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Nonlinear estimation techniques are often used to estimate constant and time-varying

parameters. The purpose of this paper is to use illustrative examples to compare the accu-

racy of several estimation techniques (the extended Kalman filter, the unscented Kalman

filter, and the ensemble adjustment Kalman filter) along with retrospective cost model

refinement. Both constant and time-varying examples are considered. Each algorithm is

tuned to illustrate its capabilities for the given examples.

I. Introduction

In many modeling and control applications, the structure of the model is known, but the parameters
may be uncertain. Within the context of system identification, models of this type are called white box
models. In contrast, models whose structure is either partially or fully unknown are called grey-box and
black-box models, respectively.

Parameter-estimation is related to, but distinct from, state estimation, where states evolve due to
external inputs and their interaction with other states. In contrast, an unknown parameter may either be
constant or time-varying in a pre-specified manner that is independent of initial conditions and outputs.
Although a constant or time-varying parameter is not technically a state, it can be modeled as a state
by assigning it fictitious dynamics and stochastic forcing. In continuous time, these dynamics are ẋ = w,
whereas, in discrete time, these dynamics are x

k+1

= x
k

+w
k

, where w is the external forcing. For a system
with linear dynamics, the resulting state estimation problem is nonlinear due to the multiplication between
“real” and “fictitious” states.

State-estimation techniques are widely used for parameter estimation [1–3]. Among the earliest works
is the classic paper [4], which analyzes the accuracy of the extended Kalman filter within the context of
linear dynamics. Convergence analysis of the extended Kalman filter is provided in [5].

Beyond the extended Kalman filter, nonlinear estimation techniques have been developed based on
a wide variety of techniques, including stochastic ensembles [6–8], deterministic ensembles [9, 10], Gaussian
mixtures [11], density estimators [12], Fokker-Planck solutions [13], moving horizon techniques [14], and
adaptive estimators [15, 16]. Each of these techniques can potentially be applied to parameter estimation.
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With this plethora of techniques available, it is of interest to evaluate the relative accuracy of these
methods for parameter estimation. The goal of this paper is thus to apply several nonlinear estimation
techniques to two examples, namely, a mass-spring structure and linearized aircraft dynamics. These low-
order examples are chosen to provide a transparent setting for numerical studies. The methods we consider
are the extended Kalman filter [3–5], the unscented Kalman filter [2], the ensemble adjustment Kalman
filter [6], and retrospective cost model refinement. We consider both constant and time-varying parameters
as well as the e↵ects of noise.

II. Problem Statement

Consider the multi-input, multi-output discrete-time system

x(k + 1) = A((k))x(k) +Bw(k), (1)

y(k) = Cx(k) + v(k), (2)

where x(k) 2 Rn is the unknown state, w(k) 2 Rm is an unknown input, y(k) 2 Rp is the output, v(k)
is measurement noise, (k) 2 R is an uncertain possibly time-varying parameter, and A((k)) 2 Rn⇥n,
B 2 Rn⇥m, and C 2 Rp⇥n. The goal of this study is to estimate (k). For simplicity in comparing
estimation algorithms, we consider only the case where a single entry of A((k)) is uncertain.

III. Parameter Identification Algorithms

To estimate the unknown parameter in (1), we use four algorithms, namely, the extended Kalman
filter (EKF), the unscented Kalman filter (UKF), the ensemble adjustment Kalman filter (EAKF), and
retrospective cost model refinement (RCMR). For the Kalman filter approaches, we treat (k) as an unknown
state, and we augment the state vector to include (k). In RCMR we model the unknown parameter as an
unknown subsystem. In this section, we briefly describe UKF, EAKF, and RCMR.

III.A. Unscented Kalman Filter

The UKF approach to state estimation of nonlinear systems is developed in [9]. UKF does not use
the Jacobian of the dynamics or a factorization of the dynamics to propagate a pseudo error covariance.
The starting point for UKF is a set of sample points, that is, a collection of state estimates that capture
the initial probability distribution of the state. Let x 2 Rn, and let P 2 Rn⇥n be positive semidefinite. The
unscented transformation provides 2n + 1 ensembles X

i

2 Rn and corresponding weights �
x,i

and �
y,i

, for
0 = 1, . . . , 2n, such that the weighted mean and weighted variance of the ensembles are x and P , respectively.
Specifically, let S 2 Rn⇥n satisfy

SST = P, (3)

and, for all i = 1, . . . , n, let S
i

denote the ith column of S. For ↵ > 0, the unscented transformation
X =  (x, S,↵) 2 Rn⇥(2n+1) of x with covariance P = SST is defined by

X
4
=

8
><

>:

x, i = 0,

x+
p
↵S

i

, i = 1, . . . , n,

x�
p
↵S

i�n

i = n+ 1, . . . , 2n.

