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Based on previous work extending the Discontinuous Galerkin method to multifluid

flows, we analyze the performance of our numerical scheme. First, the advection of a con-

tact discontinuity and a multifluid version of the Sod shock-tube problem are considered.

We compare the oscillations generated by the non-conservative and conservative formula-

tions of the ratio of specific heats equations, and demonstrate the non-oscillatory nature

of the proposed numerical method. We compare the results for different proposed Rie-

mann solvers. We verify the mass, momentum, and energy conservation properties of the

scheme. Finally, we validate our numerical simulations against experimental results of the

Richtmyer-Meshkov instability.

I. Introduction

T
he Discontinuous Galerkin (dg) method is a popular numerical method that has received much attention
in recent years. This method for partial differential equations relies on a polynomial expansion to

represent the discretized solution inside each cell of the domain. The dg method is a high-order accurate
and compact-stencil scheme that combines the advantages of the finite element and finite volume (fv)
methods. It is, therefore, a convenient method for parallel architectures and implementable on unstructured
grids. The dg method has been succesfully adapted to solving time-dependent hyperbolic partial differential
equations through the Runge-Kutta dg method.1–5 Since the flow solution is allowed to be discontinuous
between cells, dissipation can be introduced where necessary, and, borrowing from the fv community, the
traditional Riemann solvers can be used to compute numerical fluxes. Limiters have been developed to
accurately capture shocks and discontinuities by damping the oscillations caused by high-order interpolation
at the discontinuities. A total variation bounded limiter2 was designed to truncate the high-order coefficients
at the discontinuities while keeping them when the flow is smooth. Subsequently, a hierarchical moment
limiter reconstructing the Legendre coefficients from the highest to lowest moments was developed to avoid
excessive dissipation.6 Various high-order limiters have followed and have been studied in recent years.7–10

The dg method has been applied successfully to single-fluid compressible flows. However, an accurate
representation of multifluid flows is lacking in the dg framework. Some attention has been paid to the Baer-
Nunziato system of equations for multiphase flows11, 12 and the compressible Navier-Stokes equations.13

When solving the conservative form of transport equations for the ratio of specific heats, spurious pressure
oscillations develop at the interface between the different fluids in fv methods.14 These oscillations can be
avoided by solving a non-conservative form of the evolution equation for the ratio of specific heats. In the
fv framework, many approaches to solve this problem have been proposed15, 16 and extended to high-order
accuracy.17–19

This paper is organized as follows. In Section II, we summarize the numerical tools necessary to accurately
solve the multifluid Euler equations in the dg framework. In Section III, using the advection of a contact
discontinuity and a multifluid version of the Sod shock tube problem, we compare different formulations for
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the ratio of specific heats and for different Riemann solvers, and validate the conservation properties of the
numerical methods. Finally, we present two-dimensional simulation of the Richtmyer-Meshkov instability
and compare the growth to experimental data.

II. Numerical Analysis

In this paper, we consider the Euler equations for perfect gases, written here in one dimension for
simplicity:

∂

∂t







ρ

ρu

E






+

∂

∂x







ρu

ρu2 + p

u(E + p)






= 0, (1)

where ρ is the density, u is the velocity, E = p/(γ − 1)+ ρu2/2 is the total energy, p is the pressure, and γ is
the potentially varying specific heats ratio. Here, diffusion is neglected. When considering multiple fluids,
an additional (transport) equation must be solved for the fluid composition. To avoid the development of
spurious pressure oscillations at an initially constant pressure interface between two perfect gases in the dg

framework, we have shown that a non-conservative advection equation for γ,

∂

∂t

(

1

γ − 1

)

+ u
∂

∂x

(

1

γ − 1

)

= 0, (2)

must be solved.20 This is analogous to similar findings for the fv framework.14

II.A. Discontinuous Galerkin Methods for Non-Conservative Laws

Theoretical investigations and numerical solutions for weak solutions of equations containing non-conservative
products have been presented in the fv context.21–25 We follow a dg formulation for non-conservative
laws.26, 27 For the one-dimensional hyperbolic partial differential equation,

∂W

∂t
+

∂F

∂x
+ G

∂W

∂x
= 0, (3)

the dg weak formulation is obtained by integrating inside each cell Ωj = [xj−1/2, xj+1/2], and taking the inner
product with a test function, ϕi,

∫

Ω

ϕi
∂W

∂t
dx =

∫

Ω

dϕi

dx
F dx −

∫

Ω

ϕiG
∂W

∂x
dx −

[

[[ϕi]] F̂ − {{ϕi}}G
∂W

∂x

]xj+1/2

xj−1/2

, (4)

where F̂ is a numerical flux at the cell edges, [[α]] = αL − αR, {{α}} = 1
2
(αL + αR), and L and R are the left

and right states at the cell edges. The DalMaso-LeFloch-Murat theory22 determines

[

G
∂W

∂x

]

xj+1/2

=

∫ 1

0

G(φ(τ ; WL, WR))
∂φ

∂τ
(τ ; WL, WR) dτ, (5)

where φ is a path in phase space relating the left state to the right state.
Numerical fluxes for conservation laws are determined with the traditional Riemann solvers. For the

non-conservative products, an hll
28-like flux was developed26 and applied to Eq. (4):

F̂ =











FL − 1
2

∫ 1

0
G(φ(τ ; WL, WR))∂φ

∂τ (τ ; WL, WR) dτ if SL > 0,

{{F}} + 1
2

(

SRW ∗ + SLW ∗ − SLWL − SRWR
)

if SL < 0 < SR,

FR + 1
2

∫ 1

0
G(φ(τ ; WL, WR))∂φ

∂τ (τ ; WL, WR) dτ if SR < 0,

(6)

where SL and SR are the velocities of the fastest left and right moving waves in the system, and

Whll =
SRWR − SLWL + FL − FR

SR − SL
−

1

SR − SL

∫ 1

0

G(φ(τ ; WL, WR))
∂φ

∂τ
(τ ; WL, WR) dτ. (7)
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We have extended this idea20 and proposed Lax-Friedrichs29 and Rusanov30 solvers for Eq. (4),

F̂ = {{F}} −
S

2
(WR − WL), (8)

where S is the velocity of the fastest local wave in the system for Rusanov, or the fastest global wave in the
domain for Lax-Friedrichs. We also proposed20 a Roe31 solver for Eq. (4), F̂ = {{F}} − 1

2

∑

i α̂i|λ̂i|r̂i, where

r̂i are the right eigenvectors of the linearized Roe matrix Aφ, λ̂i are the corresponding eigenvalues, and α̂i

are the wave strengths. The left and right eigenvectors, the corresponding eigenvalues, and the strengths
across the discontinuity have been established for the multifluid Euler equations.32

For the paths connecting the left and right states, we choose a linear path for the hll, Rusanov, and
Lax-Friedrichs solvers,

φ(τ ; WL, WR) = (WR − WR)τ + WL. (9)

For the Roe solver, we do not explicitly define a path but assume it exists.20

Problems with shocks and discontinuities require a solution-limiting procedure to avoid numerical oscil-
lations caused by interpolating across the discontinuity. In this work, we use a limiter based on the idea
of hierarchical reconstruction (hr).9, 10 In this procedure, the coefficients of the cell polynomial are limited
from the highest to the lowest degree coefficient. The coefficients in a cell can be compared to the ones in the
neighboring cells with the muscl

33 or weno
34 approach for example. Limiting in this way ensures that the

hr procedure is conservative and maintains high-order accuracy. Traditionally, to dissipate the oscillations
at the discontinuities, hr is applied to the conserved variables (ρ, ρu, E). This strategy introduces spurious
pressure oscillations in flows with a varying ratio of specific heats. While limiting the primitive variables
could avoid the development of pressure oscillations,17 this would be lead to the loss of the conservation
property of the scheme.20 Therefore, we have proposed a modified hr procedure that ensures that the
scheme is both conservative and non-oscillatory.20 The idea is to limit ρ, ρu, p, and 1/(γ − 1) using tradi-
tional hierarchical reconstruction. The energy coefficients are then reconstructed with these fields according
to a formula derived to ensure that both the energy is conserved and the scheme is non-oscillatory. The
additional computational cost of this procedure is small compared to the overal hr procedure.20

III. Numerical Tests

In this section, we consider the advection of a contact discontinuity and the multifluid Sod problem
to compare the different γ formulations and different Riemann solvers, and to establish the conservation
property of the numerical scheme. We present initial investigations of the temperature oscillations that can
develop at the fluid interface. We also validate our approach against experimental results of the Richtmyer-
Meshkov instability. For these problems, we use the modified hr procedure when limiting is required and
the standard fourth order Runge-Kutta method with cfl< 10−1 to avoid time-stepping errors.

III.A. Contact Discontinuity: Oscillations and Conservation

In this section, we consider the advection of a contact discontinuity in a single fluid. We solve the Euler
equations in the periodic domain x ∈ [−1, 1], along with either the non-conservative form, Eq. (2), or the
following conservative equation:

∂

∂t

(

ρ

γ − 1

)

+
∂

∂x

(

ρu

γ − 1

)

= 0. (10)

The initial conditions are given by

(ρ, u, p, γ)L = (1, 1, 1, 1.4), (ρ, u, p, γ)R = (0.125, 1, 1, 1.4). (11)

The L∞ cell-average error of velocity and pressure as a function of spatial resolution is shown in Figure
2. It can be observed that the non-conservative formulation does not present spurious pressure oscillations
in velocity and pressure, Figure 1. These are clearly present when solving the conservative formulation for γ.
This might be due to the inconsistent treatment of density when limiting the conservative formulation for γ.
Similar results have been described in the fv and finite difference frameworks.35 Figure 3 shows the relative
error in total mass, momentum, and energy as a function of time in the system. These three quantities are
conserved by the numerical scheme.
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(a) Density (b) Velocity

(c) Pressure (d) Ratio of specific heats

Figure 1: Profiles at t = 0.2 for the advection of a contact discontinuity in a single fluid (p = 2, ∆x = 1/64,
Roe flux). Red dots: non-conservative; green crosses: conservative.

Figure 2: L∞ cell-average error of velocity (diamonds) and pressure (circles) vs. ∆x for the advection of a
contact discontinuity (p = 2, Roe solver). Empty red: non-conservative; filled green: conservative.
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(a) Total mass (b) Total momentum

(c) Total energy

Figure 3: Relative error in total mass, momentum, and energy as a function of time (p = 2, ∆x = 1/64, Roe
solver). Red dots: non-conservative; green crosses: conservative.
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III.B. Two-fluid Sod Shock Tube: Oscillations and Conservation

This test problem is a multifluid version of the Sod shock tube problem.16 We solve the multifluid Euler
equations in the open domain x ∈ [−1, 1] and compare the two formulations for γ. The initial conditions are

(ρ, u, p, γ)L = (1, 0, 1, 1.4), (ρ, u, p, γ)R = (0.125, 0, 0.1, 1.6). (12)

Figure 4 shows the density, velocity, pressure and γ profiles at t = 0.2 for p = 2. Oscillations in velocity
and pressure, and overshoots in γ, are clearly observed with the conservative formulation. These are absent
in the non-conservative formulation. The overshoots and undershoots in γ in the conservative formulation
are most likely due to the initial velocity spike at the start of the problem. These are then dissipated by
the Riemann solvers to the point where they are barely visible for the Rusanov solver, yet still very much
present for the other two solvers (Figures 4j, 4k, and 4l). Although the hll-like flux presents a slightly more
oscillatory solution, Figure 4h, the Riemann solvers predict a qualitatively similar solution. Additionally,
the dissipative nature of the Riemann solvers is evident in Figures 4a, 4b, and 4c, from the more dissipative
Rusanov flux to the least dissipative Roe flux.

The relative error in total mass, momentum, and energy for the multifluid Sod problem in a periodic
domain over eight periods is shown in Figure 5 for p = 2. Both the conservative and non-conservative
formulations conserve the total mass, momentum, and energy in the system.
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(a) Density (b) Density (c) Density

(d) Velocity (e) Velocity (f) Velocity

(g) Pressure (h) Pressure (i) Pressure

(j) Ratio of specific heats (k) Ratio of specific heats (l) Ratio of specific heats

Figure 4: Profiles at t = 0.2 for the multifluid Sod problem (p = 2, ∆x = 1/64). Red dots: non-conservative;
green crosses: conservative. Left: Rusanov flux; center: hll-like flux; right: Roe flux.
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(a) Total mass (b) Total momentum

(c) Total energy

Figure 5: Relative error in total mass, momentum, and energy as a function of time (p = 2, ∆x = 1/64, Roe
solver). Red dots: non-conservative; green crosses: conservative.
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III.C. Two-dimensional Validations: Richtmyer-Meshkov Instability

In this section, we validate our numerical methods with experiments. We compare our simulations to
single-mode Richtmyer-Meshkov instability (rmi) experiments of a perturbed air-sf6 interface.36 As in the
experiment, the simulation perturbation wavelength is 5.933cm and the initial perturbation amplitude is
0.183cm. The density of the air is ρair = 1.351kg/m3, its specific heats ratio is γair = 1.276, and its
molecular mass is Mair = 34.76kg/kmol. The sf6 density is ρSF6

= 5.494kg/m3, its specific heats ratio
γSF6

= 1.093, and its molecular mass is MSF6
= 146.05kg/kmol. We emphasize that unlike some prior

work37 we are considering variable specific heats. We use our proposed method in two-dimensions with
traditional hr.

A Mach 1.21 shock, initialized in air, Figure 6a, impinges upon an air-sf6 interface and initiates the rmi

growth by depositing baroclinic vorticity at the interface, Figure 6b. The rmi grows linearly at first and
the transmitted shock leaves the domain, Figure 6c. The non-linear growth and appearances of secondary
instabilities can be observed in Figures 6d, 6e, and 6f. To validate our code, we compare the amplitude of
the instability to experimental data, Figure 7. We observe that there is good agreement between our results
and the experiments.

IV. Conclusions

We have shown that, by solving the non-conservative formulation for 1/γ − 1, we can avoid spurious
pressure oscillations that arise at the interface separating different fluids. The three Riemann solvers pre-
viously proposed predict qualitatively similar solutions. In addition to being non-oscillatory, the scheme is
conservative. Further investigation of the temperature profiles reveal oscillations that will be fixed in future
work. On the basis of this study we will perform multi-dimensional and multiphysics simulations with the
dg method.
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(c) t = 9ms (d) t = 25ms

(e) t = 50ms (f) t = 70ms

Figure 6: Density and simulated density Schlieren fields.
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