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CHAPTER I

Introduction

1.1 Background review on high power pulses in fiber lasers

Fiber lasers use doped optical fibers as gain media for light generation. Although
the gain parameter may be not as high as in solid-state lasers, the unparalleled ad-
vantage of a fiber laser is that the gain media length can be kilometers long without
occupying too much space since fibers can be coiled and the light is well shielded
inside fibers. It also avoids any requirement for alignment and thus becomes possi-
ble to scale up to a large size array. Other highlights of fiber lasers include a very
high surface-to-volume ratio for thermal management, good diffraction-limited beam
quality for single-mode lasers, and superior pumping efficiency to operate with small
pump powers [1-3], which attract researchers with many possible potential applica-
tions. In the recent decade, there are rapid developments on high-power fiber ampli-
fiers and lasers with output powers on the order of 100 Watts [4-8]. On the other
hand, mode-locked laser pulses with both high peak intensities and high energies are
extremely important for a number of emerging applications in multiple disciplines,
such as micro-machining, atom interactions, cellular dynamics, and medical surgery
[3, 9]. Their high requirement on laser average powers, pulse peak intensities and
pulse energies exceeds the capability of most current fiber lasers [10, 11].

The performance of a fiber laser is limited by nonlinear effects such as stimulated



Raman scattering (SRS), stimulated Brillouin scattering (SBS), self-phase modulation
(SPM), and four-wave mixing (FWM) [2, 12]. Although these phenomena may be
beneficial in some situations, e.g. soliton/dissipative soliton generation [13-19], self-
similar propagation [20-23], and Raman lasers [24-26], they prevent fiber lasers from
achieving high peak powers. The SPM may also cause possible wave-breaking [27-30]
and affect mode-locked pulse quality in nonlinear fibers with high peak intensity. A
large-mode-area fiber distributes the power in a larger cross section and hence reduces
the light intensities per area, avoiding some unwanted nonlinear effects. Nevertheless,
a too large fiber core diameter introduces many higher order modes while in many
practical applications we need single mode fiber for a high quality of beams.

There are mainly three types of techniques to overcome these bottlenecks for fiber
lasers. The first one is suppressing some unnecessary nonlinear effects such as SBS.
SBS is one of the phenomena caused by the electrostrictive nonlinearity [2, 12]. The
acoustic phonons get generated out of the optical wave in the fiber laser, and thus
creating a grating that modulates the optical index [31, 32]. The photons lose a
small amount of energy and get red-shifted after backward scattering. The coupling
of these two antiparallel propagating modes further increases the reflection from the
index grating. Above a certain threshold, such acoustic grating by SBS reflects most
of the incident power, especially for long fibers. So far, transverse variations of the
fiber acoustic indices [33-35] or longitudinal temperature variations [36, 37| have been
proven to be effective in suppressing SBS effect.

The second approach is building a fiber laser array and coherently combining
the output beams from each single fiber [38-46]. One more restriction in a fiber
laser array, however, is that we have to make certain these coherent beams will be
in phase for constructive interference, not canceling each other. The methods in
building such an array of fiber lasers are mainly active beam combining with extra

control circuits and signal processors, and passive beam combining where the light



itself can be stabilized at the status with maximal output powers and minimal losses
without any external controls. Compared with active devices controlling the signal
phase, passive devices usually use a composite Michelson interferometric resonator
to interfere the longitudinal modes from each channel. The advantages of passive
beam combining include simplifying the cavity complexity, reducing the size of the
structure for integration, and saving the economic cost. Its major difficulty is to
maintain a perfect phase relationship between all channels, which directly relates to
the combining efficiency.

Chirped pulse amplification with stretching and compressing is the third approach
and it has been already applied widely [47-49]. By chirping the pulse in dispersive
fibers, we can temporally separate its spectral components and stretch its time dura-
tion by a large factor, without changing too much the total energy it carries. Thus
the pulse peak intensity decreases by the same amount and some unwanted nonlinear
effects can be therefore circumvented in fibers. After exiting the fiber, the pulse gets
compressed again by compensating the dispersion with a prism or a pair of gratings
for example. As a result, near bandwidth-limited pulses are obtained with the high
peak pulse intensity restored. Such technique is well known and broadly used in
applications.

Another drawback for fiber lasers is its limited pump absorption per unit length
and limited gain, making it difficult to realize very short resonators for mode-locked
lasers with gigahertz-level pulse repetition rate. Multi-gigahertz pulse trains with
short pulses and low amplitude noise have many potential applications in high-
capacity telecommunication systems, photonic switching devices, electro-optic sam-
pling and for clocking and synchronizing [9, 50-52]. To enhance the repetition rate for
a fiber laser, there are at least three conventional methods including shortening the
cavity length, harmonic mode locking [3, 53-58], and external Fabry-Pérot cavities

[59-61]. It is seen that coherent beam combining provides one more option towards



the high repetition rate without extra devices or designs. The nature of coherent
beam combining determines a high repetition rate which is also easy to tune, by
simply adjusting the length difference among channels [62-64].

In order to navigate further toward the goal of diffraction-limited high power
pulses from a fiber laser, all these three types of solutions need be used together. In
this thesis, we focus on the passive coherent beam combining in a fiber laser array and
show that simultaneous passive coherent beam combining and mode locking are very
helpful in achieving a pulse packet, with both high peak pulse intensities and high
repetition rate. To further increase the pulse energy as well as make it more robust
and resistant to wave breaking, pulse trains of dissipative solitons are produced in
normal dispersion regime. Last but not the least, directional couplers, the key part
used for coherent beam combining, are explored with its unique physics principle:

light wave tunneling through an optical barrier.

1.2 Thesis Outline

In Chapter II, we introduce our dynamic model for simultaneously passive coherent
beam combining and mode locking based on Nonlinear Schrodinger equation (NLSE).
Models for different cavity resonators and different saturable absorbers are presented,
in addition to NLSE and gain saturation equation for our simulation model. To check
the validity of the model, experiments are reproduced numerically with our model and
similar results are achieved. With a comparison among cw operated coherent beam
combining, mode-locked single fiber laser, and mode-locked and beam combined fiber
laser array, it is concluded that the coherent beam combining scales up the power from
a single channel, and mode locking produces short pulses for a high peak power at the
same time. Nonlinearity perturbs the mode-locked pulses by self-phase modulation
(SPM) and is the cause for possible wave breaking.

Because the fibers of the array have different lengths, each fiber has its own lon-



gitudinal modes and there is spectral beating in the beam combined fiber array. The
modes nearby the common longitudinal modes, named as array modes, are enhanced
and almost all other modes disappear. The array mode separation is inversely pro-
portional to the fiber length difference. In the fiber laser array, it is the array modes
that determine the output to be a pulse packet instead of a single pulse. The den-
sity of modes decreases quickly with increasing of the number of combined channels.
However, a nice shaped pulse packet with a uniform pulse separation is still possible
when the lengths of all channels are commensurate.

In Chapter III, the lasing wavelength is switched to normal dispersion region,
in order to generate dissipative solitons which exist in non-conservative environment.
With both amplitude and phase balances, dissipative solitons in normal dispersion are
more stable and robust to wave breaking than conventional optical solitons. It should
be noted that dissipative solitons can also exist in anomalous dispersion regime, how-
ever, the chirp in normal dispersion makes the pulse more stable until the nonlinear
phase overcomes the chirp bandwidth [65, 66]. Amplitude modulations such as sat-
urable absorption and spectral filtering in the cavity are important for dissipative
soliton generation with normal dispersion. Cubic-quintic complex Ginzburg-Landau
equation (CQGLE) is frequently used to model the dissipative pulses in a single fiber
laser, however, this model is not very suitable for fiber laser arrays with only one
lumped saturable absorber to mode lock all channels. Here we use our generalized
NLSE model by taking all these effects into consideration for the dissipative soliton
simulation, and get numerical results similar to the analytical solution by CQGLE.

With coherent beam combining, the power is scaled up and we are able to get
a stable pulse train of dissipative solitons that is robust to wave breaking. As an
advantage to several conventional methods in increasing the pulse repetition rate by
additional control or devices, passive coherent beam combining can naturally lead to

a frequency comb because of the array modes, and hence produce a pulse train whose



repetition rate is high and tunable by changing the fiber length difference. A pulse
train with uniform pulse interval can be generated from beam combined dissipative
solitons. Incommensurate fiber lengths result in an amplitude modulation on the
pulse train, which otherwise has a uniform amplitude with commensurate lengths.

Chapter IV provides a deep insight to directional couplers, the key device used in
passive coherent beam combining. By putting two parallel fibers together in a very
short distance, the mode power inside each fiber may exchange and couple to the
other. Therefore the transform matrix can be derived out of coupled-mode theory.
On the other hand, the fundamental physics of optical coupling is frustrated internal
total reflection (FTIR). Total internal reflection (TIR) confines the light inside a
fiber core and the wave becomes evanescent outside the core. However, TIR can
be frustrated when another fiber core is so close that the evanescent wave has not
been completely decayed, and therefore the power can tunnel through the barrier to
the other core. It is seen that although an evanescent wave has no time-averaged
energy flux along its decaying direction, the power transportation is carried by the
interference of two evanescent eigenmodes across the barrier.

In the tunneling dynamics, the group delay time between a pulse peak entering
and exiting the barrier through tunneling is an interesting topic. It appears “su-
perluminal” since it saturates with the increase of tunneling distance as Hartman
effect. During tunneling process, the incident energy first gets temporarily stored
either as evanescent waves in the barrier, or as the self-interference between incident
and reflected waves, and then gets released as reflected or transmitted waves. With
the concept of the dwell time inside barrier and the self-interference time in front of
the barrier, the physics of a group delay is revealed as a sum of these two time, i.e.
the time for total energy storage before releasing. On the longitudinal direction of
tunneling, the group delay is not actually related to any velocities of propagation.

During the group delay time, the energy’s release position also gets laterally shifted



from its entrance to the barrier. Such lateral displacement is named as Goos-Hanchen
shift. Besides the stationary phase method, we calculate it by energy flux method,
with better insights on physical meaning. Such shift is divided into two parts, the
barrier’s energy dwell time multiplied by its lateral energy velocity, and the self-
interference energy storage time multiplied by its lateral energy velocity. Unlike the
longitudinal tunneling process, the Goos-Hanchen shift is caused by energy propaga-
tion. Here we prove both energy velocities are causal and hence it does not violate
special relativity.

Chapter 5 provides the brief summary of overall work and some advice for future

work.



CHAPTER II

Mode-Locking in Passive Coherent Beam

Combining

2.1 Introduction

Passive coherent beam combining is under intensive investigation as a means of
scaling up the output power of fiber lasers [39, 42, 43, 46, 67, 68]. One common ap-
proach is to use 50:50 couplers to combine fiber amplifiers pair-wise in a tree structure
to form an interferometric composite cavity. The coherently phased output is the re-
sult of the system selecting the modes that minimize the overall loss in the composite
cavity. To date, most of the beam combining experiments based on this approach
have used cw lasers and there is very little data on their dynamic behavior under
Q-switching [69] or mode locking [62] conditions. Since mode locking enables the
creation of high-peak power short pulses from a single fiber laser [70], the possibility
of further power scaling through passive combining of several mode-locked lasers is
worthy of investigation.

In this chapter we present a detailed dynamical model of passive coherent beam
combining in the presence of a saturable absorber. Our results show, in agreement
with experiment [62], that the presence of a saturable absorber leads to the generation

of packets of mode-locked pulses from the coherently-combined lasers. Within each



packet the periodicity of the pulse train can be controlled by varying the length
difference between the fibers. Repetition rates of hundreds of gigahertz are readily
obtained for short enough length differences. The combining efficiency is high for two
lasers but does drop as the number of lasers is increased, a phenomenon also seen in
cw beam-combining [46, 67]. Our work represents, to the best of our knowledge, the

first modeling study of simultaneous beam combining and mode locking of lasers.

2.2 Background on passive coherent beam combining

Along the path of developing high power with fiber lasers, the nonlinearity asso-
ciated with the third-order susceptibility x® limits the power output from a fiber
laser [2, 12]. When the power carried by a fiber is high, the strong optical field
interacts with fiber materials and induces a nonlinear polarization field leading to
some nonlinear optical phenomena such as self-phase modulation (SPM), stimulated
Raman scattering (SRS), stimulated Brillouin scattering (SBS) and four-wave mixing
(FWM). Because of the existence of these nonlinear effects, the power carried by a
single fiber laser is limited and it is difficult to reach higher power outputs from a
single fiber laser. In order to solve the bottleneck to output high powers, there is
much current interest in passive coherent beam combining in laser arrays, adding up
the output power from multiple fiber amplifiers.

To beam combine the fields of several amplifying fibers into a high power and
diffraction-limited beam, discrete 50:50 directional couplers are used to create an in-
terferometric system of coupled amplifier pairs. For a coherent combining, it requires
that the phases from two input channels of the directional coupler to be in a partic-
ular relationship, so that there can be a constructive interference at one output port
and a destructive interference at the other output port. Then most power from two
input channels get combined together coherently and the loss is reduced to minimum

[40, 71-76]. The combining is passive because the combining is done passively by



50:50 directional couplers. Beginning with spontaneous emission, the laser system
stabilizes to the state with the minimal loss after many roundtrips. The phase rela-
tionship between two channels is automatically selected and maintained by the laser
system, without the need for active control. Passive coherent beam combining scales

up the output power from single fiber lasers into a fiber laser array.

2.2.1 Array structures of fiber laser cavities

For a fiber laser array, there are several different designs on the cavity resonator,
including Michelson bidirectional cavity and Mach-Zehnder unidirectional cavity.

An example of a bidirectional Michelson cavity is shown in Fig. 2.1. One direc-
tional coupler is used to combine two channels and it is a Michelson interferometer
structure except that both arms are replaced by rare-earth-doped fibers. In such
structure, the light wave bounces forth and back in the cavity as bidirectional. The
50:50 directional coupler acts like a beam splitter. The two input arms of the direc-
tional coupler are connected to two fiber channels and one of the two output arms is
connected with a partial reflector to provide feedback to the system. The other output
arm connects with an angle cleave to leak any power through it. The continuous-wave

pump beams are launched into each active fiber by a wavelength division multiplexer

(WDM).
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Figure 2.1: The structure of a Michelson bidirectional cavity.

Besides bidirectional cavities, there are unidirectional ones where light travels

only in one-way inside the ring cavity. This is guaranteed by an optical isolator in the
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roundtrip path as shown in Fig. 2.2. In this case, two directional couplers are used
at both ends of the cavity. It simulates a Mach-Zehnder interferometer, which has
advantage that each of the well separated light paths is traversed only once compared
with the bidirectional Michelson interferometer. In such unidirectional ring cavities,
although there is one more 50:50 directional coupler, the light goes in one-way and
the possibility of interference between the forward and backward going wave has
been ruled out, hence the modeling is simpler. On the other hand, a careful dynamic
analysis from Ref. [45] shows that such interference effect even in a directional cavity
is very small, because the magnitudes of forward and backward going lights are not
in the same order for a most common 4% partial reflection. So no matter whether we
use bidirectional Michelson cavities or unidirectional Mach-Zehnder cavities, it does
not affect the validity of our conclusion in coherent beam combining. However, with
the same fiber lengths, the roundtrip time for the light to traverse in a ring cavity
is only a half of the bidirectional cavity, and this character will be useful for pulse

trains discussed in Chapter 3.
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Figure 2.2: The structure of a Mach-Zehnder ring cavity.

In either type of cavity, the waves are generated from the individual fiber ampli-
fiers and then add on or cancel out with each other at the coupler outputs accordingly.
The interferometer structures allow two channels to have different lengths. At the

very beginning the spontaneous wave phases from two fibers are independent and in-
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coherent. As the laser oscillation grows up, the phase relationship with most feedback
increases faster than others and it finally dominates. The mechanism is the same.
To scale up to a higher number of elements in the array, the structure is organized
like a tree in Fig. 2.3 in a binary tree style. Take Michelson bidirectional cavity for an
example, two fiber amplifiers are connected via a directional coupler to form a pair,
and two pairs can be coupled with another directional coupler again for a new pair,
and so on. Among all directional couplers, only one output port from the root level
has partial reflection and all others are with angle cleaves. The combining principle
in each level is similar and recursive. Therefore, it is seen that a large scale fiber laser

array with passive coherent beam combining could be built up in a tree structure.
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Figure 2.3: The tree structure of a fiber laser cavity (Michelson).
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2.2.2 The dynamical model for passive coherent beam combining

Here we use a model by Wu et al. [44], using the amplifying Nonlinear Schrodinger
Equation (NLSE) to incorporate the multiple longitudinal modes and allow for the
natural selection of the resonant array modes with the minimum loss.

Assuming single polarization, the coherent optical waves in each active fiber are
governed by the NLSE in conjunction with the rate equation for the population
inversion. It is a propagation model that takes into account many cavity parameters
such as gain saturation, Kerr nonlinearity, group velocity dispersion (GVD), and the
loss dispersion of spectral filters. The two independent single mode fibers are coupled
discretely by a directional coupler as shown in Fig. 2.2. In each active fiber, the

NLSE can be written as

or 1 oF 1 _O0’E . 2
%—5(9—04)E—51§+5(52—25)W+W’E’ K, (2.1)

on propagation coordinate z, where F(z,t), g, «, 81, B2, and v represent the slowly
varying envelope of the electric field in the oscillating cavity, the saturated gain, the
cavity linear loss, the inverse of group velocity, the group velocity dispersion (GVD),
and the non-resonant Kerr nonlinearity respectively. The dispersion loss parameter b
provides distributed spectral filtering along the fiber amplifier. Here the electric field
amplitudes F are after normalizations so that |E|? represents power.

At the same time, we have the dynamic rate equation for population inversion of
the fiber laser:

2
(9?5\7 _ Ry — AN  o|E|

— AN 2.2
Tup hVAeff ’ ( )

where AN and R,(t) refers to the population inversion and the pumping rate in a
fiber. In the right hand side of eq. (2.2), the second term has a physical meaning
of the process of excited population relaxation with upper-state lifetime 7,,, and the

third term describes the laser gain saturation at high intensity fields, where o is the
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sum of absorption and emission cross sections, hv is the energy per photon, and A,y
is the effective fiber cross section area.

The rate equation is dynamic, suitable for any situations no matter whether it is
in steady state or not. In this thesis, we mainly focus on the stable results in steady
states, without Q-switched instabilities. Therefore we make a further simplification
on the dynamic rate equation. A typical roundtrip time for a fiber length in tens of
meters is a few hundreds of nanoseconds, while the upper level population relaxation
Tup 18 approximately ten milliseconds for Er-doped and one millisecond for Yb-doped
fiber lasers. The gain recovery time, is also quite long and is of order milliseconds for
Er-doped fibers [77, 78]. Hence the roundtrip traversal occurs in a time much faster
than the recovery dynamics of population inversion, and we may consider these slow
variables as quasi-static during a roundtrip calculation. The difference in time scales
allows one to make approximations by setting the time derivative in the rate equation

to zero. Eq. (2.2) could be simplified to a gain saturation equation:

90
1+ foT |E|2dt’
TPsat

g =20AN = (2.3)

by assuming go = 20 R, (t)7,, as the unsaturated gain and Py = hvAcrs/(0Typ) a8
the saturation power. T' denotes for a computation window which is usually selected
as the roundtrip time over the mean fiber length because of the periodicity. For
unidirectional cavities, the roundtrip time is nL/c, and it is 2nL/c for bidirectional
ones.