(4)

The parameter ↵ determines the spread of the ensembles around x. Next, define the weights �
i

2 R by

�
0

4
=

↵� n

n
, �

i

4
=

1

2↵
, i = 1, . . . , 2n, (5)
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Then,

2nX

i=0

�
i

X
i

= x,

2nX

i=0

�
i

(X
i

� x)(X
i

� x)T = P. (6)

The unscented transformation (3)-(6) is the scaled unscented transformation given in [17]. This technique
ensures that the distance between x and the sample point X

i

does not increase as n increases.

UKF uses the unscented transformation to approximate the error covariance and estimate the state
x
k

. Letting x�
0

be an initial estimate of x
0

with error covariance P�
0

, the data assimilation step of UKF is
given by

x+

k

= x�
k

+K
F

(Y
k

� y�
k

), (7)

y�
k

= C
k

x�
k

, (8)

X+

k

=  (x+

k

, S+

k

,↵), (9)

P+

k

= P�
k

�K
k

P
yy,k

KT

k

, (10)

where

K
k

= P
xy,k

P�1

yy,k

, (11)

P
xy,k

=
2nX

i=0

�
i

(X�
i,k

� x�
k

)(Y �
i,k

� y�
k

)T, (12)

P
yy,k

=
2nX

i=0

�
i

(Y �
i,k

� y�
k

)(Y �
i,k

� y�
k

)T +R
k

, (13)

Y �
i,k

= h(X�
i,k

, k), i = 0, . . . , 2n, (14)

where h(X�
i,k

, k) maps the input to the output and S+

k

2 Rn⇥n satisfies

S+

k

(S+

k

)T = P+

k

. (15)

The forecast step of UKF is given by

X�
i,k+1

= f(X+

i,k

, u
k

, k), i = 0, . . . , 2n, (16)

x�
k+1

=
2nX

1=0

�
i

X�
i,k+1

, (17)

P�
k+1

=
2nX

1=0

�
i

(X�
i,k+1

� x�
k+1

)(X�
i,k+1

� x�
k+1

)T = Q
k

, (18)

where f(X+

i,k

, u
k

, k) represents the dynamics of the nonlinear system. If the dynamics are linear, then UKF

is equivalent to the Kalman filter. Furthermore, in the linear case, P+

k

and P�
k

are the covariances of the
errors x

k

� x+

k

and x
k

� x�
k

, respectively. However, in the nonlinear case, P+

k

and P�
k

are pseudo-error
covariances.

At each time step k, the ensemble X+

k

is constructed using the unscented transformation based on a
square root S+

k

of P+

k

satisfying (15). However, the factor S+

k

satisfying (15) is not unique. For example, the
singular value decomposition or the Cholesky factorization can be used to obtain a square root of the pseudo-
error covariance P+

k

. Moreover, if S+

k

= Ŝ+

k

satisfies (15), then, for any orthogonal matrix U 2 Rn⇥n, the

matrix S+

k

= Ŝ+

k

U also satisfies (15). For linear dynamics, UKF is equivalent to the Kalman filter, and the
performance of UKF does not depend on the choice of S+

k

. However, for nonlinear dynamics, the performance
of UKF depends on the choice of S+

k

, although simulation results indicate that the performance of UKF is
similar for di↵erent choices of S+

k

.
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III.B. Ensemble Adjustment Kalman Filter

In this section we give a brief overview of the Ensemble Adjustment Kalman Filter (EAKF), as
described in [6]. Parameter estimation is performed in EAKF by augmenting the state estimate x̂

k

with the

parameter estimate ̂
k

. The augmented state vector X̂
k

=

"
x̂
k

̂
k

#
is initialized with N = 20 realizations of

a zero-mean normal random variable with a variance of 1. The time evolution of the state for each initial
condition constitutes an ensemble member. In addition to defining an augmented state, we define the joint
measurement-state vector ẑ

k

by

ẑ
k

=

"
X̂

k

ŷ
k

#
=

2

64
x̂
k

̂
k

ŷ
k

3

75 , (19)

where ŷ
k

is the measurement estimate given by ŷ
k

= Cx̂
k

. Accordingly, the dimension of ẑ
k

is n + 1 + l
y

.
By using the parameter-dependent matrices A(̂

k

) and B(̂
k

), the joint vector for ith ensemble member is
propagated in time by means of

ẑ�
k,i

=

2

64
A(̂+

k

)x̂+

k�1,i

+B(̂+

k

)w
k�1,i

̂+

k

Cx̂+

k

3

75 , (20)

where the superscript ”+” denotes a quantity after the assimilation step (posterior estimates) and the
superscript ”�” denotes a quantity prior to assimilation (prior estimates).

