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Discontinuous Galerkin (DG) methods have recently received much attention because of
their portability to complex geometries, scalability in parallel architectures and relatively
simple extension to high order. However, their implementation for compressible turbulence
problems is not straightforward, e.g., due to parameter-free limiting for orders greater
than first and the lack of a consistent high-order diffusion scheme for DG. To address this
last point, Van Leer proposed the idea of recovery-based discontinuous Galerkin (RDG)
approaches. In the present work, an explicit recovery-based diffusion scheme is developed
in three dimensions on a Cartesian grid to solve incompressible and slightly compressible
turbulence problems. It is shown that the selection of an optimal recovery and enhancement
basis preserves the super-convergence property of this scheme (eighth order for P = 2,
where P is the order of the polynomial basis) for the three-dimensional Navier-Stokes
equations. Test problems confirm the efficient and accurate application of the present
recovery-based discontinuous Galerkin method to incompressible and slightly compressible
turbulence problems.

I. Introduction

Discontinuous Galerkin (DG) methods combine advantages of finite volume (FV) and finite element
(FE) approaches into a single framework. The Galerkin formulation, borrowed from the FE methodology,
produces a high-order accurate and compact-stencil scheme with several advantages over high-order FV
and finite difference (FD) methods, such as their portability to complex geometries, scalability in parallel
architecture and relatively simple extension to high order. The discontinuous nature of the basis functions
in each cell introduces means for adding numerical dissipation in the convective terms, such that, unlike
traditional FE schemes, discontinuous solutions can be captured in a stable fashion. The DG method was
originally introduced for solving the steady-state neutron transport equation on triangular meshes,24 and
later analyzed.16, 18, 23, 25 The introduction of the Runge-Kutta DG (RKDG) method by Cockburn and
Shu7–10 made this approach appealing for time-dependent convection-dominated problems. The RKDG
method was shown to be well-suited to handle shocks through the use of slope limiters in one and two
dimensions, on rectangular and triangular meshes. Similar to FV schemes, DG methods use Riemann
solvers to determine the inter-cell flux and thus introduce the appropriate amount of dissipation at the
discontinuities.

However, the main difficulty preventing a simple extension to solving diffusive terms (i.e., second-order
derivatives or differences), such as in the Navier-Stokes equations, is the fact that derivatives are undefined
at cell edges due to the discontinuity in the basis functions between neighboring cells. Two main approaches
have been followed in the past: one in which gradient information is provided and which is stabilized by
interior penalty terms or artificial diffusion with adjustable parameters; and another more recent based on the
idea of recovery of the underlying function over neighboring cells. With the former, interior penalty methods
have been used for elliptic and parabolic problems.1, 6, 12 Another class of methods treat the second-order
partial differential equations as a system of first-order equations.2, 3, 11, 22 Such methods have been used to
solve for diffusive terms, but there is no consistent methodology and adjustable parameters are required. In
recovery,20, 21, 30–32 The discontinuity at the interface is removed in the weak sense by a local polynomial
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required to satisfy moments with the original solution in the elements that span the interface. The smooth
recovered function is used to compute the necessary function values and derivatives at the interface. The
resulting recovery-based discontinuous Galerkin method (RDG) is shown to be stable and have an accuracy
of at least 2P + 2 in one dimension, where P is the order of the polynomial in each cell. The method
does not require additional stabilizing terms and computes a unique value of the function derivative at
the interface, which depends only on the neighboring elements. The scheme has been extended to handle
nonlinear systems of equations through a solution enhancement that increases the local order of the solution
by using the recovered information. The enhanced information is further used to improve the order of the
recovered function in the transverse direction. Through this enhanced recovery process, the order of accuracy
of diffusive terms in two-dimensional nonlinear systems of equations, such as the Navier-Stokes equations,
is as good as for the one-dimensional linear diffusion equation. A similar approach has been followed for
two-dimensional unstructured grids.4

The extension of RDG to three dimensions is not straightforward. We show here that it is not possible to
achieve a full tensor product recovery basis after enhacement in the tangential Cartesian directions in three
dimensions. Instead, an incomplete basis is formulated, which is shown to preserve the same order of accuracy
as in one dimension, up to P = 2 polynomials. The performance of the resulting enhanced and recovered
DG scheme is assessed through numerical experiments for smooth problems, including incompressible and
slightly compressible (i.e., no shocks) broadband turbulence.

