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Abstract

In this paper we study the supply function competition between power-generation firms with different

levels of flexibility. Inflexible firms produce power at a constant rate over an operating horizon, while

flexible firms can adjust their output to meet the fluctuations in electricity demand. Both types of firms

compete in an electricity market by submitting supply functions to a system operator, who solves an

optimal dispatch problem to determine the production level for each firm and the corresponding market

price. We study how firms’ (in)flexibility affects their equilibrium behavior and the market price. We

also analyze the impact of variable generation (such as wind and solar power) on the equilibrium, with

the focus on the effects of the amount of variable generation, its priority in dispatch, and the production-

based subsidies. We find that the classic supply function equilibrium model overestimates the intensity

of the market competition, and even more so as more variable generation is introduced into the system.

The policy of economically curtailing variable generation intensifies the market competition, reduces

price volatility, and improves the system’s overall efficiency. Moreover, we show that these benefits are

most significant in the absence of the production-based subsidies.

Key words: electricity market; supply function equilibrium; flexible/inflexible generators; variable gen-

eration; economic curtailment; production-based subsidies



1. Introduction

The special nature of the electricity industry (quick and random fluctuations of demand, limited

storage capability) requires production decisions to be automated and coordinated instantaneously.

Thus, in an electricity market, the instruments of competition are supply functions, which specify the

amount of electricity each firm is willing to generate at every market price. Based on the submitted

supply functions, a system operator finds the most economical production schedule to meet the

electricity demand and determines the payment to each firm. A set of supply functions from which

no firm would benefit by unilaterally changing its supply function is known as a supply function

equilibrium (SFE). Klemperer and Meyer (1989) pioneered the effort in analyzing the SFE in general

industrial contexts. Green and Newbery (1992) and Bolle (1992) are the first to employ the SFE

framework to analyze electricity markets. These seminal studies and the following stream of research

provide important economic insights and policy recommendations, which we will review in §2.
Most SFE models for electricity markets assume that all firms have the flexibility to adjust their

power output at different prices. This assumption can be justified in two situations. First, each firm

owns a portfolio of power generators and offers the aggregate supply as a function of the market

price. The portfolio consists of inflexible generators (e.g., nuclear and some coal-fired generators)

as well as flexible generators (e.g., oil- and gas-fired generators), and the aggregate output can be

adjusted in response to the price changes throughout the day. This situation is studied by Green and

Newbery (1992), Green (1996), Rudkevich (1999), Baldick, Grant, and Kahn (2004), among others.

Second, in the real-time market that runs and clears every hour (or half-hour in some markets), firms

with flexible generators submit real-time supply offers to meet the energy imbalance (the energy that

deviates from the day-ahead schedule). This situation is considered by, for example, Holmberg (2007,

2008). The theoretical framework of SFE is applicable to both situations, as discussed in Anderson

and Philpott (2002) and Holmberg and Newbery (2010).

The assumption of production-adjustment flexibility, however, may not always be appropriate. As

industry deregulation continues, firms downsize their portfolios by selling off part of their generation

assets and independent power producers emerge to participate in the power markets. As a result, in

many current markets, firms that own mainly inflexible generators cannot change their power output

in a short time, whereas firms owning mostly flexible generators can quickly adjust their output.

All firms engage in a supply function competition in the day-ahead market and the system operator

determines the production schedule taking into account the firms’ different levels of flexibility.

The classic SFE model does not address competitions involving inflexible firms, but intuitively

the level of flexibility directly affects a firm’s production, revenue, and its competitive behavior.
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Thus, the first two natural questions we ask are: How do firms with different levels of flexibility

behave in a supply function competition? How does the presence of inflexibility affect the equilibrium

market price? Answers to these questions will help policy makers understand whether the classic

SFE model may over- or under-estimate the intensity of the market competition. The understanding

of the effect of generation flexibility/inflexibility on competition is especially important given the

rapid evolution of generation mix, with coal-fired generation shifting toward more flexible generation

fueled by natural gas.

An important part of the evolution is the increasing use of renewable energy sources, notably

solar and wind power, which are often referred to as variable generation. According to the Renewable

Energy Policy Network (2013), globally the fastest growing renewable energy technologies from 2008

to 2012 are solar photovoltaic, concentrating solar thermal power, and wind power, with average

annual capacity growth rates of 60%, 43%, and 25%, respectively. Variable generation from renewable

sources displaces conventional flexible and inflexible generation, and thus changes the competition

between them, which raises another question: How does variable generation impact the competition

between flexible and inflexible firms?

The impact of variable generation depends on the system’s priority dispatching rule. Due to

its environmental and economic benefits, variable generation is often given the highest priority in

dispatch, i.e., it is curtailed only when the excessive energy from variable generation threatens system

reliability. However, curtailing variable generation may also provide economic benefits, as shown by

Ela (2009), Ela and Edelson (2012), and Wu and Kapuscinski (2013). Consequently, many system

operators started to develop market mechanisms for economic curtailment. Hence, a relevant question

is: How does the economic curtailment policy affect the competition between flexible and inflexible

firms? A caveat is that even if economic curtailment policy is in effect, the production-based subsidies

for renewable energy may lead to partial economic curtailment. Therefore, in addressing the last

question, we also examine the case of partial economic curtailment.

Our objective in this paper is to address the four questions raised above through theoretical and

computational analysis of a stylized model that captures the most relevant tradeoffs. We assume that

each firm owns either inflexible generators (IG) or fully flexible generators (FG) or variable generators

(VG). An IG firm produces power at a constant rate over an operating horizon (e.g., several hours

to one day); an FG firm can adjust its output to meet the demand fluctuations. IG and FG firms

submit supply functions to a system operator. VG output is considered as negative demand when VG

has priority in dispatch; when economic curtailment is allowed, VG firms are assumed to be price-

takers and submit their marginal cost determined by the production-based subsidies. We formulate
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the system operator’s optimal dispatch problem and derive the market clearing condition. We then

characterize and compute the SFE between FG and IG firms with linear supply functions, commonly

adopted both in practice and in the research literature. We further study the impact of the amount

of variable generation (referred to as VG penetration), its dispatch policy, and the subsidies.

The main insights from this paper are summarized below. First, by assuming all firms are

flexible, the classic SFE model overestimates the intensity of the supply function competition. In our

equilibrium model, because IGs do not compete with FGs in matching production with uncertain

demand, FGs face less competition and offer significantly lower output than predicted by the classic

SFE model. FGs’ less competitive behavior induces IGs (who still compete with all other generators

for market share) to offer slightly lower output than in the classic model. Consequently, our model

leads to a higher average price and a higher price volatility than predicted by the classic SFE model.

Second, when the rising VG penetration increases the overall variability facing the system, if VGs

have priority, the system operator has to balance the increased variability by using FGs rather than

IGs, which allows FGs to have an advantage in the market-share competition with IGs. To profit

from this advantage, FGs reduce their supply functions, i.e., offer lower output at each price. Thus,

as VG penetration increases, the market becomes less competitive.

Third, economic curtailment of VG provides the system operator with an additional lever to

balance against variability and serves as a partial substitute for FGs. Thus, economic curtailment

intensifies the market competition: IGs and FGs offer more competitive supply functions than if

VGs have priority; IGs’ supply functions may be even more competitive than in the classic SFE

model. Economic curtailment has little impact on the average price, but substantially reduces the

price volatility. The overall operating cost of the system is also reduced by economic curtailment,

but emissions may increase or decrease depending on the generators’ fuel types.

Finally, production-based subsidies increase the priority of variable generation and reduce the

amount of curtailment. Thus, in the presence of the subsidies, the economic curtailment policy does

not achieve its full benefit to encourage competition and improve system efficiency.

2. Literature Review

In their original work, Klemperer and Meyer (1989) show the existence of a family of SFE for

competing firms with identical cost functions and without capacity constraints. They characterize

the SFE by differential equations and show that, given the support of the uncertainty, the equilibria

are independent of the distribution of the uncertainty. Since this seminal work, the SFE framework

has been applied extensively to the research in electricity markets. Comprehensive reviews of this

area are provided by Ventosa et al. (2005), Holmberg and Newbery (2010), and Li, Shi, and Qu
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(2011). Thus, we review below only the works most relevant to our paper.

Many studies focus on the case of symmetric equilibria, in which firms offer identical supply

functions. Green and Newbery (1992) calibrate the SFE model for the British electricity industry

and their results suggest that the market power had been seriously underestimated by the policy

makers. Rudkevich, Duckworth, and Rosen (1998) study symmetric SFE with inelastic demand,

and find that even with a relatively high number of competing firms, the market clearing prices are

still significantly higher than perfectly competitive prices. Anderson and Philpott (2002) derive the

conditions under which a supply function can represent a firm’s optimal response to the offers of

other firms and show that their model admits symmetric SFE. Holmberg (2008) proves the SFE is

unique when power shortage occurs with positive probability and a price cap exists.

When firms differ in costs, the general asymmetric equilibria are difficult to find and, thus,

linear supply functions are often used to simplify the analysis. Green (1996) solves the asymmetric

equilibrium with linear supply functions and studies the effects of various policies that could increase

the competition in the electricity market. Rudkevich (1999) provides a more explicit solution to

the SFE with linear supply functions and further finds that this equilibrium could be reached by a

learning process. In this paper, we also analyze SFE with linear supply functions and extend the

above studies by considering asymmetries in both cost and flexibility.

Physical constraints such as capacities and network transmission constraints are important areas

in the SFE literature. SFE models with capacity constraints are considered by Green and Newbery

(1992), Baldick et al. (2004), Holmberg (2007), Anderson and Hu (2008), Genc and Reynolds (2011)

and Anderson (2013). SFE models with network transmission constraints are studied by Berry et al.

(1999), Wilson (2008), and Holmberg and Philpott (2012). This paper complements these studies by

focusing on firms’ production-adjustment constraints. A key feature of our model is that the firms’

(in)flexibility is incorporated in the system operator’s optimal dispatch problem, and the resulting

optimality condition serves as a constraint in the firm-level profit-maximization problem. Our ap-

proach shares similar features with the MPEC (mathematical program with equilibrium constraints)

approach introduced by Hobbs, Metzler, and Pang (2000).

Constraints may also rise from market rules. Supatgiat, Zhang, and Birge (2001) study the

Nash equilibria when the price bids are restricted to a discrete set and each firm offers a single

price-quantity pair. They characterize the firms’ equilibrium behavior and market clearing price.

Several empirical studies have been conducted to compare the SFE prediction with actual market

data. Sioshansi and Oren (2007) find evidence that generators in the Texas electricity market bid

less competitively than predicted by the SFE model. Willems et al. (2009) find similar evidence in
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the German electricity market and include constant correction terms in their model. The first insight

obtained in this paper, mentioned in the introduction, is consistent with these empirical findings.

Integration of variable generation into electricity systems has received substantial research atten-

tion over the past decade. The National Renewable Energy Laboratory recently completed two large

variable generation integration studies: the Western Wind and Solar Integration Study (WWSIS)

(GE Energy 2010) and the Eastern Wind Integration and Transmission Study (EWITS) (EnerNex

2011). Reviews of these and earlier variable generation studies are provided by Smith et al. (2007),

Ela et al. (2009), and Hart et al. (2012). Most of these integration studies focus on quantifying

system cost reduction due to variable generation, as well as the integration cost, i.e., the incremental

cost in balancing against variable generation.