Next, the prior error covariance P�
k

can be approximated by calculating the sample covariance between
the ensemble joint vectors at step k as given by

P�
k

= �
X

N

i=1

(ẑ�
k,i

� µ[ẑ�
k

])(ẑ�
k,i

� µ[ẑ�
k

])T/(N � 1), (21)

where � is the inflation coe�cient, N is the number of ensemble members, and µ[·] denotes the sample mean
of its argument. At the next step, the matrix

A
k

= (FT

k

)�1GT

k

(UT

k

)�1BT

k

(GT

k

)�1FT

k

(22)

is used to update the posterior error covariance matrix P+

k

, where F
k

is obtained from the singular value
decomposition (SVD) of P�

k

= F
k

D
k

FT

k

, G
k

is a square root of D
k

, U
k

is obtained from the SVD of
GT

k

FT

k

HTR�1HF
k

G
k

= U
k

J
k

UT

k

, and B
k

is a square root of (I+J
k

)�1. The matrix H = [0
ly⇥n

I
ly ] selects

the measurement estimate from the vector ẑ
k

. The matrix A
k

can be thought of as an operator performing
a series of rotations and scalings in convenient reference frames. The posterior error covariance is then
computed using

P+

k

= A
k

P�
k

AT

k

. (23)

The updated mean of the ensemble is given by

µ[ẑ+
k

] = P+

k

[(P�
k

)�1µ[ẑ�
k

] +HTR�1

k

y
k

]. (24)

The final step in EAKF procedure consists of scaling and shifting the ensemble to have the updated covariance
(23) and mean (24), that is, for i = 1 . . . N , defined

ẑ+
k,i

= AT

k

(ẑ�
k,i

� µ[ẑ�
k

]) + µ[ẑ+
k

]. (25)

We note that (20) implies that the prior parameter estimate is not updated by the model, that is,
̂�
k

= ̂+

k

. This update is used since the time evolution of the parameter is unknown, which necessitates
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the use of inflation. More precisely, the fact that the model does not update the parameter estimate causes
the ensemble spread to approach zero, which can be remedied by manually spreading the ensemble. In
the following experiments we keep the ensemble variance of the sti↵ness estimate k̂�

k

constant by setting
the corresponding entry in P�

k

to a positive constant �2

i

. We also check the shape of the estimate sample
distribution and correct it if outliers are present. More precisely, if the maximum (minimum) ensemble
member reaches values above (below) three standard deviations from the ensemble mean, this ensemble
member is reset to a value of the mean plus (minus) one standard deviation. This solution is implemented
to prevent the estimate distribution from becoming highly non-Gaussian.

III.C. Retrospective Cost Model Refinement

Consider the MIMO discrete-time main system

x(k + 1) = Ax(k) +Bw(k) +D
1

u(k), (26)

y(k) = Cx(k) + v(k), (27)

y
0

(k) = E
1

x(k), (28)

where x(k) 2 Rn, y(k) 2 Rly , y
0

(k) 2 Rly0 , u(k) 2 Rlu , w(k) 2 Rlw , and k � 0. The main system (26)–(28)
is interconnected with the unknown subsystem modeled by

u(k) = G
s

(q)y
0

(k), (29)

where q is the forward shift operator. The system (26)–(29) represents the true system. The dynamics of
the true system can also be expressed as

x(k + 1) = (A+D
1

E
1

)x(k) +Bw(k). (30)

where  is the unknown parameter. We assume that the excitation signal w(k) is known. v(k) denotes
measurement noise.

Next, we assume a model of the main system of the form

x̂(k + 1) = Âx̂(k) + B̂w(k) + D̂
1

û(k), (31)

ŷ(k) = Ĉx̂(k), (32)

ŷ
0

(k) = Ê
1

x̂(k), (33)

where x̂(k) 2 Rn, ŷ(k) 2 Rlŷ , ŷ
0

(k) 2 Rlŷ0 , û(k) 2 Rlû . The model of the main system is interconnected
with the subsystem model

û(k) = Ĝ
s

(q)ŷ
0

(k). (34)

We choose Ĝ
s

(q) to be an FIR first order approximation of G
s

(q). The goal is to estimate the subsystem
model Ĝ

s

(q) by minimizing a cost function based on the performance variable

z(k)
4
= ŷ(k)� y(k) 2 Rlz . (35)

We estimate Ĝ
s

(q) by retrospectively reconstructing the signal û(k) that minimizes the performance at the
current time step. The reconstruction of û(k) uses minimal modeling information about the true system
(26)–(28), namely, a limited number of Markov parameters. We then use û(k) and ŷ

0

(k) to construct Ĝ
s

(q).
Figure 1 illustrates the model-refinement architecture.

We begin by defining Markov parameters of the main system model Ĝ(q). For i � 1, let

H
i

4
= ĈÂi�1D̂

1

. (36)
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Figure 1. Model-refinement architecture.

