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Abstract— An approach for the analytical solution to systems
of delay differential equations (DDEs) has been developed
using the matrix Lambert function. To generalize the Lambert
function method for scalar DDEs, we introduce a new matrix,
Q when the coefficient matrices in a system of DDEs do not
commute. The solution has the form of an infinite series of
modes written in terms of the matrix Lambert functions. The
essential advantage of this approach is the similarity with
the concept of the state transition matrix in linear ordinary
differential equations (ODEs), enabling its use for general
classes of linear delay differential equations. Examples are
presented to illustrate by comparison to numerical methods.

I. INTRODUCTION

Time-delay systems are those systems in which a signif-
icant time delay exists between the applications of input to
the system and their resulting effect. Such systems arise from
an inherent time delay in the components of the system or
a deliberate introduction of time delay into the system for
control purposes.

Delay differential equations, also known as difference-
differential equations, were initially introduced in the 18th
century by Laplace and Condorcet [1]. The basic theory
concerning stability of systems described by equations of
this type was developed by Pontryagin in 1942. Important
works include those by Bellman and Cooke in 1963 [2],
Smith in 1957, Pinney in 1958, Halanay in 1966, El’sgol’ts
and Norkin in 1971, Myshkis in 1972, Yanushevski in 1978,
Marshal in 1979, and Hale in 1977. The reader is referred
to the detailed review in [1].

The principal difficulty in studying delay differential equa-
tions lies in their special transcendental character. Delay
differential equations are often solved using numerical meth-
ods, asymptotic solutions, and graphical tools. One of the
approximation methods is the well-known Pade approxima-
tion, which results in a shortened repeating fraction for the
approximation of the characteristic equation of the delay [3-
4].

Several attempts have been made to find an analytical
solution for delay differential equations by solving its charac-
teristic equation under different conditions. A recent related
study on analytic solution of linear DDEs can be found in [5].
A Fourier-like analysis of the existence of the solution and its
properties for the nonlinear DDEs is studied by Wright [6].
The uniqueness of the solution and its properties for linear
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DDEs are also studied by Wright [7]. Similar approaches to
linear and nonlinear DDEs are also reported by Bellman [2].

An analytic approach to obtain the complete solution of
linear systems of DDEs, based on the concept of the Lambert
function, was developed by Asl and Ulsoy in 2003 [8].
However, their method is only correct when certain matrices
(i.e., A and Ad in Eq. (3)) commute. In this paper, the
analytical approach of [8] is extended to non-homogeneous
DDEs and to general systems of DDEs. The results are
compared with responses obtained by numerical integration.
The advantage of this approach lies in the fact that the form
of the solution obtained is analogous to the general solution
form of ODEs, and the concept of the state transition matrix
in ODEs can be generalized to DDEs using the concept of
the matrix Lambert function. (See Table I)

II. HOMOGENEOUS SYSTEMS

A. Scalar Case

For the first-order scalar homogenous DDE

ẋ(t) + ax(t) + adx(t− T ) = 0 t > 0
x(t) = φ(t) t ∈ [−T, 0] (1)

The solution can be written in terms of the Lambert
function, Wk [8]:

x(t) =
∞∑

k=−∞
Cke

1
T Wk(−adTeaT )t (2)

where theCk is determined from the preshape function,
φ(t), as described in [8]. Every functionW (h), such that
W (h)eW (h) = h, is called a Lambert function. The Lambert
function,W (h), is complex valued, with a complex argument
h, and has an infinite number of branchesWk(h), where
k = −∞,−1, 0, 1, . . . ,∞
B. Generalization to System of DDE’s

The Lambert function approach can be applied to the
solution of systems of DDEs in matrix-vector form,

ẋ(t) + Ax(t) + Adx(t− T ) = 0 t > 0
x(t) = φ̄(t) t ∈ [−T, 0] (3)

whereA andAd aren×n matrices,x is ann×1 vector. For
this system of linear DDEs Bellman has proved the existence
and uniqueness of the solution in [2].

