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We apply retrospective cost adaptive control (RCAC) to spacecraft attitude control with magnetic actua-
tors. We compare two approaches to address the rank deficiency and time-varying nature of the input matrix.
The first approach utilizes an average of the magnetic field based on a-priori knowledge, whereas the second
approach uses three multi-input, single-output controllers. RCAC uses no information about the spacecraft in-
ertia, and model information is limited to the input-output relation given by the first Markov parameter, which
is computed from an inertia-free linearization of Euler’s and Poisson’s equations. We examine two problems
for each of the controllers. For both problems, the spacecraft has an arbitrary initial angular rate and initial
attitude. The objective for the first problem is to bring the spacecraft to rest at a specified attitude, while the
second problem seeks to bring the spacecraft to spin about an inertially pointed body axis.
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I. Introduction

The attitude of a spacecraft in low-Earth orbit can be either passively stabilized or actively controlled. Passive
methods exploit environmental torques to achieve a stable attitude [1]. However, the range of reachable attitudes is
limited by the specific method utilized. Active control actuators generate torques that provide three-axis control and
are able to reach any attitude. However, the cost of actuators such as reaction wheels and thrusters for use in small
spacecraft is high and their reliability is unproven. Alternatively, magnetic coils, produce torque by creating a magnetic
field that interacts with the Earth’s local magnetic field.

Magnetic coils are commonly used to reduce momentum in spacecraft that use momentum storage devices such as
reaction wheels [2]. Magnetic actuators are also used to de-spin spacecraft after launch vehicle separation [3]. How-
ever, the torque produced by the coils is constrained to the plane orthogonal to the Earth’s local magnetic field vector.
This lack of instantaneous controllability along with low-torque capability, and low pointing accuracy make magnetic
coils impractical for three-axis attitude control of large spacecraft. Yet, as the size of the spacecraft decreases and
pointing accuracy requirements are relaxed, the benefits of magnetic coils, such as small size, ease of manufacturing,
and low power consumption, outweigh the challenges in the design and operation of these control systems [4]. Thus,
the application of active magnetic coils for three-axis attitude control of small spacecraft has gained interest in recent
years [5].

Attitude regulation methods for magnetic control typically rely on a model of the spacecraft dynamics and kine-
matics, the spacecraft mass properties, and a model of the magnetic field. Control techniques include proportional-
derivative control, optimal control, and nonlinear methods [6]. However, these methods may fail when accurate
modeling information is not available. Thus, a control law that reduces the required modeling information is desired.

In this paper we develop a controller that utilizes measurements of the local magnetic field without knowledge
of the mass properties. This control law is based on retrospective cost adaptive control (RCAC) which is a multi-
input, multi-output direct adaptive controller. RCAC utilizes the input and output history of the system combined
with Markov parameters to update teh control law and determine the next control input [7], [8], [9], [10]. Previous
applications of RCAC to spacecraft attitude control have been limited to thruster and reaction-wheel actuation [11],
[12], [13]. In these applications, RCAC was applied to motion-to-rest (M2R) maneuvers, where the controller brings
the body to rest at a specified attitude and motion-to-spin maneuvers (M2S), where the spacecraft is brought to spin
about an inertially pointed body axis.

We apply RCAC to the attitude regulation of a rigid body spacecraft using magnetic actuators. First, we develop
the nonlinear equations of motion for a rigid body spacecraft with magnetic actuators. Then, we describe the RCAC
algorithm based on a linear time-invariant system. Next, we modify the RCAC formulation to accommodate the
nonlinear equations, matrix-valued attitude state, and the rank deficiency of the input matrix. Finally, we present
numerical results for M2R and M2S maneuvers for spacecraft with various inertia matrices in high-inclination orbits.

II. Spacecraft Model

We consider a rigid body controlled by magnetic torque actuators. The rotational motion is described by Euler’s
equation, and the kinematics are given by Poisson’s equation. We define a body-fixed frame for the spacecraft, with
the origin located at the center of mass, and we use an Earth-centered inertial (ECI) frame to determine the attitude of
the spacecraft. Thus, the spacecraft motion is described by

Jscw = (Jscw) X w + Bscu + Zdist, Q)
R = wa7 (2)

where w € R? is the angular velocity of the body frame with respect to the ECI frame resolved in the spacecraft frame
and Jgc € R3*3 is the constant inertia dyadic of the spacecraft relative to the spacecraft center of mass resolved in
the spacecraft frame. The proper orthogonal matrix (that is, the rotation matrix) R € R3*3 transforms the components
of a vector resolved in the spacecraft frame into the components of the same vector resolved in the inertial frame, and
w™ is the skew-symmetric cross-product matrix of w.

