
Adjoint-Based Error Estimation and Mesh Adaptation

for the Active Flux Method

Kaihua Ding∗, Krzysztof J. Fidkowski†, and Philip L. Roe‡

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109

In this paper we extend output-based error estimation to recently-developed
active-flux schemes. We use the active flux method for its ability to efficiently
incorporate third-order accuracy for convection-dominated problems. The error
estimation requires a discrete unsteady adjoint solution, for which we provide im-
plementation details and verification demonstrations. We also introduce a local-
ization strategy in which the adjoint-weighted residual inner product is split into
contributions from various elements and nodes to create an adaptive indicator. We
demonstrate the ability of these adaptative indicators to drive mesh refinement in
two-dimensional advection, and we show favorable comparisons to uniform mesh
refinement.

I. Introduction

The quest for accuracy in computational fluid dynamics, especially for aerospace engineering
applications, has driven the development and application of high-order methods. Various high-order
methods have been developed for convection-dominated flows, including high-order finite volume,
streamline-upwind Petrov-Galerkin (SUPG) finite elements,1 discontinuous Galerkin (DG) finite
elements,2 and hybridized3 and discontinuous Petrov-Galerkin methods.4 A recent workshop,5

pitted some of these methods against traditional “work-horse” second-order finite volume schemes,
and arrived at the conclusion that high-order approximation is beneficial for a variety of cases
relevant to aerospace engineering. However, challenges remain, one of these being cost in memory
and computational time.

Recently-introduced active-flux schemes6,7 address the issue of computational cost relative to
many high-order discretizations. Much like hybridized discontinuous Galerkin (HDG) methods,
active flux schemes introduce additional independent variables at edges and nodes. In triangles,
this doubles the degrees of freedom available to describe the solution on each cell, without enlarging
the stencil. In particular, quadratic reconstructions in space and time are possible, yielding formally
third-order accuracy. In contrast to HDG methods, whose efficiency relies on static condensation
applied to the linear system in an implicit setting, an active flux discretization is fully discrete and
can be marched forward in time using an explicit solution update strategy.

While an inexpensive high-order method is certainly desirable, such a method itself does not
guarantee accuracy for a given problem. Discretization errors will still be present in the presence
of non-zero mesh sizes. In this paper we therefore tackle another quest in computational fluid
dynamics, that of robustness. We use the active flux method as the discretization for its ability

∗Graduate Research Assistant, AIAA Member
†Assistant Professor, AIAA Senior Member
‡Professor, AIAA Fellow

1 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

 21st AIAA Computational Fluid Dynamics Conference

 June 24-27, 2013, San Diego, CA

 AIAA 2013-2942

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

 Fluid Dynamics and Co-located Conferences

to efficiently incorporate third-order accuracy, but we go further and equip the method with error
estimates and adaptive capability.

The error estimation is output-based,8 requiring the solution of an auxiliary adjoint problem.
We extend previous work in output-error estimation and mesh adaptation for finite volume and
finite-element schemes to the active-flux scheme. Specifically, we present a discrete-adjoint solution
method, together with error estimation and localization strategies. We further use these strategies
to drive mesh adaptation for the active flux schemes. Quantitative comparisons between uniform
mesh refinement and our adaptive mesh refinement mechanics shows that the adjoint-driven mesh
adaptation mechanics developed in this paper are more advantageous, at least for the advection
problems tested.

II. Active Flux Discretization

The name of the active flux scheme is a direct reference to the fact that interface values are
updated independently from conserved quantities.9 In a traditional scheme, the flux at an interface
is determined by the solution to a Riemann problem using reconstructions of conserved variables
as the input. We refer to this type of update as a passive flux because the interface quantity is
derived or interpolated from conserved quantities. An active flux is computed directly from edge
values in a way that depends both on previous cell values and previous edge values.

In order to build the theory of the adjoint for the active flux (AF) method, we consider a scalar
advection problem as the starting point,

∂u

∂t
+ a · ∇u = 0. (1)

The AF forward discretization6,7, 10 differs from traditional finite volume discretizations by defining
degrees of freedom at element interfaces, which for triangles means at edge midpoints and at mesh
nodes.

A. One Dimensional Active Flux Discretization

In one spatial dimension, the extra degrees of freedom are just “vertex” unknowns at the mesh
nodes, as illustrated in Figure 1. These unknowns are evolved together with the cell averages

t

x

unj−1/2 unj+1/2

un+1

j+1/2un+1

j−1/2

u
n+1/2
j−1/2 u

n+1/2
j+1/2

un
j

un+1

j

Figure 1. Unknowns placement in an AF scheme for a problem in one spatial dimension.

2 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

through the following fully-discrete procedure.

Reform :

{
u
n+1/2
j+1/2 = unj+1/2

un+1
j+1/2 = unj+1/2

(2)

Vertex state pre-update:


unj+1/2 = S(δt = 0, cnj)

u
n+1/2
j+1/2 = S(δt = 0.5∆t, cnj)

un+1
j+1/2 = S(δt = ∆t, cnj)

(3)

Flux calculation: F
n+1
j+1/2 =

1

6
(unj+1/2 + 4u

n+1/2
j+1/2 + un+1

j+1/2) (4)

Update:

 un+1
j = unj −

a∆t

∆x
(F

n+1
j+1/2 − F

n+1
j−1/2)

unj+1/2 = un+1
j+1/2

(5)

The above update equations make use of the following definitions,

S(δt, cnj) =

{
RC ξ0 ∈ [0, 1]

0 ξ0 /∈ [0, 1]
(6)

cnj :


cnj,1 = unj−1/2

cnj,2 =
1

4

(
−unj−1/2 + 6unj − unj+1/2

)
cnj,3 = unj+1/2

(7)

RC = cnj,1
(
1− 2ξ0,j+1/2

) (
1− ξ0,j+1/2

)
+4cnj,2ξ0,j+1/2

(
1− ξ0,j+1/2

)
+cnj,3ξ0,j+1/2

(
2ξ0,j+1/2 − 1

)
(8)

ξ0,j+1/2 = ξ︸︷︷︸
node reference coordinate

−a δt
∆x

(9)

In the AF scheme, vertex states(u) and elemental average states(u) are defined as two inde-
pendent variables. However, the update processes of u and u are interwoven as shown above. This
fact is important for the derivation of discrete adjoint formulation for the active flux method.

