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CHAPTER 1

Introduction

Procurement has emerged as a critical function, yet a challenging topic, since in

many firms procurement operations are complex, and laced with misaligned incen-

tives and information asymmetry between buyers and suppliers. Although economic

(auction) theory provides a basic foundation, the richness of the operational context

residing in supply chains offers numerous opportunities for research.

In my dissertation research, I focus on creating novel models to capture impor-

tant phenomena in sourcing that are under-studied and analytically challenging. In

particular, my thesis spans three different contexts that arise from a buyer’s lack of

information: (1) The role of cost modeling, (2) Consequence and remedies of having

an error in initial request for quotes (RFQ), and (3) The strategic use of an incumbent

supplier as an outside option when negotiating with entrant suppliers.

Essay 1: The role of cost modeling in competitive bid procurement

For firms who rely extensively on external suppliers for production, it is natural

to experience atrophying capabilities in manufacturing, as process engineers, produc-

tion technology experts, material experts, etc. are shed, which eventually leaves the

firms with little insight into current production trends and technologies. A firm who

lacks such information is at a disadvantage when buying from external suppliers, since
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suppliers can earn outsized profits by exploiting the buyer’s lack of knowledge about

the true production cost. To mitigate this, many buyers engage in rigorous activi-

ties (known as cost modeling) seeking to estimate the minimum price a supplier is

willing to accept for a contract. These activities include sending experts to supplier

sites, gathering data, and engineering and process analysis, all of which are expensive

and time-consuming. However, in settings where the buyer plans to source through

competitive bidding, the benefit of cost modeling is not clear since the bidding com-

petition among suppliers can itself reveal cost information. This essay examines if,

how, and when cost modeling should be deployed. The value of cost modeling de-

pends on depth and breadth of the modeling, as well as on the amount of parity

(or disparity) that exists between the minimum prices suppliers are willing to accept

for the contract, information which the buyer does not have a priori. I show that

although bid competition sometimes duplicates the information gleaned by cost mod-

eling, the latter can still be beneficial when it helps the buyer set an effective reserve

price. I use stochastic ordering to characterize when and how the buyer gains the

most through cost modeling. Specifically, I characterize which supplier(s) to learn

about, which portion(s) of the costs to learn, and how deeply and broadly the buyer

should learn for general supply base topologies. I show that, when it comes to cost

modeling, approaches that rely on naive intuition and conventional wisdom about the

benefit of learning do not necessarily work. For instance, learning about the supplier

whose cost is the most uncertain is not necessarily optimal, nor is learning about the

cost portion that contributes most to the total cost. I also show that conventional

intuition that the benefit of additional information has a diminishing rate of return

does not apply. To the best of my knowledge, this essay is the first to model and

analyze how two very common procurement tools — cost modeling and competitive

bidding — interact. It has the potential to help procurement managers make better

decisions about how to apply cost modeling in practice.
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Essay 2: Procurement auctions with error-prone RFQs

While most procurement research assumes that the buyer’s RFQ is perfect as

given, in reality the RFQ can be flawed due to an error of omission and misspecifi-

cation. Moreover, experienced suppliers can be more knowledgeable than the buyer

and have the ability to, at the time of bidding, recognize such an error and anticipate

windfall profit consequent to it. This makes the buyer vulnerable to massively expen-

sive change orders during the life of the contract. For example, Northrop Grumman

is currently suing USPS for $180 million for imposing numerous change orders to the

contract for a mail sorting machine (Federal Times , 2012). I model the case in which

the buyer is prone to making an error in initial RFQ, which in turn may or may

not be detected by each supplier. I then ask how the buyer’s total cost is affected

by RFQ error and how this cost should be managed. I find that RFQ error encour-

ages suppliers to submit lower bids with anticipation of future windfall profit, and

suppliers’ disparity in their abilities to detect RFQ error generally hurts the buyer.

Furthermore, I propose a creative approach of “pre-pay” to stem windfall profit; in

this new mechanism, the buyer can use a nominal bounty to induce knowledgeable

suppliers to divulge the existence of RFQ error. To the best of my knowledge, this

essay is the first in operations to consider the practical case that the buyer’s RFQ

can be misspecified, as well as the fact that experienced suppliers can be more knowl-

edgeable than the buyer and the buyer can leverage suppliers’ knowledge. Analyzing

the problem is challenging, and I use a problem transformation method leveraging

optimal mechanism design to prove results about common auction formats like open-

bid descending and first-price sealed-bid auctions.
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Essay 3: Should the buyer strategically exclude the incumbent supplier

from the procurement auction?

In summer 2011, I interacted with a Tier-1 auto manufacturer who suspected

that they were paying too much to their incumbent supplier for a particular part,

and consequently they planned to hold an on-line auction with several entrant sup-

pliers. A primary concern of the procurement manager was whether the incumbent

supplier should be invited to the auction or not. On one hand, when withholding

the incumbent and using him as an outside option, the buyer can set an aggressive

reserve price for the entrant suppliers, but the auction itself is less fierce with one

fewer bidder. On the other hand, when including the incumbent in the auction, the

buyer drums up competition with one more bidder but is exposed to the risk of paying

more than current incumbent price. I model this situation and find that the buyer’s

optimal decision depends on the incumbent’s and entrants’ cost distributions: When

the incumbent’s cost is expected to be substantially different from the entrants’ (ei-

ther much lower or much higher) and has low uncertainty, withholding the incumbent

supplier is the better option; Conversely, when the incumbent’s cost is comparable to

the entrants’ costs and has similar amount of uncertainty, the buyer prefers inviting

the incumbent to the auction.
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CHAPTER 2

The Role of Cost Modeling in Competitive Bid

Procurement

2.1 Introduction

The average US manufacturer spends roughly 57% of its revenue on purchases

from external suppliers (U.S. Department of Commerce, 2011). Procurement has

emerged as a critical function, particularly for manufacturers in highly competitive

industries. Seeking to manage their input costs, many such firms select external

suppliers via competitive bidding (reverse auctions). Ideally, competitive bidding

between potential suppliers drives the contract price to nearly the minimum the

winning supplier would be willing to accept, including of course a necessary operating

profit for the supplier. When this does not happen the buyer is leaving money on the

table.

Leaving money on the table is not likely a major concern if the buyer’s competi-

tive bidding event is for a highly standardized, non-critical good/service that is easy

to produce and for which it is relatively simple to qualify suppliers (e.g., paperclips).

But in practice buyers often auction off contracts for non-standardized items for which

supplier costs can be heterogeneous (e.g., driven by the supplier’s production technol-

ogy). Moreover, in addition to price, supplier qualification is a paramount concern to
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buyers. The process of locating and qualifying a supplier who is capable of producing

the needed good is typically very time-consuming. For example, at automotive and

electronics Fortune 500 manufacturers we interacted with, the supplier qualification

processes can take months, even for “commodity-type” goods like cables, connectors,

and screw machine parts. At these firms, functional areas such as engineering in-

vest considerable time and resources to verify supplier capabilities and approve the

supplier(s).

It is standard practice for buyers to invite only qualified suppliers to a competitive

bidding event and announce that the lowest bidding supplier will win the contract.

But due to the costly nature of supplier qualification (in terms of time, monetary costs

of testing, and political costs of imposing on the engineering department’s time) it is

common to have a relatively small supply pool. For example, at one manufacturer

we worked with many parts had just two suppliers who would be asked to bid. Un-

fortunately, a small supply pool can result in high prices for the buyer. As a buyer at

Pfizer put it (quoted by Atkinson (2008)) “In our online auctions, suppliers can see

what each other bids. If they were willing to go much lower, but none of the other

participants forced them to do so, [the buyer] can lose out.”

How are buyers attempting to avoid leaving money on the table while still ensuring

that they only deal with qualified suppliers? A very common approach in practice is

the use of a reserve price. A reserve price is the price at which the buyer opens the

bidding — it is the maximum amount the buyer is willing to pay for the contract.

Setting the reserve price is important because the closer it is to the eventual winner’s

minimum price, the less money the buyer will leave on the table. As the practitioner

survey Beall et al. (2003) points out (page 44), a critical issue when procuring an item

is “understanding the unique characteristics of the item’s supply market structure,

degree of competitiveness, key cost drivers, and current open capacity (i.e., is it a

buyer’s, suppliers’, or neutral market?). This information is essential for setting an

6



appropriately aggressive reserve price.”

To set a more informed reserve price, it is a growing trend for buyers to actively

engage in gathering market intelligence about suppliers. At an electronics firm we

worked with, a procurement department employee with a background in corporate

finance spent an enormous amount of time combing through information about the

supply pool. Using any data he could find (like financial statements) the employee

formed an understanding the supplier’s financial status, what their operating profits

were (if they were publicly listed), etc. Procurement managers at the firm would also

perform reconnaissance on the ground, by visiting suppliers and gauging the sup-

plier’s capacity utilization (for example, seeing if they could spot a recently installed

new production line that was under-utilized). Similarly, at an automotive firm we

worked with, two employees were allocated for more than one month to painstakingly

collect cost information about an auto part being procured. They tracked down a

production engineer formerly employed at the firm’s now shuttered internal plant to

learn how the part had been made. They also interviewed industry experts to learn

about current manufacturing practices, scoured reports on prevailing labor and util-

ity costs, gathered, cleaned and analyzed data, etc. In industry these activities are

often referred to as cost modeling, however what is actually being estimated is the

minimum price at which the supplier is wiling to accept the contract.

Although a small qualified supply pool is one good reason to set an informed

reserve price, even with a large supply pool money can still be left on the table

due to supplier collusion. In fact, at the automotive firm we dealt with, this was

an additional concern. Several potential suppliers submitting bids were co-located

within a few hours’ drive of each other in Asia. The buyer knew that the suppliers

were in close contact with one another. The buyer was concerned about collusion,

which would dampen bidding competition and make it less effective. In this case,

the buyer decided to invest time and energy to create cost models to help her obtain

7



price concessions.

Cost modeling is expensive as it involves skilled employees’ time and travel. It

should only be used when the firm is confident that it will get its money’s worth out

of the exercise. In this essay we explore the value of cost modeling in competitive bid

procurement, to understand if, how and when cost modeling should be deployed. The

answer is not obvious, since the bidding competition itself acts as a tool to discover

suppliers’ cost information — suppliers may have to bid close to their minimum

acceptable prices in order to win the competitive bid. The value of cost modeling

depends on the amount of parity (or disparity) that exists between the minimum

prices suppliers are willing to accept for the contract, information which the buyer

does not have a priori.

We examine a buyer who, after deciding to source (e.g., after winning a new pro-

duction contract from a downstream customer), needs to select an upstream supplier

in a timely fashion to allow adequate ramp-up time to avoid production delays. Since

cost models take many weeks or possibly months to develop, we take the perspective

of a buyer who, at the beginning of a bidding cycle, must decide which supplier(s) to

learn about, which portion(s) of their costs to learn, and how deeply to learn. More

specifically, we investigate the following research questions:

Research Question 1: How does one characterize the benefit of cost modeling? Is

cost modeling beneficial to the buyer even when suppliers compete?

Research Question 2: If the buyer chooses to develop a cost model, which sup-

plier(s) should the buyer learn about?

Research Question 3: If the buyer can choose to learn about various portions of

the cost, e.g., labor cost, input cost, packaging cost, etc., which portion(s)

should the buyer learn about?

Research Question 4: If the buyer chooses to develop a cost model, how deeply

into supplier(s)’ costs should she learn? Would the buyer ever want to learn
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about multiple competing suppliers?

Research Question 5: How do answers to the above questions depend on underly-

ing business characteristics, such as correlations across suppliers’ costs, and

supplier collusion?

Answers to these research questions are summarized in §2.9. We review related

literature in §2.2, and introduce the model in §2.3. Sections 2.4 and 2.5 study the

two-supplier and N -supplier cases, respectively. We extend our analysis to include

the cost of learning and provide an optimal learning strategy incorporating it in §2.6.

Section 2.7 studies correlations across suppliers’ costs and collusion among suppliers.

Section 2.8 compares the benefit of learning to the benefit of adding suppliers, and

examines how the buyer’s power in the supply chain affects the benefit of learning.

Proofs of results are furnished in §2.10.

2.2 Literature Review

There is a vast economics literature on competitive bidding (auctions). Krishna

(2009) provides an excellent introduction to the early literature. There is a grow-

ing literature on procurement auctions, examining various operational aspects such

as the need to consider quality as well as price (Che, 1993; Beil and Wein, 2003;

Kostamis et al., 2009), the need to perform costly supplier qualification screening

(Wan and Beil , 2009; Wan et al., 2012), auctions with quantity-flexible pricing

(Chen, 2007; Duenyas et al., 2013; Tunca and Wu, 2009), post-award audits and

profit-sharing (Chen et al., 2008), supplier capacity decisions (Li , 2013), unreliable

suppliers (Chaturvedi et al., 2011), double auctions (Chu, 2009), and large-scale com-

binatorial auctions (Olivares et al., 2012). However, none of these papers study cost

modeling prior to competitive bidding, which is the focus of our paper.

A number of papers apply econometric analyses on historical bid data to estimate

bidders’ private information. For example, Paarsch (1997) uses historical auction
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field data to derive an estimate of the optimal reserve price in English auctions for

government timber sales (see the recent text by Paarsch and Hong (2006) for more

examples). In contrast to these papers, we take the buyer’s prior beliefs about suppli-

ers’ costs as our point of departure. We examine how the buyer can deploy a totally

different approach to refine her prior information, namely creating a cost model to

derive suppliers’ costs using a bottom-up approach. The main aim of our paper is

to examine if the buyer should engage in the time-consuming cost modeling prior to

competitive bidding, and how and to what extent the buyer should deploy it. To our

knowledge, ours is the first paper in the literature to examine cost modeling in this

context.

A practitioner literature exists on how to construct cost models. For example,

chapter 3 in Laseter (1998) describes various ways that buyers can decompose a sup-

plier’s cost into a number of cost drivers, each of which can then be estimated through

various means of data collection, as well as the challenges of doing so. One way of

gathering data about suppliers firsthand is Rapid Plant Assessment; Goodson (2002)

describes how this careful approach to factory tours allows a trained team of procure-

ment specialists to estimate a plant’s cost of sales based on key observations made

while touring the plant. There is also a literature on using cost modeling to inform

new product development decisions where the designer must balance functionality

against cost (see Locascio (2000) and references therein).

2.3 Model Description and Preliminaries

We consider a buyer seeking to allocate a single, indivisible production contract

to a supplier. We assume the buyer can set a reserve price, which she uses to help

avoid leaving money on the table. This setup reflects industry practice; see the quote

from the practitioner survey Beall et al. (2003) in the Introduction, which discusses

the fact Fortune 500 companies in practice use reserve prices informed by what they
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know about the supply market.

Our model also captures the fact that, when setting a reserve price, the buyer must

be careful. As Beall et al. (2003) points out (page 9), “misreading the market and

setting a reserve price that is too far below the market price, resulting in no bidder

responses” is considered a “dysfunctional outcome” of an auction. To understand

why practitioners are loathe to set a reserve price that no bidder can meet, consider

the following: If the reserve price is not met, the buyer has to exclude the original

bidders from further consideration. (If suppliers believe that the buyer will increase

the reserve price and re-invite them to bid if the original reserve price is not met,

then no supplier would ever bid in an auction with a reserve price.) The buyer is

then faced with the prospect of: (i) forgoing the business altogether and abandoning

the purchase; (ii) turning to its own internal production facilities; or (iii) finding new

qualified suppliers to offer the business to. In reality, forgoing the business is often not

palatable — for example, an electronics firm is unlikely to discontinue its production

of laptops simply because it could not strike a deal in an auction for the needed USB

connectors. Turning to internal production facilities is also often not available — for

example, the electronics and automotive parts manufacturers we dealt with did not

have internal production facilities for many of the parts they needed.

This leaves the last option, finding new suppliers. With this option, the procure-

ment manager faces many challenges. First, because the procurement manager’s job

is striking a deal with a supplier (not vetting suppliers’ technical qualifications), she

has to turn to her internal customers (e.g., manufacturing and engineering) and ask

the internal customers to help qualify additional suppliers, due to the fact that the

suppliers that the internal customers had originally qualified were eliminated from

further consideration because she set a reserve price so low that it was below all the

suppliers’ true costs. Understandably, internal customers would not necessarily react

well to this imposition on their time and work which the procurement manager’s ac-
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tions had caused. Moreover, due to the time required to identify and qualify a new

supplier, finding qualified new suppliers in time may not even be feasible within a

procurement cycle (e.g,. some parts may require very time-consuming testing).

To reflect the above aspects of reality, in our model we capture the realistic sit-

uation that non-transaction is extremely costly for the buyer. Namely, we model a

buyer who wishes to avoid non-transaction, but still use a reserve price that avoids

(to the extent possible) leaving money on the table. To present our model and build

intuition, we first examine a setting where the buyer has a single supplier.

2.3.1 One supplier

Let c denote the minimum price the supplier would accept for the contract. Fol-

lowing auction theoretic convention we simply refer to c as the supplier’s “cost”,

which of course is the supplier’s private information. The value c is a realization of

random variable C drawn from a continuous distribution H. We assume that C is

bounded above by c̄. The buyer can employ a reserve price, r, as a take-it-or-leave-it

offer to the supplier, and a supplier will accept this offer if this price can cover his

production cost, i.e., r ≥ c.

Since the buyer wishes to avoid non-transaction, but still use a reserve price that

avoids (to the extent possible) leaving money on the table, the best reserve price the

buyer can offer is ro = c̄. This reserve price leaves the supplier a sizeable windfall if the

upper bound c̄ is well above the supplier’s true cost c. As mentioned in §2.1, to get a

better estimate of the supplier’s cost the buyer can build a cost model and collect data

on the supplier before deciding her reserve price. For instance, for a manufactured

good, a buyer might decompose the supplier’s production cost into the sum of several

attributes — such as raw material cost, direct labor cost, electricity cost, technology

cost, overhead cost, and minimum acceptable profit margin — and learn some of

these attribute costs through data collection. For example, a buyer can contact raw
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material providers to learn the cost of material that a supplier uses, estimate labor

cost using local labor cost reports, or send specialists to visit a supplier’s plant to

learn the type of machines used and hence the technology cost. Of course, not all

attributes can be learned; for example, overhead cost is usually difficult to learn.

To model this, we assume that the supplier’s cost C can be decomposed into two

portions: A, the portion of cost attributes that can be learned via cost modeling,

and X, the portion that cannot be learned. We assume that A follows a continuous

distribution F and is bounded above by ā, X follows a continuous distribution G

and is bounded above by x̄. As such, the supplier’s cost C’s distribution H is the

convolution of F and G (H = F ⊗G) and the upper bound of C satisfies c̄ = ā+ x̄.

Let a and x denote the realizations of A and X, respectively.

After learning the supplier’s portion, A = a, the buyer can update her knowledge

about the supplier’s cost: [C|(A = a)] = a + X. This random variable C|(A = a)

has a new upper bound
[
c̄l|(A = a)

]
= a + x̄, so the buyer can set a new reserve

price
[
rl|(A = a)

]
=

[
c̄l|(A = a)

]
= a + x̄, which is the new contract payment. The

benefit of learning is the difference in the contract payment without learning and with

learning, denoted by ψ:

ψ = ro − rl = c̄− (A+ x̄) = ā− A.

Obviously, learning brings the buyer a positive benefit, as the following shows:

Lemma 2.1. If the buyer’s supply base has only one supplier, P (ψ > 0) = 1 and

E[ψ] = ā− E[A].

2.3.2 Two suppliers

Now we consider the case when the buyer has two suppliers. It is less clear whether

learning about the supplier(s)’ cost information can bring the buyer a positive benefit,
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because competition between suppliers itself acts as a cost-discovery tool.

To explore this interplay, we assume the two suppliers’ costs, C1 and C2, are inde-

pendent (we extend our analysis to correlated costs in §2.7.1) and follow distributions

H1 and H2 with upper bounds c̄1 and c̄2, respectively. The buyer first sets a reserve

price r as a starting point and then asks the suppliers to give price offers at or below

price r. The buyer can play the suppliers’ offers against one another by treating

the current lowest offer as the winner unless this offer is unseated by a lower offer

from the other supplier. As we have observed in industries ranging from electronics

to automotive parts, such competitive bid processes are often administered via an

online platform where the bidding takes place over a short period of time (e.g., 30

minutes). The ensuing process drives down the contract price until it becomes so

low that only one supplier (the contract winner) remains. This competitive process

can be modeled as a reverse open-descending auction for the contract, for which the

dominant strategy for a bidder is to continue bidding until reaching their true cost or

winning the auction. The predicted equilibrium outcome is as follows: The lower-cost

supplier wins the contract at a price equalling the cost of the other supplier. The

reserve price set by the buyer, r, acts as a price ceiling; hence, the buyer’s contract

payment with two suppliers is π = min(r,max(C1, C2)).

The buyer must transact with one of the suppliers qualified to produce the good,

but seeks to set a reserve price that minimizes her expected contracting payment:

min
r
E[π] s.t. P (min(C1, C2) ≤ r) = 1.

The solution of the above problem, and the buyer’s contracting payment are, respec-

tively:

ro = min(c̄1, c̄2), and π
o = min(ro,max(C1, C2)).

Notice that ro is the lowest reserve price that can avoid the risk of non-transaction
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since the supplier with the lower upper bound can generate non-negative surplus and

will surely be interested in the contract.

Similar to the one-supplier case, the buyer can create cost models to better esti-

mate the suppliers’ costs. For supplier i = 1, 2, we let random variable Ai denote the

learnable portion, with distribution Fi whose domain is bounded above by āi. Like-

wise, letXi ∼ Gi denote the unlearnable portion, which is bounded above by x̄i. After

learning supplier i’s portion Ai = ai, the buyer can update her knowledge of supplier

i’s cost [Ci|(Ai = ai)] = ai+Xi which has a new upper bound
[
c̄li|(Ai = ai)

]
= ai+ x̄i.

Hence, if the buyer learns about a subset of suppliers S (S can be {1}, {2}, or {1, 2}),

the buyer can set a new reserve price:

rl = min
i∈S,j /∈S

(c̄li, c̄j) = min
i∈S,j /∈S

(Ai + x̄i, c̄j).

Accordingly, the buyer’s contract payment after learning is:

πl = min(rl,max(C1, C2)).

The benefit of learning is:

ψ = πo − πl. (2.1)

Unlike the one-supplier case, when there exists competition between suppliers,

learning does not always bring a positive benefit for the buyer.

Lemma 2.2. If there are two competing suppliers and one supplier’s cost is not

dominated by the other supplier’s cost (i.e., 0 < P (C1 > C2) < 1), then with strictly

positive probability learning brings no benefit at all (i.e., P (ψ = 0) > 0).

To understand the reason why competition between the two suppliers can make

learning redundant, suppose the buyer learns about just one of the two suppliers.

Competition will automatically identify the lower-cost supplier as the contract winner
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and can push the price down to the cost of the other supplier, so a good reserve price

needs to be set close to the winner’s true cost (or the minimum price the winner

would accept) so that the buyer can squeeze the winner’s surplus. Simply setting

a lower reserve price does not guarantee it will be effective. Indeed, the buyer may

be able to set a new, lowered reserve price even when the supplier she learns about

eventually loses. However, in this case, the new reserve price is never low enough to

affect the final payment. Even if the buyer learns about the contract winner, learning

can again be useless since if the new reserve price is not low enough it will not bind the

payment. It should be noted that learning results in a positive benefit to the buyer

only when the buyer learns about the contract winner and can set a new reserve price

low enough to be the new contract payment.

However, this makes the buyer’s problem difficult since suppliers’ true costs are

their private information and the buyer can not ex ante predict with certainty who

will be the contract winner or how close the suppliers’ costs will be. In the next

section, we will discuss when to learn and how to learn so as to get the maximum

expected benefit. We define the expected benefit of learning as Ψ = E[ψ]. In this

paper, the sample path value, ψ, and its expectation, Ψ, will be subscripted to denote

which supplier(s) are learned about.

Thus far we have introduced the expected benefit of learning, which we analyze in

Sections 2.4 and 2.5. The models in these sections do not consider the cost of learning.

Of course, cost modeling is time-consuming and expensive as the buyer may need

to visit the supplier’s site, interview industry experts, analyze industry reports and

forecasts, etc. Practitioners need to consider the tradeoff between the expense and

the benefit of cost modeling. Building on our base model analyses, we incorporate

the cost of learning in §2.6. Sections 2.7 and 2.8 offer further generalizations and

extensions.
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2.4 Analysis – Two Suppliers

We now answer our research questions when the buyer has two competing suppli-

ers. We allow the possibility that the two suppliers are heterogeneous. For example,

the cost structure of a supplier using labor-intensive production processes will differ

from that of a supplier whose production is highly automated. Suppliers located in

different regions may have different energy and shipping cost structures. In these

cases, cost models are supplier-specific and a single cost model is developed to esti-

mate the cost information of one supplier. Without loss of generality, we consider

learning about supplier 1’s learnable portion A1, and let Ψ1 denote the expected

benefit of learning.

We also allow the other possibility, namely the two suppliers are homogeneous.

In such cases, the suppliers can have different cost realizations but both share the

same cost distributions, i.e., C1, C2 follow H with upper bound c̄, A1, A2 follow F

with upper bound ā and X1, X2 follow G with upper bound x̄. For example, the

suppliers could have similar, labor-intensive production processes, so one cost model

can be used for both suppliers. Of course, even if they share the same cost drivers

(e.g., labor) the suppliers’ costs can be different (due to differences in exact minutes

of direct labor per unit, suppliers’ labor wage rates, or fringe benefits for employees).

Let Ψ1&2 denote the expected benefit of learning about portion A of both suppliers.

The following result characterizes the benefit of cost modeling prior to competitive

bidding. This result and Lemma 2.2 characterize the benefit of learning and therefore

answer research question 1.

Proposition 2.1. [Relation between learning and cost distributions]

(i) When the two suppliers are heterogeneous, the expected benefit of learning A1 is

Ψ1 = E[min(ā1 − A1, (C2 − (A1 + x̄1))
+)]. (2.2)
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As long as the domains of F1 and G1 do not change,

(a) Ψ1 decreases as F1 becomes stochastically larger;

(b) Ψ1 is independent of G1;

(c) Ψ1 increases as H2 becomes stochastically larger.