The impact of variable generation on the SFE in electricity markets has not been considered until

recently. Sioshansi (2011) considers a Stackelberg game with wind-power generators deciding output

followed by a supply function competition among conventional generators. Assuming wind-power

generators are price-takers and have priority, Buygi, Zareipour, and Rosehart (2012) analyze a SFE

with linear supply functions and find that although the intermittency of wind power tends to increase

the market price, the net impact of wind power is a lower market price. In this paper we also treat

variable generation as price-takers and study its impact on both average price and price volatility.

We further consider the impact of dispatch policies (priority dispatch vs. economic curtailment) on

SFE and market prices.

The role of economic curtailment policy has been investigated in several studies. Ela (2009)

explores the network effects of economic curtailment. Ela and Edelson (2012) analyze the benefit

of curtailment on relieving physical constraints of generation resources, thereby bringing substantial

cost savings. Wu and Kapuscinski (2013) analyze the impact of economic curtailment on cycling

cost and peaking cost, and find that curtailing wind power can be both economically and environ-

mentally beneficial under certain situations. This paper complements these works by studying the

impact of economic curtailment on market competition. We find an additional benefit of economic

curtailment—economic curtailment intensifies market competition.

3. The System Model

This section lays the foundation for our subsequent analysis. We first describe the generators’

problem in the electricity system and then formulate the system operator’s problem. Our model is a

combination of Nash game and Stackelberg game: The generators bid simultaneously in a Nash game,

and the system operator follows with an optimal dispatch decision. The generators’ competition is

based on the response of the system operator, and hence they are also the Stackelberg leaders.
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3.1 Generator Types and Costs

The length of the operating horizon is denoted as T , which in practice can be several hours to

one day. To approximate a fleet of power generators, we assume that the system consists of three

types of generators: inflexible, flexible, and variable generators. We assume that each firm owns one

generator, thus we use “firm” and “generator” interchangeably throughout the paper.

Inflexible generators (IG), indexed by i ∈ GI , cannot adjust their output rates during [0, T ]. The

output rate of generator i ∈ GI , denoted as qi ≥ 0, is determined in the system operator’s problem

prior to t = 0 and stays constant over [0, T ]. Let Ĉi(qi) denote generator i’s operating cost per unit

of time. Flexible generators (FG), indexed by j ∈ GF , can adjust their output rates instantaneously.

Let qjt ≥ 0 denote the output rate of generator j ∈ GF at time t ∈ [0, T ], and let Ĉj(qjt) denote

its operating cost rate at time t. For the purpose of the analysis in this paper, we assume IGs’ and

FGs’ capacities are not binding constraints.

Variable generators (VG) have time-varying potential outputs, which depend on factors such as

wind speed or solar radiation. Let K denote the total installed VG capacity, and Wt ∈ [0,K] denote

the potential output of VGs at time t ∈ [0, T ]. VGs may adjust their actual output below Wt, known

as curtailment, for the reasons described below in §3.3. Curtailment can be achieved by pitching the

blades of wind power generators or rotating solar panels to reduce power output.

The costs of the generators satisfy the following assumption.

Assumption 1 (i) For any generator k ∈ GI ∪GF , the cost rate function Ĉk(q) is convex, strictly

increasing, and continuously differentiable in q, and Ĉk(0) = 0; (ii) VGs produce energy at negligible

operating cost and receive a subsidy of r ≥ 0 per unit of output that is not curtailed; (iii) FGs and

VGs output can be adjusted instantaneously at negligible cost.

The convexity and monotonicity assumption in part (i) approximates the reality well. Part (ii)

states that VGs receive production-based subsidy and implies that the marginal cost of VGs is −r.
Part (iii) means that FGs are fully flexible in adjusting their output levels and VG curtailment

involves negligible operating cost.

Let Lt ∈ [L,L] denote the price-insensitive load at time t ∈ [0, T ], where 0 ≤ L < L. The load

Lt must be satisfied instantaneously for all t ∈ [0, T ]. The load Lt and the VG potential output Wt

are two sources of uncertainties in our model and they can be correlated.

3.2 Supply Offers and Stated Costs

Prior to t = 0, IGs and FGs simultaneously submit supply functions to the system operator. Gen-

erator k ∈ GI ∪GF submits a supply function Sk(p), which specifies the output rate it is willing to
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produce when the price is p (p ∈ ℜ, the set of real numbers). The supply functions are used by the

system operator to calculate the generators’ stated cost functions, which will be defined in (1) below.

The supply functions are valid for the entire operating horizon [0, T ]. In the PJM market, for

example, each generator submits one supply function for each operating day (see generator offer data

at http://www.pjm.com/markets-and-operations/energy/real-time/historical-bid-data.aspx). In the

MISO market, although generators are allowed to submit hourly offers, most generators submit the

same supply functions for the entire day. (Using MISO’s historical generator offer data available

at https://www.misoenergy.org/Library/MarketReports, we find that about 90% of the generators

submit the same supply offers for the entire day.)

The supply functions satisfy the following assumption.

Assumption 2 For any k ∈ GI ∪GF : (i) There exists pmin
k ≥ 0, such that Sk(p) = 0 for p ≤ pmin

k ;

(ii) Sk(p) strictly increases in p for p ≥ pmin
k ; (iii) lim

p→0
Sk(p) = 0.

Assumption 2(i) implies that no generator is willing to produce when the price is too low. Part

(ii) is consistent with practice, e.g., MISO’s Business Practice Manual states that the price-quantity

pairs that form a supply function must be (weakly) increasing for price and strictly increasing for

quantity (MISO, 2013, p. 92). Part (iii) is automatically satisfied if pmin
k > 0 due to part (i); when

pmin
k = 0, part (iii) states that no generator is willing to produce when the price drops to nearly zero.

All these assumptions are mild. The commonly used affine supply function Sk(p) = βk(p − pmin
k )+,

where βk > 0, satisfies Assumption 2. (Throughout the paper, x+ = max{x, 0} for any x ∈ ℜ.)
Based on the submitted supply function Sk(p), the system operator computes the stated cost

function of generator k as follows (we use “
def
= ” for definitions):

Ck(q)
def
=

∫ q

0
S−1
k (x)dx, ∀ k ∈ GI ∪GF , (1)

where S−1
k (q)

def
= inf{p : Sk(p) > q} is the inverse supply function. The definition in (1) is commonly

used in practice by the system operators.

Unlike IGs and FGs, VGs are unable to guarantee an output rate because of their inherent

intermittency. Thus, we assume each VG submits a price offer for its potential output. To focus on

analyzing the strategic interactions between IGs and FGs, we assume that an individual VG’s output

does not influence the market price. Therefore, VGs will offer a price equal to their marginal cost

−r (see Assumption 1(ii)). This means that VGs’ stated cost at output rate q is −rq, and that VGs

will produce the potential outputWt when the price exceeds −r, completely curtail output when the

price drops below −r, and are willing to produce at any rate in [0,Wt] when the price is −r.
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3.3 System Operator’s Problem

The objective of the system operator is to minimize the total expected stated cost of serving the

load over [0, T ]. This objective is consistent with the practice (see, e.g., MISO, 2013, Attachment B,

§4.1.5) and the literature (see, e.g., Anderson and Philpott 2002). The system operator determines

IGs’ output rates prior to t = 0, which will be fixed during [0, T ]. In real time when the load and

VG potential output are realized, the system operator dispatches FGs and VGs and computes the

market price.

The system operator’s problem can be formulated as first deciding the aggregate output rate for

each type of generators and then allocating the aggregate output to individual generators. Let qI ,

qFt , and qVt denote the aggregate output rate at time t for IGs, FGs, and VGs, respectively. The

allocation of qVt to VGs has no effect on the stated cost −rqVt . The allocations of qI and qFt are

determined by minimizing the total stated cost for each type of generators:

CI(qI)
def
= min

{ ∑
i∈GI

Ci(qi) : qi ≥ 0,
∑
i∈GI

qi = qI
}
, (2)

CF (qFt )
def
= min

{ ∑
j∈GF

Cj(qjt) : qjt ≥ 0,
∑

j∈GF

qjt = qFt

}
. (3)

The following lemma summarizes the properties of CI(q) and CF (q) and their relationship with

the the aggregate supply functions, defined as:

SI(p)
def
=

∑
i∈GI

Si(p), and SF (p)
def
=

∑
j∈GF

Sj(p). (4)

The proofs for the lemma and all other technical results are included in the appendix.

Lemma 1 The total stated cost functions CI(q) and CF (q) are continuously differentiable, convex,

and strictly increasing in q. Furthermore, (CI)
′
(q) = (SI)

−1
(q) and (CF )

′
(q) = (SF )

−1
(q).

Lemma 1 confirms that the aggregate supply functions in (4) are consistent with the inverse

marginal stated cost functions.

In an electricity system, the total generation and the load should be balanced at any time.

Imbalance leads to extra operating cost. For example, in the case of oversupply, the system operator

must take mitigating actions, such as providing monetary incentives for some consumers to increase

the load, reducing generation to an emergency minimum level, or even shutting down some IGs at

significant wear-and-tear costs. We model the extra costs for handling oversupply situations using a

penalty function h(e), which represents the extra cost rate when the total output exceeds the load

by e ≥ 0. A similar approach is used in practice. For example, in the Texas electricity system,

a penalty for violating the power balance constraint is included in the objective function of the
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security-constrained economic dispatch problem (ERCOT 2012, p. 24).

Assumption 3 The oversupply penalty rate function h(e) is strictly convex, strictly increasing, and

continuously differentiable in e for e ≥ 0, and h(0) = 0.

Our model does not involve undersupply, because FGs are flexible enough to ensure that all

demand is met. Using the aggregate outputs qI , qFt , and qVt as decision variables, the system

operator’s problem of minimizing the total expected stated cost can be written as

min TCI(qI) + E

[ ∫ T

0

(
CF (qFt )− r qVt + h(et)

)
dt

]
(5)

s.t. et ≡ qI + qFt + qVt − Lt ≥ 0, ∀ t ∈ [0, T ], (6)

qVt ≤Wt, ∀ t ∈ [0, T ], (7)

qI , qFt , q
V
t ≥ 0, ∀ t ∈ [0, T ]. (8)

Note that this optimization problem contains two stochastic processes: the load process {Lt; 0 ≤
t ≤ T} and the VG potential output {Wt; 0 ≤ t ≤ T}. The two processes can be correlated and

we assume that their (joint) probability distribution is known to all firms (Lt is usually much more

predictable than Wt). The expectation is taken with respect to these two processes. The decision

qI is made before time 0, while qFt and qVt are determined at time t when Lt and Wt are realized.

The inequality in (6) ensures sufficient supply to meet the load, whereas excess supply (if et > 0) is

penalized in the objective (5).

4. Optimal Dispatch and Market Mechanism

The system operator acts as a Stackelberg game follower, who solves the problem in (5)-(8) after the

generators submit their supply functions. To solve (5)-(8), we first fix IGs’ output rate qI and solve

for the optimal qFt and qVt in response to the realizations of Lt and Wt. Then we decide the optimal

qI prior to t = 0. These two steps are analyzed in §4.1 and §4.2, respectively.

4.1 Optimal Flexible and Variable Generation for Given q
I

Suppose the IG output rate qI ≥ 0 is given. At time t, knowing the realized load Lt and VG potential

output Wt, we decide the optimal FG and VG outputs by the following convex program:

C̃(qI , Lt,Wt)
def
= min

{qFt , qVt }
CF (qFt )− r qVt + h(et) (9)

s.t. et ≡ qI + qFt + qVt − Lt ≥ 0, (10)

qVt ≤Wt, qFt , q
V
t ≥ 0. (11)
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The following theorem provides an explicit solution to the problem in (9)-(11).

Theorem 1 For a given IG output rate qI ≥ 0, under the realized VG potential output Wt and the

load Lt, the optimal FG and VG production rates at time t are

qF∗
t = (Lt − qI −Wt)

+ and qV ∗
t = min

{
Wt, (Lt − qI + µ(r))+

}
, (12)

where µ(r)
def
= (h′)−1(r) = inf{q ≥ 0 : h′(q) > r}. Furthermore, the induced real-time cost rate

C̃(qI , Lt,Wt) in (9) is jointly convex in (qI , Lt,Wt).

Figure 1: Real-Time Operating Policy and Price

No use Partial use Full use Full useOptimal use 
of VG capacity: 

Optimal FG output:

Real-time price:

A1 : Lt − qI ≤ −µ(r) A3 : Lt − qI ∈ [Wt − µ(r), Wt]

A2 : Lt − qI ∈ (−µ(r), Wt − µ(r)) A4 : Lt − qI > Wt

The optimal solutions in (12) under various realized values of Lt andWt are illustrated in Figure 1.

If the load Lt drops below the IG output qI to such an extent that the marginal oversupply penalty

exceeds the per-unit subsidy, h′(qI − Lt) ≥ r (i.e., qI − Lt ≥ µ(r) or event A1), then the VG output

does not bring net benefit to the system and is completely curtailed. When r > h′(qI −Lt), some or

all of the VG potential output is used, corresponding to the next three cases.

In event A2, VG output is partially curtailed such that the per-unit subsidy equals the marginal

oversupply penalty, r = h′(et) or µ(r) = et = qI + qV ∗
t − Lt. In event A3, the per-unit subsidy

outweighs the marginal oversupply penalty when all VG potential output is used, r ≥ h′(qI+Wt−Lt),

and thus, no curtailment occurs. In event A4, IGs and VGs cannot meet the entire load, and FGs

serve the remaining load.

The four events imply that FGs produce if and only if the load cannot be satisfied by IGs and
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VGs. The above discussion also leads to a complementary property of the optimal operating policy:

qF∗
t

(
qV ∗
t −Wt

)
= 0. (13)

That is, when FGs produce, VGs’ potential output is fully used. When VG curtailment occurs, FGs

do not produce.

Figure 1 also shows the price, pt, which equals the system’s marginal cost, i.e., the cost of

serving an additional unit of load at time t. When the load exceeds the combined output of IGs

and VGs (event A4), the additional load is served by FGs and thus the price is FGs’ marginal cost:

pt = (CF )
′
(Lt −Wt − qI) > 0. Using Lemma 1, we can also write pt = (SF )

−1
(Lt −Wt − qI).

When the load can be met by IGs and VGs, the price becomes zero or negative:

a) The price is zero when VG output is partially curtailed (event A2 occurs) and no subsidy is

provided (r = 0). An additional unit of load can be served by VGs at zero cost.

b) The price is negative when the additional load lowers the total stated cost by either reducing

the oversupply penalty or increasing VG output (when r > 0). In event A1, all VG output

is curtailed, oversupply is qI − Lt, and price is pt = −h′(qI − Lt) < −r. In event A2, VG is

partially curtailed and pt = −r. In event A3, pt = −h′(qI +Wt − Lt) ∈ (−r, 0).

Summarizing the above discussion, we can express the price pt as a function of qI , Lt, and Wt by

(14) below. In this expression, the dependence on supply function SF (·) is also emphasized.

P (qI , Lt,Wt, S
F )

def
= (SF )

−1
(Lt−Wt− qI)1A4

− h′(qI+Wt− Lt)1A3
− r1A2

− h′(qI− Lt)1A1
, (14)

where 1Ai
is the indicator function for event Ai. Clearly, for given q

I , the price does not depend on

IGs’ supply function SI(·).
Using (14), the time-average of the expected price can be written as

P (qI , SF )
def
=

1

T

∫ T

0
E
[
P (qI , Lt,Wt, S

F )
]
dt, (15)

where the expectation is taken prior to t = 0. The function P (qI , SF ) relates the average price to

the IG output qI for given FG supply function, thus P (qI , SF ) can be interpreted as IGs’ inverse

residual demand function. Note that P (qI , SF ) decreases in qI , because P (qI , Lt,Wt, S
F ) in (14)

decreases in qI due to the monotonicity of SF (·) and h′(·).

4.2 Optimal Inflexible Generation

With the average price P (qI , SF ) computed in (15), the aggregate (constant) output rate IGs are

willing to set over [0, T ] is SI
(
P (qI , SF )

)
. The system operator needs to ensure consistency between

what IGs are asked to produce and what they are willing to produce: qI = SI
(
P (qI , SF )

)
. Imposing
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this constraint, however, may prevent the system from achieving the optimal qI∗ that minimizes the

total system cost. A significant result in Theorem 2 below shows that the optimal qI∗ satisfies this

constraint.

With the real-time minimum cost C̃(qI , Lt,Wt) given by (9), the problem in (5)-(8) can be

reformulated as

min
qI≥0

TCI(qI) + E

[ ∫ T

0
C̃(qI , Lt,Wt) dt

]
. (16)

From Lemma 1 and Theorem 1, CI(qI) and C̃(qI , Lt,Wt) are convex in qI , which implies that the

objective function in (16) is convex in qI .

Theorem 2 The optimal IG output qI∗ satisfies

qI∗ = SI
(
P (qI∗, SF )

)
. (17)

Furthermore, the price function in (14) can be expressed as

P (qI , Lt,Wt;S
F ) = inf

{
p : SF (p) +Wt1{p≥−r} − µ(−p) ≥ Lt − qI

}
. (18)

Equation (18) provides a supply-function based method for calculating the price originally defined

in (14). In (18), SF (p) is FGs’ supply function, Wt1{p≥−r} is VGs’ supply function (VGs offer the

entire potential output whenever the price is at least −r), and the oversupply function µ(−p) gives
the oversupply level when the price is p < 0.

Theorem 2 confirms that the relation qI = SI
(
P (qI , SF )

)
must hold at optimality. Equation (17)

can also be written as (SI)
−1

(qI∗) = P (qI∗, SF ), which means that qI∗ is the intersection of the IGs’

inverse supply function (SI)
−1

(qI) and the IGs’ inverse residual demand function P (qI , SF ). These

Figure 2: Optimal IG Production qI∗
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two functions are depicted as the solid curves in Figure 2.

How does the optimal IG production qI∗ vary with the supply functions? When IGs bid more

competitively by increasing their supply function to ŜI(p) or decreasing their inverse supply function

to (ŜI)
−1

(qI) shown as a dashed curve in Figure 2, qI∗ rises to q̂I∗, i.e., IGs’ market share increases.

When FGs bid more competitively by increasing their supply function to S̃F (p), the price decreases

according to (18), and the average price decreases to P (qI , S̃F ), as shown in Figure 2. Consequently,

qI∗ decreases to q̃I∗. In both cases, more competitive supply offers lead to a lower average price.

4.3 The Market Mechanism

Theorems 1 and 2 solve the system operator’s problem of deciding the optimal production to minimize

the expected total stated cost. We now summarize the market mechanism based on the above results.

1) Prior to t = 0, IGs and FGs simultaneously submit supply functions {Si(p) : i ∈ GI} and

{Sj(p) : j ∈ GF }, and VGs offer price −r (assumed in §3.2).

2) Prior to t = 0, the system operator determines the IG output rate using the following steps:

(i) Find the aggregate IG and FG supply functions:

SI(p) =
∑
i∈GI

Si(p) and SF (p) =
∑

j∈GF

Sj(p).

(ii) Compute the price as a function of the IG output qI , load L, and VG potential output W :

P (qI , L,W, SF ) = inf
{
p : SF (p) +W1{p≥−r} − µ(−p) ≥ L− qI

}
, or

P (qI , L,W, SF ) = (SF )
−1

(L−W − qI)1A4
− h′(qI +W − L)1A3

− r1A2
− h′(qI − L)1A1

.

(iii) Determine the IG output rate qI∗ by solving

(SI)
−1

(qI∗) = P (qI∗, SF ) ≡ 1

T

∫ T

0
E
[
P (qI∗, Lt,Wt, S

F )
]
dt. (19)

3) Production and payment:

(i) IG i ∈ GI produces Si(P (q
I∗, SF )) for all t ∈ [0, T ].

(ii) At time t ∈ [0, T ], the price is pt ≡ P (qI∗, Lt,Wt, S
F ), and FG j ∈ GF produces Sj(pt).

(iii) VGs produce Wt if pt > −r, produce Lt − qI + µ(r) if pt = −r, and do not produce if

pt < −r.
(iv) All generators are paid pt per unit of output at time t.

The above mechanism is common knowledge to all generators. With the knowledge of the system

operator’s dispatch and market mechanism, the IGs and FGs compete in a Nash game through

supply functions, analyzed in the next section.
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5. Linear Supply Function Competition

In the classic supply function equilibria (SFE) model, in a firm’s best response problem, the firm

optimizes its profit with respect to its residual demand function. Because the optimality condition

involves the derivatives of competitors’ supply functions, a SFE is characterized by a system of

differential equations (Klemperer and Meyer 1989). The differential equation approach is analytically

challenging, especially when firms are asymmetric. Thus, SFE with linear supply functions are

considered in the classic works by Klemperer and Meyer (1989), Rudkevich (1999), among others;

see Baldick et al. (2004) for a summary of the advantages of linear SFE. Green (1996, 1999) and

Baldick et al. (2004) use linear SFE to derive economic insights and policy implications.

One of our goals in this paper is to examine how firms’ (in)flexibility affects SFE and compare

our results and insights with the classic works. This comparison is made possible by focusing on

solving for linear SFE and comparing the slopes of the equilibrium supply functions in our model

with those in the classic models. Solving for the general SFE with asymmetric firms is difficult in the

classic setting, and even more difficulty in our setting where generators not only have asymmetric

cost but also different flexibility levels.

