
A FRAMEWORK FOR IMPROVING THE

SPEED AND PERFORMANCE OF

TELEOPERATED MOBILE MANIPULATORS

by

Steven Eric Vozar

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2013

Doctoral Committee:

Professor Dawn Tilbury, Chair
Associate Professor Brent Gillespie
Paul Muench, US Army TARDEC
Assistant Professor Edwin Olson
Professor Nadine Sarter

c© Steven Eric Vozar
All Rights Reserved

2013

This dissertation is dedicated to the memory of my mother,
Hinda Vozar

ii

ACKNOWLEDGEMENTS

I would like to thank the Rackham Graduate School as well as the Automotive

Research Center (ARC) at the University of Michigan, with funding from government

contract DoD-DoA W56H2V-04-2-0001 through the US Army Tank Automotive Re-

search, Development, and Engineering Center for financial support for this doctoral

work. This research would not have been possible without this generous support.

I owe a tremendous debt of gratitude to Professor Dawn Tilbury for being all

that I could ask for (and more!) in a PhD advisor. Her willingness to let me define

my own research and experiment with new ideas with a watchful yet patient eye

has allowed me to take risks that might not otherwise have been possible. I can say

without hesitation that her teaching and mentoring have had extraordinarily positive

impacts on my academic and professional development.

Thanks also to others who have provided me with mentorship over the years: Pro-

fessor Volker Sick, who gave me my first independent research project, found funding

for and advised my masters thesis, and encouraged me to pursue a doctoral degree.

Professor A. John Hart, who took an unselfish interest in my career aspirations and

academic work, and has given me immeasurable advice. Dr. Paul Muench, who has

gone above and beyond his duty as TARDEC liaison, taking an interest not just in

my research, but in me and my future.

To my student colleagues, past and present, whom I can always count on for

an interesting conversation about robots: Dhananjay Anand, John Broderick, Justin

iii

Storms, Josh Langsfeld, Ryan Morton, and Andrew Richardson. Thanks for checking

my math, my code, and my grammar. Also, to the research assistants that have

worked for me: Peter Turpel, Matthew Ko, and Jeff Abromowitz. You have helped

me grow as a supervisor, and your efforts are greatly appreciated.

Thanks also to the administrative staff of the ARC, the Mechanical Engineering

Department, and the College of Engineering who run the show behind the scenes, as

well as any other staff who have helped me fill out a form, buy a servo, or navigate

red tape. Your dedication makes research in higher education possible.

To my friends, whom I don’t dare list out for fear of glaring omission: Thanks for

the memories, the jokes, the trips, the hijinks, the burgers, the beer, the trivia, the

sports, and the sanity checks.

Finally, to my family: nothing I write here will come close describing the amount

of gratitude I owe you all for helping me get to this point. Your enthusiastic support

of all my endeavors means the world to me. Thanks for shaping the person I have

become.

Go Blue!

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Contributions . 4
1.3 Dissertation Organization . 6

II. A System-Level Methodology for Design Optimization of Teleoperated
Mobile Robot Speeds . 7

2.1 Introduction . 7
2.2 Characterizing Limiting Factors . 9

2.2.1 Actuator Saturation . 10
2.2.2 Network Delays . 11
2.2.3 Sensing Delays . 11
2.2.4 Processing Delays . 12
2.2.5 Operator Delays . 12
2.2.6 Detection Distance . 13

2.3 Design Optimization for Teleoperated Robot Speed 13
2.3.1 Identify Design Objectives . 15
2.3.2 Enumerate Possible Design Variables and Options 16
2.3.3 Model Relationships between Objective Functions and Design Vari-

ables . 16
2.3.4 Assign Trade-Off Weights and Evaluate the Optimization Function 17

2.4 Example: Designing a Teleoperated Robot for High-Speed Operation 18
2.4.1 Problem Definition and Design Objectives 18
2.4.2 Design Variables . 19
2.4.3 Objective Function Modeling . 19
2.4.4 Optimization Weights and Evaluation 23

2.5 Example: Modeling System Performance with Experimental Tests 24
2.5.1 Robot Hardware and Software . 25
2.5.2 Experimental Procedure . 26
2.5.3 Results and Discussion . 27

v

2.5.4 Performance Modeling . 32
2.6 Conclusions and Future Work . 34

III. Performance Evaluation of Visual and Manual UIs for Teleoperated Mo-
bile Manipulators . 37

3.1 Introduction . 37
3.2 Background . 39

3.2.1 Mixed Reality . 39
3.2.2 Master-Slave Interfaces . 41
3.2.3 Previous Work . 42

3.3 Task Setup . 43
3.3.1 Robot System . 43
3.3.2 Manual Interfaces . 44
3.3.3 Visual Interfaces . 46
3.3.4 Software and Communications . 47
3.3.5 Test Environment . 48

3.4 Procedure . 49
3.4.1 Pre-Test . 50
3.4.2 Timed Tests . 50
3.4.3 Post-Test . 53

3.5 Results . 53
3.5.1 Significant Factors . 53
3.5.2 Percent Improvement by Overall Performance 55
3.5.3 User Ratings of Interfaces . 57
3.5.4 User Performance Model . 58

3.6 Discussion . 59
3.6.1 Manual Interface . 59
3.6.2 Visual Interface . 60
3.6.3 Interaction between Input and Feedback Interfaces 62
3.6.4 Slips and Mistakes . 62
3.6.5 User Skill vs. Interface Benefits . 63
3.6.6 Performance Model . 64

3.7 Conclusions and Future Work . 65

IV. Modeling Teleoperated Mobile Robot Steering Behavior in the Presence
of Latency . 67

4.1 Introduction . 67
4.2 Background . 69

4.2.1 Latency in Teleoperation . 69
4.2.2 Steering Models . 70
4.2.3 Steering and Latency in HCI . 71

4.3 Task Setup . 71
4.3.1 Simulation Environment . 72
4.3.2 User Interface . 72
4.3.3 Insertion of Delay . 73
4.3.4 Test Track . 75
4.3.5 Scoring . 75

4.4 Procedure . 76
4.4.1 Study Design . 77
4.4.2 Test Procedure . 78

4.5 Results . 79
4.5.1 Significant Factors Affecting Objective Performance 79

vi

4.5.2 Survey Responses . 80
4.6 Discussion . 81

4.6.1 Significant Factors . 81
4.6.2 Performance Modeling and Variable Latency Equivalence 82

4.7 Driver Model . 84
4.7.1 Driver Behavior . 84
4.7.2 Model Development . 87
4.7.3 Model Parameter Tuning . 89
4.7.4 Model Validation . 90

4.8 Conclusions and Future Work . 93

V. Conclusions and Future Work . 95

5.1 Contributions . 95
5.2 Future Work . 97

5.2.1 Teleoperator Driving Models . 97
5.2.2 Teleoperator Performance Models 97
5.2.3 Performance Metrics . 98
5.2.4 Presence . 98
5.2.5 Variable Latency . 99

5.3 Incorporating Autonomy: Keeping Humans in the Loop 99

BIBLIOGRAPHY . 101

vii

LIST OF FIGURES

Figure

2.1 Schematic illustration of a simple teleoperation task. A robot travels at a constant
speed v while an operator scans the robot’s path and initiates an avoidance maneu-
ver if an obstacle is detected. If not limited by actuator saturation, the maximum
speed that can be successfully achieved in teleoperation is a function of the total
time delay (Σiδi) and the maximum distance at which an obstacle can be detected
(`). 9

2.2 Block diagram of the teleoperation feedback loop. The location of some of the
factors limiting teleoperation system performance are shown in the diagram. Each
δ block represents a delay, while the detection distance is represented by `. Delay
blocks in the diagram may consist of multiple types of delay. Semi-autonomous
behaviors may be present in some teleoperated systems. This block diagram facil-
itates a system-level analysis of the teleoperation process. 10

2.3 The optimized system speeds and prices for different ratios between the weighting
values wspeed and wcost. Selecting a weighting ratio of wspeed/wcost = 1.2 results
in the optimized system design described in Table 2.3. This plot also shows the
sensitivity of the optimization results to the weighting ratio. 24

2.4 Photograph of the skid-steer robot used for the experiments. The robot arm,
and thus the camera position, was locked in a stable configuration throughout
the duration of the tests. 28

2.5 Photograph of the three types of US coins used in the experiments. From left to
right, a penny, quarter, and Sacajawea dollar. In addition to the size differences be-
tween the coins, the blue coloring of the carpet makes the quarter more challenging
to identify during teleoperation. 28

2.6 Boxplot showing the detection distance, `, of three types of US coins for the three
video resolutions tested. For all boxplots in this chapter, the center line of each
box represents the data median, while the edges of the box correspond to the 25th
and 75th percentiles (the innerquartile range, IQR), and the whiskers extend to the
most extreme data points within 1.5 IQR of the 25th and 75th percentiles. Data
points outside this range are considered outliers [24]. Against the blue carpeted
floor, the large gold-colored Sacajawea dollar coin was by far the easiest to detect.
The detection distance of all coin types increases from a 320x240 resolution to
640x480, though for the penny and dollar coins there may be diminishing returns
when moving to the 1280x720 video resolution. 29

2.7 A boxplot showing the Line of Sight Stopping Distance (LoSSD) of the robot for
various robot speeds. The LoSSD is a lumped parameter that captures the inertial
properties of the robot, processing and network delays in the system, as well as user
physical reaction time. Both the absolute distance and the variance of the LoSSD
increase with robot speed. 30

viii

2.8 Boxplots showing the distance from the robot to the coin after detection and brak-
ing versus the speed of the robot, for three video resolutions. The median best-case
teleoperation scenarios are shown for comparison. They are defined by subtracting
the LoSSD from the detection distance, and represent the predicted median per-
formance limit for each scenario. Similar to the results of detection distance, the
performance of the lowest video resolution is much lower than that of the other
two video formats, but there is little distinction between the two higher video res-
olutions. All tests were performed with a video frame rate of 10 FPS, detecting a
penny. 30

2.9 The extrapolated probability density functions of coin detection distance (`) condi-
tioned on video image area. The underlying probability distribution at each image
area is assumed to be Gaussian. In all cases, the distribution has a higher variance
for larger image areas. 32

2.10 A model showing the cumulative probability of successfully stopping the robot at
a given distance from a penny over different robot speeds. Contour lines repre-
sent one standard deviation from the median distance. The underlying probability
distribution at each image area is assumed to be Gaussian. 33

3.1 A photograph of the robot platform. A custom-built five DoF robot arm is mounted
on a skid-steer robot chassis. An HD camera is statically affixed to the third link
of the arm. The robot’s processor is a laptop computer mounted on the back of
the chassis. 43

3.2 The master arm controller. The controller is a 1:1 scale replica of the slave arm
mounted on the robot’s chassis, and is affixed to a platform that is the same size
as the robot chassis. Operators manually position the master controller, and the
remote slave arm matches the master arm’s state at the remote site. 45

3.3 A screen shot of the Mixed Reality (MR) visualization interface. The Augmented
Reality scene (left) shows a video feed from the camera attached to the robot arm
with virtual objects superimposed over the image, including distance information.
The Virtual Reality scene (right) shows a third-person view of the robot scene,
which can be manipulated to show the robot workspace from any perspective. A
yellow halo indicates the projection of the reachable workspace of the manipulator
arm on the floor . 46

3.4 Photograph of one configuration of the robot arena. Four different inner wall con-
figurations were used in the trials, all with the same outer envelope. Inner walls
were taller than outer walls to prevent users from using the manipulator arm to
peek over barriers. Visual fiducial markers were affixed to the walls and floor of
the arena to assist the robot with localization. 48

3.5 Boxplots comparing the completion times for each subtask, as well as the total task
time including penalties assessed for slips and mistakes for both types of manual
interface. For all boxplots in this chapter, the center line of each box represents the
data median, while the edges of the box correspond to the 25th and 75th percentiles
(the innerquartile range, IQR), and the whiskers extend to the most extreme data
points within 1.5 IQR of the 25th and 75th percentiles. Data points outside this
range are considered outliers [24]. The MS interface resulted in significantly slower
task completion times for Subtask A, but significantly lower task completion times
for Subtasks B and C, as well a significantly lower total adjusted time. 54

3.6 Boxplots comparing the completion times for each subtask, as well as the total task
time including penalties assessed for slips and mistakes for both types of visual
interface. The MR interface resulted in significantly slower task completion times
for Subtask A, Subtask C, and total adjusted time. 55

ix

3.7 Boxplots comparing the completion times for each subtask, as well as the total
task time including penalties assessed for slips and mistakes for each interface com-
bination. There is an interaction effect between the visual and manual interfaces
for Subtask A that is not present for the other subtasks nor the overall adjusted
completion time. 56

3.8 Plot showing the percent improvement in performance on manipulation subtasks
(Subtasks B and C) when users switched from the gamepad to the Master-Slave
(MS) controller plotted for each user against overall completion time, defined as
sum of the total adjusted time for all trials for each user. A negative value indicates
the user performed worse with the MS controller. The two outliers had overall times
more than 15 minutes longer than the next highest overall times. 56

3.9 Boxplots showing responses to the questions “I thought this interface was easy to
use” and “I thought this interface was intuitive to use,” separated by overall user
performance. 57

3.10 The derived performance model for total adjusted time (Tadj) with boxplots showing
the experimental data. Eq. 3.2 shows that the two most important factors in
predicting performance are operator prior video game experience and the type of
manual interface used. 58

4.1 Renderings of (a) the simulated robot, (b) the exocentric (third-person) viewpoint,
and (c) the egocentric (first-person) viewpoint presented to the users in the study. 72

4.2 Distribution of gamepad instruction packet delays with δmin=150ms, σ=125ms,
and mean delay E[δ]=250ms. The quantization is due to the gamepad sampling rate
of 40Hz, which also causes the delay minimum (and therefore the mean delay) to
be slightly greater (<10ms) than the nominal value, but this is negligible compared
to the induced delay. 74

4.3 Representative track with dimensions for simulated driving tasks. Sixteen total
tracks were randomly generated for use in the study, all with the same set of
features and dimensions. A practice section was included at the beginning of the
track to enable users to familiarize themselves with the test conditions. Scoring for
each trial commenced after the robot passed the “Start” line. 76

4.4 Boxplot showing the path-following score, as defined by Eq. 4.5, indicating user
performance under varying latency and speed conditions. For all boxplots in this
chapter, the center line of each box represents the data median, while the edges of
the box correspond to the 25th and 75th percentiles (the innerquartile range, IQR),
and the whiskers extend to the most extreme data points within 1.5 IQR of the
25th and 75th percentiles. Data points outside this range are considered outliers [24]. 81

4.5 User responses to questions designed to assess how much delay the user felt in the
system for each latency type. The survey with 7-point Likert items was adminis-
tered at the conclusion of the two speed trials for each scenario. 82

4.6 Model of user performance as measured by the path-following score for various
latencies and robot speeds. The data in this plot is the same as in Fig. 4.4, but
the scores are now plotted by numerical latency value on the horizontal axis. The
trend line runs through the median score for each constant latency case (A-D), and
the variable latency cases (E-F) are then shown at their corresponding equivalent
constant delays. 84

4.7 Boxplot of user responses to survey questions related to operator sense of delay. The
fit line is generated from the constant-latency cases (A-D), and the variable latency
scenarios (E-F) are plotted at their constant latency equivalents, as determined by
path-following score in Fig. 4.6. 85

x

4.8 Plots showing example datasets of low-latency and high-latency test cases. The
datasets are from two different users. These datasets were chosen as representative
of the median user performance in the test. Scores were not accumulated during
the practice section. Note that even though the operators could use the joystick
to command any value between -1 and 1 to the robot, users generally only toggled
between 0 and ±1. 85

4.9 Diagram illustrating the determination of the projected lateral displacement. The
projected state is the location of the robot at a future time t + Tp, assuming a
constant angle and velocity. The desired state is then defined to be the position
and orientation of the desired path that is closest to the projected state. The
perpendicular distance between the desired state and the projected state is then
taken as the projected lateral displacement yp(t+ Tp). 87

4.10 Block diagram showing the steering control loop. The lateral displacement yp(t+
Tp) is determined from the difference between the projected and desired robot
states at time t+ Tp. The R(θd) block represents the rotation operation described
in Eq. 4.8. The n term represents the noise injected into the command signal. . . . 87

4.11 Example paths and input profiles of the robot as commanded by the steering model.
These paths and inputs show similar qualitative characteristics to those produced
by human drivers. Scores were not accumulated during the practice section. 91

4.12 Scores of path-following simulations of the robot at a speed of 1 m/s with input com-
mands from the steering model. The model was tuned using the constant latency
scenarios from the user trials, and additionally tested with the variable latency
scenarios. The gains used in the constant latency cases were linearly interpolated
from the tuned gains given in Table 4.4, and the variable latency gains were tuned
to the equivalent latency cases shown in Fig. 4.6 91

4.13 Boxplot comparison between the driver model and human users for path charac-
teristics of maximum lateral displacement (overshoot), path length, mean control
input magnitude (control effort), and gamepad toggle rate. For readability, the
outliers have been removed from the boxplots. 92

xi

LIST OF TABLES

Table

2.1 Summary of the available hardware selections used in the simplified example. . . . 20
2.2 Parameters used in the optimization, with descriptions and numerical ranges used

in this example. 21
2.3 Comparison of the optimal, fastest, and cheapest hardware combinations. The opti-

mal configuration was determined using scaled weights of wcost = 1 and wspeed = 1.2. 23
3.1 P-values of factors potentially affecting user performance for different metrics. Fac-

tors with p < 0.10 are bolded, and those with p < 0.05 are underlined and bolded.
TA, TB , and TC are the completion times for Subtasks A, B, and C.

∑
Si and∑

Mi are number of slips and mistakes, respectively. Tadj is the total adjusted
task completion time, including all time penalties. 53

4.1 List of latency types used in the user study. All values are listed in ms. E[δ] is the
expected value of the random variable δ, representing the delay inserted between
the user and the robot for each latency type. 77

4.2 Number of users participating in each scenario. All users participated in six of
the scenarios (starred), while the remaining six scenarios were distributed evenly
among the participants. 77

4.3 Table indicating the p-values of factors and interaction effects potentially affecting
the path-following score. Factors with p <0.001 are bolded. 80

4.4 Tuned control gains and parameter values for constant latency cases. 90

xii

ABSTRACT

A Framework for Improving the Speed and Performance of Teleoperated Mobile Manipulators

by
Steven Eric Vozar

Chair: Professor Dawn Tilbury

Despite recent advances in robot autonomy, teleoperation remains an integral part

of many robot tasks. In situations where it is hazardous or difficult for humans

to be present, but which require human judgment and decision-making skills, the

use of a human operator is the only option. However, there are many issues re-

sulting from limited feedback channels that degrade perception and manipulation

abilities in remote environments, causing even basic robot tasks to be difficult and

time-consuming. For robots to become more useful tools for humans in remote en-

vironments, the speed and ease of teleoperated tasks must be increased.

This purpose of this dissertation is to develop a framework for increasing speed

and performance of teleoperated mobile robot tasks. First, the key issues affecting

teleoperated robot system performance are defined and characterized. These factors

are incorporated into an optimization-based approach for evaluating multiple design

options for teleoperated systems. This optimization may require models for sys-

tem components that are not readily available, and must be estimated or measured

empirically.

Modeling user performance in teleoperation tasks can be particularly difficult.

xiii

This dissertation focuses on obtaining such models by performing several user studies

designed to predict the teleoperator performance in response to multiple manual

input devices and visual feedback mechanisms, as well as varying system latencies.

The overall framework for improving system performance is based on incorporat-

ing the derived, estimated, and measured component models into the implementation

of the design optimization over a series of operations in the teleoperation system’s

required task set.

The contributions of this dissertation are as follows: 1) An identification of the

factors limiting teleoperation system performance. 2) A framework for performing

design optimization of teleoperated mobile robot speed and performance. 3) An

evaluation of teleoperator performance with two types of manual interfaces and two

types of visualization interfaces. 4) The development of a performance model for

a path-following steering task under different latency conditions that indicates a

possible mapping between performance under constant latency and variable latency.

5) The development and validation of a driver model capable of generating human-

like steering inputs to a mobile robot.

xiv

CHAPTER I

Introduction

1.1 Motivation

Teleoperation is the process of controlling a device from a distance with a human

operator. In mobile robotics, teleoperation (in direct and advanced forms) is the

default mode of control for tasks requiring human judgment and decision-making

skills. Today, unmanned ground vehicles (UGVs) are primarily controlled by tele-

operation in military [44] and emergency-response [28] applications because of the

highly unstructured nature of the missions. Even in cases where autonomous op-

eration is possible, some operators prefer to remain in the control loop to quickly

access and interpret the information gathered by the robot [42]. In the domain of

mine rescue and recovery, teleoperation control has been ranked as a more important

consideration than both autonomous navigation and self-localization and mapping

[41]. Therefore, despite recent advances in robot autonomy, teleoperation continues

to be a relevant mobile robot control modality for the foreseeable future.