(ii) When the two suppliers are homogeneous, the expected benefit of learning A1 and

A2 is

Ψ1&2 = E[(max(C1, C2)− (min(A1, A2) + x̄))+].

As long as the domains of F and G do not change,

(a) Ψ1&2 is not necessarily monotonic as F becomes stochastically larger;

(b) Ψ1&2 increases as G becomes stochastically larger.

Proposition 2.1 shows that the benefit of learning depends on the suppliers’ cost

distributions in interesting ways. Consider the case in which the buyer builds a cost

model for a single supplier in a heterogeneous supply base. As the distribution of the

learnable portion, F1, becomes stochastically larger, the benefit of learning decreases,

as shown in part (i.a). This is intuitive because the new reserve price (which will

stochastically increase in F1) is less likely to bind the contract payment. Likewise,

the benefit grows as the cost distribution of supplier 1’s opponent whom we do not

learn about increases, explaining part (i.c). However, part (i.b) implies that the

expected benefit of learning is independent of the distribution that governs supplier

1’s unlearnable cost, G1. This is because after learning, the new reserve price, a1+ x̄1,

depends on G1 only through its upper bound.

Next, consider the case where the buyer creates a cost model that applies to both

suppliers in the supply base. Interestingly, the results for this case differ from what

we saw above. As the learnable cost decreases, the reserve price, min(A1, A2) + x̄,

decreases as well. But at the same time, the cost the buyer would have paid without

learning, max(C1, C2), also decreases. As a result, the benefit of learning — the
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difference between these two — does not necessarily grow or shrink, as stated in

part (ii.a). Moreover, part (ii.b) shows that the benefit of learning increases as the

unlearnable portion becomes stochastically larger. This is because the cost the buyer

would have paid without learning increases, but the reserve price remains unchanged.

2.4.1 Which supplier(s) should the buyer learn about?

For the heterogeneous suppliers case in the previous section, we assumed that

the buyer learned about supplier 1. However, would the buyer have been better off

learning instead about supplier 2? To help answer this, we need to compare the

expected benefit of learning either supplier. We now examine this issue, addressing

research question 2.

Intuitively, one may expect that the buyer wishes to resolve the maximal amount

of cost uncertainty and so she will optimally choose whichever supplier has the most

uncertain learnable cost. This logic is true when the buyer has only one supplier in

her supply base. Suppose supplier 1’s learnable cost A1 ∼ U [5, 10] and unlearnable

cost X1 ∼ U [0, 5], while supplier 2’s cost A2 ∼ U [0, 10] and X2 ∼ U [10, 11]. Were

the buyer facing a single-supplier situation with supplier 1, learning would bring an

expected benefit of ā1−E[A1] = 2.5 (Lemma 2.1). This is smaller than ā2−E[A2] = 5,

which would be her expected benefit from learning if supplier 2 was her only supplier.

The intuition in the single-supplier case is that the buyer would gain more benefit

from learning when the learnable portion has more uncertainty.

However, this result is no longer true when the buyer has two competing suppliers.

The benefit of learning does not solely depend on the Ai’s. In fact, in the example

above, learning about supplier 1 brings a much larger benefit (per equation (2.1),

Ψ1 = 1.79 > 0.04 = Ψ2). Competition is what differentiates the one-supplier and

two-supplier cases. Competition itself works as a cost-discovery tool, so learning

brings a positive benefit only when it collects information that cannot be duplicated
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by competition. More precisely, the buyer needs information about the contract

winner’s cost that helps the buyer to set an effective new reserve price. In this

example, supplier 1’s cost C1 is stochastically smaller than supplier 2’s cost C2; this

means that supplier 1 has a better chance of winning the contract. In addition, the

new reserve price set by learning about supplier 1 (i.e., A1 + x̄1) is more likely to be

smaller than that for supplier 2 (i.e., A2 + x̄2). As a result, learning about supplier 1

is more beneficial. Our result below formalizes.

Proposition 2.2. [Preferred supplier to learn about] For any distributions Fi, Gi and

Hi, i = 1, 2, the buyer prefers to learn about supplier 1 rather than supplier 2 if

A1 + x̄1 ≤st A2 + x̄2 and C1 ≤st C2.

It should be noted that both conditions in Proposition 2.2 are necessary to draw

the conclusion. Even if learning is likely to dramatically reduce the reserve price, it

will be useless if it does not bind the contract payment to the contract winner.

Instead of learning about just one supplier, the buyer could instead choose to un-

dertake learning about both suppliers. If suppliers are homogeneous, the buyer can

create a single cost model that applies to both suppliers. If suppliers are heteroge-

neous, the buyer needs to develop two different cost models concurrently. Since cost

models take several months to develop, in most cases, it is not feasible to conduct

multiple rounds of learning in a single bidding cycle. Thus, decisions on whom to

learn about should be made judiciously at the beginning.

Utilizing the same machinery, our next result characterizes the benefit of learning

about multiple suppliers. One may intuitively reason that the marginal benefit of

learning will diminish in the number of suppliers that the buyer learns about — after

all, the buyer ultimately only sets one new reserve price which applies to all suppliers,

thus more learning will likely just generate duplicative information. In other words,
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the benefit of learning about two suppliers should be smaller than the sum of the

benefits of learning about either supplier individually. Surprisingly, the next result

shows that this is not the case: The benefit is actually additive.

Proposition 2.3. [Benefit of learning about multiple suppliers]

(i) For two heterogeneous suppliers, ψ1&2 = ψ1 + ψ2 almost surely; hence Ψ1&2 =

Ψ1 +Ψ2.

(ii) For two homogeneous suppliers, Ψ1&2 = 2 ·Ψ1.

To understand the intuition behind Proposition 2.3, recall that the buyer realizes

a benefit from learning only if she learns about the contract winner. For a given

sample path, at most one supplier can yield a positive benefit, i.e., ψ1&2 = ψ1, ψ2 = 0

or ψ1&2 = ψ2, ψ1 = 0, which explains part (i). Part (ii) follows from part (i) and the

fact that the two suppliers have the same cost distributions.

2.4.2 Which portion(s) of cost should the buyer learn?

Another interesting challenge for the buyer is to determine which portion(s) of the

suppliers’ costs she should learn. To address this question, in this section we assume

that portions Ai and Xi are both learnable. Note that this setup is without loss of

generality: our results still hold when supplier i’s cost is Ci = Ai +Xi + ϵi, where ϵi

is unlearnable. To address research question 3, we first ask which portion, if learned,

would bring more benefit to the buyer.

Suppose two cost portions, labor and utility, comprise roughly 50% and 20% of

the total cost, respectively. Intuitively, one might expect that the buyer would prefer

to learn the labor cost, since it represents a larger share of the total cost. However,

this intuition does not tell the whole story. What is more important for the buyer to

consider is the amount of cost uncertainty which will be resolved by learning, not the

absolute magnitude of the cost. This is the intuition behind the following proposition.
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Proposition 2.4. [Preferred portion to learn]

(i) When the two suppliers are heterogeneous, for any distributions Fi, Gi and Hi,

i = 1, 2, the buyer prefers to learn portion A1 rather than portion X1 if

ā1 − A1 ≥st x̄1 −X1.

(ii) When the two suppliers are homogeneous and the buyer learns about one portion

of both suppliers, then for any distributions F,G and H, the buyer prefers to learn

portion A rather than portion X if

ā− A ≥st x̄−X.

Thus, it is not the case that the buyer only wishes to learn whichever portion

contributes most to the supplier’s overall total cost. Instead, Proposition 2.4 reveals

that the buyer prefers to learn whichever portion will reduce the reserve price the

most.

Having discussed which portion (A or X) the buyer should learn, we now address

research question 4 by considering how deep the buyer should learn, that is, the

buyer’s preference between learning one portion (A or X) or both portions (A and

X). To examine the buyer’s preference, suppose again that the two cost portions are

labor and utilities. The buyer’s expected benefit is $10,000 from learning only the

labor cost, and her expected benefit is $17,000 from learning only the utility cost.

Intuitively, one might expect that “doubling down” on the supplier by learning the

supplier’s labor and utility costs would yield an expected benefit less than the sum of

the individual benefits (i.e., the expected benefit should be smaller than $27,000)—

after all, there is a chance that supplier 1 will not win the contract and then learning

will be useless. However, the following result shows that, when it comes to the depth
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of learning, the benefit of learning the whole is greater than the sum of the benefits

of learning its parts (superadditivity).

Proposition 2.5. [Benefit of learning multiple portions] Consider three cost-learning

models: Model A in which the buyer learns about portion A, Model X in which the

buyer learns about portion X, and Model AX in which the buyer learns about both

portions (A and X) simultaneously.

(i) When the two suppliers are heterogeneous and cost modeling is applied only to

supplier 1, we have ψAX
1 ≥ ψA

1 + ψX
1 almost surely; hence ΨAX

1 ≥ ΨA
1 +ΨX

1 .

(ii) When the two suppliers are homogeneous and the same cost model can be applied

to both suppliers, we have ψAX ≥ ψA + ψX almost surely; hence ΨAX ≥ ΨA +ΨX .

Both competition and cost modeling are tools that the buyer can use to reduce

the winning supplier’s surplus. Our earlier results establish that cost modeling prior

to competition is only beneficial when the new reserve price squeezes the winning

supplier’s surplus more than competition alone would have. In other words, to yield a

positive benefit, the new reserve price must be lower than the second-lowest supplier’s

cost. The new reserve price is much more likely to accomplish this if two cost portions

are learned instead of just one, because the reserve price reduction is cumulative in

cost portions learned. To use a golf analogy, when the buyer only learns one portion,

she has to “hit a hole-in-one” but when she learns two portions she only needs to

hit a hole in two strokes; the proposition means that hitting a hole-in-one in two

attempts is much less likely to occur than hitting a hole in two strokes. Combining

Propositions 2.3 and 2.5, the takeaway for procurement managers is that, all else

equal, depth in cost modeling is likely to be more beneficial than breadth.
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2.5 More than Two Suppliers

We now generalize our results to the case of N > 2 suppliers. Some of the N

suppliers may share the same cost drivers (i.e., are homogeneous), in which case the

buyer can learn about those suppliers simultaneously by developing a cost model

that applies to all of them. We also allow supplier heterogeneity, meaning that not

all N suppliers have the same cost structure. Formally, we divide the N suppliers

into S groups, where group s (s = 1, 2, ..., S) contains Ns homogeneous suppliers

whose cost is represented by random variable Cs = As +Xs. As in the two-supplier

case, random variables Cs, As, and Xs respectively follow distributions Hs, Fs, and

Gs, whose domains are bounded above by c̄s, ās and x̄s. When referring to the cost

realizations for a specific supplier i within group s we will use notation cis, a
i
s and x

i
s.

Suppliers in the same group are homogeneous and suppliers in different groups are

heterogeneous. For example, suppose the buyer has a total of eight suppliers: five

are located in northeastern China and use very similar labor-intensive production

techniques; three are located in the midwestern US and all these suppliers utilize

very similar automated production lines. We can divide the eight suppliers into two

separate groups: group 1 has five suppliers in China and group 2 has three suppliers

in the US.

We find that all of §2.4’s propositions for the two-supplier case can be generalized:

Suppliers across different groups are heterogeneous (analogous to part (i) of the two-

supplier propositions) and suppliers within a group are homogeneous (analogous to

part (ii) of the two-supplier propositions). Building on the two-supplier case results,

we find that the buyer follows similar strategies when deciding which group(s) of

suppliers to learn about and which portion(s) of cost to learn. To denote the N -

supplier generalizations of earlier propositions, we append their label with “G” for

general.
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Characterizing the benefit of cost modeling. Addressing research question 1,

Lemma 2.2 directly applies to the N -supplier case, and shows that learning might

not be beneficial due to the fact that learning and competition can act as substitutes.

Moreover, we extend Proposition 2.1:

Proposition. 2.1-G. [Relation between learning and cost distributions] Let Ψ1 de-

note the expected benefit of learning all suppliers in group 1. As long as the domains

of F1 and G1 do not change,

(i) when group 1 has only one supplier, i.e., N1 = 1,

(a) Ψ1 decreases as F1 becomes stochastically larger;

(b) Ψ1 is independent of G1;

(c) Ψ1 increases as Hs (s ̸= 1) becomes stochastically larger;

(ii) when group 1 has more than one supplier, i.e., N1 ≥ 2,

(a) Ψ1 is not necessarily monotonic as F1 becomes stochastically larger;

(b) Ψ1 increases as G1 becomes stochastically larger;

(c) Ψ1 increases as Hs (s ̸= 1) becomes stochastically larger.

The intuition is similar to that for Proposition 2.1. Learning about group 1

brings a positive benefit only when group 1 contains the winner. Furthermore, when

learning does bring a positive benefit, the benefit’s magnitude is governed by the gap

between the reserve price (which is determined by F1 and the domain of X1) and the

second-lowest supplier’s cost (determined by all the non-winning suppliers’ costs).

For example, the benefit of learning is not affected by G1 when there is one supplier

in group 1 (i.b), but is affected when there are two suppliers in group 1 (ii.b). This

is because when group 1 contains the winner, the second-lowest supplier’s cost does

not change in the former case but depends on G1 in the latter case.

Choosing which group(s) of suppliers to learn about. Addressing research

question 2, we have:
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Proposition. 2.2-G. [Preferred group to learn about] For any distributions Fs, Gs

and Hs, s = 1, 2, ..., S, the buyer prefers to learn about group 1 rather than group 2 if

A1 + x̄1 ≤st A2 + x̄2, C1 ≤st C2 and N1 ≥ N2.

Compared to Proposition 2.2, in Proposition 2.2-G we have an additional condi-

tion, N1 ≥ N2. The intuition is similar to that for Proposition 2.2. As before, the

buyer’s preference about which group to learn about depends on how low the new

reserve price can be and how likely it is that a supplier in the group will win the con-

tract. Both factors improve as the group’s size increases: Larger groups offer a bigger

chance to set a small reserve price and are more likely to contain the contract winner.

The next result characterizes how the breadth of learning across groups affects the

buyer’s benefit.

Proposition. 2.3-G. [Benefit of learning about multiple groups] Let Ψ1&2, Ψs, and

Ψi
s denote, respectively, the expected benefits of learning about all suppliers in groups 1

and 2, all suppliers in group s, and supplier i in group s. We have:

(i) ψ1&2 = ψ1 + ψ2 almost surely; hence Ψ1&2 = Ψ1 +Ψ2.

(ii) Ψs = Ns ·Ψi
s.

One may reason that, particularly with N suppliers, the expected marginal benefit

of learning will diminish in the number of groups that the buyer learns about —

after all, the buyer ultimately only sets one new reserve price which applies to all N

suppliers. However, the expected benefit of learning multiple groups is in fact additive

across groups and linear in the number of learned suppliers within each group. The

intuition behind this is the same as for Proposition 2.3: Along any sample path only

one supplier wins the contract, and the buyer only benefits when she learns about

the winner.

Choosing which portion(s) of cost to learn and how deeply to learn. Ad-
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dressing research questions 3 and 4, we have:

Proposition. 2.4-G. [Preferred portion to learn] Suppose the buyer learns about all

suppliers in group 1. For any distributions Fs, Gs and Hs, s = 1, 2, ..., S, the buyer

prefers to learn portion A1 rather than portion X1 if

ā1 − A1 ≥st x̄1 −X1.

The proposition reveals that what matters to the buyer is the amount of cost

uncertainty that learning will resolve: She prefers to learn about whichever portion

will (stochastically) reduce the reserve price the most. The takeaway is similar to what

we found with two suppliers, namely it is not the case that the buyer only wishes

to learn about whichever cost portion contributes most to the suppliers’ overall total

costs. Next we examine how the benefit changes in depth of learning.

Proposition. 2.5-G. [Benefit of learning multiple portions] Let ΨA
1 , Ψ

X
1 , and ΨAX

1

denote, respectively, the expected benefits when cost modeling is applied to portion A,

portion X, and both portions A and X for all suppliers in group 1. We have

ψAX
1 ≥ ψA

1 + ψX
1 almost surely; hence ΨAX

1 ≥ ΨA
1 +ΨX

1 .

The intuition is akin to that for Proposition 2.5: To be effective the reserve price

must bind the winner, and this is particularly encouraged by deeper learning because

reserve price reductions are cumulative in cost portions learned. Combining this result

with Proposition 2.3-G, which shows that the benefit across groups is linear, we can

see that, all else equal, the buyer gets greater benefit from learning a single group in

more depth than she does by learning two groups more superficially.
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2.6 Optimal Learning Strategy

The previous sections characterized the buyer’s benefit of learning without explic-

itly considering the cost of learning. However, as established earlier, cost modeling is

time-consuming and expensive. If we consider the cost of learning, should the buyer

learn at all? If so, which suppliers should the buyer learn about, and how deep into

suppliers’ costs should the buyer learn when deeper learning incurs higher cost? The

buyer’s cost of learning can depend on which suppliers she learns about, how many

suppliers she learns about, and how deeply she learns about them; we will show how

the previous sections’ analytical results can directly be applied in all these cases to

provide insight on the structure of the buyer’s optimal learning.

Learning cost is fixed for all suppliers in the same group. To begin, suppose

there is simply a fixed cost Ks to create a cost model for each supplier group s. Recall

that Ψs is the expected benefit of learning about group s without considering the cost

of learning. Thus, the net benefit of learning about group s is Ψs − Ks. Label the

groups such that Ψ1 −K1 ≥ Ψ2 −K2 ≥ · · · ≥ ΨS −KS. If the buyer can learn about

just one group, it is optimal to learn about group 1 (provided that Ψ1 −K1 > 0). If

the buyer can learn about multiple groups, it is optimal for her to learn about the

first s groups, where s is largest value such that Ψs−Ks > 0. In fact, although it may

seem intractable to consider the buyer’s cost versus benefit of learning while taking

into account the possibility that she learns from multiple cost models at once, the

problem in fact decomposes and can be solved by considering each supplier group in

isolation. This is a direct consequence of Proposition 2.3-G(i), which proves that the

benefit of learning is additive across groups.

Learning cost increases in the number of suppliers learned. Next suppose

that there is a cost associated with the number of suppliers learned in any group s,

Ks(n). Let Ψs(n) be the expected benefit of learning about n suppliers in group s.
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Putting these two together, the net benefit of learning is Ψs(n)−Ks(n).

If the cost function Ks(n) is concave in n, Proposition 2.3-G(ii) directly applies

to prove that the optimal number of suppliers to learn about must be n∗
s = 0 or

Ns. This comes from the fact that the benefit of learning is linear in the number of

suppliers learned, which makes the net benefit function convex in n. On the other

hand, if Ks(n) is convex, Proposition 2.3-G(ii) directly applies to prove that the net

benefit function, Ψs(n) − Ks(n), is concave in n. Hence, one can easily determine

the optimal number of suppliers to learn about. For general increasing functions, the

optimal number of suppliers to learn about depends on the particular shape of the

cost function Ks(n).

Once we determine the optimal number of suppliers to learn about for each group,

label the groups such that Ψ1(n
∗
1) − K1(n

∗
1) ≥ Ψ2(n

∗
2) − K2(n

∗
2) ≥ · · · ≥ ΨS(n

∗
S) −

KS(n
∗
S). If the buyer can learn about just one group, it is optimal to learn about group

1 if Ψ1(n
∗
1)−K1(n

∗
1) > 0. If the buyer can learn about multiple groups, it is optimal to

learn about the first s groups, where s is largest value such that Ψs(n
∗
s)−Ks(n

∗
s) > 0.

Once again, what initially appears to be an intractable problem — considering the

buyer’s cost versus benefit of learning while taking into account the possibility that

she learns from multiple cost models at once and the cost of learning depends on how

many suppliers she chooses to learn — the problem in fact decomposes and again we

can solve it by examining each supplier group separately.

Learning cost increases in the depth of learning. Suppose the buyer can learn

portions A and X, but the cost of learning increases with the portions learned. (For

simplicity, we focus on just two cost portions, but the results easily extend to multiple

portions.) Our previous sections’ analytical results also apply in this case to determine

the optimal depth of learning.

If Ks(A)+Ks(X) ≥ Ks(AX) (i.e., the cost of learning is subadditive in depth), it

immediately follows from Proposition 2.5-G that the optimal depth to learn in group
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s is d∗s = 0 or AX. This is because, as we proved, the expected benefit of learning

is superadditive in the portions learned, so subadditive learning cost makes the net

benefit superadditive in the portions learned. On the other hand, if Ks(A)+Ks(X) <

Ks(AX) (superadditive), then it is possible that an intermediate level of learning

becomes optimal, i.e., d∗s ∈ {A,X}. In this case, the optimal depth to learn depends

on the particular shape of the learning cost function.

Regardless of the learning cost function’s shape, once we determine the optimal

depth of learning for each group, label the groups such that Ψ1(d
∗
1) − K1(d

∗
1) ≥

Ψ2(d
∗
2) − K2(d

∗
2) ≥ · · · ≥ ΨS(d

∗
S) − KS(d

∗
S). If the buyer can learn about just one

group, she prefers to learn about group 1 if Ψ1(d
∗
1) − K1(d

∗
1) > 0. If the buyer can

learn about multiple groups, she prefers to learn about the first s groups, where s is

largest value such that Ψs(d
∗
s)−Ks(d

∗
s) > 0.

Propositions 2.3-G and 2.5-G can be used to render similar results when the cost

of learning is a function of both the number of suppliers and portions learned. For

example, for any given group s, Proposition 2.3-G implies that the optimal number

of suppliers to learn about will be 0 or Ns if the cost is concave in the number of

suppliers for any given depth ds. Similarly, from Proposition 2.5-G, the optimal depth

to learn about each group will be 0 or AX if the cost of learning is subadditive in

depth for any number of suppliers learned. Finally, after ordering the groups by their

optimal benefits of learning, if the buyer can only learn about one group she prefers

to learn about the highest benefit group, and if she can learn about multiple groups

she learns about all the groups with positive individual benefit.

Example: In this example, all costs are in thousands of dollars. Suppose there

are two groups of suppliers: group 1 has two suppliers, where A1 ∼ U [200, 575], X1 ∼

U [300, 360], only portion A1 is learnable and the cost of learning is a function of the

number of suppliers learned, K1(n) = 10 + 2
√
n (n = 1, 2); group 2 has only one
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supplier, where A2 ∼ U [360, 530], X2 ∼ U [270, 600], both portions A2 and X2 are

learnable and the cost of learning is K2(A) = 12, K2(X) = 13, K2(AX) = 15.

We first determine the optimal learning strategy for group 1. Since K1(n) is

concave in n, the optimal number of suppliers to learn about is either 0 or 2. The

benefit of learning 2 suppliers in group 1 is Ψ1(2) = 83.80 which is greater than the

cost of learning K1(2) = 12.828, so n∗
1 = 2 and Ψ1(n

∗
1) − K1(n

∗
1) = 70.972. As for

group 2, since K2(A) +K2(X) ≥ K2(AX), the optimal depth to learn is either 0 or

AX. The benefit of learning AX is Ψ2(AX) = 3.31 which can not cover the cost of

learning K2(AX) = 15, so the optimal depth to learn is d∗2 = 0. Thus, the optimal

learning strategy that the buyer should follow is to learn about the two suppliers

in group 1 and not to learn about group 2. In this example, the expected payment

without learning is 764.73. Through learning, the buyer reduces the expected payment

by 83.80/764.73 = 10.96% and the net saving is 70.972/764.73 = 9.28%.

2.7 Relaxing Independence

2.7.1 Correlated costs

Thus far our models have assumed that suppliers’ costs are statistically indepen-

dent from each other. However, it is easy to imagine that in practice some portion of

a supplier’s cost may be correlated to the corresponding portion of another supplier’s

cost. For example, all suppliers might rely on a certain key material or component

from the same upstream source, or perhaps suppliers who are located in the same

industrial zone (e.g., southern China) incur similar labor rates. Unlike the indepen-

dent cost case, when costs are correlated learning about one supplier may reveal cost

information about his competitors, which is relevant to the buyer’s decision about

cost modeling (e.g., whether to learn or not, how much to learn, etc.). In this section

we show how our results extend to the correlated cost setting.
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To extend our model, we assume that the cost of a supplier in group s is rep-

resented by a random variable Cs = As + Xs, where As = A0 + As + A′
s, and

Xs = X0 + Xs + X ′
s. Random variables A0 and X0 represent portions of A and

X that are common for all suppliers. Random variables As and Xs represent por-

tions that are common for all the suppliers in group s, but independent from all

other suppliers in other groups (if a group s consists of just one supplier, we take

As ≡ Xs ≡ 0). Finally, A′
s and X ′

s represent portions that are independent across

all suppliers. Let F 0, F s and F ′
s be the distributions of A0, As, and A′

s, respectively.

Likewise, X0 ∼ G0, Xs ∼ Gs and X ′
s ∼ G′

s. As before, Hs = Fs⊗Gs, where As ∼ Fs,

Xs ∼ Gs. Additionally, we define H ′
s = F ′

s ⊗G′
s.

With this setup, supplier cost realizations are arrived at as follows: one draw from

F 0 and one draw from G0 are made and applied to all suppliers; for each group s,

one draw from F s and one draw from Gs are made and applied to just suppliers in

group s; and for each supplier in group s, one draw from F ′
s and and one draw from

G′
s are made and applied to just that individual supplier. As a check, note that the

case with A0 ≡ X0 ≡ As ≡ Xs ≡ 0 corresponds to our model of independent supplier

costs. Recall that Ns is the number of suppliers in group s. We let random variable

C−s denote the minimum cost among Ns−1 draws from Hs and Nt draws from Ht for

each t ̸= s (these N − 1 draws may be correlated). Let ro denote the original reserve

price set without learning, ro = min(c̄1, c̄2, ..., c̄s). We have the following result.

Proposition 2.6. All previous results hold with the following changes to accommodate

the correlation model:

(i) Adapting Proposition 2.1-G [Relation between learning and cost distributions]:

F1, G1 and Hs are replaced with F ′
1, G

′
1 and H ′

s, respectively. Moreover, the

benefit of learning Ψ1 decreases in F 0 and F 1, but increases in G0 and G1.

(ii) Adapting Proposition 2.2-G [Preferred group to learn about]: Condition A1 +

32



x̄1 ≤st A2 + x̄2 is replaced by A′
1 + x̄1 ≤st A

′
2 + x̄2, and condition C1 ≤st C2 is

replaced by min(ro, C−1)− A0 − A1 ≥st min(ro, C−2)− A0 − A2;

(iii) Adapting Proposition 2.4-G [Preferred portion to learn]: Condition ā1−A1 ≥st

x̄1 − X1 is replaced by ā1 − A′
1 ≥st x̄1 − X ′

1,min(ro, C−1) − A0 − A1 ≥st

min(ro, C−1)−X0 −X1;

(iv) Propositions 2.3-G [Benefit of learning about multiple groups] and 2.5-G [Ben-

efit of learning multiple portions] hold without any changes.

Under the cost correlation model, some supplier cost portions are independent

across suppliers while others are correlated. It turns out that the effect these costs’

distributions have on the buyer’s benefit of learning depends on whether the cost dis-

tribution governs an independent or correlated portion. For the independent portions,

the effects are exactly as we saw before for the case with completely independent sup-

plier costs (Proposition 2.1-G). For the correlated portions, the benefit of learning

decreases with F 0 and F 1, the distributions governing the portions of learned cost

that are common across multiple suppliers. The intuition is that the new reserve price

stochastically increases in F 0 and F 1 and therefore recovers less profit for the buyer

when it binds. Moreover, increasing F 0 and F 1 may increase the payment without

learning, but unlike the independent cost case, this change “washes out” due to cor-

relation because the new reserve price would increase by exactly the same amount.

Analogously, the benefit of learning increases with G0 and G1, the distributions gov-

erning the portions of the unlearned cost that are common across multiple suppliers,

since the new reserve price is unchanged by this but the contract price in the absence

of learning becomes higher. To summarize, we find that learning is less valuable when

the learned cost portions exhibits more substantial correlation (F 0 and F 1 become

larger), but learning becomes more valuable when the unlearned cost portions exhibit

more substantial correlation (G0 and G1 become larger). The managerial takeaway
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is that, although one may intuitively expect that more correlation will always reduce

the benefit of learning since supplier costs will be more closely matched and compe-

tition will be fiercer, increasing the magnitude of correlated cost drivers can actually

increase the benefit of learning.

In choosing which group to learn about, we need to account for correlation when

determining how effective the revised reserve price will be in lowering the buyer’s

payment. In adapting Proposition 2.2-G for correlation, the first condition focuses on

the supplier-specific uncertainty (A is replaced by A′). This condition is just like the

condition we had in the independent case, capturing the fact that — all else equal —

the buyer prefers learning that will lead to a smaller new reserve price. In the second

condition we subtract out the correlated portions (A0 + As) from the original price,

min(ro, C−s). The reason is that in reaching the original price (without learning), the

correlated portions will be revealed “for free” through competition, so intuitively the

buyer prefers to learn about groups that have less correlation in the costs that will be

learned; as a check, notice that if group 2 has a large within-group correlation governed

by A2, the second condition is more likely to hold and the buyer would prefer to learn

about group 1 instead of group 2. We make a similar modification when determining

which cost portion to learn (adapting Proposition 2.4-G). The managerial insight here

is that, all else equal, the buyer prefers learning about groups and/or cost portions

that exhibit weaker cost correlations in the learned portion because strongly correlated

costs are more apt to be revealed via competition regardless of learning.

For the fully independent costs case we saw that the benefit of learning about

multiple suppliers was additive, and we next ask whether this insight changes in

the presence of supplier cost correlation. One might expect it would, since we just

saw how sensitivity of the benefit of learning and the decision of which group or

portion to learn should account for whether or not the cost portions are correlated

across suppliers. However, Proposition 2.6 shows that the value of cost modeling
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remains additive across suppliers and groups, even with correlation. The reason is

that, regardless of cost correlation, the buyer must still learn about the contract

winner in order for the learning to be beneficial. Similar reasoning gives our final

result, namely that the value of cost modeling is superadditive in cost portions that

are learned about, even under correlation.

2.7.2 Supplier collusion

Cost correlation is not the only reason that supplier bids are not independent. At

firms we have interacted with — in industries ranging from electronics to automotive

parts — buyers have related suspicions of supplier collusion. Collusion dampens

bidding competition, making it less effective. We now extend our analysis to study

the effect of cost modeling in cases with supplier collusion.

In this subsection we allow the possibility that a group t ∈ {1, . . . , S} can be a

bidding ring. Literature on bidding rings dates back to the seminal paper Graham

and Marshall (1987). Krishna (2009) offers a nice distillation of the canonical theory

as follows: (1) the bidders in a ring identify which bidder among them has the lowest

cost; (2) only this bidder submits meaningful bids for the contract (other bidders

submit bids that do not affect the final winning price, e.g., drop out at the reserve

price); (3) after the bidding, the ring shares any surplus gained from collusion. This 3-

step distillation describes so-called efficient collusion, meaning only the “best” bidder

from a colluding ring submits a serious bid for the contract. Graham and Marshall

(1987) identified a simple way that the ring can coordinate its members to achieve

efficient collusion.

Suppose that T of the S supplier groups are bidding rings, and label the indices

such that the bidding rings are groups {1, . . . , T}. Since a ring can maximize its gain

by colluding efficiently, we assume that each ring colludes efficiently and so effectively

collapses into a single “best bidder” who represents that entire ring in the bidding
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process. Not surprisingly, it is a dominant strategy of each ring’s representative

bidder to lower his bid until winning or reaching his true production cost. It is also a

dominant strategy of bidders in groups {T +1, . . . , S} to lower their bid until winning

the contract or reaching their true production cost. All other bidders (members

of rings who are not ring representatives) submit non-serious bids (meaning they

intentionally drop out early, e.g., at the reserve price). For each ring t, define cost

distributions F ring
t = 1− (1−Ft)

Nt , Gring
t = 1− (1−Gt)

Nt , and Hring
t = 1− (1−Ht)

Nt .

We have the following result.

Proposition 2.7. Propositions 2.1-G, 2.2-G, 2.3-G and 2.4-G hold if each bidding

ring t is replaced with a synthetic group, tring, containing a single supplier whose

learnable, unlearnable, and total costs are governed by distributions F ring
t , Gring

t , and

Hring
t , respectively.

In words, synthetic group tring consists of a single supplier whose costs equal the

first order statistic of costs from all suppliers in the bidding ring t. The implication

behind Proposition 2.7 is that buyers can understand the role of cost modeling in

the presence of supplier collusion simply by considering the colluding groups to be

collapsed to representative suppliers.

However, there are some interesting differences that arise. First, note that we no

longer get super-additivity of benefits of learning multiple portions for a colluding

group (namely, Proposition 2.5-G does not hold under collusion, see proof of Propo-

sition 2.7(ii)). This is because in Proposition 2.7 we have collapsed the ring to a

single representative supplier. In fact, if we look at individual suppliers within a

ring, we recover the super-additivity result (see proof of Proposition 2.7(iii)). Thus,

unlike the non-collusion case where super-additivity across portions applied at the

individual supplier level and at the group level, under collusion it only applies at the

individual level. The opposite situation arises for the additivity of benefits of learning

multiple groups (Proposition 2.3-G): Under collusion additivity of benefits holds at
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the group level (per Proposition 2.7), but it turns out that it does not hold at an

individual supplier level (see proof of Proposition 2.7(i); recall that Proposition 2.7

had collapsed the ring into a single representative bidder). Thus, under collusion

there is an interesting difference between group and individual-level learning benefits.

The reason behind this is that collusion changes the way benefits accrue across

suppliers. Recall that when suppliers do not collude, losing suppliers’ cost informa-

tion would always be revealed through the bidding competition, so the buyer only

benefitted when she learned about whoever eventually won the contract. By con-

trast, if a losing supplier is in a winning bidding ring, their cost information will not

be revealed through the competition. In fact, under collusion the buyer can gain a

positive benefit from learning even if the supplier she learns about is not the eventual

contract winner. The upshot is that under collusion the successive benefits of learning

about additional suppliers in the same bidding ring need not be additive. However,

more importantly, the benefit of any amount of learning in the presence of collusion

is always at least as large as it would have been were the collusion absent.

Proposition 2.8. Compared to the non-colluding case, the presence of collusion can

only increase the buyer’s benefit of learning about supplier costs.

2.8 Other Extensions

2.8.1 Learning versus more bidders

Thus far we have shown that learning about suppliers can decrease the buyer’s

procurement cost. Of course, the buyer could also lower her cost by locating new

suppliers who will bid for the contract. In practice, this option is very expensive

and time-consuming; at Fortune 500 companies we interacted with it typically takes

months to locate and qualify new suppliers to bid in an auction. This raises an impor-

tant question: When designing a supply base, should the buyer focus on fostering her
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knowledge about her existing suppliers, or instead focus on locating and qualifying

new suppliers? We address this question by comparing the benefits of adding new

suppliers to the benefit of learning about existing suppliers.

We consider a buyer who has a supply base consisting of a group of N non-

colluding suppliers whose costs are ex ante symmetric but possibly correlated. We use

the correlation model from §2.7.1, but drop the group index s since there effectively

is only one group; thus, for example, H = F ⊗ G represents the suppliers’ cost

distribution. (With multiple groups (ex ante asymmetric suppliers) and/or collusion,

the key insights do not change but the expressions are more complicated.)

As in §2.6, suppose that there is a cost to learn about each supplier. We compare

the following two options: (a) The buyer learns about m out of N suppliers (and

learns the realization of portion A for each of these m suppliers); (b) The buyer

locates y more suppliers, for a total of N + y suppliers. The benefit of option (a),

learning m suppliers, is given by mΨ, where Ψ is the benefit of learning about a

single supplier (see Proposition 2.6 part (iv)). Let Φ(y) , E[C2:N − C2:N+y] denote

the benefit of adding y suppliers, where C2:n denotes the second-lowest order statistic

from n draws from distribution H.

We compare the benefit of learning, mΨ, and the benefit of locating, Φ(y), in the

following proposition. We let ⌈s⌉ denote the smallest integer that is greater than or

equal to s.

Proposition 2.9. The buyer prefers learning about existing suppliers to locating new

suppliers if and only if m ≥ m∗ =
⌈
Φ(y)
Ψ

⌉
.

As one can see, if the benefit of learning each individual supplier, Ψ, is very

small then m∗ > N and learning will not be better than locating even if the buyer

learns about all N existing suppliers. Likewise, the same is true if the number of

additional suppliers, y, is very large. To make the comparison between learning and

locating more meaningful, we consider a case where learning is effective and y is not
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extremely large. Namely, suppose that the buyer can learn a supplier’s exact cost

through learning, and compare this to the benefit of adding one new supplier.

Proposition 2.10. Let γN =
∫
H′(c)2H̄′(c)N−1dc∫
H′(c)H̄′(c)N−1dc

, and m∗ = ⌈γN ·N⌉. Learning about m

suppliers completely is better than locating one more supplier if and only if m ≥ m∗.

Moreover, for any cost distribution H ′, γN ∈ (0, 1), and thus m∗ ≤ N .

Costs that are common to all suppliers “wash out” in competition and therefore

do not affect the benefit of learning. This is why the threshold m∗ in Proposition

2.10 only depends on the cost portion that is independent across suppliers, which is

governed by H ′ (whose tail is denoted by H̄ ′). The proposition implies that, when

cost modeling is precise enough, learning can provide larger cost saving than locating

a new supplier.

It is interesting to note that the minimum number of existing suppliers that the

buyer needs to learn about in order to prefer it to locating one new supplier can be

quite small. See Table 2.1, which gives the minimum (rightmost column) for several

well-known distributions. For all the cases in the table, the benefit from learning

the costs of just two (out of N) suppliers exceeds the benefit from locating a new

supplier. In fact, when supplier costs follow a uniform or power function distribution,

our result shows that for a buyer with small existing supply base (N = 2 for uniform

and N ≤ ν + 1 for power distribution), learning the cost of just one supplier is

better than locating a new supplier. Our result contrasts with the famous finding of

Bulow and Klemperer (1996), who showed it is optimal for a buyer to locate one more

supplier (and intensify competition) rather than set an optimal reserve price with the

existing supply base. This is because a buyer in our paper has ability to learn about

suppliers’ cost (which is certainly true in procurement settings), and this capability

enables the buyer to set a more effective reserve price than a buyer in Bulow and

Klemperer (1996).
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Distribution CDF γN m∗

Uniform H ′(c) = c · I0≤c≤1
2

N+2
1(N = 2); 2(N ≥ 3)

Exponential H ′(c) = (1− e−λc) · Ic≥0
2

N+1
2

Power-function H ′(c) = cν · I0≤c≤1
1+1/ν

N+1+1/ν
1(N ≤ ν + 1); 2(N > ν + 1)

(ν > 1)

Table 2.1: Examples of Proposition 2.10

2.8.2 The effects of buyer power on the benefits of Learning

In this paper, we focused our analysis on the reverse open-descending auction

where the buyer sets a reserve price as a starting point and then the suppliers compete

by lowering their bids until only one bidder remains. We study this mechanism

because it is analytically tractable and extremely prevalent in practice. However, one

may wonder what the buyer’s learning preferences will be under other mechanisms.

The buyer’s power relative to her suppliers determines which mechanism she can

choose. Following the reasoning of Bulow and Klemperer (1996), we can classify a

buyer’s power into three levels.

• Zero power: A buyer with zero power can not set a reserve price and the con-

tract payment is completely determined by suppliers’ bid competition in a re-

verse open-descending auction without a reserve price. In reality, this could

correspond to a small mom and pop firm who cannot scare suppliers by setting

a reserve price because she has little clout over her large manufacturer suppliers.

In this case, one can show that learning provides no benefit since the buyer has

no power to apply any cost information.

• Moderate power: A buyer with moderate power can set a reserve price. This

was the case documented in Beall et al. (2003), which surveyed large (Fortune

500) firms, many of whom spend billions of dollars on procurement each year.

Through learning, the buyer can apply the cost information to set a more ag-

gressive reserve price and reduce the contract payment. This is the case that
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we analyzed in this paper.

• Absolute power: A buyer with absolute power relative to her suppliers can

design and commit to any mechanism. This allows her to design, for example,

an optimal mechanism. This category of buyer is of theoretical interest, but

in reality few buyers have such power (firms like Apple may be an exception).

One can show that a buyer with absolute power does not have to exert effort

to learn about suppliers’ costs before the auction. Instead, she can induce the

suppliers to voluntarily divulge any learnable cost information practically for

free before the auction, simply by employing random post-auction audits on

learnable portions and levying large penalties on suppliers found to have lied

about their costs. In reality, these penalties could take the form of disallowing

future bids from the supplier, which might be significant if the buyer comprises

a substantial portion of market demand.

Thus, although one might expect that buyers with more power will have more

incentive to utilize cost modeling since a powerful buyer can utilize the information

better than a weak buyer, we conclude from the above discussion that a buyer’s

inclination to undertake cost modeling on her suppliers is not monotonic in her power.

Since buyers with zero power are too weak to apply any information and buyers with

absolute power essentially obtain learnable information for free without cost modeling,

learning via cost modeling is only interesting for buyers with moderate power. This

is why our paper focused on this latter case.

2.9 Conclusions

In this paper, we ask whether a buyer should deploy cost modeling to learn about

suppliers who will compete for a contract. Intuitively, because competitive bidding

and cost modeling are both ways that a buyer can discover information about sup-
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pliers’ costs, and moreover since cost modeling itself is an expensive undertaking,

careful analysis is needed to understand if and when cost modeling should be used

in conjunction with supplier competition. To our knowledge, this paper is the first

study of cost modeling and its interactions with competitive bidding.

Addressing research question 1 (How does one characterize the benefit of cost

modeling?), we show that learning prior to competitive bidding enables the buyer to

set a tighter reserve price. In doing so the buyer seeks to truncate suppliers’ surplus.

However, when there are competing suppliers, the buyer does not always receive a

positive benefit from learning. In fact, the benefit of learning is positive only when the

new reserve price actively truncates the surplus of the contract winner, and learning

about suppliers who wind up losing the contract provides no useful information to the

buyer, since these suppliers’ costs will be revealed during the competitive bid process

anyway. Of course, this makes the buyer’s problem difficult because she cannot ex

ante predict which supplier will win — after all, the suppliers’ costs (which the buyer

does not know) determine who wins the contract. Summarizing the above, learning

is more valuable to the extent that the reserve price is likely to truncate the surplus

of the contract winner.

Turning to research question 2 (If the buyer chooses to develop a cost model,

which supplier(s) should she learn about?), we find that the key criterion is not to

learn about the supplier whose learnable cost is more uncertain, but to learn about the

supplier who is more likely to win and whose learnable cost, once learned, will enable

the buyer to lower the reserve price the most. Moreover, one might intuitively expect

it to be redundant to learn about several competing suppliers. However, we find that

the benefit of learning about multiple suppliers is actually additive across suppliers.

Hence, managers should strongly consider learning about multiple suppliers at once,

when the cost of learning is linear or concave in the number of suppliers learned.

Addressing research question 3 (Which cost portion(s) should the buyer learn?),
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we find that the buyer prefers to learn about the portion which can resolve more

uncertainty. Surprisingly, we also find that the benefit of learning multiple portions at

once is even greater than the sum of the benefits of learning each portion in isolation.

Coupled with our insights regarding research question 2, this suggests that — all else

equal — learning fewer suppliers in depth is preferable to learning more suppliers

superficially. Thus, staffing a procurement department with specialists having deep

but narrow domain expertise (e.g., of a particular type of production method used

by some suppliers) may be preferable to having generalists with broader but more

limited knowledge about the industry’s general cost drivers.

Addressing research question 4 (What is the optimal learning strategy?), we find

that the buyer can first divide all suppliers into several groups based on their cost

structures, next figure out the optimal level of learning for each group, and then the

optimal learning strategy is to learn about the groups with a positive net benefit of

learning. Depending on the cost to learn various groups to varying depths, we show

that the buyer can adopt a mix-and-match strategy of learning, whereby she learns

some groups deeply, others superficially, and some not at all.

Finally, research question 5 considers the effect of the underlying business context.

Our insights are robust to correlations across supplier costs, and surprisingly — even

though correlation tends to make competition fiercer by increasing the parity between

suppliers’ costs — larger correlated costs across suppliers can actually increase the

benefit of learning. We show that supplier collusion short circuits the price discovery

of the competitive bidding process and makes cost modeling aimed at learning about

supplier costs even more valuable for the buyer. We also show that learning just a few

suppliers deeply can be preferable to adding another bidder. Lastly, we examined how

the buyer’s power relative to her suppliers affects her benefit of learning. Interestingly,

we find that buyers with moderate power benefit more from learning than buyers with

zero or absolute power.
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For simplicity our discussion focused on two cost portions, A and X. However,

our results extend to multiple cost portions. Suppose that supplier i’s cost is given

by Ci = Zi
1 + Zi

2 + · · ·+ Zi
m + ϵi, where the Zi

j’s are learnable cost portions and ϵi is

unlearnable. For any subsets R, T ⊆ {1, 2, . . . ,m}, R ∩ T = ∅, we can apply all the

paper’s propositions by defining Ai =
∑

j∈R Z
i
j, Xi =

∑
j∈T Z

i
j, and ϵi = Ci−Ai−Xi.

Our paper is an important first step in understanding how two very common

procurement tools — cost modeling and competitive bidding — interact. It has the

potential to help procurement managers make better decisions about how to apply

cost modeling in practice. We hope that it spurs further research into the role of cost

modeling in supply chain and sourcing strategies.

2.10 Proofs

In our proofs we let Ai, Xi, and Ci denote supplier i’s cost random variables, and

let ai, xi, and ci denote the cost realizations. This notation suppresses the group

index s, but it is understood that if suppliers i and j are in the same group (i.e., are

homogeneous) then Ai and Aj have the same distribution, Xi and Xj have the same

distribution, and Ci and Cj have the same distribution. Also, we let ψ1, ψ2, and

ψ1&2, respectively, denote the benefits of learning about supplier 1, supplier 2, and

both supplier 1 and supplier 2, where Ψ1 = E[ψ1], Ψ2 = E[ψ2], and Ψ1&2 = E[ψ1&2]

denote the expected benefits of learning.

Proof of Proposition 2.3-G

The proof of Proposition 2.1-G and 2.2-G utilizes Proposition 2.3-G; therefore we

prove Proposition 2.3-G first.

It suffices to prove that when there are N suppliers, the benefit of learning any

two of them is additive. Consider any suppliers 1 and 2, who may or may not be in

the same group. We want to show ψ1&2 = ψ1 + ψ2. We consider the sample paths
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such that Ci ̸= Cj(∀i ̸= j). Since Ci(i = 1, 2, ..., N) are continuous random variables,

the probability that Ci ̸= Cj(∀i ̸= j) is 1. Let C[k] denote the kth order statistic of

C1, C2, . . . , CN , and define C−i , minj ̸=i{Cj}. We have

ψ1&2 =[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+,

=I{C1=C[1]}[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+

+ I{C2=C[1]}[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+

+
N∑
i=3

I{Ci=C[1]}[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+,

=I{C1=C[1]}[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+

+ I{C2=C[1]}[min(ro, C[2])−min(A1 + x̄1, A2 + x̄2)]
+,

=I{C1=C[1]}[min(ro, C−1)−min(A1 + x̄1, A2 + x̄2)]
+

+ I{C2=C[1]}[min(ro, C−2)−min(A1 + x̄1, A2 + x̄2)]
+,

=I{C1=C[1]}[min(ro, C−1)− (A1 + x̄1)]
+ + I{C2=C[1]}[min(ro, C−2)− (A2 + x̄2)]

+.

The third equality follows since Ci = C[1], i ≥ 3 implies C1 ≥ C[2], C2 ≥ C[2], so

min(A1+ x̄1, A2+ x̄2) ≥ min(C1, C2) ≥ C[2] ≥ min(ro, C[2]). The final equality follows

since C1 = C[1] ⇒ C−1 ≤ C2 ≤ A2 + x̄2 ⇒ min(ro, C−1)− (A2 + x̄2) ≤ 0.

By similar arguments,

ψ1 = [min(ro, C[2])− (A1 + x̄1)]
+ = I{C1=C[1]}[min(ro, C−1)− (A1 + x̄1)]

+,

ψ2 = [min(ro, C[2])− (A2 + x̄2)]
+ = I{C2=C[1]}[min(ro, C−2)− (A2 + x̄2)]

+.

Hence ψ1&2 = ψ1 + ψ2 almost surely.
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Proof of Proposition 2.1-G

Suppose supplier 1 is in group 1. We have the benefit of learning about supplier 1

ψ1 = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− (A1 + x̄1)]

+.

This is because: when C1 = C[1], C[2] = C−1; when C1 ≥ C[2], A1 + x̄1 ≥ C1 ≥ C[2] ≥

C−1 ⇒ min(ro, C−1) ≤ min(ro, C[2]) ≤ A1 + x̄1.

Since ψ1 increases in C−1 and decreases in A1, the expected benefit of learning

group 1, Ψ1 = N1 · E[ψ1], increases as the distribution of C−1 becomes larger and

decreases as the distribution of A1 becomes larger. This explains part (i.a), (i.b),

(i.c), (ii.b) and (ii.c). Part (ii.a) is because when group 1 has multiple suppliers, F1

affects not only A1 but also C−1.

Proof of Proposition 2.2-G

Suppose supplier 1 is in group 1 and supplier 2 is in group 2. We have

ψ1 = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− (A1 + x̄1)]

+, and

ψ2 = [min(ro, C[2])− (A2 + x̄2)]
+ = [min(ro, C−2)− (A2 + x̄2)]

+.

Since ro is constant and C1 ≤st C2, we have min(ro, C−1) ≥st min(ro, C−2) (see

page 7 in Müller and Stoyan (2002)). Also, since A1 + x̄1 ≤st A2 + x̄2, we have

−(A1 + x̄1) ≥st −(A2 + x̄2). Because (C−1, A1) are independent random variables

and (C−2, A2) are independent random variables, from Theorem 1.2.17 in Müller and

Stoyan (2002), we can conclude that min(ro, C−1)−(A1+x̄1) ≥st min(ro, C−2)−(A2+

x̄2) and ψ1 ≥st ψ
2. It then follows that Ψ1 ≥ Ψ2. Finally, by applying Proposition

2.3-G, the expected benefit of learning group 1 is Ψ1 = N1 · Ψ1 and the expected

benefit of learning group 2 is Ψ2 = N2 · Ψ2. Since N1 ≥ N2 and Ψ1 ≥ Ψ2, we have

Ψ1 ≥ Ψ2.
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Proof of Proposition 2.4-G

Suppose supplier 1 is in group 1. The benefit of learning supplier 1’s portion A1,

or X1, are

ψ1,A = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− (A1 + x̄1)]

+,

ψ1,X = [min(ro, C[2])− (X1 + ā1)]
+ = [min(ro, C−1)− (X1 + ā1)]

+.

Since C−1, A1, X1 are independent,

ā1 − A1 ≥st x̄1 −X1 ⇒ A1 + x̄1 ≤st X1 + ā1 ⇒ ψ1,A ≥st ψ
1,X ,

which implies Ψ1,A = E[ψ1,A] ≥ Ψ1,X = E[ψ1,X ].

The result extends to the case of any number of suppliers in the same group. By

Proposition 2.3-G, the expected benefit of learning portion A of group 1 is ΨA
1 =

N1 ·Ψ1,A and the expected benefit of learning portion X of group 1 is ΨX
1 = N1 ·Ψ1,X .

Thus we have ΨA
1 ≥ ΨX

1 .

Proof of Proposition 2.5-G

The proof uses the following technical lemma, which is stated and proved below.

Lemma 2.3. If Y, Z, T are positive, then (Y + Z − T )+ ≥ (Y − T )+ + (Z − T )+.

Proof of Lemma 2.3.

If Y ≥ T, Z ≥ T , then (Y + Z − T )+ = Y + Z − T ≥ (Y − T ) + (Z − T ) =

(Y − T )+ + (Z − T )+;

if Y ≥ T, Z < T , then (Y +Z−T )+ = Y +Z−T ≥ Y −T = (Y −T )++(Z−T )+;

if Y < T,Z ≥ T , then (Y +Z−T )+ = Y +Z−T ≥ Z−T = (Y −T )++(Z−T )+;

if Y < T,Z < T , then (Y + Z − T )+ ≥ 0 = (Y − T )+ + (Z − T )+.

Hence, (Y + Z − T )+ ≥ (Y − T )+ + (Z − T )+.
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Suppose supplier 1 is in group 1. The benefit of learning supplier 1’s portion A1

is

ψ1,A = [min(ro, C−1)− (A1 + x̄1)]
+ = [(ā1 − A1)− (c̄1 −min(ro, C−1))]

+.

Similarly, the benefit of learning supplier 1’s portion X1 is

ψ1,X = [(x̄1 −X1)− (c̄1 −min(ro, C−1))]
+,

and the benefit of learning supplier 1’s both portions A1 and X1 is

ψ1,AX = [(c̄1−C1)−(c̄1−min(ro, C−1))]
+ = [(ā1−A1)+(x̄1−X1)−(c̄1−min(ro, C−1))]

+.

Since the reserve price without learning is ro = minN
i=1(c̄i) ≤ c̄1, we have c̄1 −

min(ro, C−1) ≥ 0. Also, because ā1 − A1 ≥ 0 and x̄1 − X1 ≥ 0, Lemma 2.3 implies

ψ1,AX ≥ ψ1,A + ψ1,X . By Proposition 2.3-G, we have ψAX
1 ≥ ψA

1 + ψX
1 .

Proof of Propositions 2.1-2.5

Propositions 2.1, 2.2, 2.3, 2.4 and 2.5 are direct consequences of the corresponding

generalized propositions.

Proof of Proposition 2.6

(i) Adapting Proposition 2.1-G: Suppose supplier 1 is in group 1. We have the

benefit of learning about supplier 1

ψ1 = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− (A1 + x̄1)]

+

= [min(ro − A0 − A1, C−1 − A0 − A1)− (A′
1 + x̄1)]

+.

Since min(ro−A0−A1, C−1−A0−A1) decreases in A0, A1 and increases in X0, X1,
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the expected benefit of learning group 1, Ψ1 = N1 · E[ψ1], decreases in F 0, F 1 and

increases in G0, G1.

(ii) Adapting Proposition 2.2-G: Suppose supplier 1 is in group 1 and supplier 2

is in group 2. We have

ψ1 = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− A0 − A1 − (A′

1 + x̄1)]
+, and

ψ2 = [min(ro, C[2])− (A2 + x̄2)]
+ = [min(ro, C−2)− A0 − A2 − (A′

2 + x̄2)]
+.

Because min(ro, C−i) − A0 − Ai and A′
i + x̄i(i = 1, 2) are independent random

variables, from Theorem 1.2.17 in Müller and Stoyan (2002), we can conclude that

min(ro, C−1) − A0 − A1 − (A′
1 + x̄1) ≥st min(ro, C−2) − A0 − A2 − (A′

2 + x̄2) and

ψ1 ≥st ψ
2.

(iii) Adapting Proposition 2.4-G: Suppose supplier 1 is in group 1. The benefit of

learning supplier 1’s portion A1, or X1, are

ψ1,A = [min(ro, C[2])− (A1 + x̄1)]
+ = [min(ro, C−1)− A0 − A1 − (A′

1 + x̄1)]
+,

ψ1,X = [min(ro, C[2])− (X1 + ā1)]
+ = [min(ro, C−1)−X0 −X1 − (X ′

1 + ā1)]
+.

Since ā1−A′
1 ≥st x̄1−X ′

1, A
′
1+x̄1 ≤st X

′
1+ā1. Because min(ro, C−1)−A0−A1 and

A′
1+x̄1 are independent, and min(ro, C−1)−X0−X1 andX ′

1+ā1 are independent, from

Theorem 1.2.17 in Müller and Stoyan (2002), we can conclude that min(ro, C−1) −

A0 − A1 − (A′
1 + x̄1) ≥st min(ro, C−1)−X0 −X1 − (X ′

1 + ā1) and ψ
1,A ≥st ψ

1,X .

(iv) Proofs of Proposition 2.3-G and 2.5-G can be directly applied to the correla-

tion case.

Proof of Proposition 2.7

For a bidding ring t, the representative bid is the lowest of all suppliers’ costs,

which is governed by distribution Hring
t . If the buyer learns about portion A of all
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suppliers in bidding ring t, then the new reserve price is min(r0, At[1:Nt]+ x̄t), in which

At[1:Nt] is governed by distribution F ring
t . Similarly for portion X, the new reserve

price set by learning about portion X is min(r0, Xt[1:Nt] + āt), in which Xt[1:Nt] is

governed by distribution Gring
t . This explains why Propositions 2.1-G, 2.2-G, 2.3-G

and 2.4-G hold if each bidding ring is replaced with a representative supplier.

Next, we will show that Proposition 2.5-G only applies at individual supplier level

but not at the group level, and Proposition 2.3-G does not hold at individual level.

(i) Proposition 2.3-G does not hold at individual level. We provide a counter-

example. Suppose there are two colluding suppliers who have the same cost structure

with upper bounds ā = 1, x̄ = 1, c̄ = 2. The cost realizations are a1 = 0.2, x1 =

0.5, c1 = 0.7; a2 = 0.5, x2 = 0.3, c2 = 0.8. Since the two suppliers are colluding,

supplier 2 will not submit meaningful bid and the contract price without learning is

c̄ = 2, so the benefits of learning are ψ1 = [c̄− (a1+ x̄)]
+ = 0.8, ψ2 = [c̄− (a2+ x̄)]

+ =

0.5 and ψ1&2 = [c̄ − (min(a1, a2) + x̄)]+ = 0.8. The additivity does not hold since

ψ1&2 < ψ1 + ψ2.

(ii) Proposition 2.5-G does not hold at group level. Consider the same example as

in (i), the benefits of learning both suppliers are ψA = [c̄− (min(a1, a2) + x̄)]+ = 0.8,

ψX = [c̄ − (min(x1, x2) + ā)]+ = 0.7 and ψAX = [c̄ − min(c1, c2)]
+ = 1.3. The

super-additivity does not hold since ψAX < ψA + ψX .

(iii) Proposition 2.5-G applies at individual level. We can use the proof of Proposi-

tion 2.5-G, while C−1 in that proof stands for the minimum cost of all other suppliers

not in bidding ring 1.

Proof of Proposition 2.8

When suppliers collude, fewer bids are submitted and thus the contract price

without learning is higher. Since the new reserve price is the same, the benefit of

learning (which equals to the gap between the contract price without learning and

50



the new reserve price) is higher in the presence of collusion.

Proof of Proposition 2.9

The benefit of learning m suppliers is mΨ, and the benefit of locating y suppliers

is Φ(y). Hence, the buyer prefers learning to locating if and only if mΨ ≥ Φ(y) ⇐⇒

m ≥ Φ(y)
Ψ

⇐⇒ m ≥ m∗ = ⌈Φ(y)
Ψ

⌉.

Proof of Proposition 2.10

We only need to prove that γN = Φ(1)
NΨ

=
∫
H′(c)2H̄′(c)N−1dc∫
H′(c)H̄′(c)N−1dc

∈ (0, 1).

Let µk:M denote E[C ′
k:M ]. Since Φ(1) = E[C2:N − C2:N+1] = E[C ′

2:N − C ′
2:N+1] =

µ2:N −µ2:N+1 and Ψ = E[C2:N −C1]
+ = P (C1 = C1:N) ·E[C2:N −C1:N ] =

1
N
E[C ′

2:N −

C ′
1:N ] =

1
N
(µ2:N − µ1:N), we have γN = Φ(1)

NΨ
= µ2:N−µ2:N+1

µ2:N−µ1:N
.

Suppose C ′ is distributed over interval [c′, c̄′] with density function h′ and CDF

H ′, then the density function of C ′
1:M is p(c) = Mh′(c)H̄ ′(c)M−1 and the expected

value of the first-order statistic is

µ1:M =

c̄∫
c

cMh′(c)H̄ ′(c)M−1dc = −
c̄∫

c

c d(H̄ ′(c)M)

= −cH̄ ′(c)M |c̄c +
c̄∫

c

H̄ ′(c)Mdc = c+

c̄∫
c

H̄ ′(c)Mdc.

We utilize the following recursive relationship from David and Joshi (1968):

µ2:N = Nµ1:N−1 − (N − 1)µ1:N , and µ2:N+1 = (N + 1)µ1:N −Nµ1:N+1.

Then, we have

γN =
µ2:N − µ2:N+1

µ2:N − µ1:N

=
µ1:N−1 − 2µ1:N + µ1:N+1

µ1:N−1 − µ1:N

=

∫
H̄ ′(c)N−1dc− 2

∫
H̄ ′(c)Ndc+

∫
H̄ ′(c)N+1dc∫

H̄ ′(c)N−1dc−
∫
H̄ ′(c)Ndc

=

∫
H ′(c)2H̄ ′(c)N−1dc∫
H ′(c)H̄ ′(c)N−1dc

< 1.
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CHAPTER 3

Procurement Auctions with Error-Prone RFQs

3.1 Introduction

As suppliers become increasingly sophisticated and move up the value chain, firms

can enjoy cost savings by outsourcing “non-core” aspects of their business. For exam-

ple, the average US manufacture spends roughly 57% of its revenue purchasing from

external suppliers (U.S. Department of Commerce, 2011). However, while relying

on the external suppliers, these firms gradually lose expertise in internal design and

production of the outsourced parts.

Due to this loss of expertise, a buyer might find it difficult to always design a

perfect request for quotes (RFQ) that takes into account every design specification

detail, and thus is susceptible to making an “error” such as incorrect design, omis-

sion, and misspecification. An RFQ error may only be discovered after the contract

has been signed with one supplier and even after the production process has begun.

For example, a buyer trying to outsource a newly designed item provides a list of

specifications in the RFQ and selects a supplier via competitive bidding; then after

a few months into production, the buyer might start to experience field failures, and

realize that the item needs to be redesigned for better fitness of use. This scenario

also happens for capital equipment. When the U.S. Postal Service (USPS) signed a

$874 million fixed-price contract for high-tech mail sorting machine systems with one
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of its largest contractors, Northrop Grumman Corporation, USPS failed to provide

accurate design specifications and later imposed numerous after-the-fact changes to

the design requirement (Federal Times , 2012).

In the event of a flawed RFQ and corresponding change orders, the buyer incurs

direct cost, such as the cost of delay due to redesign. In fact, in the USPS and

Northrop example, the machine systems were supposed to be deployed in 47 cities

but were delayed for almost 10 months, which caused the USPS extra labor costs of

$394 million. Costs also are incurred by the supplier, such as the cost of adapting

to the new design and the opportunity cost of extended project time. For example,

Northrop claimed $179 million for adapting to all the change orders. Unfortunately,

the USPS and Northrop failed to agree on the responsibility and compensation for

the redesign, which led to a lawsuit of hundreds of millions of dollars (Federal Times ,

2012).

While the lawsuit between the USPS and Northrop is still unresolved, in other

cases when redesign is completely and clearly due to the buyer’s fault, the buyer

has to pay the supplier a redesign fee which typically should cover not only the

redesign cost incurred by the supplier but also some extra profit. This is because

the redesign is due to no fault of the supplier (it is the buyer who designed a flawed

RFQ) and it’s unfair to force the supplier to undertake additional work and switch

to new production procedure for which he earns no profit. In fact, in government

contracting, this type of compensation is referred to as “equitable adjustment”. In

a typical equitable adjustment, the supplier documents all his cost associated with

the redesign and submits it to the buyer, who should then pay the redesign cost plus

a profit margin to compensate the supplier for the fact that the buyer changes the

original contract specifications.

When RFQ error results in high redesign expenses (in the form of direct cost

incurred by the buyer and the redesign fee paid to the supplier as well), the buyer
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may have incentive to discover the RFQ error earlier. However, it is usually difficult

for the buyer to discover the RFQ error by herself since she does not retain the in-house

production expertise which can be critical in designing a perfect RFQ. For example,

many automotive OEMs have reduced their engineering staff. Because production

technology changes rapidly, it is difficult for those automotive OEMs to control every

detailed specification and thus are prone to making an error. The buyer can choose

to rehire engineering staff or hire an outside expert to vet RFQ specifications. Those

approaches are expensive: We want to investigate whether it is worthwhile to pursue

them and whether other ways exist to substitute buyer’s lost expertise — for example,

leveraging suppliers’ expertise.

Suppliers can be more knowledgeable than the buyer since they are experts in

production. This type of asymmetric information is present in all kinds of industries:

Northrop probably knows better than USPS about how to build a machine; A con-

struction contractor knows better than the house owner about the eventual problems

before tearing down the walls. After receiving a flawed RFQ, some suppliers can

recognize the error right away and thus foresee an opportunity to earn windfall profit

out of the inevitable redesign. Returning to the construction example, once the house

walls are opened up, there is usually little a house owner can do and the contractor

gets opportunities for lucrative change orders. Therefore, even if suppliers detect the

error beforehand, they have incentive to keep silent. Suppliers will bid more aggres-

sively in order to win the business, hoping that they will recoup the profit margin

later. As a senior certified public accountant Baker (2000) puts it “many of them

[suppliers] will submit low-price bids in order to secure the job and then sit in their

offices and pray for change orders to arise — that is where they make their money.”

One may wonder whether it is illegal for a supplier who knows the existence of error

but choose not to tell. The bottom line is that it is often really difficult to prove

what people knew or should have known. For example, the contractor could feign
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ignorance about “surprises” that are uncovered during the construction process by

claiming that every house is different (which is true) and one never knows what will

arise (which is maybe less true).

Not every supplier is so capable of detecting an error due to limited experience or

production capability. Suppliers can have different levels of error-detecting expertise

and thus follow different bidding strategies when they compete for a contract. We

analyze how these dynamics affect the buyer’s procurement decisions.

To summarize, we examine the problem where a buyer holds liability and pays

dearly for possible RFQ error, and it is possible that some suppliers are able to detect

the error ahead of time. More specifically, we investigate the following three research

questions:

Research Question 1: How is the buyer’s payment (including contract price and

possible redesign expenses) affected by the possibility of RFQ error and

suppliers’ expertise in detecting the error?

Research Question 2: Can the buyer design some alternative mechanism to stem

supplier windfall profit out of redesign?

Research Question 3: Can the buyer leverage suppliers’ error-detecting expertise

to preempt RFQ error?

Answers to these research questions are summarized in §3.7. We review related

literature in §3.2, and introduce the model in §3.3. Section 3.4 analyzes a motivating

example with two suppliers and supplier production cost following two-type distribu-

tion. In Section 3.5, we generalize the results to N -supplier case with general cost

distribution, and propose the idea of “pre-pay” to stem supplier windfall profit out

of redesign. We incorporate the redesign cost incurred by both the buyer and the

supplier in Section 3.6, and propose the idea of “error-bounty” to preempt RFQ error.

Proofs of results are furnished in §3.8.
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3.2 Literature Review

Many papers examine various operational aspects of how procurement processes

might go “wrong”. For example, some suppliers are not capable of producing the

required item, or even worse, they provide defective items that later require recall re-

sulting in huge loss. Consequently, buyers need to take into account supplier quality

as well as cost (Che, 1993; Beil and Wein, 2003; Kostamis et al., 2009) and consider

exerting efforts to qualify suppliers (Wan and Beil , 2009; Wan et al., 2012). Sup-

pliers also may be unreliable in their delivery schedule due to natural disasters like

hurricanes or earthquakes. In this case, buyer can consider multisourcing to mitigate

supply risk (Parlar and Perry , 1996; Tomlin, 2006). Unreliable suppliers themselves

can also provide price and quality guarantees to better compete against more reli-

able suppliers (Gümüş et al., 2012). Most of the existing literature investigates the

potential non-performance from the supplier side assuming buyer’s RFQ is perfect as

given; however, our paper considers the story from the buyer side — a buyer lacking

production expertise is prone to designing a flawed RFQ.

One type of imperfect RFQ is studied in the literature of incomplete contract,

where the contract does not cover all contingencies and future duties are intention-

ally left unspecified. There exist theoretical papers (Hart and Moore, 1988) as well

as empirical papers (Bajari et al., 2006; Crocker and Reynolds , 1993). Incomplete

contract is imperfect in the sense that some specifications are not explicitly defined

since there is too much uncertainty and neither the buyer nor the suppliers can ex-

actly foresee the future changes. However, our paper models a buyer making an error

(i.e., omission, misspecification) in an RFQ, and experienced suppliers recognize the

existence of the error. Suppliers’ error-detecting expertise is an important factor cap-

tured in our paper. We analyze how supplier expertise affects the buyer’s sourcing

strategy and whether the buyer can leverage supplier expertise to make improvements

in her RFQs.
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Bidders’ obtaining further information about the auction item is also observed in

practice. For example, in U.S. timber auctions (Athey and Levin, 1999), after the

Forest Service publicly announces the tract characteristics, each bidder can further

inspect the tract and get his/her own estimate. Hence, experienced bidders can be

more informed than their competitors and the auctioneer. A similar phenomenon

is also observed in other natural resource auctions. Hendricks and Porter (1988)

examine off-shore oil drilling and discover that neighbor firms are better informed

than non-neighbor firms. In these forward auctions, bidders’ advanced information

cannot change the auction item (e.g., the characteristics of tract is determined by

nature). However, in procurement auctions, suppliers’ expertise can take a role in

improving the RFQ. We propose a creative approach to induce suppliers to reveal

their knowledge to the buyer and consequently make the entire supply chain more

efficient. To our best knowledge, our paper is the first to analyze how a buyer can

leverage supplier error-detecting expertise to preempt an RFQ error.

We model suppliers have different production costs as well as different levels of

error-detecting expertise, which also relates our paper to the literature of multidi-

mensional type bidders, such as Maskin (1992); Pesendorfer and Swinkels (2000);

and Jehiel and Moldovanu (2001). As a consequence of multidimensional type, the

existence of bidding equilibrium cannot be proved and none of these papers explic-

itly characterize the bidding functions for the general case. We tackle this problem

by first considering a special case where a supplier’s production cost can either be

low or high, deriving the bidding functions (although complicated enough even for

this two-type distribution, see full version of Lemma 3.1 in Section 3.8) and gaining

some insights. Then we extend the insights to a more general case using an indirect

approach that does not rely on closed-form bidding functions.
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3.3 Model

We consider a buyer who wants to allocate a single, indivisible production (service)

contract to one supplier. At the beginning of a procurement cycle, a buyer sends out

an RFQ (which we call the initial RFQ) to N ex ante identical suppliers who will

compete for the contract in an auction. Specifically, let Xi, i = 1, . . . , n, be a random

variable that represents supplier i’s production cost (or the minimum acceptable price

which includes a profit margin) to fulfill the contract as specified by the initial RFQ.

We assume that Xi are independently drawn from a distribution FX(·).

A distinctive feature of our model is that the buyer’s initial RFQ may contain

an error, which needs to be rectified through redesign and rework. This RFQ error

originates from the buyer’s lack of production expertise and results in omission or

misspecification of critical requirements and design flaws. For example, the buyer

incorrectly indicates the required material strength for a part to function, or the buyer

incorrectly specifies the physical dimensions (e.g., weight, size) of a component. Let

T be a random variable representing the severity of the buyer’s RFQ error and FT (·)

be its distribution. We assume that the larger T is, the more severe (and costly) the

buyer’s error. Without loss of generality, T = 0 represents the case where the initial

RFQ does not contain an error.

When the initial RFQ is error-free, the winning supplier fulfills the contract at

the price determined by the auction. However, if the buyer discovers an error in the

initial RFQ after a supplier partially or completely fulfills the original contract (e.g.,

a machine produced according to the initial RFQ fails in a field test), a considerable

amount of work (which includes redesign, refurbishing, and building a new machine

or part) must follow to rectify the error. As the USPS/Northrup example illustrates,

redesign and rework can be costly to both buyer and supplier. The redesign is costly

to the buyer because she may incur direct cost of designing a new RFQ, lose profit

opportunity or incur cost associated with delay in the contract fulfillment. The sup-
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plier also incurs cost associated with a redesign, which includes direct cost of labor,

material, and opportunity cost for using production resources. Let Cb and Cs be

redesign costs incurred by the buyer and the supplier, respectively. We assume that

both Cb and Cs are dependent on the severity of the error, T (we omit the depen-

dence of Cb and Cs on T when it is obvious). Let Fb|T and Fs|T be the corresponding

distributions. In addition to the cost that the supplier incurs, the buyer may have to

guarantee compensation for the supplier to perform extra work to correct the error,

which we call windfall profit. We use a random variable, R, to represent the windfall

profit, and a function, FR|T (·), to represent its distribution. We assume that both

redesign costs and windfall profit stochastically increase in the error severity, T .

Suppliers are heterogeneous in their abilities to detect the RFQ error before sub-

mitting bids. In other words, some suppliers have better technical expertise than

others to recognize the buyer’s RFQ error. To model this, we assume that there

are two types of suppliers in the marketplace — informed and uninformed suppliers:

An informed supplier is capable of detecting the error and its severity, T = t; An

uninformed supplier knows that the initial RFQ may have an error, but is unable to

detect it at the time of bidding. An supplier’s type is his private information and

is independent from others. Let p (∈ [0, 1]) be the probability that a supplier is the

informed type. Two special cases are important in our analysis: p = 0 represents a

situation where all suppliers are uninformed, and p = 1 represents a situation where

all suppliers are informed.

In our base model, the buyer holds an open-bid reverse auction to award the

contract. The open-bid reverse auction is a widely used practice where each supplier

can observe his competitors’ bids and continue to lower his own bid until either

winning the auction or dropping out. Although our model uses an open-bid reverse

auction, none of our results depend on the auction format. In fact, all of our results

hold in other auctions such as a sealed-bid first price auction, a dutch auction, and
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Figure 3.1: Model Schematic

so on: See Section 3.7.

Given this set-up, a supplier’s bidding strategy (the drop-out price) depends not

only on his production cost to fulfill the initial RFQ but also on his knowledge about

the RFQ error. An informed supplier knows whether the RFQ contains an error,

and if so, how severe it is. Consequently, he has better information about costs and

windfall profit associated with the redesign than an uninformed buyer who cannot

predict the presence and severity of the RFQ error. Due to this difference, informed

suppliers and uninformed suppliers will use different bidding strategies in an auction.

The time line of our model is summarized in Figure 3.1.

To build up intuition, we first analyze how supplier’s redesign profit (R) affects

buyer’s payment by assuming redesign is costless (Cs = Cb = 0). We start from a

two-supplier example assuming fairly simple distributions in Section 3.4, and then

consider N -supplier case with more general distributions in Section 3.5. Later in

Section 3.6, we incorporate redesign cost (Cs > 0, Cb > 0) to investigate whether

previous insights change if redesign is indeed costly.
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3.4 Effect of Windfall Profit on Bidding Strategies: Case

with Two Suppliers.

We first analyze how the presence of windfall profit affects the suppliers’ bidding

strategies and the buyer’s payment. To build up intuition, we start with a simple

version of the problem: Two suppliers are in the market place where each supplier’s

production cost to complete the initial RFQ, Xi, i = 1, 2, can be either low (xL

with probability s) or high (xH with probability 1 − s). To focus on the impact of

windfall profit, we start with the model where redesign is costless for both buyer and

supplier: Cs = Cb = 0. We also assume that error severity, T , follows a Bernoulli

distribution with P (T = 1) = q, and the associated windfall is R = T × R̄ where

R̄ is a positive constant. This means that with probability q, the RFQ has an error

and the contracted supplier will receive a windfall profit (T = 1 and R = R̄); with

probability 1−q, the RFQ contains no error and the supplier earns no windfall profit.

In an open-bid reverse auction, the price decreases as suppliers continue to un-

dercut each other. Each supplier’s bidding strategy can be captured by his drop-out

price (denoted as β), which is the lowest price the supplier is willing to accept. Conse-

quently, the auction closes when only one supplier stays and the auction price equals

to the second lowest suppliers’ drop-out price.

Auction price = β2:N (= β2:2 when N = 2) (3.1)

where βi:N is the ith smallest bid from N suppliers’ bids.

If the initial RFQ is flawless (T = 0 with probability 1), it can be shown with a

standard argument (see Proposition 2.1 in Krishna (2009)) that a supplier i’s domi-

nant bidding strategy is to set his drop-out price to match his true production cost,

Xi. However, when the RFQ may contain an error (q > 0), this is no longer the case.

In fact, suppliers are strategic and they factor into the potential windfall associated
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with RFQ error when determining their bids. For instance, consider an informed

supplier: When the RFQ is indeed flawed, an informed supplier sees that there will

be additional profit (R̄) after the RFQ error is discovered, and thus is willing to lower

his drop-out price (as much as R̄) to increase his chance of winning the contract; On

the other hand, if there is no error, the informed supplier does not gain from further

lowering his drop-out price. The situation is different for an uninformed buyer: Since

an uninformed buyer cannot predict the error, he cannot adjust his bid the same way

an informed supplier would. The following lemma characterizes the suppliers’ bid-

ding strategies, which can be complicated under different scenarios. The full version

is relegated to Section 3.8.

Lemma 3.1. An informed supplier’s dominant strategy is to bid down to his produc-

tion cost x if the RFQ has no error, and to bid down to x − R̄ when the RFQ has

an error. For uninformed suppliers, an equilibrium exists in which an uninformed

supplier with cost x will bid down to x − E(R) when R̄ ≤ xH − xL, and may deploy

a mixed strategy when R̄ > xH − xL.

Lemma 3.1 highlights the difference between informed and uninformed suppliers.

If the RFQ indeed has an error, an informed supplier will anticipate the extra profit,

R̄, and will lower his drop-out price by the amount of windfall. If the RFQ does not

have an error, he will bid as in the standard auction (where RFQ is perfect as given).

On the other hand, an uninformed supplier cannot predict this additional gain with

certainty, he cannot lower his bid as much as the informed supplier would. When the

windfall profit is small, it is optimal for an uninformed supplier to lower the drop-out

price by the expected windfall E(R) = qR̄. However, this strategy is no longer optimal

when the windfall is large. Consider the case where there is one informed supplier

with high cost and one uninformed supplier with low cost in the market place. When

the error exists, the informed supplier will bid down to xH − R̄. If the uninformed

supplier only bids down to xL − qR̄, then he could lose the contract although he
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has lower cost, since when windfall size is large, informed supplier’s drop-out price

could be lower than that of the uninformed supplier (xH − R̄ < xL − qR̄). Taking

this possibility into account, the uninformed supplier with low cost would bid more

aggressively than just lower the drop-out price by the expected amount of windfall

(See full version of Lemma 3.1 in §3.8 for more details). Similarly, consider the case

where there is one informed supplier with low cost and one uninformed supplier with

high cost. When there is no error, the informed supplier will bid down to xL. If the

uninformed supplier bids down to xH − qR̄, then he could win the contract because

the informed supplier’s drop-out price could be higher than that of the uninformed

supplier (xL > xH − qR̄). However in this case, the uninformed supplier loses money

since the contract price (xL) cannot even cover his cost (xH) and there is no future

compensation. To avoid this situation, the uninformed supplier with high cost should

bid more conservatively.

With suppliers’ bidding strategies provided in Lemma 3.1, we can compute the

buyer’s expected total payment (denoted as Ψ) which includes the contract price

determined by the auction and (possible) redesign windfall payment.

Ψ = E(Auction price + Redesign windfall payment) = E(β2:N) + E(R). (3.2)

To address research question 1, we first analyze how the buyer’s payment Ψ

changes in error severity level T . Because error is associated with windfall pay-

ment, one might expect that the buyer always pays more when the RFQ error is

more severe (which is equivalent to a higher error rate q since T ∼ Bernoulli(q)).

To check whether this intuition is correct, we consider the following example: xL =

1, xH = 2, s = 0.5 and R̄ = 1. Figure 3.2(b) plots buyer’s payment as a function

of the error rate q when fixing informed supplier probability p = 0.5. Surprisingly,

buyer’s payment does not monotonically increase in error rate. When error rate is
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Figure 3.2: Example with parameters xL = 1, xH = 2, s = 0.5 and R̄ = 1. Panel
(a) shows how buyer’s total payment change in error rate q and informed
supplier probability p; Panel (b) shows the slice about how buyer’s total
payment changes in error rate q when fixing informed supplier probabil-
ity p = 0.5; Panel (c) shows the slice about how buyer’s total payment
changes in informed supplier probability p when fixing error rate q = 0.5.

already high (q > 0.5 in this example), lowering the error rate may even result in

a higher payment, because the buyer’s payment includes not only redesign windfall

but also contract price determined via auction. While the expected redesign windfall

payment indeed increases in error rate q, auction price decreases since suppliers bid

more aggressively if they anticipate a higher chance of gaining windfall. It is worth

mentioning that the buyer’s payment decreasing in error rate does not mean the buyer

would intentionally design a flawed RFQ, because here we assume redesign is costless

and high redesign costs (which will be introduced in Section 3.6) make a flawed RFQ

unappealing.

Next we analyze how the buyer’s payment Ψ changes in informed supplier prob-

ability p. Intuitively, informed suppliers can take advantage of their expertise to

squeeze the buyer, so one might expect that the buyer has to pay more with higher

informed supplier probability. However, this intuition is also incorrect. We refer to

the previous example when xL = 1, xH = 2, s = 0.5 and R̄ = 1. Figure 3.2(c) plots

buyer’s payment as a function of the informed supplier probability p when fixing the

error rate q = 0.5. We observe that the buyer’s payment also does not monotonically

increase in informed supplier probability. The underlying reason is suppliers’ com-
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petition: Informed suppliers’ advantage is not against the buyer but rather against

other competing suppliers and therefore windfall profit is competed away (at least

partially).

Furthermore, we observe in Figure 3.2(a) that in the extreme cases when the RFQ

is perfect (q = 0), the RFQ is always flawed (q = 1), all suppliers are uninformed

(p = 0) or all suppliers are informed (p = 1), the buyer has the same lowest expected

total payment.

• When the RFQ is perfect, supplier with production X will bid down to β(X) =

X. The buyer’s expected payment is Ψ|q=0 = E(X2:N).

• When the RFQ is always flawed, both types of suppliers (whether informed or

uninformed) know for sure there will be additional payment R̄, so all will lower

their bids by amount R̄, i.e., β(X) = X− R̄. The contract price is thus lowered

by R̄. The buyer later pays the winning supplier additional R̄ for redesign, so

the buyer’s total payment does not change. Recall Formula (3.2), the buyer’s

expected payment is Ψ|q=1 = E[(X − R̄)2:N ] + R̄ = E(X2:N).

• When all suppliers are uninformed, they value the expected windfall at E(R)

and lower their bids by amount E(R), i.e., β(X) = X − E(R). The contract

payment is lowered by E(R) which cancels out the expected redesign windfall.

The buyer’s expected payment is Ψ|p=0 = E[(X−E(R))2:N ]+E(R) = E(X2:N).

• When all suppliers are informed, they can correctly anticipate the error and

adjust their bids accordingly, i.e., β(X) = X − R. Again the windfall profit

is completely washed away. The buyer’s expected payment is Ψ|p=1 = E[(X −

R)2:N ] + E(R) = E(X2:N).

We are also interested in interior cases when there is a mixture of informed and

uninformed suppliers (0 < p < 1) and uninformed suppliers are not sure whether there

65



is error or not (0 < q < 1). Given the fact that an uninformed supplier will lower

his bid even when there is actually no error and the buyer does not pay windfall, one

might wonder whether it is better for the buyer to be in an interior case (0 < p < 1

and 0 < q < 1) rather than the extreme cases (p = 0, p = 1, q = 0 or q = 1).

It is true that the buyer may end up paying less in some sample paths when there

is no error and the auction price is set to some uninformed supplier’s lowered bid.

However, in terms of expected value, the buyer will never be better off in interior

cases, since a rational uninformed supplier will not submit an overly aggressive bid

due to winner’s curse and thus the buyer cannot benefit by uninformed suppliers’

incorrectly foreseeing the windfall profit. We summarize our findings in the following

proposition.

Proposition 3.1. When N = 2, T ∼ Bernoulli(q), and supplier production cost X

follows a two-type distribution, the buyer’s expected total payment Ψ is not monotonic

in error rate q or informed supplier probability p. It has the minimal value Ψo =

E(X2:2) when p = 0, p = 1, q = 0 or q = 1.

3.5 Analysis: N Suppliers with General Cost Distribution

We addressed research question 1 in the last section for the two-supplier case with

simple distributions. In this section, we consider a more general case withN suppliers.

Each supplier’s production cost follows distribution FX which can be any regular

distribution1. Regular distribution is a standard assumption in the auction literature;

examples of it include uniform, normal, logistic and exponential distributions. Error

severity level T follows distribution FT , which no longer only has two states (no error,

error) but can take multiple values with higher values indicating more severe errors

(e.g., no error, small error, medium error, large error). In the previous two-supplier

1In the context of procurement auction, a regular distribution satisfies the condition that x+FX(x)
fX(x)

increases in x.
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example, we assumed that the windfall profit R equals to a constant R̄ when RFQ

contains error. We also generalize this assumption by allowing uncertainty even for a

fixed error severity T = t, namely, windfall profit R follows a conditional distribution

FR|T=t. A more severe error is usually associated with higher profit, so we assume

that FR|T=t stochastically increases in t. We continue to focus the analysis on how

supplier’s redesign windfall profit affects the buyer’s payment by assuming redesign

is costless (Cs = Cb = 0); this assumption will be relaxed in Section 3.6.

3.5.1 How RFQ error and supplier expertise affect buyer’s payment

We address research question 1 in the general setting. The key arguments for

the two-supplier example still work. Informed suppliers can foresee future windfall

profit due to RFQ error, and the uninformed suppliers are aware of the possibility

of a windfall profit. Suppliers are strategic; they will price in future profit attached

to the contract. Furthermore, multiple suppliers competing for one contract means

that suppliers might have to give up some profit to win the contract. For example,

imagine one wants to remodel a house. If there is only one contractor to choose, the

house owner may have to pay a high price and pay for change orders down the line.

But if there are multiple competing contractors, each contractor may be willing to

offer a low price quote that takes into account of getting more money in future.

In the context of competing suppliers, a lowered contract price (determined by

suppliers’ competitive bidding) offsets (at least partially) future windfall payment

due to RFQ error. Therefore, naive intuitions about RFQ error does not hold —

an RFQ with higher error severity level does not always result in a higher buyer’s

payment; a supply base with more informed suppliers does not always squeeze more

profit from the buyer. We extend the result in Proposition 3.1 to the general setting.

Theorem 3.1. The buyer’s expected total payment Ψ is not strictly monotonic in

error severity level T or informed supplier probability p. It has the minimal value
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Ψo = E(X2:N) when p = 0, p = 1 or when T is a degenerate random variable.

The error severity level T is a random variable, and we are comparing two error

severity levels by stochastic order. For example, one RFQ has half the chance of

containing an error, T1 ∼ Bernoulli(0.5), and another RFQ always contains an error,

T2 ≡ 1. The first RFQ is less severe than the second RFQ in terms of possibility of

error (T1 < T2). When all else is equal, the buyer pays more for the first RFQ, because

with the second RFQ (T2 ≡ 1), all suppliers know the exact error severity level and

lower their bids by the same amount, canceling out the future windfall payment. Note

that we do not mean a buyer should purposely design a bad RFQ because we have

not consider redesign cost, which will be incorporated in Section 3.6.

One way to prove Theorem 3.1 is to explicitly derive the suppliers’ bidding func-

tions, then compute the buyer’s expected total payment using Formula (3.2), as how

we handled the two-supplier example in Section 3.4. However, this direct approach

is not applicable for the general case here. The suppliers in our model not only have

their own different production costs, but also have different error-detecting expertise

as well. As a consequence of this multidimensional bidder type, closed-form bidding

equilibrium is analytically intractable. Even for the two-supplier example (see full

version of Lemma 3.1 in §3.8), it is already complicated enough when R̄ > xH − xL,

which involves mixed strategy and discrete monetary value space. There are papers

considering multidimensional bidder type, such as Maskin (1992), Pesendorfer and

Swinkels (2000), Jehiel and Moldovanu (2001). As explained in these papers, the

analytical difficulty lies in the fact that unlike one-dimensional space where bidders

can easily be ranked according to their valuations, there is no natural way to rank

bidders in multidimensional space. None of these papers explicitly characterize the

bidding equilibrium for the general case.

To overcome this difficulty, we develop a new, indirect approach to prove the

results without deriving the suppliers’ bidding functions.
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Sketch of Proof

Step 1: We prove that in any extreme cases (p = 0, p = 1 or T is a degenerate random

variable), the buyer’s expected total payment equals Ψo = E(X2:N).

We can prove that any informed supplier’s bidding strategy is to bid down to his

production cost minus the windfall profit he expects on the back end, conditioning

on knowing T = t, i.e., β(X) = X − E(R|T = t). When all suppliers are informed

(p = 1), all adjust their bids by the same amount E(R|T = t), so the auction

price will be lowered by E(R|T = t) which cancels out the expected future windfall

payment E(R|T = t). Recall Formula 3.2, the buyer’s expected total payment is

Ψ|p=1 = E[(X − E(R|T ))2:N ] + E(R) = E(X2:N).

Similarly, when all suppliers are uninformed (p = 0) or when RFQ only has one

severity level (T ≡ t), all suppliers have the same knowledge about the windfall profit.

Every supplier is willing to bid down to his production cost minus the expected future

windfall profit, i.e., β(X) = X−E(R). Thus, the buyer’s payment is Ψ|p=0 = Ψ|T≡t =

E[(X − E(R))2:N ] + E(R) = E(X2:N).

Step 2: We prove that any interior case (0 < p < 1 and T is a non-degenerate random

variable) cannot compete with the extreme cases discussed in Step 1. That is, Ψ ≥ Ψo.

We consider a new model: The RFQ is perfect as given; supplier type is one-

dimensional with only production cost X ∼ FX ; buyer can design any auction mech-

anism. In this new model, according to Myerson (1981), the optimal mechanism2

results in the buyer’s payment equal E(X2:N), which is the same value as in the ex-

treme cases of our model. Since the optimal mechanism results in lower payment

than any feasible mechanism, we need only to design a feasible mechanism for this

new model that has the same payment as in our model. We construct an equivalent

mechanism in the new model:

2The optimal mechanism depends on the assumption that supplier production cost X follows a
regular distribution.
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(i) The buyer generates a random variable T , which follows distribution FT ;

(ii) For each supplier, the buyer flips a coin which has probability p for the head.

If it is the head, let this supplier know the value of T , otherwise, only let him

know the distribution FT ;

(iii) The buyer announces to all suppliers that whoever wins the auction will get an

additional amount R, which follows a conditional distribution FR|T ;

(iv) Suppliers compete in an open-bid reverse auction;

(v) The buyer generates a random variable R which follows distribution FR|T , and

pays the winning supplier an additional amount R above the auction price.

The key point for creating this equivalent mechanism is: The realized values

for error severity, supplier type, and redesign windfall profit, which were previously

decided by nature are controlled by the buyer in the new model; however, the suppliers

in the new model are given the same information as in our model and thus should

follow the same bidding strategies. Therefore, the auction clears at the same price

and the buyer has the same expected total payment in the equivalent mechanism as

in our model.

3.5.2 Pre-paying supplier windfall

Although supplier windfall profit is fully competed away in the extreme cases

(p = 0, p = 1 and T is degenerate), it is not always so in interior cases (0 < p < 1

and T is non-degenerate). We consider research question 2 and analyze if there is a

way the buyer can completely remove supplier windfall profit.

To answer this question, we first analyze the extreme cases to see why windfall

profit can be fully competed away. We find the extreme cases have something in

common: All suppliers have the same level of anticipation regarding to the future
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windfall profit — either the suppliers have the same capability of detecting the error

severity (p = 0 or p = 1), or the error severity has no uncertainty (T is degenerate).

Based on this observation, we are wondering whether there exists a way to “mimic”

the extreme cases — equalize the levels of anticipation for windfall profit between

uninformed and informed suppliers.

Our base model is actually a contingent contract since supplier’s windfall profit

is paid after the error is discovered and depends on the error severity level. Because

informed suppliers and uninformed suppliers have different knowledge about the error

severity level, and thus have different anticipations for windfall profit, the windfall

profit is not always competed away.

Next we propose an alternative contract called “pre-pay” and show how a pre-pay

contract levels suppliers’ anticipation for windfall profit. We define R̄ as the maximal

possible value of windfall R that a buyer can ever get for any error severity level.

Before holding the auction, the buyer announces to all suppliers that the contract

winner will be paid an additional payment R̄ as compensation for potential design

flaws, regardless of the RFQ error severity. We call this new contract “pre-pay”

because the additional amount is paid to the auction winner immediately after the

auction is closed and before any RFQ error is discovered. That is, even if it turns

out that redesign is unnecessary or the error is minor and easy to fix, the supplier

keeps the pre-paid amount. When redesign does occur, the supplier cannot ask for

more compensation since the maximal possible profit R̄ is already paid to cover this

uncertainty. With a pre-pay contract, the winning supplier gets a guaranteed payment

R̄ that is not contingent on the presence or the size of RFQ error. Therefore, both

informed and uninformed suppliers have the exact same anticipation for windfall profit

— the winning supplier is guaranteed a fixed amount, R̄.

We choose R̄ as the pre-paid amount for two reasons. First, since R̄ is the maximal

possible amount a supplier can get from redesign, after the buyer pre-pays R̄, the
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supplier has no excuse to ask for more profit later. Second, although we model

the cases where the buyer decides the contract type, in practice suppliers may also

participate in determining the contract type, especially if the buyer wants to switch

from a traditional contingent contract to a new pre-pay contract. Since a guaranteed

amount of R̄ is obviously better than the possibility of getting profit R(≤ R̄), even if

a supplier can choose his own contract type, he will choose a pre-pay contract over a

contingent contract.

The pre-pay contract may seem harmful for the buyer at first glance, because

he must pay the maximal possible windfall amount regardless of the existence or

severity of the RFQ error. However, this intuition is incorrect; the pre-paid amount

eventually will be competed away. We support this argument by considering the

supplier’s bidding strategy. Since the contract comes with a guaranteed additional

value R̄, suppliers will price in this value and lower their bids by R̄. Hence the

auction price is lowered by amount R̄ which completely cancels out the pre-paid

amount. What is interesting and seemingly paradoxical about this pre-pay idea is

that by committing to pay windfall profit, the buyer eventually removes the suppliers’

capability of gaining any windfall. We formalize the result in the following theorem.

Theorem 3.2. Let Ψpp be the buyer’s expected total payment with the pre-pay con-

tract. It is always lower than that with the contingent contract. For any 0 ≤ p ≤ 1,

any distribution FT and FR|T , and any regular distribution FX , Ψ
pp = E(X2:N) ≤ Ψ.

It is worth mentioning that pre-pay is effective only in the context of competing

suppliers, and re-arranging the payment alone does not solve the problem. If there

is only one supplier, pre-pay actually penalizes the buyer. Only when competition

exists, suppliers have to give away the profit associated with redesign and this is when

the buyer benefits from pre-pay.

We also want to point out that pre-pay is not meant to squeeze the supplier too

hard, but rather to prevent the supplier from extracting too much windfall profit out
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of redesign. The supplier still receives profit from finishing the requirement on the

RFQ (with production cost X1:N , which is smaller than auction price X2:N). As for

the profit associated with redesign, the supplier is willing to compete it away in order

to win the contract. Recall that even with a traditional contingent contract, when

all suppliers are equally informed or uninformed, the profit associated with redesign

is also competed away.

Example

Suppose a homeowner wants to remodel her kitchen and lists the requirements

on the RFQ. There are two contractors whose costs of completing the work are x1 =

$10, 000 and x2 = $12, 000. If the RFQ is perfect and there is no change order, then

the contract will be given to contractor 1 with price max(x1, x2) = $12, 000.

Suppose the buyer knows that the RFQ is not perfect and asks the contractors

how much change orders might run. The contractors says the change order fee R

(on top of costs, since for now we assume redesign is costless) can range from $500

to $4,000 depending on the severity. Of course, the contractors tend to give a wide

range just to cover themselves.

The buyer can sign a pre-pay contract with the contract winner and pay him an

extra $4,000 up-front to cover all possible change orders. Of course, the contractor

needs to promise to complete the necessary change orders without asking for more

profit later. The contractors would accept this pre-pay contract since a guaranteed

$4,000 dominates a possible amount between $500 and $4,000.

The two contractors compete for the contract. Since the contract comes with an

extra value of $4,000, each contractor is willing to bid down to his true production

cost minus this extra value. That is, contractor 1 bids down to β1 = x1− R̄ = $6, 000

and contractor 2 bids down to β2 = x2 − R̄ = $8, 000, so the contract will be given

to contractor 1 with price max(β1, β2) = $8, 000. Then the buyer pays contractor 1
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an additional amount $4,000, and thus the buyer’s total payment is $12,000 which is

the same payment as if there is no error in RFQ.

3.6 Incorporating Redesign Cost

So far we have discussed how supplier redesign profit affects the buyer’s payment

and how a pre-pay contract eliminates the supplier’s redesign profit. But we have not

considered the additional costs associated with redesign yet, and this is what we are

going to discuss in this section.

Redesign can be costly for the supplier, because he needs to adapt the production

procedure and may incur additional overhead cost, material cost, labor cost and

opportunity cost by taking this extra work. Redesign can also be very costly for the

buyer. For example, if the RFQ is for some part of a new product, redesign may

delay the product launch date. Things get even worse if the buyer discovers the error

after the new product has been launched to the market, for the buyer needs to recall

the product and incurs a huge loss of goodwill. In the USPS/Northrop example,

Northrop incurred the cost of $179 million to compensate for all change orders, and

USPS incurred the cost of $394 million for losses caused by retesting and late delivery

(Federal Times , 2012). In the house remodel example, the supplier redesign cost is

the contractor’s cost of paying sub-contractors, hiring a plumber expert, and extra

material costs, and the buyer’s redesign cost is the disruption and displacement costs

of having the house wall torn up for more time. To capture these practical concerns,

we incorporate the supplier’s redesign cost Cs and the buyer’s redesign cost Cb. The

redesign costs Cs and Cb depend on the severity T , and follow conditional distributions

FCs|T and FCb|T , respectively. Since a more severe error usually is more expensive

to fix, we assume FCs|T and FCb|T increase in T . In the event of redesign (which

is consequent to the buyer making an error), the buyer reimburses the supplier’s

redesign cost Cs besides windfall payment R.
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3.6.1 How RFQ error and supplier expertise affect buyer’s payment

We consider the contingent contract where the buyer pays the supplier redesign

cost and redesign windfall profit contingent on the existence and size of RFQ error.

Since we incorporate redesign costs, the buyer’s expected total payment (denoted as

ΨG) should be

ΨG = E(Auction price+Redesign profit+Redesign cost) = E(β2:N)+E(R)+E(Cs+Cb).

From a supplier’s perspective, redesign cost Cs is a contingent cost and will be

reimbursed by the buyer anyway, so the amount Cs should not affect his bidding

strategy. In fact, suppliers will submit the same bid as if there is no redesign cost, so

the auction price is the same as in the case Cs = 0.

From the buyer’s perspective, in the event of redesign, she has to reimburse the

supplier’s redesign cost Cs and also incurs redesign cost Cb to herself, so the buyer’s

expected total payment is increased by the amount of expected redesign cost, E(Cs+

Cb), compared to the case where redesign is costless (discussed in Section 3.5). That

is, the buyer’s total payment including redesign costs is

ΨG = Ψ+ E(Cs + Cb), (3.3)

in which Ψ is the buyer’s payment assuming redesign is costless.

The property of Ψ has been analyzed in Theorem 3.1, and E(Cs+Cb) increases in

T since a more severe error is usually more difficult to fix. Based on this relationship,

Theorem 3.1 can be extended.

Theorem. 3.1-G. The buyer’s expected total payment ΨG is not monotonic in p.

For p = 0, p = 1 or degenerate T , ΨG = E(Cs + Cb) + Ψo; For any 0 < p < 1 and

non-degenerate T , ΨG ≥ E(Cs + Cb) + Ψo, where Ψo = E(X2:N).
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Based on Formula (3.3) and redesign costs being independent in informed supplier

probability p, the buyer’s payment is still not monotonic in p. The naive intuition

that the buyer should avoid having many informed suppliers who can take advantage

of their expertise is also incorrect. Actually, a supply base with all informed suppliers

results in the same payment as a supply base with all uninformed suppliers, and a

mixed supply base (consisting of both informed and uninformed suppliers) results in

a higher payment for the buyer.

However, whether the buyer’s payment is monotonic in error severity level T

depends on the magnitude of redesign cost Cs +Cb. When Cs +Cb is high, the effect

of high redesign cost dominates the benefit of suppliers bidding aggressively, so the

buyer’s payment does increase in error severity level T . In this case, the buyer should

consider improving design expertise, such as rehiring engineering staff or hiring an

outside expert to vet RFQ specifications.

Again, in the extreme cases when suppliers have the same anticipate for future

windfall — either all suppliers have the same error-detecting capability (p = 0 or

p = 1) or the error severity has no uncertainty (T is degenerate), the redesign windfall

is completely washed away through suppliers’ competition.

3.6.2 Pre-paying supplier windfall

Next we analyze how to remove supplier windfall profit when redesign is costly. We

assume that supplier’s redesign cost is perfectly verifiable in Section 3.6.2 and 3.6.3.

In practice, buyers require suppliers report cost information related to redesign. Sup-

pliers cannot ask for an arbitrarily high amount of money, but have to justify their

request. For example, this reflects what happens in government contracting. Gov-

ernment requires suppliers to submit equitable adjustment documentation stating all

costs associated with redesign; any misrepresentation in the actual costs is illegal.

When redesign cost is verifiable, we propose a slightly altered pre-pay which can
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remove supplier windfall completely: The buyer pre-pays the maximal amount of

windfall R̄ but keeps supplier redesign cost Cs as a contingent payment. That is, the

contracted supplier is guaranteed to receive the maximal amount windfall R̄, but the

cost is reimbursed later to the actual amount associated with redesign. The contingent

payment Cs does not affect suppliers’ bidding strategy since it is reimbursed by the

exact amount anyway. As for the pre-paid amount R̄, similar to the earlier model, all

suppliers will lower bid by the amount R̄, lowering the auction price and canceling

out the pre-paid amount.

This altered pre-pay is as effective as the pre-pay strategy introduced in Sec-

tion 3.5.2 in removing supplier redesign windfall profit, but the buyer still has to pay

redesign cost. If we use Ψpp
G to denote buyer’s expected total payment incorporat-

ing redesign cost (recall that Ψpp is buyer’s payment with pre-pay when redesign is

costless), we have the following relationship:

Ψpp
G = Ψpp + E(Cs + Cb).

Therefore, Theorem 3.2 can be extended.

Theorem. 3.2-G. When the buyer pre-pays R̄ and keeps Cs as a contingent payment,

the buyer’s expected total payment is always lower than that with the contingent con-

tract. Actually, Ψpp
G = E(Cs + Cb) + Ψo ≤ ΨG.

3.6.3 Extract knowledge from informed suppliers

While the buyer can remove windfall profit completely utilizing a pre-pay con-

tract, she still has to pay redesign costs. Therefore, the buyer has an incentive to

discover the error earlier and avoid redesign, especially when redesign is expensive

(e.g. recalling a flawed product hurts the brand image). Because the buyer no longer

retains production expertise, it is difficult for her to design a perfect RFQ or detect
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Figure 3.3: Error-bounty approach when the supplier’s redesign cost is verifiable

the error in a flawed RFQ. She may rehire engineering staff or hire outside expert

to vet RFQ specifications, but those options are expensive. However, the informed

suppliers are experts in detecting RFQ error. Now we address research question 3:

Can the buyer leverage suppliers’ error-detecting expertise to preempt RFQ error?

Recall that with a pre-pay contract, suppliers compete away the redesign windfall

profit. Since any informed supplier cannot make a profit from RFQ error, he has no

incentive to hide the information. Therefore, the buyer can offer a nominal “error-

bounty” to induce an informed supplier to report the RFQ error essentially for free.