From this point onward, we assume each generator’s production cost rate is quadratic in its

output rate (also assumed in the classic works):

Ck(q) =
1

2
ckq

2, k ∈ GI ∪CF , ck > 0, q ≥ 0, (20)

which implies a linear marginal cost C ′
k(q) = ckq. Hence, in a perfectly competitive market, generator

k would submit the inverse marginal cost as its supply function, i.e., Sk(p) = c−1
k p+. In an imperfect

competition, we assume generators submit linear supply functions:

Sk(p) = βkp
+, k ∈ GI ∪ CF , βk > 0, p ∈ ℜ. (21)

That is, when the price is positive, the output rate that a generator is willing to produce is linear in

price. The generator’s pure strategy set will be defined in §5.2.
We also assume quadratic oversupply penalty function:

h(e) = ahe+
1

2
che

2, ah ≥ 0, ch > 0, e ≥ 0, (22)

which gives µ(r) = (h′)−1(r) = (r − ah)
+/ch.
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5.1 Optimal Dispatch under Given Supply Functions

For given qI > 0, Theorem 1 gives the optimal qF∗
t and qV ∗

t as functions of qI . The results on the

optimal qI∗ in Theorem 2 are specialized below. The aggregate IG and FG supply functions are

SI(p) = βIp+, and SF (p) = βF p+,

where βI
def
=

∑
i∈GI

βi and βF
def
=

∑
j∈GF

βj . With linear supply functions, we can express the price

functions P (qI , Lt,Wt, S
F ) and P (qI , SF ) in (14)-(15) as functions of βF , written as follows:

P (qI , Lt,Wt, β
F ) =

1

βF
(Lt −Wt − qI)1A4

−
[
ah + ch(q

I − Lt +Wt)
]
1A3

− r1A2
−
[
ah + ch(q

I − Lt)
]
1A1

,

(23)

P (qI , βF ) =
1

T

∫ T

0
E
[
P (qI , Lt,Wt, β

F )
]
dt. (24)

In most of the practical situations, the system operator instructs IGs to produce a positive

output and the average market price is also positive. Thus, we assume the optimal qI∗ > 0. Then,

equation (17) that determines qI∗ can be written as

qI = βIP (qI , βF ). (25)

There is a unique qI∗ satisfying (25). We denote this unique qI∗ as a function of βI and βF :

qI∗ ≡ QI(βI , βF )
def
=

{
qI : qI = βIP (qI , βF )

}
. (26)

Lemma 2 The optimal IG output rate QI(βI , βF ) strictly increases in βI and strictly decreases in

βF .

The monotonicity of QI(βI , βF ) is intuitively illustrated in Figure 2 and formally stated in

Lemma 2.

5.2 Pure Strategy Set

In the linear supply function competition, the supply function slopes, βk, k ∈ GI ∪CF , are strategic

variables. This section establishes the bounds on βk. These bounds form a compact and convex pure

strategy set, which is used to establish the existence of the equilibrium in §5.5.
For generator k’s supply function Sk(p) = βkp

+, a larger βk implies a more competitive supply

offer. The discussion preceding (21) reveals that an upper bound for βk is c−1
k < ∞, which is what

generator k would offer in face of perfect competition.

For FG j ∈ GF , a lower bound on βj can be found by solving a less competitive game in which IGs

do not exist. For IG i ∈ GI , a lower bound on βi can be obtained by considering a less competitive
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game in which FGs do not exist and the demand is constant over [0, T ], but its level is uncertain prior

to t = 0. These games are essentially the standard supply function games considered by Klemperer

and Meyer (1989). Rudkevich (1999) studies the linear SFE for these games and shows that the slopes

of the equilibrium supply functions are strictly positive and independent of the demand distribution.

Hence, βk is bounded from below by a strictly positive number, denoted as βmin
k > 0, which is

independent of the distribution of the uncertainties.

Using the upper and lower bounds, we define the pure strategy set of generator k as [βmin
k , c−1

k ].

The slopes of the aggregate IG and FG supply functions are also bounded: βI ∈ [βI min, βI max] and

βF ∈ [βF min, βF max], where

βI min =
∑
i∈GI

βmin
i , βImax =

∑
i∈GI

c−1
i , βF min =

∑
j∈GF

βmin
j , βF max =

∑
j∈GF

c−1
j .

Using Lemma 2, we can establish bounds on qI as

qImin = QI(βI min, βF max) and qImax = QI(βI max, βF min). (27)

In deriving (25), we assumed qI∗ > 0. A sufficient condition for qI∗ > 0 is P (0, βF max) > 0,

i.e., the average price is positive when IGs do not produce and FGs bid perfectly competitively,

which is a mild condition. To see the sufficiency, note that qI min in (27) is the unique solution to

qI = βI min P (qI , βF max). Thus, P (0, βF max) > 0 implies qImin > 0, which ensures qI∗ > 0.

5.3 Individual IG and FG’s Problem

We now formulate how an individual IG i ∈ GI chooses βi in response to all other generators’ supply

functions. Given an average price P > 0, generator i will produce at a rate Si(P ) = βiP throughout

[0, T ], incurring a cost rate of 1
2ci(βiP )

2. Thus, the profit rate is βiP
2− 1

2ci(βiP )
2 = βi

(
1− 1

2ciβi
)
P

2
.

Note that P depends on qI and βF through (24), and qI is affected by βi through (25). Hence, IG

i’s optimization problem can be written as

max
βi

βi

(
1− 1

2
ciβi

)
P (qI , βF )2 (28)

s.t. (25) and βi ∈ [βmin
i , c−1

i ].

This formulation is similar to the bi-level optimization procedure by Hobbs et al. (2000). The

system-level optimization yields (25) and the firm-level objective is given by (28).

Using (25) and (26), we can write the price function as

P (qI , βF ) =
qI

βI
=

QI(βI , βF )

βI
.
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We define β−i
def
= βI − βi and rewrite the objective in (28) as a function of the strategic variables:

πi(βi;β−i, β
F )

def
=
βi
(
1− 1

2ciβi
)

(βi + β−i)2
(
QI(βi + β−i, β

F )
)2
. (29)

The best response of IG i to β−i and β
F is determined by optimizing max

βi∈[βmin
i , c−1

i ]
πi(βi;β−i, β

F ).

An individual FG j ∈ GF chooses βj in response to all other generator’s supply functions.

Observing price pt at time t, generator j produces at a rate βjp
+
t and incurs a cost rate of 1

2cj(βjp
+
t )

2.

Thus, the profit rate is βj(p
+
t )

2− 1
2cj

(
βjp

+
t

)2
= βj

(
1− 1

2cjβj
)
(p+t )

2. Note that pt = P (qI , Lt,Wt, β
F )

as defined in (23). Thus, generator j’s problem is

max
βj

∫ T

0
E

[
βj

(
1− 1

2
cjβj

)(
P (qI , Lt,Wt, β

F )+
)2]

dt (30)

s.t. (25) and βj ∈ [βmin
j , c−1

j ].

Equations (23) and (26) lead to

P (qI , Lt,Wt;β
F )+ =

1

βF
(Lt −Wt − qI)+ =

1

βF
(
Lt −Wt −QI(βI , βF )

)+
.

We define β−j
def
= βF − βj and rewrite the objective in (30) as a function of the strategic variables:

πj(βj ;β−j , β
I)

def
=
βj
(
1− 1

2cjβj
)

(βj + β−j)2

∫ T

0
E

[((
Lt −Wt −QI(βI , βj + β−j)

)+)2]
dt. (31)

Then, FG j’s best response to β−j and βI is determined by optimizing max
βj∈[βmin

j , c−1

j ]
πj(βj ;β−j , β

I).

5.4 Interactions Between IGs and FGs

The profit functions in (29) and (31) provide important insights on how IGs and FGs compete:

• IGs and FGs interact only through the function QI(βI , βF ), which is IGs’ market share. This

interaction implies that the competition between IGs and FGs is over the market share.

• The variabilities in load and VG potential output play no (direct) role in IGs’ profit function

(29). Thus, IGs do not directly compete with FGs in meeting the variable demand. On the

other hand, the variabilities in Lt and Wt directly affect FGs’ profit function in (31). Hence, FGs

compete among themselves to serve the variable demand.

We will use these insights to explain some of the equilibrium behaviors observed in the numerical

analysis in §6.
The strategic interaction between IGs and FGs also renders the best responses dependent on the

distribution of the uncertainties. Without this strategic interaction, QI(βI , βF ) would be constant

and, consequently, the distributions of Lt and Wt would not affect FG j’s best response determined

by (31). With the FG-IG interaction through QI(βI , βF ), the distributions of Lt and Wt affect the

18



optimal choice of βj in (31), which in turn affects the strategic decisions of all other generators. This

feature is in contrast with the classic SFE model, in which supply function equilibria are found to

be independent of the demand distribution; see, e.g., Klemperer and Meyer (1989), Green (1996),

Holmberg (2007), and Anderson and Hu (2008).

5.5 Existence of Equilibrium under Normally Distributed Uncertainties

Proving the existence and uniqueness of the equilibrium for the game specified in §§5.2-5.3 presents

analytical challenges. In general, existence of a pure-strategy Nash equilibrium can established by

proving one of the following: a) the best response functions constitute a contraction mapping and

the decision space is compact, b) each player’s payoff function is quasi-concave in its own decision

and the decision space is compact, convex, and independent of other players’ decisions, and c) each

player’s payoff function is supermodular with respect to its own decision and other players’ decisions,

and that the decision space is a lattice. Proving uniqueness usually has to rely on approach a).

As discussed earlier, our model represents a combination of Nash game and Stackelberg game.

Both IGs’ and FGs’ payoff functions (29) and (31) depend on the distribution of uncertainties and

the optimal dispatch in §5.1. Thus the firm-level optimization problem belongs to the class of MPEC

(mathematical program with equilibrium constraints) problems that are highly complex. However,

we are able to use approach b) to prove the existence under the assumption that the load and

VG potential output (when collapsed across time) are jointly normally distributed. We are unable

to establish the uniqueness of the equilibrium, but our extensive numerical results show that the

equilibrium is unique, which we will discuss in §6.
For the process {(Lt,Wt) : t ∈ [0, T ]}, we let fLt,Wt(x, y) be the joint probability density function

of Lt and Wt. Note that load Lt and VG potential output Wt can be cross-sectionally and serially

correlated. We collapse the distribution across time and define

fL,W (x, y)
def
=

1

T

∫ T

0
fLt,Wt(x, y) dt. (32)

It can be verified that fL,W (x, y) is also a probability density function. Let L and W be the random

variables that follow the distribution fL,W (x, y). Then, for any real-valued function g(x, y), we have

1

T

∫ T

0
E
[
g(Lt,Wt)

]
dt =

1

T

∫ T

0

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fLt,Wt(x, y) dx dy dt

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)

[
1

T

∫ T

0
fLt,Wt(x, y) dt

]
dx dy = E

[
g(L,W )

]
.

That is, the time-average of the expected value of g(Lt,Wt) equals the expected value of g(L,W )

under the time-invariant probability distribution fL,W (x, y) in (32).

From this point onward, we assume fL,W (x, y) is a bivariate normal density function, and L ∼
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N (µL, σ
2
L) and W ∼ N (µW , σ

2
W ) with a correlation coefficient ρ. Define the net demand random

variable D
def
= L−W ∼ N (µD, σ

2
D) where µD = µL−µW , and σ2D = σ2L+σ

2
W +2ρσLσW . As common

with models using normal distributions to approximate nonnegative random variables, the results in

this section are proven when the variance of the normal distribution is not too large.

Proving quasi-concavity of the profit functions (29) and (31) under general conditions is difficult

due to the complicated structure of the price function in (14), which renders the average price in (15)

neither convex nor concave in qI . However, if the probability of qI < L−W (event A4 in Figure 1)

is sufficiently high, the average price function is approximately linear, which bounds its second-order

derivative with respect to qI and leads to the quasi-concavity of the profit functions. The formal

proof requires a lemma stated below.

Lemma 3 If σD ≤ σ∗D ≡
√
2π βF min

[
µD

βI max
+

min{r, ah}
2

]
, then qI max < µD.

Lemma 3 shows that for a sufficiently small σD, the IG production is bounded above by µD.

Indeed, the IGs’ aggregate output does not exceed the average net demand µD for most situations

in practice. The condition given in Lemma 3 is not stringent. For example, if ah = 0 and βF min

is one tenth of βI max (which according to our numerical tests is on the conservative end), then

σ∗D =
√
2πµD β

F min/βI max ≈ 0.25µD. Thus, the condition holds if the standard deviation of the net

demand is within 25% of its mean, which is a mild assumption in most practical situations. Lemma

3 leads to the following equilibrium existence theorem.