We can get a brief idea on the performance of the AF scheme by testing it with a suite of
waveforms selected by Zalesak11 and others. The Zalesak wave propagates across the computational
domain and returns to its original position as a result of periodic boundary conditions. The solution
is illustrated in Figure 2. Using our AF implementation and with one choice of element size, the
shape of the wave is qualitatively similar after one period of propagation. The Zalesak waveforms
qualitatively examine the performance of the AF scheme in solving square wave, cosine wave,
Gaussian wave, and elliptic wave advection problems. Furthermore, we quantitatively examined
the performance of the AF scheme using a smooth initial condition, a Gaussian wave. The following
L2 solution error norm, eL2 , is adopted to measure the error:

eL2 =

√
1

L

∫ L

0
[uAF(x)− uexact(x)]2 dx =

√√√√ 1

L

M∑
j=1

{∫ j∆x

(j−1)∆x
[uAF(x)− uexact(x)]2 dx

}
. (10)

3 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

U

Exact Solution

AF Scheme
u

ū

Figure 2. Zalesak wave suite propagation after one period with the AF scheme.

Eqn. 10 is evaluated with a sixth-order quadrature rule. At each quadrature point, uexact(x) is
obtained by substituting x into the analytic Gaussian function and uAF(x) is obtained by using the
spatial reconstruction function(Eqn. 8). Thereupon, we obtain,

eL2 =

√√√√ 1

L

M∑
j=1

6∑
i=1

{
wi∆x

[
uAF(ξ̃j,i)− uexact(ξ̃j,i)

]2
}
. (11)

The convergence rate plot of AF scheme is shown in Figure 3. Ignoring the first three data points in
Figure 3(b) and applying a least squares fit to the rest of the data points with a linear function, we
obtain a slope of −2.996946490044623 ≈ −3, consistent with the third-order accuracy expectation
for the AF scheme.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

X

U

Exact Solution
AF Scheme
u

ū

(a) Gaussian wave test case

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

Degrees of freedom

L 2 s
ol

ut
io

n
er

ro
r

no
rm

(b) Convergence rate plot

Figure 3. Demonstration of third order convergence for the AF scheme in one dimension.

B. Two Dimensional Active Flux Discretization

In two spatial dimensions, the scalar advection problem takes the form,

4 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

∂u

∂t
+ a1

∂u

∂x1
+ a2

∂u

∂x2
= 0. (12)

u
j,1(node,1)

u
j,4(edge,2)

u
j,6(node,3)

u
j,3(node,2)

u
j,2(edge,3)

u
j,5(edge,1)

uj

ξ

η

Figure 4. Unknowns placement in AF scheme in two-dimension.

Element interface values now consist of two types, node values, unode, and edge values, uedge.
Cell average unknowns, u, are defined exclusively inside of the host cells. The unknown placement
in the reference triangle element is shown in Figure 4. The temporal evolution of states in two-
dimensions is similar to that in one dimension.

Edge and node unknowns are defined as two types of independent variables in the active flux
scheme, but they have the same evolution procedure. We can classify them into a new unknown
category, vertex unknowns, uvertex. This classification will simplify our discrete adjoint formulation
derivation.

Two dimensional unknowns evolved through the following fully-discrete procedure.

Reform :

{
u
n+1/2
j,1(2,3,4,5,6) = unj,1(2,3,4,5,6)

un+1
j,1(2,3,4,5,6) = unj,1(2,3,4,5,6)

(13)

Vertex state pre-update:


unj,1(2,3,4,5,6) = S(δt = 0, cnj)

u
n+1/2
j,1(2,3,4,5,6) = S(δt = 0.5∆t, cnj)

un+1
j,1(2,3,4,5,6) = S(δt = ∆t, cnj)

(14)

Flux: Fn+1 =
1

9

[
1

4

(
fnL + fnR + fn+1

L + fn+1
R

)
+
(
fn+1
Mid + f

n+1/2
L + f

n+1/2
R + fnMid

)
+ 4f

n+1/2
Mid

]
(15)

The subscript, ‘Mid’, denotes the midpoint of an element edge, which is edge state(u2, u4 and u5).
The subscript ‘L’ and ‘R’ denote the node state to the left and to the right of the edge state(u1, u3 and u6)
respectively. The fluxes are,

fnL = aunL f
n+1/2
L = au

n+1/2
L fn+1

L = aun+1
L

fnR = aunR f
n+1/2
R = au

n+1/2
R fn+1

R = aun+1
R

fnMid = aunMid f
n+1/2
Mid = au

n+1/2
Mid fn+1

Mid = aun+1
Mid

(16)

Update:

 un+1
j = unj −

∆t

Aj

3∑
e=1

~neleF
n+1
e

unj,1(2,3,4,5,6) = un+1
j,1(2,3,4,5,6)

(17)

5 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

The above update equations make use of the following definitions,

S(δt, cnj) =

{
RC {(ξ0, η0) |ξ0 ∈ [0, 1] and η0 ∈ [0, (1− ξ0)]}

0 {(ξ0, η0) |ξ0 /∈ [0, 1] or η0 /∈ [0, (1− ξ0)]}
(18)

cnj :



cnj,1 = unj,1
cnj,2 = unj,2
cnj,3 = unj,3
cnj,4 = unj,4
cnj,5 = unj,5
cnj,6 = unj,6

cnj,7 =
20

9

[
unj −

1

3

(
unj,2 + unj,4 + unj,5

)]
(19)

φnj(1,2,3,4,5,6) :



φnj,1 = 1− 3ξ0 + 2ξ2
0 − 3η0 + 4ξ0η0 + 2η2

0

φnj,2 = 4ξ0 − 4ξ2
0 − 4ξ0η0

φnj,3 = −ξ0 + 2ξ2
0

φnj,4 = 4η0 − 4ξ0η0 − 4η2
0

φnj,5 = 4η0ξ0

φnj,6 = −η0 + 2η2
0

φnj,7 = 27ξ0η0 − 27ξ2
0η0 − 27ξ0η

2
0

(20)

RC|(1,2,3,4,5,6) = cnj,1φ
n
j,1 + cnj,2φ

n
j,2 + cnj,3φ

n
j,3 + cnj,4φ

n
j,4 + cnj,5φ

n
j,5 + cnj,6φ

n
j,6 + cnj,7φ

n
j,7 (21)[

ξ0

η0

]
=

[
ξ

η

]
︸︷︷︸

node reference coordinate

− ∂x

∂ξ︸︷︷︸
Jacobian

[
a1

a2

]
∆t (22)