Figure 3.3 shows the steps to implement the error-bounty approach with a pre-pay

contract.

If a supplier reports the existence of RFQ error, the buyer can correct it and

reissue a new perfect RFQ. In this case, the buyer uses a normal contract and the

contract price is determined by the suppliers’ competition. When no one reports the

error and the RFQ is still possibly flawed, the buyer uses a pre-pay contract. One may

wonder why a supplier would report the error for a small bounty that eliminates the

guaranteed pre-paid amount R̄. The reason is with a pre-pay contract, the supplier

does not actually receive any profit due to competition. The bounty, however small,

is actual money that a supplier can receive. Therefore, an informed supplier foregoes

the pre-pay amount (it does not translate into money in his pocket) but chooses to

report the error to get the bounty (which is money in his pocket).

However, when all suppliers are uninformed (with probability (1−p)N), no supplier
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can detect the error and the buyer has to pay the inevitable redesign costs (Cs +Cb)

when RFQ contains an error. We formalize our finding in the following theorem.

Theorem 3.3. In the context of a pre-pay contract, the buyer can pick an arbitrarily

small bounty, offer it to the first supplier who shows that the RFQ is flawed, and

correct the RFQ before holding an auction. Then the buyer’s expected total payment

will be Ψ̂pp
G = (1− p)NE(Cs + Cb) + Ψo ≤ Ψpp

G .

Theoretically any arbitrarily small bounty would be enough to induce an informed

supplier to report RFQ error. In reality, the bounty should not be just one penny

but need to be large enough to act as an incentive. Nevertheless, the bounty is a

negligible amount compared to the size of the entire contract.

By offering an error-bounty with a pre-pay contract, the buyer can leverage sup-

pliers’ superior knowledge and at the same time avoid paying windfall profit or re-

imbursing redesign costs. Actually, this creates a win-win solution for both parties:

The supplier can receive a bounty and the buyer can avoid the pain of redesign.

Consequently, the entire supply chain becomes more efficient.

3.6.4 Supplier’s redesign cost is not perfectly verifiable

Our analysis in Section 3.6.2 and 3.6.3 is based on the assumption that supplier

redesign cost is perfectly verifiable. However, sometimes the cost is fuzzy and suppliers

might potentially lie about the redesign cost. For example, suppose redesign requires

extra labor time from the supplier, he may report 200 hours while it actually costs

him 190 hours; the labor cost of 10 hours is the profit that a supplier gets from lying

about the actual redesign cost. To capture this, we still let Cs be the actual redesign

cost, but write R = Rl +Ra where Rl is the profit from lying and Ra is the mutually

agreed profit when redesign happens.

This new structure of redesign profit does not change our answer to research

question 1 about how the RFQ error and informed supplier probability affect the
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Figure 3.4: Error-bounty approach when the supplier’s redesign cost is not verifiable

buyer’s payment, i.e., Theorem 3.1-G still holds, because the suppliers still price in

windfall profit R and bid aggressively to win the contract.

As for research question 2 (how to remove supplier windfall profit from RFQ

error), the buyer can remove the agreed windfall payment (Ra) by pre-paying the

maximal amount of agreed windfall R̄a. All suppliers lower their bids by R̄a and the

auction price is lowered which cancels out the pre-paid amount completely. However,

supplier’s profit from lying (Rl) cannot be avoided through pre-pay, because even if

the buyer pre-pays the maximal profit a supplier can get from lying, the supplier can

still “lie” about his true redesign cost.

To address this issue and answer research question 3 (how to leverage supplier

expertise to preempt RFQ error), we use an altered error-bounty approach: The

buyer uses the maximum amount of Rl (denoted as R̄l) as a bounty for suppliers to

report RFQ error. With this incentive, any informed supplier prefers reporting the

error (receiving bounty R̄l) to hiding the error (getting a profit less than Rl since part

of Rl will be competed away). The size of the bounty (R̄l) depends on how much a

supplier can lie about his redesign cost, which is usually small relative to the actual

redesign cost. Hence, by using pre-pay and error-bounty, the buyer avoids paying

redesign costs (Cs +Cb), avoids paying windfall profit (Ra +Rl), and only has to pay

a relatively small amount that cannot be ex post verified (R̄l). Figure 3.4 shows the

steps to implement the error-bounty approach with pre-pay contract when redesign

cost is not verifiable.
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3.7 Conclusions

While most procurement research assumes that a buyer’s RFQ is perfect as given,

in reality the RFQ can be flawed due to errors of omission and misspecification. This

makes the buyer vulnerable to expensive future change orders during the life of the

contract. However, experienced suppliers may be more knowledgeable than the buyer

and possess the knowledge to recognize errors and anticipate windfall profit at the

time of bidding. We model the case where the buyer is prone to making an error in

the initial RFQ (accompanied by future redesign and supplier windfall), which in turn

may or may not be detected by each supplier depending on each supplier’s expertise.

To address research question 1, we first analyze how a buyer’s payment changes

with the severity of the RFQ error. Although intuitively one might expect that a

more severe error would always increase the buyer’s payment because the buyer has

to pay a higher redesign payment, we find this intuition is not always correct. The

reason behind this is that while the redesign payment indeed increases, the auction

price decreases because suppliers compete more aggressively to secure the contract if

they anticipate higher future windfall profit.

We then analyze how the buyer’s payment changes with the probability of in-

formed suppliers who can detect the RFQ error. One might expect that a higher

informed supplier probability hurts the buyer since it means there are more informed

suppliers who can take advantage of their expertise to squeeze the buyer. Again, this

intuition is also incorrect. A supply base with all informed suppliers will result in the

same payment as that of a supply base with all uninformed suppliers, because, while

informed suppliers are more knowledgeable, they still need to compete against each

other and their information advantage is against other suppliers rather than against

the buyer. The managerial takeaway is that supplier disparity does not benefit the

buyer. When the buyer designs a supply base, she should choose either all informed

suppliers or all uninformed suppliers. In a mixed supply base consisting of both
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informed and uninformed suppliers, windfall is not washed away completely.

Addressing research question 2 (how to remove supplier redesign windfall profit),

we propose a creative approach called “pre-pay”. By pre-paying the maximum pos-

sible windfall, the buyer can stem any windfall payment. It benefits the buyer by

equalizing suppliers’ anticipation for redesign windfall, since all suppliers will lower

their bids by the exact pre-paid amount and the lowered auction price cancels out

the pre-paid amount.

Furthermore, we address research question 3 (how to leverage supplier expertise

to preempt RFQ error). Since pre-pay removes the possibility for suppliers to benefit

from redesign, suppliers have no incentive to hide information about the error in the

initial RFQ. By offering a bounty, the buyer can induce the informed suppliers to

reveal their information. This creates a win-win situation for both the buyer and the

suppliers, since both will be better off by avoiding redesign. Through the approach of

pre-pay and error-bounty, the buyer creates a reciprocal environment where the buyer

and suppliers have incentive to communicate and share expertise. Consequently, the

entire supply chain becomes more efficient.

Our model allows the redesign cost and windfall profit to be correlated since they

both depend on error severity level. In addition, our results also go through if the

redesign cost and supplier production cost are positively correlated. For example, a

supplier with low production cost tends to have low redesign cost. Suppose supplier

i’s redesign cost is Cs(Xi, θi) where θi is a commonly distributed random term, and

suppose xi ≤ xj implies that E[Cs(xi, θi)] ≤ E[Cs(xj, θj)]. This assumption assures

that, if the buyer awards the contract to the supplier with lowest production cost, this

supplier is also the one with lowest expected redesign cost. This allows us to conclude

that regardless of the existence of the RFQ error, the buyer’s decision for contract

allocation will not change (but her total payment would be inflated by the redesign

cost). We extend Theorem 3.1-G, 3.2-G and 3.3 by replacing Cs with Cs(X1:N , θ).
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We consider open-bid reverse auction in our model because it is commonly used

in practice. However, all our results can directly apply to other auction mechanisms

such as first-price sealed-bid auction, Vickrey auction, Dutch auction, or optimal

mechanism. This is because when suppliers have the same cost distribution, all

those auctions are equivalent resulting in the same expected buyer payment (see

Proposition 3.1 in Krishna (2009)). Therefore, the indirect approach we use to prove

Theorem 3.1 goes through even with other auction formats and other theorems also

hold accordingly.

To our best knowledge, this paper is the first in operations to consider the practical

case that the buyer’s RFQ can be misspecified, as well as the fact that experienced

suppliers can be more knowledgeable than the buyer, and the buyer can leverage

suppliers’ knowledge. Analyzing the problem is challenging, and we use a problem

transformation method applying optimal mechanism design to prove results about

common auction formats. This paper has potential to help procurement managers

make decisions about improving expertise in RFQ and designing the supply base.

This paper also provides an alternative strategy to make the entire supply chain more

efficient. We hope it can spur more research into this important yet under-studied

area about error-prone RFQs.

3.8 Proofs

Proof of Lemma 3.1

Lemma. 3.1. An informed supplier with production cost X = x has a dominant

bidding strategy: biding down to x − R̄ when RFQ is flawed and biding down to x

otherwise.

When p = 0, q = 0 or q = 1, an uninformed supplier with production cost X = x

will bid down to x − qR̄; when 0 < p < 1, 0 < q < 1, an uninformed supplier has a
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symmetric equilibrium: Set R̃ = R̄
xH−xL

;

1. If X = xL, then

(a) when R̃ < 1
1−q

, bid down to βL = xL − qR̄;

(b) when 1
1−q

≤ R̃ < (1−s)pq
s(1−p)(1−q)

+ 1
1−q

, bid down to βL = xH − R̄− ϵ3;

(c) when R̃ ≥ (1−s)pq
s(1−p)(1−q)

+ 1
1−q

, follow a mixed strategy: Set αL = (1−s)pq

s(1−p)((1−q)R̃−1)
,

bid down to βL = xH−R̄ with probability αL and bid down to βL = xL−qR̄

with probability 1− αL.

2. If X = xH , then

(a) when R̃ < 1
q
, bid down to βH = xH − qR̄;

(b) when 1
q
≤ R̃ < sp(1−q)

(1−s)(1−p)q
+ 1

q
, bid down to βH = xL + ϵ′;

(c) when R̃ ≥ sp(1−q)
(1−s)(1−p)q

+ 1
q
, follow a mixed strategy: Set αH = sp(1−q)

(1−s)(1−p)(qR̃−1)
,

bid down to βH = xL with probability αH and bid down to βH = xH − qR̄

with probability 1− αH .

Proof: Suppose supplier 2 follows the strategy described in Lemma 3.1. We will

argue that it is optimal for supplier 1 to also follow the strategy described in the

lemma.

We can easily verify that βL ≤ xL − qR̄ < xH − qR̄ ≤ βH .

1. When supplier 1 is uninformed and with low cost X1 = xL, the expected

3Here we consider possible bids in discrete space. Assume in 1(b), xH − R − ϵ is the closest
bid lower than xH − R; in 2(b), xL + ϵ′ is the closest bid higher than xL. Otherwise, there is no
equilibrium in continuous space either for the case 1(b) or 2(b).
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payment for supplier 1 to bid down to b is

ΠL(b) =pEX2 [q(X2 − R̄− xL + R̄)(Ib<X2−R̄ + 0.5Ib=X2−R̄)

+ (1− q)(X2 − xL)(Ib<X2 + 0.5Ib=X2)]

+ (1− p)sEβL
[(βL − xL + qR̄)(Ib<βL

+ 0.5Ib=βL
)]

+ (1− p)(1− s)EβH
[(βH − xL + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

=p(1− s)[q(xH − xL)(Ib<xH−R + 0.5Ib=xH−R̄)

+ (1− q)(xH − xL)(Ib<xH
+ 0.5Ib=xH

)]

+ (1− p)sEβL
[(βL − xL + qR̄)(Ib<βL

+ 0.5Ib=βL
)]

+ (1− p)(1− s)EβH
[(βH − xL + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

=(1− s)p(1− q)(xH − xL)(Ib<xH
+ 0.5Ib=xH

)

+ (1− s)(1− p)EβH
[(βH − xL + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

+ (1− s)pq(xH − xL)(Ib<xH−R + 0.5Ib=xH−R̄)

+ s(1− p)EβL
[(βL − xL + qR̄)(Ib<βL

+ 0.5Ib=βL
)]

=Υ1(b) + Υ2(b) + Υ3(b)

Here, we define Υ1(b) = (1 − s)p(1 − q)(xH − xL)(Ib<xH
+ 0.5Ib=xH

) + (1 − s)(1 −

p)EβH
[(βH − xL + qR̄)(Ib<βH

+0.5Ib=βH
)]. Since βH > xL − qR, any b < min(xH , βH)

maximize Υ1(b). And Υ2(b) = (1−s)pq(xH−xL)(Ib<xH−R̄+0.5Ib=xH−R̄) is maximized

by any b < xH−R̄, Υ3(b) = s(1−p)EβL
[(βL−xL+qR̄)(Ib<βL

+0.5Ib=βL
)] is maximized

by b = xL − qR̄.

(a) When R̃ < 1
1−q

, i.e, xL−qR̄ < xH−R̄, b = xL−qR̄maximizes Υ1(b),Υ2(b),Υ3(b)

and thus maximizes ΠL(b) = Υ1(b) + Υ2(b) + Υ3(b).

(b) Set A = (1 − s)pq(xH − xL), B(t) = s(1 − p)(xL − qR̄ − t). B(t) is strictly

decreasing in t. When 1
1−q

≤ R̃ < (1−s)pq
s(1−p)(1−q)

+ 1
1−q

, we have xH − R̄ ≤ xL −

qR̄, B(xH − R̄) ≥ 0, A > B(xH − R̄). Since βL = xH − R̄ − ϵ, when ϵ is small
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enough, A > B(βL) > 0.

Υ2(b) + Υ3(b) =



A−B(βL) if b < βL

A− 0.5B(βL) if b = βL

0.5A if b = xH − R̄

0 if b > xH − R̄

Since βL is the highest possible bid lower than xH − R̄, the above equation has

considered all possible bids. We can see that b = βL maximize Υ2(b) + Υ3(b),

and it also maximize Υ1(b) since βL < xH − R̄ ≤ xH −qR̄ ≤ min(xH , βH). Thus

b = βL maximizes ΠL(b).

(c) When R̃ ≥ (1−s)pq
s(1−p)(1−q)

+ 1
1−q

, we have xH − R̄ ≤ xL − qR̄, B(xH − R̄) ≥ 0, A ≤

B(xH − R̄). As described in the lemma, αL = A
B(xH−R̄)

.

Υ2(b) + Υ3(b) =


A− αLB(xH − R̄) = 0 if b < xH − R̄

0.5A− 0.5αLB(xH − R̄) = 0 if b = xH − R̄

0 if b > xH − R̄

For any b, Υ2(b) + Υ3(b) = 0. Since xH − R̄ ≤ xL − qR̄ < min(xH , βH), the

mixed strategy described in 1(c) also maximize Υ1(b). Thus βL is the optimal

bidding strategy.

2. Similarly, when supplier 1 is uninformed and with high cost X1 = xH , the
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expected payment for supplier 1 to bid down to b is

ΠH(b) =pEX2 [q(X2 − R̄− xH + R̄)(Ib<X2−R̄ + 0.5Ib=X2−R̄)

+ (1− q)(X2 − xH)(Ib<X2 + 0.5Ib=X2)]

+ (1− p)sEβL
[(βL − xH + qR̄)(Ib<βL

+ 0.5Ib=βL
)]

+ (1− p)(1− s)EβH
[(βH − xH + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

=pr[−q(xH − xL)(Ib<xL−R̄ + 0.5Ib=xL−R̄)

− (1− q)(xH − xL)(Ib<xL
+ 0.5Ib=xL

)]

+ (1− p)sEβL
[(βL − xH + qR̄)(Ib<βL

+ 0.5Ib=βL
)]

+ (1− p)(1− s)EβH
[(βH − xH + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

=− spq(xH − xL)(Ib<xL−R̄ + 0.5Ib=xL−R̄)

+ s(1− p)EβL
[(βL − xH + qR̄)(Ib<βL

+ 0.5Ib=βL
)

− sp(1− q)(xH − xL)(Ib<xL
+ 0.5Ib=xL

)

+ (1− s)(1− p)EβH
[(βH − xH + qR̄)(Ib<βH

+ 0.5Ib=βH
)]

=Γ1(b) + Γ2(b) + Γ3(b)

Here, we define Γ1(b) = −spq(xH − xL)(Ib<xL−R̄ + 0.5Ib=xL−R̄) + s(1 − p)EβL
[(βL −

xH + qR̄)(Ib<βL
+0.5Ib=βL

). Since βL < xH − qR̄, any b > max(xL − R̄, βL) maximize

Γ1(b). And Γ2(b) = −sp(1 − q)(xH − xL)(Ib<xL
+ 0.5Ib=xL

) is maximized by any

b > xL, Γ3(b) = (1 − s)(1 − p)EβH
[(βH − xH + qR̄)(Ib<βH

+ 0.5Ib=βH
)] is maximized

by b = xH − qR̄.

(a) When R̃ < 1
q
, i.e, xH − qR̄ > xL, b = xH − qR̄ maximizes Γ1(b),Γ2(b),Γ3(b) and

thus maximizes ΠH(b) = Γ1(b) + Γ2(b) + Γ3(b).

(b) Set C = sp(1−q)(xH−xL), D(t) = (1−s)(1−p)(t−(xH−qR̄)). D(t) is strictly

increasing in t. When 1
q
≤ R̃ < sp(1−q)

(1−s)(1−p)q
+ 1

q
, we have xH − qR̄ ≤ xL, D(xL) ≥

0, C > D(xL). Since βH = xL + ϵ′, when ϵ′ is small enough, C > D(βH) > 0.
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Γ2(b) + Γ3(b) =



D(βH)− C if b < xL

D(βH)− 0.5C if b = xL

0.5D(βH) if b = βH

0 if b > βH

Since βH is the lowest possible bid higher than xL, the above equation has

considered all possible bids. We can see that b = βH maximize Υ2(b) + Υ3(b),

and it also maximize Γ1(b) since βH > xL ≥ max(xL − R̄, βL). Thus b = βH

maximizes ΠH(b).

(c) When R̃ ≥ sp(1−q)
(1−s)(1−p)q

+ 1
q
, we have xH − qR̄ ≤ xL, D(xL) ≥ 0, C ≤ D(xL). As

described in the lemma, αH = C
D(xL)

.

Γ2(b) + Γ3(b) =


−C + αHD(xL) = 0 if b < xL

−0.5C + 0.5αHD(xL) = 0 if b = xL

0 if b > xL

For any b, Γ2(b) + Γ3(b) = 0. Since xL ≥ xH − qR̄ > max(xL − R̄, βL), the

mixed strategy described in 1(c) also maximize Γ1(b). Thus βH is the optimal

bidding strategy.

Proof of Proposition 3.1

It is easy to verify that when q = 0 or q = 1 or p = 0 or p = 1, the buyer’s

expected total payment equals to Ψ0 = E[max(X1, X2)]. Next, we will prove that for

any fixed p (0 < p < 1), the buyer’s expected total payment Ψ(q) satisfies Ψ(q) ≥ Ψo.

For simplicity, we let xL = 0, xH = 1 and hence R̄ = R̃. This will not affect our

analysis, because if we view the expected payment as a function Φ(xL, xH), then

Φ(xL, xH) = xL + (xH − xL)Φ(0, 1).
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Suppose an uninformed supplier with production cost X will bid β(X). We can

write the buyer’s expected total payment as

Ψ(q) =p2E[max(X1, X2)] + (1− p)2(E[max(β(X1), β(X2))] + qR̄)

+ 2p(1− p)(q(E[max(X1 − R̄, β(X2))] + R̄) + (1− q)E[max(X1, β(X2))])

=p2Ψ0 + (1− p2)qR̄ + (1− p)2E[max(β(X1), β(X2))]

+ 2p(1− p)(qE[max(X1 − R̄, β(X2))] + (1− q)E[max(X1, β(X2))])

For any 0 < p < 1, 0 < q < 1, according to the bidding strategy described in Lemma

3.1 4, we have:

• When X1 < X2, max(β(X1), β(X2)) = β(X2), so

E[max(β(X1), β(X2))] =2s(1− s)E(βH) + s2E[max(βL, β
′
L)]

+ (1− s)2E[max(βH , β
′
H)];

• When X1 ≤ X2, max(X1 − R̄, β(X2)) = β(X2), so

E[max(X1− R̄, β(X2))] = (1− s)E(βH)+ s
2E(βL)+ s(1− s)E[max(1− R̄, βL)];

• When X1 ≥ X2, max(X1, β(X2)) = X1, so

E[max(X1, β(X2))] = (1− s) + s(1− s)E[max(0, βH)].

4In cases 1(b) and 2(b), we use βL = xH − R̄ and βH = xL instead. When ϵ and ϵ′ are sufficiently
small, Ψ(p, q) calculated below will be accurate enough to show the buyer’s expected payment.
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Hence, we can rewrite the buyer’s expected total payment

Ψ(q) =p2Ψ0 + (1− p2)qR̄

+ (1− p)2(2s(1− s)E(βH) + s2E[max(βL, β
′
L)] + (1− s)2E[max(βH , β

′
H)])

+ 2p(1− p)q((1− s)E(βH) + s2E(βL) + s(1− s)E[max(1− R̄, βL)])

+ 2p(1− p)(1− q)((1− s) + s(1− s)E[max(0, βH)])

=p2Ψ0 + (1− p2)qR̄ + 2(1− s)p(1− p)(1− q)

+ 2s2p(1− p)qE(βL) + 2s(1− s)p(1− p)qE[max(1− R̄, βL)])

+ s2(1− p)2E[max(βL, β
′
L)] + 2(1− s)(1− p)(s(1− p) + pq)E(βH)

+ 2s(1− s)p(1− p)(1− q)E[max(0, βH)] + (1− s)2(1− p)2E[max(βH , β
′
H)]

=Co(p, q) + CL(p, q) + CH(p, q)

Here,

Co(p, q) =p
2Ψ0 + (1− p2)qR̄ + 2(1− s)p(1− p)(1− q)

CL(p, q) =2s2p(1− p)qE(βL) + 2s(1− s)p(1− p)qE[max(1− R̄, βL)]

+ s2(1− p)2E[max(βL, β
′
L)]

CH(p, q) =2(1− s)(1− p)(s(1− p) + pq)E(βH)

+ 2s(1− s)p(1− p)(1− q)E[max(0, βH)]

+ (1− s)2(1− p)2E[max(βH , β
′
H)].

We now analyze CL. Since CL is continuous in q and differentiable in q almost

everywhere (actually, CL has at most two non-differentiable points), we consider the
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first order and second order derivatives in the differentiable points.

∂CL(p, q)

∂q
=2s2p(1− p)E(βL) + 2s(1− s)p(1− p)E[max(1− R̄, βL)]

+ s2(1− p)2
∂E[max(βL, β

′
L)]

∂q

+ 2s2p(1− p)q
∂E(βL)

∂q
+ 2s(1− s)p(1− p)q

∂E[max(1− R̄, βL)]

∂q

∂C2
L(p, q)

∂q2
=4s2p(1− p)

∂E(βL)

∂q
+ 4s(1− s)p(1− p)

∂E[max(1− R̄, βL)]

∂q

+ s2(1− p)2
∂2E[max(βL, β

′
L)]

∂q2

+ 2s2p(1− p)q
∂2E(βL)

∂q2
+ 2s(1− s)p(1− p)q

∂2E[max(1− R̄, βL)]

∂q2

We define Ωa
L = {q : R̄ < 1

1−q
},Ωb

L = {q : 1
1−q

≤ R̄ < (1−s)pq
s(1−p)(1−q)

+ 1
1−q

},Ωc
L = {q :

R̄ ≥ (1−s)pq
s(1−p)(1−q)

+ 1
1−q

}. Then we have

E(βL) =


−qR̄ Ωa

L

1− R̄ Ωb
L

αL(1− R̄) + (1− αL)(−qR̄) Ωc
L

E[max(1− R̄, βL)] =


1− R̄ Ωa

L

1− R̄ Ωb
L

αL(1− R̄) + (1− αL)(−qR̄) Ωc
L

E[max(βL, β
′
L)] =


−qR̄ Ωa

L

1− R̄ Ωb
L

α2
L(1− R̄) + (1− α2

L)(−qR̄) Ωc
L
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Take first order derivative:

∂E(βL)

∂q
=


−R̄ Ωa

L

0 Ωb
L

−(R̄ + (1−s)p
s(1−p)

) Ωc
L

≤ 0

∂E[max(1− R̄, βL)]

∂q
=


0 Ωa

L

0 Ωb
L

−(R̄ + (1−s)p
s(1−p)

) Ωc
L

≤ 0

∂E[max(βL, β
′
L)]

∂q
=


−R̄ Ωa

L

0 Ωb
L

−((1 + α2
L)R̄ + 2 (1−s)p

s(1−p)
αL) Ωc

L

≤ 0

Take second order derivative:

∂2E(βL)

∂q2
= 0

∂2E[max(1− R̄, βL)]

∂q2
= 0

∂E2[max(βL, β
′
L)]

∂q2
=

 0 Ωa
1 ∪ Ωb

L

−2(αLR̄ + (1−s)p
s(1−p)

)∂αL

∂q
< 0 Ωc

L

Thus, we have

∂C2
L(p, q)

∂q2
=4s2p(1− p)

∂E(βL)

∂q
+ 4s(1− s)p(1− p)

∂E[max(1− R̄, βL)]

∂q

+ s2(1− p)2
∂2E[max(βL, β

′
L)]

∂q2

+ 2s2p(1− p)q
∂2E(βL)

∂q2
+ 2s(1− s)p(1− p)q

∂2E[max(1− R̄, βL)]

∂q2

≤0
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Hence CL is concave in each set Ωa
L, Ω

b
L and Ωc

L. When R̄ ≤ 1, Ωa
L = {q : q ∈

(0, 1)},Ωb
L = ∅ and Ωc

L = ∅, so CL is concave in q for any 0 < q < 1. When

R̄ > 1, Ωc
L = {q : 0 < q ≤ s(1−p)(R̄−1)

s(1−p)R̄+(1−s)p
}, Ωb

L = {q : s(1−p)(R̄−1)

s(1−p)R̄+(1−s)p
< q ≤ R̄−1

R̄
} and

Ωa
L = {q : q > R̄−1

R̄
}, so CL has two non-differentiable points at q1 = s(1−p)(R̄−1)

s(1−p)R̄+(1−s)p

and q2 =
R̄−1
R̄

.