The product Bscu, where Bgc € R3*!, determines the applied torque about each axis of the spacecraft frame
due to the control input vector u € R'. The vector z, represents disturbance torques, that is, all internal and external
torques applied to the spacecraft aside from control torques. These disturbances may be due to onboard components,
gravity gradients, solar pressure, atmospheric drag, or the ambient magnetic field. For convenience in (1) and (2) we
omit the argument ¢, recognizing that w, R, u, and z,4 are time-varying quantities.

20f 18

American Institute of Aeronautics and Astronautics



Downloaded by UNIVERSITY OF MICHIGAN on April 2, 2014 | http://arc.aiaa.org | DOI: 10.2514/6.2013-4563

We assume that both rate (inertial) and attitude (noninertial) measurements are available. Gyro measurements
Yrate € R3 provide measurements of the angular velocity resolved in the spacecraft frame, that is,

Yrate = W. (3)
Attitude is measured indirectly using sensors such as star trackers. The attitude measurement is determined to be

Yattitude = R. (4)

For simplicity, we assume that both rate and attitude measurements are available without noise and that gyro bias, if
present, has been corrected.

The objective of the attitude control problem is to determine control inputs such that the spacecraft attitude R
follows a commanded attitude trajectory given by a possibly time-varying C* rotation matrix Rq(t). Fort > 0, Rq(t)
is given by

Rd(t) = Ry (t)wd (t)x, 5
R4 (0) = Ryo, (6)

where wq is the desired, possibly time-varying angular velocity. The attitude error, that is, the rotation between R(t)
and Rq(t), is given by

RERTR, 7
which satisfies Poisson’s equation
R=Ra*, @®)
where the angular velocity error @ is defined by
52 w- Rw,. ©)

III. The RCAC Algorithm

RCAC is a discrete-time output-feedback controller that minimizes the command-following error corresponding to
the performance variable z. The algorithm does not require detailed plant information, instead, RCAC uses knowledge
of the system’s input response as described by Markov parameters. Although RCAC is derived for linear systems, we
apply it to the nonlinear spacecraft model by using Markov parameters from the linearized dynamics.

IILLA. The Extended System and Retrospective Cost

Consider the MIMO discrete-time linear system

xz(k+1) = Az(k) + Bu(k), (10)
z(k) = Exa(k) — Eor(k), (11)

where z(k) € Rz, 2(k) € R=, u(k) € R, r(k) € Rl7, and k > 0. We can rewrite (11) as
z(k) = E1Az(k — 1) + E1Bu(k — 1) — Eor(k). (12)
Then, we collect the terms in (12) such that
z(k) = S(k) + Hu(k — 1), (13)
where
S(k) = By Ax(k — 1) — Eor(k) (14)

and H = F B is the first Markov parameter of the system.
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For a positive integer s, define the extended performance as

z(k)
_ k—1
2= | Y
z(k —s)
=S(k)+ HU(k - 1), (15)
where
[ S(k)
_ S(k—1) l
S(k) = ] € R, (16)
| S(k—s)
[ x®
_ H
H — 6 Rslzxslu’ (17)
i H
[ w(k—1)
_ u(k —2
Uk—-1)= ) € Relw, (18)
| u(k —s)

We replace the control inputs in (15) with the retrospective controls U (k— 1) and define the extended retrospective
performance

Z(k) = 8(k) + HU(k — 1). (19)
Next, we subtract the extended performance in (15) from the extended retrospective performance in (19) and obtain
Z(k) = Z(k) — HU(k — 1) + U(k — 1). (20)

We wish to find the retrospective control inputs U (k — 1) that minimize the retrospective performance Z (k).
Thus, we define the retrospective cost function

JU K —1),k) & Z°(k)Rz (k) Z(k) + Uk — 1) Ry (k)T (k — 1) Z(k), @21)

where Rz (k) € R¥:=*sl= and Ry; (k) € R®'>5lu are positive-definite weighting matrices on the performance and the
control respectively. Using (20) we rewrite the cost function as

JU(k —1),k) = Uk — )TAMR)U(k — 1) + U (k — )BT (k)U + €(k), (22)
where
A(k) £ B Ry (k)H + Ry (k), (23)
B(k) £ 20T Rz (k)| Z(k) — HU(k — 1)), (24)
C(k) 2 ZT(k)Rz(k)Z(k) — 22" (k)Rz (k)HU (k — 1) + U (k — VA Rz (k)HU (k — 1). (25)