∂x/∂ξ is the element-specific mapping Jacobian matrix. The L2 error norm in two dimensions,
eL2 , is

eL2 =

√√√√ 1

A

∫
A

[uAF(x)− uexact(x)]2 dA =

√√√√√√ 1

A

M∑
j=1


∫

Elementj

[uAF(x)− uexact(x)]2 dA

 (23)

eL2 is evaluated numerically with the sixth order quadrature rule,

eL2 =

√√√√ 1

A

M∑
j=1

12∑
i=1

{[
uAF(ξj,i)− uexact(ξj,i)

]2
det

(
∂x

∂ξ

)
j,i

}
(24)

The convergence rate plot of AF scheme in 2D is shown in Figure 5(b). Figure 5(a) shows the
primal problem that we run to obtain the convergence rate curve, a Gaussian pulse advecting along
the diagonal of a square domain, along which periodic boundary conditions are enforced. The L2

error norm is measured after each uniform mesh refinement. The simulation is run for one period
to accentuate the effects of numerical error. The slope of the L2 error norm convergence rate curve
is gradually approaching 3 along the increase of mesh size, shown in Figure 5(b). Mesh size is
represented by the square root of the total degrees of freedom in our mesh. Using the last two data
points from Figure 5(b), its slope is −2.947454128912672 ≈ −3, which is consistent with the third
order accuracy expectation for the active flux method.

6 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

(a) Gaussian wave test case

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

DOF1/2

L 2 S
ol

ut
io

n
er

ro
r

no
rm

(b) Convergence rate plot

Figure 5. Demonstration of third order convergence for the AF scheme in two dimensions.

III. Discrete Adjoint Formulation

A general discrete adjoint formulation of an unsteady problem reads,

N∑
n=1

(
∂Rn

∂Um

)
Ψn +

(
∂J

∂Um

)T

= 0, (25)

where n,m index time nodes, Rn is the unsteady residual at time node n, Ψn is the discrete
adjoint vector at time node n, and J(Um) is a scalar output. Our goal is to solve the adjoint, Ψn,
in Eqn. 25. Eqn. 25 is a large linear system that, when fully expanded, reads



∂R1

∂U1

∂R1

∂U2
· · · ∂R1

∂UN

∂R2

∂U1

∂R2

∂U2
· · · ∂R2

∂UN

...
. . .

...
∂RN

∂U1

∂RN

∂U2
· · · ∂RN

∂UN



T 
Ψ1

Ψ2

...

ΨN

+



(
∂J

∂U1

)T

(
∂J

∂U2

)T

...(
∂J

∂UN

)T


= 0 (26)

We now need to define R and U for the AF method. In one dimension, the state vector, U, consists
of both the vertex and the cell-average unknowns,

U =

[
u

u

]
(27)

In two dimensions, to acquire a ‘cleaner-looking’ adjoint equation, we adopt the idea introduced
in Section II, that of classifying the node unknown, unode, and edge unknown uedge into a new
category, vertex unknowns, uvertex.

U =

unode

uedge

u

 (28)

7 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

Moreover, we designate uvertex via u in 2D. Through this way, we transform the 2D AF unknown
vector, Eqn. 28 into the same format with the 1D AF unknown vector, Eqn. 27.

The residual R, is defined in a straightforward manner as,

Rn+1 = Un+1 −AF (Un) (29)

where AF (·) is the n→ n+1 active flux update operator detailed in Section II. Eqn. (29) may also
be written as (

Rn+1
vertex

Rn+1
cell avg

)
=

(
un+1

un+1

)
−AF

(
un

un

)
(30)

The derivative ∂Rn/∂Um yields an unsteady Jacobian matrix,

∂Rn

∂Um
=


∂Rn

vertex

∂um

∂Rn
vertex

∂um

∂Rn
cell avg

∂um

∂Rn
cell avg

∂um

 (31)

All four block components of ∂Rn/∂Um can be calculated by applying the chain rule to the AF
scheme update equations.

While the general unsteady Jacobian in Eqn. 26 appears daunting, most blocks are zeros. Since
the definition of Rn+1 only involves states at two time steps, n and (n + 1), the (n + 1)th block
row of ∂Rn/∂Um, consists only of two non-zero terms: ∂Rn+1/∂Un and ∂Rn+1/∂Un+1. Thus,
the adjoint equation becomes



∂R1

∂U1

∂R2

∂U1

∂R2

∂U2

. . .

∂RN

∂UN−1

∂RN

∂UN



T 
Ψ1

Ψ2

...

ΨN

+



(
∂J

∂U1

)T

(
∂J

∂U2

)T

...(
∂J

∂UN

)T


= 0 (32)

Our problem narrows down to calculating the derivatives, ∂Rn+1/∂Un+1 and ∂Rn+1/∂Un. Con-
sidering first the latter,

∂Rn+1

∂Un
=


∂Rn+1

vertex

∂un

∂Rn+1
vertex

∂un

∂Rn+1
cell avg

∂un

∂Rn+1
cell avg

∂un

 (33)

The above block sub-matrices need to be calculated individually. We show how to determine
∂Rn+1

vertex/∂un; other derivative matrices can be determined similarly.

A. One Dimensional Discrete Adjoint Formulation

In one spatial dimension, the expression for Rn+1
vertex reads,

Rn+1
vertex =


R1/2

R1+1/2
...

RM+1/2


n+1

=


u1/2

u1+1/2
...

uM+1/2


n+1

−AFvertex (Un) (34)

8 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

To simplify notation, we name the vertex state update process of the AF scheme as a function:
AFvertex(·). In addition, we index the vertex residuals and states by half indices. From Eqn. 34,
the derivative ∂Rn+1

vertex/∂un should be an (M + 1)× (M + 1) matrix,

∂Rn+1
vertex

∂un
=



∂Rn+1
1/2

∂un1/2

∂Rn+1
1/2

∂un1+1/2

· · ·
∂Rn+1

1/2

∂unM+1/2

∂Rn+1
1+1/2

∂un1/2

∂Rn+1
1+1/2

∂un1+1/2

· · ·
∂Rn+1

1+1/2

∂unM+1/2
...

. . .
...

∂Rn+1
M+1/2

∂un1/2

∂Rn+1
M+1/2

∂un1+1/2

· · ·
∂Rn+1

M+1/2

∂unM+1/2


(35)

Each row in Eqn. 35 corresponds to a derivative of Rn+1
j+1/2 w.r.t. un. Recall the discretization of

the active flux method in Section II, the (j + 1)th row of Eqn. 35:

∂Rn+1
j+1/2

∂un
=

∂Rn+1
j+1/2

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

[
∂Sn

∂cnj,1

∂cnj,1
∂un

+
∂Sn

∂cnj,2

∂cnj,2
∂un

+
∂Sn

∂cnj,3

∂cnj,3
∂un

]
(36)

In the above equation, n ∈ [0, 1, · · · , N], j ∈ [0, 1, · · · ,M], and

∂Rn+1
j+1/2

∂AFvertex(Un)
= −1

∂AFvertex(Un)

∂Sn
= 1

∂Sn

∂cnj,1
= (1− 2ξ0,j+1/2)(1− ξ0,j+1/2)

∂Sn

∂cnj,2
= 4ξ0,j+1/2(1− ξ0,j+1/2)

∂Sn

∂cnj,3
= ξ0,j+1/2(2ξ0,j+1/2 − 1)

∂cnj,1
∂un

=
[
0, · · · , 1j−1/2, · · · , 0

]
∂cnj,2
∂un

=

[
0, · · · ,−1

4 j−1/2
, −1

4 j−1/2
, · · · , 0

]
∂cnj,3
∂un

=
[
0, · · · , 1j+1/2, · · · , 0

]

(37)

With a similar procedure, we obtain the rest of the components of the derivative ∂Rn+1/∂Un

and ∂Rn+1/∂Un+1. Both ∂Rn+1/∂Un and ∂Rn+1/∂Un+1 turn out to be invariant in time. More-
over, ∂Rn+1/∂Un+1 is an identity matrix. Let A ≡ ∂Rn+1/∂Un; the unsteady discrete adjoint
formulation for the active flux method then becomes


I AT

I AT

. . .

AT

I




Ψ1

Ψ2

...

ΨN

+



(
∂J

∂U1

)T

(
∂J

∂U2

)T

...(
∂J

∂UN

)T


= 0 (38)

9 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

We are especially interested in the structure of the A matrix, which is sparse. For the case of
an M = 20 element mesh, the A matrix structure is illustrated in Figure 6.

column

∂R
n+1
vertex
∂un (M+1)×(M+1)

∂R
n+1
vertex
∂u

n
(M+1)×M

∂R
n+1

cell avg

∂un
M×(M+1)

∂R
n+1

cell avg

∂u
n

M×M

ro
w

Figure 6. A matrix structure in one dimension, cell number M = 20 cells.

B. Two Dimensional Discrete Adjoint Formulation

In two spatial dimensions, assume there are M elements and K vertices, including nodes and edges,
in our mesh. Here, the expression for Rn+1

vertex reads,

Rn+1
vertex =


R1

R2
...

RK


n+1

=


u1

u2
...

uK


n+1

−AFvertex (Un) (39)

The derivative ∂Rn+1
vertex/∂un is a K ×K matrix,

∂Rn+1
vertex

∂un
=



∂Rn+1
1

∂un1

∂Rn+1
1

∂un2
· · · ∂Rn+1

1

∂unK
∂Rn+1

2

∂un1

∂Rn+1
2

∂un2
· · · ∂Rn+1

2

∂unK
...

. . .
...

∂Rn+1
K

∂un1

∂Rn+1
K

∂un2
· · ·

∂Rn+1
K

∂unK


(40)

Each row in Eqn. 40 corresponds to a derivative of Rn+1
i w.r.t. un. Recall the discretization of the

active flux method in Section II, the ith row of Eqn. 40 is the residual of the ith vertex state w.r.t.
all other vertex states. Say, when the ith vertex state is updated, the signal is from the jth element.
In this case, there would be at most 6 nonzero terms in the vector, ∂Ri

n+1/∂un,

10 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

∂Rn+1
i

∂un
=

[
· · ·

∂Rn+1
i

∂unj,1
· · ·

∂Rn+1
i

∂unj,2
· · ·

∂Rn+1
i

∂unj,3
· · ·

∂Rn+1
i

∂unj,4
· · ·

∂Rn+1
i

∂unj,5
· · ·

∂Rn+1
i

∂unj,6
· · ·
]
(41)

∂Rn+1
i

∂un
:



∂Rn+1
i

∂unj,1
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

∂Sn

∂cj,1

∂cnj,1
∂unj,1

∂Rn+1
i

∂unj,2
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,2

∂cnj,2
∂unj,2

+
∂Sn

∂cj,7

∂cnj,7
∂unj,2

)
∂Rn+1

i

∂unj,3
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

∂Sn

∂cj,3

∂cnj,3
∂unj,3

∂Rn+1
i

∂unj,4
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,4

∂cnj,4
∂unj,4

+
∂Sn

∂cj,7

∂cnj,7
∂unj,4

)
∂Rn+1

i

∂unj,5
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,5

∂cnj,5
∂unj,5

+
∂Sn

∂cj,7

∂cnj,7
∂unj,5

)
∂Rn+1

i

∂unj,6
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

∂Sn

∂cj,6

∂cnj,6
∂unj,6

(42)

In the above equation,

∂Rn+1
i

∂AFvertex
= −1

∂AFvertex(U)n

∂Sn
= 1

∂Sn

∂cj,1
= φnj,1

∂Sn

∂cj,2
= φnj,2

∂Sn

∂cj,3
= φnj,3

∂Sn

∂cj,4
= φnj,4

∂Sn

∂cj,5
= φnj,5

∂Sn

∂cj,6
= φnj,6

∂Sn

∂cj,7
= φnj,7

∂cj,1
∂uj,1

= 1

∂cj,2
∂uj,2

= 1

∂cj,3
∂uj,3

= 1

∂cj,4
∂uj,4

= 1

∂cj,5
∂uj,5

= 1

∂cj,6
∂uj,6

= 1

∂cj,7
∂uj,2

= −20

27
∂cj,7
∂uj,4

= −20

27
∂cj,7
∂uj,5

= −20

27

(43)

Following a similar procedure, we obtained the rest of the components of the derivative ∂Rn+1/∂Un

and ∂Rn+1/∂Un+1. Note that we again define A ≡ ∂Rn+1/∂Un. The structure of the A matrix
is shown in Figure 7. The mesh that we used to generate this particular A matrix is illustrated in
Figure 15(a). Obviously, one dimensional A matrix and two dimensional A matrix are different.
Since the unsteady discrete adjoint formulation for the active flux method in two dimensions has
the same formulation with its one dimensional counterpart, by subsituting different A matrix into
Eqn. 38, we will be able to get the adjoint solution in both 1D and 2D.