Theorem 3 When generators compete using linear supply functions and the standard deviation of

the net demand σD is sufficiently small, there exists a (pure strategy) supply function equilibrium.

In Theorem 3, the upper-bound on σD that ensures the existence of a linear supply function

equilibrium is provided in the proof in the online appendix. Our numerical experiments, however,

show that the equilibrium exists for a wider range of σD and for other forms of load and VG output

distributions.

6. Numerical Study

In this section, we compute SFE based on the model analyzed in §§4-5 and compare our results with

the classic SFE model by Klemperer and Meyer (1989) and Green (1996). We also analyze the effect

of increasing VG penetration and its dispatch policy (priority dispatch vs. economic curtailment) on

SFE. Our analysis aims to derive qualitative insights and provide policy recommendations.
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6.1 Setups and Computational Procedure

We consider a market consisting of four IGs indexed by i ∈ GI = {1, 2, 3, 4} and four FGs indexed

by j ∈ GF = {5, 6, 7, 8}. Their production cost rates (in $/hour) are given in (20): Ck(q) =
1

2
ckq

2,

where q is in MW and ck is measured in $/MWh/MW. To facilitate comparison between IGs’ and

FGs’ equilibrium behavior, we keep generators identical within each generator type. We assume the

cost coefficients are

ci =
1

3
, for i ∈ GI , cj = 1, for j ∈ GF .

The system’s oversupply penalty for e MW of oversupply is assumed to be h(e) = 1
2che

2 with

ch = 1/3. We report the equilibrium results under the above cost parameters, but we have also

examined other cost parameters with ci < cj , where ci, cj ∈ {1/6, 1/4, 1/3, 1/2, 2/3, 1, 2, 3}, and

ch ∈ {1/4, 1/3, 1/2, 1, 2}. We find that the qualitative results described in this section are robust

across all problem instances we examined. We remark on the robustness of the results along with

the discussions in the rest of this section.

We next specify the time-invariant probability distribution, fL,W (x, y), defined in (32). Within

a given operating horizon [0, T ], we assume the load and VG potential output follow independent

normal distributions, with µL = 100, σL = 15, µW = 5, and σW = 1.75, measured in MWh per

5 minutes. (Many electricity systems measure load and VG output at 5-minute intervals.) The

length of the horizon T is typically several hours to one day, but because we will report costs and

emissions in hourly rates, the specific value of T does not affect our results.

The VG penetration level is µW/µL = 5%, close to the current VG penetration in the U.S.

In addition to this base case, we also consider various VG penetration levels. Following Wu and

Kapuscinski (2013), when VG penetration increases bym times (µW increases tomµW ), the standard

deviation σW increases to mσW if the existing and added VG outputs are perfectly correlated, or

to
√
mσW if they are independent. The realistic case is likely in between and we assume that σW

increases to m0.75σW . Specifically, we consider five VG penetration levels: 0%, 5%, 15%, 30%, and

50%. That is, m = 0, 1, 3, 6, 10.

We consider the following policies for VGs: priority dispatch for VG (no curtailment), economic

curtailment for VG (when subsidy r = 0), partial economic curtailment for VG (when subsidy r = 20

or 40 $/MWh).

The generators submit linear supply functions Sk(p) = βkp
+, as in (21). The following iterative

procedure is used to compute the generators’ equilibrium supply function slopes:

Step 1. Set n = 0 and choose an initial slope β0k ∈ [βmin
k , c−1

k ] for every generator k ∈ GI ∪GF .
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Step 2. Increase n by 1. For every generator k ∈ GI ∪GF , find βnk ∈ [βmin
k , c−1

k ] that maximizes

generator k’s profit, assuming that none of the other generators modify their slopes (i.e.,

use βn−1
l for generator l 6= k).

Step 3. If max
k∈GI∪GF

{ ∣∣βnk − βn−1
k

∣∣ /βn−1
k

}
< ε, then terminate the procedure and the equilibrium

supply function slopes are {βnk }, otherwise go to Step 2.

In Step 2, we numerically find that the objective function is strictly quasi-concave, which ensures

that any local maximum is the unique global maximum. In Step 3, we use ε = 0.1% for the

convergence criterion. The procedure typically takes only 4 to 5 iterations to converge.

To numerically examine the uniqueness of the equilibrium, we initiate the procedure with many

different starting points in Step 1 and find that the procedure always converges to the same equilib-

rium. Furthermore, when all generators are assumed to be flexible, the procedure produces exactly

the same results as the classic SFE model with linear supply functions.

6.2 FG-IG Equilibrium vs. Klemperer-Meyer Equilibrium

The supply function slope βk is useful for the theoretical analysis in §5, but for the purpose of

describing the insights from our numerical experiments, it is more intuitive to use price offer slope

γk
def
= 1/βk ∈ [ck, 1/β

min
k ]. A lower γk means a more competitive price offer. In a perfect competition,

generator k’s price offer is equal to its marginal cost ckq.

As our model extends the classic SFE model by Klemperer and Meyer (1989) to include asym-

metries in both cost and flexibility, we first compare the SFE in our model (referred to as FG-IG

equilibrium) with the Klemperer-Meyer model (referred to as KM equilibrium), focusing on the SFE

with linear supply functions.

The KM model ignores the generators’ inflexibility and treats generators 1-4 as if they are flexible

to find the equilibrium supply functions. Following Green (1996) and Rudkevich (1999), we solve

the KM equilibrium with linear supply functions under the same cost functions described in §6.1.
We find that, in the KM model, generators 1-4 each offer price 0.427 q and generators 5-8 each offer

price 1.082 q, shown in Figure 3(a).

Using the procedure in §6.1, we compute the FG-IG equilibrium without VG in the system.

Because our model recognizes the inflexibility of generators 1-4, one might expect IGs 1-4 to behave

more differently than FGs 5-8 compared to the KM equilibrium. However, in the FG-IG equilibrium,

IGs offer price 0.429 q, which is only 0.5% higher than in the KM model, whereas FGs offer price

1.139 q, 5.3% higher than in the KM model. In terms of the markup (γk − ck)q, FGs’ markup is

0.139 q, 69% higher than their markup 0.082 q in the KM model; IGs’ markup is only 2.4% higher
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Figure 3: Klemperer-Meyer Equilibrium vs. FG-IG Equilibrium without VG
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than in the KM model. The price offer slopes under different models are shown in Figure 3(a).

The reasons underlying the difference between the FG-IG and KM equilibria stem from the

reduced competition due to inflexibility. All eight generators are treated as flexible in the KM

model, but only four of them are actually FGs. IGs do not compete with FGs in matching production

with the variable demand; FGs compete among themselves to serve the variable demand (see the

discussion in §5.4). Thus, the competition facing an FG in our model is less intense than that in the

KM model, allowing FGs to raise their price offers significantly above what the KM model predicts.

On the other hand, IGs’ price offers in our equilibrium is similar to that in the KM model, because

an IG faces direct competition from all other generators. In particular, IGs still compete with FGs

for market share (IGs produce qI∗ and FGs serve the rest of the demand). This competition is only

slightly less intense than in the KM model because FGs raise their price offers as explained above. As

a result, IGs slightly raise their price offers above the KM equilibrium. The above finding suggests

that the KM model underestimates generators’ price offers, more significantly so for FGs.

Next, we compare how the two models differ in market price estimation. Estimating the market

price involves two steps: First, estimate the equilibrium supply functions using a SFE model; second,

compute the price statistics under the estimated supply functions. A forecaster who uses the classic

SFE model in the first step may or may not consider inflexibility in the second step. We refer to

the estimates without recognizing inflexibility in either step as “KM est. 1” and the estimates with

inflexibility consideration in only the second step as “KM est. 2”. The FG-IG model recognizes
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inflexibility in both steps. We also compute the price under perfect competition with inflexibility

consideration as a benchmark.

Figure 3(b) shows that the mean and standard deviation of the price estimated by the KM model

(both KM est. 1 and est. 2) are lower than those estimated by the FG-IG model. The KM est. 1 for

the price standard deviation is considerably lower, because ignoring inflexibility in the second step

leads to an incorrect assumption that all generators can mitigate load variability.

Although KM est. 2 considers inflexibility in the second step, it underestimates the average

price and price standard deviation. KM est. 2 for the average price is lower because the KM model

underestimates the equilibrium price offers for both IGs and FGs. KM est. 2 underestimates the price

volatility for two reasons. First, the KM model underestimates FGs’ price offer slopes and, thus, it

underestimates the magnitude of price fluctuations when the price is positive. Second, because the

KM model underestimates the price offers more for FGs, it underestimates IGs’ market share and,

thus, it underestimates the magnitude of the negative prices.

In view of both the generators’ price offers and the equilibrium price, the KM model overestimates

the intensity of the competition in a market with inflexible generators. This result is robust across

all cost parameters we have examined.

6.3 Impact of Variable Generation (under Priority Dispatch) on SFE

Because the KM equilibrium is known to be independent of the distribution of the uncertainties,

variable generation has no impact on the price offers in the KM equilibrium. In Figure 4(a)-(b), the

KM equilibrium price offers are invariant to the VG penetration levels.

In the FG-IG equilibrium, when the VG penetration increases, the overall variability (including

demand and VG output variabilities) increases. If VGs have priority in dispatch, the only lever for

balancing against the increased variability is adjusting the FGs’ output. Increased variability also

increases the chance of oversupply, which makes a lower IG output more desirable for the system.

Both of these reasons give FGs an advantage in the market-share competition with IGs. To profit

from this advantage, FGs raise their price offers as the VG penetration increases, which is confirmed

in Figure 4(a); the top curve is for priority dispatch.

On the other hand, as the VG penetration increases, IGs face a price-quantity tradeoff: They

can either increase price offers to raise the equilibrium price but get a smaller market share, or lower

their price offers to gain more market share. Because a low IG output is desirable for the system to

mitigate the oversupply penalty when VGs have priority, IGs’ strategy of lowering price offers may

not lead to an output increase that is sufficient to raise IGs’ profits. Thus, raising price offers is

preferred by IGs, as confirmed by the top curve in Figure 4(b). Hence, under the priority dispatch
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Figure 4: Effects of VG on the Equilibrium under Priority Dispatch

(a) FGs’ price offer slope γ (b) IGs’ price offer slope γ
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policy for VGs, both IGs and FGs raise their price offers as the VG penetration increases, and the

KM model increasingly underestimates generators’ price offers and overestimates the intensity of the

market competition.

Although inflated price offers tend to raise the market price, the increased VG penetration reduces

the average net demand and tends to reduce the price. The equilibrium price is a result of the

combination of these two effects. The second effect dominates in determining the average price, as

shown in Figure 4(c): the average price declines as the VG penetration increases.

Under the priority dispatch policy, increasing VG penetration makes the price more volatile, as

revealed in Figure 4(d). The reasons are twofold. At a high VG penetration level, the VG output

can still occasionally drop to a low level, requiring FGs to ramp up production, which escalates the
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market price due to FGs’ increased price offers. When the VG output surges, however, the system

has to take all the VG output due to its priority, resulting in possibly very negative prices at high

VG penetration levels.

We have examined the above results under various cost parameters. The qualitative trends

discussed in this section are robust.