If A(k) is positive definite, the unique minimizer for J(U (k — 1), k) is

Uk —1) = —%A‘l(k)ﬁ(k). (26)
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III.B. Controller Construction

We utilize the retrospective controls U (k — 1) in order to compute the next control input u(k). We design a strictly
proper time-series controller of order n. given by

u(k) =Y Mi(k)u(k —i) + > Ni(k)z(k — i), (27)
i=1 i=1
where, foralli = 1,...,n., M;(k) € Rl«*!w and N;(k) € R'*!=, The control (27) can be expressed as
u(k) = 0(k)p(k — 1), (28)
where
O(k) S [Mi(k) -+ My (k) Ni(k) -+ Ny, ()] € Rixneltls), (29)
and
[ w(k—1)
o | u(k —ne) ne(lutlz)
k—1) = € RMeVutez), 30
k-1 2| o0
| z(k—ne) |

ITII.C. Recursive Least Squares Update of (k)

We compute the parameter 6(k) by solving a recursive least squares problem. In order for the applied controls
U (k) to approach the retrospective controls U (k) we minimize the cost function

T(0(k)) £ [a(k) — u(k)|"[a(k) — u(k)],
— [a(k) — 0(k)p(k — 1)]"[a(k) — 6(k)d(k — 1)],
— (k) — 0(k)p(k — 1)) 31)

The minimizer for (31) is

0T (k) £ 0T (k — 1) + P(k — 1)o(k — gy — D[6"(k — g, — VP(k — Do (k — g, — 1]}
[0k = )k — g — 1) — ik — )] (32)
The error covariance is updated by

P(k) 2 P(k—1) — P(k - 1)g(k — g, — 1)

¢T (k= gy — )Pk = 1)¢(k — gy — V)] "o (k —qg — Pk —1). (33)

IV. Modifications to RCAC for Magnetic Control of Spacecraft Attitude

RCAC is applied to discrete-time linear systems where the state x(k) in (10) is a vector. However, the spacecraft
equations (1), (2) are nonlinear, and the attitude state R is a matrix. Thus, the spacecraft equations must be modified in
order to apply RCAC as developed in SectionlII Furthermore, the magnetic constraints on the control torque introduce

additional difficulties in the computation of the retrospective controls U (k — 1) in (26) and the implementation of the
control input u(k) in (28).

Thus, we develop the equations for a vector performance variable z and obtain a suitable matrix J{ for the nonlinear
spacecraft equations based on the linearized system. Then, we present a torque-allocation scheme to transform the
torques computed by RCAC into magnetic dipoles. Finally, we develop two methods for managing the rank deficiency
in H caused by the singular input matrix.
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IV.A. Performance Variable for Attitude Control

We express the rotation matrix R as
R=| 7 |, (34)

where, fori =1,2,3,7; € R1*3 is a row of R. As in [11], we define the vector state
A T
= {fl 7 773} . (35)
Next, we utilize the attitude error vector in [ 4] given by
AS
SE3 g (RTe,;) X e; = —M, RyF, (36)
1
where the constants a; are positive and distinct, the vector e; € R for i = 1,2, 3 is the ith column of the 3 x 3 identity
matrix, and
M, = [ el el e },GR?’XS) (37)

arls
asls € R, (38)

asls

R,

Including the angular velocity error in (9) yields the performance variable

w
z= . 39
i @)
IV.B. Markov parameter

We rewrite (1) and (2) using the errors 7 and & such that
& = Jgg [[Jsc (@ + D(wa)r)] x (@ + D(wa)r)] + & x [D(wa)r] — D(@a)r + Joi (Bscu + za),  (40)

where, for z € R? with components =1, T2, T3,

>

D(x) x1d3  wolz 2313 (41)

and

—0x

5% . 42)

el
Il
|

&

We compute the discrete-time system matrices A, B, E; by linearizing (40) and (42) about &, = 0 and R=1
followed by discretization with the controller time step /. Linearization yields the continuous-time dynamics matrices

[ O3x3  O3x9

A, = , 43
i —MYT 09y ] @)
[ -1

B, = | JscBsc | (44)
| Ooxs

c.=| B8 Do | 45)
L 03><3 *MaRa
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Discretization of A., B.., C. with the controller time step h yields

_ Ach _ I3 03x9
A= eheh = l e (46)
h _
B= / Adr | B, = hthSTCI Bsc : 47)
0 _7Ma JSC Bsc
E, =C.. (48)

The Markov parameter corresponding to the performance in (39) is given by

—1
H=FEDB= [ - hJSCE’;SCfl : (49)
sh* M R,M; J3¢ Bsc
As in [11], we remove the inertia information from JH and define
HZa| | hBsc , (50)
§h2MaRaMEBSC

where « is a positive scalar.

IV.C. Magnetic Dipole Allocation

The command u computed by RCAC is the desired torque. However, the magnetic coils must generate these
torques using a magnetic dipole command d. Given the control torque © commanded by RCAC we must compute the
required dipole d. The resulting dipole creates a torque vector that is orthogonal to the local, time-varying magnetic
field b(t) € R3.

The torque obtained from a magnetic dipole d(¢) and the Earth’s magnetic field b(¢t) is given by

7(t) = —b(t)*d(t). (€29)

We replace 7 in (51) with the desired control torque u, and solve formally for d by using the generalized inverse of the
skew-symmetric matrix b(¢)*,

x+ _
PO = T 2
and obtain
d(t) = —b(t)* Tu = bé;?;@u (53)

The generalized inverse projects the desired torque onto the plane orthogonal to b(¢) and allocates the necessary dipole
d(t). Thus, the control torque applied to the spacecraft is

7(t) = —b(t)*d(t) = Bsc(t)u, (54)
where
—b(t)*b(t)*
Bl 2 59)

Note that, at each time instant, the rank of Bgc(¢) is 2.
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V. Rank deficiency of Bsc

In previous approaches to spacecraft attitude control [11], [12], [13], RCAC was set up as a multi-input, multi-
output controller. The input matrix Bsc(¢) in (1) is used to compute the Markov parameter matrix H in (17). However,
since b(t)* is skew symmetric, H is rank deficient, which prevents the inversion of A in (26) in the absence of the
control weighting matrix Ry. Although it is possible to create a full rank A by using the control weighting matrix
Ry, numerical studies suggest that this does not result in a successful control law.

Thus, to ensure that the product HTR,H in (23) is invertible, we propose two modifications to the previous
attitude control RCAC implementations. The first approach utilizes the average of the input matrix Bgc/(t). This
average matrix is shown in [ 1 5] to have full-rank for orbits that are non-equatorial, thus the resulting Markov parameter
is left invertible. The second approach uses an alternate control architecture including three separate multi-input,
single-output RCAC controllers instead of one multi-input, multi-output controller.

V.A. Averaged Markov parameter

Define the input matrix Bsc(t) resolved in the ECI frame as

Bsc(t)| = Bhe(®) W (56)

where () is the magnetic field vector resolved in the ECI frame. Next, we compute the average of B (t) over
several orbits

T
Bl = lim 1 / Bl (t)dt. (57)
T Jo

T—o0

The averaged input matrix (57) is used to prove controllability and stability in [15]. We use this approach to obtain a
full rank Markov parameter for RCAC. First, we transform the averaged input matrix into the spacecraft body frame

Bsc £ BgC‘B = R'BL.R. (58)

Then, using the average matrix in resolved in the body frame we construct the average Markov parameter

15
H=a [ 1,2 "Jsc BTSC—l A ' (59)
sh*M,R,M, Jsc Bsc
As in (50), we remove the inertia and obtain,
- hB
H=a| S , (60)
5h*M,R,M; Bsc

which is left invertible for non-equatorial orbits.

V.B. Decentralized RCAC

For the second method, we synthesize the desired torque u using three independent multi-input single-output
RCAC control loops. A similar architecture is used in [16] for angular velocity control using a heuristic approach to
controller construction. We define the performance for each RCAC block as

2i(k) 2 [ wi

5 | = Cib), 1)

where S; and @; are the ith components of S and @, respectively, and

T

cra| & Do) (62)
O1x3 €;
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We rewrite (61) using (10) and obtain

3
zi(k) = C{EyAz(k — 1) + Y _ C{E1Beju;(k — 1), (63)

j=1

where u; (k) is the jth component of u(k).
To compute the Markov parameter we assume that the sensor and actuator frames are aligned and that each com-
ponent of the performance z (k) is only affected by the corresponding component of the control u(k — 1) such that

Thus, the Markov parameter for the ith multi-input, single-output RCAC is

j‘fi<t) = C;ElBei (65)
T 7-1

: B

= 112 The'l JSC TSCEZ;) €;. (66)
sh?e; MyRo M, Jgc Bsc(t)
Removing the inertia yields
T
FHOEN Thei b SC(? e, (67)
§h 67,' MaRaMa Bsc(t)

which is left invertible. This approach ignores the coupling between axes and only requires knowledge of the alignment
between actuators and sensors.