II. Governing equations

The governing equations are the three-dimensional compressible Navier-Stokes equations:

∂Q

∂t
+∇ · Fe(Q)−∇ ·Fv(Q,∇Q) = 0, (1)

where the vectors of conservative variables, convective flux and viscous flux are

Q = (ρ, ρu, E)T , (2a)

Fe(Q) = (ρu, ρu⊗ u+ pI,u(E + p))T , (2b)

Fv(Q,∇Q) = (0, τ ,u · τ + q)T . (2c)

Here, ρ is the density, p is the pressure, u is the velocity vector, E = ρe + ρu · u/2 is the total energy, e
is the internal energy and I is the identity tensor. Since the fluid is assumed newtonian and making use of
Stokes’ assumption, the components of the viscous stress tensor τ are given by

τij = µ

[(

∂ui

∂xj
+

∂uj

∂xi

)

−
2

3
δij

∂uk

∂xk

]

, (3)

where µ is the viscosity, which follows a power law in terms of its dependence on temperature:

µ = µref

(

T

Tref

)3/4

, (4)

where T is the temperature and µref and Tref are reference values. The heat flux q is given by Fourier’s law

q = −k∇T, (5)

where k is the thermal conductivity. The fluid is assumed to be a calorically perfect gas

p = ρRT = (γ − 1)ρe, (6)

where R is the gas constant and γ is the ratio of specific heats. In the present calculations, the following
values are used for the constants: R = 287 J/kgK, γ = 1.4 and the Prandtl number Pr = µcp/k = 0.71,
where cp is the specific heats at constant pressure.
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III. Numerical methodology

A. Galerkin formulation

Let D ⊂ R
n be a domain spatially discretized into Ne non-overlapping elements Ωe with associated spaces

of discontinuous functions V and W such that

D =

Ne
∑

i=1

Ωi, V = {v ∈ V : v ∈ P k}, W = {φ ∈ W : φ ∈ P k}, (7)

where P k is the space of polynomials of at most degree k. In the current work, Cartesian hexahedral elements
are used in three dimensions. In the standard Galerkin approach, the test function space W is taken to be
the same as the solution space V .

Multiplying the system of equations 1 by a piece-wise smooth function φ and integrating over the volume
of an element, one obtains the weak formulation of the equations in each Ωe. After integration by parts, this
becomes

∫

Ωe

∂tQhφdx+
∑

e∈∂Ωe

∫

e

(Feh − Fvh) · ne,ΩeφdΓ +

∫

Ωe

(Feh − Fvh) · ∇φdx = 0, ∀φ ∈ W, (8)

where the subscript h denotes Galerkin approximations and ne,Ωe is the unit normal along a given face.
From here on, the boldface denoting vectors and tensors is dropped for simplicity. To compute the inviscid
fluxes Feh, upwinding is required. For this purpose, the Roe approximate Riemann solver26 is used with a
transonic entropy fix.13 The viscous fluxes Fvh are computed using recovery.30 The boundary terms are
evaluated using a Gaussian quadrature.

Scaled Legendre polynomials are chosen as basis functions, e.g., vki is the kth degree solution basis function
in element i. In multiple dimensions, a tensor product of the basis functions in each Cartesian direction is
used to form the solution basis. The tensor basis is chosen such that the same high order is achieved in
multiple dimensions as in one dimension. The solution in each element is expanded as

Qi
h =

∑

k

aki (t)v
k
i , (9)

where aki (t) is the coefficient of the kth degree basis function in element i. Elements up to P = 3 in one
dimension and up to P = 2 in three dimensions are considered in the present work. Eq. 8 can be written in
semi-discrete form as

dQh

dt
= M−1R(Qh), (10)

where M is the (diagonal) mass matrix and R is a nonlinear difference operator.