The unidirectional Mach-Zehnder model separates the backward and forward
paths and hence describes quite accurately the behavior of a ring fiber laser. For
a bidirectional Michelson cavity, the partial reflectivity at the output port is typically
around 4%, and hence the backward going wave is always much weaker than the for-

ward one [44, 45]. The standing wave effects and cross-saturation by backward waves

14



can be safely neglected. So we may still only consider the forward propagating waves
in Eq. (2.1).
As a four port device with two input and two output ports, the transfer matrix

of an ideal lossless 50:50 directional coupler is modeled as:
— , (2.4)

as a result from coupled-mode theory. More detailed discussions about the directional
couplers will be included in Chapter IV.

As a numerical algorithm for solving partial differential equations, the standard
split-step Fourier methods (SSFM) treats the linear terms in spectral domain and
the nonlinear terms in temporal domain. It has been extensively used as an effective
method for simulating the behavior of nonlinear pulse propagation in fibers because
of the separate treatment. By this algorithm, the cavity is divided into discrete split
steps and the wave field need be transformed between temporal and spectral domain
a few times per split step. All longitudinal modes within the calculation bandwidth
are sampled as frequency points for the wave field, and its temporal profile could be
calculated from Fast Fourier Transformation (FFT). In this thesis we also use SSFM

to handle the multi-longitudinal-mode nature of continuous-wave fiber lasers.

2.2.3 Array modes and spectral beating

The frequencies of laser operation are not only determined by the gain material
that the laser is constructed from, i.e. the gain bandwidth, but also by the size of
the optical resonant cavity. Take a linear 1-D Fabry-Pérot resonator as shown in Fig.
2.4 for an example. The optical wave bouncing between mirrors will form standing
waves. Based on the boundary conditions, only those frequency modes with vacuum

wavelengths \,,, = 2nL/m can exist, where n is the refractive index and m is any posi-
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tive integer. The corresponding frequencies f,, are longitudinal modes of the resonant
cavity. Therefore the separation between the mth and m + 1th modes is determined
by Af = ¢/(2nL). Usually there are thousands to millions of such oscillating longitu-
dinal modes in a laser cavity. In a cw laser, each mode oscillates independently with
randomly distributed phases, affected by many factors such as thermal changes. There
is no fixed phase relationship among these longitudinal modes. The constructive or
destructive interference between these unlocked modes can lead to some random in-
tensity fluctuations, however, since the number of modes is huge, the output tends to

stabilize with small fluctuations, making it cw.

A

Figure 2.4: The structure of a Fabry-Pérot resonator cavity.

In agreement with experimental observations, our model shows efficient coherent
beam combining without the need for interferometric control of fiber lengths. Each
combined fiber in the array has its own length, and its own set of longitudinal modes.
In order to get resonant in the whole array, the laser system chooses automatically
only the longitudinal modes which are common for all the combined active fibers, and
such common modes are named as the array modes [44, 45]. Other frequency modes
which are not the common array modes are unstable with relatively high losses.
And only the modes with least total roundtrip loss will exist in the steady state.
Therefore, the spectral power which was carried by almost all longitudinal modes
within the gain bandwidth is now focused into these array modes. Since they are
the common longitudinal modes, the array modes are less dense and look as a comb

spectrum modulation with a fixed beating frequency, such phenomenon is described as
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Vernier’s effect. The frequency of spectral beating is exactly the separation between
two adjacent array modes, which is given by Af = ¢/(nAL) for a unidirectional ring
cavity with two channels, and Af = ¢/(2nAL) for a bidirectional one. Here n is the
refractive index for fiber cores.

From Vernier’s effect, spectral beating exists as long as the fiber lengths are not
the same in a coherently beam combined fiber laser array. It is the spectral beating
who reduces the number and the density of modes in the array from a single fiber
laser. For single-transverse-mode fiber lasers, the power per longitudinal mode can

be significantly increased by the coherent beam combining between channels.

B
7| @
2

A L.
B : : : Frequency
7 | (b) [ | [
=
b= | | |

i L.
B : : : Frequency
=
& | | |

Frequency

Figure 2.5: The spectral beating and array modes. (a) the longitudinal modes in one
fiber. (b) the longitudinal modes in the other fiber with a different cavity
length. (c) from spectral beating, the array modes are the frequency
components strengthened by the interference when coherently combining,
which coincide with the common longitudinal modes for both fibers.

On the other hand, the reduction of the number of longitudinal modes determines
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the scaling-up limit of the coherent beam combining. The more fiber channels to be
combined, the less common array modes there are. The coherent beam combining
ability saturates when there is only one longitudinal mode which is common for all
channels within gain bandwidth. Beyond that limit, the efficiency of the coherent
combination will drops hugely and the increase of the number of active fibers will not
further increase the power per array mode nor the total power output. That is to
say, the additional fiber cannot be coherently beam combined for cw operation, and

additional powers will leak through the angle cleave ports of the directional couplers.

2.2.4 Coherent beam combining results in cw operation

All the active fibers we used in this thesis are doped with erbium as the gain
medium. The fields evolve from an initial noise distribution and we examine the
output after about 2000 round trips in fiber cavities with lengths of about 8 meters.
Each round trip contains 24 discrete spatial steps.

In cw operation, the output is continuous with a spectrum that shows a beating
between the individual frequency combs of the individual lasers. As seen in Fig. 2.6,
the spectrum consists of array modes spaced approximately by the beat frequency
Af = ¢/(2nAL)=5.56 GHz, where n is the index and AL is the length difference
between the two channels. Each of the frequency “spikes” is actually an envelope
of about 100-MHz full width at half maximum (FWHM) that contains a few single-
cavity longitudinal modes. The phase difference between two adjacent longitudinal
modes is randomly distributed from 0 to 27, indicating that there is no phase locking
among the lasing modes. In the time domain we see the high frequency oscillation
representing the complex beating between these modes with random phases. The
combining efficiency is very high, with 99.97% of the power emerging from the output
port and only 0.03% from the loss port with angle cleave. The beam combining

process selects the modes with minimum loss.
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Figure 2.6: (a): The spectral profile (blue, solid lines) at Port 2 of two-channel beam
combining with lengths 8.053 m and 8.071 m in the absence of a sat-
urable absorber; the phase difference A¢ between two adjacent longi-
tudinal modes around the array modes (green crosses). (b): The related
temporal profile at Port 2 for one roundtrip time. Note the fast oscillation
with a frequency of about 5.56 GHz.

2.3 Background on mode locking

As an approach to ultrafast laser pulses, mode locking has been widely applied in
laser operation. The core idea of mode locking is to lock the laser cavity’s longitudi-
nal modes with a fixed phase relationship. Interference between these phase-locked
longitudinal modes results in a pulsating laser output [9, 70, 79-85]. Either an active
element, e.g. an optical modulator, or a nonlinear passive element, e.g. a saturable

absorber, is inserted in the laser resonance cavity, converting the laser’s continuous-
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wave (cw) output into periodical ultrafast pulses. Because of the cavity boundary
conditions in the steady state, the pulse parameters remain stable and almost con-
stant after circulating every round trip.

Instead of the random oscillations seen in cw operation with many independent
modes, when there is a fixed phase relationship, these longitudinal modes can be
phase-locked to a common phase at some particular place that moves back and forth
inside the cavity. Such phase-locking allows for the formation of a narrow pulse
centered on the exact position of their common phase, i.e. the mode-locked pulse. At
positions other than the common phase, the fields destructively interfere, and there
will be no longer cw outputs in the cavity. The constructive interference of the laser
modes occurs periodically every roundtrip, producing one mode-locked intense burst
per roundtrip. In mode locking operation, the pulse duration depends on how many
modes are locked together with a fixed phase relationship [2, 86, 87]. If there are N
modes locked, the mode-locked bandwidth is approximately NAf. In the transform
limit, the pulse duration is inversely proportional to the bandwidth. The roundtrip
time, which is also the pulse’s interval, corresponds to a frequency exactly equal to
the mode spacing of the laser, T'= 1/Af. An example is shown in Fig. 2.7. With the
same spectral intensity profile of longitudinal modes, after Fourier transformation,
the power in a roundtrip is distributed as cw if the phases are randomly distributed,
but is focused into a single pulse if the phase relationship is locked for all modes.

There are two major types of mode locking: active and passive.

2.3.1 Active and passive mode locking

Active mode locking modulates the resonator losses actively. One of the most
common realizations is an acousto-optic modulator. With an electrical signal, a si-
nusoidal amplitude modulation on laser can be generated inside the cavity. The

amplitude modulator acts as a weak shutter to the optical wave bouncing, putting a
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Figure 2.7: The comparison of cw output and pulsed output. Top: spectral intensity
profile. Lower left: temporal profile with random mode phases. Lower
right: temporal profile with modes with a fixed phase relationship.

high attenuation on the output when it is “off”, and a much smaller attenuation when

it is “on”. If the modulation rate d f is fully synchronized to the cavity round-trip

time 7', then only a single pulse with the “correct” timing can pass the modulator per
round trip at the moment when losses are minimized. This is known as AM active
mode locking. In the frequency domain, for a mode with an optical frequency f, the
modulated signal has two sidebands at frequencies f + 0 f. If we drive the modulator
at the same frequency as the cavity-mode spacing ¢ f, then the two sidebands exactly
correspond to the two longitudinal modes adjacent to the original mode. Since the

sidebands are driven in-phase from the active modulator, these 3 adjacent modes
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are locked in-phase. Similarly, all other adjacent longitudinal modes can be locked
together in-phase, until most modes in the gain bandwidth are locked.

Similar to AM active mode locking, there is also FM mode locking by electro-optic
modulators. With an applied electrical signal, it can induce a small and sinusoidally
varying frequency shift in the optical wave passing through it inside the cavity. If
the modulation frequency matches the cavity traversing round-trip time, then a part
of the light is repeatedly blue-shifted, and some other gets repeated red-shifts. After
many repetitions, they finally move beyond the gain bandwidth as the accumulation of
the frequency shifts. The part of the optical wave which passes through the modulator
with zero induced frequency shift will be left unchanged, forming a narrow pulse of
light.

Another approach of active mode locking is synchronous pumping. Here the pump
source is already modulated higher and lower than threshold, effectively turning the
laser on and off to produce pulses. Typically, the pump source is itself another mode-
locked laser. This technique may introduce short pulses with severe spectral broad-
ening in nonlinear cavities, described as supercontinuum. Generally, synchronous
pumping requires very accurately matching the cavity lengths of the pump laser and
the driven laser.

Unlike active methods, passive mode locking techniques require no external signals
to produce pulses. A saturable absorber is commonly used to achieve this. As an
optical device that exhibits an intensity-dependent transmission, a saturable absorber
behaves differently depending on the time-domain optical intensity passing through
it. When placed in a laser cavity, a saturable absorber will attenuate low-intensity
constant wave light, and transmit light which is of sufficiently high intensity [88]. For
simplicity, it is assumed that there is a single circulating pulse in its steady state
and a fast absorber. Each time the pulse hits the saturable absorber, it saturates the

absorption with its high intensity and the losses are temporarily reduced. At other
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times, any light of lower intensity experiences much higher losses at the saturable
absorber when circulating the cavity. Since the laser system always reaches the steady
state with minimal losses, the absorber can thus suppress any continuous background
signal as well as some weak pulses. Also, the absorber thus tends to decrease the pulse
duration by putting a high loss on the low intensity parts of a pulse, and therefore
suppress the sub-pulse noises and clean up the pulse shape.

Usually, the saturable absorber can self-start the mode locking process automat-
ically. In this case, the laser oscillation first starts with random mode phases with
fluctuations of cw power. In each round trip, the saturable absorber favors the light
with higher intensities, which saturates the absorption more than light with lower
intensities. That is to say, high-intensity spikes have a higher net gain every round
trip and hence get selectively amplified. After the accumulation of many round trips,
the part with the highest temporal intensity dominates as a short pulse, and other
parts with higher losses gradually go below the threshold and vanish.

There are also passive mode locking schemes that directly display an intensity
dependent absorption without a saturable absorber additional to the cavity. That is
to say, some nonlinear optical effects in intracavity components provide an effective
saturable absorption, selectively amplifying high-intensity light and attenuating low-
intensity light. One example is Kerr-lens mode locking or “self mode locking”. With
the nonlinearity of optical materials, Kerr effect makes high-intensity light focused
differently from low-intensity light. Another example uses nonlinearity in the direc-
tional couplers, where high-intensity light goes to the port with feedback for cavity
oscillation, and low-intensity light goes through another port and get lost [89, 90].

Because of the response time of saturable absorbers, the pulse duration from
passive mode locking is usually much shorter than active ones. Another advantage
of passive mode locking is that the cavity design becomes much simpler without

complicated and expensive active components.
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2.3.2 Saturable absorber modeling

Saturable absorbers are commonly made of liquid organic dyes, doped crystals,
quantum dots, semiconductors, nonlinear polarization rotation device, carbon nan-
otubes or atomic layer graphene. Different absorber devices are used since different
applications require very different parameters. Semiconductor saturable absorber
mirrors (SESAM) tend to exhibit response times as fast as the order of 100fs. In a
passively mode-locked laser, such fast response time determines the final short du-
ration of the pulses and hence SESAM are very frequently used for passive mode
locking.

It is a fast saturable absorber if its recovery time is well below the pulse duration.
In that case, the loss modulation basically follows the variation of the temporal optical
power. For a slow absorber with a recovery time above the pulse duration, mode
locking can also be achieved. Because its response is slow, the saturable absorber
may be in the unsaturated state at the time the leading edge of the pulse hits it and
still in the saturated state shortly after the pulse. Both experimental observations and
numerical simulations indicate stability for the slow saturable absorbers. The stronger
absorption for the leading edge of the pulse shifts the position of the maximum and
therefore delays the pulse in this situation.

As an optical component with low losses at high optical intensities and high losses
at low intensities, saturable absorbers are widely applied for passive mode locking.
However, besides the main pulse, any random and intense spike will be transmitted
without high losses by the saturable absorber. After many round trips, this may still
lead to more than one pulse per roundtrip in mode locking. Self-starting is not always
achieved. Generally speaking, slow absorbers are more suitable for self-starting mode
locking than fast absorbers.

Paschotta and Keller [9, 91] have built an analytical model for saturable absorbers

with a time-dependent power-loss coefficient ¢(¢) which depends on the parameters
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of the absorber and on the pulse exciting the absorber. With the recovery time 7,
the unsaturated loss gy, and the saturation fluence Fyy, the dynamic model for ¢(t)

is given by:
dg _ gq—q@ I

dt - T Fsat

q. (2.5)

In the slow limit with large recovery time 7, we can ignore the first term and simply

solve for ¢ as:

Gslow = 40 eXp(Fp/Fsat)7 (26)

where F), is the pulse fluence if it hits an initially unsaturated absorber. The amplitude
loss coefficient g = Gs10w/2 for the quadratic relationship between power and am-
plitude.

On the other hand, for a fast saturable absorber with a very short recovery time
(e.g. 100fs), it responds almost immediately for a picosecond level mode-locked pulse.
In this case, we may consider the saturation process as quasi-static with setting the
dynamic term of dg/dt to zero. It means that the power-loss coefficient ¢ reaches
its steady state very fast and remains almost constant during the short time in our

calculation. By taking dg/dt = 0, we have

q
Qfast = 0 T . (27)
1
+ Fsat/T
Therefore, the amplitude-loss coefficient
qo/2 «
apoa /2= — 25— 0 (2.8
14 1+ ——
Fsat/T PSA

where ag = ¢o/2 is the unsaturated amplitude-loss coefficient, and Pgy = Fyq /T is
the effective saturation power for the absorber, defined by the saturation fluence over

the recovery time. With the formula for ¢ or «, the saturable absorption process can
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be modeled quantitatively with other equations on laser propagation in the cavity.
In this thesis we use a semiconductor saturable absorber mirror (SESAM) with a
response time of a few picoseconds, and the fast saturable absorber model is appro-
priate here. Taking ag = 0.33mm ™! with a thickness of 3.0mm, we have plotted the
power transmittance by Eq. (2.8) for passing through such SESAM in Fig. 2.8 It
is observed that there is an obvious loss until the instantaneous power grows above
around 50mW. By suppressing low power components, it sharpens the pulse from

background noises and stabilizes the pulse against perturbations.
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Figure 2.8: The power transmittance curve for instantaneous power passing through
the SESAM.

2.3.3 Simulation results for a single fiber laser

Table 2.3.3 lists the parameter values used in our simulations which are based on
the split-step Fourier method for solving the NLSE in this chapter. The fields evolve
from an initial noise distribution and we examine the output after at least 2000 round
trips in fiber cavities with lengths of about 8 meters. In this thesis, each round trip

contains 24 discrete spatial steps for linear simulations and 48 discrete spatial steps
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for nonlinear ones.

Table 2.1: Parameter values used in simulations.

Wavelength A 1.545 pm
Saturation power Py, 0.6 mW
Fiber propagation loss « 1.8 x 103m~!
Group velocity dispersion [, -0.003 ps?/m
Loss dispersion b 0.013 ps?/m
Refractive index n 1.50
Unsaturated gain gq 2.67 m~!
Saturation power for saturable absorber Pgy 300 mW
Unsaturated absorption for saturable absorber ay 0.33 mm~!
Saturable absorber thickness Lgy 3.0 mm

Figure 2.9 shows the spectral and temporal results of a single 8.083m bidirectional
laser cavity mode locked by a fast saturable absorber. The nonlinearity v is as small
as 0.0005 m~'W~1 here, in order to avoid the instability which will be discussed in
Chapter III. Unlike the cw operation, it is seen that there is a fixed spectral phase
relationship among most longitudinal modes with a relatively high intensity. As a
result, there is a temporal “burst” at the point when all these modes constructively
interfere, and hence a mode-locked pulse with 2ps duration is generated inside the

cavity. The pulse repeats itself every roundtrip.

2.4 Simultaneous beam combining and mode locking

2.4.1 Linear model

To study simultaneous beam combining and mode locking we follow the standard
approach that uses discrete 50:50 directional couplers to create an interferometric

system of coupled amplifier pairs in a composite cavity. A bidirectional Michelson
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Figure 2.9: The simulation results for one mode-locked single fiber laser with a fast
saturable absorber. (a) The spectral profile (green plots). The phase
differences A¢ between two adjacent modes (red crosses) are almost con-
stant. (b) The temporal pulse.

cavity is used here. In Fig. 2.10 the angle-cleaved port is a source of loss (no feed-

back) while the saturable absorbing (SA) mirror in Port 2 provides the mode locking

mechanism and serves as the output coupler. Here the fiber amplifiers are of different
lengths, arbitrarily chosen as 8.053m and 8.071m. The nonlinear coefficient is set to
zero initially in order to focus on the essential mechanisms responsible for coherent
combining and mode locking.

In the presence of a saturable absorber, the absorption in the system is low at
high power and high if the power is below the saturation power. The system will
thus discriminate against the low power cw state with random phases in favor of the

solution in which the phases of adjacent modes are locked in a fixed relationship to
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Figure 2.10: The Michelson interferometer structure for mode locking of two coupled
fiber lasers. There is an angle cleave at Port 1 while a saturable absorber
(SA) mirror is connected to the output port 2 to provide feedback and
a mode locking mechanism.
generate high peak power pulses. Figure 2.11 shows the spectrum of the output of
Port 2 in the presence of the saturable absorber. It can be seen that the spectrum in
this case is much wider, with a bandwidth (FWHM) of about 100 GHz compared to
the 20 GHz bandwidth under cw operation. The spectrum contains a large number of
“lines”, each of which, upon magnification reveals a width of about 0.6 GHz. These
lines are spaced by the cw beat frequency Af = ¢/(2nAL), which in this example is
5.56 GHz as determined by the length difference.

For mode locking, the adjacent array modes need to be locked with a fixed phase
relationship in order to generate a mode-locked pulse instead of cw output. Figure
2.11 also shows the phase difference between two adjacent array modes. For those
frequencies around the array modes where there is a spike, the phase difference is
fixed. Hence those phase-locked modes will constructively interfere with each other,
leading to the mode-locked pulse output.

In time domain (Fig. 2.12), the output consists of packets of pulses at the round
trip period T = 2nL/c, with each packet containing a train of mode-locked pulses
spaced by 67 = 1/Af = 2nAL/c. For our chosen parameters each packet has a
temporal width of 1 ns, which corresponds to the inverse of the 0.6 GHz spectral with
of each spike in Fig. 2.11. Each of the mode-locked pulses in a packet has a width of
5 ps determined by the inverse of the 100 GHz bandwidth. Clearly the separation of

pulses in each packet can be tuned by changing the fiber length difference AL.
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Figure 2.11: The spectral profile (a) of two-channel beam combining and mode lock-
ing with fiber lengths 8.053m and 8.071m at Port 2 without nonlinearity.
A saturable absorber partial mirror is used at Port 2. In the zoomed fig-
ure (b), the phase difference between two adjacent longitudinal modes is
also plotted (green crosses). The phase difference A¢ remains at around
1.317 for the frequencies around the array mode.

The average power out of Port 2 is 49.70 mW, representing 98.02% of the total

power. Thus the combining efficiency remains high under mode locking conditions.

2.4.2 Comparison with experimental results

To compare with experiment, we apply our model to the work of Lhermite et. al.
[62], in which packets of gigahertz pulse trains were generated through the coherent
combining of mode-locked fiber lasers. Their experiment employed the Mach-Zehnder

ring cavity configuration.
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Figure 2.12: The temporal profile at Port 2 of two fiber beam combining and mode
locking with lengths 8.053m and 8.071m without nonlinearity. The fig-
ures are zoomed in from (a) one roundtrip time to (c) one single pulse.

The interferometer modulates the individual laser spectrum with a beat frequency
Af = ¢/AL’ thus creating pulse trains with interval 67 = AL'/c , where AL’ = nAL
is the roundtrip optical path length difference. Each of the active fibers is 10m
long and a delay line is inserted in one arm to permit a variable optical path-length
difference AL’ which we set at 5.1 mm, 3.5 mm, and 2.1 mm in accordance with
the experimental values. (Note: According to the authors the smallest AL" used in
the experiment was 2.1 mm, not 2.3 mm.) These length differences predict pulse

repetition periods of 17 ps, 11.67 ps, and 7 ps, respectively. Figure 2.13 shows the
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Figure 2.13: The pulse packet output for the Mach-Zehnder ring cavity structure
shown in Fig. 5, in the absence of nonlinearity. The length differences
between two channels are (a) 5.1 mm, (b) 3.5 mm and (c) 2.1 mm re-
spectively.

simulated pulse packets. There is one of these packets within a round trip time of

120 ns. It is seen that the period of the pulse train within the packet decreases from

17 ps to 7 ps as the length difference is decreased, in agreement with the theoretical

expression 07 = AL'/c. For these parameters the pulse heights within the train are

not uniform.

In Fig. 2.14 we compare our simulated intensity autocorrelation results with the
experimental measurements. Initially we found a systematic discrepancy with the
published pulse periods. This discrepancy was resolved with new data supplied by
the authors, which replaces the published periods with the values 17.19 ps, 11.88 ps,
and 6.98 ps.

From the simulations about 90% of the total power of 100 mW emerges from the
output port, indicating high combining efficiency. For very small length differences
the pulse interval §7" becomes comparable to the pulse duration and the mode locking
breaks down. From the spectral viewpoint, such a small AL’ leads to a Af that is
comparable to the effective bandwidth. As a result, only one array mode is left in
the spectrum and thus there are not enough modes to be locked. We note that there

is a relatively high background in the experimental autocorrelation compared to the
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used by permission.

background-free results of the simulation. We will consider a possible cause in the

next section.
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2.5 Influence of nonlinearity

In order to elucidate the basic features of mode locking in coherently combined
fiber lasers we neglected the nonlinear refractive index in the above simulations. We
found very good agreement with the experimental results, except that our simulated
autocorrelation plots do not show the high background levels seen in the experimen-
tal results. It is well known however, that at high pump levels the nonlinear index
can lead to phenomena such as multiple pulsing in mode-locked fiber lasers. Here
we include the Kerr nonlinearity and examine its effect on the spectral and tempo-
ral characteristics of mode locking. Fig. 2.15 shows the time series as well as the
autocorrelation traces for v = 0.004 m~*W~! and three values of length difference.
The time series shows pulse splitting as well as the presence of irregular subpulses
in between the main pulses. The autocorrelation trace displays a significant rise in
background which can be attributed to the presence of these sub-pulses of essentially
random heights. The exact nature of the pulse substructure is strongly dependent
on the values chosen for nonlinearity, dispersion, and fiber length difference. The
sub-pulse instability due to nonlinearity is worse for short fiber length differences.

Figure 2.16 shows the spectra and the spectral phase distribution for three length
differences in the presence of nonlinearity. The uniform phase indicates that adjacent
modes are successfully locked with a fixed phase difference even though the time series
is highly irregular.

The rise in background with increasing nonlinearity is consistent with the increased
SPM and frequency spread which makes it difficult for the fields in the two channels
to maintain the phase relationship needed to minimize loss at the 50:50 directional

coupler [12].
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Figure 2.15: The time series (left) as well as intensity autocorrelation traces (right)
for increased nonlinearity v, with (a) AL’ = 5.1 mm, (b) AL’ = 3.5 mm,
and (¢) AL = 2.1 mm

2.6 Four-channel beam combining

To explore the possibility of mode locking larger arrays we extend our simulations
to the 4-element fiber array shown in Fig. 2.17 with bidirectional Michelson struc-
ture. With four elements, there are 3 independent length differences and the array

mode spacing is determined by the greatest common divisor (GCD) of these length
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Figure 2.16: Frequency spectra (blue, solid curves) and spectral phase (green
crosses) in two-fiber-laser beam combining and mode locking for
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(¢) AL’ = 2.1 mm.

differences [44, 46]. Strictly speaking the concept of a greatest common divisor is

defined only for integers. Since the length differences are real numbers, we express

them as integer multiples of the resolution of the length measurement, here taken to
be 1 mm. The length differences are said to be commensurate when they have a non-

trivial GCD. When the length differences are incommensurate, the allowed modes do

not have any discernible periodicity.
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Figure 2.17: The structure of four-element fiber laser array with tree structure.

2.6.1 CW operation

We first consider cw operation without saturable absorber for a 4-element array
with fiber lengths randomly chosen as 8.000 m, 8.011 m, 8.024 m and 8.041 m. The
length differences are Lag = 11 mm, Lop = 17 mm, Lge = 13 mm, for which there is
no GCD except the trivial one, which in this case is 1 mm, the resolution of the length
measurement. The implied mode periodicity is given by Af = ¢/(2nALyq) = 100
GHz. This frequency separation is comparable to the bandwidth of the two-channel
fiber laser array in Section 3.2. This means that for the chosen parameters only one
array mode will exist within the net gain bandwidth under cw operation. Figure 2.18
shows the simulation result and it is clear from the spectrum that there is only one
principal array mode, the other modes being at least 10 orders of magnitude lower.
In the time domain the output is close to a sinusoid with a slow modulation.

It should be noted that since the actual fiber length differences are generally not
rational numbers, the GCD is only approximate and thus the array modes will only
be approximate modes with some coupling loss [12]. The closer the actual difference
is to a multiple of the approximate GCD, the less coupling loss there will be, and
vice versa. Since the laser system will be stabilized at the state with minimal loss,

an optimal approximate GCD will be reached.
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Figure 2.18: The spectrum in log scale (a) and temporal profile for one roundtrip
time (b) for four-channel combining without saturable absorber. The
four fiber lengths are independently randomly selected: 8.000 m, 8.011
m, 8.024 m and 8.041 m. Here the Kerr nonlinearity is 0.003 m~*W—!,

2.6.2 Four-channel beam combining and mode locking in fibers with in-

commensurate or commensurate lengths

In the simulation below, we use the same randomly selected fibers lengths as in the
cw case: 8.000 m, 8.011 m, 8.024 m and 8.041 m. All parameters remain the same as
in the simulation for Fig. 2.18, except that the partial mirror at Port 4 is replaced by
a saturable absorber partial mirror. The nonlinearity is 0.003 m~*W~1. Figure 2.19
plots the spectral and temporal outputs. In the presence of the saturable absorber
the spectrum exhibits a large number of modes as required for the formation of short
pulses with the intensity needed to saturate the absorption. In the time domain, it
is seen that a train of pulses with non-uniform separation is generated. The shortest
separation between sub-pulses is about 10ps, corresponding to the 100 GHz array
mode spacing in the cw case. The duration of each pulse is around 2.5 ps. The
combining efficiency was computed to be 78%.

It is the requirement for beam combining that favors those array modes with the
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Figure 2.19: The spectral (a) and temporal profiles (b) for four-channel coupling with
saturable absorber and with 0.003 m~*W~! Kerr nonlinearity. The fiber
lengths are 8.000 m, 8.011 m, 8.024 m and 8.041 m. (b) denotes one
roundtrip time and it is further zoomed to (c¢) and (d).

least cavity loss. Nevertheless, with the growth of the number of channels, there will

not be enough modes left no matter how broad the gain bandwidth is. A large number

of modes are necessary to generate mode-locked pulses in order to pass through the

saturable absorber and complete the roundtrip. Therefore, some non-array-modes
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have to be selected as the optimized result with least total loss, from the interplay of
saturable absorption and beam combining. Although they are not exact array modes,
they are the closest to satisfying the minimum loss requirement. The passive combing
system automatically stabilizes at this least loss working state. In this case, the shape
of the pulse packet together with the pulse separation becomes non-uniform.

With randomly chosen lengths we obtained quasi-random mode-locked pulse trains
from the 4-element fiber laser array. We now consider an array in which the elements
are chosen such that their length differences are commensurate, i.e. they have a
non-trivial greatest common divisor. Also, the length differences are chosen to be in
the centimeter range so that the array mode spacing of roughly ¢/(2nAL) will be in
the gigahertz range. This way there will be many more array modes within the gain

bandwidth which should lead to improved mode locking.
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Figure 2.20: The spectral (a, b) and temporal (c, d, e) profiles for four-channel com-
bining with saturable absorber and with 0.003 m~'W~! Kerr nonlinear-
ity. Here the four fiber lengths 8.050 m, 8.260 m, 8.200 m and 8.530 m
are carefully designed for a 30 mm GCD for their differences.
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For example, if we select 8.050 m, 8.260 m, 8.200 m and 8.530 m, the differences
210 mm, 60 mm, and 330 mm will have a greatest common divisor of 30 mm, which
leads to an array mode separation of 3.33 GHz. As a result there will be many more
array modes within the bandwidth range to be locked to produce short mode-locked
pulses. The simulation result for this case is plotted in Fig. 2.20. It is seen that the
pulses within a packet are uniformly spaced with a repetition rate of 3.3 GHz. The
calculated combining efficiency of 91% is higher than in the incommensurate case.

Next we consider an intermediate situation where the GCD is relatively small but
still non-trivial, e.g. 5 mm. Here the fiber lengths are selected as 8.000 m, 8.015
m, 8.040 m, and 8.060m. Their length differences are 15 mm, 25 mm, and 20 mm
respectively. The array mode separation is calculated to be 20 GHz. Consider a
spectrum from -150 to 150 GHz, there will be approximately 15 array modes, which
is not as sparse as the non-commensurate case. However, this number is not enough
yet for mode locking to produce high peak short pulses. In the simulation result
shown in Figure 2.21, the spectral spikes are distributed mainly in two periods: 20
GHz corresponding to the array mode separation by Lgq = 5 mm, and 6.7 GHz
corresponding to the 15 mm fiber length difference. In the temporal profile, there
are 3 packets per roundtrip. In each packet, there are uniform pulse separation but

irregular pulse amplitudes in the center, and non-uniform separation in the tails.

2.6.3 Combining efficiency in four channel beam combining

The data of four-channel beam combining efficiency are listed in Table 2.6.3 based
on our simulations. For the bidirectional tree-structure, the mode-locked operation for
incommensurate lengths has a much lower combining efficiency than others, especially
with the growth of nonlinearity. Since a high combining efficiency is the key for
scaling up the fiber array, it is interesting and important to analyze the reason for

the efficiency drop.
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Figure 2.21: The spectral (a) and temporal (b, ¢, d) profiles for four-channel combin-
ing with saturable absorber and with 0.003 m~*W~! Kerr nonlinearity.
The fiber lengths 8.000 m, 8.015 m, 8.040 m and 8.060 m are designed
for a 5 mm GCD for their differences, which is in between the trivial 1
mm and non-commensurate 30 mm.
There are 3 directional couplers in our bidirectional tree structure for 4 fibers.

With the theoretical transfer matrix model for 50:50 directional couplers in Eq. (2.4),

it is easy to show that the E-field at loss ports Port 1-3 and output Port 4 can be
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Table 2.2: Comparison on combining efficiencies for different setup.

v =0.000TWm™! ~=0.003Wtm™!

CW operation (8.000m,

92.29% 92.28%
8.011m, 8.024m and 8.041m)
Mode locking (8.000m,
84.87% 77.96%
8.011m, 8.024m and 8.041m)
Mode locking (8.05m,
95.63% 90.93%
8.26m, 8.20m and 8.53m)
represented as:
E ! (Ea —iFEB) (2.9)
= — —iEpR), .
1 NG A B
1
By = 5(=iBa+Eg— Ec—iEp), (2.10)
1
Es = —(FE¢c—1Ep), 2.11
3 \/5( c D) ( )
1
By = 5(~Ea—iBg—iEc+Ep), (2.12)

where F4, Eg, Ec and Ep are the E-fields at position A, B, C and D respectively
(see Fig. 2.17). Therefore, if we have a good phase relationship with ¢4 — ¢pp = 7/2,
¢4 — ¢c = m/2 and ¢4 — ¢p = m, then the output magnitude |E,| will reach its
maximum of %(|EA| +|Eg| + |Ec| + |Epl|). From Fig. 2.22, the phase locking looks
good at the time of each pulse peak for 4 fibers with random lengths and saturable
absorber.

On the other hand, for a good combining efficiency, we need also minimize the
output at the loss port |E4|, |Ez| and |Es|. Since there is still good phase relationship
maintained among four channels for coherent beam combining, approximately ¢4 —

¢p =7/2, pa — ¢c = /2 and ¢4 — ¢p = 7, we have |Ei| ~ ||E4| — |Ep|

) |E2| ~
[|Ea| + |Eg| — |Ec| — |Epl|, and |Es| & ||Ec| — |Ep||. We need keep the magnitudes
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Figure 2.22: (a) The measured inter-cavity phase differences between points A and
B, points A and C and points A and D, at the time points when there
is a mode-locked pulse. (b) A temporal pulse packet from incommensu-
rate lengths. At the time when a pulse is generated, the four channels
maintain a good relative phase relationship for high efficiency.

|Eal, |Esl, |Ec| and |Ep|, as close to each other as possible to minimize the power

leaking through angle cleaves.

From Fig. 2.23, the temporal pulse packet profiles look almost identical for all
fiber channels in shape, but with different time shifts. At every time point, the E-field
intensity in each fiber varies irregularly. When there is a strong pulse peak at point
A, the pulse peak at point B, C, D may be weak, etc. The peaks of the pulse packet in
each fiber channel are not synchronized. The E-field intensity mismatch is distributed
across the whole pulse train, from the beginning to the end. After integration over
one round-trip time, such mismatch accumulates and hence |F1|, |Ey| and |E3| are

not negligible thus reducing the total combining efficiency. If we measure the time

shifts between these channels, the difference between fiber A and B is 0.11 ns, the
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one between B and C is 0.13 ns, and the one between C and D is 0.17 ns. The
length difference between fiber A and B is 1 mm, and between B and C is 13 mm,
and between C and D is 17 mm. That is, the time shift between any two channels is
exactly their roundtrip time difference as beating, i.e. 07;; = 2nAL;;/c. Because the
fibers are non-uniform in their lengths, the round trip time in each fiber is different.

Hence the time shift cannot be avoided.
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Figure 2.23: The temporal plots for the observation on points A, B, C, and D re-
spectively, i.e. the entrances of the directional couplers. The y-axis
represents the temporal optical intensities in each fiber.

For cw operation, the different time delay effect is not obvious because of the
continuous nature of cw wave. As a result, the beam combining efficiency for cw
operation is much higher. Also, for mode locking with commensurate fiber lengths,
the shape of the pulse packet is very regular. Unlike the incommensurate cases, the
pulse intensities for adjacent pulses do not vary too much. Therefore commensurate

fiber lengths have a higher efficiency for coherent beam combining.
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2.7 Conclusion

In this chapter, we have presented a dynamic model of simultaneous passive coher-
ent beam combining and passive mode locking for coupled fiber lasers, in the presence
of a saturable absorber. The presence of a saturable absorber in the composite cavity
results in the generation of packets of mode-locked pulse trains. The results show,
in agreement with experiment, that a pair of coherently combined fiber lasers will
produce packets of mode-locked pulses whose repetition rate can be tuned by varying
the length difference between the fibers.

For larger arrays, beam combining decreases the density of modes while mode
locking requires a number of modes to be locked for a high peak to pass through
saturable absorption. Such interplay of saturable absorption and beam combining
determines that some non-array-modes left in the spectrum in the steady state, with
the least total roundtrip loss. Since these surviving non-array-modes are neither reg-
ular in shape nor have a unique separation, the temporal packet becomes random
unless the fiber lengths are chosen carefully such that their differences are commen-
surate (where there are still enough array modes to lock). The combining efficiency
of the array drops as a consequence of the unsynchronized irregular pulse packet in

each channel.
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CHAPTER III

Dissipative Solitons in Fiber Laser Array With

Normal Dispersion

3.1 Introduction

Optical solitons generated by the balance between anomalous dispersion and Kerr
nonlinearity are widely applied in ultrafast optics and optical communications. How-
ever, the energy carried by each soliton is limited in fiber lasers to avoid wave-
breaking [28]. Recently, there is much research interest focusing on dissipative solitons
[18, 19, 92-96], a new class of stably mode-locked pulses with both amplitude and
phase balances, which can be generated under normal dispersion conditions. Unlike
transform-limited pulses, these chirped dissipative solitons are more stable in shape
and do not suffer from wave breaking at high energies [18, 94-100]. With dissipa-
tive solitons in normal dispersion, fiber lasers can output pulse energies an order of
magnitude higher than prior soliton fiber lasers, and therefore provide a path to-
wards higher pulse energies. After pulse compression of these chirped pulses, high
peak power can be achieved [94, 98]. The all-normal-dispersion fiber laser [97-101]
simplifies the cavity design a lot, without using any dispersion map with anoma-
lous dispersion sections [22, 93]. It has become a practical method to design fiber

cavity for dissipative solitons. To date, most dissipative solitons are generated and
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operated within one isolated fiber amplifier [18, 19, 92-100]. With directional cou-
plers, fiber amplifiers can be combined pair-wise in a tree structure to form a passive
interferometric fiber array [44, 45, 62, 64]. Such passive coherent beam combining
enables the scaling of output power from two or more channels in an array without
too complicated configuration.

In order to obtain robust pulses with clean pulse shape and high energy, the
possibility of scaling up multiple dissipative solitons through passive combining is
worthy of investigation. To the best of our knowledge, our work is the first to combine
dissipative solitons from two active fibers through passive coherent beam combining in
normal dispersion regime. The simulation results show that the output energies from
two independent channels are combined together with a high efficiency. Comparisons
are made among different nonlinearity parameters, in order to show the stability of
the dissipative soliton solution and its robustness with regard to nonlinearity.

One useful application for mode-locked pulses is clocking. However, it is not easy
to produce multiple and uniformly distributed mode-locked pulses per roundtrip to
increase its repetition rate in single-channel cavity. In the fiber array, a mode-locked
pulse packet with multiple pulses with a fixed interval is generated every round trip.
Thus the repetition rate becomes high, tunable and stable [62, 64]. In this paper we
also present a possible approach to generate robust pulse trains with two different
repetition rates simultaneously. One is the repetition rate for pulses which is much
faster than the roundtrip traversal, and the other one is a relatively slow amplitude
modulation which is comparable with the roundtrip rhythm. For commensurate fiber
lengths, the modulation envelope degenerates and a regular and uniform pulse train

with high repetition rate is produced.
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3.2 Theory of dissipative solitons

Dissipative solitons are stable and localized solutions in the dissipative system. In
its dynamics, balances are achieved not only between the phase modulations caused
by nonlinearity and dispersion, but also between the amplitude modulations from
nonlinear gain and loss. Unlike conventional solitons, dissipative solitons may arise
even for normal dispersion in combination with a positive Kerr nonlinearity, as long
as there is a spectral bandpass filtering effect together with optical amplification to

compensate for the filter loss.

3.2.1 Solitons and dissipative solitons

The discovery of optical solitons dates back to 1973, when Akira Hasegawa and
Fred Tappert first suggested that solitons could exist in optical fibers [102, 103], as a
balance between SPM and anomalous dispersion, and that these solitons are governed
by the NLSE [2, 16]. Both bright and dark solitons are predicted based on the
mathematical models. In 1980, the first experimental observation of the propagation
of a bright soliton was made in an optical fiber. Since then, the theoretical and
experimental developments on solitons have aroused interest from many scientific
and engineering areas.

Because of the Kerr nonlinearity and chromatic dispersion, a short optical pulse
usually cannot maintain its temporal and spectral shape unchanged during its propa-
gation. However, under certain circumstances, the effects of positive Kerr nonlinear-
ity (as for most media) and anomalous dispersion can exactly cancel each other, so
that the temporal and spectral shape of the pulses can be preserved after very long
propagation distances [13, 15]. In a bright fundamental soliton in lossless medium,
assuming there is no higher-order dispersion, the temporal shape of the pulse has to
be an unchirped sech profile with constant width and intensity.

The soliton solutions of the NLSE are remarkably stable. With any initial pulse
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shape, a fundamental soliton solution can be automatically achieved as the initial
pulse sheds the rest energy into a weak background. The intensity in the background
wave is too low for significant nonlinear effects or chromatic dispersive temporal
broadening [2]. At the same time, solitons are very stable against changes of the
medium and fiber parameters. Therefore, solitons can adapt their shape to some
slowly varying fiber parameters. Soliton mode locking is frequently used for the
generation of femtosecond pulses. The soliton shaping effects play a dominant role
there, shortening the pulse duration to be even significantly shorter than the response
time of the absorber. Soliton mode locking allows for significantly stronger nonlinear
phase shifts by SPM, which could otherwise make the pulses unstable. When used
in the appropriate regime of nonlinear phase shifts, soliton mode locking normally
allows for very high pulse quality with low chirp.

Although it has many advantages, solitons are conservative solutions in lossless
medium, where the pulse exchanges no energy with the fiber. In a dissipative system
with gain and/or loss, it becomes different and a much wider range of phenomena
becomes possible. Strictly speaking, no conservative solitons can exist in fiber ampli-
fiers, because there is at least always a positive laser gain. However, if the dominant
pulse shaping effects are the conservative ones (anomalous dispersion canceling the
positive Kerr nonlinearity), we may still consider them as conventional solitons in-
stead of dissipative solitons.

This extension of the conventional soliton concept implies that the exact balance
between gain and loss plays a dominant role in the dissipative dynamics, for produc-
ing stationary localized solutions. It is useful to highlight one significant difference
between conventional conservative solitons and dissipative solitons. In order to be
stationary while keeping continuous energy exchange with environment, dissipative
solitons have internal regions that extract energy from outside, as well as other in-

ternal regions to release energy. A stationary dissipative soliton therefore holds the
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live redistribution of energy between various parts inside. Such internal energy flow
leads to a non-uniform phase distribution in its temporal profile, in contrast to the
constant nonlinear phase profile of a stationary conservative soliton.

An important feature for a dissipative soliton is that besides the saturable laser
gain, the amplitude modulation balance is reached mainly by some dissipative effects
such as saturable absorption, spectral filtering, etc. A passively mode-locked fiber
laser cavity contains not only the pumped fiber, but also other optical components
including a saturable absorber and a spectral bandpass filter. A stable dissipative
soliton solution comes from stable cavity parameters with the required dissipative
elements. Therefore, if these effects are not too strong and can be considered a uni-
formly distributed model within the fiber, then the circulating pulses will be usually

analyzed as dissipative solitons.

3.2.2 'Wave breaking

In the case of fiber lasers, soliton mode locking in the picosecond regime works
well by the balance of nonlinear SPM and negative GVD phase shifts, but usually
limits the pulse energy achievable up to nJ order in standard fiber by the soliton
area theorem, whereas Kelly sidebands occur in the femtosecond regime. With SPM,
the nonlinear phases are proportional to the temporal intensities. With the increase
of pulse peak intensity and in the presence of chromatic dispersion, the excessive
nonlinear phase shift can make an optical soliton distorted, altering the pulse shape
and generating irregular sub-pulse noises around its main peak.

When a short pulse is temporally confined in ultrashort duration, high intensities
always make the resulting nonlinear phase shift a major concern in power scaling-
up for mode-locked fiber sources. A high-energy pulse may accumulate a too high
nonlinear phase shift to get balanced by dispersion. It will put a distortion on the

pulse profile, which eventually break the pulse. Such effect is well known as wave-
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breaking [29, 30, 65, 104]. Attempts to produce high energies in single-mode-fiber
lasers always lead to multiple-pulsing or other instabilities.

Wave-breaking is the fundamental limit to pulse energy for nonlinear fiber lasers,
and it is the very motivation why we have to use coherent beam combining instead
of a single fiber channel to get the high energy pulses in this thesis. To avoid wave-
breaking by excessive nonlinear phase shift, we have to put a limit on the pulse
intensity in each fiber. Nonlinear effects can be reduced by increasing the average
pulse duration [27, 95, 105]. An effective approach is to chirp the pulse in the fiber
so its duration gets stretched, and therefore its peak intensity is lowered for a fixed
pulse energy. Then the chirped pulse with high energy can be compressed again for
high intensities by removing the chirp, outside the fibers after outputting. The word
“breathing” is used to describe the process that pulse first gets chirped and stretched,
and then dechirped and compressed.

With positive GVD and SPM, the phase shifts are added together and there will
be a considerably large chirp. Therefore with the same pulse energy condition, the
highly chirped pulses in normal dispersion are more resistant to wave-breaking than
the ones in anomalous dispersion. In other words, although anomalous dispersion
leads to ultrashort mode-locked pulses with little chirp, the system operated under
normal dispersion is more robust and hence can support about an order higher pulse
energies without wave-breaking. Thus it becomes important to explore the mode-

locked dissipative solitons in positive GVD regime.

3.2.3 Comparison with similaritons

Similaritons are self-similar asymptotic solutions propagating in nonlinear fiber
amplifiers with normal chromatic dispersion [20-22, 93, 106-108]. The self-similar op-
tical pulses usually have both temporal and spectral intensity profiles with a parabolic

shape as well as an up-chirp. It is parabolic not only near the pulse peak, but also
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well towards the wings up to the point where the intensity goes to zero. Along the
active fiber amplifier, the parabolic pulse grows self-similarly in both width and mag-
nitude, no matter its temporal or spectral profile. Unlike solitons where both pulse
durations and pulse shapes are preserved, the similariton pulses maintain their shapes
asymptotically and their duration keeps increasing. As its name implies, a similariton
is self-similiar until it reaches gain saturation or gain bandwidth, or arrives at the
boundary of the fiber amplifier.

The chirped parabolic pulse is the asymptotic solution for long propagation dis-
tances in active fibers. After growing in a sufficiently long propagation length, the
resulting pulse parameters get decoupled with the shape or duration of the seeding
pulses, because of the self-similar nature. Theoretically, the peak power and duration
of the pulse after a long propagation length depend only on the energy of the seeding
pulse. Parabolic similaritons have a number of remarkable properties, and particu-
larly important in the context of fiber amplifiers for generating high-energy ultrafast
pulses. Although similaritons come from fiber amplifiers without cavity boundary
conditions at the beginning, people have broadened its concept to normal dispersion
nonlinear laser cavities by either adding another section of anomalous dispersion to
compensate the chirped phases [22, 93, 97], or using a narrow bandwidth filter to cut
off the chirped frequencies [97, 106].

The latter approach is easy to get confused with dissipative solitions. A self-similar
asymptotic solution can be produced in active fibers with nonlinearity, normal disper-
sion, spectral filter and saturable absorber, almost the same condition as dissipative
solitons. However, unlike dissipative solitons, a similariton decouples from fiber pa-
rameters and grows self-similarly in both spectral and temporal domains, relying on
a local attracting mechanism. Because of its own nature, similaritons have large tem-
poral and spectral breathing ratios when produced inside the laser cavity, and a very

narrow bandwidth spectral filter need be inserted in the cavity for the roundtrip pe-

93



riodical boundary conditions. The effect of spectral filtering is so strong and lumped
at one point of the roundtrip, and cannot be modeled as a distributed element which
is necessary for dissipative solitons. In our paper, we focus on dissipative solitons be-
cause we limited the calculation bandwidth for computational efficiencies, and there

is not enough room for a large spectral breathing to support similariton simulations.

3.3 Quantitative model of dissipative solitons

In passive mode locking, the most important physical processes in shaping a pulse
include accumulated linear phases from GVD, nonlinear phases from SPM, amplitude
modulation through saturable absorption, and bandpass spectral filtering. They are
all critical for the formation of dissipative solitons. A satisfying quantitative model
needs to take these physical effects into account.

Compared with conventional solitons which are conservative, the dissipative effects
make it possible to derive a solution in a normal dispersion regime where the output
pulses are highly chirped. An all-normal-dispersion fiber laser [97-100] is considered
one of the simplest structures to produce dissipative solitons, where the breathing of
the pulses is reduced as a result of the absence of a dispersion map. Another feature
of an all-normal-dispersion fiber is that the stable solutions exist with a wide variety

of parameters, leading to several different temporal and spectral shapes [94, 98].

3.3.1 Cubic-quintic complex Ginzburg-Landau equation

The Haus master equation, also known as the cubic Ginzburg-Landau equation
(CGLE), has been used widely to model mode-locked laser behaviors for the past
two decades with significant success [16, 81, 82, 109-112]. As an extension of NLSE,
a cubic real term for saturable absorption is included as self-amplitude modulation.
However, some typical stable dissipative soliton solutions with steep edges in an all-

normal-dispersion fiber could not be directly derived from the master equation, but
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from one of its generalizations: the complex cubic-quintic Ginzburg-Landau equation
(CQGLE) [82, 94, 113]. In the CQGLE, the SPM term is still cubic, while the

saturable absorption term is real quintic. A typical CQGLE can be written as:

g—f =gF + (l —ig)aQ—E+(a+i7)|E\2E+5|E\4E. (3.1)

From left to right, ¢ is net gain, 1/ is related to filter bandwidth, D is GVD pa-

rameter, o and 0 are the cubic and quintic parameters respectively for amplitude
modulation by a saturable absorber, and v denotes the SPM.

It has been shown that the CQGLE has some analytic solutions for dissipative

solitons with variable spectral and temporal shapes in an all-normal-dispersion fiber.

Fig. 3.1 from Ref. [94] indicates some possible types of dissipative soliton solutions.
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Figure 3.1: The theoretical solution of CQGLE with several possible different pulse shapes.

3.3.2 Nonlinear Schrodinger equation

The CQGLE can be considered an extended NLSE, where nonlinear amplitude
modulations such as spectral filtering and saturable absorption are all incorporated.

With an appropriate model shown in Chapter 2 describing these effects, we may
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also use the NLSE method to simulate the dissipative soliton system with normal
dispersion.
Starting from NLSE, we can use Eq. (2.1), (2.3) and (2.8) again to describe the

fiber laser behavior:

oE 1 or 1 0’°F 9
— = —(g—a)F —B;— +=(By —b)— +1v|E|’E
0.~ W E= A 5B mib) s + lELE,
g = 90
= ——
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« = —
SA 1+’E|2
Ps 4

with a positive GVD value (5 here.

These equations build a dynamic model suitable for split-step calculations in pro-
gramming, for a mode-locked single fiber in the dissipative environment with normal
dispersion. Every parameter in our dynamic NLSE model has an evident physical
meaning, without the requirement of artificially taking a quintic amplitude term into
account as in CQGLE. Also, our NLSE model provides more flexibility, so that we can
easily attach a lumped 50:50 directional coupler to it (as in Chapter 2), connecting
two channels into one array. In our model, only one lumped SESAM will be used in
the array as the partial reflection to mode lock all channels, while CQGLE models
the saturable absorption as distributed everywhere in each fiber. Similar to CQGLE,
our dynamic NLSE model also includes the linear and nonlinear gain and losses, as
well as linear and nonlinear phase modulations, which are necessary for generating
dissipative solitons. Thus it is reasonable to build the model in this way to describe
the behavior of dissipative solitons.

To verify our model and simulation coding, we first apply it on the single fiber
structure in Fig. 2.10. Several typical shapes of dissipative solitons are produced

in Fig. 3.2, using different fiber parameters within an active all-normal-dispersion
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fiber. It qualitatively matches these typical solutions of CQGLE analytically and

experimentally [94] and therefore confirms on the validity of our numerical simulation

model.
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Figure 3.2: Some simulation results of our dynamic NLSE model. v = 0.005m~ W~ for
(a) and 0.003m~'W~! for (b) and (c). B2 = 0.023ps?/m for (a), 0.075ps?/m
for (b), 0.24ps?/m for (c). Psa = 9.3W for (a) and (b), 0.93W for (c).

3.3.3

Simulation result for a single Yb-doped fiber laser

Here we present the simulation result for a single Yb-doped fiber laser cavity, oper-

ating at 1.060um wavelength for normal dispersion. Fig. 3.3 shows the unidirectional

cavity model with an active single mode all-normal-dispersion fiber (with a uniform

and positive GVD parameter). A lumped fast saturable absorber is connected to the

end of fiber, to provide the nonlinear loss for mode locking. 12% of the total output
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power is fedback to finish the roundtrip in the ring cavity. The output pulse can be

dechirped later to achieve high peak intensity.
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Figure 3.3: The structure of a ring cavity. A fiber amplifier is modeled with positive GVD,
Kerr nonlinearity, gain saturation and spectral filtering. One end of the fiber
connects to a lumped saturable absorber.
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Figure 3.4: Simulation results for a single channel Yb-doped fiber. (a) The spectrum. (b)
The pulse packet in the roundtrip time window. (c) The pulse profile with
instantaneous frequency. (d) The transform-limited pulse.

Here the unsaturated gain go is 1.76m™!, the gain saturation energy FE,q is 7.2nJ,
the nonlinearity 7 is 0.003W~'m™!, and the dispersion loss b is 0.13ps?/m for spectral

filtering. With a fiber length of 8.083m, we have simulation result shown in Fig. 3.4.
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The pulse energy is 10.17 nJ and the average output power is 258.6 mW. The pulse
is chirped with a FWHM about 30 ps.

3.4 Dissipative solitons in fiber laser arrays

In mode locking operation where short pulses are generated, we are able to scale
up the energy carried by the pulse packet with coherent beam combining. Instead
of a single pulse per roundtrip, a pulse packet with a tunable high repetition rate is
produced, as a result of the spectral beating between different cavity lengths in the
array [62, 64]. The pulse interval is theoretically determined by AT = nAL/c as a
unidirectional ring cavity, where n is the refractive index and AL is the fiber length
difference between two channels. Accordingly, the spectrum is no longer continuous,
but only exists near the common longitudinal modes for both channels. Therefore the
separation between two adjacent array modes is given by Af = 1/AT = ¢/(nAL),
which is also the temporal pulse repetition rate. It is tunable because we can easily

control AL to adjust it.
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Figure 3.5: The Mach-Zehnder interferometer structure for mode locking of two coupled
fiber lasers. There is an angle cleave at one port while a saturable absorber
is connected to the other output port to provide feedback and a mode locking
mechanism.

A unidirectional Mach-Zehnder interferometer structure as shown in Fig. 3.5 is
used. A 50:50 directional coupler connects two Yb-doped fibers, with one arm con-

nected with an angle cleave and the other arm fedback to the fibers after a saturable

absorber. Both channels are identical in their pumped power, GVD, nonlinearity, gain
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saturation power and loss dispersion parameter, but with slightly different lengths:
8.083m and 8.003m. We keep other cavity parameters the same as in our simulation

result for one single channel in the Section 3.3.
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Figure 3.6: Simulation results for a two-channel fiber laser array with v = 0.003m~'W~!
and B2 = 0.023ps?/m. (a) The spectrum. (b) The pulse packet in the roundtrip
time window. (c) The pulse profile with instantaneous frequency. (d) The
transform-limited pulse.

From the simulation results in Fig. 3.6, the average output power is 536.5 mW.
Since there is a pulse packet with more than one pulse as a consequence of spectral
beating, we select the pulse with highest energy, which is 12.71 nJ. The combining
efficiency is 79.72%, defined as the ratio of the output power through the SESAM port
to the total power from both the SESAM and the angle cleave port. The remaining
power leaks from the laser cavity through the port with angle cleave. The pulse
is chirped and elongated to 140ps FWHM, as a result of the interplay of normal

dispersion and nonlinearity.
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3.4.1 Comparisons between positive and negative GVD

To demonstrate the difference between positive and negative GVDs, a control
group is provided in Table 3.4.1 and Fig. 3.7 with —0.003ps?/m GVD for Er-doped
fibers at the wavelength of 1.545um. The result found in anomalous dispersion has
a much broader bandwidth, much shorter pulse duration, and also closer to the
transform-limit. It is well known that the pulses in anomalous dispersion are vul-
nerable to wave-breaking at high peak intensity as a result of nonlinear effects. By
contrast, the chirped pulses in normal dispersion are more robust with a lower peak
intensity and a higher pulse energy. By removing the chirp, the pulses can be com-
pressed for higher peak power. Therefore, to contain more power per pulse without

wave-breaking, normal dispersion is preferred to the anomalous dispersion.
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Figure 3.7: Simulation results from a two-channel Er-doped fiber laser cavity in anomalous
dispersion. (a) The spectrum. (b) The pulse packet in the roundtrip time
window. (c) The pulse profile with instantaneous frequency. (d) The transform-
limited pulse.
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Table 3.1: Comparison between Yb-doped and Er-doped fiber laser arrays, with
positive and negative GVD parameters respectively.