Similarly for CH . When R̄ ≤ 1, CH is concave in q for any 0 < q < 1. When

R̄ > 1, we define Ωa
H = {q : q < 1

R̄
}, Ωb

H = {q : 1
R̄
≤ q < sp+(1−s)(1−p)

sp+(1−s)(1−p)R̄
} and Ωc

H = {q :

q ≥ sp+(1−s)(1−p)

sp+(1−s)(1−p)R̄
}, then we can prove that CH is concave in each set Ωa

H , Ω
b
H and

Ωc
H . Also, CH has two non-differentiable points at q3 =

1
R̄
and q4 =

sp+(1−s)(1−p)

sp+(1−s)(1−p)R̄
.

Since Co is linear in q, Ψ = Co + CL + CH is concave in q ∈ Ωw
L ∩ Ωv

H for any

w, v ∈ {a, b, c}. When R̄ ≤ 1, Ωa
L = {q : q ∈ (0, 1)},Ωa

H = {q : q ∈ (0, 1)}, so Ψ is

concave in q for any 0 < q < 1. Therefore, Ψ get the minimal value either at q = 0 or

q = 1. Since Ψ(0) = Ψ(1) = Ψo, Ψ(q) has the minimal value Ψo. When R̄ > 1, Ψ has

4 possible non-differentiable points. We can verify that for each non-differentiable

points Ψ(qi) > Ψo, i = 1, 2, 3, 4. Also because Ψ(q) is concave in q ∈ Ωw
L ∩ Ωv

H for

any w, v ∈ {a, b, c}, Ψ(q) ≥ Ψo for any q.

Proof of Theorem 3.1

The 2-step proof is given in Section 3.5. Here I will just prove the supplier’s

bidding strategies in extreme cases as shown in Step 1.

When all suppliers are uninformed (p = 0), suppose we want to solve for supplier

i’s bidding strategy. Since no supplier can detect the error severity T , suppliers’ bids

do not depend on T . We let y−i denote the highest bid of the other N − 1 suppliers.

Suppose supplier i has production costXi = xi and bids bi. Then supplier i’s expected

payoff is E[I{bi<y−i}(y−i − xi + R)] = I{bi<y−i}[y−i − (xi − E(R))]. To maximize this

expected payoff, we should have bi < y−i if y−i − (xi − E(R)) > 0 and bi > y−i is

y−i − (xi − E(R)) < 0. Therefore, one dominant strategy is to bid bi = xi − E(R).
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Hence, the buyer’s expected total payment is E[(X−E(R))2:N +R] = E(X2:N) = Ψo.

Similar arguments hold when p = 1 or T is degenerate.

Proof of Theorem 3.1-G

If a supplier wins the contract, his total cost is X + Cs, and he receives auction

payment, additional windfall R and reimbursed payment Cs as well. From the sup-

plier’s perspective, this is equivalent with the case having cost X and receiving only

auction payment and windfall R. Since the redesign cost Cs is reimbursed anyway, it

should not affect the supplier’s bidding strategy. Therefore, the contract is assigned

to the same supplier with the same auction price as in the case when Cs = 0. From

the buyer’s perspective, in the event of redesign, she has to reimburse the supplier’s

redesign cost Cs and also incurs redesign cost Cb to herself, so the buyer’s expected

total payment is ΨG = E(Cs + Cb) + Ψ, in which Ψ is buyer’s payment analyzed in

Theorem 3.1. We can directly apply the result in Theorem 3.1.

Proof of Theorem 3.2-G

This proof covers Theorem 3.2 by assuming Cs = Cb = 0.

The winning supplier spends additional redesign cost Cs and receives additional

payment Cs which cancel out each other. The profit gaining from redesign is moved

up-front, so knowing how severe the error is does not benefit the supplier. Hence,

informed or uninformed suppliers will apply the same bidding strategy. Whoever wins

the auction will get additional payment R̄, so every supplier is willing to lower the

bid by R̄. Therefore, the buyer’ expected total payment is Ψpp
G = E(Cs + Cb) + R̄ +

E[(X − R̄)2:N ] = E(Cs + Cb) + E(X2:N) = E(Cs + Cb) + Ψo.
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Proof of Theorem 3.3

From the proof of Theorem 3.2-G, we know that knowing how severe the RFQ is

does not benefit an informed supplier. Hence, an informed supplier has no incentive

to hide this information. When the buyer offers an arbitrarily small bounty for

reporting the error, an informed supplier is willing to do so. If the buyer knows the

error beforehand, then she can correct the RFQ and avoid redesign, so the expected

payment is Ψo. There is still a probability (1 − p)N that no supplier can detect the

error. In this case, the buyer has to pay the redesign cost E(Cs + Cb).

Proof of Results when Cs and X are positively correlated

We need to modify the proof of Theorem 3.1-G slightly. When p = 0, p = 1 or

T is degenerate, the contract is given to the supplier with lowest production cost,

hence in the event of redesign, the buyer need to reimburse supplier redesign cost

E[Cs(X1:N , θ)] and the buyer’s expected total payment ΨG = E[Cs(X1:N , θ) + Cb] +

Ψo. For 0 < p < 1 and non-degenerate T , the contract is not necessarily given

to the supplier with lowest production cost, but the expected redesign cost must

be greater than or equal to E[Cs(X1:N , θ)] since E[Cs(x, θ)] increases in x. Hence

ΨG ≥ E[Cs(X1:N , θ) + Cb] + Ψ ≥ E[Cs(X1:N , θ) + Cb] + Ψo.

For Theorem 3.2-G and Theorem 3.3, because of pre-pay, the contract is always

given to the supplier with lowest production cost. The expected supplier redesign

cost is E[Cs(X1:N , θ)].
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CHAPTER 4

Should the Buyer Strategically Exclude the

Incumbent Supplier from the Procurement

Auction?

4.1 Introduction

In summer 2011, the authors interacted with a Tier-1 auto manufacturer. This

manufacturer had signed a contract with one incumbent supplier stating that the

incumbent supplier would reduce the price annually. However, in that year, the

incumbent asked the manufacturer for a higher price than agreed per the contract

clause. The incumbent claimed that they were not able to meet the annual price

reduction target due to increased material cost, increased shipping cost, etc. The

buyer had been working with this incumbent for a few years and had lost track of

the true production cost, so she could not figure out if the supplier was telling the

truth. To resolve this issue, the buyer decided to market-test the price by holding an

online auction with several entrant suppliers. A primary concern of the procurement

manager was whether the incumbent supplier should be invited to the auction or not.

On one hand, the buyer can withhold the incumbent and treat him as an out-

side option. The buyer can set an aggressive reserve price to the competing entrant

suppliers, and get price reduction either through the low reserve price or the entrant
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suppliers’ competition. If no one meets the reserve price, the buyer can go back to

the incumbent supplier. In this way, the buyer can make sure that she gets a better

price than (or at least no worse than) the current incumbent price.

On the other hand, the buyer can invite the incumbent to the auction and drum

up competition with one more bidder. However, by doing so, the buyer is exposed

to the risk of paying more than current incumbent price. When the incumbent is

in the auction, he knows the other bidders’ cost information revealed through the

competition. If all entrant suppliers’ costs turn out to be higher than the current

incumbent price, the incumbent obtains proof that the market price is actually higher

than his current price and will persist in raising the price. This puts the buyer in a

weak position to negotiate with the incumbent supplier.

We investigate the tradeoff between the two alternatives: (a) withholding the

incumbent and use him as an outside option; (b) including the incumbent in the

auction. We introduce the model in §4.2. Section 4.3 analyzes an example with one

incumbent and one entrant. In §4.4, we generalize the results to the N-entrant case

with general cost distributions. We discuss the extensions in §4.5 and conclude the

paper in §4.6. Proofs of results are furnished in §4.7.

4.2 Model Description and Preliminaries

We consider a buyer seeking to allocate a production contract to a single supplier.

We assume the buyer has one incumbent supplier who claims that he cannot do better

than price x̄0. Although the buyer does not know the incumbent’s true minimum

acceptable price, she suspects that it could be lower than the incumbent’s claimed

price x̄0. We use random variable X0 to denote the incumbent’s true minimum

acceptable price, which follows distribution F0 with support [x0, x̄0]. The buyer does

not know how low the incumbent’s true minimal acceptable price compared to the

claimed price. If it is indeed much lower (i.e., X0 = x0 << x̄0), the buyer will lose
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money by simply trusting the incumbent and signing a contract with price x̄0.

In such situations, bringing in the market can be a powerful tool for a buyer. We

model this as the buyer running an open-bid reverse auction, which is a common

mechanism used in practice. The buyer hopes that by reopening the contract for bid

she will get a price below current incumbent price from the auction winner. Suppose

the buyer locates N qualified entrant suppliers. Supplier i’s true minimal acceptable

price Xi follows distribution Fi with support [xi, x̄i]. For simplicity, from now on, we

refer to one supplier’s minimum acceptable price as the supplier’s “cost” although it,

of course, includes a necessary profit margin. Following the logic of Proposition 2.1

in Krishna (2009) and other classic auction literature, if supplier i participates in the

open-bid reverse auction, his dominant bidding strategy is to bid down to his true

cost Xi.

The buyer holds the auction including all entrant suppliers. Whether the incum-

bent supplier also should be invited to the auction is the research question we are

going to analyze. We assume the buyer is risk-neutral and her goal is to minimize

the expected contract payment.

4.2.1 Alternative (a): withhold the incumbent as an outside option

The buyer holds the auction only among the entrants. The incumbent does not

know the existence of the auction, so the buyer can always go back to the incumbent

if the auction fails. In other words, the buyer can view the incumbent as an outside

option and accordingly set a reserve price to truncate the entrants’ prices. If some

entrants are interested, the buyer gives the contract to the winning entrant. If no

entrant meets the reserve price, the buyer transacts with the incumbent supplier at

current incumbent price x̄0.

We use Xk:N to denote the kth lowest value of random variables X1, X2, ..., XN

(whose distributions are not necessarily identical). We use µk:N , xk:N , x̄k:N and Fk:N
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to denote its mean, lower bound, upper bound, and distribution, respectively. The

buyer’s expected contract payment with reserve price r is

EPa(r) = x̄0 ·P (X1:N > r) + r ·P (X1:N < r < X2:N) +E[X2:N |X2:N < r]P (X2:N < r)

(4.1)

The first term on the right hand side is the case when no entrant meets the reserve

price and the buyer has to turn back to the incumbent at price x̄0. The second term is

when only one supplier meets the reserve price and the reserve price sets the auction

price. The third term is when more than one supplier meets the reserve price and

suppliers’ competition decides the auction price.

From Equation (4.1), we observe that the buyer’s payment with alternative (a)

depends on only the entrants’ cost distributions (in fact, only F1:N and F2:N matter)

and the incumbent’s cost upper bound (x̄0) but does not depend on the incumbent’s

cost distribution F0. By excluding the incumbent from the auction, the buyer gives

up the opportunity to explore more about the incumbent’s true cost X0. Instead,

the buyer hopes to strike a good deal with one of the entrant suppliers by using

the incumbent’s current price x̄0 to set an aggressively low reserve price, which is a

credible threat to the entrants since the buyer can always turn back to the incumbent.

Intuitively, the reserve price should not be higher than the outside option cost,

i.e., r ≤ x̄0. Moreover, the reserve price is effective only when it is between X1:N and

X2:N : When r ≤ x1:N , no entrant can meet the reserve price, EPa(r) = x̄0; When

r ≥ x̄2:N , the reserve price never binds, EPa(r) = E[X2:N ]. Therefore, we need to

focus only on r ∈ [x1:N ,min(x̄0, x̄2:N)]. The optimal reserve price is

r∗ = arg min
r∈[x1:N ,min(x̄0,x̄2:N )]

EPa(r).

Later when we discuss the buyer’s payment with alternative (a), we use the buyer’s
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expected payment with the optimal reserve price r∗:

EPa = EPa(r
∗) = min

r∈[x1:N ,min(x̄0,x̄2:N )]
EPa(r).

When the entrants’ cost distributions (in fact, only F1:N and F2:N matter) are

C1-continuous, the function EPa(r) is C
1-continuous on interval [x1:N ,min(x̄0, x̄2:N)].

Therefore, the minimal value should be reached either at one of the endpoints or

where the first order condition is satisfied.

Lemma 4.1. When F1:N and F2:N are C1-continuous, the optimal reserve price r∗

either equals to x1:N or min(x̄0, x̄2:N), or satisfies the first order condition

dEPa(r)

dr
|r=r∗ = F1:N(r

∗)− F2:N(r
∗)− (x̄0 − r∗)f1:N(r

∗) = 0. (4.2)

We can use this lemma to solve the optimal reserve price for special cost distri-

butions. Furthermore, when entrants’ costs are i.i.d. with distribution F , we can

simplify Equation (4.2) and have the following lemma.

Lemma 4.2. When N entrants are symmetric and the cost distribution F is C1-

continuous with support [x1, x̄1], the optimal reserve price r∗ either equals to x1 or

min(x̄0, x̄1), or satisfies

r∗ +
F (r∗)

F ′(r∗)
= x̄0. (4.3)

4.2.2 Alternative (b): include the incumbent in the auction

Alternatively, the buyer can invite the incumbent to compete with the N entrants,

i.e., holding an open-bid reverse auction among all N + 1 suppliers with no reserve

price. In this way, the buyer gives the incumbent a chance to retain the business. If

the entrants are very competitive and push the auction price low enough, it is possible

that the incumbent will have to bid below the current incumbent price x̄0 in order to
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win the business. However, the buyer also carries a risk: The auction may reveal that

the market price is actually above the current incumbent price, so the incumbent has

more reasons to ask for an even higher price.

One might wonder why the buyer cannot set a reserve price at the current in-

cumbent price. Suppose the buyer sets this reserve price and only the incumbent

meets it, then the incumbent is going to realize that the buyer has no other options

at this price, and will persist in his demands for a price increase — essentially, the

auction has just proved the incumbent’s point that the current price x̄0 is too low.

While one may imagine many ways a price between the incumbent and buyer could be

reached, our approximation is to model the price as the second-best supplier cost in

the auction. This corresponds to the buyer’s next-best alternative to the incumbent,

and we believe this would be a natural price that the incumbent and the buyer would

settle on. By agreeing to market-test the item (i.e., reopen the contract and hold an

auction), the buyer is implicitly putting credibility on the line that the incumbent

is pricing above market, and once this is disproved the buyer is in a much weaker

position to demand a price concession. Therefore, the reserve price x̄0 is not credible

and the buyer gets the same result as if there is no reserve price.

With alternative (b), the contract price is determined by all suppliers’ competition

and thus the buyer’s expected payment depends on all suppliers’ cost distributions.

We use Xk:N+1 to denote the kth lowest value of random variables X0, X1, X2, ..., XN

(whose distributions are not necessarily identical). The buyer’s expected payment is

EPb = E[X2:N+1] (4.4)

4.3 One Incumbent and One Entrant

Whether to exclude or include the incumbent lies in the tradeoff between setting

a reserve price versus bringing more competition. To build a more concrete intuition,
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we analyze the case with one incumbent and one entrant. The entrant is labeled

Supplier 1, whose cost follows uniform distribution with mean µ1 and support length

1, i.e., X1 ∼ U [µ1 − 0.5, µ1 +0.5], x1 = µ1 − 0.5 and x̄1 = µ1 +0.5. The incumbent is

labeled Supplier 0, whose cost follows uniform distribution with mean µ0 and support

length l, i.e., X0 ∼ U [µ0 − 0.5l, µ0 + 0.5l], x0 = µ0 − 0.5l and x̄0 = µ0 + 0.5l. We

define the mean difference ∆µ = µ0 − µ1. We introduce a parameter z = x̄0 − x1 =

∆µ+ 0.5(l + 1), then X1 ∼ x1 + U [0, 1] and X0 ∼ x1 + U [z − l, z].

Alternative (a): withhold the incumbent as an outside option

The buyer employs a reserve price, r, as a take-it-or-leave-it offer to the entrant.

The entrant will accept this offer if it can cover his cost, i.e., X1 ≤ r. Otherwise, the

entrant turns down the offer and the buyer transacts with the incumbent with price

x̄0. The expected payment with reserve price r is

EPa(r) = r · P (X1 ≤ r) + x̄0 · P (X1 > r)

We can prove that the optimal reserve price is

r∗ = x1 +


0 if z ≤ 0

0.5z if 0 < z < 2

1 if z ≥ 2

(4.5)

Consequently, the expected payment with the optimal reserve price is

EPa = x1 +


z if z ≤ 0

z − 0.25z2 if 0 < z < 2

1 if z ≥ 2

(4.6)
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Alternative (b): include the incumbent in the auction

The incumbent and the entrant compete in an open-bid reverse auction. The

auction price is the maximum of the two suppliers’ costs. We can prove that the

buyer’s expected payment is

EPb = E[X2:2]

= x1 +



0.5 if z ≤ 0

0.5 + z3

6l
if 0 < z < min(l, 1)

0.5 + 1
2l
(z2 − z + 1

3
) if 1 ≤ z ≤ l

0.5 + 1
6l
[z3 − (z − l)3] if l ≤ z ≤ 1

0.5 + 0.5z(z − l) + 1
6l
[(1− z)3 + l3] if max(l, 1) < z < l + 1

z − 0.5l if z ≥ l + 1

(4.7)

4.3.1 How the size of incumbent cost affects the decision

From Equations (4.6) and (4.7), we can see that whether the buyer should withhold

the incumbent as an outside option (alternative: a) or include the incumbent in the

auction (alternative: b) depends on the two parameters, l and z. The interval length

l captures the incumbent’s cost uncertainty since V ar(X0) = l2

12
, and parameter z

captures the size of the incumbent’s cost since E[X0] = E[X1] + z − 0.5l.

We analyze how the size of incumbent cost affects the buyer’s decision by fixing

l = 1. In this case, the incumbent and the entrant have the same amount of cost

uncertainty but with different cost means. Parameter z = ∆µ+ 0.5(l+ 1) = ∆µ+ 1.

The mean difference ∆µ = µ0 − µ1 shows the size of incumbent cost compared to

the entrant cost: ∆µ < 0 means that the incumbent cost tends to be smaller than

the entrant cost (X0 ≤st X1
1); ∆µ > 0 means the incumbent cost tends to be larger

1Random variables A ≤st B means A is stochastically smaller than B.
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than the entrant cost (X0 ≥st X1); |∆µ| captures how different the incumbent cost is

compared to the entrant cost.

We compare the buyer’s expected payment with alternative (a) (given in Equa-

tion 4.6) and that with alternative (b) (given in Equation 4.7).

EPb − EPa =



−∆µ− 0.5 if ∆µ ≤ −1

∆µ3

6
+ 0.75∆µ2 − 1

12
if − 1 < ∆µ < 0

−∆µ3

6
+ 0.75∆µ2 − 1

12
if 0 < ∆µ < 1

∆µ− 0.5 if ∆µ ≥ 1

Proposition 4.1. Suppose the incumbent’s cost interval has the same length as that

of the entrant cost, l = 1. When |∆µ| > 0.347, the buyer prefers to withhold the

incumbent as an outside option. When |∆µ| < 0.347, the buyer prefers to invite the

incumbent to compete with the entrant.

This proposition reveals that the buyer wishes to invite the incumbent to compete

with the entrant only when their costs have similar sizes. When the incumbent cost

is either too high or too low compared to the entrant cost, the buyer would rather

exclude the incumbent and treat him as an outside option. This is because when

the incumbent cost is too low, the entrant cost tends to set the auction price which

can even be higher than the current incumbent cost; when the incumbent cost is too

high, including the incumbent to the auction will not intensify the competition much.

In either case, the buyer would rather withhold the incumbent as an outside option.

Only when the incumbent cost and the entrant cost are of similar sizes, is the buyer

more likely to reach the price concession through suppliers’ competition.

4.3.2 How the uncertainty of incumbent cost affects the decision

We now analyze how the uncertainty of incumbent cost affects the buyer’s decision

by fixing ∆µ = 0. In this case, we view the incumbent cost and the entrant cost as
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having the same size since µ1 = µ0. We change the interval length l to see how

the buyer’s decision changes in the incumbent’s cost uncertainty. Larger l indicates

higher uncertainty since V ar(X0) =
l2

12
.

We compare the buyer’s expected payment with alternative (a) (given in Equa-

tion 4.6) and that with alternative (b) (given in Equation 4.7).

EPb − EPa =


5l2

48
− 3l

8
+ 3

16
if l ≤ 1

l2

16
− l

4
+ 1

16
+ 1

24l
if 1 < l < 3

l
8
+ 1

24l
− 0.5 if l ≥ 3

Proposition 4.2. Suppose the incumbent and the entrant have the same mean (i.e.,

µ0 = µ1). When the length of the incumbent cost interval, l < 0.6 or l > 2 +
√

11
3
(≈

3.915), the buyer prefers to withhold the incumbent as an outside option. When

0.6 < l < 3.915, the buyer prefers to invite the incumbent to compete with the entrant.

Auction is a mechanism to reveal cost information. When the incumbent’s cost

uncertainty is very low, there is little room for the buyer to explore the incumbent

cost, and thus, the buyer benefits little by including the incumbent in the competition.

With one incumbent and only one entrant, when the incumbent’s cost range is very

high (l > 3.915), the buyer is worse off by inviting the incumbent to compete with

the entrant, because with only two bidders, the auction price is set by the maximum

of two bidders’ costs. With very high l, the incumbent cost has a bigger chance of

taking a high value, which sets a high auction price. The buyer would rather withhold

the incumbent as outside option and transact with the entrant instead.

4.3.3 When incumbent’s cost upper bound x̄0 is fixed

In the last section, since the mean of the incumbent cost is fixed, as the cost

uncertainty changes, the cost upper bound also changes, which also contributes to

the buyer’s decision between the two alternatives. To remove this factor and focus on
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the cost uncertainty, we now fix the incumbent cost upper bound x̄0 = x̄1, and change

the interval length l. As l increases, the incumbent cost is stochastically smaller and

has higher uncertainty.

In this case, z = 1. We compare the buyer’s expected payment with alternative

(a) (given in Equation 4.6) and that with alternative (b) (given in Equation 4.7).

EPb − EPa =


l2

6
− l

2
+ 0.25 if l ≤ 1

1
6l
− 0.25 if l > 1

Proposition 4.3. Suppose the incumbent and the entrant have the same cost upper

bound (i.e., x̄0 = x̄1). When l < 3−
√
3

2
(≈ 0.634), the buyer prefers to withhold the

incumbent as an outside option. When l > 0.634, the buyer prefers to invite the

incumbent to compete with the entrant.

As we discuss in §4.2, the buyer’s payment with alternative (a) depends on the

incumbent’s cost upper bound but not the incumbent cost distribution. Therefore,

by fixing the incumbent cost upper bound, the buyer’s payment does not change

even when the interval length changes. On the other hand, with alternative (b), the

auction price is determined by maximal value of the incumbent cost and entrant cost.

When length interval l increases, the incumbent cost is stochastically smaller and

thus the auction price tends to be smaller. Therefore, as l increases, the buyer prefers

more to choose alternative (b): invite the incumbent to compete with the entrant.

4.4 Analysis: N Entrants with General Cost Distributions

Now we consider a more general case withN entrants. Suppliers’ cost distributions

do not have to be uniform and can be any continuous distributions over bounded

intervals. We also allow suppliers’ costs to be asymmetric, i.e., different suppliers can

have different cost distributions. We compare the two alternatives: (a) [withhold the
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incumbent as an outside option] The buyer holds an open-bid reverse auction among

N entrants with an optimally selected reserve price r∗; (b) [include the incumbent in

the auction] The buyer holds an open-bid reverse auction among all N + 1 suppliers

with no reserve price. We want to investigate if the insights we derived in last section

hold in general.

4.4.1 How the size of incumbent cost affects the decision

In the one incumbent and one entrant example, Proposition 4.1 reveals that when

incumbent cost is either relatively low or high (compared to the entrant cost), the

buyer is better off excluding the incumbent rather than inviting him in the auction.

This insight still holds in general case, as shown in the next Theorem.

Theorem 4.1. For any cost distributions F0, F1, ..., FN , if x̄0 ≤ µ1:N or x0 ≥ x̄2:N ,

the buyer prefers to withhold the incumbent as an outside option.

Recall that µ1:N is the mean of the lowest value of X1, X2, ..., XN , and x̄2:N is the

second-lowest upper bound. This theorem gives two threshold points µ1:N and x̄2:N

to show how low and how high the incumbent cost should be so that the buyer will

choose to exclude the incumbent from the auction. For specific distributions, we can

get tighter threshold points.

When the incumbent cost is low, the buyer should not reveal this information

to the incumbent because the incumbent will have more reasons to ask for a higher

price. Therefore, the buyer should not invite the incumbent to the auction, which is

a mechanism to reveal cost information to bidders. The buyer is better off to sign a

contract with the low-cost incumbent, which is equivalent to alternative (a) by setting

a very low reserve price for the entrants.

When the incumbent cost is high, including the incumbent in the auction will not

intensify the competition. Even if the incumbent sees the threat from the entrants,

he cannot lower the price because he needs a price to cover his high cost. However,
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withholding this incumbent will provide the entrants a credible threat and thus get

a better contract price from the entrants (by setting an interior reserve price which

is possible to cut the bid price).

In the other cases when the incumbent cost is in between — not too high, not

too low compared to the entrant cost — the buyer may choose alternative (b) over

alternative (a). The decision depends on the distribution setting.

4.4.2 How the uncertainty of incumbent cost affects the decision

We first analyze the extreme case where the incumbent is telling the truth that

there is indeed no room for him to lower his price, that is, P (X0 = x̄0) = 1.

We can prove that when the buyer knows the incumbent’s exact cost (no matter

how low or how high the incumbent cost is), she always prefers to withhold the

incumbent as an outside option. We formalize this in the following lemma.