In this work we distinguish between remote control, in which the operator can see

the robot, and teleoperation, in which there is no line of sight. In both scenarios,

commands to the robot must travel over a communications network. However, during

teleoperation, all the feedback necessary to effectively control the device must also

1

2

be communicated over the network, limiting the amount and fidelity of information

that can be provided to the teleoperator. For ease of implementation, operator

commands and feedback signals generally travel over the same network, which can

result in high network traffic and long delays. Additionally, mobile robots generally

use wireless network protocols, often resulting in lower communications bandwidths

and stochastic latency profiles.

This limited feedback channel results in multiple issues affecting perception and

manipulation abilities in teleoperated robot tasks, identified by Chen et al. as [14]:

1. Video field of view: Viewing the remote scene through a camera feed strips

users of peripheral vision and can lead to decreased spatial judgment and driving

abilities.

2. Operator sense of robot orientation: Users need information about both

the location and orientation of the robot in the remote environment, as well as

the configuration of the robot itself (such as arm position and chassis pitch and

roll).

3. Camera viewpoint and frame of reference: Some camera placement lo-

cations may lead to unnatural viewing angles for the user. Egocentric (first-

person) and exocentric (third-person) camera views have benefits and drawbacks

for different tasks.

4. Depth perception: Pure video feeds often lack a significant amount of depth-

perception information, foreshortening objects in the remote environment. This

effect is particularly pronounced for ground robots because of their low view-

points.

5. Video image quality: Poor image fidelity or low frame rate can degrade an

operator’s ability to understand the remote scene, including spatial orientation

3

and target identification, and can lead to increased delays in the operator’s

reaction time.

6. Time delay: With increased system latency, operators often change their com-

mand input strategy from a continuous control to a “move and wait” style of

control. Communication delays propagate throughout the operator-robot con-

trol loop, causing even longer total system delays.

7. Switching between multiple camera views: Switching between camera

views may increase operator cognitive load as the user must rapidly switch

between contexts. Additionally, change blindness may occur when operators

switch views.

8. Robot motion: Motion of the robot can induce motion sickness in the opera-

tor, and vibrations caused by motion can make both interpreting visual displays

and using manual interfaces more difficult.

These issues cause teleoperated tasks to be difficult and time-consuming to ex-

ecute, and can lead to operator slips (failures caused by fallacies in unconscious

processing, such as accidentally crashing a robot arm into the ground), and mistakes

(failures caused by fallacies in conscious processing, such as taking a wrong turn dur-

ing robot navigation) [13]. Ultimately, this results in decreased teleoperated system

performance and reliability.

Many potential design solutions exist for mitigating these performance issues [14],

each with expected benefits as well as associated costs. This raises the question:

Which solutions should be implemented? The answer is not always clear, and can

be highly system- and task-specific. It may not even be obvious which issue is the

most pressing, let alone what solution should be implemented. Also, because robot

subsystems are often interdependent, implementing a new design in one component

4

may have unintended consequences in another subsystem.

There is therefore a need for a systematic framework to evaluate the impact

and cost-effectiveness of design choices for teleoperated UGVs. This dissertation

introduces a framework for this purpose, and gives examples of its implementation.

Because this methodology requires models of human teleoperator behavior that may

not yet exist, this work details the development of several such models for use in the

framework.

1.2 Contributions

This work has five main contributions applicable to the design and implementation

of teleoperated mobile manipulators.

The first contribution is the identification of the factors limiting teleoperated

system performance. These factors are present in all remotely-operated robots, and

understanding the underlying causes of performance issues is a key step in overcoming

such limitations. The factors are presented as elements of a closed-loop feedback

system with a human operator acting as the controller. The second contribution is

a framework for optimizing the speed and performance of teleoperated robots. This

framework is based on systematically addressing the limiting factors by applying a

design optimization approach to determine the most effective way to improve system

performance and indicate the tradeoffs between performance and costs such as price,

power usage, and reliability. Two examples are provided: one demonstrating the

overall framework, and another showing how models required for the optimization

can be developed. Both of these contributions are presented in Chapter II.

The third contribution, presented in Chapter III, is an evaluation of teleopera-

tor performance under two types of manual input devices and two types of visual

5

feedback mechanisms, as measured by task completion time and accuracy. The re-

sults of this study indicate that under the conditions tested, a Master-Slave (MS)

manual input method resulted in significantly better performance than a traditional

gamepad, and that a Mixed Reality (MR) visualization interface resulted in slower

task completion times than a video-only feedback scenario. Another finding was that

users that did well on the tasks overall received less of a performance boost from the

MS input device than did users who performed poorly on the tasks. Overall, these

user tests reinforce the notion that a task’s scenario, objectives, and operator must

be carefully considered when designing teleoperation interfaces.

The fourth and fifth contributions, presented in Chapter IV, result from a set of

user tests on teleoperated steering performance in the presence of system latency.

First, a model of human teleoperation steering performance for a line-following task

under constant and variable latency conditions was developed. This model shows

that under the conditions tested, there is an equivalence between variable latency

and constant latency. This equivalence was speed-independent and applied to both

the objective performance measure and the teleoperator’s subjective sense of the

delay. If broadly applicable, this equivalence has the potential to greatly simplify

the process of modeling human responses to latency. Second, a driver model for

teleoperated steering tasks was developed. To our knowledge, this is the first steering

model specifically designed for teleoperated mobile robot driving. This model can be

used to generate human teleoperator-like steering commands under different latency

conditions for use in UGV development, testing, and simulation.

6

1.3 Dissertation Organization

This dissertation is composed of three papers that have been submitted for jour-

nal publication, each in one chapter. For clarity, the word “paper” that appears in

the journal manuscripts when used as a reference to itself has been replaced with

the word “chapter” in this dissertation. Chapter II, titled “A System-Level Method-

ology for Design Optimization of Teleoperated Mobile Robot Speeds,” enumerates

the system factors limiting teleoperation performance and identifies their locations

in the teleoperation feedback loop. This chapter also introduces the performance

optimization framework. An example of the overall methodology and a sample hu-

man modeling procedure for a coin detection task are also presented. Chapter III,

titled “Performance Evaluation of Visual and Manual UIs for Teleoperated Mobile

Manipulators,” presents a user study testing an MS manual interface and an MR

visualization feedback interface for representative teleoperation tasks, and discusses

an interpretation of the results. Chapter IV, titled “Modeling Teleoperated Mobile

Robot Steering Behavior in the Presence of Latency,” presents a second user study

in which a simulated robot was steered around a virtual test track in the presence

of varying amounts and types of latency using two different speeds and two different

points of view. Path-following performance was evaluated for the different scenarios,

and a model of a human teleoperator for steering tasks was developed that can be

used to emulate a human driver for simulation and testing purposes. Finally, Chap-

ter V summarizes the conclusions of this dissertation and discusses areas for future

work.

CHAPTER II

A System-Level Methodology for Design Optimization of
Teleoperated Mobile Robot Speeds

Portions of this chapter have been published in [63].

2.1 Introduction

Despite recent advances in robot autonomy, human-in-the-loop interaction (in-

cluding direct and advanced forms of teleoperation) remains an integral part of

many mobile robot tasks. In situations where it is hazardous or difficult for hu-

mans to be present, but which require human judgment and decision-making skills,

the use of a human teleoperator is the only option. There are also cases, such as

search-and-rescue tasks, in which human operators prefer to remain in the loop [42].

Additionally, Murphy et al. [41] have rated the importance of teleoperated control as

higher than both autonomous navigation and self-localization and mapping for the

use of mobile robots in mine rescue and recovery.

For robots to become more useful tools for humans in the future, the speed at

which robot-assisted tasks can be completed must be increased. However, robot

speed during teleoperation tasks is not generally limited by actuator speeds, but by

other bottlenecks.

Consider a simplified teleoperation scenario, as shown in Fig. 2.1, in which a

7

8

mobile robot with maximum speed as governed by actuator saturation vsat travels

in a straight path at a given speed, taken as the magnitude of the robot’s velocity,

v = |~v|. Multiple sources contribute to the total system latency, with each individual

delay given by δi. If an obstacle appears in the robot’s path, the operator must

recognize it and execute an avoidance maneuver before the robot collides with the

obstacle. If the total distance needed to perform the obstacle avoidance (vΣiδi)

is greater than the maximum distance at which the obstacle can be detected (`),

then a collision is unavoidable. Rearranging terms, we can determine the following

inequality providing a bound for maximum operational speed of the robot:

(2.1) v ≤ min

(
`

Σiδi
, vsat

)
Thus, assuming the actuators are not saturated, if one wishes to increase the

speed at which a particular teleoperated robot task can be executed then either the

total system latency must be decreased or the detection distance must be increased.

However, it is not always obvious how to most effectively choose between possible de-

sign options to achieve such a speed increase. Different components can have widely

different costs of implementation, and can affect other system properties. It is thus

desirable to have a systematic methodology for making such decisions. The contribu-

tions of this chapter are the framing of a design optimization-based methodology for

efficiently increasing teleoperated robot speed for a given application, a categoriza-

tion and discussion of the components contributing to teleoperated robotic system

speed, an example of the application of this method, and examples of the type of

tests that can be run to obtain the models required for this framework. The exam-

ples presented in this chapter focus on the type of teleoperation scenario described in

Fig. 2.1. The framework described in Section 2.3 and the discussion of the limiting

9

Figure 2.1: Schematic illustration of a simple teleoperation task. A robot travels at a constant
speed v while an operator scans the robot’s path and initiates an avoidance maneuver if an obstacle
is detected. If not limited by actuator saturation, the maximum speed that can be successfully
achieved in teleoperation is a function of the total time delay (Σiδi) and the maximum distance at
which an obstacle can be detected (`).

factors in Section 2.2 are broad enough to be applied to any teleoperation scenario,

including robot driving and mobile manipulation tasks.

2.2 Characterizing Limiting Factors

This section aims to broadly categorize the different factors that limit total system

speed of teleoperated robots. Figure 2.2 shows a block diagram of a robot teleoper-

ation system with the locations of some of the factors. These factors are applicable

to the examples discussed in this chapter, as well as any other robot task that is per-

formed with a human operator in the loop. To our knowledge, this is the first time

these factors have been enumerated as a part of the teleoperation system feedback

control loop. While it may not constitute a detailed list of potential limiting factors

(such a list would be application-specific), designers can use this categorization dur-

ing system design as a preliminary checklist for identifying the root causes that may

limit system speed.

10

Figure 2.2: Block diagram of the teleoperation feedback loop. The location of some of the factors
limiting teleoperation system performance are shown in the diagram. Each δ block represents a
delay, while the detection distance is represented by `. Delay blocks in the diagram may consist of
multiple types of delay. Semi-autonomous behaviors may be present in some teleoperated systems.
This block diagram facilitates a system-level analysis of the teleoperation process.

2.2.1 Actuator Saturation

Perhaps the most straightforward factor limiting the speed of teleoperated mobile

robots is actuator saturation. Clearly, a robot cannot operate at a faster speed than

its motors can accommodate. More powerful motors and motor drivers as well as

batteries capable of a higher discharge current could all increase the maximum speed

of the actuators, but often these components cost more, weigh more, and use more

power. The concept of actuator saturation can be extended to more complex systems

beyond individual motors and servos. For example, robot rollover during tight turns

at high speeds could be considered a type of actuator saturation, as it stems from the

robot’s physical inability to perform the desired task. However, most teleoperated

robots are not limited by the actuators themselves, but by the ability of the operator

to safely navigate the robot through remote environments in the presence of system

11

latency.

2.2.2 Network Delays

Communication between a human operator and a mobile robot typically takes

place over a network. Both operator control signals to the robot and feedback in-

formation from the robot generally travel over the same network for ease of im-

plementation. Common communications networks used for mobile robotics include

various standards of wireless Ethernet, Bluetooth, cellular communications networks,

and satellite communications. Experimental results using wireless networks found

round-trip delays on the order of a few milliseconds for different types of 802.11

networks, but tens of milliseconds for Bluetooth networks, and that delays in the

wireless domain increase with distance, packet size, and interference [4]. In the wire-

less case, the stochastic nature of the transmission channel also leads to a significant

variation in the time delays. Experimental results in the field have shown delays in

video transmission from a teleoperated mobile robot on the order of seconds [9].

2.2.3 Sensing Delays

Sensing delay is defined as the delay associated with the raw data coming from

a robot sensor (before any data is processed). For example, a charge-coupled device

(CCD) camera must transfer a charge across a capacitor array until it reaches a

storage element, which causes a small delay from the time that original image was

recorded; however this delay is generally insignificant when compared to the rest of

the latency in a robot system, and even compared to the frame rate of the cam-

era. On the other hand, scan times for laser rangefinders can be up to hundreds of

milliseconds [30], which can have a significant effect on teleoperation performance,

especially considering that an object generally must be seen in multiple laser scans

12

before it can be properly recognized.

2.2.4 Processing Delays

Both on the robot and at the operator control unit (OCU), raw sensor data must

be processed before it can be useful to the system. In general, powerful computers can

minimize this delay, but low-power micro-controllers on a robot performing compu-

tationally expensive operations, or portable handheld devices used for operator user

interface (UI) [33] may increase the impact of this type of delay. For example, a

simple embedded video encoder on a robot can add a delay from tens to hundreds

of milliseconds due to video compression alone [2]. Complex or inefficiently written

software can increase this delay at both the robot and OCU.

2.2.5 Operator Delays

The category of operator delays includes everything in the “User” block in Fig. 2.2.

The user must receive feedback from the robot (generally through a video feed),

decide on an action to take, and then give the appropriate commands to the robot.

There are both physical (the time taken to process and react to stimuli) and cognitive

(the time taken by a user to determine the proper action to take) delays. Physical

reaction time has been found to be around 400-500ms for a simple go/no-go image

categorization task [57], though this could vary for other types of tasks. On the other

hand, the cognitive delay for complicated tasks can depend heavily on the other

types of delay within the system as well as the user interface itself. For example,

it has been found that when facing a delay of more than 1 second, users adopt a

“move-and-wait” control strategy for bilateral teleoperated manipulation tasks [54].

Additionally, it has been shown that users can sense latency elsewhere in the system

that is higher than 10-20ms, and that system feedback delays higher than 170-320ms

13

can degrade performance for certain tasks related to robot teleoperation [14]. While

operators can sometimes become accustomed to and adjust the input commands for

some amount of feedback delay, if the delay time varies, such compensation is no

longer possible [68].

2.2.6 Detection Distance

The detection distance, `, of a system is defined as the maximum distance at which

an obstacle can be detected, either by a human operator or an automated detection

algorithm. This can depend on multiple factors, including the types of sensors used

and the size of the object being detected. Laser scanning rangefinders have maximum

detection distances up to 30 meters [30], but this range can be affected by object

reflectivity and ambient lighting conditions. The detection distance for video feeds

can also depend on video frame rate and video quality [15], as well as lighting,

weather, and other environmental conditions.

2.3 Design Optimization for Teleoperated Robot Speed

Now that the key factors limiting teleoperation speed have been identified, we want

to find a way to address each issue systematically in the context of a design problem.

For example, we may not want to increase the detection distance if the system

bottleneck actually lies within the network delay. A design optimization process can

help determine the most effective way to increase the speed of a teleoperated robot as

well as indicate cost/performance tradeoffs. However, the complexity of teleoperated

robot systems makes such an optimization difficult. This section discusses how such

an optimization can be applied to teleoperated robots, focusing on the particular

challenge of optimizing such a complex system.

Prior work on design optimization for industrial robots [10, 70], unmanned ground

14

vehicles [8, 67], and mobile manipulators [34] generally aim to optimize robot per-

formance (defined in multiple ways, including manipulator weight, reliability, and

workspace size) using robot geometry and actuator selection as design variables.

However, these optimizations do not consider the overall robot system performance

when a human operator is placed in the control loop. An optimization analysis has

been performed in [7] for determining the ideal collaboration level for a human-robot

target recognition system, but this work did not focus on optimizing the hardware

and system parameters. We believe that this work is the first to address robot

hardware design optimization specifically for teleoperated robots.

It is important to understand that this optimization framework does not automate

the design process. Rather, it shifts the robot designer’s job from that of individual

component selection to the more holistic task of understanding the design objec-

tives and choosing appropriate objective function weights. Therefore, the selection

of weights is difficult to generalize, and should be carefully considered for each in-

dividual design scenario. Comparing the results of the optimization using various

weighting values can also give insights into the design space offered by the design

choices as well as the trade-offs associated with each design objective.

The steps of this process can be framed as a multiobjective optimization problem:

1. Identify design objectives.

2. Enumerate the possible design variables and options.

3. Model the relationships between objective functions and design variables.

4. Assign trade-off weights and evaluate optimization.

Applying these steps to a teleoperated robot design problem presents some unique

challenges, which are discussed in the following subsections. Additionally, while this

15

optimization process is broad enough that any design objectives could be consid-

ered, using speed as an objective complicates the process, primarily because the

relationship between potential design variables and robot speed are not generally

well-understood. Thus, the examples given in Sections 2.4 and 2.5 are provided

to demonstrate how to estimate or empirically model the relationships required for

optimization of teleoperated robot speeds.

2.3.1 Identify Design Objectives

The difficulty in designing a teleoperated robot system capable of high speeds lies

in the inherent trade-off between performance and practicality. If one could always

choose the best-performing components, the optimization would be trivial. Thus, the

first step in the optimization framework is to determine which other factors, such

as component cost, weight, power requirements, and working range, are significantly

constraining the teleoperation system design. For teleoperated robots however, dif-

ferent tasks will have different objectives. For example, a robot may be required to

drive to a object and pick it up. It is therefore helpful to break up the optimization

into smaller sub-tasks and optimize each separately (in this case, analyze the driving

and manipulation tasks individually), even though both tasks may use some of the

same components.

Additionally, the large number of competing objectives in teleoperated robot de-

sign could result in a very complicated high-dimensional optimization problem. By

converting some of the design objectives into constraints (e.g. rather than try to

minimize power usage, we just set a maximum power bound), the search space of

the optimization can be significantly simplified.

16

2.3.2 Enumerate Possible Design Variables and Options

The sheer number of design choices that have a potential impact on the design

objectives can make this a daunting task. While generating an exhaustive list of

design options may be impractical, a designer can generate a partial list by selecting

a representative sample of viable design options. Similarly, design options that are

continuous rather than discrete (the choice of video frame rate, for example) can be

discretized for simplicity. If further resolution between similar options is desired, the

optimization can always be run iteratively with designs of increasing similarity. When

designing an objective function based on robot speed, the main factors limiting the

speed of teleoperation listed in Section 2.2 are of particular importance, regardless

of the specific task being optimized.

2.3.3 Model Relationships between Objective Functions and Design Variables

This is perhaps the most difficult step in setting up the optimization process for

teleoperated robots, as it can often be difficult to find models that accurately predict

the performance (as defined by the objective functions) of the available components.

In the absence of such models, one may be able to determine empirical models by

performing a series of tests on the components, but this requires that each design

option be available for testing. An example of this model generation is presented in

Section 2.5. Alternatively, one may attempt to define a model for each component

using a combination of literature searches, manufacturer specifications, and estima-

tion. Unfortunately, the accuracy of models made in this manner have no way of

being verified without physical testing. However, if the results of the optimization

based on first-pass estimated models can clearly eliminate some design choices, then

perhaps physical testing can be reduced to a smaller set of design options.

17

2.3.4 Assign Trade-Off Weights and Evaluate the Optimization Function

There are multiple ways to construct a multiobjective optimization problem, but

one of the simplest is that of the weighted average technique [43]. Given n objective

functions {f1(x),...,fn(x)} corresponding to different goals that depend on the state

vector of decision variables (or design options) x, we can assign each one a weight

wi, and the compromise solution can be found by minimizing the multiobjective

function [43]:

(2.2) f(x) =
n∑

i=1

wifi(x)

Example objective functions relevant to teleoperated mobile robots include speed,

cost, weight, size, payload capacity, power usage, and reliability. If there is a partic-

ular objective function that should be maximized (e.g. robot speed), we simply set

wi < 0.

Because the competing objective functions necessary for teleoperated robot design

have different units (dollars, m/s, kg, etc), it is difficult to assign weights that accu-

rately express the relative importance of each objective. Normalizing each objective

by comparing it to some baseline case can make choosing the weights more intuitive.