B. Time marching

The system of ordinary differential equations 10 is solved using explicit Runge-Kutta schemes. The order of
the time marching is chosen to be as close as possible to the order of the spatial discretization, while still

being efficient. The accuracy for the convective terms is generallyK+1 for a Kth degree polynomial basis; it
will be shown that for diffusion using recovery the order is at least (2K+2), even in three dimensions. Thus,
for K = 1, the third-order scheme27 is used, while the standard fourth-order Runge-Kutta scheme is used
for K > 1. Although not used here, time-marching schemes specifically designed for broadband problems
may improve the performance.14

C. Enhanced recovery for the viscous fluxes

1. Recovery

The recovery procedure is described here for a Cartesian grid with regular hexahedral elements. Let Ωi,j,k

and Ωi+1,j,k be adjacent elements sharing an interface Si+1/2,j,k, and let (xi, yj , zk) be the location of the
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center of element Ωi,j,k with xi+1/2, yj+1/2, zk+1/2 being the x, y, z locations of the respective boundaries.
The following local coordinates are used in each element Ωi,j,k

ξ =
x− xi

2/∆x
, η =

y − yj
2/∆y

, ζ =
z − zk
2/∆z

, (11)

and interface Si+1/2,j,k

r =
ξ − 1

2
, s = η, t = ζ, [x, y, z] ∈ Ωi,j,k, (12a)

r =
ξ + 1

2
, s = η, t = ζ, [x, y, z] ∈ Ωi+1,j,k, (12b)

where r is the x-coordinate of Ωi,j,k ∪ Ωi+1,j,k and s and t the y- and z-coordinates of Ωi,j,k ∩ Ωi+1,j,k,
respectively, with [r, s, t] ∈ [−1, 1].

The recovered function F̂ (r, s, t) is obtained by matching its moments with those of the approximate
solution Qh over both of the adjacent cells:

∫ ∫ ∫

Ωi,j,k

Qhv
m
i,j,kdxdydz =

∫ ∫ ∫

Ωi,j,k

F̂ vmi,j,kdxdydz, (13a)

∫ ∫ ∫

Ωi+1,j,k

Qhv
m
i+1,j,kdxdydz =

∫ ∫ ∫

Ωi+1,j,k

F̂ vmi+1,j,kdxdydz, m = 1, 2, . . . , (K + 1)3. (13b)

Thus, a linear system is obtained, which can be solved to obtain the new coefficients.
The extension to multiple dimensions is not trivial. The choice of a basis for the recovered function plays

a critical role in the recovery procedure. Simple monomials can be used for the one-dimensional case, which
led to a recovered function of degree 2K + 1 and was extended to two dimensions.21, 31 It was shown that
recovery had to be directional to ensure that the recovery matrix is full-ranked. In other words, this means
that an x-recovery only produces a polynomial of degree 2K+1 in r, with the degree being a mere K in the
s and t directions.

2. Solution enhancement

The concept of interior solution enhancement was introduced for improving both the face-tangential order
of the recovered function and the order of the original solution in the volume integral of Eqs. 13.20 This
procedure is important because the presence of derivatives in the viscous fluxes reduces the degree of the
original polynomial and thus the accuracy of the volume integral. The enhanced solution Q̂h in each element
is determined by requiring it to satisfy moments with the initial recovered function at the cell edges. In the
x-direction, one obtains:

∫ ∫ ∫

Ωi,j,k

Q̂hv
m
i,j,kdxdydz =

∫ ∫ ∫

Ωi,j,k

Qhv
m
i,j,kdxdydz, m = 1, 2, . . . , (K + 1)3, (14)

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

Q̂hv
m
i,j,k

∣

∣

∣

xi±1/2

dzdy =

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

F̂ vmi,j,k

∣

∣

∣

xi±1/2

dzdy, m = 1, 2, . . . , (K + 1)2. (15)

Eq. 14 states that the enhanced solution shares all the moments with the original solution, i.e., the coefficients
of the original solution are unaltered. Eq. 15 determines the 2(K+1)2 higher-order terms in the x-direction.
The solution order in y and z is similary enhanced by sharing moments with the y and z recovered functions
Ĝ and Ĥ along the y and z edges, respectively. The x-, y- and z-enhanced solution then replaces the original
one in the volume integral for the viscous flux in Eqs. 2.