6.4 Impact of the Economic Curtailment Policy on SFE

The analysis in §6.3 assumes VGs have priority; in this section, we consider the policy that allows

economic curtailment of VGs. We focus on the economic curtailment case under zero subsidy (r = 0)

and compare it with the cases under subsidies r = 20 and 40 $/MWh.

The FG-IG equilibrium price offers are shown in Figure 5(a)-(b). The economic curtailment policy

encourages both IGs and FGs to offer lower (more competitive) prices compared to the priority

dispatch policy. As the VG penetration increases, Figure 5(a) shows that FGs’ price offer slope

increases slower than that under the priority dispatch policy, while Figure 5(b) shows that IGs’ price

offer slope declines and may even drop below the price offer slope predicted by the KM model.

The economic curtailment policy increases the market competition in two ways. First, economic

curtailment provides the system operator with an additional lever to manage uncertainty, and thus,

the system operator allocates less production to FGs than under the priority dispatch policy. As a

result, FGs offer more competitive prices to compete for market share. Second, economic curtailment

significantly reduces the oversupply penalty, thereby altering the price-quantity tradeoff facing IGs

(this tradeoff is described in §6.3). Consequently, IGs’ strategy of lowering price offers can yield an

output increase that is sufficient to increase IGs’ profits. These two effects of the economic curtailment

policy reinforce each other in equilibrium, because IGs reduce their price offers in response to FGs’

reduced price offers and vice versa.

Figure 5 also shows the effect of production-based subsidies. Subsidies effectively grant priority

to VGs to some extent and thus lead to less competitive price offers. The price offers in the cases of

r = 20 and 40 $/MWh lie in between the price offers in the priority dispatch and economic curtailment

cases. For all problem instances we examined, we find that under the economic curtailment policy,

IGs reduce their price offers as VG penetration increases. Under r = 20 or 40 $/MWh, whether IGs

increase or decrease their price offers depends on instances, but they always lie between the priority

dispatch and economic curtailment cases.

Economic curtailment has little effect on the average price, but the impact on price volatility

is significant. Figure 5(c) shows that when the VG penetration level is below 30%, average prices

under various VG policies are indistinguishable. At higher VG penetration levels, the average price
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Figure 5: Effects of Economic Curtailment on the Equilibrium

(a) FGs’ price offer slope γ (b) IGs’ price offer slope γ
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under economic curtailment is slightly higher because the curtailment reduces the severity of the

negative prices. In contrast, the standard deviation of the price drops considerably under economic

curtailment, as shown in Figure 5(d), because economic curtailment reduces extreme prices by making

the market more competitive when prices are high and reducing the oversupply penalty when prices

are negative.

6.5 Effects of Economic Curtailment on Efficiency and Emission

In this last section, we study the efficiency and emission impact of economic curtailment. The system

efficiency is measured by its average operating cost, which is the sum of the actual production cost

(not the stated cost) of the eight generators and the oversupply penalty. Table 1 shows the system
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operating cost under various VG penetration levels and dispatch policies. On average, one MWh of

economic curtailment reduces the system operating cost by about $30. This cost reduction effect is

consistent across all VG penetration levels. This finding is also in line with the economic benefit of

curtailment found by Wu and Kapuscinski (2013).

Table 1 also reveals that higher subsidies reduce the amount of curtailment but increase the system

operating cost. Interestingly, higher subsidies also increase the cost saving per MWh of curtailment.

For example, at 5% VG penetration with r = 20 $/MWh, one MWh of economic curtailment reduces

the system operating cost by $49; with r = 40 $/MWh, the cost saving per MWh of curtailment

increases to $67. This result is again consistent across all VG penetration levels. The implication is

that the benefit of economic curtailment may be very high in countries and regions where VGs are

heavily subsidized based on the amount of production.

An environmental benefit from increasing VG penetration is the reduced CO2 emission due to

Table 1: Effects of Curtailment on Cost and CO2 Emission

Metrics
VG dispatch policy

(or subsidies)

VG penetration

5% 15% 30% 50%

VG penetration
(after curtailment)

r = 40 4.97% 14.91% 29.73% 49.10%

r = 20 4.93% 14.79% 29.42% 48.34%

Economic Curtailment 4.84% 14.53% 28.85% 46.99%

System operating cost
(thousand $/hour)

Priority Dispatch 44.85 36.96 27.04 17.31

r = 40 44.83 36.89 26.82 16.57

r = 20 44.81 36.84 26.70 16.29

Economic Curtailment 44.79 36.80 26.61 16.11

System cost saving per
MWh of curtailment

($/MWh)

r = 40 67.1 65.0 66.8 69.3

r = 20 48.9 47.0 48.8 51.3

Economic Curtailment 30.1 29.3 30.8 33.1

Total CO2 emission
with coal-fired IGs

(tons/hour)

Priority Dispatch 1287.8 1044.7 729.9 403.1

r = 40 1288.4 1045.9 733.4 411.2

r = 20 1289.2 1047.7 737.4 418.5

Economic Curtailment 1290.6 1051.7 745.2 432.6

Total CO2 emission
with nuclear IGs

(tons/hour)

Priority Dispatch 171.6 146.4 116.3 86.9

r = 40 171.3 145.9 114.7 82.8

r = 20 170.9 145.1 112.9 79.3

Economic Curtailment 170.4 143.4 109.5 73.2

Emission rates: 215 lb. of CO2 per mmBtu of coal, 117 lb. of CO2 per mmBtu of natural gas, no emission
for nuclear power generators. Fuel price: $2.5 per mmBtu of coal and $5 per mmBtu of natural gas.
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the displacement of the conventional production by the clean VG production. Table 1 confirms that

the total CO2 emission significantly decreases as the VG penetration increases.

The impact of economic curtailment on CO2 emission, however, is not as obvious and depends

on the generators’ fuel types. Because economic curtailment allows for more IG production and less

FG production, if IGs have a higher (lower) CO2 emission rate than FGs, economic curtailment may

increase (decrease) total CO2 emission. Table 1 demonstrates that when IGs are coal-fired generators

and FGs are natural gas combustion turbines, economic curtailment increases CO2 emission, but

when IGs are nuclear power generators, economic curtailment reduces the emission.

7. Conclusion

Electricity markets have been gradually evolving toward deregulated structures that intend to encour-

age competition and improve efficiency. The research in deregulated electricity markets, especially

the supply function competition, has provided considerable insights into generators’ bidding behavior

and market power. This paper provides new results that address how the competition is affected

by generators’ (in)flexibility and variable generation. The two most important messages from this

paper are that inflexibility contributes to the market power and that the economic curtailment of

variable generation increases the market competition and system efficiency.

Inflexibility contributes to the market power in the following way. Inflexible generators do not

compete with flexible generators in matching production with uncertain demand, leading to increased

market power for flexible generators, which in turn results in higher average price and price volatility

than predicted by the classic SFE model.

Variable generation, when given priority in dispatch, exacerbates the effect of inflexibility on mar-

ket competition, but the economic curtailment policy can intensify the market competition because

economic curtailment serves as a partial substitute for flexible generators to balance against vari-

ability. Furthermore, economic curtailment improves system efficiency by reducing the oversupply

penalty and using more inflexible generation which is less costly than flexible generation.

The insights from this paper also provide several recommendations for the regulators and policy

makers. First, in assessing the competitiveness of the electricity market, it is important to incorporate

generators’ flexibility/inflexibility. Flexible generators compete in balancing against variability and

often set the market price. Encouraging the development of more flexible generators (e.g., fueled by

natural gas) enhances the overall competitiveness of the electricity market. Second, in assessing the

benefit of the economic curtailment policy, it is important to recognize that economic curtailment

helps increase market competition and reduce price volatility. Policy makers need to revisit the

policy of giving priority to variable generation from renewable sources, and consider a full range of
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benefits of economic curtailment. Other benefits of economic curtailment include reduced cycling

cost and peaking cost (Wu and Kapuscinski 2013) and improved production allocation in a network

(Ela 2009). Third, policy makers need to reconsider the design of incentives aimed to maximize

the benefits of renewable energy. The design of subsidies should facilitate economic curtailment

and avoid unintended consequences. Investment in research and development can push technology

advancement that makes renewable energy generation more competitive in the future even without

subsidies.
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Appendix

Proof of Lemma 1. The inverse supply function is defined as S−1
k (q) = inf{p : Sk(p) > q}. Under

Assumption 2(i) and (ii), S−1
k (0) = pmin

k and S−1
k (q) is continuous and increasing in q for q ≥ 0.

Assumption 2(iii) implies that S−1
k (q) > 0 for q > 0. Hence, Ck(q) =

∫
0

q
S−1
k (x)dx is continuously

differentiable, convex, and strictly increasing in q for q ≥ 0.

Consider the optimal allocation problem in (3), rewritten below

CF (q) = min
{ ∑

j∈GF

Cj(qj) : qj ≥ 0,
∑

j∈GF

qj = q
}
. (A.1)

For any q > 0, the objective in (A.1) is convex on a closed convex set
{
(q, qj, j ∈ GF ) : q ∈ [0, q],

qj ∈ [0, q],
∑

j∈GF

qj = q
}
. Hence, the theorem on convexity preservation under minimization (Heyman

and Sobel 1984, p. 525) implies that CF (q) is convex in q.

For a given q > 0, let {q∗j } be the minimizer for (A.1). We show {q∗j } has two properties:

1) If q∗j , q
∗
k > 0, then C ′

j(q
∗
j ) = C ′

k(q
∗
k). To see this, note that if C ′

j(q
∗
j ) < C ′

k(q
∗
k), we can strictly

reduce the objective by increasing q∗j by ε and reducing q∗k by ε, where ε > 0 is small.

2) If q∗j = 0 and q∗k > 0, then C ′
j(0) ≥ C ′

k(q
∗
k). To see this, if C ′

j(0) < C ′
k(q

∗
k), we can strictly

reduce the objective by setting q∗j = ε and reducing q∗k by ε, where ε > 0 is small.

Denote p ≡ C ′
j(q

∗
j ) for q

∗
j > 0. Note that p > 0 because Cj(qj) is convex and strictly increasing

in qj for qj ≥ 0. Define GF
+ =

{
j ∈ GF : C ′

j(q
∗
j ) = p

}
. Then, CF (q) =

∑
j∈GF

+

Cj(q
∗
j ). For j 6∈ GF

+, we

have q∗j = 0 and C ′
j(0) > p. Then, for sufficiently small ε > 0, we have

CF (q + ε) =
∑

j∈GF
+

Cj(q
∗
j + εj), (A.2)

for some εj ≥ 0 and
∑

j∈GF
+

εj = ε. Using Taylor series, (A.2) can be written as

CF (q + ε) =
∑

j∈GF
+

[
Cj(q

∗
j ) + εjC

′
j(q

∗
j ) + o(εj)

]
= CF (q) + εp + o(ε),

where o(x) is a function g(x) satisfying g(x)/x → 0 as x→ 0. Similarly, we can show that CF (q)−
CF (q − ε) = εp + o(ε). Hence, CF (q) is differentiable with derivative (CF )

′
(q) = p > 0.

Finally, we show p = (SF )
−1

(q). For j ∈ GF
+, we have p = C ′

j(q
∗
j ) = S−1

j (q∗j ) or Sj(p) =

q∗j . For j 6∈ GF
+, we have C ′

j(0) > p, which implies S−1
j (0) = pmin

j > p, which in turn leads to

Sj(p) = 0 = q∗j due to Assumption 2(i). Hence, SF (p) =
∑

j∈GF

Sj(p) =
∑

j∈GF

q∗j = q, which leads to

p = (SF )
−1

(q). Because SF (p) also satisfies Assumption 2, (SF )
−1

(q) is continuous in q. Therefore,

CF (q) is continuously differentiable and (CF )
′
(q) = (SF )

−1
(q).