By (ps?/m) 0.023 -0.003
Output power (mW) 536.5 17.27
Max pulse energy (nJ) 12.71  0.086

Combining efficiency (%)  79.72  85.66
Chirped pulse FWHM (ps) 140 1.5

Comparing the results for positive and negative GVD (Fig. 3.6 and Fig. 3.7), we
find that with coherent beam combining, the dissipative solitons in normal dispersion
two-channel Yb-doped array can carry about two orders higher energy than the Er-

doped array.

3.4.2 Effects of nonlinearity

To investigate the impact of nonlinearity, Fig. 3.8, Fig. 3.9 and Table 3.4.2 give a
comparison with two other v values: 0.0015 and 0.0045m W', in addition to v =
0.003m~*W~1in Fig. 3.6. A typical v value for fibers is at the order of 0.001m W1,
which can be increased by reducing the fiber’s effective cross section area A.;¢. The
combining efficiency drops slightly with the increase of nonlinearity, but still remains
above 78%. Accordingly, the time-average output power drops together with the
combining efficiency. The positive GVD and the SPM from nonlinearity both increase
the chirp. As a result, higher nonlinearity brings a broad spectral bandwidth and
elongates the temporal duration.

Therefore, we have built a mode-locked beam combining system in the normal
dispersion regime. A good combining efficiency gives the system a higher power out-
put than a single-channel fiber laser, and the stable dissipative solitons give it higher
pulse energy than anomalous dispersion, and make it more robust. This approach

provides the possibility of achieving a higher pulse energy and dechirped peak power,
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Figure 3.8: Simulation results for v = 0.0015m~'W~!. (a) The spectrum. (b) The pulse

packet in the roundtrip time window. (c) The pulse profile with instantaneous
frequency. (d) The transform-limited pulse.

Table 3.2: Comparison among different nonlinearity parameters.

v (m™ W) 0.0015 0.003 0.0045
Output power (mW) 608.4 536.5 516.4
Max pulse energy (nJ) 14.44 1271 12.36
Combining efficiency (%) 84.18 79.72  78.49
Chirped pulse FWHM (ps) 80 140 200

due to two factors: scaling up the total output energy of the pulse packet by beam
combining, and increasing the energy carried by every pulse by dissipative solitons in

normal dispersion.
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Figure 3.9: Simulation results for v = 0.0045m~'W~!. (a) The spectrum. (b) The pulse
packet in the roundtrip time window. (c) The pulse profile with instantaneous
frequency. (d) The transform-limited pulse.

3.5 Pulse train operation

A mode-locked pulse train with high power and GHz level pulse repetition rate
is attractive in a great number of applications such as optical clocking, high-speed
optical sampling, telecommunication, ultrafast spectroscopy, and precision metrology.
In fiber lasers, however, there is much difficulty in getting such a high pulse repe-
tition rate because of the cavity length limit. Therefore, some techniques including
harmonic mode locking are used for pulse train generation. We found that the high
pulse repetition is an intrinsic property as a consequence of the spectral beating in
a coherent beam combined fiber laser cavity. Hence it becomes meaningful to use
coherent combining to produce a stable and robust pulse train with high power and

a high repetition rate.
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3.5.1 Pulse repetition rate

In conventional mode locking operation, one pulse is generated per roundtrip, and
it repeats every roundtrip so that the pulse interval is exactly the roundtrip time,
which is proportional to the cavity length. Hence the pulse repetition rate is inversely
proportional to roundtrip time and cavity length. In order to get a high repetition
rate, one may first consider making the length of laser cavity as short as possible.
While this simple method may work for solid-state lasers in free space, it is not that
easy for fiber lasers because the gain parameter is not high enough for doped silicon
fibers. A too short cavity length may not provide enough gain for the lasing threshold.
Besides the active fiber section, other devices such as WDM, polarization controllers,
directional couplers, and optical isolators/circulators may extend the length of cavity
even longer. A bidirectional cavity has doubled the roundtrip time from a ring cavity
with the same fiber length, further lowering down the pulse repetition rate. Generally,
it is not very easy to produce a fiber laser cavity shorter than 1m, which is almost a
limit for this basic approach.

A useful solution to increase the repetition rate for originally passively mode-
locked pulses is to multiply the number of pulses circulating in the cavity, and simul-
taneously make them uniformly distributed as shown in Fig. 3.10(a). It is named as
harmonic mode-locking and was first observed in 1993 from an erbium-doped laser by
Grudinin et al. [53] The principle of harmonically mode-locked fiber lasers is to split
one single pulse circulating in the cavity into several pulses in the presence of high
pumping power. However, for passively mode-locked lasers, it becomes a challenge to
ensure constant pulse spacing, since pulses are usually randomly located in the cavity.
So the key part of harmonic mode locking is to make these pulses self-arranged to
a stable and well-organized pulse train, with a repetition rate as a multiple of the
longitudinal mode separation. Furthermore, the pulses are not always mutually phase

coherent [3]. Driving the modulator of an actively mode-locked laser with a harmonic
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of the resonator’s round-trip frequency can lead to equidistant multiple pulses. In
this approach, we need an additional active control on amplitude and phase modu-
lation of the intracavity field, involving more complex hardware. Such harmonically

mode-locked system costs more since it is more complicated and larger in size.
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Figure 3.10: Increase the pulse repetition rate. (a) Harmonic mode locking multiplies the
number of pulses circulating in the cavity. (b) An external etalon is used for
spectral elimination.

Another strategy is to multiply the repetition rate externally with Fabry-Pérot
filters by spectral elimination as in Fig. 3.10(b) [56, 57]. After exiting the laser,
each pulse enters an external Fabry-Pérot cavity with a much shorter cavity length.
It bounces back and forth in the external cavity and a series of pulses are hence
generated. For one thing, high finesse etalon filters are relatively lossy elements; for
another, this spectral elimination approach can maintain the phase coherence between
the multiplied laser pulses. It works at a cost of loss of laser power. Moreover, such
external cavity is more sensitive to the frequency drift. To better understand the

term of “spectral elimination”, the concept of frequency comb need be introduced
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first.

3.5.2 Frequency Comb

To explain the physics behind a pulse train, we need to transform the temporal
train into frequency domain. If the pulses are mutually coherent in a regular pulse
train, the optical spectrum of the pulse train is a frequency comb after Fourier’s
transform, where the spacing of the lines is just the pulse repetition rate. If the pulse
train is infinitely long, its Fourier spectrum consists of infinitely narrow lines. As
an optical spectrum with equidistant lines, a frequency comb has many applications
such as an optical clock [114, 115].

Figure 3.11 shows the temporal and spectral profiles of a pulse train. The period-
icity of an infinitely long pulse train is represented by a series of Dirac delta functions.
After a convolution with the pulse shape envelope, we get the temporal profile for
the train. At the same time, every term can be Fourier transformed to get their
spectral correspondence. The Fourier transform of an infinitely long train of Dirac
delta function is also an infinite train of Dirac delta function, which has a name of
frequency comb. Also, the convolution operation corresponds to multiplication after
Fourier transform. The product of a single pulse’s spectral envelope and a frequency
comb gives the spectral profile of the pulse train. The discrete spectrum in a fre-
quency comb corresponds to the temporal periodicity. It is seen that the distance
between two adjacent teeth in a frequency comb is exactly the pulse repetition rate
[58, 116, 117].

For spectral elimination, the external etalon cavity forms a frequency comb de-
termined by its own length. Its design motivation is to make the repetition rate, i.e.
the teeth separation in the frequency comb, much higher than the longitudinal mode
separation. Therefore, in the spectrum, a frequency comb with high line separation

reduces the density of modes and eliminates most modes between adjacent teeth of
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Figure 3.11: Tllustration of an infinitely long pulse train profile in temporal and spectral
domains. (a) In time domain, it is a convolution of a single pulse shape
envelope and an infinitely long pulse train with Dirac delta functions. (b) In
frequency domain, it is the product of the spectral envelope of a single pulse
and an infinitely long frequency comb, as a Fourier transform from (a). Red
arrows denote Fourier transform.

the comb.

Now let us return to the array modes with coherent beam combining in Chapter
2. Determined by the channel length difference AL, the separation of array modes,
i.e. the repetition rate, can be much higher than the longitudinal modes separation.
That is to say, similar to an external Fabry-Pérot filter, the array modes also perform
as an effective frequency comb to the mode locking system. It explains why the pulse
packet has a high repetition rate among its pulses, no matter what the sign of GVD

is.

3.5.3 A new approach to a robust pulse train with high repetition rate

Besides the advantages as dissipative solitons, a pulse packet is very useful in
clocking applications especially once it becomes a continuous pulse train, i.e. the
pulse packet is of the same length as the roundtrip time so that the pulse packet
in each roundtrip gets connected as a long train. Also, the pulses inside packet are

required with a uniform interval. Such a high pulse repetition rate is highly valuable in
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many applications. As shown in last section, more than one pulse per roundtrip is the
key technique for increasing the repetition rate, as the roundtrip time cannot be too
short for a fiber laser system. The array beating effect from coherent beam combining
performs as a natural approach for this goal, together with all advantages of passive
elements such as low cost and simplicity. However, the pulse packet durations in our
previous results are not long enough. Since the pulse separation between any two
adjacent pulses is determined by AT = nAL/c, we can increase AL a little to raise

the pulse separation, and hence elongate the pulse packet.
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Figure 3.12: Pulse train results from two-channel beam combining for fiber lengths 4.53m
and 5.00m. (a) The spectrum and its zoom. Each circle denotes a longitudinal
mode. (b) The temporal profile in a full roundtrip time. (c¢) The chirped
output pulse. (d) The compressed pulse.

Here we chose the lengths of two channels as 4.53m and 5.00m respectively. The

GVD and nonlinearity are 0.023ps?/m and 0.003m~'W~! as usual. The simulation

result is shown in Fig. 3.12. There is a long pulse packet covering almost the whole

roundtrip time in its temporal profile. Furthermore, it is repeated every round trip,
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making it similar to a pulse train modulated by a relatively slow envelope. So there
are simultaneously two repetition rates here: one is the intrinsic high repetition rate
of pulses, and the other is the relatively low repetition rate of pulse packets. The
separation between pulses is AT = nAL/c, and the modulation envelope period
approximately equals round trip time.

We now consider a special commensurate case where the fiber lengths are exactly
integer times of their length difference AL, such as 4.50m and 5.00m, while keeping
everything else unchanged. An interesting result of an ideal pulse train with a high
repetition rate is achieved in Fig. 3.13, with uniform pulse intensities and uniform
pulse separations in the whole roundtrip time window. Here we have 10 identical
pulses per roundtrip time, so the repetition rate has risen 10 times from a single-
channel fiber laser with fundamental mode locking. Since the total energy is almost
equally distributed among these pulses, the energy and peak power of each pulse are
decreased from the incommensurate case.

In the view of Fourier transform, the packet temporal width is controlled by
the width of the spectral spike, and an infinitely narrow spectral spike corresponds
to an infinitely long pulse train in the temporal profile. For commensurate fiber
lengths, the array modes are separated by Af = ¢/(nAL), which is exactly a multiple
of the longitudinal mode separation ¢/(nL) for each channel. That is, all array
modes can fall on longitudinal modes and become its proper subset. So each spectral
spike contains only one mode frequency and is almost infinitely narrow. If it is
incommensurate, however, not all array modes belong to the set of longitudinal modes.
At the frequency where an array mode should exist accurately from beating effects,
there are no longitudinal modes at that specific point. If so, the array mode will be
substituted by its nearby longitudinal modes. Therefore the spike gets some width
as shown in Fig. 3.12. That explains the difference between commensurate and

incommensurate cases. There is no longer amplitude modulation for commensurate
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fiber lengths.
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Figure 3.13: A comparison of Fig. 3.12 with commensurate lengths 4.50m and 5.00m (They
are integer times of the difference 0.50m).

3.5.4 Discussion on the results

Comparing with the lossy external Fabry-Pérot filter, the directional coupler is
basically lossless. The laser power does not get reduced, but combined from an array
with two or more channels. Therefore we may develop a new approach to a robust
pulse train with high repetition rate from coherent beam combining, with advantage
compared to conventional methods.

In the real world with laser noises, however, the pulse train may not be completely
stable and infinitely long. We now consider a pulse train with finite time duration.
Figure 3.14 shows a finite and amplitude modulated pulse train, in contrast of Fig.
3.11. After a Fourier transform, the frequency comb no longer consists of Dirac delta

functions, but with some spectral spikes of finite width. This can be understood
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physically: generally speaking, the array modes of the array are not necessarily the
longitudinal modes of each channel. Hence the longitudinal modes which are the

closest to that frequency points (from right and left sides) are used to substitute the

array mode.
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Figure 3.14: Tllustration of a finite pulse train profile in temporal and spectral domains.
(a) In time domain, it is a convolution of a single pulse shape envelope and
a finite (also amplitude modulated) pulse train with Dirac delta functions.
(b) In frequency domain, it is the product of the spectral envelope of a single
pulse and a finite long frequency comb, as a Fourier transform from (a). Red
arrows denote Fourier transform.

In this case, each comb tooth is no longer infinitely narrow on one frequency point,
but has a finite width of a few array mode separations. Such a finite spectral width
corresponds to a temporal pulse train with finite length. Consequently, we got the
temporal and spectral profiles as shown in Fig. 3.14. Both of them are of finite
lengths and finite spike widths.

We may understand Fig. 3.11 as a particular commensurate case, where all array
modes belong to the set of longitudinal modes of each fiber channel. Fig. 3.14

is a more general case. One analogy to them is the external Fabry-Pérot cavity.

Unless the length of the Fabry-Pérot cavity is accurately controlled so that the laser
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cavity’s optical length is an integer multiple of it, there would be pulse amplitude
fluctuations just as our incommensurate results above. So we may consider coherent
beam combining as lossless spectral elimination, which forms a frequency comb with
array modes and reduces the mode density on the spectrum. The longitudinal modes
between two adjacent comb teeth are eliminated in the laser cavity. For the same
reason, it becomes challenging to scale up the number of channels in mode-locked
operations unless each channel length is accurately controlled to be commensurate as

in Section 2.6.

3.6 Conclusion

In this Chapter, we have carried out simulations of the dissipative solitons in simul-
taneous passive coherent beam combining and mode locking where the cavity is of all
normal dispersion, with a dynamic model based on the NLSE. With balances on both
amplitude and phase modulations, dissipative solitons in an all-normal-dispersion
fiber are more stable and robust to wave-breaking than in an anomalous dispersion
cavity. With coherent beam combining, a stable pulse packet of dissipative solitons
with a high repetition rate is produced every roundtrip. We are able to scale up pulse
energy and pulse packet energy carried by chirped dissipative solitons, while avoiding
wave-breaking.

We have shown that a stable pulse train can be generated in a passively coherently
beam combined fiber laser array. The pulse packets have a modulation repetition rate
comparable with the roundtrip time, while the pulses have a much faster repetition
rate inside the pulse packet. Commensurate fiber lengths degenerate the pulse packet
modulation, and a regular pulse train with uniform pulse intensities and a high rep-
etition rate is achieved. The physical explanations for such phenomenon have also
been presented related to the frequency comb. Simulation results have validated our

theoretical analysis.
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CHAPTER IV

Tunneling in Directional Couplers [138]

4.1 Introduction

Our beam combining model relies on directional couplers. As a typical four-port
device as shown in Fig. 2.1, a directional coupler is connected to two discrete fiber
channels at one side, and to a partial reflector and an angle cleave at the other
side. It plays a key role in our passive coherent beam combining model, as the intra-
cavity connector between the fiber amplifiers and output/feedback signals, and also
the inter-cavity connector between two discrete channels. The 50:50 ratio guarantees
that each channel contributes equally to the whole cavity. In addition, it minimizes
the possible cavity losses leaked through the angle cleave port as analyzed in Section
2.6.3, to optimize the system in its best efficiency. Inside a directional coupler, two
parallel fiber cores are placed together very close to each other, so that the power from
each channel can exchange and redistribute. Therefore, it is interesting to explore
the dynamic process how a directional coupler works, how the powers and phases are
redistributed, and more importantly, how the mode-locked pulses tunnel inside it.

In this chapter, we will first take a brief review on the optical field transfer matrix
from the view of mode power distribution and phase change, using the coupled-mode
theory [118]. Next we will focus on the mechanism of the coupling process, the

evanescent wave, which transfers energy between two fiber cores by means of frus-
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trated total internal reflection (FTIR). The fiber cladding acts as a barrier to prevent
the optical wave propagating inside. A small evanescent field penetrates the less dense
cladding but carries no time-average power in the direction normal to the interface.
When another fiber core is brought within a few wavelengths of the first interface, the
evanescent wave can penetrate this second fiber core and excite a propagating wave
that transports energy away from the interface. This phenomenon of FTIR is the elec-
tromagnetic analog of quantum tunneling, with the cladding gap between the cores
serving as the potential barrier within which the propagation constant is imaginary
[119]. In fact, the directionally-coupled waveguides are refered to as tunnel-coupled
waveguides in the Russian literature [120-124]. Because of the near-exact analogy
between FTIR and quantum tunneling, there has been much interest in defining, cal-
culating, measuring, and interpreting the time delay in FTIR as it would shed light
on the dynamics of the quantum tunneling process, which latter process is difficult
to probe directly [125]. Recently tunneling an optical potential well has been imaged
directly by Tomes et al. [126].

Similar to 1-D electromagnetic/optical tunneling with undersized waveguides or
periodic dielectric band gap structures, FTIR tunneling transports the wave longitu-
dinally across the barrier. The difference is that FTIR tunneling is a 2-D problem
where the incident beam suffers a lateral Goos-Hénchen shift at the same time [127].
(To clarify, in this chapter we use “longitudinal” or “normal” to denote the direction
across the barrier and “lateral” or “transverse” for the direction in parallel with the
fibers, in order to focus on the FTIR tunneling from one fiber to another.) Here we
analytically calculate and interpret Goos-Hanchen shift with clear physical meaning.

Interestingly, an optical pulse may appear “superluminal” in optical tunneling,
including FTIR tunneling inside a directional coupler [128-138]. That is, the group
delay time between a pulse’s peak entering and exiting the barrier appears shorter

than the propagation time required at a speed of c. Furthermore, it saturates with
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the increase of the barrier width (Hartman effect) [139-141]. In this chapter we will
make a thorough study on 2-D FTIR tunneling.