11 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

column

∂R
n+1

vertex
∂un

K×K

∂R
n+1

vertex
∂u

n
K×M

∂R
n+1

cell avg

∂un
M×K

∂R
n+1

cell avg

∂u
n

M×M

ro
w

Figure 7. A matrix structure in two dimensions, cell number M = 48, vertices number K = 113.

IV. Implementation

To solve Eqn. 38, we note that the coefficient matrix in Eqn. 38 is upper triangular, and hence,
backward substitution may be applied,

ΨN = −
(

∂J

∂UN

)T

ΨN−1 + ATΨN = −
(

∂J

∂UN−1

)T

...

Ψ1 + ATΨ2 = −
(
∂J

∂U1

)T

(44)

Accordingly, our adjoint code employs “reverse” time marching. The adjoint solution does not
depend on the primal solution for our linear problem, yet the adjoint solve is still performed after
the primal solve in anticipation of nonlinear problems.

V. Error Estimation and Adaptation

Our objective is to use the adjoint solution in order to estimate the numerical error in a scalar
output, JH(UH), where the subscript H indicates a “coarse” discretization – that is, one for which
we want to estimate the error. We estimate the error in JH relative to a finer discretization,
subscript h, by the adjoint-weighted residual method,8

δJ ≡ J(UH)− J(Uh) ≈ −ΨT
hR

(
UH

h

)
(45)

In this work, we obtain the fine space (h) by subdividing both the spatial cells and the time steps
of the coarse (H) discretization. That is, in one spatial dimension, the fine mesh has Mh = 2MH

cells and in two spatial dimensions, the fine mesh has Mh = 4MH . On the other hand, the time
steps are always halved, so that Nh = 2NH . We assess the accuracy of the error estimate through

12 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

the definition of an error effectivity,

ηh =
−ΨT

hR(UH
h)

JH(UH)− Jh(Uh)
, (46)

where UH
h indicates the coarse solution injected into the fine space. This injection is performed by

evaluating the quadratic spatial and temporal reconstructions implied by the AF discretization. For
spatial reconstruction, we can use the existing active flux basis functions. For temporal reconstruc-
tion, we first evaluate the coefficients of the temporal reconstruction, assuming the intermediate

state(u
n+1/4
j) lies on a quadratic curve connecting states from adjacent time steps(unj and un+1

j),

t

u

u
n+1/2
j

unj un+1

j

u
n+1/4
j

Figure 8. Temporal states injection operation mechanics.

The subscript on ηh in Eqn. 46 indicates that this is an effectivity measured relative to the fine
space. We will denote the effectivity relative to the exact solution by η, and this is calculated by
replacing Jh(Uh) in Eqn. 46 with the exact output.

Finally, in order to adapt, we need to localize the output error in Eqn. 45 to cells and to time
steps. To do this we must decide how to map the residual, R(UH

h), back to coarse space both
spatially and temporally. Regarding time nodes, we associate coarse time step nH , 1 ≤ nH ≤ NH ,
to the residuals of the two fine-space updates contained within nH , namely nh = 2nH − 1 and
nh = 2nH . Regarding the spatial cells, we associate cell-average residuals directly to their host
cells, and we split vertex residuals evenly between the adjacent cells. In one dimension, the resulting
error contribution of cell j at time step n is

εnj =
1

2
Ψn

vertex,jR
n
vertex,j +

1

2
Ψn

vertex,j+1R
n
vertex,j+1︸ ︷︷ ︸

vertex residual contribution

+ Ψn
cell avg,jR

n
cell avg,j︸ ︷︷ ︸

cell average residual contribution

(47)

In two dimensions, each node in our mesh is shared by ‘sn’ number of elements and each edge
is shared by ‘se’ number of elements, the resulting error contribution of cell j at time step n is

εnj =

3∑
i=1

1

sn
Ψn

node,iR
n
node,i︸ ︷︷ ︸

node residual contribution

+

3∑
e=1

1

se
Ψn

edge,eR
n
edge,e︸ ︷︷ ︸

edge residual contribution

+ Ψn
cell avg,jR

n
cell avg,j︸ ︷︷ ︸

cell average residual contribution

(48)

The error indicator for a coarse cell/time-step is then taken as the absolute value of the sum
of εnj over the children cells/time-steps. In particular, we will initially work with aggregate spatial

13 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

error indicators obtained by summing over all time steps, in which the error associated with coarse
cell jH is

εjH =

Nh∑
nh=1

Mh∑
jh=1

|εnh
jh
|. (49)

VI. Results

As a verification test of the adjoint implementation, we consider the one dimensional periodic
transport of the initial profile shown in Figure 9. This linear “hat” profile was chosen for the sake
of error estimation: it is exactly representable on both the coarse and the fine spaces, so that the
error estimates are not polluted by varying initial conditions (which, for example, would occur for
any initial condition that was not at most a piecewise quadratic).

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X

U

Exact Solution
AF scheme
u

ū

Figure 9. Linear hat wave function propagated for one period.

0 1 2 3 4 5 6
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

X

Ψ

Ψu : u adjoint

Ψū : ū adjoint

(a) Adjoint distribution at the first time step

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

X

ψ

Ψu : u adjoint

Ψū : ū adjoint

(b) Adjoint distribution at the final time step

Figure 10. Adjoint distribution on our computational domain

The output J is defined as the eleventh node value (X = 3) at the final time step. We first
take a qualitative look at the adjoint solution. Figure 10 shows the adjoint at the first time step,

14 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

i.e. Ψ1, and the adjoint at the final step, i.e. ΨN .
The region of nonzero adjoint is wider at the initial time compared to the final time. In fact,

at the final time, there is only one nonzero point, as expected since no other states can impact the
output. At the initial time step, a residual perturbation in any point on the computational domain
has a better chance of affecting the output as the state advects across the computational domain.
So, the output is sensitive to a relatively larger area at the initial time step.

In two dimensions, we consider the test case of an advecting Gaussian wave as shown in Fig-
ure 11. Figure 11(a) shows the initial unstructured mesh, and Figure 11(b) shows the primal
solution. Here, we enforced inflow boundary conditions on the left and lower boundaries of the
computational domain. A Gaussian pulse originally centered at coordinate, X = [−0.4, −0.4]
advects along the diagonal of the square until it arrives the ending center point X = [0.4, 0.4].

