deaths are caused after the cancer 

has metastasized to other parts of the body. [168] 

2.2.1.2 Etiology 

There are three main causes of tumors: high energy radiation, chemical, and 

viral.  High energy electromagnetic radiation, ionizing radiation, and particle radiation 

can all cause mutations in cells.  Electromagnetic radiation needs to have a frequency 

of at least 2.4 x 1015 Hz (125 nm) in order to be over the 10 eV threshold to ionize 

molecules. [169]  Non-ionizing radiation, such as UV-B (315 nm to 280 nm with 

energies of 3.94–4.43 eV), is also known to cause cancer, but there is some argument 

about whether the weaker UV-A can cause cancer. [170] [171]  UV-B rays don’t ionize 

the molecules in cells, but are strong enough to cause reactions in the cells, which in 

turn can cause mutations.  The major sources of high energy electromagnetic radiation 

come from solar radiation, x-rays, and radioactive decay.   

Besides electromagnetic radiation, cancer can be caused by high energy 

particles, α and β particles. Both types of particles are results of radioactive decay.  An 

α-particle is comprised of 2 protons and 2 neutrons.  It has a shallow penetration depth 

that depends on the type of tissue.  A thin layer of dead skin on the epidermis is usually 

enough to block α-particles from damaging healthy tissue.  There are two forms of β 

decay: electron (β-) or a positron (β+).  Beta particles have a deeper penetration than α-
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particles, and penetrate about 4.6 mm, on average, in soft tissue. [172]  Alpha particles 

do not penetrate as far, but they can be even more dangerous because of their high 

ionizing potential that comes from their strong positive charge.  

The next major cause of cancer is chemicals. There are thousands of known 

chemicals that cause cancer.  The leading cause of cancer by chemicals is still 

smoking.  By 2011, researchers had discovered 8889 chemical constituents in cigarette 

smoke. [173] [174]  Of these chemicals they know of at least 45 compounds that do, or 

are suspected of, causing cancer. [175]  These chemicals, and other chemicals, can be 

separated into multiple different groups.  The groups include high energy molecules, 

natural toxins, mutagens, inflammatory chemicals, and others.  

Unstable molecules, or high energy molecules, can come from high energy 

radiation, the body, or from chemicals in the environment.  High energy molecules 

include free radicals, reactive oxygen species (ROS), or ions. [176] [177]  Generally 

antioxidants, such as vitamin c, vitamin e, and polyphenols, scavenge many of these 

high energy molecules. [176]   

Another common set of chemicals that cause cancer are benzene and phenols, 

which lead to Leukemia and Hodgkin lymphoma.   There still is some confusion on the 

method in which benzene causes cancer, but it is believed that benzene causes cells to 

increase ROS production that damages the DNA. [178] [179]  It also affects the 

transcription of the erythroid related genes in the erythroid progenitor cells causing 

erythropoietic depression, or lower red blood cell production. [180]  Another example is 

the natural forming silicate, asbestos, which is used for insulation and to reinforce 

concrete.  Asbestos imbeds in mesothelial cells and can cause mesothelioma. [181] 
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[182] [183]  The method it causes cancer is unknown, but there are couple 

hypothesized paths: a direct path of damaging DNA and an indirect path caused by an 

inflammatory response. [181]  The inflammatory response leads to a release of ROS (by 

the body), RNS (Reactive Nitrogen Species), cytokines, chemokines, and growth 

factors.  This is followed by DNA damage, disruption of mitosis, and/or 

apoptosis/necrosis.  The final steps in the mechanism caused by the inflammatory 

response is activation of intracellular signaling pathways, resistance to apoptosis, 

sustained cell proliferation, impaired DNA repair, chromosomal and epigenetic 

alterations, inactivation of tumor suppressor genes, and activation of oncogenes.  

Carbon nanotubes may have similar effects to cells, but many believe oxidative stress is 

caused by impurities in with the carbon nanotubes, and not by the nanotubes 

themselves.  Some studies have shown that cleaned particles have no acute toxicity to 

lung cells. [92]  Not all chemical carcinogens are man-made.  There are also natural 

toxins, such as aflatoxin B1, which can lead to cancer. 

The last cause of cancer that will be discussed is viruses.  Virus strains alter the 

DNA sequence to produce new viruses, and some strains can cause cancer.  A few of 

the strains that are known to cause cancer include, but are not limited to, Hepatitis B, 

Human Papilloma, and VX-2 Shope virus papilloma for white rabbits. [117]  The causes 

of cancer are very important, and can sometimes lead to better therapies to prevent or 

combat cancer.   

2.2.1.3 Methods of Combating Cancer: Issues and Advantages 

There are several strategies that are implemented to treat, with the goal to cure, 

cancer.  Treatments depend on the type of cancer, location, how aggressive the cancer 
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is, and the type of patient.  The main treatments are surgery, chemotherapy, and 

radiation.  Great improvements in these fields have led to increases in survival rates of 

patients.  There are also many more improvements and new therapies that are in 

development.  

The Practice Guideline for many cancers, as in colon cancer and liver cancer, is 

the resection or the surgical removal of the tumor. [184]  On tumors that can be 

removed, or mostly removed surgically, it is the first choice.  The ease of surgery 

depends on the shape of the tumor, if it is spherical, and if it is intertwined with the other 

tissue.  When performing a resection, it is recommended to remove 1 cm surrounding 

the tumor, which does not work when there is vital surrounding tissues. [185]  Resection 

does have an advantage of being the only curative method for various types of tumors, 

as with colon cancer.  There have been great strides made in resection as a treatment.  

With Colorectal Liver Metastases resections, with intent of curing, the patient improved 

from 69% effective to 87% effective from 1970 to 1992. [185]  Some of the new work 

that is exciting is in tumor delineation, or use of dyes or other items to increase contrast 

between the tumor and healthy tissue for resection. CB-PAA particles, because of their 

strong blue color, may be useful for tumor delineation. 

There are many different chemotherapy drugs currently used to treat cancer.  

Many of the drugs are used for multiple tumor types, and some drugs are designed to 

target specific tumors.  Chemotherapy drugs are known for their adverse side effects 

ranging from nausea, vomiting, depressed immune system, immune disorders, and loss 

of hair. [146]  Some side effects have been extremely reduced by modifications to the 

structure of the drugs, as is the case with cisplatin and carboplatin. [186]  
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Chemotherapy is often used as adjuvant treatment with other treatments, like resection. 

Several examples of drugs that have been studied for adjuvant therapy in stage II and 

III colon cancer and metastatic colorectal cancer include 5-fluorouracil, capecitabine, 

oxaliplatin, and irinotecan. [184] [187]   

As mentioned in chapter 1, there have been some advances in drug delivery 

using nanoparticles.  Natural origin particles have been used since 1975 to try to 

increase the uptake of drugs. [6]  More recently, there are particle-based drug systems 

like Abraxane (paclitaxel in an albumin particle), Brakiva (topotecan in liposomes), 

CRLX101 (camptothecin conjugated to a cyclodextrin-polyethylene glycol copolymer) 

[80], and MTX (MTX incorporated in a dendrimer) [39].  Nanoparticles function well at 

increasing the quantity of drugs delivered to the tumor through the EPR effect [41] [80], 

controlling release of the drug [6] [60], and targeting. [39]   The increased drug 

concentrations localized at the tumor also function well at lowering side effects by 

lowering the effective dose required to be effective. 

There are various types of radiation therapy, such as gamma rays and x-rays.  

The problem with radiation therapies is the adverse side effects that not only can kill 

cancer, but can also cause cancer.  Besides causing cancer, radiation also causes 

severe damage to epithelial surfaces, infertility, and swelling of soft tissues. [146]  In the 

past, thermotherapy had been used in conjunction with radiation therapy. [132]  Mild 

hyperthermic conditions improved the effectiveness of radiation therapy.  Besides 

thermotherapy, other adjunctive therapies include using drugs like nicotinamide to 

increase the oxygen concentration in the cells, which is needed since hypoxic cancer 

cells are radioresistant. [118] [132] 
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Several of the new methods to fight cancer include photodynamic therapy [146], 

photothermal therapy [14], other thermal therapies [110] [147], and gene therapy [55].  

Many of these methods try to take advantage of the unique qualities of tumors, such as 

Enhanced Permeability Retention (EPR), fast growth, lower pH, increased concentration 

of certain proteins, etc. [188]  It is not where cancer and healthy tissue are similar that 

most of advances in therapy will occur, but where they differ.   

2.2.2 Toxicity 

One of the most important factors, if not the most important factor in choosing a 

polymer matrix, is toxicity.  Toxicity depends on a lot of different factors.  Many of these 

factors, such as cell type, have been previously mentioned in chapter 1. [46]  Below is a 

chart of responses to toxins, effects to the body, and some initial tests done to 

determine overall toxicity of particles, drugs, etc. [81] 

Responses Effects Initial Evaluation Tests 

Histopathological 
changes 

Hypersensitivity Cytotoxicity 

Humoral responses  Type I - anaphylactic Sensitization 

Host resistance  Type II - cytotoxic Irritation or intracutaneous 
reactivity 

Clinical systems  Type II - immune 
complex 

Systemic toxicity 

Cellular Responses  Type IV - cell-mediated                  
(delayed) 

Subchronic toxicity 

 T cells Chronic inflammation Systemic toxicity (acute) 
 Natural Killer cells Immunosuppression Subchronic toxicity 

(subacute toxicity) 
 Macrophages Immunostimulation Genotoxicity 
 Granulocytes Autoimmunity Implantation 

    Hemocompatablitiy 

    Supplementary evaluation 
tests  

     Chronic toxicity 



62 
 

     Carcinogenicity 

     Reproductive/developmental 

     Biodegradation 

Table 2.1:  This is a table of the different responses to toxins, effects they have to 
the body, and some evaluation tests to determine toxicity. [81] 

Cytotoxicity tests, such as MTT assay, though important and often one of the only tests 

done to declare a system nontoxic, are not the only tests to determine toxicity.  There 

are a lot of steps and processes to determine the overall toxicity of a system. 

2.2.3 Polyacrylamide 

Polyacrylamide (PAA) was chosen as a delivery system because it is known to 

be safe and is a common polymer used in purifying drinking water, oil recovery, oil well 

drilling fluids, fracturing aids, wastewater treatment processes as flocculants, in soil 

conditioning and stabilization, as emollients in some personal care and grooming 

products, grout, dye acceptor, mineral processing, paint softener, paper manufacturing, 

and paper board manufacturing. [189] [190] [191] [192]  It has also has been used for 

years in biological applications, such as breast implants. [193] [194] [195]  Except for a 

few examples that are more likely caused by other issues, PAA shows little or no 

toxicity, even in extreme concentrations. [34] [189] [192] [196]  In most cases, there are 

no issues and the body just coats the PAA with a cellular membrane that has thin fibers 

of connective tissue that integrate the PAA with the surrounding tissue. [194] [197] [198]  

Besides it having low toxicity, PAA is used because it has a high hydrophilicity [34], low 

cost to produce, easy to conjugate, and can be cross-linked with biodegradable linkers.   

Polyacrylamide is polymerized through a free radical reaction of the monomer 

acrylamide.  In the presence of water, the polyacrylamide absorbs the moisture, swells, 
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and forms a hydrogel.  For many applications, including breast augmentation, the 

hydrogel is usually around 2.5% cross-linked polyacrylamide. [193] [194] 

2.2.3.1 Toxicity of Polyacrylamide and Starting Materials  

The toxicity of PAA has been studied since the early 50's, and because of its low 

toxicity, it has been used in biological applications in China and Europe since 1997. 

[189] [198]  As of 2000, over 30,000 patients have been injected with bulk 

polyacrylamide for aesthetic and plastic surgery in the Soviet Union. [194]  Some 

complications have arisen from using it in cosmetic surgery applications. [193] [194] 

[195] There were 15 cases of complications from the reviewed cases in the years 2004 

to 2007.  Of the 15 cases of complications, most of them had inflammation, granulomas, 

and cellular membrane around injections. [193] [194] [197]  The injections or the 

implants of PAA gel were ranging from cheeks, nose, eyelids, breasts, and one penis.  

Out of the 15, 5 required surgical removal of the PAA, usually squeezed out of a small 

incision. [193]    Seven of the eight of the granuloma patients tested positive for bacteria 

in the PAA.  When compared to other dermal fillers, it appears to have fewer toxicity 

issues.  There have been some cases in which some issues have been observed such 

as inflammation (due to infection), hematoma, multiple induration and lumps, persistent 

mastodynia, mastalgia, and lactation. [194] [195] [199]  Most issues that arise can be 

easily attributed to bad medical practice, and not from the toxicity of PAA. [195]  Other 

studies have been done in other mammals to test toxicity and other possible effects.  In 

pigs, there were no significant issues from PAA gel. [197]  The most dangerous part of 

injecting it into pigs came from infections caused by contamination or unclean practices. 
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[197]  Polyacrylamide still has ideal characteristics for a dermal filler, but needs more 

studies into complications. [193] [198]   

The bulk properties often differ than that of particles made of the same material.  

Unlike bulk PAA, polyacrylamide nanoparticles are still in the earlier stages of use, and 

have only been used in animals.  Polyacrylamide nanoparticles also show very little, if 

any toxicity.  When Fisher344 rats were injected with PEGylated PAA particles, no 

toxicity was observed, even when the rat was injected with 5 and 50 mg/kg. [81]  At 500 

mg/kg of PAA, the rats showed no inflammatory response, but they did have modest 

elevation in alkaline phosphatase, which could mean there were issues with the liver 

removing the particles from the rat.  In vitro, PAA nanoparticles do not show any MTT 

toxicity in C6 glioma, A549, MBA-MB-435, and MCF-7 when incubated in 4 mg/mL for 

24 h. [33]  This was also confirmed with F3 methylene blue PAA nanoparticles that 

showed no, or limited dark toxicity in vitro 9L, MDA-MB-435, and F98. [34]  There is 

some information that anionic PAA may be toxic at high molecular weights, but this 

toxicity is often attributed to the unreacted AA monomer units. [192]  

There are a few ways polyacrylamide can be toxic: residual acrylamide (AA) 

[191], residual surfactants, chemical contaminants, and/or biological contaminants.  

Acrylamide is an acute eye irritant, skin irritant, respiratory tract irritant [189], neurotoxin 

[191] [192] [196], causes axonopathy in human and animals [196], and in acute 

conditions, it affects the kidneys, liver, and lowers the reproductive rates in females and 

males (lower sperm count). [191] [192]  Most of the issues that arise are reversible with 

time, depending on the exposure. [196]  Acrylamide injected intraperitoneally (IP) with 

dosages of 30 mg/kg/day only takes 2-10 days to show neurotoxicity in cats and rats. 
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[192]  That would be equivalent to 1.8 gram/day injected in a 60 kilogram person.  For 

oral toxicity, the LD50 is about 150-180 mg/kg in rats, guinea pigs, and rabbits. [192]  

The restriction on oral consumption of acrylamide is 0.5 μg/kg/day (regarded as 1000-

fold safety level). [192]  The average daily oral exposure of AA for a United States 

citizen is about 0.4 μg/kg/day. [191] 

Polyacrylamide particles are formed in a reverse micelle reaction that requires 

surfactants to stabilize the cells of hydrophilic reactants and reaction solvents.  After the 

reaction has concluded, there is surfactant attached to the surface of the particles that 

needs to be washed and removed.  The remaining surfactant, if not enough is removed, 

can be toxic and can cause adverse cellular reactions.  The two surfactants that are 

commonly used in the reaction are Brij 30 and AOT.  Many of the values for toxicity are 

for oral consumption, which does not accurately portray how the body will interact with 

intravenous injection.  In the case of Brij 30, the intravenously LD50 (lethal dose required 

to kill 50%) is 27 mg/kg for a rat and 100 mg/kg for a mouse. [81]  For AOT the LD50 is 

60 mg/kg in a mouse. [81]  To remove the excess starting materials and remove 

contaminations, it is necessary to wash the particles thoroughly.  These will probably be 

two biggest causes of any toxicity observed.   

2.2.4 Accumulation, Biodegradability, and Bioelimination 

Where particles accumulate in the body and in cells has a lot to do with how they 

are bioeliminated.  Nonbiodegrable PEGylated PAA and standard PAA larger than 

10nm accumulated mostly in the liver and spleen. [81]  The liver and the spleen are part 

of the RES, and is the pathway to remove large biocontaminates.  The particles were 

not discovered in the vascular lumen of the renal glomerulous, as would be expected, 
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because the kidneys can only filter into the nephron only those objects smaller than 10 

nm. Moreover, the particles used in the study could not biodegrade into smaller 

fragments or dissolve completely. [32] [60]  If the particles are not eliminated, buildup 

can cause long-term adverse outcomes and limit the amount of treatment that can be 

administered.   

As mentioned in chapter 1, one method to increase bioelimination is by making 

the particle matrix biodegradable.  Polyacrylamide chains do not biodegrade into its 

monomer unit or any smaller unit. [81] [192]  The backbone of PAA is extremely stable 

and does not breakdown without photodegradation, mechanical breakage, heat (200-

300°C), or free radical degradation. [189] [190] [192]  It is not clear from the available 

literature whether or not acrylamide is one of resulting products liberated from metabolic 

breakdown of the particle. [189] 

When forming a cross-linked PAA matrix, the cross-linker can be biodegradable.  

If the linker is biodegradable, the resulting products can be small enough to be 

eliminated renally, or easier to pass through the reticular endothelial system (RES).  

The more biodegradable cross-linkers (glycerols) used, the more likely the particles 

were to pass through urine vs. feces. [81]  When injecting a rat with nonbiodegrable 

PEGylated PAA, about 4% was excreted within 5 days, with the remaining recovered in 

the liver. [81]  Whereas particles synthesized with 10% biodegradable cross-linkers had 

about 10% excreted in the first five days. After 42 days, about 17% of the particles were 

excreted.  PAA goes through a 2-phase degradation, with the first phase of elimination 

peaking around day 1, and the second phase starting after 14 days, and elimination 

jetting up at day 35.  The increase in elimination is a good sign for minimizing potential 
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issues arising from long term exposure to PAA and making PAA a good candidate for a 

particle matrix.   

2.2.5 Dye 

When choosing the dye for photothermal therapy, there were a couple of 

characteristics that were desired.  First, the dye needed to be in the optical window of 

cells, absorbing near, or in, the infrared.  The original dye also needed to be nontoxic to 

increase the possibility that the derivative would be nontoxic. Thirdly, the derivative of 

the dye needed to be easy to synthesize and have high incorporation in to the particle to 

increase its total absorption. Lastly, the dye should also be blue so that it can serve a 

dual purpose as a photosensitizer and a contrast agent for tumor delineation.  It was 

determined that Coomassie Blue fulfilled these properties.  Coomassie Blue is a very 

common dye used in protein staining, and it has a strong absorption band around 595 

nm.  The dye, Coomassie Blue, is nontoxic up to extremely high concentrations, but this 

does not mean that the derivative is nontoxic or it being connected to PAA is nontoxic. 

[200] 

A derivative of Coomassie Blue G250 was synthesized by Michael Nie, a 

member of the Kopelman Group, to increase dye incorporation.  The derivative could 

act either as monomer unit, or as a biodegradable cross-linker to copolymerize with 

PAA.  Altering the dye was done on the sulfur groups to minimize affect to dye and 

changes to toxicity.  N-(3-Aminopropyl) methacrylamide hydrochloride (APMA) was 

attached by the terminal amine to make the new derivative, which can be seen in Figure 

2.2. 
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2.2.6 HeLa Cells 

When choosing a cell line, it was decided that a very common strain, HeLa cells, 

would be best for initial tests.  HeLa cells, one of the most recognized cell strains, were 

discovered in 1951 by George Gey at John Hopkins Hospital in Baltimore. [201]  The 

cells came from aggressive glandular cervical cancer found in a young black lady 

named Henrietta Lacks.  Usually most cervical cancers are slow growing, but HeLa cells 

come from aggressive cervical cancer.  Not only are the generation times on the order 

of 24 h, but this rare adenocarcinoma is also resistant to radiation. [201] [202]  The cells 

were excised from a purple lesion to become the first stable human continuous cell line. 

[202] 

2.2.7 Photothermal Therapy 

The ideal temperature range for photothermal therapy is 42°C - 45°C, where cell 

death has a higher probability to occur by apoptosis than necrosis, which is usually at 

temperatures above 45°C. [120]  In this temperature range, and with higher 

concentrations of particles in the targeted cells, there will be minimal damage to the 

surrounding tissue.  This is the reason that this type of photothermal therapy was 

chosen. There are other thermal therapies that include photothermal ablation 

(pressure), magnetic hyperthermia, microwaves, ultrasound, or photothermolysis, but 

many of them cause collateral damage, are not precise, cannot target, or have side 

effects. 
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2.3 Experimental 

2.3.1 Initial PTT Experiments with Methylene Blue Derivative Particles 

 

Figure 2.1: This is a diagram of the synthesis of the methylene blue 
polyacrylamide nanoparticles. The starting materials were mixed and added to 
hexane surfactant solution to produce reverse micelles (hydrophobic solvent with 
insides of micelles being hydrophilic).   

 Particles were synthesized by the above reaction (Figure 2.1).  Michael Nie 

synthesized the methylene blue derivative and Matt Waugh synthesized the particles. 

After the synthesis, the volatile hexanes were then removed using Büch RII Rotavapor.  

The particles were then washed in an Amicon cell 7 times with ethanol, and then 10 

times with Millipore water.  After the particles were washed, they were lyophilized in a 

Thermo Electron Corp ModulyoD freeze dryer and stored at room temperature for future 

experiments. Michael Nie confirmed that these particles did not produce singlet oxygen 

by using ADP method. 

2.3.2 Coomassie Blue Derivative Particle Synthesis 

In one container, 165 mg of Coomassie Blue derivative was mixed with 0.8 mL of 

anhydrous dimethyl formamide (DMF) from Sigma Aldrich, and 1.0 mL of Brij 30 from 

Sigma Aldrich.  In a separate container, 610 mg of acrylamide from Sigma Aldrich was 
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mixed with 40 mg of N-(3-Aminopropyl)methacrylamide hydrochloride (APMA) from 

Polysciences Inc., and 1.2 mL of water (Milli-Q water coming from a Millipore A10 water 

purification system).  In a 250 mL round bottom flask containing a magnetic stir rod, 4.8 

g of Dioctyl sodium sulfosuccinate (AOT) from Sigma Aldrich was mixed with 8.5 mL of 

Brij 30, and 60 mL of deoxygenated hexanes from Sigma Aldrich.   The contents of the 

first two containers were added to the round bottom flask.  The resulting solution was 

then mixed and bubbled under an inert environment for 20 min.  Added to this solution 

was 400 μL of a freshly made solution of 66% w/v APS from Sigma Aldrich in Millipore 

water, and 200 μL of N,N,N′,N′-Tetramethylethylenediamine (TEMED) from Sigma 

Aldrich.  The final solution was continually mixed for 1 h under an inert environment.  

The diagram of the synthesis can be seen in the figure below.   

 

Figure 2.2: Diagrams shows the synthesis of the CB-PAA nanoparticles. Starting 
materials were prepared and added to hexane surfactant solution to produce 
reverse micelles (hydrophobic solvent with insides of micelles being hydrophilic).  
The reaction was initiated with APS and TEMED while being constantly stirred 
under argon. 
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The volatile hexanes were then removed using Büch RII Rotavapor.  The 

remaining product was washed in an Amicon Cell using a 300,000 NMWL Millipore 

Ultrafiltration Membrane.  The solution was washed 10 times with 200-proof ethanol 

from Decon Labs Inc., followed by 10 washes with Millipore water. The washing was 

performed in a 200 mL Amicon Cell.  For each rinse, the solution containing the 

particles dropped down to about 10-20 mL before more ethanol or water was added.  

Large aggregates were then removed by centrifuging at 5000 RCF for 7 minutes.  The 

soluble product was passed through a 0.2 μm filter from Whatman to remove large 

particles.  The filtered product was then lyophilized using a Thermo Electron Corp 

ModulyoD freeze dryer and stored at room temperature for future experiments.   

For the experiments that had the particles incubated with HeLa cells, particles 

were resuspended in 11995 DMEM growth media from Gibco.  The solutions were then 

passed through a 2.2 μm filter from Whatman, followed by a 0.2 μm filter.   

A small amount of CB-PAA nanoparticles were resuspended in Millipore water to 

give a concentration of 0.5 mg/mL.  The particles were characterized by taking size and 

zeta potential measurements in a DelsaNano particle sizer.  In order to determine the 

amount of Coomassie Blue derivative in the particles, a calibration curve (Figure 2.9) 

was created comparing the absorption of Coomassie Blue derivative to its 

concentration.  This was accomplished by taking absorption spectra of different 

concentrations of Coomassie Blue derivate that had been dissolved in small quantity of 

DMF and the rest Millipore water.   From this, it was possible to determine the 

concentration of dye for a given mass of particles in solution.   
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2.3.3 LED Array Light Source 

The excitation source used was an LED array created to maximize the 600 nm 

absorption peek of the CB-PAA particles.  An array of 256 wide angle LEDs from 

Kingbright Corporation, with an emission peak at 590 nm, were soldered onto a 

fiberglass PCB board.  Wide angle LEDs and mirrors around the perimeter of the array 

were used to increase uniformity of light hitting the samples.  The deviation of the 

irradiance at the face of the mirrors is 6%.  A fan was placed on the top of the LED array 

to keep the temperature of the array down and to minimalize heating of the cells through 

convection. The general design of the LED array can be seen in Figure 2.3.  An 

adjustable power supply was used to control power output of the LED array.  

 

Figure 2.3: Design of the LED array and experimental setup.  The 256 LEDS with 
an absorption peak centered at 590 nm were surrounded by 4 mirrors. A fan was 
placed on top to keep the LED array from overheating or from heating the 
samples by convection.  The illustration on the right represents how the LED 
array was placed down on top of the petri dish.  
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2.3.4 Live Dead Assay 

Experiments were done using a Live Dead fluorescence assay.  The HeLa cells 

or 9L cells used in the experiments were incubated with calcein AM dissolved in DMF 

from Sigma Aldrich to stain the live cells green, and propidium iodide to stain the 

nucleus of the dead cells red.  Cells were then imaged on an IX71 Olympus microscope 

using a FITC filter set to image the live cells, and rhodamine filter set to image the dead 

cells.  Experimental setup can be seen in Figure 2.4.  Ten images using each filter set 

were taken at different locations across the 35 mm petri dish to increase accuracy of 

counts.   Cells were then counted manually, or by using ImageJ imaging software. 

 

Figure 2.4: Experimental setup to measure the vitality of cells using a LIVE 
DEAD assay.  Cells were in a petri dish on the microscope during illumination by 
the LED array.  LED array was removed during measurements to remove 
reflections off the LED array.  Dyes were excited with Xenon Lamp that was 
filtered with filter cubes. Images were taken with color camera and then later 
analyzed. 
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2.3.5 PTT using Methylene Blue Polyacrylamide Particles 

Matt Waugh, with my assistance, did the following experiment.  Particles were 

resuspended in water, then filtered through a 2 μm filter, 1 μm filter, and then a 0.22μm 

filter.  Particles were added to the growth media to make the various concentrations.  

The 9L cells were than incubated with the particles.  Cells were then washed and 

placed in DPBS.  The live dead assay reagents were then added to the solution.  Cells 

were illuminated with 590 nm LED array with an intensity of 20 ± 1 mW /cm2.  Cell 

counts were done immediately following excitation. 

2.3.6 CB-PAA Particle Concentration with Different Time Exposures 

HeLa cells were cultured for one day in a 35 mm petri dish, and then rinsed twice 

with DPBS.  Different concentrations of particles dissolved in 11995 DMEM were added 

to each dish and allowed to incubate for approximately 24 hrs.  Cells were then rinsed 

twice with DPBS, and then 0.75 mL of DPBS was added.  The live dead assay was 

done and cells were imaged.  The cells were then placed under the LED with an 

intensity 25.4 ± 1.6 mW/cm2 for the allotted time.  Cells were imaged and counted 

again, as in the live dead assay.  The imaging and counting was then repeated 2.5 h 

after exposure.  There was a difference of up to 10% decrease in live cells between 

using DPBS and DMEM 21063 from Gibco.   

2.3.7 Effect on Cell Death with Incubation Times 

As with previous experiments, cells were prepared with 0.8 mg/mL CB-PAA 

particles.   The cells were then incubated for varying times before washing twice with 

DPBS, and then adding 0.75 mL of DMEM 21063 from Gibco.  Live dead assay 
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counting and imaging were done as they were previously: before exposure and 2.5 h 

after exposure.   Cells were exposed at 25.4 ± 1.6 mW/cm2 for 40 min.   

2.3.8 The Effect of Light Intensity on Mortality 

Again, HeLa cells were cultured for one day in a 35 mm petri dish, and then 

rinsed twice with DPBS.  Each petri dish was incubated for approximately 24 h with 0.8 

mg/mL CB-PAA particles.  After the incubation, the cells were rinsed twice with DPBS, 

and then 0.75 mL of DMEM 21063 was added.  Live dead assay was performed, and 

the HeLa cells were exposed to varying intensities of 590 nm light from the LED array 

for 40 min.  The percentage of living cells were then determined from images taken 2.5 

h after exposure.  

2.3.9 MTT Assay 

HeLa cells were cultured until confluent.  The cells were then trypsinized and 

diluted in 11995 DMEM media.  A hemocytometer was used to find the concentration of 

the cells, and then 5000 cells were placed in each well of a 96-well plate.  The cells 

were then incubated for 24 h in an incubator.  The cells were washed once with DPBS.  

Then 12 wells of each different concentration of CB-PAA particles were added to the 

96-well plate.  The particles were then incubated with the cells for approximately 1 h, 

and then washed twice with DPBS.  After the 2 rinses, the MTT reagent dissolved in 

DMEM 21063 was added, with a final concentration of 0.5 mg/mL.  The cells were 

allowed to incubate for 4 h and then the solution was removed.  After the MTT reagent 

solutions were removed, 0.2 mL of anhydrous DMF was added to each well.  The plate 

was placed on a rocker and allowed to rock for 5 h.  The dish was then placed in a 

Biochrom Anthos 2010 plate reader and the intensity measurements were taken 570 
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nm.  The concentration of the particles was not high enough to affect the absorption by 

the plate reader.   

2.3.10 Heat Due to Particles 

About 0.5 mL CB-PAA particles, with a concentration 1.2 mg/mL, were placed in 

the bottom of a 10 mL snap cap culture tube (See Figure 2.5).  A small thermocouple 

was placed in the solution to measure the temperature of the solution as it was excited 

by the LED array.  The LED array was turned on and the temperature was measured 

intermittently. Particles were excited for ~20 min at 25.4 ± mW/cm2.  The temperature 

change was 5.6 +/- 0.1°C, compared to a blank solution using a thermocouple.  

 

Figure 2.5: The bottom of a 10 mL snap cap culture tube was cut off.  It was filled 
with 0.5 mL of a 1.2 mg/mL solution of CB-PAA.  The temperature was measured 
as it was exposed to the 25.4 ± mW/cm2 LED array. 

2.4 Results 

2.4.1 Methylene Blue Polyacrylamide Nanoparticles 

Methylene blue particles were characterized by Michael Nie and Matt Waugh.  

There was high dye loading and the particles were determined not to produce singlet 

oxygen.  Given that information, it was determined that the methylene blue particles 

would kill the cell by photothermal therapy, and not by photodynamic therapy.  When we 

tested the 9L cells, they showed a lot of promise.  Cell death was about the same for 
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0.1 to 0.4 mg/mL, and was obviously faster with the 0.8 mg/mL.  The reference cells 

were not affected by the LED array, which is expected. After 20 min exposure, there 

was about 95% to 99% cell death for all cases. This information convinced us to try the 

CB-PAA particles because of their deeper color and availability of the Coomassie Blue 

derivative.  The synthesis of the methylene blue particles was more difficult than 

Coomassie Blue derivative.  Once the methylene blue derivative ran out, and the 9L 

cells became contaminated, it was decided to no longer pursue these particles. 

 

Figure 2.6: PTT using methylene blue polyacrylamide nanoparticles on 9L cells.  
Methylene blue polyacrylamide particles at various exposure times, up to 20 
minutes.  Concentrations ranged between the reference and 0.8 mg/mL. 

2.4.2 Characterization of the CB-PAA Nanoparticles 

After the synthesis of the CB-PAA nanoparticles, average particle size was 

determined using dynamic light scattering to be 96 nm with a large distribution, as can 

be seen in Figure 2.7, and the zeta potential to be +6.9 mV. The particle did not show a 

shift in its absorbance peak, as can be seen by Figure 2.8. Using a calibration curve 
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created from the Coomassie Blue derivative free dye, the Coomassie Blue derivative 

incorporation was determined to be 17% by mass. This was determined by using the 

calibration curve that can be found in Figure 2.9.  Assuming the density due to PAA in 

water was about 0.1 g/cm3, it was estimated that there were 2400 dye molecules per 

nanoparticle.  The extinction coefficient was determined to about 1.4 x 108 M-1cm-1. 

There were some issues with the particles.  The solubility of the CB-PAA 

particles was not very high, and it also decreased with time.  Second, solutions of the 

resuspended lyophilized particles contained visible aggregates that had to be removed 

through filtration.   

 

Figure 2.7: Particle size distribution using dynamic light scattering on a 
DelsaNano particle sizer.  The particles are at a concentration of 0.5 mg/mL in 
Millipore Ultrapure water.  This is after filtering the particles through 0.22 μm 
filter. 
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Figure 2.8: UV-Vis spectra of the 31 μM Coomassie Blue derivative and the 
Coomassie Blue polyacrylamide particle at a concentration of 0.25 mg/mL.  
The Coomassie Blue derivative was initially dissolved in the minimal amount of 
DMF, and then diluted to the concentration using water.  

   

Figure 2.9: Calibration curve of the Coomassie Blue derivative showing the 
effect concentration has on absorbance.  Dye was dissolved in a minimum 
amount of DMF, and then diluted with water for all points.  The plot information 
was to determine the amount of dye that was present in the particles.  
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When preparing the particles for experiments, the particles were filtered through 

multiple filters.  Absorption spectra of known concentrations, ranging from 0.01 mg/mL 

to 0.35 mg/mL of CB-PAA particles, were taken to make a calibration curve. The 

spectra are visible in Figure 2.10.  From the spectra, there is no visible shift as the 

concentrations get larger, which denotes no interference between particles at those 

concentrations, but this is impossible to determine with concentrations up to 1.2 mg/mL.  

The calibration curve of the particles is in Figure 2.11.  To determine the concentration 

of particles for experiments, filtered particles were diluted with growth media by known 

values and then fitted with the calibration curve.  The concentration of the filter product 

was calculated, and the initial solution was diluted accordingly for the experiments.  

 

Figure 2.10: Absorption spectra of CB-PAA particles at varying concentrations 
ranging from 0.01 mg/mL to 0.35 mg/mL.  Particles were diluted in 11995 DMEM 
growth media from Gibco.  The reference cell for all the spectra contained growth 
medium to eliminate any shifts caused by the growth media. 
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Figure 2.11: The calibration curve of particles was taken at varying 
concentrations up to 0.35 mg/mL.  Concentrations above 0.35 mg/mL were 
obviously out of the linear phase and not represented in the plot. 

2.4.3 Relation of Cell Death to Exposure Time and Concentration of Particles 

HeLa cells were incubated with varying concentrations of CB-PAA, and then 

exposed to light for varying amounts of time to examine the relationship between cell 

death, exposure time, and concentration of CB-PAA particles.  First, CB-PAA particles 

were solubilized in growth media due to their low solubility, and also to provide the HeLa 

cells with enough nutrients to grow during incubation.   After the particles had been 

filtered to remove aggregates, they were added to previously washed HeLa cells.  

Growth media was added to each petri dish to change the concentration of particles to 

the desired amount.  Cells were incubated for a minimum of 24 h before they were 

washed twice with DPBS to remove free floating particles.  The extra particles were 

removed so that the intensity of light at the cells was uniform between different 

concentrations.  Also, the particles were removed to ensure that cell death was not a 
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result of the heating of the solution, but the heating of the cells themselves.  One 

milliliter of DPBS, and not growth media, was added to each petri dish because the 

growth media available at the time contained phenol red, which can scatter and absorb 

some of the light.   There was a slight hint of blue on the surface of the petri dish from 

the particles being absorbed by, or attached to, the HeLa cells.  In order to measure cell 

viability, calcein AM and propidium iodide were used to perform a live dead assay.  The 

two dyes were added to each dish and allowed to incubate with the HeLa cells for 10-15 

min in the incubator.  Fluorescent images were taken at 10 different positions on the 

petri dish as a reference.  The petri dish was then placed under the 590 nm LED array 

with intensity 25.4 ± 1.6 mW/cm2.   

To confirm that it was not the heating of the solution that caused cell death during 

exposure to the light source, the solution temperature was measured, using a 

thermocouple, to be 23 °C before, and 29°C during exposure.  This was the same for all 

concentrations, including the petri dishes with no particles.  The temperature was 

approximately 34°C when the solution in the petri dish had a concentration CB-PAA of 

1.2 mg/mL, which is below the incubation temperature of the cells. This was tested 

using the bottom of the culture tube as seen in Figure 2.5.  

Cell death did not occur immediately, as can be seen by Figure 2.17.  Where the 

incubation concentration of CB-PAA was 1.2 mg/mL, 97% of the cells were dead after 

2.5 h. Since the cells were in DPBS, they could not be left indefinitely or they would 

have died from lack of nutrients. Based on this information, fluorescent images were 

taken at 2.5 h after exposure to the LED array for all samples.  The fluorescent images 

were taken in similar locations on the petri dishes, and were then counted manually or 
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by using a script in ImageJ.  An example set of images can be seen in Figure 2.12.  Cell 

counts were normalized to reference cell counts and the results are shown in Table 2.2 

 

 

Figure 2.12: Examples of images taken of the cells using calcein AM and 
propidium iodide to give live cells green fluorescence and dead cells red 
fluorescence. 

Time Exposure  
(min) 

0.0 mg/mL  
% Alive 

0.4 mg/mL  
% Alive 

0.8 mg/mL  
% Alive 

1.2 mg/mL  
% Alive 

0 100 100 100 100 

10 98 100 92 61 

20 99 87 80 45 

40 91 2 6 3 

Table 2.2: Table of the cells still alive after being exposed to varying times of light 
and with varying concentrations of particles.  All results were from 2.5 h after 
exposure.   
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Figure 2.13: The effect of concentration of particles (in mg per mL) and exposure 
time on cell viability. Cells were exposed to 590 nm light with irradiance of 25.4 ± 
1.6 mW/cm2.  Measurements were taken 2.5 h after exposure, using calcein AM 
and propidium iodide to measure the ratio of cell viability. Ten images were taken 
at each location on the petri dish.  Each point represents about 800-2200 cells 

The results plotted in Figure 2.13 indicate that there is a dependence on 

concentration and exposure time for cell viability.  The dependence on concentration 

can easily be seen when looking at the 20 min exposure time.  This is confirmed by 

some of the initial tests using CB-PAA in 9L cells (Figure 2.14).  At the 40 min exposure 

time, most of the HeLa cells were dead. Therefore, either concentration would have 

provided nearly the same results.  Also from the plot, it is possible to see that there is no 

major effect on the cell viability when no particles incubated with the cells.  
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Figure 2.14:  Initial results using CB-PAA nanoparticles on 9L cells.  The particles 
were incubated in growth medium with cells at varying concentrations.  Cells 
were then washed with DPBS.  The cells were then exposed to the LED array.  
The particles were exposed for 1, 5, and 10 min. Using the live dead assay, cell 
viability was determined for each point.  Results were produced by Matt Waugh 
with my collaboration. 

2.4.4 Cell Viability as a Function of Incubation Time 

Incubation time is an important variable that determines the functionality of the 

particle.  To look at cell viability as a function of incubation time, cells were grown as in 

previous experiments, washed once, and then incubated with 0.8 mg/mL CB-PAA 

particles.  Incubation times were measured from the time the particles were added until 

they were washed twice with DPBS. In this experiment, cells were placed in DMEM 

without phenol red to provide the cells with nutrients, and to ensure that the phenol red 

did not absorb or scatter any of the light.  The calcein AM and propidium iodide were 

then added, and cells were placed in the incubator for 15 min.  The cells were imaged 

as before, and exposed to 40 min of the LED array as in previous experiments.  The 
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results of the cell counts can be seen in Figure 2.15, indicating an inverse relationship 

between cell viability and incubation time.   

 

 

Figure 2.15:  The effect that incubation time of the CB-PAA nanoparticles with 
the HeLa has on cell viability.  Hela cells were incubated with 0.8 mg/mL CB-PAA 
particles and after washing the cells, they were exposed to 25.4 ± 1.6 mW/cm2 
for 40 min.  Measurements were taken with counts from 10 different locations 
using a Live Dead assay of calcein AM and propidium iodide.  Each point 
represents about 440 to 2800 cells.  

2.4.5 Cell Viability as a Function of Intensity 

This was done in the same manner as the incubation experiment, with 0.8 mg/mL 

CB-PAA growth media for cells while being exposed, but the incubation time was 24 h 

for each petri dish.  The intensity of the petri dishes was varied by changing the voltage 

to the LED array.  Intensities were measured at each voltage with a power meter to 

confirm intensity.  The results of the varying intensities can be seen in Figure 2.16.  

There might be an inflection point after 13 mW/cm2, but more experiments would need 

to be done to confirm that.  Measurements for each point were only taken once, with an 
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average of 1640 cells for each data point.   This made it difficult to determine if there is 

an inflection point.  This result did continue to decrease as the intensity increased, as 

expected.  

 

Figure 2.16: The effect of intensity of light on cell viability. Cells were incubated 
with 0.8 mg/mL CB-PAA particles for 24 h. Cells were exposed after washings for 
40 min, and using a Live Dead assay, counts were taken from 10 different 
locations on the petri dishes 2.5 h after exposure.  Each point represents about 
1400-1800 cells. 

2.4.6 Cell Viability as a Function of Time after Exposure 

Again this experiment was similar to the previous two, except a 24 h incubation 

and maximum intensity were used.  The dependence on time after exposure can be 

seen in Figure 2.17.  Minimal cell death occurred immediately after the exposure time.   

With 0.8 mg/mL, 18% of the cells still remained alive after 2.5 h.    
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Figure 2.17: Time dependence of mortality of the HeLa cells using 0.8 mg/mL 
CB-PAA particles with 40 min exposure at 25.4 ± 1.6 mW/cm2.  Cell mortality was 
measured using a Live Dead assay.   Each data point represents about 2600 to 
3500 cells, and the data points were taken from 10 images captured at different 
locations on the petri dish. 

2.4.7 Blank Particles and Dark Toxicity  

To validate that the particle matrix was not affecting the cell viability, a petri dish 

of HeLa cells was incubated with a solution of 1.4 mg/mL blank PAA particles.  After 

washing the cells, they were exposed to light for 40 min., and monitored 2.5 h later.  

This test showed no statistical cell death.  This result, along with the result of the petri 

dish with no particles (shown in Figure 2.13), confirms that it is not the light source 

alone that is killing the cells.  Another possibility tested was whether the particles 

themselves are toxic in the dark.  To confirm that this was not the case, an MTT assay 

was done with varying concentrations. The results in this case can be seen in Figure 

2.18.  Evaluating the MTT assay and the fact that, after 24 hours of incubation, there 

were less than 1% dead cells measured by the live dead assay, it is possible to 
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conclude that the particles by themselves are not significantly toxic at these 

concentrations.    

 

Figure 2.18: MTT assay results show the dark toxicity at varying concentrations 
of CB-PAA particles incubated with the HeLa cells for 4 h. Absorption depends 
on the MTT reagent that entered the living cells.   

2.5 Discussion 

There are a lot of different aspects to consider when describing the effectiveness 

of CB-PAA.  Initially, the tools that were used to characterize the particle will be 

discussed.  That will be followed by a discussion about HeLa cells,  how cell viability 

was measured, toxicity of competing gold nanoparticles, absorption of particles 

compared to other systems, the light source, hyperthermic results compared to gold, 

how PTT compares to other thermal systems, where particles accumulate, 

biodegradation of particles, particle bioelimination, and other future work with tumor 

delineation.  
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2.5.1 Zeta Potential 

The zeta potential of the CB-PAA particle was +6.9 mV. It is incorrect to believe 

that this is a direct measurement of charge, which has a major impact on particle 

uptake.  The zeta potential is an electrokinectic property of the electrical double layer 

surrounding the object, or the particle in this case, but it is not an actual measurement 

of the surface charge. [203]  It is actually the potential difference between the stationary 

layer surrounding the particle and the medium.  So the particle charge does affect the 

zeta potential.  The higher the zeta potential in a similar medium generally means the 

higher the surface charge.  The machine measures the velocity of a particle in an 

electric field to determine the electrophoretic mobility (UE). [203]  Using this value in the 

Henry's equation (done by the computer), the zeta potential is calculated. [203]  Since 

zeta potential is also dependent on the solution, there can be major changes in zeta 

potential when there is a change in pH or in salt concentrations.  The change of 1 pH 

unit from 7 to 6 can result in a drop from -20 to -10 mV, as seen with carboxylated 

fullerene. [31]  For this reason, the zeta potential was measured in Millipore water.  

There may be some error from the amount of dissolved carbon dioxide in the solution.  

Other sources of error are contaminants, like dust, bacteria, small molecules etc.  

Increasing the zeta potential by increasing the positive charge would be one method of 

increasing particle uptake, which will be discussed later. 

2.5.2 Particle Size 

There are multiple methods of measuring the size of particles, and in the case of 

CB-PAA, dynamic light scattering (DLS) was used. The particle size was determined to 

be 96 nm, with a large distribution of sizes.  The reason DLS was used is because it is 
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one of the best methods for determining the size of polymers in solution.  DLS 

measures the fluctuations in intensity from a pulsed laser, caused by the Brownian 

motion of the particles.  Brownian motion is the motion of atoms, molecules, and 

particles caused by molecular collisions.  Larger particles have fewer fluctuations 

because they have less Brownian motion.  Both the shape of the particle and 

contaminants like dust can affect the results. [83]   Another method to determine size is 

to measure them visually with a TEM or SEM, which works well with rigid and 

conductive particle materials.  Since polymer particles are not conductive, they need to 

be coated with gold in order to measure the particle size.  In the case of polymers that 

swell in water, TEM and SEM do not function well.  The vacuum used during the coating 

process removes all the water from the particles, shrinking them in size.  Therefore 

measurements do not give an accurate representation of their actual size in solution.  

There are a couple of properties that are affected by the size, such as toxicity and 

cellular uptake, which will be discussed later.  To improve the properties, the particle 

size can easily be changed by increasing the quantity of free radicals or increasing the 

amount of surfactant.   

2.5.3 Particle concentration  

The concentration of particles was measured in mg per mL, and many of the gold 

experiments are measured in either μM of atomic gold concentration, or nM of particle 

concentration.  The reason for the measurements in mg/mL results from the particles 

coming from a lyophilized stock and not a liquid solution with a known concentration of 

particles. Converting mass to particle concentrations requires the density of the 

particles, which varies with batches.  



92 
 

Particle concentrations ranged from 0.2 mg/mL to 1.2 mg/mL.  Estimations were 

made on how much the particle swells in the solution by using SEM sizing of other PAA 

particles, with size determined by the DelsaNano particle sizer.  Then the density of 

PAA was estimated.  With these two estimations, and using the average particle size, 

the concentrations of the particles were estimated to be 39 nM (2.3 x 1013 particles/mL) 

for 1.2 mg/mL, and 13 nM (7.7 x 1012 particles/mL) for 0.4 mg/mL. That makes the 

concentration of 0.4 mg/mL (13 nM) about 100 times the concentration of gold colloids 

used for PTT of HSC and HOC cells. [14]   Besides the Kopelman group, other groups 

have used similar concentrations, as in the drug delivery of pancitaxel on PANC-1 cells 

using mesoporous silica. [43]  How CB-PAA particle concentrations affect the toxicity, 

uptake, and PTT effectiveness will be discussed later in this section.  

2.5.4 HeLa cells 

There are advantages and disadvantages to using HeLa cells to determine the 

effectiveness of PTT or other therapies.  HeLa cells are very robust, as mentioned in the 

introduction.  Second, HeLa cells have poor uniformity from years and years of cross 

contaminations.  It is estimated that around 20% of all HeLa cell articles are using cell 

lines that have been contaminated, but the National testing service estimates the cross-

contamination between cell lines to be as high as 36%. [201]    The poor uniformity 

actually can be advantageous.  Homogenous cell lines may be, more or maybe less, 

susceptible to certain treatments.  This lowers the accuracy of the results when looking 

at single cell lines and trying to predict the results for other cell lines.  Because of the 

heterogeneous nature of HeLa cell lines, they actually may be a better representation of 

the effectiveness of a treatment.  There are various tests that can be performed to 
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eliminate the problem of uniformity.  One of the main tests that could be used is DNA 

profiling. [201] [204]  Standard DNA profiling can be used, but also using amplified 

polymorphic short tandem repeats (STR) loci with PCR primers. [204]  This test can be 

used for human forensic applications, and can cost less than $200 to test each cell line. 

[204] [205]  

As a side note, cross-contamination is not the only form of error, or variable.  

There is evidence of researchers lying and using different tumor cells, monkey cells, or 

mice cells. [201]  Many times, HeLa cells are just simply mislabeled.  These issues 

should not be a problem with the CB-PAA tests, but they can make one doubt the 

results when HeLa cells are used. 

2.5.5 Measuring Cell Viability  

There are various other methods to check cell viability, such as trypan blue, MTT, 

live dead kit (calcein AM and propidium iodide), flow cytometry and many others.  Each 

method has different properties that will affect accuracy, precision, measurement rates, 

and the ability to do multiple measurements on the same sample.  The rate of the test 

can be very important in determining cell viability.  Many quick methods can determine if 

the cell is living, but cannot determine if the cell can reproduce.  This is why some of the 

longer tests that measure the amount of viable cells after regrowth can be more 

accurate.  In many cases, it is a tradeoff that has to be decided: fast and easier versus 

time consuming and more accurate.  This is a general rule with many exceptions, 

depending on the given experiment.   

One of the most common methods of checking cell viability is trypan blue. [14] 

[126]  Trypan blue is a dye that penetrates through the cell membrane of dead cells.  
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Cells are then usually counted by a hemocytometer.  This method, though common, 

does not function well with blue particles.  Not only does the absorption of the blue 

particles interfere with the measurements of cell viability, the cells cannot be exposed to 

the illumination source after trypan blue is added.  The trypan blue would be another 

source of absorption, therefore adding another variable to the cause of cell death.  

Some of the initial tests done by Matt Waugh were done with trypan blue to see the 

feasibility of methylene blue dye loaded particles for photothermal therapy.  The results 

showed feasibility of the particles, but there were large deviations.  

The MTT assay is the preferred method to determine cytotoxicity of particles.  

The assay measures the amount of reduction of the dye nitrotetrazolium blue, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, by cellular enzymes in living cells 

to a purple formazan molecule. [83] [206]  Figure 2.19 shows this reduction of the MTT 

reagent. 

 

Figure 2.19: Reduction of the MTT reagent, tetrazolium, by cellular reductase, 
which is found in living cells.  The final product is formazan, a violet dye that is 
soluble in DMSO.  The percentage of viable cells is determined by comparing the 
absorption to that of a control.  This reaction is not only affected by the enzymes 
present in living tissues that reduce nitrotetrazolium blue, it is also affected by 
cellular respiratory activity, and the phase of growth of the cell. [83]  
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The resulting formazan forms crystals that are not soluble in water and must be 

dissolved in DMSO or isopropanol/HCl.  The absorption of the dissolved formazan 

crystals is measured in the range of 500-600 nm. [92] [206]  Common errors with this 

test come from variations in absorbance between cell lines, errors from initial cell 

counts, and floating cells, which all together can cause deviations of ±15%. [206]  Other 

errors may come from chemicals or enzymes that may reduce the dye. [206]  This has 

been shown when there is mitochondrial oxidative stress caused by ROS. [46] [54]  In 

fact, it is recommended that the MTT assay not be used when ROS can be created. [46] 

[54]  There have also been some aberrant results with free amine groups on NP 

surface, as in case quantum dots.  The problem with the results came from the lack of 

evidence to conclude if this is caused by surface charge of the particle, and not by the 

quantum dots themselves. [27]  Another problem with MTT assay is that it cannot 

distinguish between cytostatic and cytocidal effects to the cell. [206]  Overall 

reproducibility of MTT assays has been shown to be good, and is often ≤ 10% between 

replicated wells. [206]  

In the case of CB-PAA, one of the main sources of error with the MTT assay to 

determine dark toxicity of the particles comes from the short incubation time with the 

particles.  A 24 h to 48 h incubation would have been much more appropriate, or maybe 

even longer.  Future experiments should be done to verify the long term effects of CB-

PAA, whether there are any cytostatic or cytocidal effects to the cells.   

Calcein AM and propidium iodide, live dead assay, was the method of choice to 

determine cell viability after PTT therapy.  The reasons it was chosen are because it is 

simple, cells vitality can easily be determined under a microscope, and it is quick.  The 
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calcein AM dye readily penetrates cellular membranes.  After penetration, the 

acetoxymethyl ester is then hydrolyzed by intracellular esterases to form a fluorescent 

green dye at 514nm. [207]  Nonviable cells lack the esterase necessary to convert the 

molecule to its fluorescent form, making it an ideal indicator for viable cells.  The 

counterstain, propidium iodide (PI), a non-permanent molecule, binds to nucleic acids to 

produce a red fluorescent complex with emission peak at 617 nm. [208]   

The main issues and errors arose from counting the cells and when the cells 

were undergoing blebbing.  Often cell counts deviated from the time before exposure 

and immediately 2.5 h proceeding exposure.  This came from cells floating to the 

surface of the solution, final image locations not matching the preexposure image 

locations, changes in cell density on the petri dish, and difficulty distinguishing dead 

from living.  Many of the cells were in the process of dying when images were taken.  

There were ranges of red nuclei from barely visible to completely obvious.   

There are several other methods to determine cellular viability.  Crystal violet 

[137], Sulforhodamine B (SRB) [111], Cell Titer-Glo Luminescent cell viability assay 

[69], Cell Titer-Blue cell viability assay [69], WST-1 assay, XTT assay, MTS cytotoxicity 

test, LDH assay [46] [209], Comet assay [27], and propidium iodide  with flow cytometry 

[27] are many of the different methods of determining cell viability.  Many of these 

methods, WST-1 [83] [92], XTT [39] and MTS [16] [87], are very similar to the MTT 

assay, but utilize different chemicals.  Each method has its advantages, as is the case 

with WST-1 assay, which utilizes a water soluble reagent, 4-[3-(4-iodophenyl)-2-(4-

nitropheynyl)-2H-5-tetrazolio]-1,3-benzene disulfonate.  This removes some error that is 

in the MTT assay of having to remove the solution from the wells to add a new solvent 
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to dissolve the final product, as is the case with formazan requiring the solvent DMSO. 

[83] [92]  In the case of MTS, its change in color at 490 nm correlates with the cell's 

metabolic activity of mitochondrial dehydrogenases reducing MTS educts to formazan. 

[87]  The others measure cell viability by quantification of ATP (Cell Titer-Glo 

Luminescent cell viability assay), metabolic activity of cells (Cell Titer-Blue cell viability 

assay), cell disruption (lactate dehydrogenase or LDH assay), and DNA damage 

through electrophoresis (Comet assay). 

2.5.6 Toxicity of Competing Gold Nanoparticles 

It is necessary to compare the toxicity of Coomassie Blue PAA nanoparticles to 

that of other particles.  Currently, the standard particles are gold nanoparticles.  Many 

assert that gold is not toxic, but there are actually conflicting results. [83]  One of the 

major reasons for conflicting results, not only with gold, is caused by the lack of 

standards when determining the toxicity of particles.  The experiments had variations in 

types of cells, particle types, particle functionality, particle shape, methodology of 

determining toxicity (MTT, Trypan blue), and concentration of particles.  Most toxicity 

information about gold would state that it is nontoxic, but there are several cases where 

it shown that it may be extremely toxic to mildly toxic.  Since there are different 

standards, it is difficult, if not impossible, to make solid conclusions on the toxicity of 

gold. In the next section there will be some examples of when gold or a method of 

implementing gold shows toxicity.   

Often the toxicity of particles is determined by in vitro measurements, which lead 

to some false conclusions about the particle’s toxicity.  In many cases, chemicals and 

particles that are deemed nontoxic in vitro cause inflammation.  There are several 
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issues that have been observed when using particles in vivo, but let’s first discuss the 

cytotoxicity of CTAB (Cetyl trimethylammonium bromide) nanoparticles in vitro.   

As mentioned, toxicity is not always caused by the particle, but by impurities or 

remaining components from the production of the particles.  One of the primary causes 

of toxicity in the literature is not caused by the gold nanoparticles but by CTAB, the 

surfactant used in the formation of gold particles.  CTAB has been shown to be toxic 

with an IC50 < 1 μM, and because of this, it must be washed off or replaced from the 

surface of gold nanoparticles. [8] [9] [10] [83] [87] [210] [211]  One of the reasons that 

CTAB on the surface of gold is so toxic is because of the rate that gold can desorb the 

CTAB and adsorbs different media proteins within just 5 min of being mixed. [209]  This 

is also good because CTAB can be easily removed and replaced with coatings like 

BSA, PAA, or PAH. [9]  Another reason CTAB on gold is so toxic is because it creates 

ROS on its release from the surface of gold. [87]  The following are a few examples of 

the toxicity of CTAB based particles.  For example, there is 65-75% loss of viability of 

HT-29 cells when introduced to a 0.4 nM nanorod particle concentration, but after 

replacing the CTAB with a PAA capping, there was almost no loss in viability. [9]  There 

are still problems with cell dying with PAA gold particles when their concentration is 

above 1 nM. [9]  Another example of the toxicity of CTAB showed that particles not 

washed were toxic at 0.05 μM to K562 cells, but citrate- and biotin- modified particles 

with a concentration of 250 μM were not cytotoxic. [211]  It is important to note that they 

used the MTT assay, which is sensitive to ROS.  With the removal of CTAB it is 

important to make sure the new coating is nontoxic. [83]  Gold also needs to be 
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protected because unprotected gold particles are not stable and will aggregate in 

chloride solutions.   

Gold nanoparticles, naked or with other coatings than CTAB, in most cases show 

no cytotoxicity in vitro, but there are instances of cytotoxicity.  Using an MTT assay, 

K562 leukemia cells were incubated in gold nanoparticles for 5 days, B the 

concentration of gold being 25 μM. [211]  The particles had sizes of 4, 12, and 18 nm, 

and each of them had no effect on cell viability.  Another group determined, using MTT 

assay, that 10 to 50 nm GNPs, incubated in human dermal fibroblasts–fetal (HDF-f), 

showed no toxicity with concentrations up to 300 μM.  They said gold nanoparticle 

concentration, but probably meant the gold atom concentration coming from the particle. 

[212]  As the particle concentrations increased, the cell morphology changed, and was 

especially visible at 300 μM.  There is another in vitro study that showed that gold 

nanoparticles are also nontoxic to HeLa cells. [91]  Gold particles showing no sign of 

toxicity in vitro is very common.  There are some cases that are different, though not as 

frequent as the nontoxic cases.  For example, Tauredon gold particles and gold 

thiomalate had high IC50 values of greater than 10,000 μM for HeLa (Cervix Carcinoma), 

SK-Mel-28 (Human Melanoma), and L929 (mouse fibroblasts).  However, with the 

j774A1 (mouse macrophages) cell line, Tauredon gold only had an IC50 value of 250 

μM. [213]  Another example is 13 nm citrate nanoparticles, which showed toxicity in 

human lung carcinoma cell line (A549), but not to human liver carcinoma (HepG2). [203]  

In vitro, 20 nm gold nanoparticles surface coated with fetal bovine serum caused 

oxidative damage to lung fibroblasts (MRC-5 human fetal lung fibroblasts). [214]  The 

particles ranged in concentration from 0.1 nM to 1nM, and were incubated for 24 h, 48h, 
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and 72 h.  Each time period showed about a 6-8% decrease in viability.  As has been 

seen using MTT assay and other methods, the toxicity of gold depends heavily on cell 

type, size, and coating. [83] [213] 

In vivo differs from in vitro studies because there are more cell types, biological 

systems, and interactions between them.  Gold nanoparticles not only have shown 

signs of causing inflammation in the body, but they also cause an increase in leukocytes 

[18] [83], signs of acute liver inflammation, and apoptosis in the liver. [49]  These were 

13 nm PEGylated gold nanoparticles with concentrations of 0.17, 0.85 and 4.26 mg/kg 

in mice.  Inflammation is not the only response.  When concentrations of gold were 

2000-3000 nanoparticles per cell, the cytoskeleton showed signs of damage. [87]  In 

another study, rats showed various types of cellular damage done by PEGylated 

silica/gold nanoshells. [83]  Most of the rats showed signs of necrosis of hepatocytes 

when injected with concentrations of 0.75, 0.150, 0.225, and 0.300 mg/kg.  On the other 

hand, Mesogold, a common alternative medicine, has been ingested for years with no 

known side effects. [215]  It is important to remember that even with concentrations of 

gold particles that are 100 nM, 20 ppm or 100 μM gold concentration, particles will have 

a much lower toxicity because they are ingested and not injected.  

Size is one variable that can be altered on gold nanoparticles, and in fact, toxicity 

is also dependent on the size of the gold nanoparticles.  Gold spheres, near the bottom 

of the nanometer scale, tend to be much more toxic than their larger counterparts.  For 

example, in one study they showed that 1.4 nm gold clusters were toxic with an IC50 

value ranging from 30 to 46 μM, while larger 15 nm nanoparticles showed no toxicity. 

[213]  Another study showed that sizes ranging from 0.8 to 1.8 nm are toxic and have 
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IC50 values ranging from about 20 - 300 μM. [213]  This is common, and it is often 

assumed that particles larger than 3 nm are chemically inert. [209]  There is some 

variation in toxicity results when looking at naked gold nanoparticles.  Naked gold 

nanoparticles, ranging in size from 8 to 37 nm, and at concentrations of 8mg/kg/week, 

cause severe sickness to mice, with the majority of them dying within 21 days. [91] [209]  

While 5, 50, and 100 nm naked gold nanoparticles administered to live mice at 8 

mg/kg/week survived. [91]  Modifications, such as pH5N1 and pFMDV peptides, can 

limit the toxic effects caused by size. [91]  When 17 nm gold nanoparticles were 

modified, the lifespan of mice increased from 21 days to more than 50 days. Lysozyme 

and bovine serum albumin (BSA) modifications also increased the lifespan of mice, but 

it only increased it to 22.3 and 27.5 days respectively. [91]   

Toxicity based on size is not unique to gold, and is seen in silver particles as 

well. [22]  As mentioned in the introduction, the toxicity of PAA nanoparticles is minimal 

or zero even at extremely high concentrations, 500 mg/kg in a rat.  To confirm the 

previous tests on the dark toxicity of CB-PAA, a MTT assay was done after 4 h of 

incubation, and it showed no toxicity all the way to 1.4 mg/mL (Figure 2.18).  Another 

couple of reasons that  CB-PAA are nontoxic to HeLa cells is because only 1% of cells 

from the LIVE/DEAD assay were dead, and the cells also continued to grow when 

incubated with cells for ≥ 24 h.  Although not many dead cells were seen in the solution, 

some of the dead cells could have been washed away.   

As can be seen above, gold particles also don't show much toxicity in vitro, but in 

vivo it is known to cause an inflammatory response, cell necrosis, or even death at 

concentrations well below that of CB-PAA or the concentrations previously tested in rats 



102 
 

(Please reference introduction for toxicity of PAA).  As shown, gold nanoparticles, like 

PAA, also have toxicity issues arising from starting materials.  The CB-PAA particles 

were thoroughly washed with ethyl alcohol and water.  With the number of washings, 

and if the starting materials did not adhere to the particles, most of them would be 

washed way.  In the case of Brij 30, if the surfactant was just in the solution, then with 

the 20 washings, it would be down to about 9.0 x 10-20 mg for the entire batch of 

particles, which would prevent any issues from starting materials.  Another source of 

concern for CB-PAA particles are the latency effects of the Coomassie Blue derivative 

after biodegradation.  At this time they are still unknown and could lead to future issues. 