However, even with normalized objectives, it’s not clear what impact defining e.g.

robot price as twice as important as robot weight has on the optimization result.

Therefore, it is advisable to try the optimization over a variety of different trade-off

weights at first to get an understanding of the design space and sensitivity of the

optimization.

18

2.4 Example: Designing a Teleoperated Robot for High-Speed Opera-
tion

As a demonstration of the optimization described in Section 2.3, let us return to

the scenario described in Section 2.1 and use it as a highly simplified example. This

optimization framework could be applied to other teleoperation scenarios such as

mobile manipulation by following the steps outlined in Section 2.3, keeping in mind

the limiting factors discussed in Section 2.2.

2.4.1 Problem Definition and Design Objectives

Suppose the operator’s only job is to monitor a video feed coming from the robot

and press a button to perform an emergency avoidance maneuver if he/she perceives

that there is a static obstacle in the path of the robot. We wish to maximize the speed

at which the robot can run, and we want to take the system cost into consideration,

but do not consider any other penalty factors such as weight. We also assume the

robot’s actuators are powerful enough to drive the robot at any speed we desire. Our

optimal configuration is determined by minimizing the weighted average objective

function:

(2.3) f(x) = −wspeedfspeed(x) + wcostfcost(x)

which is a specific instance of Eq. 2.2.

We consider a simplified system in which video is recorded by a camera on the

robot, compressed by an embedded video processor on the robot, and sent over a

network to the operator control unit which decodes the video signal and displays the

video on the screen. Once the user recognizes an obstacle, they must then press a

physical button that sends a signal over the network to the robot indicating that the

19

robot should swerve immediately to avoid the obstacle. In this simplified example,

we ignore the design of the swerving maneuver, and do not consider the risk of

robot rollover or any other dynamic effects. This example serves as a “toy” problem

to demonstrate the methodology, using linear approximations of models for system

interactions and simplified hardware specifications.

2.4.2 Design Variables

We limit the design choices for this example to three types of cameras, three types

of processors, and three types of network protocols, all summarized in Table 2.1. For

the camera choices, 640x480, 1280x720, and 1920x1080pixels are standard video

resolutions of increasing quality. We assume processors and networks are capable of

providing their maxiumum bitrate continuously, though this may not be true for real

systems. Additionally, we consider adding an enhanced user interface that adds a

fixed amount of processing delay to the OCU, but reduces the cognitive delay of the

user by 50%, and increases the distance at which the user can recognize the obstacle

by 10%, but also adds a cost of $300. Finally, we fix the frame rate at 10 FPS,

but allow the video resolution to vary continuously up to 1920x1080. The video size

design variable is sampled as 100 equally-spaced points between 0 and 2073600px,

which is the native size of 1920x1080 video.

2.4.3 Objective Function Modeling

Since a complete model of the whole system is not available, we must make some

simplifying assumptions about how the design variables affect the objective function.

Examples of the types of tests that could be used to validate these assumptions are

discussed in Section 2.5. For now, we estimate models for the system behavior

20

Table 2.1: Summary of the available hardware selections used in the simplified example.

Camera Resolution Native Video Size Cost

C1 640x480 307200px $50
C2 1280x720 921600px $100
C3 1920x1080 2073600px $500

Processor Max Bitrate Max Latency Cost

P1 10 Mbit/s 250ms $25
P2 10 Mbit/s 80ms $100
P3 20 Mbit/s 40ms $200

Network Max Bitrate Max Latency Cost

N1 1 Mbit/s 500ms $30
N2 11 Mbit/s 1000ms $50
N3 54 Mbit/s 1000ms $70

Enhanced UI Cognition Delay Processing Delay Cost

off 500ms 0ms $0
on 250ms 20ms $300

under different design variables. These models represent first-pass approximations

of component behavior for the purposes of demonstrating this example within the

optimization framework. All model parameters are described in Table 2.2, and their

relationships to the model are discussed in further detail below.

First, we estimate that the processing is dominated by the image compression

routine, and that the processing delay is proportional to the amount of compression

being done by the processor plus a baseline delay, with the max delay occurring at

maximum compression of the video from its native video size in pixels (Anative):

(2.4) δP = αδmax
P + (1− α)δmax

P

(
1− A

Anative

)
where α is the proportion of the maximum delay that is inherent in the processor

and is assumed to be 0.25 for all processors, A is the size of the compressed image

in pixels, and δmax
P is the maximum processor delay.

21

Table 2.2: Parameters used in the optimization, with descriptions and numerical ranges used in
this example.

Parameter Description Value

A Compressed Video Size Varies up to Anative

Anative Native Video Size See Table 2.1
Amax

native Max Native Video Size 1920× 1080 = 2073600px
α Delay Inherent to Processor 25%
β Video Throughput Scaling 5× 10−7 Mbits/pixel
f Video Frame Rate f = 10 FPS
δHC Human Cognition Delay See Table 2.1
δHR Human Reaction Time Delay 450ms
δmax
P Maximum Processing Delay See Table 2.1
δUI Processing Delay due to UI See Table 2.1
δV B Video Buffer Delay A

Amax
native

δmax
V B + δUI

δmax
V B Max Video Buffer Delay 100ms

γUI UI Range Scaling Factor

{
1.0 Predictive UI

1.1 No Predictive UI

`max Max Detection Distance 10m
R Video Throughput R = βfa
Rmax

N Max Network Throughput See Table 2.1

Let us also assume that the processor uses a fixed compression ratio, and that

the throughput (R) needed to transmit video is a linear function of the compressed

video size:

(2.5) R = βfA

where β is assumed to be 5× 10−7 Mbits/pixel, and f is 10 FPS.

Assume also that the network delay is constant and can be estimated as a linear

function of the network bandwidth in use, up to some maximum delay for the net-

work. Assuming the majority of the network bandwidth is used to transmit video,

and that the delay is symmetric for both the robot-to-human, and the human-to-

robot directions, the one-way network delay is thus estimated by:

(2.6) δN =
R

Rmax
N

δmax
N

We further assume that the time taken to decode the video at the OCU is a linear

function of video size, up to a maximum of δmax
V B = 100ms for 1080p video, plus any

22

delay from an enhanced UI, if used. Thus, we estimate the video buffer delay at the

OCU to be:

(2.7) δV B =
A

Amax
native

δmax
V B + δUI

where δUI = 20ms if the enhanced UI is used, and 0ms if not.

Assume the delay due to human cognition δHC to be 500ms without the enhanced

user interface, and by 250ms with the enhanced interface. The reaction time of the

operator δHR is taken as 450ms. The total operator delay is given by δO = δHC+δHR.

User commands to the robot are subject to the same delay as that associated with

video transmission, δN . Assume all other system delays are negligible.

Finally, assume that distance at which the user can recognize an obstacle on the

video screen is proportional to the video size, up to `max = 10m for 1920x1080 video,

and can be increased by adding the enhanced UI.

(2.8) ` =

(
`max A

Amax
native

)
γUI

where γUI is 1 without the enhanced UI and 1.1 with it implemented.

The objective function for speed is given by the maximum possible speed, which

depends on the detection distance and the delays:

(2.9) fspeed(x) = vmax =
`

δP + 2δN + δO

and the objective function for cost is simply the sum of the costs of the individual

components.

23

Table 2.3: Comparison of the optimal, fastest, and cheapest hardware combinations. The optimal
configuration was determined using scaled weights of wcost = 1 and wspeed = 1.2.

System Type Camera Processor Network UI Video Size Speed Cost

Fastest C3 P3 N3 on 2073600px 9.1m/s $1070
Cheapest C1 P1 N1 off 188509px 0.4m/s $105
Nominal

Compromise
C2 P2 N2 on 921600px 3.0m/s $550

Optimal C3 P1 N3 off 1989818px 6.5m/s $595

2.4.4 Optimization Weights and Evaluation

Because our individual objective functions are in different units (m/s and dollars),

it is difficult to choose weights for the compromise solution that accurately reflect

the trade-off we wish to achieve. To better choose values for the weights, we can

scale them by the best-case scenario for speed, and worst-case scenario for cost (see

Table 2.3), thus using weights of wcost =
wcost

max(fcost(x))
and wspeed =

wspeed

max(fspeed(x))
.

Suppose that in this example, the designers decide that the multiobjective function

should consider the robot speed 1.2 times more important than the system price when

the weights are scaled as described above. Thus, we select weights of wcost = 1 and

wspeed = 1.2. Performing the optimization using an exhaustive search over all of the

design variable options, we arrive at the optimal system described in Table 2.3.

We can compare the optimal system against the slowest (also lowest-cost), and

fastest systems (highest-cost), as well as a “nominal compromise” system, in which

the mid-price, mid-performance components (C2, P2, and N2) were selected, and the

improved UI was included. In this example, the optimized system is able to achieve a

speed more than 15 times higher than the cheapest system. The optimized system’s

speed is more than double that of the nominal compromise system while the system

cost was increased by less than 10%. While the simplified hardware specifications of

this toy problem lead to possibly unrealistic predicted performance improvements,

this example demonstrates the utility of the optimization process in determing design

24

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

M
ax

 S
pe

ed
 a

nd
 C

os
t

Max Speed, [m/s]

Cost, [$] x 100

speedw cost/ w

Figure 2.3: The optimized system speeds and prices for different ratios between the weighting values
wspeed and wcost. Selecting a weighting ratio of wspeed/wcost = 1.2 results in the optimized system
design described in Table 2.3. This plot also shows the sensitivity of the optimization results to the
weighting ratio.

solutions that may not seem obvious to human designers.

More than half of the cost of the nominal compromise solution is due to the use of

the enhanced UI, however the optimized system does not include this feature. The

optimization has revealed that for our choice of multiobjective function weights, the

cost of the UI relative to the speed increase it afforded was too high to justify its

use, and money would be better spent elsewhere in the system.

It is also of interest to see how the optimal solution would change if we vary relative

weights of the speed and cost objective functions in the multiobjective function (see

Fig. 2.3). The highest gain in speed comes with the first change in hardware from

the cheapest option, and subsequent speed increases are less dramatic.

2.5 Example: Modeling System Performance with Experimental Tests

While the previous analysis is useful for providing a simple example of the op-

timization methodology, it relies on estimated models to describe the relationships

25

between the hardware and the factors limiting teleoperation. Performing some basic

experimental tests can provide another interesting example in which to study the

framework. This is not meant to be an exhaustive exercise, but rather a demonstra-

tion of the types of tests that could be performed to help inform teleoperation system

designers about the optimization framework and how it fits into the design process.

The aim of this example is to demonstrate how one can construct useful models of

a complicated physical teleoperation system that could be used in an optimization

analysis.

In this example, we seek to create a model of system performance of a detection

task for an off-the-shelf robot with adjustable speed and video quality. In this simpli-

fied task, a teleoperator navigates a robot down a straight hallway looking for a coin

placed randomly on the ground and attempts to stop the robot as quickly as possible

after finding the coin. For the purpose of this model, we define“performance” to be

the distance in front of the coin that the robot is able to stop.

2.5.1 Robot Hardware and Software

A user teleoperates the robot (SuperDroid skid-steer robot chassis) in a straight

line through a hallway, using a gamepad (Logitech Cordless Rumblepad 2) to provide

input to the chassis. A simplified control scheme is used wherein the user presses a

gamepad button to command a constant speed to the robot, and releases the button

to command the robot to stop. Steering commands are issued to the robot by the

user via the gamepad’s thumb stick only to keep it moving in a straight line down

the test track.

Low-level commands are communicated to the robot via a wired Ethernet con-

nection from a laptop mounted on the robot chassis. A camera (Microsoft Life-

Cam Cinema, model 1393), connected via USB to the robot laptop is mounted on a

26

robotic arm, which remains fixed throughout the tests. This on-board laptop receives

commands from and provides video to the operator control unit (OCU) using the

Lightweight Communications and Marshalling (LCM) libraries [31], over a tethered

Ethernet connection using multicast User Datagram Protocol (UDP). The video is

transmitted as a series of JPEG images, with the video resolution determined by

hardware-based Motion JPEG video encoding. The tether is long enough that the

robot can travel the length of the hallway and the user can be placed out of line of

sight of the robot.

2.5.2 Experimental Procedure

All teleoperation tasks were performed by a single expert user without line of sight

to the robot. More users would be required if the model needed more generalizable

results.

For each test, a researcher placed a coin on the ground randomly within the

boundaries of a 20x1.25m test track, outside the initial visible range of the robot.

The robot was then driven down the test track and the operator commanded the

robot to stop once a coin was identified. The distance from the front of the robot to

the center of the coin was then measured manually.

First, the robot was driven at a very low speed (just enough to overcome the

stiction of the robot’s motors), while the teleoperator searched for three different

US coin types (a penny, a quarter, and a Sacajawea dollar, see Fig. 2.5) using video

feeds with resolutions of 1280x720px, 640x480px, and 320x280px, all scaled without

interpolation or stretching to have a width of 1280 pixels on a 25” (63.5cm) monitor

with a resolution of 1920x1200px. Five different tests were performed for each com-

bination of coin type and video resolution. Because the robot’s speed was very low

for these tests, the distance the robot traveled after the teleoperator recognized the

27

coin was negligible, so the results of this test indicate the detection distance for each

of the coins under the different video resolutions.

Next, tests at higher speeds were performed using the same three video formats,

operating the robot at speeds of approximately 0.3, 0.6, and 0.9 m/s in the same

manner as the previous tests. Note that 0.9 m/s was the highest achievable speed

for this robot chassis due to actuator saturation. This test was repeated ten times

for each speed/resolution pairing. All tests were performed with a video frame rate

of 10 FPS, using a penny as the detection target.

To try to isolate the effects of controlling the robot via teleoperation as opposed to

with a line of sight view, the line of sight stopping distance (LoSSD) was measured

for the three different robot speeds listed previously. The robot was driven in a

straight line while the operator stood next to the test track at a designated stopping

line with an unobstructed line of sight to the robot. When the user perceived that

the front of the robot passed over the stopping line, the robot was commanded to

stop. The distance that the robot took to stop was then measured. The user was

positioned as close to the stopping line as possible to prevent parallax errors. Ten

trials were performed at each speed setting. The LoSSD captures the impact of

the inertial properties of the robot as well as the system delays due to the network

(one-way from the user to the robot), processor, and physical reaction of the user.

2.5.3 Results and Discussion

Figure 2.6 shows boxplots of the detection distance (`) of each of the three types

of coins for three different image resolutions. During the tests it became clear that

the detection distance was highly influenced by lighting and carpet patterns, and

it was particularly difficult to see the silver-colored quarter on the blue-speckled

carpet. The large, gold-colored dollar coin was the easiest to see, and even though

28

Figure 2.4: Photograph of the skid-steer robot used for the experiments. The robot arm, and thus
the camera position, was locked in a stable configuration throughout the duration of the tests.

Figure 2.5: Photograph of the three types of US coins used in the experiments. From left to right,
a penny, quarter, and Sacajawea dollar. In addition to the size differences between the coins, the
blue coloring of the carpet makes the quarter more challenging to identify during teleoperation.

29

0

1

2

3

4

5

Penny Quarter Dollar

320x240 Video

D
et

ec
tio

n
D

is
ta

nc
e

[m
]

0

1

2

3

4

5

Penny Quarter Dollar

640x480 Video

0

1

2

3

4

5

Penny Quarter Dollar

1280x720 Video

Figure 2.6: Boxplot showing the detection distance, `, of three types of US coins for the three video
resolutions tested. For all boxplots in this chapter, the center line of each box represents the data
median, while the edges of the box correspond to the 25th and 75th percentiles (the innerquartile
range, IQR), and the whiskers extend to the most extreme data points within 1.5 IQR of the 25th
and 75th percentiles. Data points outside this range are considered outliers [24]. Against the blue
carpeted floor, the large gold-colored Sacajawea dollar coin was by far the easiest to detect. The
detection distance of all coin types increases from a 320x240 resolution to 640x480, though for
the penny and dollar coins there may be diminishing returns when moving to the 1280x720 video
resolution.

the penny is smaller than the quarter, its copper color stood out more against the

floor. Also note the low variability of the low-resolution tests. This may indicate

that the nuances of lighting and floor pattern play less of a role at the close distances

required to see the coins at the low resolutions.

Additionally, this plot shows that the detection distances for the 640x480 and

1280x720 resolutions are both higher than that of the lowest resolution tested, but

are relatively close to one another. A key takeaway from this is that for this task

there may be diminishing returns for using higher resolution video feeds. Thus,

full 1280x720 resolution video may not be necessary for this application and the

bandwidth that could be saved by dropping down to 640x480 may be put to better

use elsewhere.

Figure 2.7 shows the Line of Sight Stopping Distance (LoSSD) of the robot at

the three speeds tested. As expected, the stopping distance and distance variance

30

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.6 0.9
Robot Speed [m/s]

Lo
S

S
D

 [m
]

Line of Sight Stopping Distance for various robot speeds

Figure 2.7: A boxplot showing the Line of Sight Stopping Distance (LoSSD) of the robot for various
robot speeds. The LoSSD is a lumped parameter that captures the inertial properties of the robot,
processing and network delays in the system, as well as user physical reaction time. Both the
absolute distance and the variance of the LoSSD increase with robot speed.

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 0 0.3 0.6 0.9
Robot Speed [m/s]

320x240 Video

D
is

ta
nc

e
fr

om
 C

oi
n

[m
]

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 0 0.3 0.6 0.9
Robot Speed [m/s]

640x480 Video

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

 0 0.3 0.6 0.9
Robot Speed [m/s]

1280x720 Video

Median Best Case
Teleoperation Scenario

Figure 2.8: Boxplots showing the distance from the robot to the coin after detection and braking
versus the speed of the robot, for three video resolutions. The median best-case teleoperation
scenarios are shown for comparison. They are defined by subtracting the LoSSD from the detection
distance, and represent the predicted median performance limit for each scenario. Similar to the
results of detection distance, the performance of the lowest video resolution is much lower than
that of the other two video formats, but there is little distinction between the two higher video
resolutions. All tests were performed with a video frame rate of 10 FPS, detecting a penny.

31

increase with speed. If the LoSSD only depended on delays, we would expect it to

have a linear relationship with speed. The trend shown in Fig. 2.7 indicates that the

inertial effects are significantly contributing to the stopping distance.

Figure 2.8 shows a plot of the distance between the robot and the coin after

detection and braking at three different robot speeds for various video resolutions.

The distance generally decreases with increasing robot speed. Though there is more

variation in this data than that of the detection distance tests, similar trends are

observed. For each speed, the lowest video resolution is generally worse than the two

higher resolutions, but there is less of a difference between the distances observed

when teleoperating with 640x480 vs. 1280x720 video streams.

The cause of the increase in variation between tests of the same type is likely

due to several factors: First, during these tests, the robot is moving fast enough

that while the user is scanning the video feed for targets, if a coin comes into view

while the user is looking at a different part of the image, there could be a significant

amount of distance covered before the user can register that a coin is within sight.

Similarly, any variation in reaction or decision-making time on the user’s part has a

higher impact on the variation of the results at higher speeds than when the robot

is going very slowly.

The median best case teleoperation scenario for each trial is determined by sub-

tracting the LoSSD from the detection distance for each data point. There appears

to be a higher discrepancy between the best case scenarios for the medium-resolution

video. Because the LoSSD measurement captures all of the delays in the system ex-

cept the robot-to-user network delay (which should not be higher for lower image

areas) and user cognitive delay, this data indicates that the cognitive load is high-

est for the 640x480 video, and the user must do more work to identify the coin in

32

Figure 2.9: The extrapolated probability density functions of coin detection distance (`) conditioned
on video image area. The underlying probability distribution at each image area is assumed to be
Gaussian. In all cases, the distribution has a higher variance for larger image areas.

the medium resolution scenario, despite the overall performance of this video being

comparable to that of the higher-resolution video. Because the low-resolution video

has such a low detection distance, this “instant recognition” may lessen the cognitive

load felt by the user, despite the overall reduced performance.

2.5.4 Performance Modeling

Using the data presented in Figs. 2.6 and 2.8 and making some assumptions

about the underlying probability distributions of the test data, we can determine

a model for system performance under varying conditions that were not explicitly

tested. For the purposes of developing such models, the test data at each condition

is assumed to have a Gaussian probability distribution, characterized by a mean

and standard deviation. To predict detection distance for image areas between the

explicitly measured test points, these mean and standard deviation parameters were

linearly interpolated as a function of image area between the points of experimental

data for each coin.

33

Figure 2.10: A model showing the cumulative probability of successfully stopping the robot at a
given distance from a penny over different robot speeds. Contour lines represent one standard
deviation from the median distance. The underlying probability distribution at each image area is
assumed to be Gaussian.

Figure 2.9 shows a model of detection distance for each coin, represented by

a normal probability distribution function, throughout the range of video image

areas tested. This model indicates that there are diminishing returns for increasing

image area for the penny and dollar coins, but the expected value of the detection

distance for the quarter increases linearly over the range of image areas tested, which

is consistent with the assumption made in Eq. 2.5 for the optimization example

presented in Section 2.4. This type of empirical model could be used to replace

the estimated model described by Eq. 2.5 for a given UI. It could be used in its

current probabilistic state for simulations, or if a simpler model is desired it could be

integrated over the detection distance to create a cumulative distribution function

describing the probability of detecting a coin at a given distance.

Figure 2.10 depicts a model of system performance for this specific task (defined

as the distance between the stopped robot and the coin) by showing the probability

of achieving a performance specification over the range of speeds tested using the

34

penny as the detection object. These models were determined by integrating the

probability distribution function at each video resolution over distance to obtain the

cumulative distribution function. For example, if we desire the robot to have a 98%

probability of stopping at least 1 meter in front of the penny, the maximum speeds

allowable for video feeds of size 320x240, 640x480, and 1280x720 pixels are 0.2, 0.5,

and 0.6 m/s, respectively. Because this model represents a performance metric, it

is possible to use this empirical model of fspeed(x) directly in an optimization that

minimizes Eq. 2.3 without having to estimate how the various design parameters

affect the system delays directly. The drawback to this approach is that because the

model represents an aggregate of the system delays and detection distance, it would

be difficult to use it to predict performance for any design options that have not

already been tested explicitly.

2.6 Conclusions and Future Work

This chapter presents a new application of design optimization for the purpose

of optimizing the speed of teleoperated robots. The contributions of this chapter

include a discussion of the challenges specific to the application of design optimization

for human-in-the-loop tasks in Section 2.3, and a categorization of the common

factors limiting robot speed in Section 2.2. A simplified example demonstrating

the optimization method has been worked through in Section 2.4. While it may

be difficult to find real-world data that would be needed to perform this analysis,

examples of some experimental tests that could be used to build the kinds of models

necessary to use this methodology are discussed in Section 2.5.

This design framework offers several advantages over design methods that focus on

individual sub-systems. First, as shown in the example in Section 2.4, the results of

35

the optimization may suggest a non-obvious compromise solution that uses resources

more effectively than would other compromise solutions. Second, by shifting the

focus of the designers from the individual design choices to the choice of weights for

the objective functions, designers will get a more holistic system-focused view of the

teleoperation system and the tasks it must accomplish.

The application of this optimization technique assumes that the designer has

knowledge about (or can obtain a reasonable estimation for) the relationships be-

tween the design variables and the objective function. In practice, these models may

be difficult to obtain, even in the lumped-form described in Section 2.5. Addition-

ally, the delays used in these analyses were considered constant relative to factors

such as robot distance from the communications hub, and stochastic effects were not

considered. However, this framework can provide a first-pass evaluation of different

hardware choices using some estimates of unknown parameters. Choosing relative

weights for each objective function is not necessarily a straightforward task, and even

small changes in their relative weights could have a significant impact on the design

solution. A sensitivity or uncertainty analysis over both the model parameter space

and the optimization function weights could be used to understand the robustness

of the optimization.

The implementation of the framework discussed in this work relies on an exhaus-

tive search over the design space, which may become impractical as the number of

design variables increases. Additionally, using speed as an objective function could

be problematic for more complicated scenarios, as it depends nonlinearly on system

delays. One workaround for this could be to use the multiobjective function to min-

imize delay and maximize detection distance, but this does not fully capture speed

as the end-objective.

36

The examples presented in this work focused on very simple driving tasks. More

work needs to be done to understand how this methodology could be applied to more

complicated systems involving more realistic tasks such as mobile manipulation. One

possible way to expand the scope of this analysis would be to set up the teleoperation

model as a standard block diagram, which could then be analyzed by systems theory

if the necessary models for each block could be measured or derived. It may then

be possible to concatenate models for different types of simple operations (such as

driving, braking, turning, and manipulator placement) to scale this approach to more

complex mission-level tasks to get an understanding of overall system performance

beyond what can be modeled with a simple block diagram.

CHAPTER III

Performance Evaluation of Visual and Manual UIs for
Teleoperated Mobile Manipulators

Preliminary results related to this chapter were published in [62] and [64], and

the design of the User Interface used in these experiments is published in [65].

3.1 Introduction

While many rote tasks can be performed by robots without human intervention,

direct teleoperation remains the default mode of control for mobile manipulators

when human judgment and decision-making skills are required for a task. However,

many of the issues associated with teleoperation, including (but not limited to) field

of view, user understanding of robot state, depth perception, time delays, and motion

effects [14] are still prevalent in currently-fielded teleoperated robot systems. Such

issues result in teleoperation missions that are slow and laborious to complete, even

with significant user expertise. In time-critical life-or-death situations, such as urban

search-and-rescue following a terrorist attack or natural disaster, there is a desperate

need to perform teleoperated missions quickly and with few mistakes.

Well-designed User Interfaces (UIs) can help mitigate some of the issues that limit

teleoperation speed and performance, but robot designers often fail to consider the

importance of UI when designing teleoperation systems. In particular, there are few

37

38

UIs that are well-suited to both mobile robot navigation and path-planning as well as

manipulator arm control, even though both control modes are necessary to complete

many teleoperated robot tasks.

Both the method by which the user inputs commands to the robot and the way

in which the user receives feedback from the robot are parts of the UI of the tele-

operation system. In this work, we limit the scope of discussion to manual input

devices (as opposed to voice commands, gestural input, or other input methods) and

visual feedback mechanisms (as opposed to tactile, audio, or other types of feedback).

Manual and visual interface components are often developed independently of one

another, and their individual contributions to overall system performance are not

well-understood. Finally, many user studies do not take into account the skill-levels

of users when making recommendations.

The contributions of this chapter stem from a 22-subject user study designed

to determine the effects of UI visualizations and manual input methods on user

performance, objectively measured by task completion time and accuracy. This study

resulted in four key findings: 1) As expected, teleoperators performed significantly

better with a Master-Slave (MS) manual interface than with a traditional computer

gamepad. 2) In contrast to expectations, performance decreased when users switched

from a video-only visualization to a Mixed Reality (MR) visualization. 3) Users that

did well on the tasks overall derived less benefit from the MS interface than did users

that performed poorly overall. 4) A regression model was derived showing that the

two most important factors predicting task performance in this study are the user’s

prior experience with video games and the type of manual input used. Additionally,

the results of the user study are used to make general UI design recommendations

for teleoperated mobile manipulation tasks.

39

3.2 Background

This section provides a brief overview of previous work that has been performed

in the areas of Mixed Reality (MR) and Master-Slave (MS) interfaces, as well as a

description of our prior work with similar UIs.

3.2.1 Mixed Reality

Mixed Reality displays are a class of technologies in which real-time video in-

formation is blended with computer graphics, creating an enhanced visualization.

Mixed Reality displays are classified on a “virtuality continuum,” defined by Mil-

gram [38], which extends from the pure video displays through Augmented Real-

ity (AR) (primarily video with some virtual elements), Augmented Virtuality (AV)

(primarily virtual renderings with some video elements), to complete Virtual Real-

ity (VR). Presently, MR is used in a variety of applications, including UIs, training

programs, video games, sports entertainment, advertising campaigns, and scientific

visualization [61].

Mixed Reality is an attractive tool for teleoperated mobile robot UIs, as it can help

improve communication between robots and users with an intuitive spatial and visual

dialogue [26], potentially reducing operator slips and mistakes (Defined by Carlson

and Murphy [13] as failures caused by unconscious and conscious human processing

errors, respectively) and training times. Note that other human factors researchers

can define alternate differentiations between error types. For example, Reason [49]

defines slips, lapses, trips and fumbles as execution failures, and categorizes mistakes

as failures resulting from planning or problem solving issues. Additionally, MR can

be used to communicate auxiliary sensor information to the user, such as LIDAR

scans, which may be difficult for the operator to parse without accompanying video

40

data [17].

Many MR interfaces for both static manipulators and mobile robots have been

previously developed and tested. The ARGOS system developed by Milgram et

al. [40] was one of the first implementations of AR for human-robot interaction

(HRI). In this work, virtual indicators were superimposed on a stereographic video

feed of an industrial-style manipulator, showing spatial relationships between objects

on the screen. These markers included virtual pointers (indicating the position of

a point), virtual tape-measures (indicating the distance between points) and other

geometric indicators [39]. It was found that such overlays had a positive effect on

user performance [52].

Chintamani et al. [16] used an AR interface to assist teleoperators controlling

a manipulator arm with alignment tasks. It was found that the implementation of

AR cues in the form of virtual coordinate axes significantly reduced errors and end

effector path distance during teleoperation.

Green et al. [27] tested a multi-modal interface in which the operator was shown

an exocentric (third-person) AR view of the robot’s workspace and communicated

with the robot via speech and gesture commands to teleoperate and path-plan a

virtual robot’s trajectory around a maze. It was found that this interface resulted

in a slower task completion time, but higher task completion percentage and fewer

“close calls” with collisions. Additionally, Nielsen [45] developed an Augmented

Virtuality system for robot navigation in which the robot’s 2D video feed is projected

into a 3D virtual map of the robot workspace, which also shows the robot pose. Thus,

all relevant information was integrated into a single perspective. It was found that

such an interface improved user performance in both navigation and exploration

tasks. Collett and MacDonald [17] have developed an AR interface to assist robot

41

programmers during debugging by providing visualizations of the robot’s world view.

While MR interfaces for robotics have generally focused on Unmanned Ground

Vehicle (UGV) navigation [45, 19, 3] and path planning [25], or the use of immobile

industrial-style manipulator arms [16, 40], many UGV teleoperation tasks require

both chassis navigation and manipulator arm control, and there is a knowledge gap

in mobile robot UIs that are well-suited for both tasks. Because UIs used for static

manipulators may not be suitable for tasks involving mobile robot navigation, and

vice versa, creation of such a UI is not trivial. For example, fixed cameras providing

third-person views are often used in industrial settings when controlling robotic arms,

but this setup is not possible with an arm mounted on a mobile chassis.

3.2.2 Master-Slave Interfaces

A MS interface is a method of controlling a teleoperated robot arm (slave) by

manually orienting a control arm (master) to the desired position. Such position

control can be classified as direct, in which each joint is controlled individually, or

resolved, in which a reference point is mapped from the master to the slave, but

not necessarily with the same joint angles [23]. Position control can also be either

unilateral, in which no force information is communicated back to the master arm,

or bilateral, in which forces felt by the slave arm are reflected back to the master

manipulator and thus to the user [23]. In contrast, manual interfaces like joysticks

and gamepads afford only rate (velocity) control, which can lead to a slower work

pace, and are not an effective form of control for tasks requiring high dexterity [23].

Direct rate control can also lead to safety and efficiency problems when the operator

fails to understand the mappings between the control inputs and the movement

outputs [23].

Master-Slave teleoperation has a rich history dating back to the 1940s [29], but

42

much of that work has focused on immobile robot arms, not mobile manipulators.

Additionally, many of the interesting control problems in the field stem from the

issues associated with maintaining stability and telepresence despite the existence of

communication delays during bilateral teleoperation [29], so the literature tends to

focus more on force-reflective systems.

In the past decade, several researchers have developed systems implementing uni-

lateral MS control for mobile manipulators. Rogers [50] used hobby radio control

components to develop a low-cost teleoperated MS controller without force feedback

for use in under-vehicle inspection tasks for military applications. Suganuma et al.

[56] used a system of three unilateral position controllers instead of bilateral feedback

to communicate force information back to an operator for a gripper system mounted

on a walking robot.

3.2.3 Previous Work

Our previous work describes the implementation [64] and pilot testing [62] of a

visualization interface that used an MR display to enhance the visual feedback pre-

sented to the user during a simple teleoperated mobile manipulation task. In this

task, users were required to navigate around a test arena, pick up a small box and

then deposit it into a goal bin, and then repeat the operation for a second box. While

not enough user tests were performed to obtain statistically significant results, the

qualitative tests provided valuable information for the design and implementation

of future UIs. Survey results indicated that users felt more present in the remote

workspace with the MR visualizations, especially when the both AR and VR scenes

were available. Thus, the MR interface showed promise warranting future develop-

ment and testing. In these tests, a gamepad was used for both arm manipulation

and robot navigation. However, users generally found it very difficult to mentally

43

Figure 3.1: A photograph of the robot platform. A custom-built five DoF robot arm is mounted
on a skid-steer robot chassis. An HD camera is statically affixed to the third link of the arm. The
robot’s processor is a laptop computer mounted on the back of the chassis.

map commands from the gamepad to the robot arm.

3.3 Task Setup

The user tests in this study are performed using a custom robot system in a

specially-designed robot arena. The teleoperated robot system consists of a chassis

and a manipulator arm, and is controlled by the user with the help of a desktop

computer serving as an Operator Control Unit (OCU).

3.3.1 Robot System

The skid-steer chassis is a SuperDroid 4WD All Terrain Robot Kit with upgraded

motors and motor drivers (see Fig. 3.1). A laptop computer running Ubuntu Linux

is mounted on the chassis, which functions as the robot’s processor. Heading and

velocity commands are communicated via wireless Ethernet from the OCU to a

Gumstix single-board computer in the chassis, which in turn sends low-level torque

commands to the wheels’ motor drivers. An HD camera (Microsoft LifeCam Cinema,

model 1393) is mounted on the front of the chassis that is used for robot localization,

but does not provide video for the user.

44

The manipulator is a five degree-of-freedom arm with a linearly-reciprocating

gripper, mounted on the front of the robot chassis. Joint and gripper actuation is

accomplished using Dynamixel servos, and the manipulator links are made of custom

3D-printed plastic. The servos are controlled over USB by the onboard computer.

An HD camera (Microsoft LifeCam Cinema, model 1393) is rigidly mounted on the

fourth link of the robot arm, and broadcasts video to the robot teleoperator via the

onboard laptop.

The user interacts with the robot through the OCU, consisting of a desktop com-

puter (running Ubuntu) with a 25” (63.5cm) monitor with a resolution of 1920x1200px,

a keyboard and mouse, as well as the manual input devices listed below. The OCU

is connected via wired Ethernet to a router (Buffalo AirStation Wireless G), which

connects wirelessly to the laptop and Gumstix computers onboard the robot.

3.3.2 Manual Interfaces

Two different manual interfaces are tested in this study. Both interfaces are

connected via USB to the OCU, and custom Java software interprets the interface

input and transmits both manipulator and chassis commands to the robot.

Direct Velocity Control

One manual interface consists of a standard gamepad (Logitech Cordless Rum-

blepad 2). This interface offers a traditional direct velocity control paradigm for

the chassis and the manipulator wherein each joint of the robot’s manipulator arm

is mapped to a different axis on the gamepad. The chassis is driven by holding

down a button and using two axes on the same control stick for velocity and steering

commands.

45

Figure 3.2: The master arm controller. The controller is a 1:1 scale replica of the slave arm
mounted on the robot’s chassis, and is affixed to a platform that is the same size as the robot
chassis. Operators manually position the master controller, and the remote slave arm matches the
master arm’s state at the remote site.

Direct Unilateral Position Control

The second manual controller consists of a 1:1 scale replica of the robot arm, shown

in Fig. 3.2. The initial development of this master controller is discussed in [65]. This

master arm controller enables direct unilateral control, in which the manipulator arm

mounted on the remote robot matches the state of the master controller. A switch

on the side of the gripper toggles the master arm between locked (in which all servos

hold their positions) and unlocked modes (in which all servos can be backdriven and

the arm moves freely). The state of the gripper is controlled by a wheel mounted

next to the master arm base. The master arm is mounted on a wooden platform

that acts as an analog for the remote robot’s chassis. The user provides heading and

velocity commands to the chassis with a 3D Mouse (3Dconnexion SpaceNavigator).

The user is allowed to position and orient the master arm and 3D mouse setup in

any way he or she chooses.

46

Figure 3.3: A screen shot of the Mixed Reality (MR) visualization interface. The Augmented
Reality scene (left) shows a video feed from the camera attached to the robot arm with virtual
objects superimposed over the image, including distance information. The Virtual Reality scene
(right) shows a third-person view of the robot scene, which can be manipulated to show the robot
workspace from any perspective. A yellow halo indicates the projection of the reachable workspace
of the manipulator arm on the floor

3.3.3 Visual Interfaces

Two different visual interfaces are tested in this study. Both are displayed on the

OCU’s external monitor, and the height of each display window is approximately

1/2 the height of the monitor. For both visualizations, the image on the screen was

refreshed at a rate of 15Hz.

Video-only Visual Feedback

This visual feedback interface provides a streaming video feed from the camera

mounted on the robot’s manipulator arm. The position of the camera is controlled

by the user by moving the arm.

Mixed Reality Visual Feedback

This interface provides the user with two views of the robot scene, as shown in

Fig. 3.3. The left view shows an egocentric (first-person) video feed from the camera

mounted on the robot’s arm, with Augmented Reality overlays of information about

47

the robot scene. When a box is recognized, the distance from the camera to the

center of the box is indicated in centimeters, and the box is highlighted either in red

if it is outside of the reach of the robot’s arm, or in green if it can be reached without

moving the chassis. Additionally, a yellow arc appears on the floor indicating the

reach of the robot’s arm. As in the video-only interface, the position of the camera

is controlled by the user by moving the arm.

The right side of the interface provides the user an exocentric (third-person) Vir-

tual Reality scene of the robot workspace. The outer boundaries appear automati-

cally, but objects inside the arena (walls and boxes) appear in the virtual scene only

after they are discovered by the user. After they are discovered, objects remain in the

virtual scene for the remainder of the trial. The operator can manipulate this scene

to any desired orientation and position using the mouse. Additionally, there are two

pre-set conditions (a follower mode and a birds’s-eye view, which can be toggled via

the drop-down menu under the virtual scene). The boxes appear on the screen as

green or red as in the AR scene, and the halo around the robot arm indicates the

arm’s reach. The development of this visualization is discussed further in [65].

3.3.4 Software and Communications

Custom Java software runs on three different computers during the user tests: the

robot-mounted laptop, the OCU, and the experimenter’s control computer. Most of

the network communication is managed by the Lightweight Communications and

Marshalling (LCM) libraries [31], which uses the UDP Multicast transport layer.

For bandwidth reasons, video broadcasting from the robot to the OCU is accom-

plished using the UDP Unicast transport layer. There was latency between the

operator command and visual feedback from the OCU, which was primarily due to

the delay from the wireless network. The delay was typically around 0.5 seconds,

48

Figure 3.4: Photograph of one configuration of the robot arena. Four different inner wall config-
urations were used in the trials, all with the same outer envelope. Inner walls were taller than
outer walls to prevent users from using the manipulator arm to peek over barriers. Visual fiducial
markers were affixed to the walls and floor of the arena to assist the robot with localization.

but occasionally fluctuated up to 4-5 seconds momentarily during the tests.

3.3.5 Test Environment

The robot was teleoperated in a self-contained arena constructed out of plywood

specifically for these user tests (see Fig. 3.4). The outer geometry of the arena was

fixed with an overall envelope of 6.1×6.1m, but inner walls could be repositioned to

create maze-like corridors within the arena. Four different inner wall configurations

were used in these tests. The walls and floor were marked with visual fiducial track-

ing markers [47] that the robot used for localization. A goal bin (26×21×14cm),

partitioned into two equal halves (left and right), was located near the starting lo-

cation of the robot, and both the start position and goal bin were the same for each

configuration.

A number of paper boxes (5.72cm cubes), also containing tracking markers on

each side, were placed around the arena for each test. Each inner wall configuration

had a corresponding paper cube layout, which was consistent throughout the tests.

Users teleoperated the robot in a control room adjacent to the laboratory housing

49

the test arena, and were unable to see the robot during testing. Occasionally, the

robot was audible from the control room, but it is unlikely that this gave users any

significant advantage. The control room contained a desk for the operator, which

had a control computer, as well as a computer monitor and the manual controllers

for the robot, and a desk for one experimenter.

3.4 Procedure

User tests were conducted with 28 volunteers recruited via flier and email adver-

tisements from a population of undergraduate and graduate engineering students.

Six participants started the study, but for various reasons were unable to complete

the tests, so they are not included, leaving 22 users in the data set. A total of 17

men and 5 women completed the study, ranging in ages from 18 to 30, with a mean

age of 22.5 years (standard deviation = 2.7 years). Users were given $20 for par-

ticipating, with the knowledge that a $25 bonus would be awarded to the top three

overall performers as determined at the end of the trials. The tests were designed

to take less than three hours total, and many participants needed significantly less

time. These tests were approved by the University of Michigan Health Sciences and

Behavioral Sciences Institutional Review Board. (UM IRB #HUM00044265).

Users performed the same task four times with four different manual/visual inter-

face combinations: Gamepad/Video (GP+Vid), Gamepad/Mixed Reality (GP+MR),

Master-Slave/Video (MS+Vid), and Master-Slave/Mixed Reality (MS+MR). The

order in which the interfaces were used was randomized to compensate for any po-

tential learning effects. Additionally, there were four different arena maps (consisting

of a set of internal barriers and box locations), which were evenly distributed among

the different interface combinations.

50

3.4.1 Pre-Test

Test volunteers were first greeted by two experimenters and brought into the

laboratory housing the robot arena (with all internal walls removed) and robot (in

the initial start position). After signing consent forms and being informed of the

nature of the experiment, as well as the test procedure itself, users were able to

inspect the robot and test arena, and ask any questions.

Users were then brought to the control room with one experimenter, and were

given an opportunity to practice with each interface combination in the same order

that the tests were to be performed. Each practice session consisted of the users

familiarizing themselves with the controls before navigating the robot to the center of

the arena (with no internal barriers present), picking up a box with the manipulator,

and then driving the robot to the goal bin and depositing the box in the bin. Users

were given as much time as they desired to complete this practice task, and their

performance did not count towards their overall score. An experimenter ensured that

all features of each interface (manual and visual) were explored during the practice

tests.

After all of the practice sessions had concluded, the users filled out a demographic

survey while experimenters set up the first timed test.

3.4.2 Timed Tests

Four timed tests were performed with the four different interfaces, as outlined in

the following sections. Users were allowed to control the robot with the interface

provided in any way they saw fit during the tests, and were free to use or ignore any

interface feature at their discretion.

51

Test Tasks

Beginning from the start location (which was the same for each test), users tele-

operated the robot around the arena and performed three subtasks in the following

order:

Subtask A: The user navigated the robot around the test arena to determine the

number of boxes present in the environment (Bactual). Once the user has de-

termined what they believe to be the correct number of boxes (Bfound), they

returned to the start position and verbally indicated their answer to the exper-

imenter.

Subtask B: Beginning from the start location, reached at the end of the last sub-

task, the user navigated the robot to what they believed was the closest box to

the start position (as measured by a straight-line path), used the manipulator

arm and attached gripper to pick up the box, and then navigated the robot to

the goal bin and deposited it into the left partition.

Subtask C: Beginning from the goal location, reached at the end of the last subtask,

the user navigated the robot to what they believed was the farthest box from

the start position (as measured by a straight-line path), used the manipulator

arm and attached gripper to pick up the box, and then navigated the robot to

the goal bin and deposited it into the right partition.

The user’s objective was to complete the above subtasks as quickly and accurately

as possible. Users were scored for each task based on task completion time, with time

penalties being given for the following slips (Si) and mistakes (Mj):

• Miscounting the boxes in Subtask A: 30 seconds ×|Bactual −Bfound| = Mcount

• Choosing the wrong box for either Subtask B or C: 30 seconds per box (Mwrong).

52

• Putting the box in the wrong partition, missing the goal bin entirely, or acci-

dentally dropping the box for Subtask B or C: 15 seconds per drop (Sdrops).

Note that dropped boxes were placed back in the gripper to prevent the user

from having to pick up the box multiple times.

• Contacting a wall or occlusion with any part of the robot (chassis and/or arm):

5 seconds per incident (Swall).

• Contacting a box with any part of the robot other than the gripper: 10 seconds

per incident (Sbox).

The adjusted total time in seconds (Tadj) by which the users were scored for each

test is thus given by:

(3.1) Tadj = TA + TB + TC + 30Mcount + 30Mwrong + 15Sdrops + 5Swall + 10Sbox

where TA, TB, and TC are the times taken for Subtasks A, B, and C, respectively.

Survey

Once the entire task was complete, the user filled out a survey about the interface

they just used, which included questions about how easy and intuitive the interface

felt to the user. There was no time limit for the survey.

Data Recording

Data was recorded in the following ways:

• Experimenters manually tracked the test time and penalties accrued.

• Two videos of the test arena were recorded during all tests. This video was used

to verify the times and penalties. One video was recorded by an experimenter

following the robot, and the other video is taken from a fixed overhead view of

the robot arena.

53

Table 3.1: P-values of factors potentially affecting user performance for different metrics. Factors
with p < 0.10 are bolded, and those with p < 0.05 are underlined and bolded. TA, TB , and TC are
the completion times for Subtasks A, B, and C.

∑
Si and

∑
Mi are number of slips and mistakes,

respectively. Tadj is the total adjusted task completion time, including all time penalties.

Factor TA TB TC
∑ S i ∑ M

j

T a
dj

Manual Interface 0.083 0.000 0.000 0.954 0.509 0.000
Visual Interface 0.016 0.820 0.049 0.793 0.737 0.055

Manual Interface×Visual Interface 0.054 0.659 0.680 0.423 0.407 0.372
Arena 0.395 0.177 0.055 0.838 0.049 0.173
Trial 0.153 0.166 0.139 0.127 0.438 0.025

• Audio of the test subject’s running commentary was recorded during each test.

Users were encouraged to verbalize their thoughts as they were teleoperating

the robot.

• The operator control computer’s screen was was recorded during all tests.

• The OCU logged all network communications that went through LCM, including

user input and the robot state data.

3.4.3 Post-Test

After the timed tests were completed, the volunteers participated in a cued de-

briefing with an experimenter about their overall experience with the tests. Following

this interview, volunteers had completed the experiment.

3.5 Results

The results of the user tests are summarized in the following sections.

3.5.1 Significant Factors

Table 3.1 shows a summary of the statistical significances (p-values) for potential

factors and interactions over various objective metrics for all trials from all users in

54

0

100

200

300

400

500

600

700

800

*p=0.083

*p<0.001 *p<0.001

Subtask A Subtask B Subtask C

GP MS GP MS GP MS

T
as

k
C

om
pl

et
io

n
T

im
e

[s
]

0

500

1000

1500

2000

2500

Total Time Plus Penalties

GP MS

T
ot

al
 A

dj
us

te
d

T
im

e
[s

]

*p<0.001

Figure 3.5: Boxplots comparing the completion times for each subtask, as well as the total task
time including penalties assessed for slips and mistakes for both types of manual interface. For all
boxplots in this chapter, the center line of each box represents the data median, while the edges of
the box correspond to the 25th and 75th percentiles (the innerquartile range, IQR), and the whiskers
extend to the most extreme data points within 1.5 IQR of the 25th and 75th percentiles. Data points
outside this range are considered outliers [24]. The MS interface resulted in significantly slower task
completion times for Subtask A, but significantly lower task completion times for Subtasks B and
C, as well a significantly lower total adjusted time.

the study. From an experimental-design perspective, Table 3.1 indicates that the

type of arena was a significant factor affecting the number of mistakes, and that

there was a significant learning effect over the different trials.

Other than the arena type, there was no significant single factor affecting slips

or mistakes. Subtask A time (which was primarily a navigation and exploration

subtask), Subtask C time, which also involved a fair amount of navigation, and

total adjusted time were significantly affected by the type of visual interface, while

Subtask A as well as Subtask B and C times (subtasks involving both navigation

and manipulation) and total adjusted time were significantly affected by the type of

manual interface. There was a significant interaction effect between the manual and

visual interfaces for Subtask A time.

Figure 3.5 shows that as a whole, operators using the MS controller performed bet-

55

0

100

200

300

400

500

600

700

800

*p=0.016

*p=0.049

Subtask A Subtask B Subtask C

Vid MR Vid MR Vid MR

T
as

k
C

om
pl

et
io

n
T

im
e

[s
]

0

500

1000

1500

2000

2500

Total Time Plus Penalties

Vid MR

T
ot

al
 A

dj
us

te
d

T
im

e
[s

]

*p=0.055

Figure 3.6: Boxplots comparing the completion times for each subtask, as well as the total task
time including penalties assessed for slips and mistakes for both types of visual interface. The MR
interface resulted in significantly slower task completion times for Subtask A, Subtask C, and total
adjusted time.

ter as measured by total adjusted time than operators using the gamepad, however

they performed worse on the navigation and exploration sections of the trial (Sub-

task A).

Figure 3.6 indicates that the MR interface caused operators to take longer on the

navigation subtasks, as well as the overall task. There was no difference in subtask

completion time for the manipulation subtasks. However, Fig. 3.7 shows there is an

interaction effect between manual and visual interfaces for Subtask A, but there is

no interaction effect between the two interfaces for Subtasks B and C.

3.5.2 Percent Improvement by Overall Performance

Figure 3.8 shows the percentage improvement in manipulation subtask perfor-

mance when the user switched from the gamepad interface to the MS controller,

averaged over both visualization types, as a function of their overall performance

56

0

100

200

300

400

500

600

700

800

Subtask A Subtask B Subtask C

T
as

k
C

om
pl

et
io

n
T

im
e

[s
]

GP+Vid MS+Vid GP+MR MS+MR
0

500

1000

1500

2000

2500

Total Time Plus Penalties

T
ot

al
 A

dj
us

te
d

T
im

e
[s

]

Figure 3.7: Boxplots comparing the completion times for each subtask, as well as the total task
time including penalties assessed for slips and mistakes for each interface combination. There is an
interaction effect between the visual and manual interfaces for Subtask A that is not present for
the other subtasks nor the overall adjusted completion time.

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
−30

−20

−10

0

10

20

30

40

50

60

Overall time [s]

P
er

ce
nt

 Im
pr

ov
em

en
t o

n
T

as
ks

 B
 a

nd
 C

User
Outlier
Fit, R=0.447

Figure 3.8: Plot showing the percent improvement in performance on manipulation subtasks (Sub-
tasks B and C) when users switched from the gamepad to the MS controller plotted for each user
against overall completion time, defined as sum of the total adjusted time for all trials for each user.
A negative value indicates the user performed worse with the MS controller. The two outliers had
overall times more than 15 minutes longer than the next highest overall times.

57

1

2

3

4

5

GP+Vid MS+Vid GP+MR MS+MR

U
se

r
R

at
in

g
[1

−
5]

I felt this interface was EASY to use

1

2

3

4

5

GP+Vid MS+Vid GP+MR MS+MR

I felt this interface was INTUITIVE to use

Top 33%
All Users
Bottom 33%

Figure 3.9: Boxplots showing responses to the questions “I thought this interface was easy to use”
and “I thought this interface was intuitive to use,” separated by overall user performance.

(defined as the sum of each user’s four total adjusted times). The trend indicates

that the users that performed better as a whole derived less benefit from the MS

controller than those that did poorly overall.

3.5.3 User Ratings of Interfaces

Figure 3.9 shows the user ratings for questions about interface ease of use and

intuitiveness. The MS interface rated as significantly easier (p < 0.05) and more

intuitive (p < 0.05) than the gamepad, and the MR visualization was rated as easier

(p < 0.05) and more intuitive (p < 0.1) overall, despite adjusted total task times

being higher for the MR visualization. There was also an interaction effect between

visual interface and manual interface for user rating of interface ease (p < 0.1).

Additionally, the ratings of the top third of users generally mirrored those of the

rest of the test population, even though they did not benefit as highly as the rest

of the users. Finally, when asked during the post-test interview, 76% of users with

a preference stated they most enjoyed using the MS+MR interface, and 73% of

users would choose to use the MS+MR interface if they were asked to participate in

58

0

500

1000

1500

2000

2500

Prior Video Game Experience
1 2 3 4 5

T
ad

j [s
]

Data, GP input
Model, GP input
Data, MS input
Model, MS input

Figure 3.10: The derived performance model for total adjusted time (Tadj) with boxplots showing
the experimental data. Eq. 3.2 shows that the two most important factors in predicting performance
are operator prior video game experience and the type of manual interface used.

another test to be evaluated in a similar way.

3.5.4 User Performance Model

To predict a potential user’s performance on the tasks in this user study, a linear

regression analysis was performed to obtain a task performance model. Because

there were many (possibly correlated) potential factors that could be used in the

model, the Bayesian information criterion (BIC) [53], which penalizes models with

many regressors, was used to avoid overfitting. From a list of potential regressors,

including the test parameters of input device, feedback device, and trial number, and

user self-reported prior experience with video games, AR, and VR technologies, the

regression model for expected value of total adjusted task time is given by:

(3.2) E [Tadj] = 1385− 175xMI − 98xV G

where xMI is a dummy variable representing the type of manual interface (0 –

Gamepad, 1 – Master-Slave), and xV G is the user’s previous experience playing video

59

games, on a scale from 1 (None) through 5 (Very Experienced). The model given in

Eq. 3.2 is plotted against the experimental test data in Fig. 3.10.

3.6 Discussion

3.6.1 Manual Interface

The results presented in Section 3.5.1 indicate that the MS manual interface

resulted in significantly better performance in the manipulation subtasks, as well as

the overall task time. This is consistent with the previous literature indicating that

position controllers are preferable for dexterous tasks [23]. The MS interface also

had the added benefit of acting as a type of visual feedback for the arm orientation,

which users often cited as being very useful during tests. This type of visual feedback

would not necessarily be present for a resolved position controller, as the user would

only be able to visualize the end-effector position.

Some users complained that the 3D mouse used with the MS interface was very

sensitive, and was an unfamiliar computer peripheral to many users, so this may

account for the slightly decreased performance during the navigation subtask. The

3D mouse could be swapped out for a more familiar physical interface to try to

mitigate this issue.

As shown in Fig. 3.9, users found the MS interface easier and more intuitive to

operate than the gamepad, mirroring the results of the performance metrics.

While gamepad interfaces are generally portable, simple, and readily available,

these user tests reinforce the idea that they are not necessarily the best choice for

tasks that require high dexterity, and other input methods should be considered

during the design phase of teleoperated systems.

60

3.6.2 Visual Interface

Section 3.5.1 also indicates that the MR interface actually made users perform

worse than the video-only feedback. This is inconsistent with some of the previous

literature on MR interfaces, so this result likely stems from the implementation of

this particular interface for these tasks and metrics.

The tasks in this study involved both navigation and manipulation. Previous

work, such as [16] and [27], only tested MR interfaces for either navigation or ma-

nipulation, so no evaluation of switching tasks could be made. Additionally, neither

of those studies required the user to manipulate their point of view manually. In the

tests performed in this study, users were able to manually control the virtual point

of view, which was often done when changing from a driving to a manipulation task.

Users often took time to obtain their desired point of view, which could have negated

any time advantage gained by having an enhanced understanding of the remote en-

vironment. Indeed, a comparison of the total user input control effort for both arm

control (defined as the sum of the absolute value of the change in commanded arm

position) and chassis navigation (the time-integrated absolute value of the chassis

velocity and steering commands) showed no significant difference between the feed-

back interfaces (p > 0.1). This indicates that the extra time task completion time

was not time spent commanding the robot.

Previous work also implemented MR interfaces that were very specific to the task

being performed. For example, the interface in [16] was specifically designed for

space-telerobotics orientation tasks. Our MR visualization was designed to provide

more spatial information about the remote environment, but did not implement any

features that were specific to the required tasks (for example, there was no indication

to the user when the gripper was positioned to pick up a box, which would have been

61

specific to this set of tasks). Additionally, the implementation of the MR with dual

displays may have caused some added cognitive load due to users switching between

viewpoints that would not be present in single-display systems.

The performance metric used in these test was heavily based on task completion

time, whereas previous studies often focus more on path efficiency, distance from ob-

stacles, and accuracy. For task completion time, these results agree with the findings

of Green [27], in which navigation time increased with an exocentric MR interface

in comparison to an egocentric view, and Chintamani [16], wherein no significant

difference was found between video and MR feedback methods for a manipulation

task. Our results contrast the findings of Nielsen [45], in which completion times for

navigation tasks using an MR interface were significantly reduced when compared

to the completion times when using a traditional interface.

Despite the increased task completion time Fig. 3.9 shows that users rated the MR

interface as easier and more intuitive to operate than the video-only visualization.

This may be due to the users’ perceived novelty of the interface, or it could be

because it did effectively reduce the users’ cognitive load, despite taking more time

to operate.

In context with previous work, these results have implications for UI design for

teleoperated mobile manipulators. In particular, it may be worthwhile to implement

MR for a teleoperation system that is used for well-defined tasks that require detailed

operator understanding of the robot state. For systems that may be used for a

variety of unstructured tasks for which task-specific MR overlays cannot be designed

in advance, situations involving very simple tasks, or cases where speed is valued

over accuracy, the utility of an MR interface may be diminished.

62

3.6.3 Interaction between Input and Feedback Interfaces

Figure 3.7 indicates that for the navigation and exploration subtask, there was an

interaction effect between the manual and visual interfaces. In this case, it may be

that the MR visualization either mitigates some of the negative effect of the 3D mouse

input for chassis navigation, or that the users spent less time adjusting the virtual

scene when using the 3D mouse. There is no interaction effect for the manipulation

subtasks, despite the fact that MS input provides a type of visual feedback similar

to a third-person view in the virtual scene. This indicates that the arm position

information contained in the virtual scene may not have been particularly useful for

the box-picking tasks in this test.

3.6.4 Slips and Mistakes

Neither the manual interface nor the visualization significantly affected the num-

ber of slips and mistakes committed by the user. For mistakes, this is likely due to the

task not inducing many mental errors, as there was an average of only µM = 0.81

mistakes per task (σM = 0.76). There were far more slips per task (µS = 11.8,

σS = 7.8), but no interface had a significant effect on the number of slips. This

is surprising given the exocentric view available in the MR interface, which should

in theory enable users to determine whether or not the robot was contacting the

arena. A possible explanation for this is that occasionally during the tests, the VR

scene would briefly render the robot scene incorrectly. As a result, users sometimes

commented that they did not trust the VR scene to be accurate, and often ignored

the virtual indications that the robot was about to hit something. This is consistent

with prior work showing that failures early in an interaction lead to lower overall

real-time trust in the robot system [22].

63

3.6.5 User Skill vs. Interface Benefits

During the experiments, it was observed that the users who generally did well at

the tasks seemingly received less of a benefit from the MS controller than those who

struggled with the tasks. This observation is confirmed in Fig. 3.8.

We hypothesize several mechanisms for this differentiation in user improvement.

First, the top users generally self-identified as being highly experienced with video

games, so they would have been more used to the gamepad controller than those

with little gaming experience. Additionally, those predisposed to do well on the

types of tasks presented in this study likely have better spatial-reasoning skills than

others, and the mental mapping from the gamepad to the manipulator arm may not

have been as taxing for them. For these tasks, the required arm manipulation was

relatively simple and repeatable, so if users figured out a sequence of commands to

pick up a box once, it was easy to perform the sequence again. Since the gamepad

required users to physically move less than the MS controller (thumbs and fingers

vs. arms, and in some cases, entire bodies), the efficiency of the gamepad could have

outweighed the intuition of the MS controller. Different results may have occurred

if the manipulation tasks required more diverse sequences of movements.

Curiously, as shown in Fig. 3.9 all users rated the MS interface highly. It might

be that the users who did not see as much of an improvement were subject to the

novelty effect of using something they had not previously experienced, or it could be

that they were actually less mentally taxed, but they were proficient enough with

the gamepad that they did not show much performance improvement with the MS

interface.

Once again, these results have implications for robot UI designers. Primarily,

this demonstrates that the designer must understand the types of users and tasks

64

that the system will need to accommodate. In this case, it seems that if the task

is to be performed by novices, the MS interface would be preferred. However, if

the manipulation tasks were highly repeatable, and the users were experts with

gamepads, then it might not be worthwhile to implement the MS system.

3.6.6 Performance Model

The linear regression model in Eq. 3.2 only contains the regressors of manual

interface and prior video game experience, indicating that these are the two most

powerful predictors of task completion time for these tests. The BIC procedure

used to determine the model indicates that the inclusion of factors representing

Visual Interface and trial number overly constrain the model. Additionally, this

model does not include any interaction effect between the two factors, meaning it

does not capture the diminishing returns on performance improvement from the

implementation of the MS interface for “power users” discussed above.

While the performance model given in Eq. 3.2 is limited in direct applicability in

that it can only predict task performance for this specific set of tasks, it has broader

implications as well. The model indicates that for tasks of this type, the strongest

indicators of user performance (of the set of indicators measured) are video game

experience and manual input method. Interestingly, the experienced video game

players performed better with both the gamepad and the MS interface, indicating

that the advantage gained in this task for video game players goes beyond simply

having more prior experience with gamepads. Additionally, the trial number does

not have a strong enough impact to factor into the model, indicating that short-term

prior experience with the specific task is less important than long-term prior gam-

ing experience. However, these results cannot predict the impact of any long-term

learning that may occur if a longitudinal study were performed for users repeating

65

the task many times.

3.7 Conclusions and Future Work

This chapter presents the results of a 22-subject user study exploring the effects

of two types of feedback visualizations and two types of manual input methods for

a teleoperated mobile robot with a manipulator arm on a set of tasks that required

both robot navigation and object manipulation. The performance metric used in the

study was primarily task completion time, with a component penalizing slips and

mistakes. The results of the user tests indicate that an MS direct position controller

was more effective than a computer gamepad for most people, however users who

were very good at the tasks overall derived less benefit from the MS control input.

An MR visualization was found to cause decreased performance in the tests, but

this could be because users spend a significant amount of time adjusting the point

of view of a virtual scene. There was an interaction effect between visualization

and manual input method for navigation and exploration subtasks, but not for arm

manipulation subtasks. No interface was found to affect the number of slips and

mistakes committed by the user, but this may be due to users’ lack of trust in the

exocentric view presented in MR interface. Despite the seemingly counterintuitive

performance results, users rated both the MS input and MR visualization as easier

and more intuitive to use. A model of predicted user performance for these tests

based on user background and interface type is presented, which shows that the two

strongest indicators affecting predicted performance for this task are a user’s previous

experience with video games and the type of manual interface. The results of these

tests highlight the need for robot designers to understand both the users and the

tasks for which they are designing.

66

Future work includes an analysis of this same data set with a focus on under-

standing how user sense of presence plays a role in task performance. Additionally,

it would be of interest to compare the implemented unilateral MS system with one

that uses haptic feedback for these tasks to determine if there is any significant

improvement.

CHAPTER IV

Modeling Teleoperated Mobile Robot Steering Behavior in
the Presence of Latency

4.1 Introduction

Latency is a significant factor affecting teleoperated robot performance. Whether

the latency originates in the system communications network, processing routines,

or sensing hardware, it can negatively impact a human operator’s ability to perform

even basic remote tasks. With enough delay, a user’s entire control strategy is often

switched to a move-and-wait open-loop methodology [54], making it impossible to

maneuver a robot quickly or efficiently. Moreover, while operators can sometimes

adapt to a system delay if it remains relatively consistent, variable latency makes

it difficult for humans to predict how the robot will respond [35, 20]. While many

teleoperated industrial or surgical robots have the benefit of communicating over

wired networks, mobile robots generally must utilize wireless protocols, which have

higher latency and latency variation. However, the effects of variable latency are not

well-characterized in teleoperated systems.

Understanding how teleoperators interact with robots is key to designing better

teleoperation systems. Because it is often not feasible to test large numbers of dif-

ferent design iterations with real human operators, it is desirable to have a model

of a human teleoperator that could be used to evaluate multiple designs quickly and

67

68

easily. Driver models used for similar purposes have a long history in the automotive

industry [36], but these models may not be directly applicable to teleoperation, as

the two tasks are quite different. While vehicle drivers have a wide variety of sen-

sory feedback available, teleoperators are generally limited to relying solely on visual

feedback, which is often delayed and has a limited field of view [14]. Additionally, in-

put devices for automobiles (e.g. steering wheels with haptic feedback) are generally

not the same as those used in teleoperation, which can be as simple as off-the shelf

video game controllers. Finally, the internal models automobile drivers have for their

vehicles are likely far more developed than those of even experienced teleoperators.

Thus, there is a need develop new models of humans performing teleoperation tasks

in remote environments.

The results in this chapter are based on a 31-subject user study designed to mea-

sure the effects of both constant and variable latency on a simulated teleoperation

steering task using a commercially available gamepad as an input device. The input

commands from the human to the robot were recorded with the aim of developing

a driver model to simulate human behavior for simple steering tasks under different

latency conditions. The study resulted in three key findings: 1) Variable latency

scenarios resulted in worse path-following performance than did constant latency

scenarios having the same mean delay time. 2) Variable latency can be considered as

an equivalent constant latency under the conditions tested in this study. This equiv-

alent constant latency is greater than the mean delay of the variable distribution.

3) A teleoperator’s steering commands with a gamepad can be reasonably modeled

as PD controller based on the preview of the robot’s anticipated lateral displace-

ment. To the our knowledge, this is the first steering model developed specifically

for teleoperated robots.

69

The chapter is organized as follows: First, prior work regarding latency’s effects

on teleoperation as well as steering models in both the automotive and Human-

Computer Interaction (HCI) domains are discussed in Section 4.2. Then Sections

4.3 and 4.4 present the design and implementation of a user study with the aim of

characterizing teleoperators’ responses to different latency scenarios. The user study

also gathered experimental data on operator driving style to be reproduced by a

driving model. The results of the study are presented and discussed in Sections 4.5

and 4.6, respectively. A driver model is developed and validated using the test data

in Section 4.7. Finally, Section 4.8 discusses conclusions and future work regarding

the direction of this research.

4.2 Background

4.2.1 Latency in Teleoperation

It is well-established that latency has a detrimental impact on teleoperation per-

formance, and time delay is known to be one of the most significant factors affecting

remote perception and manipulation [14]. Sources of latency in a teleoperated robot

system include network delays, sensing delays, and processing delays, as well as de-

lays caused by the operator’s cognitive and physical processing, which can themselves

be affected by the delay in the rest of the feedback loop (see Chapter II).

One of the earliest studies in this domain investigated open-loop position control of

a remote manipulator, and found that users adopted a move-and-wait strategy when

the delay was above 1.0 second [54]. More recent studies have examined mobile

robot teleoperation performance under other conditions including 2D driving [35,

20] and 3D underwater navigation tasks [18]. Prior work has shown that variable

latency leads to worse performance than constant latency, because users are less

able to compensate for the changing delays [35, 20]. The directionality of the latency

70

(whether user-to-robot or robot-to-user) has also been investigated, where it has been

found that users felt robot control was more difficult when the latency was in the

robot-to-user direction, but no objective difference in performance was observed [35].

4.2.2 Steering Models

Modeling human driver behavior has a rich history in the automotive domain

[36, 60, 21]. From transfer functions models to nonlinear and adaptive controllers

to neural networks, genetic algorithms, and fuzzy logic controllers [36, 21], there are

myriad methodologies for modeling vehicle lateral control (steering), longitudinal

control (acceleration and braking), and combined control. These models can be used

to simulate human drivers when testing new vehicle designs and technologies [36, 21],

and despite the complexity of human behavior, low order models are often sufficient

for many control tasks [11].

Regardless of overarching approach, all driver models aim to capture the key

characteristics of the human driver as a controller in a feedback loop. MacAdam [36]

notes that the essential requirements of a model should include: a time delay due

to human processing, a preview of the upcoming control requirements, the ability to

adapt to different vehicle and operating conditions, and an internal model to predict

vehicle responses. Our modeling efforts adhere to these requirements.

Automotive steering models can use one or more feedback cues as inputs to the

driver model, including any or all of the following: lateral displacement, lateral

acceleration, roll angle, heading angle, and yaw rate. The cues can be processed

by the model in one or more forms, which may include visual cues, motion effects,

sound, and tactile information [36]. However, typically only limited visual signals

are available in teleoperation scenarios.

71

4.2.3 Steering and Latency in HCI

Steering has also been addressed by researchers in the field of Human-Computer

Interaction (HCI). There exist several laws quantitatively linking human performance

in steering tasks to the spatial constraints of the scenario. Notably, Accot and Zhai

developed a law (derived from Fitts’ pointing law) showing that the time T to steer

through a path is governed by [1]:

(4.1) T = a+ bID

where a and b are constants and ID is a difficulty index. While this steering law was

originally developed for 2D trajectory-based interactions, such as menu navigation

with a mouse [1], it has been demonstrated that this relationship also holds for

locomotive steering tasks in virtual environments [69].

While this law has not been directly tested in the presence of latency, similar

work has found that performance in 2D target-following tasks using a mouse is sig-

nificantly degraded by latencies over 110ms and for latency variations over 40ms [48].

Additionally, Fitts’ law requires corrective terms in the presence of time delays when

applied to scenarios ranging from planar mouse-pointing tasks [37] to haptic Vir-

tual Reality surgical simulations [32], indicating that a steering law may also require

corrective terms to accommodate latency. Another limitation of this steering law is

that it only applies to successful steering tasks, and cannot account for failed trials

in which a user steers outside the constraints of the scenario [69].

4.3 Task Setup

A user study was performed to gather data on task performance and operator

driving style in robot steering tasks using a low-fidelity simulation of a teleoperated

mobile robot driving on a simulated test track of constant width. The user’s goal

72

(a) Simulated Robot (b) Third-Person Viewpoint (c) First-Person Viewpoint

Figure 4.1: Renderings of (a) the simulated robot, (b) the exocentric (third-person) viewpoint, and
(c) the egocentric (first-person) viewpoint presented to the users in the study.

was to steer the robot such that it followed the track’s indicated centerline as closely

as possible.

4.3.1 Simulation Environment

A custom simulation environment for this set of tests (with a look inspired by

the classic arcade game Pole Position) was written in Java using the April Robotics

Toolkit [6] and Lightweight Communications and Marshalling (LCM) [31] libraries.

The simulation uses a simple kinematic driving model of a representative skid-steer

robot chassis (see Fig. 4.1a), calculating the robot’s Cartesian position (x1,x2) and

orientation (θ) for each time step (k+ 1) using the commanded robot speed (v) and

turn rate (ω):

(4.2)


x1

x2

θ


k+1

=


x1

x2

θ


k

+


vk cos θk+1∆t

vk sin θk+1∆t

ωk∆t


The simulation runs in its own Java thread at a rate of 60Hz.

4.3.2 User Interface

The user gives steering commands to the robot using one of the two analog mini

joysticks of a standard computer gamepad (Logitech Cordless Rumblepad 2), which

73

is read by the Operator Control Unit (OCU) at a rate of 40Hz. A small amount of

noise is artificially added the gamepad input, generated from a uniform distribution

on the range of [−10%, 10%] of the maximum possible input command, to simulate

the noise present in a physical robot system. Operators do not have control over the

robot speed; it is constant for the duration of the trial unless the robot is driven off

of the track.

The simulation visualization is displayed to the user via the OCU on a 25”

(63.5cm) monitor with a resolution of 1920x1200px in a full-screen window. The

visualization refreshes the displayed frame at a rate of 15Hz. Two different view-

points are used in this study. A third-person view (Fig. 4.1b) shows the scene from

a virtual camera following behind the robot. A first-person view (Fig. 4.1c) shows

the scene from the point of view of the robot’s camera, with a small portion of the

robot’s gripper visible in the bottom portion of the window. Both viewpoints are

aimed at a point the same distance in front of the robot, giving both views identical

lookahead distances.

4.3.3 Insertion of Delay

Gamepad instruction packets are read by the OCU and enter a queue waiting

to be read by the simulation, representing a delay in the human-to-robot direction.

For each incoming instruction, a simulated delay (δ) inserted between the gamepad

instruction and the simulation is determined by:

(4.3) δ(δmin, σ) = δmin + |δX |

where δmin is a minimum baseline delay, and δX ∼ N (0, σ2) is a continuous random

variable having a normal distribution with variance σ2. This results in a stochastic

delay distribution approximating the qualitative shape of wireless packet intervals

74

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000
Distribution

Instruction Number

D
el

ay
 δ

[m
s]

100 200 300 400 500 600
0

50

100

150

200

250
Histogram

Delay δ [ms]

F
re

qu
en

cy

Figure 4.2: Distribution of gamepad instruction packet delays with δmin=150ms, σ=125ms, and
mean delay E[δ]=250ms. The quantization is due to the gamepad sampling rate of 40Hz, which
also causes the delay minimum (and therefore the mean delay) to be slightly greater (<10ms) than
the nominal value, but this is negligible compared to the induced delay.

reported in [5]. For simulation of constant delay, we set σ = 0 such that δ =

δmin. Once the delay is determined for the current time step, the newest gamepad

instruction in the queue that is at least δ ms old is used as the command input to

the driving simulation, and older instructions are discarded. If no instruction is older

than the desired delay, the previous instruction is used until the oldest instruction

is older than δ ms. A sample distribution of instruction delay values is shown in

Fig. 4.2.

This induced delay is added to the system and does not include or compensate for

any further computer processing delays or delays due to the display device, which are

assumed to be negligible compared to the magnitude of the latencies induced in the

trials. Additionally, there is a slight delay from the sampling time of the gamepad,

which is also negligible.

75

4.3.4 Test Track

Sixteen non-intersecting test tracks were randomly generated that each contain

exactly one of the following elements:

• Right Turn

• Left Turn

• U-Turn Right

• U-Turn Left

• S-Turn Right-Left

• S-Turn Left-Right

All turns have a constant radius of 2m, and the width of the track is 2m, with

0.125m borders on either side. The width of the robot (wheel-to-wheel) is 0.74m.

The turn gain of the gamepad input is scaled by robot speed such that the minimum

turning radius of the robot is always 1.6m, preventing users from relying on the

actuator limits of the gamepad to execute ideal turning motions. Each track element

has a section of straight-line path at least 5m long immediately following it to allow

the user to try to recover from any deviation sustained during the turn. Additionally,

there is a 10m straight-line practice section at the start of each track in which the

user can familiarize him/herself with the test condition. A sample track is shown in

Fig. 4.3.

4.3.5 Scoring

The path-following score for each trial is determined as a function of the robot’s

distance from the centerline over the course of the path. Scoring begins after the

robot has passed the start line indicating the end of the practice section of track.

76

Figure 4.3: Representative track with dimensions for simulated driving tasks. Sixteen total tracks
were randomly generated for use in the study, all with the same set of features and dimensions. A
practice section was included at the beginning of the track to enable users to familiarize themselves
with the test conditions. Scoring for each trial commenced after the robot passed the “Start” line.

The score at time step i is given by:

(4.4) Si = max(0, 1− |yi|)

where yi is the lateral displacement at step i. Then the total score is determined as

the average of the of the scores at each time step:

(4.5) S =
1

n

n∑
i=1

Si

Therefore, a score of 1 indicates that the path was followed perfectly, and a score of

0 indicates that the robot was never on the test track.

4.4 Procedure

User tests were conducted with 32 volunteers recruited via flier and email ad-

vertisements distributed to a population of undergraduate and graduate engineering

students. One participant withdrew from the study, leaving 31 users in the data

set. A total of 22 men and 9 women completed the tasks, ranging in ages from 18

77

Table 4.1: List of latency types used in the user study. All values are listed in ms. E[δ] is the
expected value of the random variable δ, representing the delay inserted between the user and the
robot for each latency type.

Latency Type δmin σ E[δ]

A 0 0 0
B 250 0 250
C 500 0 500
D 750 0 750
E 150 125 250
F 300 250 500

Table 4.2: Number of users participating in each scenario. All users participated in six of the sce-
narios (starred), while the remaining six scenarios were distributed evenly among the participants.

Constant Latency Variable Latency
Visualization POV A B C D E F

Third Person 31* 11 31* 10 31* 11
First Person 31* 10 31* 10 31* 10

to 37, with a mean age of 23.5 years (standard deviation = 4.2 years). Users were

given $10 for participating, with the knowledge that an additional $10 bonus would

be awarded to the top performer of six different tasks as determined at the end of

the trials, with a $30 bonus cap. The tests were designed to take less than one hour,

and most participants needed approximately 45 minutes. These tests were approved

by the University of Michigan Health Sciences and Behavioral Sciences Institutional

Review Board. (UM IRB #HUM00044265).

4.4.1 Study Design

This study used a repeated-measures test design, with three independent variables:

Viewpoint – first- and third-person; latency type – see Table 4.1; and robot speed

– 1.0 m/s, and 1.5 m/s. However, to make the study more efficient, both speed

levels for a given viewpoint-latency scenario were tested consecutively, and a survey

was administered once per scenario, instead of after each individual trial. Therefore,

78

there were 12 scenarios tested in the study, with two speeds per scenario. Due to time

constraints, users did not experience all 12 test conditions; instead, each individual

saw eight scenarios. Six of the scenarios were performed by all users (these were used

as the basis for the bonus payments), and the remaining two scenarios for each user

were evenly drawn from the secondary set of scenarios (see Table 4.2). Users were not

informed which scenarios were common to all participants. The order of the scenarios

was randomized to counterbalance any learning or fatigue effects. Additionally, the

order of the speeds in each scenario was randomized, as was the selection of track

for each trial.

4.4.2 Test Procedure

Test subjects were first greeted by an experimenter, and brought into the testing

room. After being informed of the nature of the experiment and signing consent

forms, the users filled out a demographic survey. The experimenter then explained

in detail the procedure of the trials, and answered any questions. Users were informed

of the scoring mechanism prior to the tests, but were not told their test scores so as

to not bias their survey responses.

Once the user was ready to move on to the tests, the experimenter would remotely

trigger the first trial of the first scenario. Users would push a button on the gamepad

to initiate driving, and would steer the robot along the test track with one of the two

mini joysticks on the gamepad, at a constant pre-determined speed, attempting to

keep the center of the robot in line with the center of the test track. If the center of

the robot passed completely off the track, the speed of the robot was automatically

reduced to half of the original speed, and returned to normal when the user was able

to get the robot back onto the track.

Once the first trial was completed, the experimenter would trigger the second trial

79

of the first scenario, in which the robot would drive at a different speed, and the user

would again navigate the test track (a different track was used for each trial). Once

both trials were finished for a given scenario, the user filled out a survey about the

test condition s/he just experienced by responding to a series of seven-point Likert

items. Questions about the users’ sense of presence in the robot’s workspace were

derived from Witmer [66].

This process was then repeated for the remaining seven scenarios.

Data was recorded in the following ways:

1. The OCU screen was recorded during all tests.

2. Audio of the test subjects running commentary was recorded during each test.

Users were encouraged to verbalize their thoughts as they were steering the

robot.

3. Data logs recorded the user’s input to the robot as well as the robot state during

all tests.

4. Surveys were administered on the OCU via web browser.

One data log for latency scenario C with a first-person view at a speed of 1.5

m/s did not record properly, so this trial is omitted from the dataset, but the survey

results are included.

4.5 Results

The results of the user tests are summarized in the following subsections.

4.5.1 Significant Factors Affecting Objective Performance

Table 4.3 shows the p-values for the factors and interaction effects potentially

affecting users’ objective performance, as measured by Eq. 4.5, for the path-following

80

Table 4.3: Table indicating the p-values of factors and interaction effects potentially affecting the
path-following score. Factors with p <0.001 are bolded.

Factor p-value

Speed 0.000
Viewpoint 0.130
Latency 0.000

Track 0.302
Trial Number 0.000

Speed×Viewpoint 0.126
Speed×Latency 0.000

Viewpoint×Latency 0.155
Speed×Trial Number 0.852

task. The robot speed, latency type, and trial number all significantly affect the

trial score, and there is an interaction effect present between the robot speed and the

type of latency. The viewpoint type and track number did not significantly affect

the path-following score.

Figure 4.4 shows a boxplot of trial scores under different latency and speed condi-

tions. The plot shows decreasing scores and increasing score variance for increasing

amounts of latency. Both of these trends agree qualitatively with the findings in

[18], which measured task completion time in a 3D navigation task. There is a clear

decrease in performance for higher robot speeds under all latency conditions, and

the performance dropoff is particularly stark above 500ms of delay. Additionally, the

interaction effect between speed and latency type is apparent in the plot. Finally,

the scores for trials under variable latency are lower than the scores for trials under

constant latency with the same mean, as scenario E shows worse performance than

B, and F shows worse performance than C.

4.5.2 Survey Responses

Figure 4.5 shows the participant responses to the questions on the survey mea-

suring the teleoperators’ sense of the latency on a seven-point Likert scale. The

responses show good internal consistency (Chronbach’s α=0.87), in measuring how

81

A B C D E F
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency Type

P
at

h−
F

ol
lo

w
in

g
S

co
re

v = 1 m/s
v = 1.5 m/s

Figure 4.4: Boxplot showing the path-following score, as defined by Eq. 4.5, indicating user per-
formance under varying latency and speed conditions. For all boxplots in this chapter, the center
line of each box represents the data median, while the edges of the box correspond to the 25th
and 75th percentiles (the innerquartile range, IQR), and the whiskers extend to the most extreme
data points within 1.5 IQR of the 25th and 75th percentiles. Data points outside this range are
considered outliers [24].

much delay the user felt in the system, and indicate that users felt more delay with

increasing delay mean, and also felt more delay in scenarios involving variable latency

than for scenarios having constant latency with the same mean.