Therefore, H
1

= ĈD̂
1

and H
2

= ĈÂD̂
1

. Let r be a positive integer. Then, for all k � r,

x̂(k) = Ârx̂(k � r) +
rX

i=1

Âi�1B̂w(k � i) +
rX

i=1

Âi�1D̂
1

û(k � i), (37)

and thus

z(k) = ĈÂrx̂(k � r) +
rX

i=1

ĈÂi�1B̂w(k � i)� y(k) + H̄Ū(k � 1), (38)

where H̄
4
=

h
H

1

· · · H
r

i
2 Rlz⇥rlû , and Ū(k � 1)

4
=

h
ûT(k � 1) · · · ûT(k � r)

i
T

.

Next, we rearrange the columns of H̄ and the components of Ū(k � 1) and partition the resulting
matrix and vector so that

H̄Ū(k � 1) = H0U 0(k � 1) +HU(k � 1), (39)

where H0 2 Rlz⇥(rlû�lU ), H 2 Rlz⇥lU , U 0(k � 1) 2 Rrlû�lU , and U(k � 1) 2 RlU . Then, we can rewrite (38)
as

z(k) = S(k) +HU(k � 1), (40)

where

S(k)
4
= ĈÂrx̂(k � r) +

rX

i=1

ĈÂi�1B̂w(k � i)� y(k) +H0U 0(k � 1). (41)

For example, H̄ =
h
H

1

H
2

H
3

i
,

H0 =
h
H

1

H
2

i
, U 0(k � 1) =

"
û(k � 1)

û(k � 2)

#
,
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and H = H
3

, U(k � 1) = û(k � 3). Next, we rewrite (40) with a delay of k
j

time steps, where 0  k
1


k
2

 · · ·  k
s

, in the form

z(k � k
j

) = S
j

(k � k
j

) +H
j

U
j

(k � k
j

� 1), (42)

where (41) becomes

S
j

(k � k
j

)
4
= ĈÂrx̂(k � k

j

� r) +
rX

i=1

ĈÂi�1B̂w(k � k
j

� i)� y
0

(k � k
j

) +H0
j

U 0
j

(k � k
j

� 1) (43)

and (39) becomes

H̄Ū(k � k
j

� 1) = H0
j

U 0
j

(k � k
j

� 1) +H
j

U
j

(k � k
j

� 1), (44)

where H0
j

2 Rlz⇥(rlû�lUj ), H
j

2 Rlz⇥lUj , U 0
j

(k � k
j

� 1) 2 Rrlû�lUj , and U
j

(k � k
j

� 1) 2 RlUj . Now, by
stacking z(k � k

1

), . . . , z(k � k
s

), we define the extended performance

Z(k)
4
=

h
zT(k � k

1

) · · · zT(k � k
s

)
i
T

2 Rslz . (45)

Therefore,

Z(k)
4
= S̃(k) + H̃Ũ(k � 1), (46)

where S̃(k)
4
=

h
ST(k � k

1

) · · · ST(k � k
s

)
i
T

2 Rslz , H̃ 2 Rslz⇥lŨ , and Ũ(k� 1) 2 RlŨ . The vector Ũ(k� 1)

is formed by stacking U
1

(k � k
1

� 1), . . . , U
s

(k � k
s

� 1) and removing repetitions of components. For

example, with k
1

= 0 and k
2

= 1, stacking U
1

(k � 1) =

"
û(k � 1)

û(k � 2)

#
and U

2

(k � 2) = û(k � 2) results in

Ũ(k� 1) =

"
û(k � 1)

û(k � 2)

#
. The coe�cient matrix H̃ consists of the entries of H

1

, . . . ,H
s

arranged according

to the structure of Ũ(k � 1). Furthermore, we assume that the last entry of Ũ(k � 1) is a component of
û(k � r).

Next, we define the retrospective performance

ẑ(k � k
j

)
4
= S

j

(k � k
j

) +H
j

U⇤
j

(k � k
j

� 1), (47)

where the actual past subsystem outputs U
j

(k� k
j

� 1) in (42) are replaced by the retrospective subsystem
outputs U⇤

j

(k � k
j

� 1). The extended retrospective performance for (47), which is defined as

Ẑ(k)
4
=

h
ẑT(k � k

1

) · · · ẑT(k � k
s

)
i
T

2 Rslz , (48)

is given by

Ẑ(k) = S̃(k) + H̃Ũ⇤(k � 1), (49)

where the components of Ũ⇤(k � 1) 2 RlŨ are components of U⇤
1

(k � k
1

� 1), . . . , U⇤
s

(k � k
s

� 1) ordered in
the same way as the components of Ũ(k � 1). Subtracting (46) from (49) yields

Ẑ(k) = