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Abstract

The Recovery-based Discontinuous Galerkin method (RDG) for linear diffusion-shear
problems is shown on triangles to achieve the order of accuracy 2p+ 2 for even p and 2p for
odd p, where p ≥ 1 is the order of the polynomial basis used. The RDG method incorporates
a solution-enhancement step that reuses the recovery results, and an extra recovery step
based on the enhanced solution. Thus, the stencil is extended not only to an element’s
face-sharing neighbors but also to the vertex-sharing ones. The order-of-accuracy results are
obtained with Fourier analysis on a grid of structured right triangles.

I. Introduction

The Discontinuous Galerkin (DG) method was originally developed for advection-type
operators, for which it is pre-eminently suited,1 but soon got applied to diffusion operators
because of the need to model advection-diffusion processes with one numerical strategy. DG,
however, is not naturally suited for diffusion operators, precisely because of the discontinuous
solution representation, and requires a special step to overcome this handicap. Most of the
newer methods require rewriting the second-order differential operator as a system of first-
order operators, in order to arrive at a stable and accurate approximation.2 In recovery-based
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DG (RDG) a smooth solution basis, weakly identical to the discontinuous basis, is introduced
for computing diffusive fluxes.3

We may pose the following question: for a given order p of the elemental polynomial
basis, what is the maximum order of accuracy DG can reach for diffusion-shear, if we allow
only the direct neighbors of an element to participate in the discretization? The answer is
only known in part. On a Cartesian grid, which brings out the best in all DG methods, RDG
has been demonstrated to achieve the order 3p+ 2 or 3p+ 1 for p even or odd, respectively;4

this is the highest order found so far among DG schemes for diffusion. The result is robust:
it holds in any number of dimensions, for nonlinear equations and equations with mixed
derivatives, provided that

1. a tensor-product basis is used for the solution (sufficient for linear diffusion);

2. solution enhancement,5 a technique of weak interpolation from element boundary to
interior, is used to improve the volume integral in the DG equation for nonlinear
diffusion;

3. an extra recovery step is used to improve the element-boundary integral in the presence
of shear.

Lo6,5 was the first to show the optimal accuracy for a 2-D diffusion-shear operator and for
the 2-D Navier-Stokes terms; Varadan et al.7 showed it for 3-D turbulence calculations.

When the tensor-product basis is abandoned for a lean basis of order p, the resulting
order of RDG for diffusion on a Cartesian grid, with solution enhancement but without the
extra recovery step, reduces to 2p + 2,8 which is still attractive. On simplex elements one
can not maintain a tensor basis anyway, so we expect that on unstructured triangular or
tetrahedral grids the order barrier is at best 2p+2. Most DG methods for diffusion, including
basic RDG-1x, reduce to the maximal order of accuracy p + 1 even on a structured grid of
orthogonal triangles; only Hybrid DG (HDG)9 has been shown to yield p + 2, owing to the
use of independent face data.

In the present paper we describe our efforts to extend to a triangular grid those RDG
techniques that yield the optimal accuracy on a 2-D Cartesian grid. Our structured grid
of right triangles, shown in Figure 1 allows a Fourier analysis to find the exact order of
accuracy of the DG discretization. It turns out that RDG-1x++ achieves an accuracy of the
order 2p+ 2 or 2p for even or odd p, respectively, when simulating the linear diffusion-shear
equation, very close to our prediction.

As is always the case with RDG schemes, the key issues to be addressed are

1. what basis to choose in an element for the enhanced solution;

2. how to balance the number of basis functions of the enhanced solution with the number
of conditions available at the faces.

After many trials and errors we arrived at one reformulation of the enhancement equations
that avoids basis expansion, and another one in which the basis always expands by one
order; the latter formulation may be preferred when solving problems that are nonlinear or
governed by a system of equations.
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A
B

Cell A’s
stencil

Cell B’s
stencil

Figure 1. The stencil for Fourier analysis is the union of the stencils used for updating the triangles A and B
which together form a square element of the underlying Cartesian grid.

II. Recovery and Discontinuous Galerkin

We briefly review the formulation of RDG schemes for linear diffusion-shear in two di-
mensions. There are two basic versions of RDG: RDG-2x and RDG-1x. RDG-2x starts from
a weak form of the diffusion-shear equation,

Ut = ∇ ·G(U), (1)

G(U) = D

{(
Ux
Uy

)
+
α

2

(
Uy
Ux

)}
, (2)

obtainable after multiplication with a test function and integration by parts twice over the
interior of an element Ωj with boundary ∂Ωj:∫∫

Ωj

(vk)jUtdΩ =

∮
∂Ωj

(vk)jG(U) · n̂ d∂Ω−
∮
∂Ωj

UG(vk)j · n̂ d∂Ω

+

∫∫
Ωj

U∇ ·G(vk)jdΩ, k = 1, ..., K(p), K(p) = (p+ 1)(p+ 2)/2. (3)

Here U is the true solution, D is a constant scalar diffusion coefficient and the (vk)j are
the basis/test functions spanning the 2-D polynomial space of order p on Ωj and being zero
elsewhere.

In a DG method U is replaced in the above equation by a numerical approximation u that
in each element lies in the span of the basis {vk}. This numerical solution is discontinuous
at ∂Ωj; in RDG a unique interface value f is “recovered” by weakly interpolating between
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the two abutting elements. For neighbors Ωj and Ωj+1 the recovery equations are:∫∫
Ωj

(vk)jfj,j+1dΩ =

∫∫
Ωj

(vk)ju dΩ, k = 1, ..., K(p), (4)∫∫
Ωj+1

(vk)j+1fj,j+1dΩ =

∫∫
Ωj+1

(vk)j+1u dΩ, k = 1, ..., K(p); (5)

for details about the space in which fj,j+1 is defined see.8

The RDG-2x scheme thus becomes:∫∫
Ωj

(vk)jutdΩ =

∮
∂Ωj

(vk)jG(f) · n̂ d∂Ω−
∮
∂Ωj

fG(vk)j · n̂ d∂Ω

+

∫∫
Ωj

u∇ ·G(vk)jdΩ, k = 1, ..., K(p). (6)

This scheme achieves the order of accuracy 2p + 2 on Cartesian grids and 2p on triangular
grids.

RDG-1x is obtained from the weak form integrated by parts once by again replacing U
in the boundary integral with f :∫∫

Ωj

(vk)jutdΩ =

∮
∂Ωj

(vk)jG(f) · n̂ d∂Ω−
∫∫
Ωj

∇(vk)j ·G(u)dΩ, k = 1, ..., K(p). (7)

This scheme achieves only p+ 1 as its possible maximal order of accuracy regardless of grid
type. Expanding the volume integral reveals the difference with RDG-2x:∫∫

Ωj

(vk)jutdΩ =

∮
∂Ωj

(vk)jG(f) · n̂ d∂Ω−
∮
∂Ωj

uG(vk)j · n̂ d∂Ω

+

∫∫
Ωj

u∇ ·G(vk)jdΩ, k = 1, ..., K(p). (8)

The second boundary integral is seen to contain u, that is, the boundary value in the interior
of Ωj, rather than the more accurate f , as in RDG-2x; this explains the plunge in accuracy.

Since it is not feasible to use RDG-2x for nonlinear problems, our strategy has been to
develop solution-enhancement techniques for use in RDG-1x, so that the scheme becomes
identical to RDG-2x in the linear case, then check numerically to what extent the latter’s
superconvergence property carries over to the nonlinear case. We therefore introduce an
“enhanced” solution û to be used instead of u on the right-hand side of Eqn. (8), and require
that the enhanced scheme RDG-1x+ be identical to RDG-2x:

−
∮
∂Ωj

ûG(vk)j · n̂ d∂Ω +

∫∫
Ωj

û∇ ·G(vk)jdΩ

= −
∮
∂Ωj

fG(vk)j · n̂ d∂Ω +

∫∫
Ωj

u∇ ·G(vk)jdΩ, k = 1, ..., K(p).

(9)
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(a) (b)
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DC

BA

F

B

C

A D
E

F

Figure 2. Domain of dependence of recovered interface solution after the second recovery step, for (a) the most
compact Cartesian scheme RDG-1x++CO (see5), (b) RDG-1x++ on a triangular grid (description in text).

In our earlier work, inspired by our experience on Cartesian grids, we would try to satisfy
these equations by adding to u some higher-order polynomials that are to be orthogonal to
the basis of u, so that the first K(p) coefficients of û would be the same as the coefficients
of u. To find their coefficients, these higher-order polynomials would share some weak
properties with f on the boundary, e. g. the overall average value, or the average value on
each individual face. This amounts to enhancing u by weak interpolation using information
from neighbors, as in a finite-volume code. The name of the game is matching the number
of added basis functions to the number of conditions on the boundary. In the next section
we shall pursue this game more systematically.

Provided û is available, we can repeat the recovery step upon û to generate a smooth
function f̂ on the union of neighboring cells. Then, on the left-hand side of Eqn. (7), f and
u are replaced by f̂ and û, respectively, to form the RDG-1x++ scheme.

A side effect of the latter step is that the computational stencil is enlarged. Figure 2(b)
shows the domain of dependence in calculating f̂ at the interface of cells A and B; since
f̂ depends on û in A and B, it depends on u in cells C, D, E and F . Thus, the stencil is
enlarged by the second recovery but does not go beyond the ring of cells around A that share
at least a point with A. The full stencil for updating one triangle is illustrated in Figure (3).

III. Counting equations and basis functions

When developing RDG schemes for triangular elements we encountered three different
procedures for satisfying the system of equations Eqn. (9); these are presented below (not in
order of discovery!).

1. Equate the sum of the boundary integral and volume integral on the left-hand side
to the sum of these integrals on the right-hand side. At first sight this yields K(p)
equations for the coefficients of the basis functions that build û; the first equation,
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RDG-1x++

RDG-1x+

Figure 3. Overall stencil of RDG-1x+ and RDG-1x++. RDG-1x+ uses only face-sharing neighbors, RDG-
1x++ also uses the neighbors of these neighbors.

however, with v1 = 1, gives no information as it reduces to 0 = 0. Instead, we may
introduce a conservation principle,∫∫

Ωj

û dΩ =

∫∫
Ωj

u dΩ, (10)

so that the number of equations is restored to K(p); thus, the basis of û remains the
same as that of u. This clearly is the most attractive way of satisfying Eqn. (9) if the
flux G(u) is linear; whether this procedure can be extended to the case of a nonlinear
system without loss of accuracy remains to be investigated.

2. The boundary integrals and volume integrals on the left- and right-hand sides are
matched separately. At first sight this leads to 2K(p) equations, which calls for en-
largement of the solution basis. (NB: this does not mean an increase of the number of
DG update equations; the enhancement is merely an interpolation process.) Closer in-
spection reveals that equating the boundary integrals yields K(p)− 1 equations, while
matching the volume integrals has the equation count K(p−2) of a basis of order p−2,
because of the uniform second derivatives in the weight ∇ ·G(v). The equation count
thus becomes (p + 1)(p + 2)/2 − 1 + (p − 1)p/2 = p(p + 1). When comparing this
number to K(p) = (p + 1)(p + 2)/2, the number of basis functions in the span of u,
we see that up to p = 2 the number of equations does not exceed K(p), which means
the original basis can be maintained provided that a solvable system of equations for
the coefficients of û can be formulated. For 2 < p ≤ 4 the number of equations does
not exceed K(p + 1), meaning that the basis must be enlarged to one of order p + 1.
Increasing p further, a basis of order p + 2 suffices up to p = 6 and a basis of order
p + 3 up to p = 8. The growth of the basis of û with increasing p is an unattractive
feature of this procedure. It was the first thing we tried and it took considerable time
and effort to come up with something more efficient.

3. There is a way of equating the boundary integrals that greatly reduces the equation
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Figure 4. Monomial bases for enhanced interior solution û used in RDG-1x+ and RDG-1x++ on triangles, for
p = 1, 2, 3, 4. The p + 2 polynomials of the order p + 1 that enhance the original basis of order p are bounded
by dashed squares with interior shading; elements bounded by the thick solid line define necessary common
moments between û and the original numerical solution u.

count: matching the contribution to the integrals at each individual face. Consider one
such face and switch to a coordinate system (r, s) aligned with it; that is, r measures
distance normal to the face (r = 0 on the face), s along the face. (NB: This is the
frame in which also f is obtained.) The segment of the boundary integral along this
face provides p pieces of information about û or f : in essence the face integrals of
the solution weighted with the facial test functions 1, s, ..., sp−1. (The weight sp is
absent because the weight G(v) contains only first derivatives.) Without changing the
way of matching the volume integrals we now end up with a total equation count of
3p + p(p − 1)/2 = p(p + 5)/2. This is always greater than K(p) for p ≥ 1, but less
than K(p+ 1), the difference being (p+ 2)(p+ 3)/2− p(p+ 5)/2 = 3 for any p. This
suggests adding

• one extra constraint at each face by, for instance, matching the face integrals of
∂û/∂r to ∂f/∂r (the resulting schemes are denoted by RDG-1x+b and RDG-
1x++b); or

• three constraints on the pair of volume integrals by matching three higher-order
moments of û to those of u. These moments are in addition to the ones already
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p Additional moment weights

1 1 x y

2 x y 1
3

(x2 + y2 + xy)

3 x2 y2 xy

4 x3 y3 1
2

(x2y + xy2)

Table 1. Weights in the moments defining three additional constraints on the volume integral as discussed in
Section III.

defined in ∇ · G (v), represented by the elements within the thick solid bound
in Figure (4) for 1 ≤ p ≤ 4. The resulting schemes are temporarily denoted by
RDG-1x+v and RDG-1x++v. Examples of weight functions for p ≤ 4 are shown
in Table 1.

The number of equations now also equals K(p + 1) and, for these particular choices,
the system is solvable for all p, even or odd. Eqn. (9) has been satisfied by increasing
the order of the solution basis by only 1, for all p; that is, p+ 2 basis functions are to
be added to the original (p + 1)(p + 2)/2, as illustrated by Figure (4) for p up to 4.
(NB: we skip the degenerate case p = 0, in which Eqn. (9) reduces to 0=0.) This is
the most efficient procedure that we judge suitable for nonlinear systems.

In the next section we show the results of our Fourier analysis on the right-triangle grid
of Figure (1).

IV. Results of Fourier analysis

Our order-of-accuracy analysis of various linear spatial DG operators is carried out en-
tirely with Mathematica. Our frequency variables are βx = 2π∆x/lx and βy = 2π∆y/ly,
where lx and ly are the wavelengths of the Fourier modes in the x- and y-direction. To
simplify the analysis we assume βx = βy = β, ∆x = ∆y = ∆, making the analysis one-
dimensional; in our experience with advection-diffusion-shear DG schemes, the order of ac-
curacy found for these coupled frequencies is always indicative of the order found from the
full 2-D analysis.

We make the DG scheme nondimensional by multiplying both sides with ∆2/D, then we
determine the Fourier transform of the spatial operator. Next we determine the equation for
its eigenvalues; there are K(p) of these but we are only interested in the one consistent with
the operator for β → 0 (the “good” eigenvalue, see1); we’ll call this value λco. The transform
of the nondimensionalized spatial operator in the original PDE (1) is

λex = −(2 + α)β2; (11)

the value of λco is produced by Mathematica in the form of a Taylor series, of which the
leading term should be λex. Thus, we produce the eigenvalues and select the one with the
proper leading term.

As an example, consider RDG-2x for p = 1. We analyze the operator on the combination
of two cells A and B, each with 3 unknowns, leading to a 6 × 6 matrix operator; this is
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p RDG-2x RDG-1x RDG-1x+v/b RDG-1x++b RDG-1x++v

OOA OOA OOA OOA OOA

1 2 2 2 2 2(4 when α = 1)

2 4 2 4 4 6

3 6 4 6 6 6

4 8 4 8 8 10

Table 2. Order of accuracy (OOA) of various linear RDG schemes up to p = 4 in approximating Eqn. (1).

displayed below, for α = 1.

M (β) =

−30 −2 −3 18 + 12e−iβ 3
2

+ e−iβ

2
9
4

+ 3e−iβ

4

−36 −405
8

15
8

27 + 9e−iβ −333
16

+ 3e−iβ

16
441
32
− 381e−iβ

32

−72 5
2

−385
8

54 + 18e−iβ 147
8
− 127e−iβ

8
−39

16
− 251e−iβ

16

18 + 12eiβ 3
2

+ eiβ

2
9
4

+ 3eiβ

4
−30 −2 −3

27 + 9eiβ −333
16

+ 3eiβ

16
441
32
− 381eiβ

32
−36 −405

8
15
8

54 + 18eiβ 147
8
− 127eiβ

8
−39

16
− 251eiβ

16
−72 5

2
−385

8


. (12)

The consistent eigenvalue is given by the following series:

λco(β) = −3β2 +
13β4

272
+

939β6

369920
+

4179319β8

6338949120
+O

(
β10
)
, (13)

indicating second-order accuracy. As another example of the same analysis we take p = 3;
due to its large size (20× 20) matrix is not displayed. Only its consistent eigenvalue is given
below, illustrating a sixth-order accuracy:

λco (β) = −3β2 + 1.127× 10−5β8 + 1.724× 10−6β10 +O
(
β12
)
. (14)

The results for five RDG schemes (RDG-1x+v and RDG-1x+b are identical in the linear
case) and four values of p are summarized in Table 2. It is seen that RDG-2x is accurate to
the order 2p, while RDG-1x shows a staircase-like progression of its order, that is, p+ 1 for
odd p, and p(!) for even p. The enhancements in RDG-1x+v/b and RDG-1x++b restore the
accuracy of the integration-by-parts-once formulation to the level of RDG-2x; surprisingly,
the RDG-1x++v scheme manages to raise the order for even p further to 2p+ 2 from 2p.

V. Conclusions and future work

We have extended the Recovery-based Discontinuous Galerkin method RDG-1x++, which
on a Cartesian grid gives optimal accuracy, to a grid of triangles, for solving linear diffusion-
shear problems. In doing so, the order of accuracy is observed to drop from 2p + 2 on
rectangles to 2p on triangles only for odd value of p.

Scheme RDG-1x++ involves two solution enhancements: interior-solution enhancement
and recovered-function enhancement. For the former, we develop two practical procedures:
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one in which the solution basis need not be enlarged, another one in which the solution basis
is enlarged by one polynomial order. The enhancement is an interpolation step and does not
lead to an increase in the number of DG update equations. For the latter enhancement, the
recovery step is applied again upon û, obtained from the first enhancement step, to produce
a smooth function f̂ . It is used in the boundary integral to improve its accuracy. A side
effect of the second enhancement is the enlargement of the stencil to include some neighbors
sharing at least a point with the updated cell.

Two obvious further extensions are considered for the future.

1. Linear extension. A second interior-solution-enhancement step, yielding a solution ˆ̂u,
would potentially further enhance the accuracy of the operator, while the domain of
dependence would not be further affected.

2. Nonlinear extension. The greatest challenge is to make the RDG-1x+ and RDG-1x++
schemes suitable for nonlinear diffusion-shear systems on triangular grids, without loss
of accuracy. This task is far from trivial, but the complete success in the case of
Cartesian grids gives us confidence in its future completion. We do believe that Option
3 of Section III, particularly RDG-1x++v flavor, will turn out to be the best path to
nonlinear extension, as this option offers more flexibility than Option 1, and with better
accuracy.
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