Similar results can be shown for IGs’ problem in (2), which completes the proof.
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Proof of Theorem 1. We first prove that (12) is optimal in the case of Lt − qI −Wt ≥ 0. In

this case, constraints (10)-(11) imply that qFt ≥ Lt − qI −Wt ≥ 0. If we set qFt at the lower bound

Lt − qI −Wt, then q
V
t =Wt and et = 0, which clearly minimize the objective in (9).

When Lt − qI −Wt < 0, we have qF∗
t = 0 because: (i) if qFt > 0 and et > 0, then a lower qFt

reduces the objective in (9); (ii) if qFt > 0 and et = 0, then qVt = Lt − qI − qFt < Wt, and we can

reduce qFt and increase qVt to lower the objective in (9). Hence, qF∗
t = 0. We determine qV ∗

t by

min
{
− r qVt + h(qI + qVt − Lt) : 0 ≤ qVt ≤Wt

}
,

where we set h(e) = 0 for e < 0. An interior optimal solution satisfies h′(qI + qV ∗
t − Lt) = r, or

qV ∗
t = Lt − qI + µ(r), which is indeed optimal if 0 < Lt − qI + µ(r) < Wt. If Lt − qI + µ(r) ≥ Wt,

then qV ∗
t =Wt. If Lt − qI + µ(r) < 0, then qV ∗

t = 0. This proves that (12) is optimal.

For any q > L, the objective function in (9) is convex on a closed convex set {(qI , Lt,Wt, q
F
t , q

V
t ) :

qI ∈ [0, q], Lt ∈ [L,L], Wt ∈ [0,K], qFt ∈ [0, q], (10), and (11)}. By the theorem on convexity

preservation under minimization (Heyman and Sobel 1984, p. 525), we conclude that C̃(qI , Lt,Wt)

is jointly convex in (qI , Lt,Wt).

Proof of Theorem 2. We first derive an expression for E
[
C̃(qI , Lt,Wt)

]
, which is useful for deriving

the first-order condition for (16). Using Theorem 1, we can write

C̃(qI , Lt,Wt) = CF (qF∗
t )− r qV ∗

t + h(qI + qF∗
t + qV ∗

t − Lt),

where qF∗
t and qV ∗

t are given in Figure 1 under the four events. The indicators of these events can

be written as

1A1
= 1Lt≤qI−µ(r),

1A2
= −1Lt≤qI−µ(r) + 1Lt<qI+Wt−µ(r),

1A3
= −1Lt<qI+Wt−µ(r) + 1Lt≤qI+Wt

,

1A4
= 1Lt>qI+Wt

.

(A.3)

We denote C̃Ai
(·, ·, ·) = C̃(·, ·, ·) when Ai occurs. Then, using the optimal policy in Figure 1, we have

C̃A1
(qI , Lt,Wt) = h(qI − Lt),

C̃A2
(qI , Lt,Wt) = −r (Lt − qI+ µ(r)) + h(µ(r)),

C̃A3
(qI , Lt,Wt) = −rWt + h(qI+Wt − Lt),

C̃A4
(qI , Lt,Wt) = CF (Lt − qI−Wt)− rWt.

(A.4)

Using the equations in (A.3), we can write the expected real-time cost as
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E
[
C̃(qI , Lt,Wt)

]
=

4∑

i=1

E
[
C̃Ai

(qI , Lt,Wt)1Ai

]

= E

[(
C̃A1

(qI , Lt,Wt)− C̃A2
(qI , Lt,Wt)

)
1Lt≤qI−µ(r)

]

+ E

[(
C̃A2

(qI , Lt,Wt)− C̃A3
(qI , Lt,Wt)

)
1Lt<qI+Wt−µ(r)

]

+ E

[
C̃A3

(qI , Lt,Wt)1Lt≤qI+Wt

]
− E

[
C̃A4

(qI , Lt,Wt)1Lt>qI+Wt

]
. (A.5)

It can be verified that C̃(qI , Lt,Wt) is differentiable in qI except at qI = Lt −Wt, where the

left derivative is −CF ′
(0) and the right derivative is h′(0). Because Lt and Wt have continuous

distributions, E
[
C̃(qI , Lt,Wt)

]
is differentiable in qI everywhere. Next, we compute its derivative.

The first three expectations in (A.5) all have the form of E
[
g(qI , Lt,Wt)1Lt≤b(qI ,Wt)

]
, for some

functions g(qI , Lt,Wt) and b(qI ,Wt). Let the joint probability density function of Lt and Wt be

ft(l, w), l ∈ [L,L], w ∈ [0,K], and let “ ∨ ” and “ ∧ ” denote the max and min operations. We have

d

dqI
E

[
g(qI , Lt,Wt)1Lt≤b(qI ,Wt)

]
=

d

dqI

[∫ K

0

∫ L∨b(qI ,w)∧L

L

g(qI , l, w)ft(l, w) dl dw

]

=E

[
∂g(qI, Lt,Wt)

∂qI
1Lt≤b(qI,Wt)

]
+

∫ K

0
g
(
qI, b(qI, w), w

)
ft
(
b(qI, w), w

)∂b(qI, w)
∂qI

1b(qI,w)∈[L,L] dw. (A.6)

The last expectation in (A.5) is in the form of E
[
g(qI , Lt,Wt)1Lt>b(qI ,Wt)

]
and its derivative is

d

dqI
E

[
g(qI , Lt,Wt)1Lt>b(qI ,Wt)

]
=

d

dqI

[∫ K

0

∫ L

L∨b(qI ,w)∧L
g(qI , l, w)ft(l, w) dl dw

]

=E

[
∂g(qI, Lt,Wt)

∂qI
1Lt>b(qI,Wt)

]
−
∫ K

0
g
(
qI, b(qI, w), w

)
ft
(
b(qI, w), w

)∂b(qI, w)
∂qI

1b(qI,w)∈[L,L] dw. (A.7)

Now, applying (A.6)-(A.7) to the derivatives of the expectations in (A.5), we find that the integral

term g
(
qI, b(qI , w), w

)
in (A.6)-(A.7) becomes

(
C̃A1

(qI , l, w) − C̃A2
(qI , l, w)

)∣∣
l=qI−µ(r)

= 0,

(
C̃A2

(qI , l, w) − C̃A3
(qI , l, w)

)∣∣
l=qI+w−µ(r)

= 0,

C̃A3
(qI , l, w)

∣∣
l=qI+w

= −r w,

C̃A4
(qI , l, w)

∣∣
l=qI+w

= −r w,

where we used the value of C̃Ai
(·, ·, ·) given by (A.4). This leads to

d

dqI
E
[
C̃(qI , Lt,Wt)

]
=

4∑

i=1

E

[
∂C̃Ai

(qI , Lt,Wt)

∂qI
1Ai

]

= E

[
−(CF )

′
(Lt−Wt− qI)1A4

+ h′(qI+Wt− Lt)1A3
+ r1A2

+ h′(qI− Lt)1A1

]

= E
[
− P (qI , Lt,Wt, S

F )
]
,

where the last equality follows from Lemma 1 and the definition in (14).
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Now, consider the optimization problem in (16). If qI∗ > 0, then it must satisfy

T (CI)
′
(qI∗) +

∫ T

0

d

dqI
E
[
C̃(qI∗, Lt,Wt)

]
dt = T (CI)

′
(qI∗)−

∫ T

0
E
[
P (qI∗, Lt,Wt, S

F )
]
dt = 0,

which is equivalent to (CI)
′
(qI∗) = P (qI∗, SF ). Applying Lemma 1, we have qI∗ = SI

(
P (qI∗, SF )

)
.

If qI∗ = 0, then (CI)
′
(0) ≥ P (0, SF ). Because SI(p) = 0 for any p ≤ (CI)

′
(0), we have

SI
(
P (0, SF )

)
= 0. Thus, qI∗ = SI

(
P (qI∗, SF )

)
holds for qI∗ = 0. This proves equation (17).

Finally, we show P (qI , Lt,Wt, S
F ) has the alternative expression in (18). We verify this by

considering separate regions. The inequality in (18) is

SF (p) +Wt1{p≥−r} − µ(−p) ≥ Lt − qI . (A.8)

In region A1, Lt − qI ≤ −µ(r), and (A.8) clearly holds if p = po ≡ −h′(qI − Lt). Note that

po ≤ −r. Thus, for any other price p1 < po, the left side of (A.8) becomes −µ(−p1), which is strictly

less than Lt − qI . Hence, po is the minimum price for (A.8) to hold.

In region A2, Lt−qI ∈ (−µ(r), Wt−µ(r)). If p = −r, then (A.8) holds becauseWt−µ(r) > Lt−qI .
For any other p1 < −r, (A.8) does not hold because −µ(−p1) < −µ(r) < Lt − qI .

In region A3, Lt− qI ∈ [Wt−µ(r), Wt]. If p = −h′(qI +Wt−Lt) ∈ [−r, 0], then (A.8) holds with

equality: Wt − (qI +Wt − Lt) = Lt − qI .

Lastly, in region A4, Lt − qI > Wt. If p = (CF )
′
(Lt −Wt − qI) > (CF )

′
(0), then (A.8) also holds

with equality: (Lt −Wt − qI) +Wt = Lt − qI .

Hence, the minimum price p for (A.8) to hold is exactly P (qI , Lt,Wt, S
F ).

Proof of Lemma 2. Recall that the average price P (qI , βF ) decreases in qI , as we discussed after

the definition in (15). Furthermore, because Lt and Wt have continuous distributions, P (qI , βF ) is

differentiable in qI everywhere. Denote P 1 ≡ ∂P/∂qI . We have P 1 ≤ 0.

Equation (25), qI − βIP (qI , βF ) = 0, implicitly determines qI as a function of βk, k ∈ GI ∪GF .

Thus, the lemma’s results can be seen from the following partial derivatives:

∂qI

∂βi
=

P

1− βIP 1

=
qI

βI(1 − βIP 1)
> 0, i ∈ GI , (A.9)

∂qI

∂βj
=

βIP 2

1− βIP 1

< 0, j ∈ GF ,

where P 2 ≡ ∂P/∂βF < 0 is established below.

We will express P (qI , βF ) and derive P 2. To simplify notations, let random variables L and W

follow the probability distribution fL,W (x, y) defined in (32). Let D = L−W denote the net demand.

For a continuous random variable X, we use fX(x) and FX(x) to denote the probability density

and cumulative distribution functions, and we let FX(x) = 1− FX(x).
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Then, we can write the average price function in (24) as

P (qI , βF ) =
1

βF
E
[
(D − qI)+

]
− ch

∫ qI

qI−µ(r)
(qI − x)fD(x) dx− ch

∫ qI−µ(r)

−∞
(qI − x)fL(x) dx

− ahFD(q
I) + (ah − r)FD(q

I − µ(r)) + (r − ah)FL(q
I − µ(r)). (A.10)

Thus,

P 2 ≡
∂P

∂βF
= − 1

(βF )2
E
[
(D − qI)+

]
< 0,

∂qI

∂βj
=

βIP 2

1− βIP 1

= − βIE
[
(D − qI)+

]

(βF )2 (1− βIP 1)
< 0, j ∈ GF . (A.11)

This completes the proof.