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial mesh (b) Primal problem illustration

Figure 11. Initial mesh and primal solution for a two-dimensional advection problem.

Figure 12 presents adjoints for three outputs: a point value, a domain integral, and a line
integral. These plots are generated using a mesh that is the immediate fine space of the mesh
shown in Figure 11(a).

The point output is defined at spatial location [x = 0.4, y = 0.4]. The domain integral output is
defined as the state integral over the whole computational domain. The line integral output is the
integral over upper and right boundaries. Recall the definition of the adjoint as the sensitivity of
an output to residual source perturbations. For the point output, the ‘sensitive area’ has a higher
adjoint value, mainly concentrated around the diagonal of our computational domain as shown in
Figure 12(a). For the domain integral output, its ‘sensitive area’ is the area swept over by the
convective flow, which is in a rectangle shape for our case as is shown in Figure 12(c). For the line
integral output, its ‘sensitive area’ is in a corner shape, which eventually develops into the corner
formed by the outflow boundary, upper and right boundaries, of our computational domain, as is
shown in Figure 12(e). Figure 12(a), (c) and (e) demonstrate that our adjoint implementation is
correct in a qualitative sense.

For a quantitative verification of the adjoint, we consider sensitivity analysis and error estima-
tion.

15 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Adjoint distribution for the point value

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Error indicator(adjoint-weighted residual) for the
point value

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.005

0.01

0.015

0.02

0.025

0.03

(c) Adjoint distribution for the domain integral

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

x 10
−3

(d) Error indicator(adjoint-weighted residual) for the
domain integral

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(e) Adjoint distribution for the line integral

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

3

3.5

x 10
−4

(f) Error indicator(adjoint-weighted residual) for the
line integral

Figure 12. 2D adjoint and error indicator distribution at time step Nh/2

16 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

A. Sensitivity Analysis

Given an unsteady adjoint solution, a parameter sensitivity is calculated as

dJ

dµ
=

N∑
n=1

Ψn

(
∂Rn

∂µ

)
(50)

In this case, the parameter µ is chosen to be the amplitude of a spatially-sinusoidal perturbation
to the initial condition. Theoretically, with the sensitivity information, we can predict the change
of the output J along a change in the parameter, δµ, without running the forward solver. This
output perturbation is given by

δJ =

(
dJ

dµ

)
δµ (51)

We choose to perturb state, U, to measure the accuracy of our adjoint cases. The calculation
of the output derivative, dJ/dU, is done utilizing the quadratic spatial formulation implied by the
active flux method. For the one-dimensional case, the derivative calculation is simple. For the
two-dimensional case, we briefly show how to calculate derivatives of three types of output: point
output, line integral output and domain integral output. Quantitative verification of sensitivity
tests are also shown in this paper.

1. dJ/dU for Point Output

In order to calculate derivative for point output, we need to first locate the element j, that contains
the desired point output. Recall the active flux discretization from Section II,

dJ

dU
=

[
· · ·φj,1 · · ·φj,3 · · ·φj,6 · · ·︸ ︷︷ ︸

node states

· · · 27φj,2 − 20φj,7
27

· · · 27φj,4 − 20φj,7
27

· · · 27φj,5 − 20φj,7
27

· · ·︸ ︷︷ ︸
edge states

· · · 20φj,7
9
· · ·︸ ︷︷ ︸

cell average states

]

(52)

2. dJ/dU for Line Integral Output

Our line integral output is defined as the integral over the outflow boundary,

Jline integral =
BCline∑
j=1

Jj (53)

Jj is line integral at the boundary edge of element j, which is located on the outflow boundary. We
uses 1D quadrature to integrate Jj numerically. Thus,

dJline integral

dU
=

BCline∑
j=1

dJj
dU

(54)

and

dJj
dU

=

Q∑
q=1

det

(
∂x

∂ξ

)
q

dJq
dU

wq (55)

17 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

wq is the weight of 1D quadrature point evaluated at point output Jq, Q is the total number of
quadrature points.

3. dJ/dU for Domain Integral Output

When the output is defined as the integral over the computational domain,

Jdomain integral =
M∑
j=1

Jj (56)

Jj is area integral of the state over element j. We uses 2D quadrature rule to calculate it numerically.

dJdomain integral

dU
=

M∑
j=1

dJj
dU

(57)

and

dJj
dU

=

Q∑
q=1

det

(
∂x

∂ξ

)
q

dJq
dU

wq (58)

wq is the weight of the qth 2D quadrature point, Q is the total number of quadrature points.

4. Sensitivity Test

To test the adjoint-based sensitivity, we run the active flux solver twice: first without a parameter
perturbation, i.e. µ = 0, and second with a parameter perturbation, µ = δµ. The output pertur-
bation should be predicted with the adjoint sensitivity. A comparison of the actual perturbation
and the predicted perturbation for the test case under consideration is given in Table 1

Table 1. Initial-condition sensitivity test comparing an actual output perturbation with an adjoint-
based sensitivity calculation. For the linear problem and output under consideration, the adjoint
result is exact.

Output types Actual perturbation Predicted perturbation

1D point output 0.039062093143630 0.039062093143630

2D point output -11.828244710966711 -11.828244710966711

2D line integral 2.243744802369696 2.243744802369697

2D domain integral -21.666898164171524 -21.666898164171496

As Table 1 shows, the output perturbation is predicted exactly. We can draw two conclusions
here: (1) our theory for the active-flux adjoint implementation is working; (2) because the current
problem is linear, the prediction is exact, but this will not be the case for general nonlinear problems.

B. Error Estimation

We now apply the adjoint to estimate the error in the output relative to a finer discretization,
using the adjoint-weighted residual in Eqn. 45. The error is compared with actually solving the
problem on the finer discretization. The comparison is presented in Table 2. As Table 2 shows, the
error estimate is accurate up to machine precision. The associated effectivity is ηh ≈ 1, also up to
machine precision.