2.5.7 Absorption 

Since Coomassie Blue has a strong absorbance at 600 nm (Figure 2.8), it is only 

a moderate candidate for PTT.  The deep blue color that can be seen in Figure 2.5 

makes the CB-PAA nanoparticles a great candidate for tumor delineation.  Gold, on the 

other hand, does have an advantage over dye systems in tunability.  By simply 

changing the size and shape of the particles, one can get different colors.  Colloidal gold 

spheres can only be shifted a little, and their absorption peak is usually centered around 

530 nm.  On the other hand, gold nanorods and shells can be shifted to absorb in the 

red and be in the cells optical window.  Nanorods can be tuned to one of their wide 

range of possible wavelengths by changing their aspect ratio, and gold shells can be 

tuned by changing their size and shell thickness. [42] With dyes, a different dye must be 

synthesized or found.  Not only can that be difficult, but the new dyes will also have 

varying toxicities, photobleaching tolerances, and other issues. [19]  One of the dyes 
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that have been used in PTT previously is Indocyanine Green, which has an absorption 

maximum at 778 nm.   

The frequencies where the particles absorb are not the only important factor in 

choosing a photosensitizer, but also efficiency the dye or particle at absorbing light.  

Absorption coefficient depends on size of the particle, absorbing and scattering cross 

sections, shape of particle, surroundings, and material of the particle. [140]  As 

previously mentioned in chapter 1, the molar extinction coefficient is the common 

method of comparing, but is not a completely accurate comparison.  Molar absorption 

coefficients only are important when dye amounts are the same as particle 

concentrations.  This is often not the case, and more often than not there will be 

significantly more dye molecules in the cell than particles that could fit in the cell.  The 

high extinction coefficient of CB-PAA, 1.4 x 108 M-1cm-1, is due to 17% of the mass of 

the particle being Coomassie Blue.  The extinction coefficient of 40 nm gold spheres is 

about 1.5 orders bigger than CB-PAA nanoparticles. [140]   

Gold nanocages have the highest extinction coefficient, followed by gold 

nanorods, and then gold nanoshells when comparing particles with similar optical 

densities and that have a wavelength of 800 nm. [12]  One issue with nanorods is that 

their absorption is dependent on the direction of the rod. [42]  This effect will be more 

obvious when the excitation source is polarized. 

2.5.8 Light Source 

The light source used was a 256 LED array, which differs from most groups who 

use lasers.  There are several different types of lasers used, including Ti:Sapphire, 

argon ion, and diode lasers. Irradiance (power/area) or fluency (energy/area), exposure 
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time, flux, wavelength, continuous wave or pulsed, pulse length, and pulse frequency 

are the main variables manipulated to increase the photothermal effect.   

One of the most important variables to consider in choosing a light source is the 

overlap between the absorption peaks of the particles and the emission peak of the light 

source. In the case of CB-PAA, the emission peak of the LED array was at 590 nm, 

which matches up well with Coomassie Blue absorption peak at 600 nm (Figure 2.8).  

Other groups using gold will often use nanorods that absorb around 800 nm, and a 

Ti:Sapphire laser that emits around 800 nm. 

The next thing to consider is the irradiance of the light source. The irradiance of 

the LED array was 25.4 ± 1.6 mW/cm2, which is quite small compared to many of the 

gold nanoparticles therapies.  HeLa cell death was even observed when the irradiance 

was down to 1 mW/cm2 (2.4 J/cm2), as can be seen in Figure 2.16.  One of the simplest 

PTT experiments to compare to CB-PAA used a CW Argon ion laser (514 nm) to excite 

anti-EGFR spherical gold nanoparticles. [14]  The particles were incubated with HSC 

(epithelial tumor), HOC (epithelial tumors), and HaCaT (human keratinocyte, non-

tumorous cells that do not overexpress EGFR), with a concentration of ~0.2 nM for 40 

min.  The cells were then washed and irradiated for 4 min at various levels of irradiance.  

The HSC cells suffered some death at 25 W/cm2, but none at 19 W/cm2.  They 

observed cell death of HOC cells at 19 W/cm2, but none at 13 W/cm2.  HaCaT 57 cells 

did not die at any of the tested conditions.  This experiment was later repeated with anti-

EGFR gold nanorods that had an absorption maximum around 800 nm.  The particles 

attached to both the HSC and HOC malignant epithelial cells, but not to HaCaT cells 

because they do not overexpress EGFR. [216]  The particles were excited for 4 min with 
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CW Ti:Sapphire laser that had a wavelength of 800 nm.  Cell death of HSC and HOC 

cells was observed at 10 W/cm2 (2.4 kJ/cm2), and complete cell death at 20 W/cm2 (4.8 

kJ/cm2).  HaCaT cells, also in presence of nanoparticles that had been washed away, 

didn't show cell death until around 15 W/cm2 (3.6 kJ/cm2).  The fluencies were actually 

quite high.  At the other lower end of fluencies, one can see effects, such as blebbing, at 

fluencies as low as 30 J/cm2 (1 W/cm2) for 30 s. [217]  This was the case of KB cells 

when they endocytosed gold nanorods with an absorption at 815 nm, and excited at 795 

nm.  The exposures were 30 s, and the fluencies ranged from 15 to 120 J/cm2. [217]  

The fluencies in the CB-PAA experiments showed almost complete death at 61 J/cm2.  

This is much lower than the kilojoule level fluencies with some experiments, but just 

above the 30 J/cm2 where other groups began seeing blebbing. [14] [217]  In this case 

of photothermolysis (photoablation) the fluency is small but the irradiance is extremely 

high.  Cells incubated with high concentrations of AuNR started showing signs of cell 

damage around 18 mJ/cm2 (37 W/cm2), but no cell death until the higher irradiances.  

This was done with a Ti:Sapphire laser tuned to 790 nm, the particle’s absorption peak 

at 800 nm, pulses of 100 fs at 80 MHz, and exposure time of 504.60 μs. [10]  Another 

group showed blebbing with internalized AuNR under fs-pulse power at 3 J/cm2 (48.6 

W/cm2) when using photothermolysis of KB cells. [218]   

The max intensity coming from the light source before it causes damage to the 

cell is dependent on the wavelength, irradiance and exposure time.  For example, EMT-

6 breast cancer cells could withstand fluencies of 93 mJ/cm2 (185 W/cm2), but died at 

fluencies of 113 mJ/cm2 (222 W/cm2). [10]  Also, as mentioned, HaCaT cells did not die 

at 20 W/cm2
 when exposed for 4 min with no particles.  Using these as references, and 
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knowing the maximum irradiance of the LED array was 25.4 ± 1.6 mW/cm2, there 

should be no concern about damaging healthy tissue surrounding a tumor with the light 

source alone.  

2.5.9 Hyperthermia of HeLa Cells 

As mentioned previously in Chapter 1, apoptotic death, or programmed death, is 

the ideal method of cell death.  The problem with this is that the temperature range is 

limited to about 42°C - 45°C, with some exceptions.  With blood perfusion affecting the 

temperature of the cells, it may be difficult to stay within the range.  Many groups, much 

of those working on gold nanoparticles, are actually doing photothermolysis instead of 

hyperthermia.  This leads to necrosis which has its own issues.  CB-PAA is believed to 

go through an apoptotic pathway, but that has not yet been confirmed.  The cleavage of 

PARP is one method to determine apoptosis that could be tested. [219]  Studying cell 

death as a function of time after photothermal exposure, seen in Figure 2.17, reveals 

that cell death is not immediate.  This is most likely a result from apoptotic death taking 

time to conclude.  In the case of gold nanoparticles, they usually caused necrosis, which 

is more immediate.   

The 2.5 h timeline was used for the following reasons: most cells were dead after 

2.5 h when concentration was 1.2 mg/mL (Figure 2.17), and to limit the time the cells 

were without nutrients in the experiments using DPBS.  The cell death is dependent on 

illumination intensity, wavelength, exposure time, particle concentration, absorption 

coefficient of particles, particle location, cell type, and cell environment. Figure 2.13, 

Figure 2.15, and Figure 2.16 show how the cell environment (DPBS vs. cell media), 

incubation time, and illumination intensity affect cell death.  When examining cell death 
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as a function of concentration, and comparing it to a function of incubation time, 

illumination, and time after exposure, it is possible to see the difference in cell viability 

from cells exposed to the light while in cell media and to those exposed to the light while 

in DPBS.  The difference between the cells in DPBS (Figure 2.13) compared to average 

cells in media (Figure 2.15, Figure 2.16, and Figure 2.17) is approximately 10% 

increased viability.  This is as expected, since the cells are not receiving nutrients during 

exposure and following exposure, which will make them weaker and more susceptible 

to die.  The results from illumination, intensity, and incubation time are also as 

expected.  They showed an increase of cell death with increases in intensity or 

incubation time.   

Each of the experiments used a wide range of cells for each data point.  Cell 

counts ranged from the low hundreds all the way to a few thousand depending on the 

experiment. Experiments did take a long time to complete, which is the reason that they 

were not repeated. Another source of inaccuracy is that cells have a higher cell survival 

rate when they are heated in mitotic phase and the S phases. [220]  Some of my cells 

were in the growth phase and others were in the stationary phase, which will increase 

the inaccuracy of the measurements.  In the future, work should be done to get better 

statistical results, error bars, instead of just relying solely on the high cell counts. 

2.5.10 Required Heat for Cell Death 

The heat required to kill cells is dependent on exposure time, cell type, blood 

flow, particle location, and other environmental factors.  It was determined that it would 

be extremely difficult to calculate an accurate estimation of the heat in cells during the 

experiments using experimental results.  So it was decided to compare the results to 
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other groups to estimate internal heat.  HeLa cells are hardy cells that can grow well in 

harsh conditions. [134] [137] [221]  They can survive at 41°C for over 57 h, but all the 

cells were dead after 96 h. [221]  At 42°C, it takes 14 h to kill off all of the cells, and 3 h 

to kill all of the cells at 44°C.  Another group who did a similar experiment had about just 

over 0.1% alive after 3 h at 44°C.  When HeLa cells are heated to 46°C, some of the 

cells are still alive at 20 min, but none are living after 30 min of exposure.  For 45°C it 

takes about 1 h 10 min to kill all of the cells.  Knowing this, it can be concluded that the 

effect of the CB-PAA particles on HeLa cells is equivalent, in effectiveness, to heating 

HeLa cells to around 45-46°C. [134] [221]   

One article calculates that cell colonies need to be greater than 1.1 mm in 

diameter for intercellular conditions to reach high enough temperatures for hyperthermia 

because of the rate of heat diffusing from the tumor. [222]  They also figured that nano-

scale heating effects are negligible.  This work and other work other groups have shown 

cells can be still killed without a noticeable temperature change, or are much smaller 

than the 1.1 mm required. [14] [110]   

Temperature is also dependent on the number of particles and their vicinity to 

one another. [223] [224]  If there is a 4 x 4 array of 30 nm particles, separated by 150 

nm, and exposed to 10 kW/cm2 excitation, the particles will have a max temperature 

increase of about 18°C.  For a single particle under the same conditions, it has a max 

temperature increase of 5°C. [224]  Previously, it was assumed that the entire cell was 

heated. One other possibility is that the particles aggregate in one type of organelle in 

the cell, increasing the local concentration of particles to extent that they easily destroy 

that organelle upon exposure.  This could lead to cell death, but not an immediate cell 
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death, as with photothermal ablation.  With the very low irradiance of the LED array, this 

could be a possible pathway.  If this is the case, the pathway and internal targeting of 

particles would be vital to increasing the effectiveness of PTT.  There needs to be more 

work done on the pathways of cell death, location of the cells, and how PTT affects the 

various internal processes of the cell.   

2.5.11 Thermotolerance 

Thermotolerance, the ability to withstand raised cellular temperatures, can hinder 

the effectiveness of PTT.  As mentioned previously in chapter 1, thermotolerance 

occurs after a pretreating of cells at a raised temperature.  There is possibly some 

evidence that continuously heated cells also can gain a thermotolerance, but this could 

represent the point when only the more heat tolerant cells are remaining.  Other 

therapies, such as antibiotics, have similar characteristics: the least tolerant cells go 

quickly, but sometimes the more tolerant cells are durable enough to last a much longer 

time, or even survive the therapy.   

After a period of time, depending on the cell type, cells do begin to return to 

normal tolerance levels.  With CHO fibroblasts it took just over 3 days to return to 

normal [225], and with most cells it takes about 1-3 days. [133]  This is not the case with 

cells grown at 39°C for 2 and 4 days, instead of the 30 min to 1 h pretreatment, which 

showed resilience still after 3 months. [221]  HeLa cells preheated at 42°C didn't show 

thermotolerance when reheated to 42°C [134], but HeLa cells heated for 1 h at 40°C 

were much more likely not to signal apoptosis at temperatures between 42-45°C. [120] 

Thermotolerance of HeLa cells lasts less than 13 days after being pretreated for 1 h at 
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44°C. [137]  The level of thermotolerance begins to level off at or around 2 - 4 h and has 

shown to max out around 12 h between initial dose and the next dose. [137]    

If thermotolerance becomes an issue in vivo for CB-PAA, there is a workaround, 

with the first being longer exposure times. [136] [226]  Cell viability decreases 

exponentially with time at elevated temperatures. [137]  Another is to wait until after the 

cells have returned to normal, not thermotolerant, which can be a couple of weeks. 

[137]  If this does not work, it may be necessary to heat above the ideal temperatures 

that cause apoptosis so that the issues that arise from thermotolerance are overcome. 

[219]  

2.5.12 Other Thermal Therapies 

Indocyanine Green (ICG) has been used in the past for the photothermal 

therapy.  There are several problems with using it as a free dye.  First, the concentration 

and nature of the solvent lead to significant effects on it absorption properties. [227] 

[228] [229]  Second, it is not very stable with increases in temperature or under 

excitation. [230] [231]  Third, ICG binds readily to albumin and high-density lipoproteins 

(HDLs) in blood plasma, resulting in a red-shift in its optical absorption. [139]  The dye 

itself is nonselective for cancer cells and is cleared rapidly from the body with a 

biexponential plasma clearance half-life of 2-4 min. [139]  The last issue for using ICG 

solely for PTT is that it can also be used for photodynamic treatment.  To overcome 

these issues, a group loaded ICG into a PAH (polyallylamine hydrochloride) cationic 

polymer matrix. [139]  The particle had a high loading efficiency of 36%, but ranged in 

size from 60 nm to 2000 nm.  There was still thermal degradation and the ICG was 

eliminated from interacting directly with the cellular environment. [232]  Encapsulation 
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lowered the absorption of ICG by 35% at 780, and 25% at 700 nm.  The particles were 

targeted with EGFR (epidermal growth factor receptor) antibody and used on hybridoma 

cell lines 1483, SiHa, and 435 at concentration of 0.4 mg /mL.  EGFR is over expressed 

on breast, cervical, lung, and prostate cancer cells.  The cells were excited with a 

continuous wave diode laser that emits at 808 nm and had an intensity of was 3-6 

W/cm2.  After 200 s of exposure, the 6 W/cm2 sample was about 100% dead, the 3 

W/cm2 was 30-65% dead, and uncoated was 10-50% dead. [139]   CB-PAA particles 

took longer to kill, but they showed no cell death to uncoated particles. 

The CB-PAA system described is advantageous because the Coomassie Blue 

dye is covalently linked to the matrix, unlike other dye-based systems such as 

Indocyanine Green.  This is beneficial because the dye is part of the matrix and cannot 

leach out from the particle, which lowers absorption and can be toxic.  Notably, CB does 

not fluoresce and does not create singlet oxygen under illumination. Thus, CB is not 

active as a PDT source under illumination.  On the other hand, ICG’s absorption is in 

the center of the optical window, instead of being on the edge like Coomassie Blue. 

Some groups have been using magnetic particles, mostly                 , 

magnetite (Fe3O4), and maghemite (Fe2O3 or γ-Fe2O3), in an oscilating magnetic field 

to produce heat through Néel relaxation. [110] [111] [125]  The core size of the 

magnetic particles above is 5-15 nm with the most promising size ranging from 11- 13 

nm. [125] These particles were delivered by cationic liposomes. [125]  They were able 

to completely destroy a mammary carcinoma with tumor sizes up to 15 mm. [219]  That 

is a very large tumor size to be affected by thermal therapies.  There has been success 

with magnetite particles causing complete regression in clinical trials. [125]  With time, 
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the magnetite particles aggregated in the liver and the spleen of MCL treated mice and 

within 30 days were cleared from the spleen by fixed macrophages and liver by Kupffer 

cells. [125]  The problem with iron oxide is that the particles degrade rapidly in acidic 

conditions, such as is the case in the lysosomes, which raises the ROS levels in the 

cell. [46]   

Using magnetism can be better than photothermal therapy for tumors deeper 

than 1 cm from the surface.  The major problem with magnetic hyperthermia is that they 

are difficult to keep contained to a local volume without heating surrounding tissue. 

[124]  Any free floating particle that is affected by the magnetic field will also be heated.  

This can cause major problems if there is a buildup of particles in a place like the liver or 

spleen. 

Photothermal ablation uses high powered laser pulses, usually with particles, to 

destroy cells.  It works by making small explosions, cavitations or bubble formations, by 

heating the particles above boiling points of the solution. [10] [210] [218]  Not only has 

this technique been used with cancer cells, it has also been used to kill bacteria like 

Staphylococcus aureus. [233]  In this instance, 10-40 nm gold spheres were pulsed 100 

times with 8 ns pulses and with a fluency of 0.5 J/cm2.  The particles were heated to a 

temperature of 1250°C, with particle melting temperature being around 1063°C.  The 

pressure caused by the extremely hot particles was 107 Pa and lasted for about 0.1-5 

μs.  This works fine with spheres because they will remain spheres after solidifying, but 

one must be careful with gold rods because they become spheres if they melt. [210] 

A little less known thermal therapy is heating small gold nanoparticles with 

radiofrequencies. [147]  The gold nanoparticles are heated with 200 W - 1000 W radio 



113 
 

waves with a frequency of 13.56 MHz.  Gold nanoparticles that were administered at a 

concentration 67 μM/L showed about 98% cell death of Panc-1 and Hep3B when dosed 

for 2 min.  This therapy has a lot of collateral damage.  In the absence of gold 

nanoparticles, there was 21% and 26.4% cell death respectively, but with large standard 

deviations.   

2.5.13 Accumulation, Biodegradability, and Bioelimination 

What the particles do after therapy is almost as important as the therapy itself.  

As mentioned, many cancer therapies are extremely toxic and can cause severe side 

effects.  Both gold particles and PAA based particles tend to accumulate in the spleen 

and liver, but this is dependent on size, shape, and surface functionality. [32] [60] [83] 

[209] [234] [235]  Inside the cells, the particles were mostly found in the lysosomes to be 

degraded, but in the case with indigestible materials, such as gold, they will remain 

there. [82] [234]  There is a chance that nonbiodegrable particles can be exocytosed 

from the cell, but they will generally remain within the cells for a considerable time 

before this occurs. [82]   

When performing photothermal therapy, particles may need to be manipulated to 

increase concentrations in certain parts of the body or certain parts of the cells.  Altering 

surface functionalization effects accumulation locations and pathways of endocytosis.  

One group showed that TAT peptide dextran capped iron oxide particles had a small 

increase in the quantity found in the lungs. [236]  Changing the surface functionality 

might also change the pathway (e.g. BSA promotes caveolae-mediated endocytosis), 

which could lead to different organelles being targeted during treatment. [90] 
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The two main pathways of removal from the body are either by being filtered 

through the kidneys or by the reticuloendothelial system (RES, also known as 

mononuclear phagocyte system).  The kidneys can filter particles smaller than 10 nm, 

and the larger particles are often taken in by Kupffer cells, or liver macrophages in direct 

contact with the blood. [32] [81] [60]  After uptake they are then excreted out with the 

feces.  Kupffer cells remove endogenous material, such as old or damaged 

erythrocytes, immune complexes, cancer cells, apoptotic cells and other cellular debris. 

[81] They can also endocytose various colloids, particles like latex beads, liposomes, 

cells like erythrocytes bacteria, denatured proteins, toxins like endotoxin, viruses, 

hormones like insulin antigens, and glycoproteins. [82]   Size plays a major role in 

particle elimination, not only on the lower end of the spectrum, but also when particles 

are above 100 nm.  As particles become bigger than 100 nm, the chance of being 

captured by RES dramatically increases. [84]  Charge also plays a role in particle 

elimination.  Both particles and products from biodegradation are less likely to be 

removed renally if they are neutral or anionic. [60] 

Polyacrylamide nanoparticles have a plasma half-life of 24 h. [81]  PAA is known 

to accumulate mostly in the liver and the spleen. [81]  After about 120 h, PAA particles 

made with non-biodegradable cross-linker only have 2.2% of the PEGylated particles, 

and 3.3% of standard PAA particles bioeliminated. [81]  When using biodegradable 

cross-linkers, ranges increased to 16.67% total recovery from feces and urine for 10% 

biodegradable cross-linker, and 7.68% total recovery for particles made with 20% 

biodegradable cross-linkers at 42 days. [81]  
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Gold nanoparticles are not biodegradable, therefore all particles around 10 nm or 

greater are required to go through the liver or spleen to be eliminated.  After entering 

the RES, about 5% of 1.4 nm particles were bioeliminated in one day, and 0.5% of 18 

nm particles were bioeliminated in one day. [235]  In comparison, PAA particles made 

with 10% biodegradable cross-linkers had about 6% bioeliminated in one day. [81]  

Even though the 1.4 nm particles pass through the system faster than the larger 

particles, they have also shown to be toxic in vivo.  Gold nanorods had even lower 

clearance, showing about a 1.5% clearance after 14 days when their size was 56 nm by 

13 nm. [234]  After 14 days, about 11.5% of PAA synthesized with 10% biodegradable 

cross-linkers were eliminated. [81] Another study of 40 nm gold nanoparticles showed 

that the amount of gold in the Kupffer cells only fell 9% after 6 months. [237]  The 

inability of gold to biodegrade and be eliminated should be carefully considered when 

working with gold nanoparticles.   

2.5.14 Cellular Uptake 

The CB-PAA particles incubated for various times ranging from 1 h to 24 h 

showed a linear correlation between incubation time and cell death from PTT.  

Improving the rate and concentration of cellular uptake is one method of increasing the 

effectiveness of PTT.  Cellular uptake is dependent on incubation time, particle size, 

surface functionality (e.g. charge of particle or surface proteins), concentration of the 

particle, and shape of the particle.  Increasing the cellular uptake rates, or quantity 

taken in, is often accomplished by increasing the positive charge of the particle. [8] [23]  

Both negatively and positively charged particles have a higher rate of uptake than 

neutral particles. [50]  One example of using charge to increase cellular uptake is PEI 
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(polyethylenimine), which has been used to increase cellular uptake of mesoporous 

silica nanoparticles loaded with drugs. [23]  Another type of surface groups is peptides 

that have high amounts arginine and lysine (amino acids with positive charge) 

incorporated into their structure, such as TAT peptide. [45] [56] [236]  TAT peptide 

(GRKKRRQRRRPQ) is widely known because it is also the peptide HIV uses to 

penetrate cells. [236]  Changing the surface functionality doesn't always mean that there 

will be a higher concentration of particles, but sometimes just a faster rate of 

internalization. [33]   

Antibodies are often used to target specific cells, which increases the number of 

particles around the cells. [66]  There are many possible targeting moieties, such as F3 

peptide. [33]  It is important to remember that internalized particles are more effective 

than particles attached to the surface of the cells. [238]  Knowing this, targeting should 

be designed so that more particles are also endocytosed by the cells.  One problem that 

arises from changing the surface functionality is that the body often becomes 

hypersensitive to the targeted drug molecules or particles. [84]   These methods could 

possibly be a way to increase the amount of particles that enter cells, therefore lowering 

the needed concentration of particles.   

Most vary the incubation times based on the rate of uptake.  If particles are slow, 

then incubation times can take a day or more, like CB-PAA, but in the case of target 

molecules, particle incubation times can be an hour or less. [14] [34]  Targeting does 

not guarantee faster rates.  Sometimes target particles take upwards of 48 h, as was 

the case anti-EGFR gold nanoparticles with HSC and HOC cancer cells. [15]   
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Currently CB-PAA particles have no surface modifications and required 24 h 

incubation, so there is room to improve the particle system.  Often with other PAA 

based nanoparticles tested in our group, they only require 8 h to 20 h, and 1 to 4 h if 

functionalized with TAT peptide. [33] [34]  Improved surface modifications could change 

the surface charge, noted by the relatively neutral zeta potential, to a higher positive 

charge that would be faster and better at being endocytosed. Particle uptake is not only 

surface dependent but it is also dependent on size and aspect ratio with the lower 

aspect ratio being better (in case of gold nanorods). [8]  The current particles are 

spheres, so their shape is ideal, but the size distribution is much wider than desired.  

Ideally, particles should be under 100 nm, which means that the particles at the higher 

end of the distribution will have more troubles entering the cells.  Changing the surface 

functionality will prevent aggregation of the particles, which could be one reason for the 

large size.   

Cellular uptake is important and there are various different methods of measuring 

uptake.  In the case of in vitro gold, they can use neutron activation analysis (INAA) and 

inductively coupled plasma-mass spectrometry (ICP-MS). [9] [83]  ICP-MS would not 

work for our situation because we are not using metal nanoparticles.  INAA would not 

work because it measures the amount of material, and since the particles are made of 

carbon nitrogen, there would be nothing to distinguish our particles from the tissue.  

One possibility is to use UV-VIS spectroscopy to determine the concentration of 

particles.  There would be errors from the scattering of cells and cellular debris.  

Another possibility would be to use lower sensitivity atomic absorption spectroscopy 

(AAS).  It is quite labor intensive and could be used in-vivo with a sacrificial animal.  
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This method would most likely require a target element being attached to the particle as 

a reference, which could change the properties of the particles. [83]  

2.5.15 Tumor Delineation  

Tumor delineation is when a contrast agent is used to increase visibility of the 

tumor to the naked eye or on an image, such as X-Ray or MRI.  One of the first 

chemicals used was Gd3+ chelate, a first generation magnetic contrast agent for MRI. 

[124]  There are an assortment of gadolinium contrast agents that have been approved 

by the FDA, including Magnavist®, Omniscan®, and Prohance®. [146]  The new 

generation magnetic contrast agents for MRI use iron oxide as the core magnetic 

material. [124] [236]  These are great for improving imaging contrast on a MRI, but 

when a surgeon is resecting a tumor it is almost impossible to remove the entire tumor 

without resecting extra healthy tissue when only referencing MRI images.   

The reason tumor delineation is so important is because it is very difficult to 

achieve complete regression of a tumor by thermal therapy alone. [219]  This is 

especially true for larger tumors and tumors past the penetration depth of the light 

source.  So much of the tumor should be removed before photothermal therapy.  

Ideally, the tumor would be a different color so that a surgeon could easily distinguish 

between healthy tissue and the tumor.  A few dyes that have been used are Coomassie 

Blue [239], Indocyanine Green [240] [241], and bromophenol blue [242].  The last two 

are known to have side effects at high concentrations.  Below is an image of Coomassie 

Blue as a contrast agent (Figure 2.20).  
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Figure 2.20: This is an example of tumor delineation on a rat brain using 
Coomassie Blue dye.* 

*This image was taken from Orringer, D.; Chen, T.; Huang, D.; Armstead, W.; 
Hoff, B.; Koo, Y.; Keep, R.; Philbert, M.; Kopelman, R.; and Sagher, O.; The brain 
tumor window model: A combined cranial window and implanted glioma model 
for evaluating intraoperative contrast agents. Neurosurgery 2010 66(4) 736-743. 

2.6 Conclusion 

Gold nanoparticles have been used for years but very little work has been done 

with dye loaded particles in PTT.  Alternative methods are extremely important in 

medicine in case one method does not pass FDA tests, has limited functionality (doesn’t 

work on all tumor types), does not have fast enough bioelimination, costs are high to 

manufacture, or expensive for the customer because of a lack of competition.  CB-PAA 

particles are strong absorbers that efficiently cause cell death under low light conditions, 

with 97% of cells dying when incubated with 1.2 mg/mL CB-PAA particles.  One of the 

major reasons that this PAA delivery system is superior is because it is designed with 

biodegradable cross-linkers to speed up bioelimination.  The initial examination of the 

dark toxicity is small, but more will be done to prove that this system is nontoxic.  There 

is also the possibility of using CB-PAA not only for tumor delineation, but also to 
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increase effectiveness of radiation therapy. [133] [243] [244]  These are all 

characteristics that make CB-PAA a strong alternative to gold in PTT devices.   
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Chapter 3 Photodynamic Killing of E. Coli O157:H7 using 

Covalently Linked Methylene Blue Nanoparticles 

3.1 Abstract 

Methylene blue nanoparticles have been previously used in photodynamic 

therapy to kill bacteria. [158]  A couple of possible improvements to the particles were 

hypothesized in order to increase their efficacy. The first improvement was to increase 

the amount of methylene blue dye in the particle.  This could lead to higher yields of 

singlet oxygen. Another possible improvement is to target the nanoparticles with 

antibodies, peptides, or aptamers. [14] [245] [246]  Targeting the nanoparticles to a 

specific bacteria cell could increase the concentration of ROS species around that cell, 

which would increase cell death.  To test these hypotheses, a polyacrylamide 

nanoparticle with MB-SE conjugated to the matrix was synthesized.  Also, antibodies 

were attached to some of the same particles.  The particles were then tested on E. coli.  

Cell death did not occur in either of the two cases.  The highest concentration of 

particles was equivalent to the absorption of 400 μM of free methylene blue dye.  Both 

tests were exposed to an irradiance of 20 ± 1 mW/cm2 for up to 30 min.  This chapter 

will discuss the reason for new antimicrobial therapies, dyes, photodynamic therapy, the 

light source, how the experiment was set up, the results, and some possible reasons for 

the results. 
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3.2 Introduction to Bacteria 

Bacteria strains are becoming more antibiotic resistant.  Examples of this are 

showing up all over the world, such as the Escherichia coli strain outbreak in Germany 

[247], and methicillin-resistant Staphylococcus aureus (MRSA) that is currently infecting 

many hospitals. [248]  Bacterial strains often become more resistant if the antibiotic 

prescribed is below the minimal inhibitory concentration (MIC).  The more tolerant cells 

will grow more and reproduce faster.  This increases the MIC until the antibiotic is no 

considered effective at inhibiting the progression of the disease.  For this reason, those 

in the medical profession need to determine the correct antibiotic and the required 

concentration to function properly.   

Many researchers are currently working on determining the bacteria strain 

through various analytical measurements.  This can be an effective method of 

determining the antibiotic, but it is no guarantee.  The strain could still be resistant to the 

common antibiotics used on it.  To counteract the chance of failure, a broad-spectrum 

antibiotic is often prescribed instead of the narrow-spectrum antibiotic.  This often kills 

the harmful bacteria, but could lead to antibiotic resistance and limit the usefulness of 

some of the most functional antibiotics.  Resistance can also occur when patients do not 

complete their course of antibiotics, leaving the bacteria that are more resilient to the 

prescribed antibiotic.  There are two possible solutions: find a new method of destroying 

all types of bacteria, or determine the correct antibiotic for the specific infection.  The 

latter will be discussed in more detail in the next chapter: nonlinear rotation.  The 

various new therapies that are being probed include photodynamic therapy (PDT), 
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photothermal therapy (PTT), nanoparticle drug delivery, and novel antibiotics. [150] 

[249] [250] [251] 

3.2.1 Dyes Used in Photodynamic Therapy of Bacteria 

There are currently many different dyes used in photodynamic therapy of 

bacteria.   Some of the more common photosensitizers used include toluidine blue O, 

methylene blue (MB), and chlorin e6. [149] [150] [151]  Methylene blue was the chosen 

dye for multiple reasons.  First, the dye molecule has a very low dark toxicity (not toxic 

when not excited by the light source).  Another reason is because the dye has a 

maximum absorbance around 660 nm, which puts it in the optical window of tissue.  

With the dye being in the optical window, it has a deeper therapeutic range.  If the 

photosensitizer absorbed more to the blue, the dye would only be effective at the 

immediate surface, or extremely shallow distances.  The problem with methylene blue is 

that when it is in biological environments, it can be rendered inert by accepting electrons 

from NADH/NADPH.  This changes it to its leuko form, leuokomethylene blue, a 

colorless molecule that has no photodynamic activity. [7] [38] [71] [73] [79]  It has also 

been suggested that reduction of MB is done by thiazine dye reductase at the cell 

surface.  For this reason, it so important that methylene blue is incorporated into a 

polymer matrix to be an effective therapeutic agent. 

There are some limitations to dye loading, with the main limitation being leaching.  

Leaching is when the dye comes out of the particle. The most effective method to 

prevent dye leaching is by covalently linking the dye to the matrix. [34]  Covalently 

linking the dye to the polymer matrix can also increase dye loading.  Another limitation 

of dye loading is seen when the dye molecule concentration in the particle is high.  The 
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dye molecules can quench each other when they are too close to each other, therefore 

making them inactive. [34]  Previously, the methylene blue was not covalently linked to 

the polyacrylamide matrix. [158]   

3.2.2 Light Source for Bacteria 

The excitation source of most PDT experiments is a laser that has a close 

enough wavelength to the absorption of the photosensitizer.  Several works used LED 

based systems instead because they are cheap and easily made to cover large surface 

areas. [252] [253]  Fluencies for both lasers and LED excitation sources are often 

between 20 J/cm2 to 60 J/cm2. [150] [151] [158] [252] [253]   

The variable of the light source used on cancer cells is very similar to that of 

bacteria.  When targeting C6 with methylene blue nanoparticles, they used a 0.32 

W/cm2 laser with a wavelength of 647 nm.  The cells were exposed for 45 minutes, 

which ends being a fluency of 864 J/cm2. [7]   A low dose is considered to be about 20 - 

25 J/cm2 for cancer [146]  

3.2.3 Polyacrylamide 

For more information of polyacrylamide, please refer back to chapter 2.  In that 

chapter it describes in greater detail its toxicity, synthesis, biodegradability, and why it is 

used.   

3.3 Experimental 

3.3.1 Cell culturing 

Escherichia coli O157:H7 (ATCC 35150) was solubilized using BD Tryptic Soy 

Media, and then plated onto petri dishes of BD Tryptic Soy Agar.  Petri dishes were 

incubated in a Lab-Line Imperial III Incubator overnight, or until colonies were 
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approximately half of a millimeter in size.  Solutions of E. coli were made by picking a 

colony, and regrowing the bacteria in Tryptic Soy Broth. 

 

Figure 3.1: Synthesis scheme of the methylene blue polyacrylamide particles.  
The methylene blue linked to acrylamide was copolymerized with acrylamide 
APMA and MBA in a reverse micelle reaction. 

3.3.2  Particle Synthesis 

For these experiments, a MB-SE was covalently linked to a polyacrylamide 

matrix. [34]  The synthesis was initiated by placing 1.6 g of AOT, 3.3 mL Brij 30, 45 mL 

of hexane (all from Sigma Aldrich), and a stir rod into a 100 mL round bottom flask.  

This solution was then deoxygenated by bubbling argon through the solution. In a 

separate scintillation vial, 610 mg of acrylamide from Sigma Aldrich, 45 mg of 3-

(aminopropyl)-methacrylamide from Polysciences Inc., and N, N-methylenebis 

(acrylamide) from Sigma Aldrich were dissolved into 1.6 mL of Milli-Q water, from a 

Millipore A10 water purification system.  After the monomer units were dissolved into 

the water, 2 mg of MB-SE was added and mixed until homogeneous.  The monomer 

solution was stirred with a small magnetic spin rod, and then sonicated.  After the 

solution was thoroughly mixed, it was added to the bubbling hexane solution.  The 

solution was then bubbled for 20 min under inert conditions.  To initiate the reaction, 40 
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μL of a 10% (w/v) ammonium persulfate in water solution, and 40 μL of N, N, N´, N´ 

tetramethylethylenediamine (TEMED) were added to the acrylamide solution.  The 

solution was then stirred under inert conditions for 2 h. Figure 3.1 shows the general 

scheme of the synthesis.  After the reaction was completed, the hexane was evaporated 

off using a Büch RII Rotavapor.  The surfactant and unreacted monomers were then 

washed away from the particles by using an Amicon cell and Millipore Ultrafiltration 

Membrane 500,000 NMWL.  The particles were washed 5 times with 200-proof ethyl 

alcohol from Decon Labs Inc., and 5 times with Milli-Q water.  The clean particles were 

lyophilized to remove any water or minute quantities of remaining ethanol from the 

particles, and to keep the matrix intact.   

3.3.3 LED Array 

An excitation source was needed, and an LED array was designed and 

manufactured in the lab (See Figure 3.2).  The LED array was made from 1242 wide 

angle LEDs from Kingbright Corp.  The peak of the array was centered at 660 nm, 

which overlaps the absorption peak of the MB-PAA at 660 nm.  An absorption spectrum 

of the nanoparticle can be seen in Figure 3.6.   Mirrors were placed on each side of the 

array to increase uniformity of the light at the face, where samples were placed.  There 

was about a 5% deviation in uniformity at the face of the mirrors.  The max intensity, 

before power loss due to overheating, was 20 ± 1 mW /cm2. 
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Figure 3.2: Experimental setup contains a 660 nm LED array of 1242 LEDs.  The 
power output of the LED array was 20 ± 1 mW/cm2.  The 1.5 mL cuvettes 
containing E. coli O157:H7, and either the methylene blue or MB-PAA 
nanoparticles, were placed at the face of the array. 

3.3.4 MB PDT  

To confirm functionality of the system shown in Figure 3.2, the initial examination 

was done using free methylene blue dye.  E. coli O157:H7 was grown, centrifuged 

down, and decanted.  A PBS peptone solution with a pH of 7.4 was added until the 

bacteria had an absorbance of 0.1 at 660 nm, which equates to approximately 1 x 10-8 

cfu/mL.  Then 1.5 milliliters of the bacteria solution was added to each of the 1.5 mL 

quartz cuvettes.  Under a 468 nm blue LED, differing amounts of 15.1 mM MB dissolved 

in Milli-Q water were added to 1.5 mL cuvettes to get final concentrations of 0 μM, 0.1 

μM, 1 μM, 10 μM, and 100 μM methylene blue.  Cuvettes were then mixed and placed 

at the face of the mirrors.  The cells were exposed to the LED array for 5 min. intervals, 

with small amounts of cells being removed to determine the number of colony forming 
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units per milliliter at each interval.  Cells removed were serially diluted, then streaked in 

triplicate on Tryptic soy agar plates and incubated overnight.  The proceeding day, 

colonies were counted.  

3.3.5 MB-PAA PDT 

The dried MB-PAA nanoparticles were dissolved in PBS solution with a pH of 

7.4.  A solution of bacteria with absorption greater than 1 at 660 nm, was centrifuged 

down and resuspended in a PBS peptone solution until the bacteria absorbance was 

0.167.  Then 1 mL of the solution was added to each cuvette, and 0.5 mL of varying 

concentrations of nanoparticles, determined by Figure 3.4, were added until the 

concentration of nanoparticles was equivalent to 0 μM, 0.1 μM, 1 μM, 5 μM, and 10 μM 

of free methylene blue.  With the addition of 0.5 mL of dye solution, the final absorbance 

of the E. coli would have been around 0.1 at 660 nm. The MB-PAA solutions were 

exposed for 5 min intervals of 660 nm LED light at a power of 20 ± 1 mW/cm2.  There 

were small amounts of solution being removed for culturing at the end of each interval. 

This same experiment was repeated at the solubility limit of the nanoparticles, which is 

equivalent to approximately 400 μM of free MB.   

3.3.6 Singlet Oxygen Production 

Singlet oxygen of the MB-PAA particles was measured using the ADP method. 

[7] [254] 2 mg MB-PAA particles were dissolved in 2 mL of PBS buffer.  The solution 

was then mixed with an ADPA solution 100 mM in a cuvette.  The solution was 

constantly mixed and illuminated with 660 nm light through a 10 nm slit.  The light 

source was Jobin Yvon Horiba 150 W ozone –free xenon-arc lamp.  The fluorescence 
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of the ADPA excited at 378 nm was measured at different intervals during a 15 min 

period. 

3.4 Results 

Initially, methylene blue and the E. coli O157:H7 were used to test whether the 

LED system functioned properly and was an effective method of causing cell death in 

gram negative bacteria.  After regrowth, the cells were centrifuged down and 

resuspended in PBS peptone solution to limit the interference that may come from the 

absorbance of the growth media at 660 nm.  The PBS peptone was used to stabilize the 

cells.  After the addition of methylene blue, the bacteria were placed under a 

microscope to image the effect of the MB.  The E. coli was very dark blue from the 

uptake of MB free dye into the outer membrane, or possibly even deeper into the cell.  

This can be seen in Figure 3.5.  

 

Figure 3.3  Staining of E. coli O157:H7 with methylene blue free dye.  The 
methylene blue penetrates into the outer membrane of the bacteria staining them 
blue.   

A different set of suspended E. coli cells were then prepared under 468 nm blue 

LEDs. The absorption of MB at 468 nm is low, which minimizes the amount of ROS 

produced before exposure to the 660 nm red LED array.  These blue LEDs had a weak 
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intensity of about 50 μW/cm2 where the samples were prepared.  After the bacteria 

solution and MB were exposed to light at room temperature, small volumes were 

removed, serial diluted, and then plated.  Generally, colony counts ranged from 300-400 

colonies per plate, except for the MB concentrations that were effective at causing cell 

death.  These had counts of 0 to 15 colonies per plate.  The results shown in Figure 3.4 

were taken from 3 plates made from each concentration.  The average error was 9.0% 

and a median error of 6.4%.  The difference between the average and median error 

comes from the colony counts of 10 μM and 100 μM. Concentrations of 1 μM MB and 

lower do not to have an effect greater than error in the measurements.  At the higher 

concentrations of 10 μM and 100 μM, 99% of cell death occurred within the first 5 min of 

exposure at 20 ± 1 mW/cm2.   
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Figure 3.4:  The effect methylene blue has at varying concentrations of MB and 
with varying illumination times.  The colony counts of 3 different petri dishes were 
normalized to 0 to give each data point. The average error was 9.0% and a 
median error of 6.4%.   

The ability of MB to kill the E. coli without an excitation source, known as dark 

toxicity, was also tested.  E. coli O157:H7 showed no significant dark toxicity, which can 

be seen in Figure 3.5.  These experiments were also prepared under the 468 nm blue 

LEDs to minimize the photodynamic effect caused by the absorption of light.  There was 

an average error of 7.3%, with five petri dishes for each concentration. 
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Figure 3.5: The average dark toxicity of the methylene blue at different 
concentrations.  MB free dye was added to cuvettes with E. coli O157:H7 in PBS 
until concentrations of 0, 0.1, 1.0, 10 and 100 μM were reached.  The absorption 
of the E. coli was 0.1 at 660 nm.  All preparation was done under a blue LED.  
After allowing for 30 min incubation, the cells were then plated on five petri 
dishes for each concentration.   

Before experimenting, the particles were characterized.  When the methylene 

blue was bound in the particles there was a shift and a drop in absorption of the 

particles.  This affect can be seen in Figure 3.6.  Sometimes when dyes are in close 

proximity, they quench each other.  The particles were then tested to confirm that they 

would produce singlet oxygen, and so an ADPA test was performed by using the 2 

fluorescent peaks to measure singlet oxygen production.  This can be seen in Figure 

3.7, and the plots of the ratio between the peaks can be seen Figure 3.8.  The singlet 

oxygen production per mg of particle is higher for MB-PAA than that of nonconjugated 

MB particles.  The k-value of the nonconjugated MB nanoparticles was 1.1 x 10-4 s-1, 

while that of MB-PAA at was 5 x 10-4 s-1. [255]  See Table 3.1 to see how MB-PAA 

compares to free methylene blue and methylene blue SE. 
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Figure 3.6: UV-Vis spectrum of 15 μM MB-PAA nanoparticles with similar 
absorbance to that of 10 μM of free methylene blue.  The shift is caused by the 
dye molecules being in a polymer matrix. 

 

Figure 3.7: Fluorescent peaks of ADPA at different time intervals 0-20 min while 
being excited at 378 nm. 
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Figure 3.8: Singlet oxygen production of the 1 mg/mL MB-PAA nanoparticle 
using ADPA quenching to measure the amount of singlet oxygen being 
produced. 

Dye Solvent Ex/Em K value k/kMB 

MB PBS 667/688              100% 

MB-SE PBS 666/685              83% 

MB-PAA PBS 668/691             16% 

Table 3.1: Different k values for MB dye, MB-SE dye, and MB-PAA particle.  K 
values were determined from the singlet oxygen plots.  All singlet oxygen plots 
were done using ADPA    
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Figure 3.9: Calibration curve for methylene blue succinimidyl ester.  
Concentrations of dye in particles were determined from this plot.   

In the MB-PAA particles test, the cuvettes were setup as they were for the 

methylene blue.  A higher concentration of bacteria was used, but in smaller amounts 

because of the limited solubility of MB-PAA. Using the calibration curve (Figure 3.9) the 

different concentrations of particles were prepared. This experiment was repeated 

multiple times with varying concentrations.  The results shown in Figure 3.10 and Figure 

3.11 represent the experiments with the smallest errors.  Each value is an average 

taken from three petri dishes. Unlike methylene blue, MB-PAA particles with equivalent 

absorbance to MB do not cause cell death, as can be seen in Figure 3.10.  Even with 

the maximum amount of MB-PAA, which is equivalent to 400 μM of MB, there was still 

no cell death (Figure 3.11).  
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Figure 3.10: MB-PAA nanoparticles at concentrations with equivalent absorption 
0 μM, 0.1 μM, 1 μM, 5 μM, and 10 μM of methylene blue free dye in a solution of 
E. coli O157:H7 with an Abs. of 0.1 at 660 nm.  Each concentration was exposed 
using varying illumination time with colony forming units done in triplicate.  The 
results were then normalized to time 0.   

 

Figure 3.11: The effect of photodynamic therapy using MB-PAA nanoparticles 
with an absorption equivalent to 400 μM of methylene blue free dye.  Each data 
point was from 3 petri dishes normalized to time 0. 

MB-PAA particles with anti-E coli put with the bacteria under similar conditions to 

the methylene blue and the MB-PAA particles.  There was no success with those either. 
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Figure 3.12 MB-PAA with anti-E coli attached to the surface were placed with E. 
coli O157:H7 with a concentration of particles equivalent absorption 10 μM of 
methylene blue free dye.  The absorbance of the E. coli O157:H7 with an Abs. of 
0.1 at 660 nm.  The solution was exposed using varying illumination time with 
colony forming units done in triplicate. 

3.5 Discussion 

The results show promising PDT when just using the dye methylene blue, which 

has been observed in previous experiments. [256]  Many groups are currently looking 

for cationic dyes that have better cell penetrations, i.e. zinc-phthalocyanine and tetra 

(4N, N, N-trimethyl-anilinium) porphine tetraiodide, which result in more cell death. [257] 

[258] [259] [260]  Since ROS need to get inside a cell to kill the bacteria, it is better if the 

photosensitizer is deeper inside the cell. Without the dye penetration, cell death is 

minimal in certain strains. [259]  Penetration is often better with gram positive bacteria 

because of a lack of an outer membrane, which is not the case in gram negative 

bacteria. [259]   
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Methylene blue loaded polyacrylamide nanoparticles have previously been 

shown to be effective at killing E. coli K-12, Staphylococcus aureus, Acinetobacter, and 

P. aeruginosa at concentrations of 5 mg/mL. [158]  In comparison, MB-PAA could not 

kill E. coli O157:H7 at 89 mg/mL. There are a few possible reasons why this may have 

happened.  First, the bacterial strains used for loaded MB particles could be easier to 

kill using PDT, which could be the reason for the deviation between particles.  Looking 

at Xi’s data alone, it is possible to see that all cell types are not equivalent.   

Another likely scenario is that cell death in previous work was due to the 

methylene blue not being covalently linked to the particle.  The speculation being that 

the MB molecules leached out of the particles and into the cells.  While in the cells, the 

singlet oxygen produced by the methylene blue would be close enough to cause cell 

death.  Figure 3.3 shows that methylene blue readily stains E. coli.  The staining also 

works in gram positive bacteria and is believed to be caused by methylene blue’s 

positive charge, low molecular weight, and hydrophilicity. [261]  Taking the ability of 

methylene blue to enter cells into account, maybe the methylene blue in the previous 

work would have leached out since they were covalently not bound to the nanoparticle 

matrix.  The particle worked as a delivery vehicle. 