4.6 Discussion

4.6.1 Significant Factors

The results of Section 4.5.1 indicate that, as expected, robot speed and latency

type significantly affect performance. Additionally, the trial number had an effect

on performance, indicating that there was a significant learning effect. Because the

order of the scenarios and speeds were randomized, this should not affect the results

of this study. The track number was not a significant factor, indicating that all tracks

were of equal difficulty.

In contrast to our expectations, the viewpoint presented to the user did not have a

significant effect on performance. This comes despite videogamers’ general preference

for a 3rd-person point of view [51]. This result may have several explanations. First,

a part of the robot arm’s gripper was visible in the first-person view. This was done

82

100 80 60 40 20 0 20 40 60 80 100

F
E
D
C
B
A

There was a lot of delay between my actions and the expected outcome in the robot’s environment

Strongly Disagree

Neutral

Strongly Agree

100 80 60 40 20 0 20 40 60 80 100

F
E
D
C
B
A

La
te

nc
y

T
yp

e

I was easily able to control the events in the robot environment

100 80 60 40 20 0 20 40 60 80 100

F
E
D
C
B
A

I felt that the information coming from the interface
to various senses were connected and consistent

100 80 60 40 20 0 20 40 60 80 100

F
E
D
C
B
A

Responses [%]

I was easily able to anticipate what would happen next in the robot environment

100 80 60 40 20 0 20 40 60 80 100

F
E
D
C
B
A

Responses [%]

I was able to quickly adjust to working within the robot environment

Figure 4.5: User responses to questions designed to assess how much delay the user felt in the system
for each latency type. The survey with 7-point Likert items was administered at the conclusion of
the two speed trials for each scenario.

purposely to accurately depict the physical robot represented by the simulation.

However, this gave users a reference point for the camera’s position with respect

to the robot, which may have aided their performance. Additionally, this task was

relatively simple and did not involve interaction with any objects other than the

track, so the benefits of a third-person view may not have been apparent for this

situation. One participant specifically commented that while he normally uses a

third-person view in racing video games, the fact that he did not have to account for

anything in the environment other than the track meant that the third-person view

did not help as much as he anticipated.

4.6.2 Performance Modeling and Variable Latency Equivalence

Figure 4.6 shows the score distribution of the constant latency scenarios plotted

with a trend line for each of the two speeds, with which we can predict path-following

scores for delays not explicitly tested in this study.

83

By determining where the path-following score results of the variable latency sce-

narios intersect with the trend for the constant latency case, we can estimate an

equivalent constant-latency value for each variable latency scenario. Figure 4.6 in-

dicates that for variable latency scenario E, the median scores at the two different

speeds correlate with the same equivalent constant delay, 380ms. Similarly, latency

scenario F corresponds to a constant delay of 660ms for both speeds. We conjecture

that for this steering task, variable sources of delay can be mapped to an equivalent

constant delay, independent of speed. This could simplify the process of understand-

ing user responses to delay for teleoperated tasks, as once an equivalence is found, it

may be possible to use this equivalence instead of the delay distribution for model-

ing and predicting user behavior. Note that this equivalence is with regards to the

system performance under the different latency scenarios, and does not imply that

pure delay and latency variability have equivalent underlying mechanisms resulting

in decreased performance.

Figure 4.5 shows that users also reported experiencing the variable latency at a

similar equivalence, in that the users’ sense of the delay in the system followed the

same trend as the objective score, wherein variable latency type E fell in between

constant latency types B and C, and type F was between and C and D. Figure 4.7

shows the sum of responses to these five Likert items (with the responses to “There

was a lot of delay between my actions and the expected outcome in the robots

environment” reversed to make the sentiment of the statements consistent). A linear

trend can be found between the constant delay scenarios and the sum of the ratings,

and plotting the survey results of the variable latencies on this same scale shows that

the constant equivalences determined by the objective scores are consistent with the

trend in the survey responses. This indicates that users’ perceptions of the variable

84

0 100 200 300 400 500 600 700 800
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay [ms]

A: δ(0,0) B: δ(250, 0)
C: δ(500, 0)

D: δ(750, 0)

E: δ(150, 125)

F: δ(300, 250)
P

at
h−

F
ol

lo
w

in
g

S
co

re

380ms 660ms

Constant Latency, v=1 m/s
Trend, v=1 m/s
Constant Latency, v=1.5 m/s
Trend, v=1.5 m/s
Variable Latency, v=1 m/s
Variable Latency, v=1.5 m/s

Figure 4.6: Model of user performance as measured by the path-following score for various latencies
and robot speeds. The data in this plot is the same as in Fig. 4.4, but the scores are now plotted
by numerical latency value on the horizontal axis. The trend line runs through the median score
for each constant latency case (A-D), and the variable latency cases (E-F) are then shown at their
corresponding equivalent constant delays.

delay agrees with their objective performance on the tasks, despite their not being

informed of their scores during the trials.

4.7 Driver Model

This section discusses the development of a model for simulating the steering

commands issued by the teleoperator under different system latency conditions. This

model could be useful as a substitute for a real teleoperator when testing mobile robot

designs for tasks requiring steering inputs.

4.7.1 Driver Behavior

To act as an acceptable substitute for a human driver, the steering model must

accurately replicate the key characteristics of the human driver. Figure 4.8 shows two

example datasets from runs under low latency (Latency A), and under high latency

85

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

Delay [ms]

A: δ(0,0)
B: δ(250, 0)

C: δ(500, 0)

D: δ(750, 0)

E: δ(150, 125)

F: δ(300, 250)

Li
ke

rt
 R

at
in

g
S

um

380ms 660ms

Constant Latency
Variable Latency
Trend Line

Figure 4.7: Boxplot of user responses to survey questions related to operator sense of delay. The fit
line is generated from the constant-latency cases (A-D), and the variable latency scenarios (E-F)
are plotted at their constant latency equivalents, as determined by path-following score in Fig. 4.6.

Example Track

Inset of first U−Turn

Track

Latency A, Human Driver

Latency D, Human Driver

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Practice
Section

Human Driver, Latency A, v = 1.0 m/s, Score = 0.93

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Human Driver, Latency D, v = 1.0 m/s, Score = 0.77

Test Progress (%)

Practice
Section

Input Command [−1,1] Lateral Displacement [m]

Figure 4.8: Plots showing example datasets of low-latency and high-latency test cases. The datasets
are from two different users. These datasets were chosen as representative of the median user
performance in the test. Scores were not accumulated during the practice section. Note that even
though the operators could use the joystick to command any value between -1 and 1 to the robot,
users generally only toggled between 0 and ±1.

86

(Latency D), which are representative of many of the test datasets.

The first characteristic that the model should accurately reproduce is the profile

of the lateral displacement of the robot along the path. This can be represented by

the path-following score, but the simulated displacement should also show similar

patterns to the measured data. Two convenient measures to characterize the shape

of the path are the maximum lateral displacement (maximum error), and the length

of the path (as meandering paths will be longer overall).

We also wish to emulate the characteristics of the input command. As shown

in both traces in Fig. 4.8, the input command is almost always saturated. This

is because most users tended to move the control stick on the gamepad as far to

the left or right as its travel allowed rather than use an intermediate input. This

tendency was present under all test conditions: over all the trials, users kept the

joystick centered 55.5% of the time, pushed the stick to the far left or right 33.5%

of the time, and only 11% of commands were any value in between. This type of

gamepad input behavior has been previously observed in computer racing games [12].

Whether the inputs are in the form of quick, frequent adjustments, or long sustained

turning commands (both strategies were employed by users in this study), one way

to further characterize the input command is by measuring the average magnitude of

the command, giving a measure of control effort. An average magnitude of 1 means

the driver was constantly turning, while an average of 0 means no input was given.

We can also measure the rate at which the operator toggles the gamepad joystick

from center to either side. While a simulated controller with high gain may tend to

chatter back and forth very quickly, a human operator may not be physically able

give this type of input. By dividing the number of toggles by the trial time, we obtain

an overall toggle rate for the trial, by which we can determine if the command profile

87

Figure 4.9: Diagram illustrating the determination of the projected lateral displacement. The
projected state is the location of the robot at a future time t+ Tp, assuming a constant angle and
velocity. The desired state is then defined to be the position and orientation of the desired path
that is closest to the projected state. The perpendicular distance between the desired state and the
projected state is then taken as the projected lateral displacement yp(t+ Tp).

.... R(θd). Driver..

n

. Robot.

State Projection

.
xd(t+ Tp)..

yp(t+ Tp).
u′(t)

..
xc(t)

..

xp(t+ Tp)

.
−

Figure 4.10: Block diagram showing the steering control loop. The lateral displacement yp(t+ Tp)
is determined from the difference between the projected and desired robot states at time t + Tp.
The R(θd) block represents the rotation operation described in Eq. 4.8. The n term represents the
noise injected into the command signal.

was feasible.

4.7.2 Model Development

To develop a model for teleoperated robot steering, we can draw from some of

the techniques previously developed for automotive steering models. Specifically, we

use a preview of the desired path combined with an internal model of the vehicle

kinematics and an operator time delay.

A simple steering model can be developed based on the driver’s anticipated devi-

ation from the desired path at some future time (t+Tp). In this case, we choose the

88

projected lateral displacement yp(t + Tp) of the robot as the feedback cue. Figure

4.9 illustrates the process of determining the projected lateral displacement, which

is based on the projected state of the robot xp(t + Tp), assuming it continues its

trajectory from the current state xc(t) at a constant velocity:

(4.6) xp(t+ Tp) =


xp
1

xp
2

θp

 =


xc
1

xc
2

θc

+


v cos θc

v sin θc

0

Tp

The desired future state of the robot xd(t + Tp), is the point along the desired

path closest to the projected state, as measured by Euclidian distance:

(4.7) xd(t+ Tp) = argmin
x∈path

√
(x1 − xp

1)
2 + (x2 − xp

2)
2

The projected lateral displacement is the component of the difference between the

projected and desired states perpendicular to the direction of the desired path. It is

obtained by rotating the vector from xd to xp by the desired heading angle θd and

taking the component perpendicular to the path:

(4.8) yp(t+ Tp) = (xd
2 − xp

2) cos θ
d − (xd

1 − xp
1) sin θ

d

For a continuous path, this is equivalent to taking the length of the vector, but for

paths consisting of a discrete set of points this method results in smaller computa-

tional errors due to gaps in the path.

We now model the steering action of the user as a PD controller [46] based on

the anticipated lateral displacement feedback cue, with an additional delay δH rep-

resenting the driver’s physical reaction:

(4.9) u(t+ δH) = Kpy
p(t+ Tp) +Kdẏ

p(t+ Tp)

89

The control signal generated by Eq. 4.9 is continuous and unbounded. However,

the gamepad input device is only capable of generating control inputs on the interval

[−1, 1], and it was noted in Section 4.7.1 that users tend to issue commands at one

extreme of the interval or the other. We can capture both the actuator saturation

and the users’ tendency to max out the limits of the gamepad by conditioning the

control input with a simple threshold (µ > 0):

(4.10) u′(t) =



−1 if u(t) ≤ −µ

0 if µ > u(t) > −µ

1 if µ ≤ u(t)

and using u′(t) as the simulated gamepad steering command issued to the robot.

Figure 4.10 shows a block diagram of the overall steering control loop.

4.7.3 Model Parameter Tuning

We focus here on the case in which the robot speed is 1 m/s. To simplify the

process of tuning of this model to reflect the driver behaviors measured in the user

tests, we can make some assumptions about the parameters. First, we assume that

the physical reaction time (δH) of the model driver is 200ms, as the gamepad log

data indicates that users generally actuated the joystick from its center to its limit

within that amount of time. Also, we assume a lookahead time (Tp) of 1250ms.

Additionally, we set the threshold for conditioning the control input to µ = 0.5.

Therefore the only two parameters left to tune are the control gains Kp and Kd.

The gains were tuned by hand to reflect the path-following score and average control

input of the users, discussed in Section 4.7.1, for each constant latency case, using a

MATLAB model of the robot system in place of the Java simulation. A summary of

these constant and tuned parameters is shown in Table 4.4.

90

Table 4.4: Tuned control gains and parameter values for constant latency cases.

Type δ [ms] Kp Kd Tp [ms] δH [ms] µ

A 0 1.7 0.0 1250 200 0.5
B 250 1.6 0.3 1250 200 0.5
C 500 1.3 0.7 1250 200 0.5
D 750 1.0 1.0 1250 200 0.5

For the zero latency case, the Kd value of zero is consistent with vehicle steer-

ing models having only proportional feedback to errors in projected lateral displace-

ment [58]. For the scenarios with latency, the ratio of Kp/Kd decreases as the latency

increases, demonstrating that the steering model more heavily weighs the projected

error for low latency, and relies more on the predicted displacement trend when the

delay is high. Intuitively, this reflects the strategy employed by a human teleoper-

ator in the control loop, who must rely more on prediction based on anticipation

of the track’s features when the latency is high rather than direct visual feedback.

Additionally, the decreasing proportional gain reflects the users’ increased tolerance

for steady state errors in the difficult-to-control high latency cases.

Because the noise n injected into the input command propagates through the

robot system, the ẏp(t+ Tp) term can also be quite noisy, significantly affecting the

derivative portion of the controller. Therefore, the derivative term is smoothed by

averaging the values of ẏp(t+Tp) over 10 samples (for a controller running at 40Hz).

4.7.4 Model Validation

To test the performance of the steering model, the teleoperation scenarios were run

with the gamepad command simulated in real-time by a MATLAB script running the

steering model at 40Hz and communicating to the robot simulation via LCM over

the gamepad channel. Everything else about the simulation was the same as the

91

Track

Inset of first U−Turn

Track

Latency A, Steering Model

Latency D, Steering Model

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Steering Model, Latency A, v = 1.0 m/s, Score = 0.92

Practice
Section

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Steering Model, Latency D, v = 1.0 m/s, Score = 0.75

Practice
Section

Test Progress (%)

Input Command [−1,1] Lateral Displacement [m]

Figure 4.11: Example paths and input profiles of the robot as commanded by the steering model.
These paths and inputs show similar qualitative characteristics to those produced by human drivers.
Scores were not accumulated during the practice section.

0 100 200 300 400 500 600 700 800
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Delay [ms]

S
im

ul
at

ed
 P

at
h−

F
ol

lo
w

in
g

S
co

re

Median Human Operator, v=1 m/s
Tested Constant Latency, v=1 m/s
Intermediate Constant Latency , v=1 m/s
Variable Latency, v=1 m/s

Figure 4.12: Scores of path-following simulations of the robot at a speed of 1 m/s with input
commands from the steering model. The model was tuned using the constant latency scenarios
from the user trials, and additionally tested with the variable latency scenarios. The gains used in
the constant latency cases were linearly interpolated from the tuned gains given in Table 4.4, and
the variable latency gains were tuned to the equivalent latency cases shown in Fig. 4.6

92

A B C D E F
0

0.5

1

1.5

Latency Scenario

M
ax

im
um

 L
at

er
al

 D
is

pl
ac

em
en

t [
m

]

A B C D E F

70

75

80

85

Latency Scenario

P
at

h
Le

ng
th

 [m
]

A B C D E F
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Latency Scenario

M
ea

n
C

on
tr

ol
 In

pu
t M

ag
ni

tu
de

A B C D E F

0.2

0.4

0.6

0.8

1

1.2

1.4

Latency Scenario

T
og

gl
e

R
at

e
[1

/s
]

Human Steering
Model Steering

Figure 4.13: Boxplot comparison between the driver model and human users for path characteristics
of maximum lateral displacement (overshoot), path length, mean control input magnitude (control
effort), and gamepad toggle rate. For readability, the outliers have been removed from the boxplots.

setup with the human operator. Each of latency scenarios A-F were run five times

on five different test tracks with a robot speed of 1 m/s. For the variable latency

cases, the equivalent constant latency found in Section 4.6.2 for each case was used

as an estimated constant latency, and gain values Kp and Kd were determined by

linearly interpolating between the values in Table 4.4. Additionally, five trials were

run at each equivalent latency in a constant delay scenario to verify that the linear

interpolation generates acceptable gain values.

Figure 4.11 shows two example datasets generated by the steering model, which

appear similar to the datasets produced by the human drivers shown in Fig. 4.8.

Both the saturated input behavior and the overall lateral displacement profiles are

qualitatively captured by the steering model.

As shown in Fig. 4.12, the steering model is able to emulate the median path fol-

lowing scores of the of the operators in the user study. Additionally, the simulations

at intermediate constant latency values not explicitly measured in the user trials

follow the trend of the measured data, indicating that the gains determined by in-

terpolation are acceptable. Finally, the path-following scores of the variable latency

cases agree with the scores of the intermediate constant latency tests, meaning that

the latency equivalence experienced by the users has been captured in this steering

model.

93

Figure 4.13 shows that the model, as tuned, accurately reproduces the overshoot

(maximum lateral displacement) produced by the human driver in constant latency

scenarios, but not variable latency cases. Additionally, while they both show the

same overall trends, the path lengths for the human operator are consistently shorter

than for the steering model. This is likely because the human drivers in the trial

were anticipating the turns and took the inside corner of the track more often than

the model. If desired, the model could be tuned to be more anticipatory. The

steering model also shows good agreement with the human drivers for average control

input. Finally, the steering model generally tends to toggle the input command less

frequently than the human drivers toggled the joystick. This could also be adjusted

for in tuning, but increased accuracy in the toggle rate or path length measures may

result in less accuracy for other measures. Additionally, this model does not take

into consideration any learning experience that may be gained from repeated trials.

Overall however, the driver model appears to be a reasonable representation of a

human driver under the conditions tested, and could be used to simulate teleoperator

steering responses for evaluation of potential robot designs and technologies.

4.8 Conclusions and Future Work

This chapter presents the results of a 31-subject user study exploring the effects of

constant and variable latency on teleoperated steering tasks using a simulated mobile

robot receiving input commands from a teleoperator via a computer gamepad. A

model of user performance under constant latency was developed, and is shown in

Fig. 4.6. The model indicates a sharp decrease in path-following performance for

constant latencies above about 500ms, and demonstrates that there is an interaction

effect between latency and speed. Figure 4.6 also shows that both variable latency

94

scenarios tested in this study can be mapped to an equivalent constant latency that

is higher than the average delay. Figure 4.5 indicates that the users’ sensation of

delay as determined by post-trial surveys is consistent with the equivalent latencies

determined by the objective scores.

Using the fundamental concepts from automotive steering models, and examining

the users’ input commands to the simulated robot under different latency conditions,

a model of a human teleoperator for steering tasks was developed in Section 4.7.2,

tuned in Section 4.7.3, and validated for these tasks in Section 4.7.4. The model,

as described in Eq. 4.9, is a PD controller with feedback based on the projected

lateral displacement of the robot. The tuning of the model gains for different latency

scenarios reflects the real-world control strategies that users employ when adapting

to system latency.

This chapter raises new questions about the relationships between system latency

and operator performance. Thus, one area of future work is further exploration of

the possible mapping between variable latency and equivalent constant latencies. It

remains to be studied under which conditions of latency distribution, task type and

difficulty, and output measures such an equivalence may exist. Additionally, more

work can be performed on teleoperation driver models, including the validation of

the steering model developed in this work by using more varied track configurations

and latency scenarios, as well as more realistic robot simulations. While one clear

extension of this work is the development of longitudinal and/or combined driver

models for teleoperated mobile robots, it may also be possible to model teleoperators

similarly in other contexts, such as pointing or object manipulation tasks.

CHAPTER V

Conclusions and Future Work

Teleoperated mobile robots are used every day in scenarios that are too danger-

ous or difficult for humans to be present, but which require human judgment and

decision-making skills. However, finite network bandwidth limits the fidelity of com-

munications between the robot and operator, leading to multiple issues affecting the

operator’s ability to perform tasks in a remote environment. The overall effect of

these issues is that teleoperation is a slow and difficult process. Many potential design

solutions exist to help reduce the impact of such issues, but each solution has associ-

ated costs as well as anticipated benefits, and it is not always clear which components

and designs should be chosen to most effectively improve system performance. This

dissertation introduces a systematic framework for evaluating design choices for tele-

operated mobile robot systems. Because this framework relies on models of human

operator behavior, several demonstrative models for use in the framework have been

developed to predict human performance for representative teleoperation tasks under

varying system conditions.

5.1 Contributions

This dissertation’s contributions are applicable to the design and implementation

of teleoperated robot systems. First, the underlying factors limiting teleoperation

95

96

performance are identified and organized by their location in the teleoperation system

feedback loop. Second, an optimization framework for robot speed and performance

is presented. The framework offers a systematic method of determining the cost-

effectiveness of implementing potential solutions for mitigating the limiting factors.