18 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

Table 2. Error estimation test

Output types Actual error Estimated error

1D point output -0.062837526306201 -0.062837526306203

2D point output -0.168407731651310 -0.168407731651310

2D line integral -0.023801197849757 -0.023801197849757

2D domain integral 3.226858860222309× 10−4 3.226858860222372× 10−4

For the one-dimensional case, we further verified the convergence rate of the absolute value of
the estimated error(|εjH |) and the actual error(|JH(UH)−Jh(Uh)|) on a smooth problem, advection
of a Gaussian wave. Figure 13 presents 10 pairs of data points for |εjH | and |JH(UH) − Jh(Uh)|.
Applying a least square fit to the data points in Figure 13, and ignoring the first 4 data points, the
slope of the |JH(UH) − Jh(Uh)| data set is −2.970697749024125 ≈ −3 and the slope of the |εjH |
data set is −2.96935936216698 ≈ −3, which is again consistent with the expectation of third-order
accuracy for AF schemes. We note that the error estimate for an arbitrary initial condition will
generally not be accurate up to machine precision according to our discussion at the beginning of
Section VI (we need exact representation on the coarse space).

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Degrees of freedom

E
rr
o
r

Actual error : |JH(UH)− Jh(Uh)|

Estimated error : |ǫjH |

Figure 13. Convergence rate of |JH(UH)− Jh(Uh)| and |εjH | for a Gaussian wave advection problem.

We next consider the error indicator for adaptivity by plotting the temporally-marginalized
(summed over time steps) error indicator, εjH from Eqn. 47, versus cell number in Figure 14. From
Figure 14 we see that the output error indicator is fairly evenly distributed over the domain, with
slightly larger values near the output measurement location due to the high sensitivity of that area
near later times. The uniformity of the error indicator for this simple problem is expected as in
a periodic wave propagation on a static mesh, the entire domain requires resolution. Adaptive
refinement is therefore not necessary in such a case, but we expect it to be important for more
complex, higher-dimensional problems, i.e, two dimensions.

We present the error indicators of the two-dimensional cases in Figure 12(b), (d) and (f),
which are calculated with the error localization strategy in Eqn. 48. Comparing the left hand side
of Figure 12(Figure 12 (a), (c), (e)), which quantify the sensitivity information, adjoint, and the
right hand side of Figure 12(Figure 12(b), (d), (f)), which quantify the localized discretization error
information, adjoint weighted residual, we roughly have an idea about how different the sensitivity
and localized error estimation information is.

19 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

Cell number

ǫ

Figure 14. Temporally-marginalized adaptive indicator, εjH from Eqn. 47.

We noticed, in Figure 12(b), the point output error indicator distribution is rather uneven.
Few elements have high error indicator values, but most elements have almost zero error indicator
value. In terms of this particular output, it means some parts of our mesh have especially high
discretization error and some parts of the mesh don’t have much discretization error. In other
words, some parts of the mesh need to be refined to reduce the discretization error, while some
parts of the mesh don’t need to be refined at all. We can expect adaptive mesh refinement to be
more advantageous over uniform mesh refinement in this case. Thus, we evaluate the performance
of our theoretical work using a point output. As for the line integral over the outflow boundary and
domain integral output, their values basically depend on the information of the whole computational
domain or almost the whole computational domain. It’s not necessary to use adaptive techniques
for these two cases.

C. Mesh Adaptation

To get a better CFD simulation result, the computational mesh needs to be refined. We do not
expect uniform refinement to be the optimal option. In this paper, we create an output based
mesh adaptation strategy for the active flux method. To measure how good our adaptation is, we
compare to uniform mesh refinement for a point output.

Using the initial mesh and primal problem we have already described in detail in Figure 11,
we implemented both adaptive mesh refinement and uniform mesh refinement methods to solve
this problem. The absolute output error of each adapted mesh was recorded. Comparison results
are shown in Figure 15(b). Adaptive refinement utilizes cheaper machine storage and generates
more accurate outputs. What’s more, the difference at “degrees of freedom” cost between adaptive
refinement and uniform refinement grows larger as mesh size gets bigger. Our mesh adaptation
mechanics beats uniform mesh refinement. We also included the resultant adapted mesh in Fig-
ure 15(a). The diagonal parts of the mesh looks really fine, while, the region away from the diagonal
of the square geometry, seems ‘untouched’ by the mesh adaptation mechanics.

This result makes perfect sense. Due to the convection nature of the unsteady flow field, first
we understand it’s not enough to only adapt the area where our output is defined. So, the mesh
would not only be refined around the output point. Second, our point output ultimately arises from
the upstream of the computational domain. Along the advection path of the flow, error can be
introduced into the simulation, which eventually pollutes the point output. Thus, besides adapting

20 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Resulting adapted mesh

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e
O

ut
pu

t E
rr

or

Uniform Refinement
Adaptive Refinement

(b) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 15. Application of theoretical work on a square domain

the area where our output is defined, the area where the flow swept over during the simulation
should also be refined. Third, for a localized output, point output, not all the area that the flow
field swept over matters, since the point output only depends on the information from a small
part of the computational domain. Figure 15(a) shows that the area around the diagonal of the
computational domain has more weight in affecting the accuracy of the output.

With the purpose of illustrating our research approach, we adopted a simple square geometry
in the above discussion. However, for two-dimensional cases, the computational domain can be of
arbitrary shape. Using inflow and outflow boundary condition and applying our theoretical work
to some interesting meshes, we further examine our theoretical work.

D. Additional Simulations

Three different computational domain geometries are presented in this section: a Michigan ‘M’
mesh, a circle mesh, and a “moon” mesh. These domains demonstrate to some extent the flexibility
of our adaptation mechanics. We briefly describe the problem setup for each of them and present
the initial mesh, the resulting adapted mesh, the primal problem and error convergence performance
comparison between our mesh adaptation mechanics and uniform mesh refinement.

1. Michigan ‘M’ Mesh

The Michigan ‘M’ mesh is representative of a complex polygon. Inflow and outflow boundary
conditions are dynamically enforced on the border of the ‘M’ mesh depending on the flow field
advection direction. The initial mesh is in Figure 16(a). The flow advection velocity is [2, 0.1]. A
Gaussian pulse originally centered at [−0.8, 0.15], Figure 16(c), advects with the flow until it arrives
at [0.8, 0.23]. Then, the point output is measured at [0.8, 0.23]. Figure 16(d) shows adaptive mesh
refinement is more desirable over uniform mesh refinement in this case.