In the special case where the coefficient matrices,A and
Ad, commute the solution is given as [8]:

x(t) =
∞∑

k=−∞
e( 1

T Wk(−AdTeAT )−A)tCk (4)



TABLE I

COMPARISON OF THESOLUTIONS TO ODES AND DDES

ODEs DDEs

Scalar Case

ẋ(t) + ax(t) = 0 t > 0 ẋ(t) + ax(t) + adx(t− T ) = 0 t > 0

x(t) = x0 t = 0 x(t) = φ(t) t ∈ [−T, 0]

x(t) = e−atx0 +
∫ t
0 e−a(t−ξ)bu(ξ)dξ x(t) =

∑∞
k=−∞ CkeSkt +

∫ t
0

∑∞
k=−∞ C

′
keSk(t−ξ)bu(ξ)dξ

where,Sk = 1
T

Wk(−adTeaT )− a

Matrix-Vector Case

ẋ(t) + Ax(t) = Bu(t) t > 0 ẋ(t) + Ax(t) + Adx(t− T ) = Bu(t) t > 0

x(t) = x0 t = 0 x(t) = φ̄ t ∈ [−T, 0]

x(t) = e−Atx0 +
∫ t
0 e−A(t−ξ)Bu(ξ)dξ x(t) =

∑∞
k=−∞ eSktCk +

∫ t
0

∑∞
k=−∞ eSk(t−ξ)C

′
kBu(ξ)dξ

where,Sk = 1
T

Wk(−AdTQ)− A

However, this solution (which is of the same form as (2))
is only valid when the matricesA andAd commute, that is
AAd = AdA. Therefore, the solution in (4) is not general.
We provide here, for the first time, the solution to (3) for the
general case. First we assume a solution form for (3) as,

x(t) = eStx0 (5)

whereS is n× n matrix, and substitution into (3) yields,

(S+ A + Ade
−ST )eST x0 = 0 (6)

Consequently, we have,

S+ A + Ade
−ST = 0 (7)

Multiply through byTeAT and rearrange to obtain,

T (S+ A)eST eAT = −AdTeAT (8)

WhenS andA commute, we can write the solution in terms
of the Lambert function, as given in (4). However, in general,
S and A do not commute. Although the derivation omitted
due to space limitation, it can be shown that whenA andAd

commute, thenS andAd also commute. Thus, in general

T (S+ A)eST eAT 6= T (S+ A)e(S+A)T (9)

Consequently, to write the solution in terms of the matrix
Lambert function

W(H)eW(H) = H (10)

we introduce an unknown matrixQ that satisfies,

T (S+ A)e(S+A)T = −AdTQ (11)

Comparing (10) and (11) we note that,

(S+ A)T = W(−AdTQ) (12)

Then solving (12) forS yields,

S =
1
T

W(−AdTQ)− A (13)

Substituting (13) into (7) yields the following condition
which can be used to solve for the unknown matrixQ

W(−AdTQ)− AeW(−AdT Q)−AT = −AdT (14)

Finally, theQ obtained from (14) can be substituted into (13)
to obtain S, and then into (5) to obtain the homogeneous
solution to (3),

x(t) =
∞∑

k=−∞
eSktCk (15)

Thus, the solution to the system of homogeneous DDEs in
(3) is given by (15), where theCk are computed from a
given preshape function̄φ(t). Corresponding to each branch,
k, of the Lambert function, there is a solutionQk from
(14) and then forHk = −AdTQk , we compute, fori =
1, 2, . . . , n, the eigenvalueŝλki of Hk and the corresponding
eigenvector matrixVk. We can then compute the matrix
Lambert function,

Wk(Hk) =

Vk




Wk(λ̂k1) 0 · · · 0
0 Wk(λ̂k2) · · · 0
...

...
.. .

...
0 0 · · · Wk(λ̂kn)


 V−1

k (16)

and then theSk corresponding toWk from (13). In the
many examples we have studied, (14) always has a unique
solution Q for each branch,k. The solution is obtained
numerically, for a variety of initial conditions, using the
’fsolve’ function in Matlab. Conditions for convergence of a
solution of the form of (15) to a system of linear DDEs as in
(3) are presented by Bellman in [2]. For example, if all the
eigenvales ofSk have negative real values and there exists a
lower bound of distances between pairs of the eigenvalues,
the infinite series converge.

The following example, from [10], illustrates the approach



and compares the results to those obtained using numerical
integration:

{
ẋ1(t)
ẋ2(t)

}
=

[
1 −3
2 −5

]{
x1(t)
x2(t)

}
+

[
1.66 −0.697
0.93 −0.330

]{
x1(t− T )
x2(t− T )

}
(17)

Table II shows the values, fork = −1, 0, 1, for Qk,
Sk, and the eigenvalues,̂λk1 and λ̂k2 , of Sk. One of
the eigenvalues due to the principal branch (k = 0) is
closest to the imaginary axis which means that it determines
the stability of the system. For the scalar case, (1), it is
proved that the root obtained using principal branch always
determines the stability of the system [11]. Although such a
proof is not available in the matrix-vector case, we observe
the same behavior in all the examples we have considered. In
this case, the value of the real part of the dominant eigenvalue
is in the left half plane, and therefore the system is stable.
Using the values ofSk from Table II, we obtain the solution,

x(t) =

· · ·+ e


 0.3499− 4.9801i −0.6253 + 0.1459i

2.4174 + 0.1308i −5.1048− 4.5592i


t

C−1

+e


 0.3055 −1.4150

2.1317i −3.3015


t

C0+

e


 −0.3499 + 4.9801i −0.6253− 0.1459i

2.4174− 0.1308i −5.1048 + 4.5592i


t

C1 + · · ·
(18)