In the laser cavity, a directional coupler has much shorter length (a few centime-
ters) than the active fibers, so we neglect the influence of nonlinearity and dispersion
in the tunneling analysis of this chapter. For single-mode fibers, we assume the inci-
dent angles are almost uniform for the FTIR incident beam. The distance between
two fiber cores, i.e. the barrier width, is within a few wavelengths for a high cou-
pling parameter. Consider a mode-locked pulse of 1ps. In a medium with refractive
index n=1.5, its spatial length in the fiber is about 200um, which is hundreds of
wavelengths. Since the pulse here is relatively long compared to the barrier width,
the tunneling delay time is much shorter than the temporal pulse duration. So it
is very reasonable to approximate the tunneling process as “quasi-static” [142-144].
A relatively long pulse corresponds to a relatively narrow spectral bandwidth. To
further simplify, we consider a 2-D dielectric waveguide model rather than the actual
cylindrical fibers, while the main physics and conclusions are not affected. Using a
2-D linear and non-dispersive model, we show that the group delay for FTIR is equal
to the “dwell time” plus a “self-interference delay”, that is, the lifetime of stored
energy in the gap between the fiber cores and in the partial standing wave in front of
the gap. As in other manifestations of tunneling the saturation of group delay with
barrier length (Hartman effect) is explained by the saturation of stored energy in the

region defined. No superluminal propagation is implied.

4.2 Power distribution in directional couplers

It is total internal reflection (TIR) that confines the light propagating inside a fiber
core. From the view of ray optics, the oblique incident beam reaches the cladding
from fiber core, and then gets total-internally reflected if the incident angle exceeds

the critical angle. As the light enters cladding, it becomes evanescent surface wave
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and decays exponentially with the penetration distance into the cladding. Inside an
optical directional coupler, two fiber cores are put together in parallel as shown in
Fig. 4.1. The distance is so close that the surface wave has not vanished in the
cladding between two fiber cores. In other words, the barrier is not thick enough to
isolate optical waves. As a consequence, the TIR is frustrated and the light tunnels

through the cladding barrier to the other fiber.
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Figure 4.1: Upper: the structure of a directional coupler where two fiber cores with higher
refractive indices are very close and parallel to each other. Lower: the single
transverse mode in each fiber core tunnels to and gets coupled into the other
core.

First we consider the coupling process in its steady state as power flow’s redistribu-
tion by the perturbation on two co-directional propagating modes in two fiber cores
respectively. Coupled-mode theory [118] is a powerful analytical model to analyze
the power distribution in directional fiber couplers. It considers the change of refrac-

tive indices between core and cladding as shown in Fig. 4.1 as a weak perturbation

n(z) =n+ An(z). The optical field from each single-mode fiber core extends to the
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other one, and therefore the modes from two cores can get coupled as they propagate
along the waveguide [145, 146]. Figure 4.1 gives an example for the coupling between
two modes from two close fiber cores, which is common for a directional fiber coupler.

With a weak perturbation on indices, we use slow-varying envelope assumption
to neglect higher order terms. The coupling among multiple fibers can be described

by coupled-mode equations [118]:

dA,

+
dz

= iCop Ay expli(B, — B,)2], (41)

M

where A, is the wave amplitude for the vth fiber, with a propagation constant of 3,.
This mode is coupled from the mode in another fiber with A, and g, by a complex
coupling coefficient C,,. The plus sign is taken if mode v is forward propagating
along z, otherwise the minus sign is used. The coupling effects with all fibers are
summed over index p in Eq. (4.1).

In a directional coupler, two single-mode fibers get coupled with co-directional
propagation Z, the coupled-mode equations reduce to a simpler form with analytical

solutions:

dA , . .

d_zl = 0 A +iCr Az expli( B2 — 1)),

dA, , . .

E = ZCQlAl exp[—z(ﬁg — 51)2] + ZCQQAQ, (42)

where A; and A, are the mode amplitudes in each fiber with propagation constants
WEQ

B1and Bo. With j = 1,2 and k = 1,2, Cj;, is defined as e i (IDj*Aan(I)kdxdy, where
®; and ®; are normalized intensities for modes j and k. For j # k, Cj;, provides the
amplitude exchanging between two fibers. On the other hand, C};’s physical meaning

is the tiny change on the propagation constant of each mode itself.
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To separate C}; and Cjj, terms, we expand Eq. (4.2):

Al = A/l exp(z’C’llz),

A2 = ZQQXP('];CQQZ),

dA =

_1 = 'i012A2 exXp [ZQASZL

4z

dA x

e i A expl-2052] (43)

where 2A3 = By + Cyy — 1 — C1 stands for the possible phase mismatch.
By solving the coupled-mode equations Eq. (4.3) with boundary conditions A;(0) =
Ay and By (0) = By at position z = 0, we can decouple A; and A, terms and derive

a general analytical solution:

sin (Z\/ ABQ + 012021>
VAB?+ C12Cy

Al (Z) = AloeiiAﬁz COS | 2/ AﬁQ -+ 012021 —+ ZAﬁ

sin <z AB? + 012021)
vV ABF? 4 C1Cy ’

AQ(Z) = A20€iA,Bz COS | 2/ ABQ —+ 012021 — ZAﬂ

sin <Z\/ AB2 —+ 012021)
VAR + C2Cy .

Assume a good phase matching 2A5 = 0, and if the two fibers are identical that

+Z'A20€7iA’BZ 012

sin (z AB? + 012021)
vV AB? 4 C190y

+iA10€iA’82021

(4.4)

Chs = Cy1 = C based on symmetry, we can further simplify the results to be:

Ai(z) = Ajcos(Cz) —iAgsin(Cz),

Ay(z) = —iAsin(Cz) + Ay cos(Cz). (4.5)

It is clear that the power |A;(2)|? = | Ayo|? cos?(Cz)+|Agy|? sin?(Cz) and | Ay (2)|? =
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| Ag|? cos?(Cz) + |Ajg|?*sin®(Cz). Thus the power conservation for lossless couplers
is confirmed with [A;(2)[* + |A2(2)[* = |A10]? + |Ag|?. For an ideal 3dB directional
coupler that distributes the energy equally (50:50) to each channel at the output end
(z = d), it is required that cos?(Cd) = sin*(Cd) = 1/2, therefore the coupling length

should be
mr

2 4
=2 4 4,

where m is an arbitrary integer. Take m = 0 for an example, the wave amplitude
transform matrix between the entrance z = 0 and exit z = d of the directional coupler

becomes

Ai(d) _ V2 —i/vV2) [ Aw | (4.7)

Ay(d) —i/vV2 1/V2 | \ Ay

which is exactly the same transform matrix we have used in Chapter 2 and 3.

Besides the power distribution between two fiber cores of a directional coupler and
the steady state transfer matrix, we also need explore the physics of how the power
gets transported across the FTIR barrier, which is a region where light is evanescent.
In the following sections, we will build a rigorous electromagnetic model to analyze the
wave behavior in both transverse and longitudinal directions when tunneling through
an FTIR barrier. Both the spatial lateral displacement and the temporal group delay

will be analytically solved and interpreted in physics.

4.3 Evanescent waves

There are two groups of electromagnetic/optical waves: propagating ones and
evanescent ones. The first one is sinusoidal and in space and time, while the latter
one is exponential decaying with distance. With the separation of transverse and

longitudinal modes, a plane wave with exp(—iwt) time-harmonic term traveling in
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x-direction can be written as:
E =expli(k - v — wt)] = expli(k; - r; + kp7)], (4.8)

where k; and k, are the transverse wavevector and longitudinal wavenumber respec-
tively, and the E-field magnitude is normalized to |E| = 1 without loss of generality.
From Helmholtz’s equation, we have

f—f +k,°E =0, (4.9)
along 7 direction. The wave is propagating if k, = \/m is real, i.e. k; is
smaller than the wavenumber k = w, /e where w, i, and € are the angular frequency,
permeability and permittivity respectively in the medium. Otherwise it is evanescent,
indicating for imaginary k, and k; > k. Unlike the sinusoidal propagating waves,
evanescent waves are localized in the near-field and vanish exponentially as plotted
in Fig. 4.2. The penetration distance of an evanescent wave depends on |k, |, usually

only a few wavelengths.

Propagating waves

NAN

longitudinal distance from the source

(b) Evanescent waves

longitudinal distance from the source

Figure 4.2: Two solution forms of electromagnetic equations: (a) Propagating wave. (b)
Evanescent wave.
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Compared with propagating fields, the polarization of evanescent fields are a little
more complicated. Consider a homogenous dispersionless medium, the rotation of
time-harmonic fields “V x” equals “tkx” from Helmholtz’s equation. To simplify,
we assume k, = 0 so that k; = k., i.e. the wave propagates in the xoz plane. For
a TE plane wave where the E-field is purely in ¢ direction, we solve the fields from

Maxwell’s equations as follows:

E = —gexp(ik.z + ik,x),
L[ k. ks _ ,
= p (a‘?? - z?) exp(ik,z + ik, x), (4.10)

in which n = y/u/e is the wave impedance. For propagating wave whose k, is real,
the field vectors are shown in Fig. 4.3(a); for evanescent wave with imaginary k.,
the case becomes a little different. H-field remains the same form, while E-field is no

longer linearly polarized, but elliptical [147].

k
@) () N

Figure 4.3: An example of TE wave patterns. (a) Propagating wave. E, H, k meets right-
hand rule. (b) Evanescent wave. E is linearly polarized but H is elliptically
polarized.

In the propagating wave, the fields are linearly polarized and the magnitude |E| =

n|H|. However, k; > k in the evanescent wave and there is

— k%) +k?* _|E|
> —,
k n

1 = 2T TR T = @V(’Ct (4.11)
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The time-averaged H-field magnitude becomes larger and the H-field polarization
becomes elliptical. If k, >> k, i.e. the transverse wavenumber is extremely high, the
polarization of H-field is approximately circular, whose magnitude is much larger than
|E|/n. Simultaneously, with its large |k,| value, such evanescent wave decays very
fast with longitudinal distance. The time-average Poynting vector which indicates
the energy flow of the wave is S = Re(E x H*)/2 = 2k,/(2kn). As a consequence,
there is no time-averaged energy flux in the longitudinal direction  for an evanescent
wave.

Similarly, for a TM wave, H = gexp(ik.z + ik,x), E = n/k(Tk, — Zk,) exp(ik.z +
ik,x). Therefore the H-field is linearly polarized while the E-field is elliptical. The
magnitude of the E-field is larger than nH,. The representation of Poynting vector has
the same format S = Re(E x H*)/2 = &k, /(2kn), completely lying in the transverse

direction, too.

4.4 Power transportation in Frustrated Total Internal Re-

flection (FTIR)

In the half-space problem of TIR, no energy flux propagates into the second
medium in the normal direction. The situation becomes different in the slab problem
for FTIR, where a transmitted wave does tunnel through the barrier. Unlike tunnel-
ing through a periodic dielectric media where the tunneling wave is still propagating
with a decaying modulation, the wave inside a FTIR barrier is purely evanescent.
As in the previous section, an evanescent wave does not carry time-averaged flux in
its decaying direction. So we need first figure out how the power transfer is accom-
plished. To answer this question, we will solve analytically the complex EM field in
every point of the space and the reflection and transmission coefficients, in order to

calculate the energy stored inside each region together with the energy flux along and

83



across the boundaries.

4.4.1 Analytical wave field derivation

To simplify, we first use a 2-D geometry and plane wave to analyze the FTIR
structure as shown in Fig. 4.4. The ideal lossless medium in each region is assumed
non-magnetic with permeability po. Region 1 and 3 represent two identical fiber cores
while Region 2 is the cladding with a lower index. The permittivity is ¢; in Regions
1 and 3, and €; in Region 2 for the FTIR barrier. Of course there is €5 < €;. The
incident angle 6 > tan! \/% to ensure the TIR condition and the wave has to
tunnel instead of propagate from Region 1 to Region 3. s in Fig. 4.4 is a lateral
displacement for reflected and transmitted waves from the incidence position, which
we will discuss in the following section.

Assuming TE polarization the incident field in the first region is

E;, = —yexpli(k,z+ k.2)],
1
H, = — (xk, —zk,)expli(k,x + k,2)]. (4.12)
Wo

ky = kcos = w,/lp€r cos @ and k, = w. /o€ sin 6 denote the x and z components of
the wave vector k£ in Region 1.

The reflected field is given by

R
H, = — (xk.+2k,)expli(—k,a + k.2)], (4.13)
W o

where R = |R|exp(—i¢,) is the reflection coefficient.
In Region 2, the continuity of boundary conditions determine that the transverse
wavenumber £, is the same. For such a bounded slab problem, both the exponen-

tial decaying and growing waves should exist. These two evanescent waves are the
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Region 2

Figure 4.4: Geometry of the frustrated total internal reflection. The two cladding regions
are separated by a fiber core with lower refractive index.

eigenwave solution from Maxwell’s equations in this region, and can be written as:

E, = —yAexp(ik,z — kx),
A
H, = — (xk, —zir)exp (ik,z — kx)
WHo
E, = —yBexp(ik,z + kz),
B
H, = — (xk, + zik)exp (ik,z + kz), (4.14)
WHo

where ky = w,/ppez is the wavenumber supported in fiber core material and ko <
k, makes it evanescent on x direction. k = y/k,? — ky? is used to describe the
wave’s developing or decaying along z direction, and A and B are unknown complex

coefficients to be determined.
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With transmission coefficient 7' = |T| exp(—i¢y), the transmitted wave is:

E, = —yTexpli(k.,x + k.2)],
T
H, = — (xk, — zk,)expli(k,x + k.z)], (4.15)
WHo

There are four unknown complex coefficients R, T', A and B above in total. With

boundary conditions at x = 0, we have

Eiy + Ery - an + Eby7

H,.,+H,, = H, + H,. (4.16)

At the second boundary x = [, we also have

Ety = an+Eby7

H,, = H,, + Hy.. (4.17)

By substituting Eq. (4.13) — (4.15) into the boundary conditions, we have four

linear equations with four unknown coefficients:

1+R = A+B,
—k,(1—-R) = ir(B—A),
Texp(ik,l) = Aexp(—kl)+ Bexp (kl),

—k,Texp(ik,l) = irk[—Aexp(—rl)+ Bexp (kl)]. (4.18)
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The solution to Eq. (4.18) is:

—2k, (ik — k) exp (2kl)

A = RN 2 )

(ky +iK)” + (iky + k)" exp (2kl)
B — —2k, (ik + k)

(ko + k) + (ik, + r)? exp (251)
R = (kr2 + kz2 B k22> [1 — €Xp (2I{l>]

(ko + 1K) + (iky + &) exp (2k1)
dik,rexp [(—iky + k)]
(ky +iK)° + (iky + k)% exp (2k1)

(4.19)

By solving the optical fields in all three regions, so far we have determined the
fields in every point. From the field solutions, we have the reflectance |R|* and

transmittance |T'|* as

2(k,? + k?)? sinh?(kl)
—k,* + 6k,2k? + (k2 + K2)2 cosh(2kl)’
8k, K>

T? = . 4.21
d —k,* + 6k,2k2 + (k2 + k2)? cosh(2kl) (421)

R = (4.20)

The lossless relationship |R|? + |T)? = 1 is maintained here. There is an amount of
|T'|? power tunneling into Region 3 through FTIR. Note that only evanescent waves
are allowed inside the barrier gap. Next, we will illustrate how the power transfers

across the gap with these two evanescent eigenwaves.

4.4.2 Power tunneling through the barrier

In Region 2, there are only two evanescent eigenwaves as in Eq. (4.14). As known
from section 4.3, none of these eigenwaves have a nonzero time-averaged longitudinal

flux. Nevertheless, the total field in this region is given by their superposition

E = E,+E,

H = H,+H, (4.22)

87



Then we can get the time-averaged Poynting vector in Region 2 along & direction
1
Sy = SRe (B, +E;) x (H, +H,")] . (4.23)

By evaluating it with Eq. (4.14), we have

I Re(AB* — BAY) = PAB (4.24)

Sow =
2 2wiig W

Only the interference terms are left after removing the zero time-averaged longitudi-
nal Poynting vectors for each evanescent eigenwave. Because of such interference, a
nonzero power intensity Ss, is generated to transfer power inside the barrier. It is
the interference between growing and decaying evanescent waves that tunnels time-
averaged power in the normal direction across FTIR barrier. By substituting the

coefficients from Eq. (4.19), after some math we get

2k 3>
Sor = |R|? — - (4.25)
wp sinh? (k) (k,2 + K2)
In Regions 1 and 3, we can verify that
1
Siz = Re [(E; +E,) x (H*+H")]
_ (1—|R]*) + s Im [R exp(—2ik,)]
2wt dwpio o
1
ng = ERG [Et X Ht*]m
1k
- 712 = . 4.2
ST =5, (4:26)
At the boundary of z = 0, we can reduce S, to be
Sip = e (1—|RJ?) = Sar = S (4.27)
lz QW/LO 2x 3z .
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Here the power flow on & direction is conserved during FTIR tunneling process.
Meanwhile, there is some interference between the incident and reflected wave in
Region 1, putting a periodical oscillatory term in every wavelength until reaching its
boundary with Region 2. Such oscillatory term does not affect the power transferred
across the barrier. Once it enters the barrier, the flux in normal direction becomes a
constant.

On the transverse direction, however, there is a lateral displacement which requires
special care during the tunneling process, known as the Goos-Hénchen effect. A lateral
power flow in Z direction is a straight-forward conclusion in FTIR corresponding to
the nonzero transverse Poynting vectors S1,, S, and Ss,. It is such lateral power flow
that leads to the lateral displacement on the origin of reflected /transmitted wave from

the incidence point.

4.5 Goos-Hanchen shift

In Fig. 4.4, s denotes a small lateral displacement on 2 of the reflected /transmitted
beam from the TE incident point (z = 0,z = 0) in FTIR condition. Besides the
lateral spatial displacement, there is also a phase shift between the incident wave and
reflected /transmitted wave. Both spatial and phase shifts are related to the FTIR
incident angle. Since it is oblique incidence, there is always a transverse power flow
during the tunneling time.

During quasi-static FTIR tunneling, the incident energy is first temporarily stored
as the self-interference in the overlapping of the incident and reflected waves (in
Region 1), and also in the evanescent fields inside the barrier (in Region 2). Then
the energy gets released as either reflection or transmission after its lifetime. As a
consequence, the lateral Goos-Hénchen shift is a result of the transverse power flow
in front of and inside the gap in physics.

The calculation of the tunneling group delay in FTIR depends on the result of
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Goos-Hanchen shift. So we need quantitatively derive the Good-Hanchen shift before
starting analyzing the group delay. There are two major approaches for Goos-Hanchen

shift calculation.

4.5.1 Stationary-phase method

Conventionally, Goos-Hanchen effect is considered a coherence phenomenon of
finite incident and reflected beams [119, 148]. The Goos-Héanchen shift as well as the
group delay time are determined from the points of stationary-phase condition [149].
In this approach we consider a finite beam incidence with a small range of incident
angles in space, and with a small range of wave frequencies in time. In FTIR, the

locus of the incident beam is determined by a stationary point of the phase:

0P,

in which ®; = (kcos @)z + (ksinf)z — wt is the total phase of the incident beam. A
locus can accurately track the center line of the beam with a stationary phase point.
The lateral Goos-Héanchen shift can be determined with this idea, by comparing the
incidence locus position at the barrier entrance (x = 0,z = 0) and the reflected or
transmitted locus positions at the barrier exits [150, 151].

For the incident wave, the locus is z = xtan . At the barrier entrance, the locus
2(0) = 0. For the transmitted beam, &7 = —¢; + (kcos @)z + (ksinf)z — wt and the

locus at the barrier exit (x = [,z = s is determined by 0®7/00 = 0. The result is

99/ 00

z(l) = ltan 6 + —l

(4.29)

The lateral displacement between them is Goos-Héanchen shift s for the transmit-
99/ 08
kcos
coefficient T' from Eq. (4.19), we may get the final result for Goos-Héanchen shift.

ted beam, i.e. s = z(l) — 2(0) = [ tan 6 + . With the solution of transmission
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Similarly, solving the locus for the reflected beam, we are able to prove that the
Goos-Héanchen shift s remains the same for reflected or transmitted beams. Such
representation of s is related to the derivative of the Fresnel transmission/reflection
phase shifts to the incidence angle, whose physical meaning is not obvious enough
and it is not a direct result for judging the causality of the lateral shift.

With the same idea, the tunneling group delay can be solved by the stationary
phase in time domain [148, 150-155]. As an analog that the locus of a finite spatial
beam defined by 0® /96 = 0, the peak of a finite temporal pulse is defined by 0® /0w =
0. After similar algebra, the time delay between the pulse peaks entering and exiting
the barrier is
d¢y | Ok

S

_ — 4.
By By TF + ToH, ( 30)

Ty =

where the first term 77 relates to the Fresnel transmission phase shift, and the second
term 7gpy is the Goos-Hanchen shift divided by group velocity on lateral direction
1/(0k./0w).

It is noted that if the exit of the barrier is defined as the reflection point rather than
the transmission point, temporal delay remains the same after calculations, similar
to the lateral Goos-Héanchen displacement. Hence the tunneling process differs from
ordinary propagation. When the light energy gets released from the barrier, it does
not differentiate whether going forward as transmission or backward as reflection.

One drawback with this approach is the tendency to ascribe the Fresnel term 7
term to a longitudinal traversal time. Because this term vanishes in the limit of a thick
barrier, there have been claims of instantaneous barrier traversal by some workers
[133]. While the Goos-Hénchen term can be associated with a transverse propagation
because of the real wave vector in that direction, the term 77 cannot be associated
with longitudinal propagation since the fields in that direction are evanescent. In
addition, it is not clear whether the Fresnel term 7 also contains contribution from

lateral shift or not from this method.
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As in the analogous phenomenon of quantum tunneling, the interpretation of this
delay time has been controversial. For many years the group delay in tunneling has
been taken to be the traversal time of a wave packet from the entrance to the exit of a
barrier. Such an interpretation leads to endless difficulties, including a traversal time
that becomes independent of barrier thickness, a phenomenon known as the Hartman
effect [139].

Next we will introduce the other approach named energy flux method.

4.5.2 Energy flux method

Another definition of Goos-Hénchen shift is closely related to energy flux. There
is a time delay between the reflection/transmission wave and the incidence wave,
at the moment of light incidence on the barrier’s entrance, the incident energy flux
is not instantly reflected or transmitted away, but have to stay for a little while.
Therefore it becomes possible to evaluate Goos-Hanchen shift in the viewpoint of
energy conservation.

In Section 4.4 we have shown that there exists a transverse energy flux in Region 2
carried by the evanescent eigenwaves along 2. For the energy conservation in lossless
medium, the lateral power flow inside barrier completely sources from the incidence,
i.e. there must be an equal amount of incident energy flux penetrating across the
boundary between Region 1 and 2 in Fig. 4.5 [156, 157]. Simulatenously, the lateral
energy flux in Region 1 is not simply the sum of incident and reflected lateral energy
fluxes. There is some interference between the incident and reflected wave which
also contributes an additional lateral energy flux. Such interference occurs in the
overlapping area in Region 1, and often referred as “self-interference”, which is an
important part for Goos-Hanchen shift as well as the group delay.

The “self-interference” energy flux can be evaluated by introducing an appropriate

averaging process into the integral of the energy-flux density over the region of overlap
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of the two waves.

Region 2

Figure 4.5: The power flux chart for FTIR. There is a Goos-Hanchen shift between
the incident wave and the reflected /transmitted wave.

To sum up, from the view of the 1 energy flux during a TIR or FTIR process in
a lossless structure, the incident energy is stored in two places: inside the barrier in
the form of evanescent fields, and in the overlapping area in front of the barrier in
the form of self-interference between incident and reflected waves. These two parts
of energy correspond to the two orange shaded areas in Fig. 4.5. The prior one first
enters Region 2, and then moves upward along Z direction unless its dwell time in
the barrier expires. Finally it exits the barrier as the reflected or transmitted wave.
So the total lateral energy flux of this part can be written as fol Sy.dz, as an integral

from x = 0 to [. The latter one, nevertheless, gets internally reflected and remained
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in Region 1. It is temporarily stored as the self-interference energy in the overlapping
area between incident and reflected beams. It also flows upward along 2z direction
as shown in Fig. 4.5. In general, the overlapping area may extend to infinitely long
away if the beam is as wide as plane wave. Therefore, such energy flux can be written

as ffoo Sir-dz, where
1
Sirz = Slz — Siz — Srz = éRe (Ez X Hr* + Er X Hz*)z . (431)

In Section 4.4 we have shown that the & component of the self-interference energy
flux provides an the oscillating term in S7,, which can be eliminated in the manner
by averaging over a distance [ and taking the limit as [ goes to infinity or by simply
integrating over a wavelength. So only the non-oscillatory z component of the self-
interference energy flux, i.e. S;,.., is taken into account.

On the other hand, this transverse energy flux is induced by the light incidence on
the boundary z = 0. If we consider the normal direction, all the normal components
of incident flux reach the barrier’s entrance and get temporarily stored (either inside
the barrier or in front of the barrier). After the time of group delay, they are released
to produce the normal components of reflected and transmitted waves away from the
barrier.

Based on energy conservation, the total amount of energy flux temporarily stored

and released need to equal, no matter we consider it in & or Z direction. So we have

l 0 s
0 —00 0
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where s is the lateral Goos-Hanchen shift. Therefore

fol ngdl‘ + ffoo Szrzdx

Si Sz:c 7
fol So,dx fol wydx ffoo Sir.dx LDOO w;,dx
= =2 o+ a— (4.33)
fO wgdfﬂ 2 ffoo wirdx 2

The result in Eq. (4.33) can be connected with explicit physical meanings. We
start with the energy transport velocity which is defined as the Poynting vector over
the energy density of the electromagnetic field, i.e. v, = S/w [158]. In time-harmonic
field we take the time-averaged values for S and w. Thus energy velocity in the barrier
along the propagation direction Z can be given as vy, = Ss,/wy with energy density
in the barrier wy, = i[eﬂEa + Ep|? + po|/H, + Hy|?] and transverse Poynting vector
Sy, — %Re[(Ea +Ey) x (H, + H,)"..

It is noted that the energy velocity v, in the barrier is a function of the position x.
Each point in Region 2 may have its own velocity of lateral energy movement. From
a total view of the energy transport rates in the whole region, we need a weighted

average (vUs,) as the sum of energy fluxes over the sum of EM energy in Region 2:

1
So.d
<U2z> = fOl = x~ (434)
fo wodx

Similarly, we have the weighted averaged self-interference energy velocity (v;,,) as

(V) = o2 (4.35)
ffoo wi-dx
1
We divide it with w;, instead of the total energy w; = 1[61|Ei + E,.|? + polH; +
H,|*] = w; + w, + w;,, because the temporarily stored energy (during the time after

the incident wave enters and before the reflected wave comes out) does not include

w; Or Wy
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The energy dwell time in the barrier is defined as

fol wydx
Six ’

Td =

(4.36)

and the self-interference time indicating the energy dwelled in the overlapping region
of incident and reflected beams is obtained by

fi)oo U)Z‘le’

S (4.37)

T, =

By substituting Eq. (4.34) — (4.37) into (4.33), we have the Goos-Hénchen shift
as

s = <U2z>7—d + <Uirz>7—i' (438)

Obviously, s is the sum of two terms: the barrier dwell time multiplied by the average
energy speed in the barrier, and the self-interference time multiplied by the average
energy speed in the self-interference region.

Using Eq. (4.33), we may calculate the final result for s with the field solution we

derived in the Section 4.4. We have

1
Sp: = SRel(Eq +Ey) x (H, +Hy).

k.
T 2wp [|A|? exp (—2kz) + | B|” exp (2kz) + 2Re(AB")] (4.39)
0
1 k
Sirz = —Re (Ez X Hr* =+ Er X H’L*) — _Z|R| COS(¢T —+ Qkx$>, (440)
2 WHo
S = ghe(®ixH) = 5 (4.41)
ix 9 (§] i i = 2qu/0. ‘
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The final representation of the Goos-Hanchen shift s is

k- 2 —2kl o € — 1 « k. .
s = T (|A[Pe™*" + |BJ?) + 2Re(AB")l| + ? 5 || sin ¢,
2 2 2 2 2\ o3 h(2
Rk Kl (k* — k,°) + (k* + k,°) sinh (2kl) (4.42)

(K2 + k,2)2 sinh? (k1) ’

and it matches the result from stationary-phase calculation.

4.5.3 Causality in lateral propagation

Here we will discuss on the causality in lateral direction by Goos-Hanchen effect
using Eq. 4.38. In 2 direction, the wave is propagating, no matter whether it is outside
or inside the barrier. The lateral direction is different from the normal direction. The
latter one is not propagation, but energy storage and release process. The lateral
displacement need be causal as a movement of energy, in order to make physical
senses with special relativity.

To prove the causality of the lateral shift, we need to show that the energy velocity
at any given point (not the averaged velocity over some area) in the self-interference
area v;., or in the barrier vy, is smaller than c. In an ideal lossless medium, ¢ =
1/\/twéo = w/ko > w/ky. To begin with, we first focus on the velocity v;,. in front of
the barrier. The time-averaged energy density of the self-interference field in Region
1is

1
wi = la(E B+ E BT+ po(Hi - B+ H, - H7)|

k 2
- WQZMO |R| cos(¢, + 2k,x). (4.43)
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The lateral self-interference energy velocity becomes

k| R|

——— cos(@, + 2k,x
o Sirz W (¢ ) W 4 44
’U@rz—ww_kgRl _I{Z_Z’ ( )
—5— cos(¢, + 2k, )
W= Mo

for every position. Actually it is the same lateral velocity as the incident or reflected
waves. In other words, in Region 1, the lateral power of incident, reflected, and
self-interference terms moves with a uniform velocity. Since k, > ko > kg, we have
Vir» < ¢. The & component of the self-interference energy flux is oscillatory and can
be eliminated in the manner by averaging over a distance [, so the energy velocity is
also causal on the normal direction in Region 1.

The time-averaged energy density of the total field in Region 2 is

1
wy = 1[€2|Ea + Eb|? + po|Hq + Hy|?]

k,? ky?
— z A 2 —9 B 2 2 2
i (AP exp (~26m) + | B exp (260)] + 2

Re(AB"). (4.45)

It is important to note that both |A|* exp(—2kz) and |B|? exp(2kx) are always real

numbers for all x positions. Then the inequality applies:

|A|? exp (—2rz) + | B]* exp (26x) > 2|A]|B|, (4.46)

and also we have

Re(AB") = |A||B| cos(¢a — é5) < [A||B]. (4.47)

Recall that k, > ko for the FTIR condition. Therefore the energy density stored in
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the barrier gap has a minimum of

2
wy = 2];25;0 [|A]? exp (—2kz) + |BJ? exp (2kz)] + wk;ﬁto Re(AB”)
ko(ke = ko) ) yio 2
+T2,uo [|A|? exp (—2kz) + | B|? exp (2kz)]
Kok 2 2 k22 * kZ(kz - k2)
= [|A| exp (—2kz) + |B|“ exp (2/{%)} + wzuoRe(AB )+ 2—0|A||B|
ok 5 5 ko2 o Kok, — ko)
> 2 [|A]? exp (—2kz) + |BJ? exp (2kz)] + wQuoRe<AB )+ 2—0|A||B|,
(4.48)
and similarly, the Poynting vector Sy, in Eq. (4.39) has a maximum
Sy, = ke [|A]? exp (—2kz) + |BJ? exp (2kz)] + ﬁRe(AB*) + ks — ks Re(AB”)
2wt WHo WHo
k. k k, —k
[ A]? exp (—2kz) + |B|? exp (2kz)] + ——Re(AB*) + 2| A||B]
2wtg Who Wihto
(4.49)

By dividing Eq. (4.49) by Eq. (4.48) at their upper/lower limits, we have the

limit for v,

SQZ w
= <—Z<ec 4.50
v S (4.50)

V22

It is seen that the Z direction propagation velocity is also causal for any points inside
the barrier in Region 2.

The lateral shift s is accomplished by two parts of causal lateral energy movement
Vi, and vg, as in Eq. (4.38).

On the other hand, there is tunneling instead of propagation in the normal direc-
tion from z = 0 to z = [ across the barrier. We cannot directly apply this energy
velocity method to tunneling. Without propagation, it no longer has explicit physical
meanings. The tunneling time is given by group delay, the time difference between

the peak of the incident wave packet enters and exits the barrier. Our next task is
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to decide the tunneling time that a pulse peak is delayed during FTIR tunneling, i.e.

group delay.

4.6 Tunneling group delay for pulses

We are able to calculate the group delay time with the Goos-Hanchen shift given
above. Again, we emphasize the quasi-static condition for the laser pulse tunneling,
with a pulse duration much longer than the tunneling group delay. Operationally, if
a wave packet attains a peak at time ¢ = 0 at the entrance x = 0 of a barrier, the
group delay tells us the time at which a wave-packet peak appears at the exit x = L.
However, the peak at * = L and the peak at x = 0 need not be related by causal
translation; indeed there is no requirement that they be the same peak [135, 159].

Another measure of the duration of a tunneling event is the dwell time [135, 139].
This is the time spent in the barrier, distributed over both entrance and exit channels.
Because the dwell time does not differentiate between input and exit channels, it is
not considered a traversal time [130, 137] . Like the group delay, however, it also
saturates with barrier length.

In general the group delay and dwell time differ by a quantity known as the self-
interference delay [140]. This self- interference delay has been calculated explicitly for
1-D quantum tunneling of nonrelativistic [140] and relativistic particles [143], as well
as for the tunneling of classical electromagnetic waves through undersized waveguides
[136] and photonic band-gap structures [160]. For the case of frustrated total internal
reflection which is inherently a 2-D tunneling problem, we independently derive an
explicit expression for the self-interference delay in FTIR by calculating the energy
density in the overlap between incident and internally reflected waves in the fiber core
of incidence. This demonstrates explicitly the physical meaning of the self-interference
delay as an additional dwell time in front of the barrier due to the overlap between

incident and reflected waves.
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To begin with, we will explore the energy dwell time and the self-interference
time respectively, and then show that their sum is exactly the group delay for FTIR

tunneling.

4.6.1 Energy dwell time and self-interference time

Using Eq. (4.36), we can calculate the energy dwell time inside the barrier:

ean -1 |A’2€—25l + ‘B’2 N 2]{?22[
kow 2K kyw

_ RP% 2ky*kl (K? — k,2) + k2 (k* + k,?) sinh (2kl)

’ wk (K2 + k%)% sinh? (k) '

Td — kZQ

Re[AB*]

(4.51)

The temporarily stored energy will get released from both the reflection and trans-
mission side of the barrier, after its dwell time is reached. For tunneling, it is not
wave traversal time from one side to another side where a propagation velocity is
physically defined. Instead, the barrier performs as a lumped element and the dwell
time describes the time between the energy entering and exiting the barrier.

Using Eq. (4.37), we can get the self-interference time

k2 |R|sing,
2
_— w? o kx%x
2wt
E2\R|sing,  Im(R)
R =— tan” 6. (4.52)

Equation (4.52) represents an explicit and independent calculation of the self-
interference delay for a 2-D tunneling problem, starting from its physical meaning as
a delay due to the interaction energy in front of the barrier. It shows how the ratio
of transverse-to-longitudinal components of the wave vector modifies the basic 1/w
dependence of the self-interference delay.

The interference delay is directly proportional to the stored energy in the overlap
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of incident and reflected waves in front of the barrier. This energy saturates since it

is proportional to the reflection coefficient, which saturates with barrier length.

4.6.2 Group delay

The transmission coefficient is 7" = |T'| exp(—i¢;). Meanwhile, there is a lateral
Goos-Hanchen shift s as well as a longitudinal shift of {. The incident wave phase
at the barrier entrance (x = 0,z = 0 in Fig. 4.4) is ®; = k,z + k,o = 0, while the
transmitted wave phase at the barrier exit (r =1,z = s) is &7 = —¢y +k.s+k,l. The
phase change from the incident to the transmitted wave includes two components.
The first one is the Fresnel coefficients and the longitudinal phase shift —¢; +k,l. The
other comes from the transverse Goos-Hanchen shift k,s. The group delay, calculated
as the frequency derivative of the total phase shift in the exp(—iwt) time-harmonic

system, is given by

_ 0¢p  O(kl—¢y) Ok, Os
=, e o + k‘za (4.53)
From Eq. (4.19), we have
T 2k, K cosh(kl)
Or = kyl 5 tan (72— h.2) sth(al) | (4.54)

After substituting the value of ¢; and s from Eq. (4.19) and (4.42) and some

simplifications, we get the derivatives

Okl — ) 2k, k21(k,% — K?)/w (4.55)
Jw 4k + (k2 — K2)2sinh?(kl)’ .
so the value of 7, is given by
2ky2k 2kl (k* — k,2) + k.2 (k2 + %) (k,? + ik?) sinh(2kl
T, = 2 ml{(l{ z>+ z(z—i_ﬁ)(m—f—“{)&n(’i) (456)

whyt [4k,2K2 cosh? (k1) + (k,2 — K2)? sinh?(kl)]
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This result matches the one from stationary-phase method in Section 4.5.1 [151].
Also, it is possible to define the barrier exit as (x = 0,z = s) for the reflected

wave. In this case, the group delay is

r_ 0Pp . a(_(br + ]{?ZS)
=5, = 0 . (4.57)

With the value of ¢, from Eq. (4.19), it is seen that the group delay for the reflected
wave is exactly the same, i.e. 7,/ = 7,.

From Eq. (4.51), (4.52) and (4.56), it is possible to verify the relationship
Ty =Tq+ Ti. (4.58)

For TM polarized incidences, the same relationship holds.

From the definition of 7, and 7; in Eq. (4.36) and (4.37), it is seen that 7,
can be represented as 7, = ( ffoo wipdx + fol u@dm) /Siz. If we consider the energy
stored inside barrier wy (by evanescent fields) and in front of the barrier wy,. (by
self-interference) as a whole, the group delay in FTIR is exactly the lifetime of this
total amount of energy. The physical meaning of Eq. (4.58) is that the group delay
describes a process of energy temporary storage and release both inside and in front
of the barrier, instead of a propagation.

The tunneling group delay shares the same status as the dwell time in that it is
a property of an entire wave function with forward and backward components which
cannot be disentangled. As a result, in the presence of reflections, neither time is
a transit time and cannot be used to calculate a physically meaningful velocity in
the tunneling longitudinal direction. While the dwell time is never interpreted as a
traversal time because it does not differentiate between entrance and exit channels,
it has hitherto not been recognized that the group delay shares the same status. The

group delay is a property of an entire wave function with transmitted and reflected
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components, both of which are needed for tunneling to occur. They both represent
the lifetime of stored energy in the cavity formed by the cladding between the cores,

and in the region of beam overlap [137, 138, 142].