Proof of Lemma 3. We first bound the average price in (A.10). Note that
∫ qI

qI−µ(r)
(qI − x)fD(x) dx ≥ 0, and

∫ qI−µ(r)

−∞
(qI − x)fL(x) dx > µ(r)FL(q

I − µ(r))

=
(r − ah)

+

ch
FL(q

I − µ(r)) ≥ (r − ah)

ch
FL(q

I − µ(r)).

Using these inequalities, the average price in (A.10) is bounded above by

P (qI , βF ) <
1

βF
E
[
(D − qI)+

]
− ahFD(q

I) + (ah − r)FD(q
I − µ(r)). (A.12)

If ah ≥ r, then µ(r) = 0 and (A.12) becomes P (qI , βF ) < 1
βF E

[
(D − qI)+

]
−rFD(q

I). If ah < r, then

(A.12) implies P (qI , βF ) < 1
βF E

[
(D − qI)+

]
− ahFD(q

I). Combining these two cases, we obtain

P (qI , βF ) <
1

βF
E
[
(D − qI)+

]
−min{r, ah}FD(q

I). (A.13)

We can express and bound E
[
(D − qI)+

]
as follows:

E
[
(D − qI)+

]
=

∫ ∞

qI
(x− µD + µD − qI)fD(x) dx

=

∫ ∞

qI

x− µD√
2πσD

exp

(
−(x− µD)

2

2σ2D

)
dx+

∫ ∞

qI
(µD − qI)fD(x) dx

=
σD√
2π

∫ ∞

qI−µ
D

σD

y exp
(
−y2/2

)
dy + (µD − qI)FD(q

I)

≤ σD√
2π

+ (µD − qI)FD(q
I). (A.14)

The inequalities (A.13) and (A.14) lead to

P (qI , βF ) <
σD√
2πβF

+
(µD − qI)FD(q

I)

βF
−min{r, ah}FD(q

I). (A.15)
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Using (25), (27), and (A.15), we have

qImax = βImaxP (qI max, βF min)

< βImax

[
σD√

2πβF min
+

(µD − qImax)FD(q
I max)

βF min
−min{r, ah}FD(q

I max)

]
. (A.16)

We now prove qImax < µD. If the opposite is true, qI max ≥ µD, then FD(q
Imax) ≥ 1

2 and (A.16)

implies

qI max < βImax

[
σD√

2πβF min
− min{r, ah}

2

]
≤ βI max

[
σ∗D√

2πβF min
− min{r, ah}

2

]
= µD,

where σ∗D ≡
√
2π βF min

[
µD

βI max
+
min{r, ah}

2

]
. This contradicts qI max ≥ µD. Therefore, we conclude

that qImax < µD when σD ≤ σ∗D.

Proof of Theorem 3. Because generator k’s pure strategy set is a finite interval [βmin
k , c−1

k ], it

suffices to show that, ∀ k ∈ GI ∪ GF , generator k’s profit function is quasi-concave with respect to

βk to prove the existence of a pure strategy Nash equilibrium (Debreu 1952).

The proof of the quasi-concavity will use the derivatives of P (qI , βF ). Differentiating P (qI , βF )

in (A.10) with respect to qI and using µ(r) = (r − ah)
+/ch, we obtain

P 1(q
I , βF ) ≡ ∂P

∂qI
= − 1

βF
FD(q

I)− ch
[
FD(q

I)− FD(q
I − µ(r)) + FL(q

I − µ(r))
]

− ahfD(q
I) +

[
chµ(r) + (ah − r)

] [
fD(q

I − µ(r))− fL(q
I − µ(r))

]

= − 1

βF
FD(q

I)− ch
[
FD(q

I)− FD(q
I − µ(r)) + FL(q

I − µ(r))
]

− ahfD(q
I) + (ah − r)+

[
fD(q

I − µ(r))− fL(q
I − µ(r))

]
,

(A.17)

P 11(q
I , βF ) ≡ ∂2P

∂qI2
=

1

βF
fD(q

I)− ch
[
fD(q

I)− fD(q
I − µ(r)) + fL(q

I − µ(r))
]

− ahf
′
D(q

I) + (ah − r)+
[
f ′D(q

I − µ(r))− f ′L(q
I − µ(r))

]
.

(A.18)

By Lemma 3, if σD ≤ σ∗D, we have q
Imax < µD. When qI < µD, and σD → 0, all the distribution

functions in (A.17)-(A.18) approach zero, except for FD(q
I), which approaches one. Therefore, when

σD is small, P 1 is close to −1/βF and P 11 is close to zero.

Quasi-concavity of IG’s profit function. The profit function of IG i ∈ GI is expressed as

πi(βi;β−i, β
F ) in (29). To prove its quasi-concavity in βi, we will show that its derivative ∂πi/∂βi

can cross zero value from above at most once as βi increases, while holding β−i and β
F constant.

In (29), the function QI(βI , βF ) is used to emphasize the dependence of the aggregate IG output

qI on βI and βF . In what follows, we use qI to denote QI(βI , βF ) when no confusion will rise. Note

that ∂qI/∂βi ≡ ∂QI/∂βi is given by (A.9). Differentiating (29) with respect to βi, we obtain
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∂πi
∂βi

=
βi(2− ciβi)

(βi + β−i)2
qI
∂qI

∂βi
+
β−i(1− ciβi)− βi

(βi + β−i)3
(qI)

2

=
βi(2− ciβi)

(βI)
2

(qI)
2

βI(1− βIP 1)
+
β−i(1− ciβi)− βi

(βI)
3 (qI)

2

=
(qI)

2

(βI)3(1− βIP 1)

[
βi(2− ciβi) +

(
β−i(1− ciβi)− βi

)
(1− βIP 1)

]

=
(qI)

2

(βI)
3
(1− βIP 1)

[
βI(1− ciβi)−

(
β−i(1− ciβi)− βi

)
βIP 1

]

=
(qI)

2

(βI)2(1− βIP 1)
X(βi;β−i, β

F ),

where X(βi;β−i, β
F )

def
= 1 − ciβi +

(
βi(1 + ciβ−i) − β−i

)
P 1. To show ∂πi/∂βi can cross zero value

from above at most once, it suffices to show X decreases in βi. Differentiating X with respect to βi,

∂X

∂βi
= −ci + (1 + ciβ−i)P 1 +

(
βi(1 + ciβ−i)− β−i

)
P 11

qI

βI(1− βIP 1)
,

where P 11 is derived in (A.18). Note that −ci+(1+ciβ−i)P 1 < 0. Thus, if P 11(q
I , βF ) is sufficiently

small, we can establish ∂X/∂βi ≤ 0. Based on the discussion after (A.17) and (A.18), there exists

σ̂D, such that when σD < σ̂D, we have ∂X/∂βi ≤ 0 and, therefore, πi is quasi-concave in βi.

Quasi-concavity of FG’s profit function. Using the probability distribution in (32), and denote

D = L−W and qI = QI(βI , βF ), we can write FG’s profit function in (31) as

πj(βj ;β−j , β
I) =

βj
(
1− 1

2cjβj
)

(βj + β−j)2
E

[(
(D − qI)+

)2]
.

We will show that ∂πj/∂βj can cross zero value at most once from above when βj increases.

Differentiating πj with respect to βj and using ∂qI/∂βj from (A.11) and the following fact

∂

∂qI
E

[(
(D − qI)+

)2]
=

∂

∂qI

∫ ∞

qI
(x− qI)

2
fD(x)dx =

∫ ∞

qI
−2(x− qI)fD(x)dx = −2E

[
(D − qI)+

]
,

we obtain

∂πj
∂βj

=
β−j(1− cjβj)− βj

(βF )3
E

[(
(D − qI)+

)2]
+
βj(2− cjβj)

(βF )2
E
[
(D − qI)+

] βIE
[
(D − qI)+

]

(βF )2 (1− βIP 1)

=
βjE

[
((D − qI)+)2

]

(βF )
3
(1− βIP 1)

[
Y (βj , β−j , β

I) + βIZ(βj , β−j , β
I)
]
,

where

Y (βj , β−j , β
I)

def
=

(β−j

βj
− (1 + cjβ−j)

)
(1− βIP 1),

Z(βj, β−j , β
I)

def
=

2− cjβj
βj + β−j

ψ(qI),

ψ(qI)
def
=

(
E
[
(D − qI)+

])2

E [((D − qI)+)2]
.
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It suffices to show that Y and Z decrease in βj . Differentiating Y with respect to βj ,

∂Y

∂βj
= −β−j

β2j
(1− βIP 1) +

(β−j

βj
− (1 + cjβ−j)

)
βIP 11

βIE
[
(D − qI)+

]

(βF )
2
(1− βIP 1)

.

By the same argument used for the quasi-concavity of πi, we see that when σD is sufficiently small,

P 1 is close to −1/βF and P 11 is close to zero. Thus, there exists σ̃D, such that when σD < σ̃D, we

have ∂Y /∂βj ≤ 0.

Next, we show that Z decreases in βj . Note that ∂
∂qI

E
[
(D − qI)+

]
= −FD(q

I) and

ψ′(qI) = −2E
[
(D − qI)+

]
FD(q

I)

E
[(
(D − qI)+

)2] +
2
(
E
[
(D − qI)+

])3
(
E
[(
(D − qI)+

)2])2 = −2ψ(qI)(FD(q
I)− ψ(qI))

E[(D − qI)+]
.

Using this derivative and ∂qI/∂βj in (A.11), we have

∂Z

∂βj
=

−cjβF − (2− cjβj)

(βF )2
ψ(qI) +

2− cjβj
βF

ψ′(qI)
∂qI

∂βj

=
−cjβF − (2− cjβj)

(βF )
2 ψ(qI) +

2− cjβj
βF

2ψ(qI)(FD(q
I)− ψ(qI))βI

(βF )
2
(1− βIP 1)

=
ψ(qI)

(βF )
2

[
− cjβ

F − (2− cjβj)

(
1− 2(FD(q

I)− ψ(qI))βI

βF (1− βIP 1)

)]
.

We will show that ψ(qI) is close to FD(q
I) when σD is sufficiently small and qI < µD to complete

the proof.

For a normal random variable X ∼ N (µ, σ), we can show that E[X+] = µFX(0) + σ2fX(0) and

E
[
(X+)

2]
= (µ2 + σ2)FX(0) + µσ2fX(0). Then,

E
[
(D − qI)+

]
= (µD − qI)FD(q

I) + σ2DfD(q
I),

E
[
((D − qI)+)2

]
= ((µD − qI)2 + σ2D)FD(q

I) + σ2D(µD − qI)fD(q
I),

ψ(qI) =

[
(µD − qI)FD(q

I) + σ2DfD(q
I)
]2

[
(µD − qI)2 + σ2D

]
FD(qI) + σ2D(µD − qI)fD(qI)

.

If σD ≤ σ∗D, we have q
Imax < µD (Lemma 3). The above expression for ψ(qI) implies that as σD → 0,

we have FD(q
I) → 1, fD(q

I) → 0, and ψ(qI) → 1. Hence, there exists σ†D, such that when σD < σ†D,

we have ∂Z/∂βj ≤ 0.

To summarize, when σD < min{σ∗D, σ̂D, σ̃D, σ
†
D}, the profit function πj is quasi-concave in βj .

This establishes the existence of a pure strategy equilibrium, i.e., the linear supply function equilib-

rium.
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