VI. Numerical Examples

Parameter Value
Inclination 87°
Radius 450 [km]
Right ascension of ascending node 0
Argument of perigee 0
Mean anomaly 0
Period (Toybit) 5615 [sec]

Table 1. Orbital parameters.

parameter | Value
Ne 10
Py 1001
Ry 101
6o 0

a1 1

a9 2

as 3

h 10 [sec]
o 0.1

Table 2. RCAC parameters.

Consider a rigid spacecraft around a high-inclination circular orbit given by the orbital parameters in Table 1. The
magnetic field is computed using the International Geomagnetic Reference Field (IGRF) model [17]. Furthermore,
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all disturbances zq are assumed to be zero. The RCAC parameters used are shown in Table 2. Furthermore, the
performance weighting is given by

Rz =

6[3 0 ’ (68)
0 6213

where € is a positive number. The scaling requirements between the angular velocity and attitude error terms is
explained in [15]. For the M2R examples, we set € = 1072,

VI.LA. MZ2R Examples
Let the initial motion of the spacecraft be described by
T
w(0) = 0.001 { 0 -1 0 } rad/sec. (69)
We describe the initial and desired attitudes using eigenaxis rotations as defined by Rodrigues’ equation
RO, 1e) = cos(0e)I3 + (1 — cos(Be))nent + sin(fe)ny, (70)

where 6, is the eigenangle and 71, € R? is the eigenaxis. Thus, the initial attitude be given by an eigenaxis rotation of
6y = 90° about the vector

no = [ ~0.03 —0.9 0.03 }T. (71)

The goal of the controller is to bring the spacecraft to rest, that is, wg = 0, at the inertial attitude given by the eigenaxis
rotation of 8; = 96° about the vector

m=[11 1] (72)

We test the M2R maneuver on three different rigid bodies, namely, a sphere, a cylinder, and an arbitrary body.
We assume that the sensor and actuator axes are aligned such that the inertia matrices resolved in the body frame
are given by

Jsphere = dlag(l(), 10, 10) kg-mQ, (73)

Jeylinder = diag(10, 10, 5) kg-m?, (74)
5 -0.1 -0.5

Jarbitrary = |-0.1 2 1 kg-mQ. (75)

—-0.5 1 3.5

We compare the performance of both approaches to magnetic control for the M2R maneuver using the inertias
in (73), (74), and (75). Figure 1 shows the results for the sphere inertia, Figure 2 shows the results for the cylinder
inertia, and Figure 3 shows the results for the arbitrary inertia. The dipoles shown in the examples indicate that
both implementations, averaged and decentralized, command dipoles of the same magnitude given the same tuning
parameters in Table 2. Thus, we compare both approaches based on settling time of the eigenaxis attitude error
feig. For all three inertias, the centralized approach based on the average Markov parameter H settles faster than the
decentralized version based on the Markov parameter H.
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Figure 1. Comparison of RCAC using the average Markov parameter H versus the decentralized approach for the M2R maneuver for the sphere inertia
JIsphere in (73).
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Figure 2. Comparison of RCAC using the average Markov parameter H versus the decentralized approach for the M2R maneuver for the cylinder inertia
Jeylinder in (74).

120f 18

American Institute of Aeronautics and Astronautics



Downloaded by UNIVERSITY OF MICHIGAN on April 2, 2014 | http://arc.aiaa.org | DOI: 10.2514/6.2013-4563

35 T T T T 35 T T T T T

3 4 3 ,
25 4 2.5 ,
T 2 1 T 2 g
g o
) o
o°® 15 4 o® 15 ,
1+ 4 1 B
05} 4 0.5 B
0 i | 0 i
0 10 20 30 40 50 0 10 20 30 40 50 60
Orbits Orbits
(a) Eigenaxis attitude error for MIMO RCAC (b) Eigenaxis attitude error for decentralized RCAC
x107° x107°
1 1 .
— &)1
- - &)2
““““ w, ||
ko) o
(7] 7]
" 0
] 3
8 o
3 3 4
i i i i 15 i i i i i
10 20 30 40 50 0 10 20 30 40 50 60
Orbits Orbits
(c) Angular velocity for MIMO RCAC (d) Angular velocity for decentralized RCAC
0.04 : : : : 0.02 . . . . ;
—,
1 R
i 0015, 4, 1]
““““ d,

d [A-m?