Two examples are provided for a teleoperated unmanned ground vehicle (UGV):

one demonstrating the methodology of the framework itself, and a second giving an

example of model development for operator detection distance.

A Master-Slave (MS) manual input device and Mixed Reality (MR) visualization

software for use in teleoperated mobile manipulation were developed and tested. An

evaluation of teleoperator performance with these interfaces, using task completion

time and accuracy as a metric, indicated that the MS input method resulted in better

performance than a traditional computer gamepad. However, the MR visualization

resulted in reduced performance as compared to a purely video visual feedback.

Additionally, users that were adept at the task overall received less of a performance

boost from the MS interface than did the users who struggled with the task.

Another set of user trials was performed for a simulated teleoperated steering task

under constant and variable latency conditions. A model of user performance was

developed from these trials and it was found that under the conditions of the simula-

tion, latency with a variable distribution could be mapped to an equivalent constant

latency, the magnitude of which is greater than the mean value of the variable de-

lay. This mapping was consistent for both objective and subjective measures as well

as robot speed. Finally, a teleoperator steering model was developed, tuned, and

validated with the test data. This model is capable of generating realistic human-

like commands to a robot for use in development and testing of teleoperated robots

without the need for real-time human testing.

97

5.2 Future Work

The contributions of this dissertation reveal the potential for further research that

is a combination of model development and validation as well as development and

standardization of performance metrics.

5.2.1 Teleoperator Driving Models

This work has introduced the first driver model specifically designed for teleop-

erated steering tasks. However, there is much more research that could done in this

domain. First, this model was developed under a limited set of test conditions, so

more tests could be performed to validate the model under different latency condi-

tions, track difficulties, and levels of scenario realism (including teleoperation of a

physical robot). Additionally, this steering model is specific to a computer gamepad,

so it would be of interest to develop models using other common input devices for

comparison.

Using the fundamental concepts used in automotive driver modeling, combined

lateral/longitudinal driver models for teleoperated robots could be developed that

would be able to emulate both steering and braking/acceleration actions of a human

user. It may also be possible to try to develop operator models for non-driving tasks,

such as manipulator arm pointing and positioning.

5.2.2 Teleoperator Performance Models

One of the most straightforward directions for future work resulting from this

dissertation is the continued development of models predicting human operator per-

formance in teleoperation scenarios. In this work, we have developed models relating

detection distance to speed and video resolution, task completion time to type of

manual and visual user interface, and path-following ability to latency. However,

98

for the optimization framework presented here to be used widely, more performance

models must be developed for both navigation and manipulation tasks. The develop-

ment of a library of human-performance models relating other relevant factors (such

as relating path-following ability to video frame rate) could enable researchers and

designers to more easily use the optimization framework developed in this disserta-

tion without having to create their own underlying models.

5.2.3 Performance Metrics

Tied closely to the development of teleoperator performance models is the devel-

opment and standardization of the performance metrics described by such models.

Current performance measures for teleoperated tasks vary widely [55], and having a

set of standard metrics is essential for researchers to effectively share their modeling

efforts and compare potential interface design options. However, research must be

done to effectively choose the most valuable metrics to use as standards.

Additionally, aggregate or combined performance metrics could be used. For

example, Accot and Zhai’s steering law [1] in Eq. 4.1 contains a difficulty index based

on spatial constraints. It could be investigated whether factors such as latency, video

quality and video frame rate could be incorporated into this difficulty index, or if

these effects could be included in the law as corrective terms.

5.2.4 Presence

Presence in the context of teleoperation is a subjective experience defined as the

sensation of being at the site of the remote device [66]. Witmer and Singer have

outlined and categorized the factors that contribute to a sense of presence in a virtual

environment [66], many of which overlap with the factors that affect perception and

manipulation abilities in teleoperated tasks. Thus, it is compelling to try to use the

99

concept of presence as an aggregate metric for evaluating teleoperated robot system

effectiveness. Instead of measuring how a given design decision affects individual

performance metrics, the features’ effects on a user’s sense of presence could be

measured, possibly affording a more holistic user model. With such a model, it

may be able to construct a better cost-benefit analysis for improving teleoperator

performance.

In the two user studies discussed in this dissertation, data on operator sense of

presence was collected in the form of Likert item questionnaires and interviews. An

immediate direction of future work is the analysis of this data to assess how the oper-

ators’ sense of presence is correlated with task performance in both of these studies.

Further user testing could be performed on other recently developed interfaces [59].

5.2.5 Variable Latency

Latency plays a key role in the teleoperation control loop, so understanding the

relationship between latency and operator performance is crucial to developing better

teleoperated robot systems. The results of Chapter IV raise new questions about how

variable delays can be modeled and mitigated in the control loop. Future work should

be performed to determine under what conditions of latency distribution, task type,

and task difficulty, as well as for what performance measures variable latency can be

treated as an equivalent constant latency. If widely applicable, this mapping has the

potential to greatly simplify the process of characterizing human operator response

to delays.

5.3 Incorporating Autonomy: Keeping Humans in the Loop

As autonomous navigation and manipulation algorithms improve, robots are get-

ting better at the low-level controls in the teleoperation loop currently provided by

100

the operator. In the future, robots will be able to complete many missions com-

pletely autonomously, even when facing very complicated tasks. When this time

comes, what is the role of the teleoperator, if any? Certainly some rote tasks cur-

rently performed with teleoperation that will have the operator removed. However,

for missions in which the goal is to gather information for real-time human interpre-

tation, the user interface and control loop will be just as important as they are today

with direct teleoperation.

Figure 2.2 on page 10 shows that a teleoperation system has an inner loop/outer

loop control architecture, with the human in the outer loop, and autonomy in the

inner loop. This structure remains unchanged even as more low-level processing takes

place in the “Autonomous Behaviors” block. If we consider the implementation of

a particular autonomous behavior as a potential design choice, the optimization

framework can be used to determine if implementing the behavior is cost-effective

for a given task. Therefore, the framework developed in this dissertation is not only

general enough to be applicable to a highly autonomous system, it can actually be

used facilitate an efficient shift from teleoperation to more autonomous robots.

BIBLIOGRAPHY

101

102

BIBLIOGRAPHY

[1] Johnny Accot and Shumin Zhai. Beyond Fitts’ law: models for trajectory-based HCI tasks.
In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, CHI
’97, pages 295–302, New York, NY, USA, 1997. ACM.

[2] Advanced Micro Peripherals. Embedded video product selector guide, 2012. http://www.

amp-usa.com/selector.php.

[3] G. Ahuja, G. Kogut, E. B. Pacis, B. Sights, D. Fellars, and H. R. Everett. Layered aug-
mented virtuality. Proceedings of the 13th IASTED International Conference on Robotics and
Applications, pages 258–263, 2007.

[4] D. M. Anand, J. R. Moyne, and D. M. Tilbury. Performance evaluation of wireless networks
for factory automation applications. In Proceedings of the IEEE Conference on Automation
Science and Engineering (CASE), pages 340–346, Bangalore, 2009.

[5] Dhananjay Anand, Malvika Bhatia, James Moyne, Wajita Shahid, and Dawn Tilbury. Wireless
test results booklet. Technical report, University of Michigan ERC/RMS, 2010.

[6] APRIL Robotics Laboratory. APRIL Laboratory : Autonomy * Perception * Robotics *
Interfaces * Learning. http://april.eecs.umich.edu, 2012.

[7] A. Bechar, Y. Edan, and J. Meyer. Optimal collaboration in Human-Robot target recognition
systems. In IEEE International Conference on Systems, Man and Cybernetics, 2006. SMC
’06, volume 5, pages 4243–4248. IEEE, October 2006.

[8] P. Ben-Tzvi, A.A. Goldenberg, and J.W. Zu. Design, simulations and optimization of a tracked
mobile robot manipulator with hybrid locomotion and manipulation capabilities. In IEEE
International Conference on Robotics and Automation, 2008. ICRA 2008, pages 2307–2312,
2008.

[9] Johann Borenstein, Russ Miller, and Adam Borrell. Teloptrak: Heuristics-enhanced indoor
location tracking for tele-operated robots. The Journal of Navigation, 65(02):265–279, 2012.

[10] A.P. Bowling, J.E. Renaud, J.T. Newkirk, N.M. Patel, and H. Agarwal. Reliability-based
design optimization of robotic system dynamic performance. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3611–3617, 2006.

[11] L. Brito Palma, F. Vieira Coito, and P. Sousa Gil. Low order models for human controller
- mouse interface. In 2012 IEEE 16th International Conference on Intelligent Engineering
Systems (INES), pages 515–520, 2012.

[12] Michael Brown, Aidan Kehoe, Jurek Kirakowski, and Ian Pitt. Beyond the gamepad: HCI
and game controller design and evaluation. In Regina Bernhaupt, editor, Evaluating User
Experience in Games, Human-Computer Interaction Series, pages 209–219. Springer London,
January 2010.

103

[13] J. Carlson and R.R. Murphy. How UGVs physically fail in the field. Robotics, IEEE Transac-
tions on, 21(3):423–437, 2005.

[14] J.Y.C. Chen, E.C. Haas, and M.J. Barnes. Human performance issues and user interface design
for teleoperated robots. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 37(6):1231–1245, 2007.

[15] J.Y.C. Chen and J.E. Thropp. Review of low frame rate effects on human performance. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 37(6):1063–
1076, 2007.

[16] K. Chintamani, A. Cao, R. D Ellis, and A. K Pandya. Improved telemanipulator navigation
during Display-Control misalignments using augmented reality cues. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, 40(1):29–39, January 2010.

[17] Toby Collett, Joshua Hartnoll, and Bruce Alexander MacDonald. An augmented reality debug-
ging system for mobile robot software engineers. Journal of Software Engineering for Robotics,
1(1):18–32, January 2010.

[18] J. Corde Lane, C.R. Carignan, B.R. Sullivan, D.L. Akin, T. Hunt, and R. Cohen. Effects of time
delay on telerobotic control of neutral buoyancy vehicles. In IEEE International Conference
on Robotics and Automation, 2002. Proceedings. ICRA ’02, volume 3, pages 2874 –2879, 2002.

[19] Mike Daily, Youngkwan Cho, Kevin Martin, and Dave Payton. World embedded interfaces for
Human-Robot interaction. In Proceedings of the 36th Annual Hawaii International Conference
on System Sciences (HICSS’03) - Track 5 - Volume 5, page 125.2. IEEE Computer Society,
2003.

[20] J. Davis, C. Smyth, and K. McDowell. The effects of time lag on driving performance and a
possible mitigation. IEEE Transactions on Robotics, 26(3):590–593, June 2010.

[21] I.I. Delice and S. Ertugrul. Intelligent modeling of human driver: A survey. In 2007 IEEE
Intelligent Vehicles Symposium, pages 648–651, 2007.

[22] Munjal Desai, Poornima Kaniarasu, Mikhail Medvedev, Aaron Steinfeld, and Holly Yanco.
Impact of robot failures and feedback on real-time trust. In Proceedings of the 8th ACM/IEEE
international conference on Human-robot interaction, HRI ’13, pages 251–258, Piscataway, NJ,
USA, 2013. IEEE Press.

[23] J. V Draper. Teleoperator hand controllers: A contextual human factors assessment. Technical
report, Oak Ridge National Laboratory, May 1994.

[24] Michael Frigge, David C. Hoaglin, and Boris Iglewicz. Some implementations of the boxplot.
The American Statistician, 43(1):50–54, February 1989. ArticleType: research-article / Full
publication date: Feb., 1989 / Copyright 1989 American Statistical Association.

[25] Scott Green, XiaoQi Chen, Mark Billinghurst, and Geoffrey Chase. Collaborating with a
Mobile Robot: An Augmented Reality Multimodal Interface. In 17th IFAC World Congress
(IFAC WC2008), page 6, 2008.

[26] Scott. A. Green, Mark Billinghurst, XiaoQi Chen, and J. Geoffrey Chase. Human-Robot
collaboration: A literature review and augmented reality approach in design. International
journal of advanced robotic systems, 5(1):1–18, 2008.

[27] Scott A. Green, J. Geoffrey Chase, XiaoQi Chen, and Mark Billinghurst. Evaluating the
augmented reality human-robot collaboration system. Int. J. Intell. Syst. Technol. Appl.,
8(1/2/3/4):130–143, 2010.

[28] E. Guizzo. Fukushima robot operator writes tell-all blog. http://spectrum.ieee.org/
automaton/robotics/industrial-robots/fukushima-robot-operator-diaries, August 23 2011.

104

[29] Peter F. Hokayem and Mark W. Spong. Bilateral teleoperation: An historical survey. Auto-
matica, 42(12):2035–2057, December 2006.

[30] Hokuyo. Scanning range finder, 2012. http://www.hokuyo-aut.jp/02sensor/index.html#

scanner.

[31] Albert Huang, Edwin Olson, and David Moore. LCM: Lightweight communications and mar-
shalling. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), October 2010.

[32] D.B. Kaber, Yingjie Li, M. Clamann, and Yuan-Shin Lee. Investigating human performance
in a virtual reality haptic simulator as influenced by fidelity and system latency. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, 42(6):1562–1566,
2012.

[33] H. K Keskinpala and J. A Adams. Objective data analysis for a PDA-based human robotic
interface. In 2004 IEEE International Conference on Systems, Man and Cybernetics, volume 3,
pages 2809– 2814 vol.3. IEEE, October 2004.

[34] Donghun Lee, TaeWon Seo, and Jongwon Kim. Optimal design and workspace analysis of
a mobile welding robot with a 3P3R serial manipulator. Robotics and Autonomous Systems,
59(10):813–826, October 2011.

[35] Jason P. Luck, Patricia L. McDermott, Laurel Allender, and Deborah C. Russell. An investi-
gation of real world control of robotic assets under communication latency. In Proceedings of
the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, HRI ’06, page 202209,
New York, NY, USA, 2006. ACM.

[36] Charles C. MacAdam. Understanding and modeling the human driver. Vehicle System Dy-
namics, 40(1-3):101–134, 2003.

[37] I. Scott MacKenzie and Colin Ware. Lag as a determinant of human performance in interactive
systems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in
Computing Systems, CHI ’93, page 488493, New York, NY, USA, 1993. ACM.

[38] P. Milgram and F. Kishino. A taxonomy of mixed reality visual displays. IEICE Transactions
on Information and Systems, E77-D(12):1321–1329, December 1994.

[39] P. Milgram, A. Rastogi, and J.J. Grodski. Telerobotic control using augmented reality. Pro-
ceedings, 4th IEEE International Workshop on Robot and Human Communication, 1995. RO-
MAN’95 TOKYO, pages 21–29, 1995.

[40] P. Milgram, S. Zhai, D. Drascic, and J. Grodski. Applications of augmented reality for human-
robot communication. Proceedings of the 1993 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 3:1467–1472, 1993.

[41] R. Murphy, J. Kravitz, S. Stover, and R. Shoureshi. Mobile robots in mine rescue and recovery.
IEEE Robotics & Automation Magazine, 16(2):91–103, June 2009.

[42] R. R. Murphy, K. L. Dreger, S. Newsome, J. Rodocker, E. Steimle, T. Kimura, K. Makabe,
F. Matsuno, S. Tadokoro, and K. Kon. Use of remotely operated marine vehicles at Minamisan-
riku and Rikuzentakata Japan for disaster recovery. 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), pages 19–25, November 2011.

[43] Katta G. Murty. Optimization for decision making: linear and quadratic models, volume 137 of
International series in operations research & management science. Springer, New York, 2010.

[44] Phuoc-Nguyen Nguyen-Huu, Josh Titus, Dawn Tilbury, and A. Galip Ulsoy. Reliability and
failure in unmanned ground vehicle (UGV). Technical Report 2009-1, University of Michigan
Ground Robotics Research Center, Ann Arbor, Michigan, February 2009.

105

[45] Curtis W. Nielsen. Using augmented virtuality to improve human-robot interactions. PhD
thesis, Brigham Young University, 2006.

[46] Norman S. Nise. Control Systems Engineering. John Wiley & Sons, fourth edition, 2004.

[47] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), May 2011.

[48] Andriy Pavlovych and Wolfgang Stuerzlinger. Target following performance in the presence of
latency, jitter, and signal dropouts. In Proceedings of Graphics Interface 2011, GI ’11, page
3340. Canadian Human-Computer Communications Society, 2011.

[49] J Reason. Understanding adverse events: human factors. Quality in health care: QHC, 4(2):80–
89, June 1995. PMID: 10151618.

[50] John R. Rogers. Low-cost teleoperable robotic arm. Mechatronics, 19(5):774–779, August
2009.

[51] Richard Rouse, III. What’s your perspective? SIGGRAPH Comput. Graph., 33(3):912, Au-
gust 1999.

[52] K. Ruffo and P. Milgram. Effect of stereographic + stereovideo ‘tether’ enhancement for a peg-
in-hole task. IEEE International Conference on Systems, Man and Cybernetics, 2:1425–1430,
1992.

[53] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
March 1978. Mathematical Reviews number (MathSciNet): MR468014; Zentralblatt MATH
identifier: 0379.62005.

[54] T. B Sheridan and W. R Ferrell. Remote manipulative control with transmission delay. IEEE
Transactions on Human Factors in Electronics, HFE-4(1):25– 29, September 1963.

[55] Aaron Steinfeld, Michael Lewis, Terrence Fong, and Jean Scholtz. Common metrics for human-
robot interaction. Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot
Interaction, pages 33—40, 2006.

[56] S. Suganuma, M. Ogata, K. Takita, and S. Hirose. Development of detachable tele-operation
gripper for the walking robot. In 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003. (IROS 2003). Proceedings, volume 4, pages 3390– 3395 vol.3. IEEE,
October 2003.

[57] S. Thorpe, D. Fize, C. Marlot, et al. Speed of processing in the human visual system. Nature,
381(6582):520–522, 1996.

[58] D. Toffin, G. Reymond, A. Kemeny, and J. Droulez. Role of steering wheel feedback on driver
performance: driving simulator and modeling analysis. Vehicle System Dynamics, 45(4):375–
388, 2007.

[59] Peter Turpel, Bing Xia, Xinyi Ge, Shuda Mo, and Steve Vozar. Balance-arm tablet computer
stand for robotic camera control. In Proceedings of the 8th ACM/IEEE international conference
on Human-robot interaction, pages 241–242. IEEE Press, 2013.

[60] AY Ungoren and H Peng. An adaptive lateral preview driver model. Vehicle System Dynamics,
43(4):245–259, 2005.

[61] D. W. F. van Krevelen and R. Poelman. A Survey of Augmented Reality Technologies, Appli-
cations and Limitations. The International Journal of Virtual Reality, 9(2):1–20, June 2010.

[62] Steve Vozar and Dawn M. Tilbury. Augmented reality user interface for mobile robots with
manipulator arms: Development, testing, and qualitative analysis. In Proceedings of the Com-
puters and Information in Engineering Conference (CIE), August 2012.

106

[63] Steve Vozar and Dawn M Tilbury. Improving teleoperated robot speed using optimization
techniques. In Proceedings of the 8th ACM/IEEE international conference on Human-robot
interaction, pages 249–250. IEEE Press, 2013.

[64] Steven Vozar and Dawn M. Tilbury. Augmented reality user interface for mobile ground robots
with manipulator arms. In Proceedings of the SPIE, volume 7878, page 18, January 2011.

[65] Steven Vozar and Dawn M Tilbury. Improving UGV teleoperation performance using novel
visualization techniques and manual interfaces. Proceedings of SPIE, 8387:838716, 2012.

[66] Bob G. Witmer and Michael J. Singer. Measuring presence in virtual environments: A presence
questionnaire. Presence: Teleoperators and Virtual Environments, 7(3):225–240, 1998.

[67] He Xu, Dawei Tan, Zhenyu Zhang, Zhenguo Gao, Gaoliang Peng, and Chao Li. Trade-offs
design of mobile robot based on multi-objective optimization with respect to terramechanics.
In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009. AIM
2009, pages 239–244, 2009.

[68] F. Zeiger, N. Kraemer, M. Sauer, and K. Schilling. Challenges in realizing ad-hoc networks
based on wireless LAN with mobile robots. In 6th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008. WiOPT 2008,
pages 632–639. IEEE, April 2008.

[69] Shumin Zhai, Johnny Accot, and Rogier Woltjer. Human action laws in electronic virtual
worlds: An empirical study of path steering performance in VR. Presence: Teleoperators and
Virtual Environments, 13(2):113–127, April 2004.

[70] Lelai Zhou, Shaoping Bai, and Michael Rygaard Hansen. Integrated dimensional and drive-
train design optimization of a light-weight anthropomorphic arm. Robotics and Autonomous
Systems, 60(1):113–122, January 2012.