The coefficientsCk in (18) are determined from specified
preshape functions,e.g., let

{
x1(t)
x2(t)

}
=

{
φ1(t)
φ2(t)

}
=

{
1
0

}
(19)

Thus, for a delayT , we can write theN term approximation
[8],





φ̄(0)
φ̄(− T

2N )
φ̄(− 2T

2N )
...

φ̄(−T )





︸ ︷︷ ︸
Φ(T,N)

=




eS−N0 · · · eSN0

eS−N (− T
2N ) · · · eSN (− T

2N )

eS−N (− 2T
2N ) · · · eSN (− 2T

2N )

... · · · ...
eS−N (−T ) · · · eSN (−T )




︸ ︷︷ ︸
Ω(T,N)





C−N

C−(N−1)

C−(N−2)

...
CN





Ck = lim
N→∞

[Ω−1(T, N) ·Φ(T, N)]k

(20)
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Fig. 1. Comparison for example in (17) of results from numerical
integration vs. (18) and (21) with one, three, and, seven terms. With more
branches the results show better agreement.

and forT = N =1 in our example we obtain,

C−1 =
{

1.3663 + 3.9491i
3.2931 + 9.3999i

}
, C0 =

{ −1.7327
−6.5863

}
,

C1 =
{

1.3663− 3.9491i
3.2931− 9.3999i

}

(21)
The results are compared to those obtained using nu-

merical integration in Fig. 1, and show good agreement as
more branches are used,i.e., as the dimension of matrix,N
increases.

The key step, which allows the Lambert function approach
to be used in (3), is the introduction, in (11) , of the unknown
matrix Qk, and the use of (14) to solve forQk.

III. NON-HOMOGENEOUS SYSTEMS

A. Scalar Case

The non-homogeneous version of the DDE in (1) is

ẋ(t) + ax(t) + adx(t− T ) = bu(t) t > 0
x(t) = φ(t) t ∈ [−T, 0] (22)

whereu(t) is a continuous function representing the external
excitation. In [12], the authors present the forced solution to
(22) as,

x(t) =
∫ t

0

Ψ(t, ξ)bu(ξ)dξ (23)

where the following conditions forΨ(t, ξ) must be satisfied.

a)
∂

∂ξ
Ψ(t, ξ) = aΨ(t, ξ), t− T ≤ ξ < t

= aΨ(t, ξ) + adΨ(t, ξ + T ), ξ < t− T
b)Ψ(t, t) = 1
c)Ψ(t, ξ) = 0, ξ > t

(24)
In [4], it is not indicated how to compute the fundamental
function Ψ(t, ξ). Here we present here an approach based
upon the Lambert function. First aΨ(t, ξ) which satisfies
the first condition in (24) is

Ψ(t, ξ) = e−a(t−ξ) (25)



TABLE II

INTERMEDIATE RESULTS FOR COMPUTING THE SOLUTION IN(18) FOR THE EXAMPLE IN (17) VIA THE MATRIX LAMBERT FUNCTION

k = −1 k = −1 k = −1

Qk

[
18.8024 + 10.2243i 6.0782 + 2.2661i

−61.1342 + 23.6812i 1.0161 + 0.2653i

] [
9.9183 14.2985

−32.7746 6.5735

] [
18.8024− 10.2243i 6.0782− 2.2661i

−61.1342− 23.6812i 1.0161− 0.2653i

]

Sk

[
0.3499− 4.9801i −1.6253 + 0.1459i

2.4174 + 0.1308i −5.1048− 4.5592i

] [
0.3055 −0.4150

2.1317 −3.3015

] [
0.3499 + 4.9801i −1.6253− 0.1459i

2.4174− 0.1308i −5.1048 + 4.5592i

]

λki

{
1.3990− 5.0935i

−4.0558− 4.4458i

{
1.0119

−1.9841

{
1.3990 + 5.0935i

−4.0558 + 4.4458i

A Ψ(t, ξ) satisfying the second condition in (24) can be
obtained using the Lambert function and confirmed by sub-
stitution as,

Ψ(t, ξ)k = e
1
T Wk(−adTeaT )(t−ξ), k = −∞, . . . ,∞ (26)