-0.03 : : : : -0.015 : ; : : :
0 10 20 30 40 50 0 10 20 30 40 50 60
Orbits Orbits
(e) Commanded Dipole for MIMO RCAC (f) Commanded Dipole for MIMO RCAC

Figure 3. Comparison of RCAC using the average Markov parameter H versus the decentralized approach for the M2R maneuver for the sphere inertia
Jarbitrary i (75).
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The advantage of the centralized controller can be attributed to the dimension of the controller parameter 6 and
to the information about coupling of the axes in the average input matrix Bgc. The loss of information caused by
decoupling the input and output relations in (67) increases the settling time of the decentralized architecture in the
presence of the real time input matrix Bsc(¢).

We can also compare these approaches based on algorithm complexity and execution time. The dimension of the
control parameter 6 in (28) affects the memory requirements and time required to compute each control iteration. This
is an important factor for the application of these control laws on small spacecraft. For a controller of order n., the
averaged Markov parameter method needs to compute [, (L, +1,) = 27n. entries of 6. In contrast, the decentralized
approach requires 3l,n.(l, + 1) = 9n. entries. Thus, the decentralized approach yields similar settling times for
M2R maneuvers using a third of the computational cost.

VL.B. M2S Examples
We command the spacecraft to spin about a body axis aligned in a specific inertial direction. Let the initial angular

velocity and attitude of the spacecraft be as in Section VI.A. The desired angular rate

T
wy = 0.001 [ 0 -1 0 } rad/sec (76)

corresponds to a Nadir-pointing attitude. The desired attitude evolves over time according to (6) where the initial
desired attitude R4(0) is described by an eigenaxis rotation of §,(0) = 96° about the vector n4 in (72). We set the
controller parameters as in Table 2. Figures 4 and 5 show that both the MIMO controller with the averaged Markov
parameter and the decentralized approach are able to bring the spherical and cylindrical spacecraft into a spin about
an inertially pointed body axis.
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Figure 4. Comparison of RCAC using the average Markov parameter H versus the decentralized approach for the M2S maneuver for the sphere inertia
JIsphere in (73).
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Figure 5. Comparison of RCAC using the average Markov parameter H versus the decentralized approach for the M2S maneuver for the cylinder inertia
Jeylinder in (74).
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VII. Conclusions and Future Research

The RCAC algorithm was used to control spacecraft angular rate and attitude using magnetic torque actuators. The
torque command computed by RCAC was allocated into magnetic dipoles based on the generalized inverse of the skew
symetric cross-product matrix of the magnetic field vector. In order to utilize the RCAC framework, the nonlinear,
continuous spacecraft dynamics were linearized to obtain Markov parameters. The Markov parameter obtained was
then made left invertible through two different approaches, averaging and decentralized control.

The average of the input matrix used to compute the Markov parameter is positive definite for the high inclination
orbits which are of interest for most low-earth-orbit missions. Using the averaged Markov parameter an inertia free
stabilizing control law was developed. Numerical simulations show that the algorithm can achieve a M2R maneuver
and bring different spacecraft to rest at an inertial attitude.

The decentralized control approach assumes that the sensor and actuator axes are aligned. The three control inputs
are computed by independent RCAC controllers using different performance variables. This architecture results in a
multi-input, single-output system with left invertible Markov parameters. The decentralized RCAC approach was also
shown to complete the M2R maneuver for different inertias.

Comparison of the numerical results indicate that the averaged Markov parameter approach has better settling time
characteristics than the decentralized approach given similar RCAC tunings. However, the decentralized method uses
one third of the computational capacity of the averaged Markov parameter approach. Thus, the decentralized method
is better suitable for applications where computational capacity is limited and settling time requirements are flexible.
Furthermore, the settling time of the decentralized approach could be improved by modifying the performance variable
to account for the coupling present in the magnetic control formulation.

Future work will focus on extending the implementation of RCAC to use additional Markov parameters. Further-
more, the relation between the performance and controller weighting matrices and the magnitude of the control input
will be investigated. A stability analysis of the full closed loop system is also of interest. We also wish to investigate
the effects of noise on magnetic field measurement and to address the problem of attitude-only output feedback control
using RCAC. The problem of momentum dumping using magnetic torque is also of interest. Finally, we will test the
RCAC on a higher fidelity simulator which includes disturbances such as aerodynamic drag, gravity gradient, and
solar pressure.
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