Lemma 4.3. For any entrants’ cost distributions F1, F2, ..., FN , if the buyer knows

the incumbent’s exact cost (i.e., V ar(X0) = 0), the buyer prefers to withhold the

incumbent as an outside option.

An auction reveals the bidders’ cost information, so if the buyer already knows

the incumbent’s true cost, there is no need to include the incumbent in the auction.

With alternative (a), if the buyer sets the reserve price just equal to the incumbent

cost, her payment is lower than (or at least no greater than) that with alternative

(b). The buyer can do even better by choosing the optimal reserve price.

Furthermore, we find that when the incumbent cost uncertainty is sufficiently

low, the buyer prefers to withhold the incumbent as an outside option. To remove

the effects of the size of the incumbent cost and focus on the cost uncertainty, we

create a mean-preserve contraction. Suppose for any distribution G, random variable

Y ∼ G with mean µY . Define Yϵ = ϵ(Y − µY ) + µY and its distribution Gϵ is a
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mean-preserve contraction of distribution G.

Theorem 4.2. For any distribution G, there exists ϵG > 0 such that for any ϵ ∈

[0, ϵG], when the incumbent’s cost X0 follows distribution Gϵ, the buyer prefers to

withhold the incumbent as an outside option.

Theorem 4.2 captures Lemma 4.3 by setting ϵ = 0. The reason is similar. Auction

is a mechanism that reveals cost information. When the incumbent cost uncertainty

is low, there is little room for the buyer to explore the incumbent’s true cost through

auction.

Theorems 1 and 2 reveal that the buyer chooses to withhold the incumbent when

the incumbent cost is not comparable to entrant cost and when the incumbent’s cost is

less uncertain. On the other hand, it is possible that the buyer chooses to include the

incumbent in the auction when the incumbent cost is similar in size to the entrant cost

and has a certain amount of uncertainty. We analyze the case when the incumbent

is as competitive as the entrant and has the same amount of uncertainty, i.e., all

suppliers follow the same cost distribution.

Theorem 4.3. [Symmetric Suppliers] When all suppliers’ costs are i.i.d., the

buyer always prefers to hold an auction among all suppliers.

4.4.3 When incumbent’s cost upper bound x̄0 is fixed

When withholding the incumbent, the buyer’s payment depends on the incum-

bent’s cost upper bound (which is the outside option cost) but does not depend on

the incumbent’s cost distribution. Therefore, when the incumbent’s cost upper bound

is fixed and only the distribution changes, the buyer’s payment with alternative (a)

does not change but the payment with alternative (b) does change. We have the

following theorem.
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Theorem 4.4. When the incumbent’s cost upper bound(x̄0) is fixed, as the incum-

bent’s cost distribution F0 becomes stochastically smaller, EPb − EPa is smaller and

thus the buyer prefers more to invite the incumbent to the auction.

As the incumbent cost becomes stochastically smaller, the auction price with

alternative (b) tends to be smaller, so the buyer prefers more to invite the low-cost

incumbent supplier to the auction.

This finding seems to contradict the insights in Section 4.4.1, which indicates

that the buyer prefers to withhold the incumbent if the incumbent cost is very low.

However, in Section 4.4.1, the incumbent cost upper bound is also very low and

the buyer benefits from alternative (a) with a low outside option cost. When the

incumbent’s cost upper bound is fixed, even if the incumbent cost distribution is

stochastically small, the buyer’s payment with alternative (a) is not necessarily low

since it depends on the incumbent’s cost upper bound but not the cost distribution.

4.5 Extension

4.5.1 Alternative (c): withhold the entrants as an outside option

We propose a third alternative: The buyer makes a take-it-or-leave-it offer to

the incumbent first; If the incumbent is not interested in this offer, the buyer then

holds an open-bid reverse auction (with no reserve price) among the N entrants. The

auction is held only among the entrants. However, in contrast to alternative (a), the

outside option is not transacting with the incumbent but holding the auction among

the entrants.

The buyer makes the offer r to the incumbent, then the buyer’s expected payment

is

EPc(r) = E[X2:N ]P (X0 > r) + r · P (X0 < r)

The first term on the right hand side is the case when the incumbent rejects the offer
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and the buyer has to run an auction among the entrants to award the contract. The

second term is when the incumbent accepts the offer, the buyer gives the contract to

the incumbent and does not have to run an auction.

Following similar logic as in §4.2.1, we need to focus only on r ∈ [x0,min(µ2:N , x̄0)].

The optimal offer r∗ either equals to the two endpoints, or satisfies

r∗ +
F0(r

∗)

F ′
0(r

∗)
= µ2:N .

The advantage of using alternative (c) is that the buyer may save the trouble

of running an auction with the entrants, while with alternative (a) or (b), running

an auction (either among only the entrants or among all suppliers) is inevitable.

However, alternative (c) also brings some practical concern: Since the offer given to

the incumbent is below the expected market price (i.e., r∗ < µ2:N), the incumbent

may view this offer as unfair. As the buyer and the incumbent are currently in

a contract, according to some contract clauses, the buyer may not be allowed to

walk away without showing evidence that the incumbent is indeed pricing above the

market.

For now let us suppose the buyer is very powerful and can use this alternative. We

use some numerical examples to illustrate the tradeoff among the three alternatives.

Example: Suppose there are two entrants whose costs both follow uniform dis-

tribution, Xi ∼ U [5, 6] for i = 1, 2. The incumbent’s cost follows uniform distribution

with mean µ0 and support length l, i.e., X0 ∼ U [µ0 − 0.5l, µ0 + 0.5l]. The mean

difference ∆µ = µ0 − µ1 = µ0 − 5.5.

• How the size of incumbent cost affects the decision

We fix the interval length l and only change the mean difference ∆µ. Figure 4.1

shows how the buyer’s payment changes in the mean difference. We observe: When

the incumbent cost is much lower than the entrant costs, running an auction among all
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Figure 4.1: Xi ∼ U [5, 6] for i = 1, 2, X0 ∼ U [µ0 − 0.5l, µ0 +0.5l], ∆µ = µ0 − 5.5. Fix
the length of the incumbent cost interval. Panel (a): l = 0.5; Panel (b):
l = 0.8; Panel (c): l = 1; Panel (d): l = 2.

suppliers is not preferred, because the buyer would rather transact with the incumbent

directly than have the incumbent know (through auction) that he is pricing below

the market price; When the incumbent cost is much higher than the entrant costs,

all three alternatives result in the same expected payment, because a very high-cost

incumbent can neither affect the fair market price nor serve as a credible threat to

push the entrants to further lower the price.

• How the uncertainty of incumbent cost affects the decision

We fix the mean of the incumbent cost and change only the interval length l.

Figure 4.2 shows how the buyer’s payment changes in the cost uncertainty while

the mean is fixed. In Panel (a), the incumbent cost is very low compared to the
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entrant (∆µ = −0.7), so the buyer prefers to directly negotiate with the incumbent

and withhold the entrants as an outside option. In the other panels, we observe:

When the incumbent cost uncertainty is very low, the buyer prefers to withhold the

incumbent as an outside option; When the incumbent has moderate cost uncertainty,

the buyer prefers to include the incumbent in the auction; When the incumbent

cost uncertainty is very high, the buyer prefers to withhold the entrants as an outside

option. This is because when the incumbent and the entrants have similar amounts of

cost uncertainty, the competition reveals the most information and the buyer should

include all suppliers to the auction. If the buyer chooses to withhold the incumbent,

the payment depends only on the incumbent cost upper bound, regardless of the

possibility that the incumbent cost can be low, so alternative (a) is more effective

when the incumbent cost uncertainty is low. If the buyer chooses to withhold the

entrants and sets a reserve price for the incumbent, it is more effective when the

incumbent cost uncertainty is high so that there is more room for the reserve price

to truncate the incumbent price.

• When incumbent’s cost upper bound x̄0 is fixed

We fix the incumbent cost upper bound and change only the interval length l.

Figure 4.2 shows how the buyer’s payment changes in the interval length while the

interval upper bound is fixed. We can see that the buyer’s payment when withholding

the incumbent is constant, because it depends only on the cost upper bound not

the incumbent cost distribution. When the interval length is high, the incumbent

cost has a high chance of taking a small value. In this case, the buyer prefers to

directly negotiate with the incumbent, using entrants as an outside option rather

than including the incumbent in the auction so that the incumbent knows that he is

already pricing below the fair market price.
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Figure 4.2: Xi ∼ U [5, 6] for i = 1, 2, X0 ∼ U [µ0 − 0.5l, µ0 + 0.5l], ∆µ = µ0 − 5.5.
Fix the mean of the incumbent cost. Panel (a): ∆µ = −0.7; Panel (b):
∆µ = −0.2; Panel (c): ∆µ = 0; Panel (d): ∆µ = 0.2.
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Figure 4.3: Xi ∼ U [5, 6] for i = 1, 2, X0 ∼ U [x̄0 − l, x̄0]. Fix the incumbent cost
upper bound. Panel (a): x̄0 = 6; Panel (b): x̄0 = 7.

114



4.5.2 Others approaches: withhold a subset of suppliers

In fact, withholding bidder(s) would be possible whenever there is more than one

supplier. We can think about a more general problem with total M suppliers —

the buyer can withhold some suppliers and run an auction with the rest. There is

no incumbent or entrant in this general model setting, and suppliers are labeled as

supplier 1, 2, ...,M .

We can build such a recursive version: Denote S0 = {1, 2, ...,M}, set k = 1;

The buyer withholds suppliers in Sk ⊂ Sk−1, and runs an auction with suppliers in

Sk−1 \ Sk with reserve price rk; If auction fails, then k = k + 1 and repeat the last

step.

Algorithm for the general case

We use V (S) to denote the minimum expected payment that a buyer can make

with suppliers in set S. We define Xk:T as the kth lowest cost for suppliers in set T .

When T only contains one supplier i, define X2:T = x̄i.

For set S which contains only one supplier i, V (S) = x̄i. When |S| ≥ 2,

V (S) = min
∅≠S′⊂S,r

{E[X2:S], V (S ′)P (r < X1:S\S′)

+ E[min(r,X2:S\S′)|r > X1:S\S′ ]P (r > X1:S\S′)}

We can solve this by backward induction. First solve V (S) for any |S| = 2, then

solve for any |S| = 3, |S| = 4,..., and finally solve V (S0) where S0 = {1, 2, ...,M}.

In this process, we can also record how to reach the minimum value, i.e., what the

optimal reserve prices are and which supplier(s) to withhold.

Algorithm when suppliers’ costs are ordered

Proposition 4.4. If Xi ≥st Xj and x̄i = x̄j, then the buyer prefers to withhold

supplier i rather than supplier j.
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This result allows us to reduce the algorithm complexity if all suppliers have the

same cost upper bound (x̄i = x̄ for any i) and can be ordered X1 ≥st X2 ≥st ... ≥st

XM . We use V (m) to denote the minimum expected payment that a buyer can make

with the first m suppliers. Define V (1) = x̄1.

V (m) = min
0<i<m,r

{E[X2:m], V (i)P (r < X1:{i+1,...,m})

+ E[min(r,X2:{i+1,...,m})|r > X1:{i+1,...,m}]P (r > X1:{i+1,...,m})}

We can solve this by backward induction. First solve V (2), then V (3), V (4),...,

and finally V (M). In this process, we can record how to reach the minimum value,

i.e., what the optimal reserve prices are and which supplier(s) to withhold.

4.6 Conclusions

In this essay, we ask whether a buyer should exclude the incumbent supplier from

the auction and use him as an outside option or invite the incumbent supplier to

compete with other suppliers. On one hand, when withholding the incumbent as an

outside option, the buyer can set an aggressive reserve price for the entrant suppliers

but the auction itself is less fierce with one fewer bidder. On the other hand, when

including the incumbent in the auction, the buyer drums up competition with one

more bidder, but is exposed to the risk of paying more than current incumbent price.

We find that the buyer’s decision depends on the size of the incumbent cost. When

the incumbent cost is expected to be substantially different from the entrants’ (much

lower or much higher), withholding the incumbent supplier is the better choice. This

is because if the incumbent has very low cost, including him in the auction proves the

incumbent is pricing below the market price and the incumbent has more reasons to

persist in raising the price. If the incumbent has very high cost, including him in the

auction will not intensify the competition, so the buyer would rather withhold him
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as an outside option to set a reserve price and push the entrants to lower the price.

The buyer’s decision also depends on the incumbent’s cost uncertainty. An auc-

tion serves as a way to reveal cost information. Therefore, when the incumbent’s cost

uncertainty is very low, there is little room for the auction to take effect in explor-

ing the incumbent cost information, so the buyer will not benefit from inviting the

incumbent to the auction. When the incumbent and the entrants have similar cost

uncertainty (for example, as shown in Theorem 4.3, when all suppliers are symmetric),

an auction among all suppliers is more effective. We also consider another alternative

in Section 4.5.1: withholding the entrants as an outside option. This alternative is

more effective when the incumbent cost uncertainty is high, since there is more room

for the reserve price to truncate the incumbent price.

In this essay, we study approaches that are very natural and would be familiar to

suppliers in practice. Of course, one could imagine other approaches which may also

work in certain circumstances. For example, the buyer could hold an auction with no

reserve price among all entrants; then based on the auction price, the buyer makes

a take-it-or-leave-it offer to the winning entrant; if the winning entrant rejects this

offer, the buyer turns back to the incumbent. This approach works like alternative

(a) but with a more informed reserve price, which makes withholding the incumbent

even more attractive. However, it is questionable whether the buyer can apply this

approach in practice, since the buyer needs to persuade the entrant suppliers to

participate in an auction where the winner may not get the contract. The buyer may

use this approach when the entrant suppliers are very hungry for new business.

Another possible approach is that the buyer could hold an auction among all

entrants with a reserve price equal to the current incumbent price, and then take the

winner of this auction (if there is one) to compete with the incumbent in the second

round auction. This approach would have the same result as alternative (b) with a

reserve price equal to the current incumbent price. The limitation of this approach is
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similar to the former one: It requires the buyer to persuade the entrants to compete

in an initial auction where nothing is awarded before being allowed to compete in

a second auction with a new bidder.We leave the analysis about these alternative

approaches to future work.

4.7 Proofs

Proof of Lemma 4.1

We use fk:N to denote the density function of Xk:N . Recall Equation (4.1),

EPa(r) = x̄0 · P (X1:N > r) + r · P (X1:N < r < X2:N) + E[X2:N |X2:N < r]P (X2:N < r)

= x̄0 · [1− F1:N(r)] + r[F1:N(r)− F2:N(r)] +

r∫
x2:N

t · f2:N(t)dt.

Therefore,

dEPa(r)

dr
= −x̄0 · f1:N(r) + r[f1:N(r)− f2:N(r)] + [F1:N(r)− F2:N(r)] + r · f2:N(r)

= F1:N(r)− F2:N(r)− (x̄0 − r)f1:N(r)

Proof of Lemma 4.2

When X1, X2, ..., XN are i.i.d. with distribution F and density function f , we have

f1:N(r) = Nf(r)(1− F (r))N−1,

F1:N(r)− F2:N(r) = P (X1:N < r < X2:N = NF (r)(1− F (r))N−1.
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Therefore, Equation (4.2)

dEPa(r)

dr
|r=r∗ = F1:N(r

∗)− F2:N(r
∗)− (x̄0 − r∗)f1:N(r

∗) = 0

= N(1− F (r∗))N−1(F (r∗)− (x̄0 − r∗)f(r∗))

Since 1− F (r) ̸= 0 and f(r) ̸= 0 when r < x̄1, we have Equation (4.3).

Proof of Equation (4.5), (4.6) and (4.7)

Since X1 ∼ x1 + U [0, 1] and X0 ∼ x1 + U [z − l, z], the optimal reserve price

(r∗) and buyer’s payments (EPa and EPb) with x1 = C equal to those with x1 = 0

plus C, respectively. Therefore, for simplicity, we let x1 = 0, then X1 ∼ U [0, 1] and

X0 ∼ U [z − l, z].

Proof of Equation (4.5): We only need to focus on r ∈ [0, 1]. The payment with

reserve price r ∈ [0, 1] is

EPa(r) = r · P (X1 ≤ r) + z · P (X1 > r) = r2 + z(1− r). (4.8)

The first order condition is

0 =
dEPa(r)

dr
= 2r − z ⇐⇒ r = 0.5z.

Therefore, the optimal reserve price is

r∗ =


0 if z ≤ 0

0.5z if 0 < z < 2

1 if z ≥ 2

(4.9)

Proof of Equation (4.6): We replace r in Equation (4.8) with r∗ given in Equa-

tion (4.9).
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Proof of Equation (4.7): For 0 < x < 1, define

h(x) = E[X2:2|X0 = x] = xP (X1 < x)+E[X1|X1 > x]P (X1 > x) = x2+(
x+ 1

2
)(1−x)

H(x) =

x∫
0

h(t)dt =
x

2
+
x3

6

The buyer’s payment is

EPb =E[X2:2]

=E[X1]P (X0 < 0) + E[X2:2|0 < X0 < 1]P (0 < X0 < 1)

+ E[X0|X0 > 1]P (X0 > 1)

=0.5
[min(0, z)−min(0, z − l)]

l

+
1

l
{H[max(min(1, z), 0)]−H[min(max(0, z − l), 1)]}

+ 0.5[max(1, z) + max(1, z − l)]
[max(1, z)−max(1, z − l)]

l

=



0.5 if z ≤ 0

0.5( l−z
l
) + 1

l
(H(z)−H(0)) if 0 < z < min(l, 1)

0.5( l−z
l
) + 1

l
(H(1)−H(0)) + 0.5(1 + z) z−1

l
if 1 ≤ z ≤ l

1
l
[H(z)−H(z − l)] if l ≤ z ≤ 1

1
l
[H(1)−H(z − l)] + 0.5(1 + z) z−1

l
if max(l, 1) < z < l + 1

0.5(2z − l) if z ≥ l + 1
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Proof of Proposition 4.1

We simplify Equation (4.7) minus Equation (4.6) when l = 1 and z = ∆µ+ 1.

EPb − EPa =



−∆µ− 0.5 if ∆µ ≤ −1

∆µ3

6
+ 0.75∆µ2 − 1

12
if − 1 < ∆µ < 0

−∆µ3

6
+ 0.75∆µ2 − 1

12
if 0 < ∆µ < 1

∆µ− 0.5 if ∆µ ≥ 1

=

 − |∆µ|3
6

+ 0.75|∆µ|2 − 1
12

if |∆µ| < 1

|∆µ| − 0.5 > 0 if |∆µ| ≥ 1

We define g(x) = −x3

6
+ 0.75x2 − 1

12
. Function g(x) has three roots x = −0.322,

0.347, 4.475. Hence, g(x) > 0 when x ∈ (0.347, 1), and g(x) < 0 when x ∈ (0, 0.347).

Therefore, EPb−EPa > 0 when |∆µ| > 0.347 and EPb−EPa < 0 when |∆µ| < 0.347.

Proof of Proposition 4.2

We simplify Equation (4.7) minus Equation (4.6) when z = 0.5(l + 1).

EPb − EPa =


5l2

48
− 3l

8
+ 3

16
if l ≤ 1

l2

16
− l

4
+ 1

16
+ 1

24l
if 1 < l < 3

l
8
+ 1

24l
− 0.5 if l ≥ 3

We define g1(l) =
5l2

48
− 3l

8
+ 3

16
, g2(l) =

l2

16
− l

4
+ 1

16
+ 1

24l
and g3(l) =

l
8
+ 1

24l
− 0.5.

Function g1(l) has two roots l = 0.6, 3, so g1(l) > 0 when l ∈ (0, 0.6) and g1(l) < 0

when l ∈ (0.6, 1). Function g2(l) = ( l
4
− 0.5)2 − 3

16
+ 1

24l
< − 1

12
< 0 when l ∈ (1, 3).

Also, g′3(l) =
1
8
− 1

24l2
> 0 when l ≥ 3 and g3(l) has root l = 3.915. Hence, g3(l) < 0

when 3 ≤ l < 3.915 and g3(l) > 0 when l > 3.915. To summarize, EPb − EPa > 0

when l < 0.6 or l > 3.915, and EPb − EPa < 0 when 0.6 < l < 3.915.
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Proof of Proposition 4.3

We simplify Equation (4.7) minus Equation (4.6) when z = 1.

EPb − EPa =


l2

6
− l

2
+ 0.25 if l ≤ 1

1
6l
− 0.25 if l > 1

Since l2

6
− l

2
+ 0.25 has two roots 3±

√
3

2
, it is greater than zero when l < 3−

√
3

2
and

lower than zero when 3−
√
3

2
< l < 1. Also, 1

6l
− 0.25 < 0 when l > 1. Therefore,

EPb > EPa when l < 3−
√
3

2
and EPb < EPa when l > 3−

√
3

2
.

Proof of Theorem 4.1

The second lowest of all N + 1 suppliers’ cost is no less than the lowest of N

entrants’ costs, so X2:N+1 ≥st X1:N and thus EPb = E[X2:N+1] ≥ µ1:N . Since x̄0 is

the outside option cost, EPa ≤ x̄0.

When x̄0 ≤ µ1:N , EPa ≤ x̄0 ≤ µ1:N ≤ EPb.

When x0 ≥ x̄2:N , the incumbent’s cost is no less than the second lowest entrant

cost, so X2:N+1 = X2:N and thus EPb = E[X2:N+1] = µ2:N . Also, EPa ≤ EPa(x0) =

µ2:N . Hence, EPa ≤ EPb.

Proof of Lemma 4.3

For alternative (a), if we set reserve price equaling to the incumbent’s costX0 = x0,

then recall Formula (4.1),

EPa(x0) =x0 · P (X1:N > x0) + x0 · P (X1:N < x0 < X2:N)

+ E[X2:N |X2:N < x0]P (X2:N < x0)

=x0 · P (X2:N > x0) + E[X2:N |X2:N < x0]P (X2:N < x0)
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With alternative (b), the buyer’s payment

EPb =E[X2:N+1]

=E[X1:N |X1:N > x0]P (X1:N > x0) + x0 · P (X1:N < x0 < X2:N)

+ E[X2:N |X2:N < x0]P (X2:N < x0)

≥x0 · P (X2:N > x0) + E[X2:N |X2:N < x0]P (X2:N < x0)

=EPa(x0)

Therefore, EPb ≥ EPa(x0) ≥ EPa.

Proof of Theorem 4.2

If µY > x̄2:N , we can set ϵG = µY − x̄2:N , then for any ϵ ∈ [0, ϵG] and X0 ∼ Gϵ,

x0 = µY − ϵ ≥ x̄2:N . According to Theorem 4.1, EPa ≤ EPb.

Define H(ϵ) = EPb − EPa. When all random variables are continuous, H(ϵ)

is continuous. If we can prove H(0) > 0 when µY ≤ x̄2:N , then according to the

definition of continuous function, such ϵG exists and the proof is complete.

We considerX0 ∼ G0 (i.e., P (X0 = µY ) = 1). When µY ≤ x̄2:N ,
dEPa(r)

dr
|r=µY − < 0.

Hence EPa < EPa(µY ) ≤ EPb.

Proof of Theorem 4.3

The optimal mechanism with symmetric suppliers is to hold an open-bid reverse

auction among all suppliers. The optimal mechanism dominates other mechanisms

including alternative (a).

Proof of Theorem 4.4

Buyer’s payment with alternative (a) EPa does not change. As X0 becomes

stochastically smaller, X2:N+1 becomes stochastically smaller, so the buyer’s payment
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with alternative (b) EPb = E[X2:N+1] is smaller. The proof is complete.

Proof of Proposition 4.4

When x̄i = x̄j, withholding supplier i and withholding supplier j have the same

outside option cost. However, since Xi ≤st Xj, the auction price when withholding

supplier j (supplier i participates in the auction) is stochastically smaller than that

with withholding supplier i (supplier j participates in the auction). The proof is

complete.
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CHAPTER 5

Conclusion

This dissertation research consists of three essays examining different aspects in

competitive bid procurement.

The first essay explores the value of cost modeling in competitive bid procurement,

to understand if, how and when cost modeling should be deployed. The answer is

not obvious, since the bidding competition itself acts as a tool to discover suppliers’

cost information — suppliers may have to bid close to their minimum acceptable

price in order to win. I show that although bid competition sometimes duplicates the

information gleaned by cost modeling, the latter can still be beneficial when it helps

the buyer set an effective reserve price. Then I analyze how the buyer can gain the

most benefit through cost modeling. Specifically, I characterize which supplier(s) to

learn about, which portion(s) of the costs to learn, and how deeply and broadly the

buyer should learn for general supply base topologies.

Many requests for quotes (RFQs) issued by firms can be flawed due to errors of

omission and misspecification, which triggers redesign and associated supplier windfall

profit. The second essay studies the problem of error-prone RFQ. Surprisingly, I find

that RFQ error encourages suppliers to submit lower bids with anticipation of future

windfall profit due to redesign. I also find that supplier disparity in error-detecting

expertise generally hurts the buyer. Furthermore, I propose a creative approach, “pre-
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pay”, to stem supplier windfall profit; under this new mechanism, the buyer can offer

a small bounty to induce knowledgeable suppliers to divulge the existence of RFQ

error. This pre-pay and error-bounty approach helps avoiding the cost of redesign,

creates a win-win solution for both parties, and makes the entire supply chain more

efficient.

In the third essay, I analyze a buyer firm’s decision about whether to invite an

incumbent supplier to compete with entrant suppliers. On one hand, when excluding

the incumbent from auction and use him as an outside option, the buyer can set

an aggressive reserve price to truncate the entrants’ prices but the auction is less

fierce with one fewer bidder; On the other hand, when including the incumbent in

the auction, the buyer drums up competition with one more bidder but is exposed to

the risk of paying more than current incumbent price. I find that the buyer’s decision

depends on the incumbent’s and entrants’ cost distributions: When the incumbent’s

cost is expected to be substantially different from the entrants’ (either much lower

or much higher) and has low uncertainty, withholding the incumbent supplier is the

better option; Conversely, when the incumbent’s cost is comparable to the entrants’

costs and has similar amount of uncertainty, the buyer prefers inviting the incumbent

to the auction.
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