3. Enhanced recovery

The enhanced solution is subsequently used to perform an enhanced recovery in order to increase the degree
of the recovered function in the face-tangential directions. Both of these steps are necessary for a truly
multi-dimensional extension of the original one-dimensional recovery scheme.30
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The following procedure is carried out: the y- and z-enhanced solution is used for the x-recovery. This
technique, known as Cartesian optimization, is required to maintain a compact stencil. The equations for
enhanced x-recovery are

∫ ∫ ∫

Ωi,j,k

Q̂h,yzv
m
i,j,kdxdydz =

∫ ∫ ∫

Ωi,j,k

F̂env
m
i,j,kdxdydz, (16a)

∫ ∫ ∫

Ωi+1,j,k

Q̂h,yzv
m
i+1,j,kdxdydz =

∫ ∫ ∫

Ωi+1,j,k

F̂env
m
i+1,j,kdxdydz, m = 1, 2, . . . , (K + 1)3 + 4(K + 1)2,

(16b)

where F̂en(r, s, t) is the enhanced recovered function in the x-direction, Q̂h,yz is the solution enhanced only

in the y and z directions. A similar procedure produces Ĝen(r, s, t), Ĥen(r, s, t), which are the enhanced
recovered functions in the y and z directions associated with the y and z boundaries of each element.
This procedure is followed to recover a smooth function for the conservative variables. From this smooth
function, the point values and derivatives at the cell interfaces, necessary to compute the viscous fluxes, can
be calculated.

While a three-dimensional extension of recovery is in principle similar to the two-dimensional version,20

the means to obtaining the resulting basis for the enhanced recovered functions is different in practice.
Specifically, a judicious choice of tensor product coefficients bijk for the original solution guarantees a tensor
product basis for the initial recovery:

F̂ (r, s, t) =

2K+1
∑

i=0

K
∑

j=0

K
∑

k=0

bijkr
isjtk. (17)

The use of interior solution enhancement increases the order of the original solution in each direction. Here,
only a tangential enhancement is used for the enhanced recovery while the full interior enhanced solution is
used for computing the volume integral for the viscous flux. The basis for full solution enhancement is as
follows:

Q̂h,xyz =
K
∑

i=0

K
∑

j=0

K
∑

k=0

aijkX
i
Y

j
Z

k
+

K+2
∑

i=K+1

K
∑

j=0

K
∑

k=0

âijkX
i
Y

j
Z

k
+

K
∑

i=0

K+2
∑

j=K+1

K
∑

k=0

âijkX
i
Y

j
Z

k

+

K
∑

i=0

K
∑

j=0

K+2
∑

k=K+1

âijkX
i
Y

j
Z

k
, (18)

where X
i
, Y

j
and Z

k
represent the Legendre polynomial in x, y and z of degree i, j and k, respectively.

Clearly, the enhancements in x, y and z are decoupled. The result of this Cartesian decoupling is that the
enhanced recovery procedure does not produce a full tensor set, similar to what happens in two dimensions.20

Instead, an incomplete basis is obtained, e.g., in the x-direction:

F̂en(r, s, t) =
2K+1
∑

i=0

K
∑

j=0

K
∑

k=0

bijkr
isjtk +

2K+1
∑

i=0

K+2
∑

j=K+1

K
∑

k=0

bijkr
isjtk +

2K+1
∑

i=0

K
∑

j=0

K+2
∑

k=K+1

bijkr
isjtk, (19)

where bijk represents the coefficients of the basis for the enhanced recovered function. The basis in Eq. 19
lacks high order cross-terms in y and z because the enhancements in y and z being decoupled. However,
it is shown through examples that this incomplete basis does not diminish the order of accuracy in three
dimensions, up to K = 2.