4.7 Conclusion

Both 7, and s are functions of w, therefore different frequency components will
have slightly different tunneling group delay and lateral displacement. However, the
size of the directional coupler is small. Depending on the incident angle, a typical
value for the group delay 7 is in the order of 10fs and Goos-Héachen shift s is in microns.
Comparing to the cavity roundtrip length (e.g. 8m) and time (e.g. 40ns), both s and
7, are too small to introduce some non-negligible impact. So the beam combining
models in Chapters II and I1I directly use the coupled-mode transfer matrix Eq. (4.7),
without taking the detail dynamic tunneling processes into account.

From either stationary-phase or energy flux conservation viewpoint, both reflected
and transmitted waves share the same Goos-Hanchen shift s and the same group delay

T4- We have pointed out that Goos-Hanchen shift is contributed from the lateral

4
energy flow by self-interference in Region 1 and by the evanescent waves in Region
2. Also, the reflected and transmitted waves have an identical group delay 7,, whose
physical meaning is justified. Instead of traverse time, it is storage time for energy
above and inside the barrier, which do not differentiate the direction to exit.

The conclusion that s and 7, are identical for reflected and transmitted wave
guarantees that a quasi-static optical pulse does not break up during the tunneling
process. Fig. 4.6 indicates the ray optics of coupling, where an incident ray (or
locus) from the upper fiber gets divided into reflected and transmitted rays by FTIR
(red and green lines) at z = 0. Since the reflected and transmitted rays experience

exactly the same optical path inside two identical fiber cores, they meet again at

the same position z = b+ s + s’. Then each of them splits into two parts again
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Figure 4.6: FTIR ray figure of beam combining in a directional coupler, where s is the
Goos-Hanchen shift for FTIR and s’ is the Goos-Hachen shift for TIR.

and hence exchanges the power between two fiber cores. All rays reach the barrier
interface again at z = b + 2s + s’, no matter which path it has taken. Such pattern
of exchanging repeats until the end of the directional coupler. If the lateral shift or
the tunneling time were different for reflected and transmitted waves, then a pulse
beam would split into multiple beams or multiple pulses. The physical nature of s
and 7, on energy storage and release, provides perfect synchronizations spatially and
temporarily among all different reflection/transmission paths.

In conclusion, we have shown that the group delay and the dwell time in FTIR
differ by the self-interference delay. This self-interference delay was obtained by cal-
culating the energy in the overlap between the incident and reflected waves in front of
the barrier. It is gratifying to see that this independently calculated delay is exactly
equal to the difference between the previously published expressions for the group
delay and the dwell time. The result thus confirms the physical reality of this self-
interference delay and resolves the disparity between the two established definitions
of tunneling time. The saturation of the group delay with barrier length (Hartman
effect) is due to the saturation of the energy stored in the barrier and in the overlap

between incident and reflected waves in front of the barrier. All of the three delay
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times described here result from the interaction between forward and backward waves.
Because of this, none of them can be used to calculate a propagation velocity for only
a transmitted or reflected component. The results of this study have been published

in Physical Review A [138].
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CHAPTER V

Summary and Future work

5.1 Summary

This dissertation has explored the passive combining of mode-locked fiber lasers
for scaling up energy, intensity, and pulse repetition rate.

With the dynamic model of simultaneous passive coherent beam combining and
mode locking for an array of coupled fiber lasers, it is shown in agreement with
experiment, that a pair of coherently combined fiber lasers will produce packets of
mode-locked pulses whose repetition rate can be tuned by varying the length difference
between the fibers. Because of beating, coherent beam combining performs a role of
frequency combs and selects the array modes.

Unlike conventional solitons, dissipative solitons can also propagate in gain medium
with normal dispersion, if there is saturable absorption and spectral filtering. Dissi-
pative soliton fiber lasers in all normal dispersion cavity provides a more stable and
robust solution from wave-breaking, carrying more energy per pulse. Higher peak
intensity can be produced through dissipative solitons after pulse compression.

Dissipative solitons in a coherently beam combined fiber laser array with normal
dispersion lead to a stable pulse train. The pulse packets have a modulation repetition
rate related to the roundtrip time, while the pulses have a much faster repetition rate

inside each packet. Commensurate fiber lengths degenerate the pulse packet modula-
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tion, and a regular pulse train with uniform pulse intensities and high repetition rate
is achieved.

As the kernel device in coherent beam combining, directional couplers put two
parallel fiber cores within a few wavelengths with each other to let the power tunnel
through. With a study on the FTIR tunneling process, we interpreted the physical
meaning for both group delay and Goos-Héanchen shift. In the quasi-static condition,
the tunneling process between two fiber cores is the storage and release of incident
energy and it does not related to a “superluminal” velocity across the barrier. The

lateral propagation is also shown to be causal.

5.2 Future Work

The major problem for passive device is that beam combining efficiency drops
fast with the growth of the number of channels. Passive beam combining allows the
oscillating laser power to select the mode with lowest loss by itself without artificial
control. With an increasing number of channels, the density of modes reduces rapidly.
As discussed in Chapter III, a 50:50 directional coupler generates a frequency comb
when connecting two channels in different lengths. Only these array modes as the
common modes for both channels are selected and almost all other modes vanish.
For four-channel combining, we add one more layer of frequency comb on the discrete
spectrum already filtered with frequency combs. If the number of channels is even
higher, such as 8 or 16, the mode density will be so low that there may not be
enough array modes left no matter how broad the gain bandwidth is. Then some
non-array-modes get selected as the optimized result with least loss from the interplay
of saturable absorption and beam combining, breaking the regular shape of a pulse
train. Moreover, the irregular pulse train with quasi-random pulse intensities and
distributions undermines the signal synchronization among channels and lowers the

combining efficiency.
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To compensate the mode density problem from beam combining and generate an
ideal pulse train for even incommensurate fiber lengths, probably we need to com-
pensate the number of modes after each 50:50 directional coupler, i.e. the frequency
comb. This is one possible direction for future work. After the frequency comb in
each layer of coherent beam combining, we may want to temporarily reduce the pulse
repetition rate by some means without losing power. It is equivalent to inserting more
modes in the spectrum. Then we add the next layer of frequency comb and repeat
the mode density compensation. If the mode density can be maintained above some
level in the presence of a large number of channels, it may be possible to overcome
the bottleneck to scale up the laser power with high efficiency, and generate a regular

pulse train with high pulse energy and peak intensity.

109



APPENDIX

110



APPENDIX A

Numerical Methods

In this appendix, I list a typical mpi-f90 (Message Passing Interface Fortran 90)
code I have used for parallelly computing the numerical solution of the mode locked
fiber laser array. It was originally developed by Wu et al. in 2009 [44] aimed for cw
operation in coherent beam combining. Then I added the satuable absorption part
to this code for mode locking simulation. The basic idea is applying SSFM algorithm
to solve the NLSE for each channel in the array (parallel at each calculation node)
and then gather together to process some lumped elements of the array, such as the
directional coupler, the saturable absorber and the partial mirror.

Since the code uses random number generator (RNG) and FFT, it is necessary
to load modules including PGI (version 12.3 or up), OPENMPI (version 1.6.0 or up)

and FFTW (version 3.3.2 or up) onto the calculation server to run correctly.
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program BeamC2
use mpi
NN NN NN NN NN NN NN

! compile with Fortran 90 mpz !

rd

! % mpif90 -o ezefile file.f90 -L$FFTW_LINK -1fftw3 -lacml !
! X miprun -np #processors ezefile !

P

NN NN NN NN NN NN

implicit none

! MPI Comnstants

integer numprocs, ierr, master, myid, tag, comm
real*8 Cpu_start, Cpu_end, Cpu_total

real*8 Wall_start, Wall_end, Wall_total

! FFTW constants

integer*8 planf, planb

integer*8 FFTW_FORWARD, FFTW_BACKWARD
integer*8 FFTW_ESTIMATE, FFTW_MEASURE

! Common Constants
integerx4 M

integer*4 npts, dnpts
integer*4 rtstps, RT, countj
integer*4 mod_rt

real*8 cO, wvlngth

real*8 Psat

real*8 alpha

real*8 spordr

real*8 beta2, bcff

real*8 nl

real*8 kpl

real*8 dlmin, dlmax, dlordr
complex*16 i, iGammalN

! Specify the number of nodes needed in addition to the master node
data M/1/

! Variables

integer*4 £1id(0:M,4)
integer*4 nstps

integer*4 k, kk, jrt, jstp
real*8 pi

real*8 L(0:M)

real*8 refl (0:M)

real*8 h, Twindow

real*8 effP

real*8 findmax
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real*8 findmin

real*8 simpson, p_i, t_window
complex*16 g0 (0:M)

complex*16 los, g, Gav, d_los, alpha_L
character*80 fmt, ganfmt

character*20 flestr (3)

common /simpson_cff/ p_i, t_window
real *8 Psat_L

! Set FFTW comnstants
data FFTW_FORWARD/-1/, FFTW_BACKWARD/1/
data FFTW_ESTIMATE/O/, FFTW_MEASURE/1/

! Set Common Constants

data master/0/

data npts/262144/ ! NOTE: npts has to be to the order of 2
data dnpts/1/

data rtstps/72/, RT/4000/

data mod_rt/200/

data c0/3.0D8/

data wvlngth/1.545D-6/

data Psat/0.6D-3/

data alpha/5.8D-2/

data spordr/1.0D-14/

data beta2/-0.003D-24/, bcff/0.013D-24/
data nl1/1.5D0/

data kpl/0.5D0/

data i/(0.0,1.0D0)/

data iGammaN/(0.0,0.003D0)/

! For the saturate absorber
data alpha_L/9.0D-1/
data Psat_L/3.3D-1/

! Common Vectors

real*8 omega(l:npts), omega2(l:npts), time(l:npts)
real*8 linphse(l:npts), gvdphse(l:npts), ttlphse(l:npts)
real*8 angl (1l:npts)

complex*16 Ef(l:npts), Et(l:npts)

complex*16 losDp(l:npts)

complex*16 Ef_O(1:npts)

! Vectors used by master

real*8 EffP_buff (0:M)

real*8 ave(0:M), std(0:M), pwer (0:M,1:500)
real#*8 angl_buff (1:(M+1)*npts)

complex*16 Gav_buff (0:M)

complex*16 Ef_buff (1:(M+1)*npts)
complex*16 Ef_out (1:(M+1)*npts)
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! Set Vartables

pi = dacos(-1.0)

L = (/8.083D0, 8.063D0/)

refl = (/0.2D0, 0.0/)

g0 = cmplx(2.67D0,0)

p_-i = pi

write(fmt ,*) ’(’,npts,’E15.7)°
write (ganfmt ,x) °’(3E15.7)°

! Intttalize MPI

comm = MPI_COMM_WORLD

call MPI_Init(ierr)

call MPI_Comm_rank (comm, myid, ierr)
call MPI_Comm_size (comm, numprocs, ierr)

! Inttitalize FFTW
call dfftw_plan_dft_1id(planf ,npts,Et,Ef,FFTW_FORWARD ,FFTW_ESTIMATE)
call dfftw_plan_dft_1id(planb,npts,Ef ,Et,FFTW_BACKWARD ,FFTW_ESTIMATE)

! Set ranks-dependent wvariables
if (myid.EQ.master) then
Twindow = findmax(L,M)*nl1/cOx*1
end if

h = L(myid)/rtstps

los = cmplx(-alpha/2xh/2.0,0.0)
call MPI_Bcast( Twindow, &

1, &

MPI_REAL8, &

master, &

comm, &

ierr)

t_window = Twindow

! Setup output file

if (myid.EQ.master) then

do k = 0O,M

£1id(k,:) = (/(kk*10, kk=1,4)/) + k%100

write (flestr(1),’(A,I1,A)’) ’time’,k,’.txt’
write (flestr(2),’(A,I1,A)’) ’freq’,k,’.txt’
write (flestr(3),’(A,I1,A)’) ’gain’,k,’.txt’
write (flestr(4),’(A,I1,A)’) ’angl’,k,’.txt’
open (flid(k,1), FILE=flestr (1), STATUS=’NEW’)
open (flid(k,2), FILE=flestr (2), STATUS=’NEW’)
open (flid(k,3), FILE=flestr (3), STATUS=’NEW’)
open (flid(k,4), FILE=flestr (4), STATUS=’NEW’)
end do

open (330, FILE="time.txt", STATUS=’NEW’)

open (340, FILE="freq.txt", STATUS=’NEW’)
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end if

! Measure Time & Initialize random number generator
Wall_start=MPI_Wtime ()
call cpu_time (Cpu_start)

! Setup of propagation wvectors (rank-dependent)
time = (/(k-1-npts/2, k=1,npts)/)*Twindow/(npts-1)
omega = (/(k-1,k=1,npts/2), &
(k-npts-1,k=npts/2+1,npts) /) *2*pi/Twindow

omega2 = omega*omega

linphse = omega*nl*h/2.0/cO
gvdphse = omega2*beta2/2.0%h/2.0
ttlphse = modulo(linphse + gvdphse + &

nl*2%pi/wvlngth*h/2.0, 2x*pi)
losDp = cmplx(-omega2*bcff/2.0%h/2.0,0.0) + 1los

! Prepare for loop & output time and fregq
call signedRNG(Ef_O, npts, spordr, myid)
Ef = Ef_O

g = g0(myid)

Gav = cmplx(0,0)

! Collected by master

call MPI_Gather( Ef, npts, MPI_DOUBLE_COMPLEX, &

Ef _buff, npts, MPI_DOUBLE_COMPLEX, &

master , comm, ierr)

if (myid.EQ.master) then

g = (0.0,0.0)

write(330,fmt) (time(kk)*1e9, kk=1,npts,dnpts)

write (340,fmt) (omega(kk)/2/pi/1e9,kk=1,npts,dnpts)

do k=0,M

Ef = Ef_buff (k*npts+1:(k+1)*npts)

call dfftw_execute_dft(planb, Ef, Et)

Et = Et/npts

effP simpson (Et ,npts,1)

angl = modulo (ATAN2(imag(Ef) ,real (Ef)) ,2%pi)
write(flid(k,1) ,fmt) (cdabs(Et(kk))=**2,kk=1,npts,dnpts)
write(f1lid(k,2) ,fmt) (cdabs (Ef (kk))=**2,kk=1,npts,dnpts)
write(f1id (k,3) ,ganfmt) L(k), refl(k), real(2*g/h)
write(f1lid (k,4) ,fmt) (angl (kk),kk=1,npts,dnpts)

end do

end if

! Main Loop !
do 66 jrt=1,RT

! Random number as ASE
call signedRNG(Ef_O, npts, spordr, myid)
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Ef = Ef + Ef_O
do jstp = 1,rtstps

! Calculate effective power

call dfftw_execute_dft(planb, Ef, Et)
Et = Et/npts

effP = simpson(Et,npts,1)

g = g0(myid)/2/(1+effP/Psat/Twindow) *h

! freq domain
Ef = Efxcdexp(g/2 + losDp + cmplx(0,ttlphse))

! time domain

call dfftw_execute_dft(planb, Ef, Et)
Et Et/npts

Et Et*cdexp (iGammaN*cdabs (Et) **2%h)

! freq domatn
call dfftw_execute_dft(planf, Et, Ef)
Ef = Efxcdexp(g/2 + losDp + cmplx(0,ttlphse))

! average gain and pwer

Gav = Gav + g

end do

Gav = Gav*2/rtstps/h

call dfftw_execute_dft(planb, Ef, Et)

Et = Et/npts

effP = simpson(Et,npts,1)

angl = modulo (ATAN2(imag(Ef) ,real (Ef)) ,2*pi)

! Collected by master

call MPI_Gather( Gav, 1, MPI_DOUBLE_COMPLEX, &
Gav_buff, 1, MPI_DOUBLE_COMPLEX, &

master, comm, ierr)

call MPI_Gather( Ef, npts, MPI_DOUBLE_COMPLEX, &
Ef _buff, npts, MPI_DOUBLE_COMPLEX, &

master, comm, ierr)

call MPI_Gather ( EffP, 1, MPI_REAL8, &
EffP_buff, 1, MPI_REAL8, &

master, comm, ierr)

call MPI_Gather( angl, npts, MPI_REAL8, &
angl_buff, npts, MPI_REALS, &

master, comm, ierr)

! Through 50:50 coupler
if (myid.EQ.master) then

! coupler
Ef_out (1:npts) = &
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sqrt (kpl) *Ef_buff (1:npts) &

-i*sqrt (1-kpl)*Ef_buff (npts+1:2*npts)
Ef _out (npts+1:2xnpts) = &

-i*sqrt (1-kpl)*Ef_buff (1:npts)+ &
sqrt (kpl) *Ef _buff (npts+1:2*npts)

!saturable absorber

call dfftw_execute_dft(planb, Ef_out(l:npts), Et)

Et = Et/npts

do countj = 1,npts

Et (countj) = Et(countj)*cdexp(-alpha_L/(1+(cdabs(Et(countj))**2 &

+cdabs (Et (modulo (countj+1,npts))) **2+cdabs (Et (modulo (countj+2,npts))
) x%x2%

+cdabs (Et (modulo (countj+3,npts))) **2) /4/Psat_L))

end do

call dfftw_execute_dft(planf, Et, Ef_out(l:npts))

! store feedback in Ef_buff

SELECT CASE(refl(0).GT.refl(1))

CASE(.True.)

Ef _buff = refl(0)/sqrt(2.0)* &

(/Ef _out (1:npts), Ef_out(l:npts)/)

CASE(.False.)

Ef _buff = refl(1)/sqrt(2.0)* &

(/Ef _out (npts+1:2*npts), Ef_out(npts+1:2*npts)/)
END SELECT

! Output by master

if (modulo(jrt,mod_rt).EQ.0) then

do k = 0,M

Gav = Gav_buff (k)

Ef = Ef_out(k*npts+1:(k+1)*npts)*dsqrt(l-refl (k) **2)
call dfftw_execute_dft(planb, Ef, Et)

Et = Et/npts

effP = simpson(Et,npts,1)

angl = angl_buff (k*xnpts+1:(k+1)*npts)
write(flid(k,1) ,fmt) (cdabs (Et (kk)) **2,kk=1,npts,dnpts)
write(flid(k,2) ,fmt) (cdabs (Ef (kk)) **2,kk=1,npts,dnpts)
write(f1lid(k,3) ,ganfmt) effP_buff(k)/Twindow, &
effP/Twindow, real(Gav)

write(f1lid (k,4) ,fmt) (angl (kk),kk=1,npts,dnpts)

write (*,*) jrt, k, effP_buff(k)/Twindow, &
effP/Twindow, real(Gav)

end do

end if

end if

! Feedback reflected wave
Gav = cmplx (0,0)
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call MPI_Scatter( Ef_buff, npts, MPI_DOUBLE_COMPLEX,
Ef, npts, MPI_DOUBLE_COMPLEX, &
master , comm, ierr)

! End of Main Loop
66 enddo

! Calculate elasped time
Wall_end=MPI_Wtime ()

call cpu_time(Cpu_end)

Wall_total = Wall_end - Wall_start
call MPI_Reduce( Cpu_end-Cpu_Start, &
Cpu_total, &

1, &

MPI_REALS8, &

MPI_SUM, &

master, &

comm, &

ierr)

! Record CPU time and Wall time
! Ideally CPU time is (M+1) times of Wall time
if (myid.EQ.master) then

write (*,*) "Cpu,time,=_,", Cpu_total, "sec."
write(*,*) "Wall_time,=_,", Wall_total, "sec."
end if

! finalize FFTW
call dfftw_destroy_plan(planf)
call dfftw_destroy_plan(planb)

! finalize MPI

call MPI_FINALIZE (ierr)
end program BeamC2
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