Since the MB-PAA was producing ROS, and methylene blue killed cells under 

similar conditions, the lack of cell death cannot be caused by the particles inability to 

produce singlet oxygen.  The particles may not be producing enough singlet oxygen 

under the LED array to kill the bacteria without the particles actually being close 

enough, or inside the cells, as is the case for free MB molecules.   The lower singlet 
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oxygen production could come from a lack of oxygen in the cuvettes, even though there 

was space at the top for air.  

3.6 Conclusions 

Methylene blue covalently linked nanoparticles were not effective for 

photodynamic killing of E. coli bacteria. In PDT on bacteria, it appears to be important to 

have the photosensitizer inside the cell in order to kill it.  This common issue with PDT 

on bacteria has been seen with other dye molecules.  The particles may not have 

worked because of the specific bacterial strains that were being used.  It may have 

been better to use a gram positive bacteria strain.   Another possibility to make the 

nanoparticles effective is by using cationic dyes on the surface to allow for more 

penetration of the ROS.  
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Chapter 4 Preparation and Experimentation using 

Nonlinear Rotation for Bacteria Detection 

4.1 Abstract 

 As discussed in chapter 3, there is a need to find new methods of determining 

the best antibiotic when one has a bacterial infection.  In order to determine the best 

antibiotic, one must know the bacteria strain or monitor its growth in an antibiotic.  With 

my help, we determined that bacteria binding to a rotating particle will change the 

particle’s rotation rate.  In the case of a 2.0 μm magnetic sphere, the rotation rate 

lowered by a factor of 3.8 when E. coli BL21 was bound to its surface (Figure 2.1).   

Using this method will allow one to detect different bacteria strains.    

4.2 Introduction 

There are multiple examples of rotating magnetic particles in a magnetic field.  

Through simple microscopy techniques, one can monitor the rotation of different types 

of particles: single particles, rods, wires, chains of particles, Janus particles, etc. [262] 

[263] [264] [265] [266]  Not only can the particles be monitored, but they can also be 

used as tools in other applications.  They can be used to improve immunoassays, act as 

micromixers, study microorheology, magnetoresitive sensors, tunnel junction sensors, 

and increase signal to noise ratios in fluorescent spectroscopy. [267] [268] [263] [264] 

[266] [269]    
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Our laboratory had multiple people working on using nonlinear rotation of 

magnetic microparticles to detect and monitor the growth of bacteria.  There were 

several issues that I worked on to assist in the research.  The common issues we had 

were binding the particle to the bacteria, particles settling to the bottom of cell and 

sticking, particles and bacteria binding in groups, and uniformity of the magnetic field.  

W had a couple of theories on how to remove these problems, which was what I worked 

on with Brandon McNaughton and the others during the project.   The rest of the 

chapter will discuss some of the issues and the results that we accomplished. This is 

the first time it has been used to measure the binding of a bacterium. [159] [160] [161] 

 

Figure 4.1: Diagram of the single cell detection, and changes in the rotational 
rate of a magnetic microsphere when it binds with a single bacterium. The 
antibody represents the multiple possible types of antibody configurations.  In the 
case of this experiment, it was functionalized with a secondary antibody (goat 
anti-mouse IgG Ab2) and primary antibody (mouse anti-E.-Coli IgG Ab1). 

4.3 Experiment 

 Initially, a precut slide was prepared with (1% W/V) 2.0 μm magnetic 

microspheres with anti-mouse IgG from Spherotech.  This was done by spreading 20 μL 
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aliquots of particles onto the surface of the slide.  After drying, the sample was coated 

with aluminum until the coating was about 50 nm.  The particles were then placed in a 

magnetic field of 1.4kOe to change the magnetic moment of the particles to be 

perpendicular to the aluminum coating.  The particles were then brushed off into a PBS 

buffer that had a pH of 7.2.  Mouse anti-E coli antibodies from Cortex Biochem were 

then attached using the anti-mouse mouse interaction between the two antibodies.  

Many other types of interactions to connect the bacteria to the particles were tried too.  

Another type of particle that was used was streptavidin magnetic microspheres.  The 

anti-E coli antibodies were biotinytalated, and therefore bound with the streptavidin. 

In order see the bacteria as they rotated, a DsRed plasmid was introduced to the 

E. coli BL21(DE3). [270]  The bacteria were grown until they had an optical density of 

0.67 at 600 nm.  The bacteria solution and the particles were mixed in a 1:1 ratio.  A 

Rodney cell was then setup:  two microscope cover slips of 100 μm were stuck together 

with double stick tape on the edges so that there was a space left in the middle for 

solution.  The bacteria and particles were then magnetically separated so that there 

would not be too much bacteria in the solution.   PBS (η = 0.001Pa’s), or a PBS glycerol 

solution with a mass fraction of 0.5 (η = 0.006Pa’s), was then added to the particles.  

After the addition of solution, the particle solution was then wicked into the Rodney cell 

and placed on the microscope for imaging and rotation. 

The rotation of the particles was monitored by either fluorescence microscopy, 

bright-field microscopy, or reflection microscopy.  The rotation was monitored by 

measuring the fluctuations in intensity of the particle with the Metamorph software from 

Molecular Devices.  Brandon McNaughton did most of the work with Metamorph and 
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data acquisition.  A more in depth description of this is described in various papers. 

[159] [160]  The average rotational frequencies were determined using discrete Fourier 

transform.  The higher harmonics were filtered out to make it easy to analyze the 

rotation dynamics of the particle.  

4.4 Result and Discussion 

My work in the nonlinear rotation was to find the different methods of binding the 

particles to the bacteria, to prevent particles from sticking to the surface of the slides, 

and to grow the bacteria.  Various types of particles were used with bacteria.  Initially, 

we attempted to use plain bacteria without antibodies.  Sometimes we would find 

bacteria attached to the particles.  It would take thousands of particles before Brandon 

or I would find a single particle with just a single bacterium attached.  Much of our initial 

work together was using this method.   

In order to increase the binding efficiency we looked into other methods.  That is 

when we started working with antibodies.  Most of the antibodies that we tested did not 

work, even though they were for E. coli.  Each antibody is specific to a given antigen.  

Most of the antibodies we researched were not specific to a surface antigen on E. coli, 

nor were they specific to the strain of bacteria we were using at the time, BL21.  I later 

set up a Biosafety Level 2 room for future work that was done with bacteria and 

nonlinear rotation.  This allowed us to have the pathogenic bacteria that were used in 

chapter 3.  I also assisted in many of the later experiments with bacteria growth by 

introducing new strains to be tested. 
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The particle with anti-E coli from Cortex was one of the few that we could get to 

bind.  Even though it did bind, the binding was not great and it still required a lot of time 

to find particles with the correct amount of bacteria attached.  In Figure 4.2 

 

Figure 4.2: This is a series of successive fluorescence microscopy images of the 
magnetic microparticles rotating in the magnetic field [271]. The dotted lines 
represent the location of the 2.0 μm microsphere, and the bright spot is the 
fluorescing E. coli bacterium (BL21) attached to the surface of the particle.  In 
this case, the particles are rotating where the axis of rotation lies in the plane of 
the sample. 

Even after finding a good candidate to measure, there were still multiple issues to 

overcome in order to measure the average rotation frequency.  For one, the particle 

would settle to the bottom of the vessel and rub against the bottom.  This would 

increase the drag and change the rotational dynamics.  Much of the time, the particles 

would stick to the surface.  I worked on multiple different methods to eliminate this 

issue. I functionalized the slides with positively or negatively charged functional groups, 

and neither of those worked.  Another method tested was to PEGylate the glass 

surface.  Initially, PEG was spin coated or dried on to the surface the slide.  This did not 

work because the PEG just dissolved back into solution.  Not in this experiment, but in a 

later experiment, I covalently linked the PEG to the slide. [272]  This didn’t eliminate all 

sticking, it just took 5 times as long to stick.  These slides were not used for bacteria 

rotation much, but they were used to monitor particle slipping on the surface of the 

slides. Instead of limiting sticking by changing the slides, it was decided to use a mixture 



145 
 

of glycerol and PBS.  The mixture had a higher density, so the particles would not sink.  

This worked great for comparing particles with no bacteria and ones with bacteria 

attached, but this did not work for experiments where the bacteria needed to remain 

alive. 

After finding the right particles, the average rotation of a particle as the driving 

frequency was measured.  In Figure 4.3, it shows the average frequency for both a bare 

particle with nothing attached, and one with a bacterium.  Both of these are in 

agreement with Equation 1.3.  The critical frequency for the particle with the bacterium 

attached was determined to be 1.27 Hz, and the critical frequency of the bare particle 

was 2.2 Hz.  Assuming that all of the forces are negligible, it was determined that the 

particle could be used to detect bacteria. 

 

Figure 4.3: The plot shows the rotation rate of the 2.0 μm particle as driving 
frequencies increased with and without a single bacterium attached. The linear 
phase is seen on the left side, and the nonlinear phase of particle rotation is to 
the right of the ΩC. Critical frequencies and the overall frequency both drop with 
the addition of the bacterium. [271] 
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Figure 4.4: Plot shows the effect on the rotation rate of a dimer as 1, 2, 3, 4, and 
8 bacteria bind.  The magnetic particles were in a magnetic field rotating at 3.75 
Hz.  The trendline is a theoretical fit to represent estimations as other bacteria 
bind.  [271] 

Magnetic microparticles can also be used to detect multiple cells attaching.  

When cells attached to a dime, two particles connected to each other, we were also 

able to monitor the change in rotation.  The dimer was able to detect the addition of 8 

bacterium (Figure 4.4).  
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Figure 4.5:  The change of the average rotation of 20 different particles when 
bacteria, not just a single bacterium, attach to the surface of the particles. [271] 

To overcome the issue of too many bacteria binding to a particle, it was decided 

just to monitor the rotation rate of 20 different particles with bacteria attached.  The 

bacteria on the surface of magnetic microspheres caused a significant change to the 

average rotation frequency.  The driving frequency was 4.0 Hz, and the average 

frequency of the particles was 0.72 Hz without bacteria attached, and 0.19 Hz with 

bacteria attached, a decrease in rotation by a factor of 3.8 (Figure 4.5). These results 

are similar to a 1.0 μm sphere being attached to a 1.9 μm ferromagnetic particle. [160]   

After these experiments, I worked on improving the uniformity of the magnetic 

field.  The coils on the first magnetic fields were not the same size and the magnetic 

field had to be adjusted so that it was uniform. I later designed a new coil system that fit 

in the microscope that was more uniform (Figure 4.6).  The coils were uniform in size, 

were able to rotate on any axis, had a built in incubator, allowed for 100x objective, and 
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fit on the microscope.  Multiple members of the group used it as they were doing 

experiments.  

 

Figure 4.6:  The magnetic coils I designed that were uniform in size, could rotate 
on any axis, had a built incubator, and could fit bigger microscope objectives. 

 A competing technology would be nanoelectromechanical systems (NEMS), 

which has been used to detect viruses and bacteria. [273] [274] [275] [276]  With 

NEMS, a vibrating cantilever detects the presence of a microbiological agent attached 

to its surface by monitoring changes in its resonant frequency.  The problem with NEMS 

is that it functions well in a vacuum, but it does not function well in the fluidic 

environment needed for bacteria. [277] [278]  

When the bacteria are bound to the particle, the particle could be used to monitor 

the changes in the bacteria as it grows. [1]  As the bacteria grows, its volume increases 

and so does its drag.  This slows the particle rotation down in the nonlinear regime.  

Using this technique, one could monitor the effect of antibiotics on the growth dynamics 
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of bacteria attached to spheres.  This method would directly determine the correct 

antibiotic and eliminate the need to name the strain attached.  This has been one of the 

major research projects in the group. [1] [2] [279] 

4.5 Conclusion 

The rotation rate of 2.0 μm magnetic microspheres decreased by a factor 3.8 

when a single bacterium was bound to their surface.  The rotation decreased further on 

the binding of even more bacteria. These results show the ability of magnetic 

microparticles to detect bacteria bound to their surface in a liquid environment.  It also 

shows that there is a potential of using this technique to monitor growth and division of 

microorganisms.  Future work on increasing sensitivity and binding efficiencies will 

make this technique even stronger, and make it ready for industrial use. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusions 

Coomassie Blue polyacrylamide nanoparticles function well as photon absorbers 

for photothermal therapy.  The particles are biodegradable and pass out from the body 

faster than the competing gold nanoparticles.  The particles show no dark toxicity, but 

under exposure to low power LED array, the particles effectively kill the tumor cells.  

When cells are exposed to a fluency of 61 J/cm2 after being incubated with 

concentrations of 1.2 mg/mL of Coomassie Blue nanoparticles, 97% of the HeLa cells 

were killed.   

A study was done using methylene blue covalently linked to polyacrylamide 

nanoparticles for photodynamic therapy on E. coli O157:H7.  The nanoparticles were 

ineffective at killing the bacteria, even when concentrations of the methylene blue in the 

nanoparticles were equivalent to 400 μM of methylene blue free dye.  A similar study 

was done using noncovalently linked methylene blue nanoparticles on various strains of 

bacteria.  Noncovalently linked methylene blue nanoparticles were able to reduce cell 

viability in various strains. [158]   It is believed that the reason the covalently linked 

nanoparticles did not show cell death is because the singlet oxygen could not penetrate 

deep enough to kill the cells.  In the noncovalently bound methylene blue nanoparticles, 

the dye could possibly leach out of the particle into the bacteria.  This would allow the 

singlet oxygen produced to penetrate deeper into the bacteria, causing cell death.  
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Nonlinear rotation magnetic microparticles show promise for bacteria detection.  

The microparticles showed the ability to detect individual binding events of E. coli.  This 

was done by optically watching the change in the rotation of the particles.  As each 

binding event occurred, the rotation rate of the particles slowed down, on average, by a 

factor 3.8.   

5.2 Future directions 

Several steps can be taken to improve the current Coomassie Blue 

polyacrylamide particle system.  The uptake of the particles by the HeLa cells took 

about 24 h, which is longer than that of other polyacrylamide particles.  Incubation times 

could be lowered by increasing the positive charge on the nanoparticles.  Some 

different potential surface modifications for increasing the positive charge include a 

short peptide residue containing arginines, or the TAT peptide that facilitates HIV uptake 

into cells. Both methods are known to assist internalization with other nanoparticles. [45] 

[56] [236]  Since the particles are easily functionalized with targeting peptides, 

antibodies, or aptamers, targeting the Coomassie Blue nanoparticles to specific tumor 

cells should be tested.  A more exhaustive study of the correlation between light 

irradiance and cell viability should be undertaken.  This could be accomplished by 

comparing the LED array to a higher-powered laser system, which could also give more 

information on the manner of cell death.  Another interesting direction to take is to study 

the concentration of particles inside the cells, and then determine the heat each 

concentration produces.  Along the same line, the pathway of internalization and where 

the particles accumulate should also be examined.  These experiments could give some 

more insight into the temperature surrounding each particle and how the cells die.  Also, 



152 
 

since the particles are adept at killing tumor cells in vitro, the nanoparticles should be 

tested in vivo.    

There are a couple of experiments that could be done in the future to solidify the 

result that covalently linked methylene blue  nanoparticles are not going to be useful for 

PDT on bacteria, and also to help move forward with what has worked so far.  First, the 

two different types of particles, covalently and noncovalently bound methylene blue 

polyacrylamide particles, should be tested on the same bacteria strains.  Another 

experiment would involve taking noncovalently bound methylene blue polyacrylamide 

particles and attaching targeting moieties to their surface.  It would be interesting to see 

if this would increase the effectiveness of the particles.   

Nonlinear rotation already has a bright future, as members of our group have 

started a spin-off company with it. [1] [2] [279]  However, there are still advancements to 

be made in the field.  One idea would be to attach a universal targeting moiety to the 

rotating particles that will attach to any bacteria.  With this particle, it may be possible to 

determine the bacteria strain by monitoring how each type of bacteria affects the 

rotation of the particle as the bacteria grow.  Monitoring growth has been done, [1] [2] 

[279]  but comparing growth in different strains of bacteria has not been studied. 
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