In the current work, it is shown that this monomial basis for recovery results in acceptable conditions
numbers up to K = 2. For K > 2, the condition numbers become large, such that numerical errors in the
matrix inversion become significant.
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Table 1. L2 errors in the cell average of total energy of the manufactured solution problem at t = 1 for P = 2.
The convergence rate is approximately eigth-order.

grid size L2 errors L2 order

103 2.989e-9 –

203 1.287e-11 7.8593

263 1.618e-12 7.9043

IV. Numerical results

A. Manufactured solution

A three-dimensional implementation of a previous two-dimensional test case21 is employed to verify the
convergence properties of the diffusion scheme. The following manufactured solution is used:

ρ = 2, (20a)

ρu = ρv = ρw = e−t sin(2πx) sin(2πy) sin(2πz), (20b)

E = 5 + e−t sin(2πx) sin(2πy) sin(2πz), (20c)

where [x, y, z] ∈ [0, 1] and t ∈ [0, 1]. The boundary conditions are periodic in x, y,and z. The three-
dimensional Navier-Stokes equations are solved by setting the convective terms to zero and adding appro-
priate source terms to each equation to make Eqs. 20 the exact solution. A constant viscosity coefficient of
0.1 and a Von Neumann number (VNN) of 0.05 for P = 2 is used. The choice of VNN, although well above
the stability limit for the RDG scheme, prevents the temporal errors from dominating over spatial errors
and hence affecting the convergence rate.

The convergence of the scheme is shown in Table 1 for P = 2. Even though the enhanced recovery
basis is not a complete tensor set, one obtains the same order for a three-dimensional nonlinear system of
equations as for the one-dimensional linear diffusion equation30 using the RDG method, namely eighth order
for P = 2. The size of the finest grid, 263, is chosen such that errors at the round-off level do not contaminate
the results. Although not shown here for conciseness, fourth order is obtained for P = 1, as expected.

B. Turbulence

1. Taylor-Green vortex

The viscous Taylor-Green vortex28 is a problem in which, from a well-resolved initial condition, the flow
transitions to turbulence by three-dimensional vortex stretching, thus the generating small scales. The
three-dimensional compressible Navier-Stokes equations are solved using the present RDG method. The
initial conditions are given by:

u = Vo sin
( x

L

)

cos
( y

L

)

cos
( z

L

)

, (21a)

v = −Vo cos
( x

L

)

sin
( y

L

)

cos
( z

L

)

, (21b)

w = 0, (21c)

p = po +
ρoV

2
o

16

[

cos

(

2x

L

)

+ cos

(

2y

L

)][

cos

(

2z

L

)

+ 2

]

. (21d)

The Mach number is small enough such that the solution is very close to the incompressible solution:
Mo = Vo/co = 0.10. The initial temperature is uniform. The Reynolds number for this flow is Re =
ρoVoL/µ = 1600. The computational domain is −πL ≤ x, y, z ≤ πL and the boundary conditions are all
periodic. Time is non-dimensionalized by tc = L/Vo. These initial conditions were those specified in the
1st International Workshop on High Order CFD Methods (January 7–8, 2012), as part of the 50th AIAA
Aerospace Sciences Meeting, for which a reference solution was provided using a finite difference code.

The mean kinetic energy and enstrophy are plotted in Fig. 1 for P = 2 and the following grids: 323,
643 and 963. Small scales are generated by vortex stretching from the beginning, achieving the highest
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(a) Kinetic energy. (b) Enstrophy.

Figure 1. Temporal evolution for the Taylor-Green vortex for P = 2. Convergence is not quite achieved on
the current grids at this Reynolds number.

turbulence intensity at t ≈ 9, after which decay occurs. For the total kinetic energy, the solution on 643

already lies essentially on top of the reference. In the enstrophy plots, the results agree with semi-analytical
results5 at early times. Beyond that time, enstrophy is not quite converged, even on 963.