The reason why we choose to dynamically set up the boundary condition is because, upon
refinement, a curved inflow segment might be broken into an inflow segment and an outflow segment,
or, the other way around, which require us to dynamically re-set the boundary condition according
to the flow field convection direction. We can’t see this issue for this polygon mesh, but we will
benefit from this extra step for other meshes. If the boundary condition is not dynamically re-
set, an inflow(outflow) boundary might be falsely recognized as a outflow(inflow) boundary after

21 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

mesh adaptation. What’s more, due to the uniqueness of the updating procedure of the active flux
method, besides inflow/outflow ‘edge’ boundary condition, there also exist inflow/outflow ‘node’
boundary condition. That’s the second reason why we need to dynamically reset the boundary
condition.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Initial mesh

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Resulting adapted mesh

(c) Primal problem illustration

10
1

10
2

10
3

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

DOF1/2

A
bs

ol
ut

e
O

ut
pu

t E
rr

or

Uniform Refinement
Adaptive Refinement

(d) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 16. Application of theoretical work on Michigan ‘M’ mesh

2. Circular Mesh

The purpose of doing this circular mesh case is to show that, besides polygon, the solver that we
developed in this paper is capable of taking in geometries with curved boundary. Inflow/outflow
boundary conditions are dynamically enforced on the border of the circle depending on the flow
field advection direction. The initial mesh is shown in Figure 17(a). As for the set up for the primal
problem and termination condition of simulation is exactly the same with the square geometry case
that we described at the beginning of Section VI. The primal problem description is presented in
Figure 17(c). Upon refinement, we obtain the results shown in Figure 17(d), which demonstrates
that our adaptive mesh refinement method outperforms the uniform mesh refinement method.

22 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial mesh

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Resulting adapted mesh

(c) Primal problem illustration

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e
O

ut
pu

t E
rr

or

Uniform Refinement
Adaptive Refinement

(d) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 17. Application of theoretical work on circular mesh

23 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

3. Moon Mesh

The Moon mesh is a representative of complex curved geometry. Inflow/outflow boundary condi-
tions are dynamically enforced on the border of this mesh. The initial mesh is in Figure 18(a). Flow
field advection velocity is [1, 0.1]. A Gaussian pulse originally centers at [−0.4, 0], Figure 16(c),
advects with the flow until it arrives at its ending center [−0.1, 0.03]. We apply uniform mesh
refinement and adaptive mesh refinement on this problem respectively. Upon refinement, the per-
formance of uniform mesh refinement and adaptive mesh refinement is compared in Figure 18(d).
Figure 18(d) shows our adaptive mesh refinement method converge error faster than the uniform
mesh refinement method.

Implementing our theoretical work to various geometries enable us to further analyze our the-
oretical work. We can draw two conclusions here: (1)our theoretical work applies to any mesh
geometries. Varying the geometries doesn’t affect the performance of the developed mesh adap-
tation mechanics; (2)by simply observing the adapted mesh, one already have a pretty good idea
about what happened in the unsteady simulation. The darkened area of mesh in Figure 15(b), Fig-
ure 16(b), Figure 17(b) and Figure 18(b) indicate where the point output that we measured advect
from. The convection nature of the physics, unsteady convecting flow field, is clearly disclosed by
the resulting adapted mesh.

−0.6 −0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

(a) Initial mesh

−0.6 −0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

(b) Resulting adapted mesh

(c) Primal problem illustration

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e
O

ut
pu

t E
rr

or

Uniform Refinement
Adaptive Refinement

(d) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 18. Application of theoretical work on Moon mesh

24 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

VII. Conclusions

In this work, we explored the capability of the newly developed active flux methods with periodic
boundary condition and inflow/outflow boundary condition, on various geometries. There are
mainly two contributions in this paper,

• Equip the active flux method with error estimation capability

The adjoint system was derived for the adtive flux method. Theoretical work was tested on
linear problems, both the sensitivity test and the error estimation test passed at machine
precision level. In other words, for linear problems, the theory is able to predict residual per-
turbations and discretization errors exactly. In general, this will not be the case for nonlinear
problems.

• Create a mesh adaptation mechanics for the active flux method

An error localization strategy is introduced in this paper, with which we created an output-
based adaptive mesh refinement mechanics. The comparison between uniform mesh refinement
and our adaptive mesh refinement mechanics shows, the mesh adaptation mechanics developed
in this paper is more advantageous.

VIII. Acknowledgements

This work was supported by NASA, grant number NNX12AJ70A.

References

1Venkatakrishnan, V., Allmaras, S. R., Kamenetskii, D. S., and Johnson, F. T., “Higher order schemes for the
compressible Navier-Stokes equations,” AIAA Paper 2003-3987, 2003.

2Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems,” Journal of Scientific Computing , Vol. 16, No. 3, 2001, pp. 173–261.

3Nguyen, N., Peraire, J., and Cockburn, B., “An implicit high-order hybridizable discontinuous galerkin method
for linear convection-diffusion equations,” Journal of Computational Physics, Vol. 228, 2009, pp. 3232–3254.

4Demkowicz, L. and Gopalakrishnan, J., “A class of discontinuous Petrov-Galerkin methods. Part I: The trans-
port equation,” Computer Methods in Applied Mechanics and Engineering , Vol. 199, No. 23-24, 2010, pp. 1558–1572.

5Wang, Z., Fidkowski, K. J., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., , Hartmann, R.,
Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., and Visbal, M., “High-order cfd methods:
Current status and perspective,” International Journal for Numerical Methods in Fluids, 2012, Submitted.

6Eymann, T. A. and Roe, P. L., “Active flux schemes,” 49th AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition 2011–382, 2011.

7Eymann, T. A. and Roe, P. L., “Active flux schemes for systems,” 20th AIAA Computational Fluid Dynamics
Conference 2011–3840, 2011.

8Fidkowski, K. J. and Darmofal, D. L., “Review of output-based error estimation and mesh adaptation in
computational fluid dynamics,” American Institute of Aeronautics and Astronautics Journal , Vol. 49, No. 4, 2011,
pp. 673–694.

9Eymann, T. A., Active Flux Schemes, Ph.D. thesis, The University of Michigan, Ann Arbor, 2013.
10van Leer, B., “Towards the ultimate conservative difference scheme iv. a new approach to numerical convection,”

Journal of Computational Physics, Vol. 23, 1977, pp. 276–299.
11Zalesak, S. T., “Fully multidimensional flux-corrected transport algorithms for fluids,” Journal of Computa-

tional Physics, Vol. 31, 1979, pp. 335–362.

25 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
A

pr
il

2,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

3-
29

42