There are an infinite number of solutions for the infinite
branches of the Lambert function. Therefore the complete
solution can be written in terms of the summation

Ψ(t, ξ) =
∞∑

k=−∞
C
′
ke

1
T Wk(−adTeaT )(t−ξ) (27)

Thus, the fundamental function is

a)Ψ(t, ξ) = e−a(t−ξ), t− T ≤ ξ < t

=
∞∑

k=−∞
C
′
ke

1
T Wk(−adTeaT )(t−ξ), ξ < t− T

b)Ψ(t, ξ) = 0, ξ > t
(28)

Consequently, the forced solution is obtained as,

Case I 0 ≤ t ≤ T

x(t) =
∫ t

0

e−a(t−ξ)bu(ξ)dξ (29)

Case II t ≥ T

x(t) =
∫ t−T

0

∞∑

k=−∞
C
′
keSk(t−ξ)bu(ξ)dξ

+
∫ t

t−T

e−a(t−ξ)bu(ξ)dξ

where, Sk =
1
T

Wk(−adTeaT ) (30)

Though the calculation is dependent onu(t), theC
′
k can be

computed using the function in (29) and (30):




σ(T )
σ(T − T

2N )
σ(T − 2T

2N )
...

σ(0)





=




η−N (T ) · · · ηN (T )
η−N (T − T

2N ) · · · ηN (T − T
2N )

η−N (T − 2T
2N ) · · · ηN (T − 2T

2N )
... · · · ...

η−N (0) · · · ηN (0)








C
′
−N

C
′
−(N−1)

C
′
−(N−2)

...
C
′
N





+





δ(T )
δ(T − T

2N )
δ(T − 2T

2N )
...

δ(0)





(31)
where

σ(t) =
∫ t

0

e−a(t−ξ)bu(ξ)dξ

η(t) =
∫ t−T

0

∞∑

k=−∞
C
′
keSk(t−ξ)bu(ξ)dξ

δ(t) =
∫ t

t−T

e−a(t−ξ)bu(ξ)dξ

(32)

Consequently theC
′
k can be represented as:

C
′
k = lim

N→∞
[η̄−1(T,N) · (σ̄ − δ̄)]k (33)

Although, due to space limitation, we omit the derivation,
using (31)-(33) can be express the forced solution in (29)-
(30) as a single equation

x(t) =
∫ t

0

∞∑

k=−∞
C
′
keSk(t−ξ)bu(ξ)dξ (34)

Hence, the solution becomes

x(t) =
∞∑

k=−∞
CkeSkt

︸ ︷︷ ︸
free

+
∫ t

0

∞∑

k=−∞
C
′
keSk(t−ξ)bu(ξ)dξ

︸ ︷︷ ︸
forced

(35)
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Fig. 2. Total forced response and comparison between the new method
and the numerical method. The agreement is excellent. Parameter area =
ad = T = 1 with u(t) defined by (36)

As seen in (35), the total solution of DDEs using the
Lambert function has a similiar form to that of ODEs.
(Refer to Table I). The coefficientsCk depend on the initial
conditions and the preshape function, but theC

′
k do not.

Note that theC
′
k are determined only bya, b, ad and the

delay timeT in (22).
Example
Consider (22), witha = ad = T = 1 and the forcing input

u(t) = cos(t) t > 0
= 0 t ∈ [−T, 0] (36)

The total response is shown in Fig. 2 for the preshape
function , φ(t) = 1 and compared to the result obtained by
numerical integration.

B. Generalization to System of DDEs

The non-homogeneous matrix form of the delay differen-
tial equation in (3) can be written as

ẋ(t) + Ax(t) + Adx(t− T ) = Bu(t) t > 0
x(t) = φ̄(t) t ∈ [−T, 0] (37)

whereB is ann× r matrix, andu(t) is a r × 1 vector. The
particular solution can be derived from (29)-(30) as,

Case I 0 ≤ t ≤ T

x(t) =
∫ t

0

e−A(t−ξ)Bu(ξ)dξ (38)

Case II t ≥ T

x(t) =
∫ t−T

0

∞∑

k=−∞
eSk(t−ξ)C

′
kBu(ξ)dξ

+
∫ t

t−T

e−A(t−ξ)Bu(ξ)dξ

where, Sk =
1
T

Wk(−AdTeAT Q)− A (39)

In (39), C
′
k is a coefficient matrix of dimensionn × n and

can be calculated in the same way as (31). Like the scalar
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Fig. 3. Total forced response for (42) and a comparison of the new method
with numerical integration

case in the previous section, (38)-(39) are combined as

x(t) =
∫ t

0

∞∑

k=−∞
eSk(t−ξ)C

′
kBu(ξ)dξ (40)