2. Compressible isotropic turbulence

The problem of decaying compressible isotropic turbulence17 is adapted here to evaluate the performance
of the present RDG method. In that problem, the turbulent Mach number Mt is such that weak shocks
(eddy shocklets), produced by the turbulent motions, form spontaneously. For the present purposes, slightly
compressible turbulence (Mt = 0.2) is considered, such that shocklets do not form. Thus, no limiting is
required since the solution is sufficiently smooth. This problem tests resolution properties of the present
RDG method, i.e., the capability to handle broadband turbulent motions. It is noted that Mt = 0.3 leads
to the formation of shocklets only early in time.15

The initial conditions consist of initially constant pressure and density fields, with a random solenoidal
velocity field with the following statistical description (in wavenumber space):

E(k) ∼ k4 exp

[

−2

(

k

k0

)2
]

, (22)

where k0 = 4 is taken to be the most energetic wavenumber. The initial root-mean-square velocity urms,0 is
given by

3u2
rms,0

2
=

1

2
〈u0 · u0〉 =

∫

∞

0

E(k)dk, (23)

such that turbulent Mach number and Taylor-scale Reynolds numbers are given by:

Mt =

√

〈u · u〉

3
, (24a)

Reλ =
〈ρ〉urmsλ

〈µ〉
, (24b)

where λ is the Taylor microscale. Initially, λ0 = 2/k0, and Reλ,0 = 100. Periodic boundary conditions are
used on 0 ≤ x, y, z ≤ 2π, and time is non-dimensionalized by the eddy turn-over time, λ0/urms,0.

The temporal evolution of the mean turbulent kinetic energy, enstrophy and dilatation is shown in Fig. 2
for using P = 2 on the following grids: 323, 643, 963 and 1283. Initially, because the initial conditions are not
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(a) Kinetic energy. (b) Enstrophy.

(c) Dilatation.

Figure 2. Temporal evolution in the compressible isotropic turbulence problem (Mt = 0.2, Reλ = 100) using
P = 2. Although kinetic energy and enstrophy show a converged behavior, the dilatation does not on the
current grids.

in equilibrium, acoustic and entropy waves are produced and interact with the randomly distributed vorticity
waves to transition to a fully-developed turbulent regime, after which the turbulence decays. For Mt,0 = 0.2,
shocklets never develop, such that limiting (e.g., hierarchical reconstruction) needs not be applied. As for
the Taylor-Green vortex, the turbulent kinetic energy is well captured, even on the coarsest grid. The
enstrophy appears to match the reference solution on 963. However, the dilatation remains underpredicted,
even with 1283 points. It should be noted that dilatation is generally a more challenging quantity to represent
accurately.15

V. Conclusions

In the present work, the recovery procedure proposed by Van Leer30 has been extended to three dimen-
sions to simulate broadband turbulent flows explicitly. It is shown that it is not possible to achieve a full
tensor product recovery basis after enhacement in the tangential Cartesian directions in three dimensions.
Instead, an incomplete basis is formulated, which is shown to preserve the same order of accuracy as in one
dimension, up to P = 2 polynomials. The selection of an optimal recovery and enhancement basis preserves
the super-convergence property for smooth problems with the three-dimensional Navier-Stokes equations.
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Several moderately compressible turbulence problems (Taylor-Green vortex, decaying isotropic turbulence)
are considered to evaluate the performance and resolution properties of the RDG method for broadband
turbulence. Although a fully converged solution is not quite achieved, the results indicate that the present
approach is viable for direct numerical simulation (DNS).

The next logical step for this work is to extend the formulation to compressible turbulence with shocks.
For this purpose, some form of limiting is required. However, a significant challenge is lies in the fact
that the introduction of numerical dissipation artificially damps the small turbulent scales in compressible
turbulence problems.15 Preliminary compressible turbulence results will be presented and the approach
based on solution-adaptive hierarchical limiting will be discussed at the meeting.

The development of recovery-based DG methods for (compressible) turbulence has far-reaching implica-
tions. High-order RDG methods are ideally suited to complex geometries and non-Cartesian grids, because
of their accuracy and locality, compared to high-order finite difference methods, which lose their accuracy
on non-uniform grids, and finite volume schemes, which become computationally expensive and non-trivial
to implement on unstructured grids. Thus, the present work makes using high-order methods on practical
engineering problems more approachable, whether for DNS or explicit large-eddy simulation (LES), for both
incompressible and compressible turbulence, even on non-Cartesian grids.
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