And the total solution is

x(t) =
∞∑

k=−∞
eSktCk

︸ ︷︷ ︸
forced

+
∫ t

0

∞∑

k=−∞
eSk(t−ξ)C

′
kBu(ξ)dξ

︸ ︷︷ ︸
forced

(41)

Example
Consider the systems of DDEs with a constant external
excitation:{

ẋ1(t)
ẋ2(t)

}
=

[
1 −3
2 −5

]{
x1(t)
x2(t)

}
+

[
1.66 −0.697
0.93 −0.330

] {
x1(t− T )
x2(t− T )

}
+

{
cos(t)

0

}

(42)
Then the solution to (42) with the preshape function in (19)
is obtained from (41) and shown in Fig. 3. The differences
between our new method with seven terms and the numerical
integration are essentially indistinguishable.

IV. CONCLUSION

In this paper, the Lambert function approach for analysis
of linear delay differential equations in [8] is extended
to systems of DDEs and to non-homogeneous systems.
The solution obtained using the matrix Lambert function
is in a form analogous to the state transition matrix in
systems of linear ordinary differential equations (see Table
I). Free response and forced response for several cases
of DDEs are presented in the paper based on this new
solution approach and compared with those obtained by
numerical integration. To provide a closed form solution
to systems of linear DDEs in a form similar to systems
of ordinary differential equations is the essential advantage
of the presented analytical approach. The solution is in the
form of an infinite series of modes which are expressed in
terms of the matrix Lambert function. The concept of the
state transition matrix in ODEs can be generalized to DDEs
using the matrix Lambert function. This suggests that some



analyses used in systems of ODEs, based on the concept
of the state transition matrix, can potentially be extended
to systems of DDEs. For example, the approach presented
based on the matrix Lambert function, may be useful in
controller design via eigenvalue assignment for systems of
DDEs. Similarly, concepts of observability, controllability,
state estimator design and modal decomposition of systems
of DDEs may be tractable. The analytical approach using
the matrix Lambert function for ’time-varying’ DDEs based
on Floquet theory is already being investigated. These, and
others, are all potential topics for future research, which can
build upon the foundation presented in this paper.

REFERENCES

[1] Gorecki H., Fuksa, S., Grabowski, P., and Korytowski, A.,Analysis
and Synthesis of Time Delay Systems, John Wiley and Sons, PWN-
Polish Scientific Publishers Warszawa, 1989

[2] R.E. Bellman and K.L. Cooke,Difference-Difference Equations, Aca-
demic Press, 1963

[3] Lam, J., ”Model Reduction of Delay Systems Using Pade Approxi-
mants,” Int. J. Control, Vol. 57, No. 2, pp. 377-391, 1993

[4] Golub, G. H., and Van Loan, C. F.,Matrix Computations, Johns
Hopkins Univ. Press, Baltimore, 1989

[5] Falbo, C. E., ”Analytic and Numerical Solutions to the Delay Differen-
tial Equations,”Joint Meeting of the Northern and Southern California
Sections of the MAA, San Luis Obispo, CA, 1995

[6] Wright, E. M., ”The Non-Linear Difference-Differential Equation,”Q.
J. Math., Vol. 17, pp. 245-252, 1946

[7] Wright, E. M, ”The Linear Difference-Differential Equation With
Asymptotically Constant Coefficients,”Am. J. Math., Vol. 70, No. 2,
pp. 221-238, 1948

[8] Asl, F.M., and Ulsoy, A.G., ”Analysis of a System of Linear Delay
Differential Equations,”ASME J. Dynamic Systems, Measurement and
Control, Vol. 125, No. 2, pp 215-223, 2003

[9] Corless, R. M, Gonnet, G. H. Gonnet, D.E.G. Hare, and D.J. Jeffrey,
”On Lambert’s W Function”,Technical Report, Dept. of Applied
Math., Univ. of Western Ontario, London, Ontario, Canada

[10] Lee T. N. and S. Dianat, ”Stability of Time-Delay Systems”,IEEE
Trans. Aut. Control, Vol. AC-26, No. 4, pp. 951-953, 1981

[11] H. Shinozaki,Robust Stability Analysis of Linear Time-Delay Systems
by Lambert W Function. Master thesis, Dept. Electro. Inform. Sci.,
Kyoto Institute of Technology, Kyoto, Japan, 2003

[12] Malek-zavarei, M., Jamshidi, M.,Time-delay systems, North Holland,
New York, 1987


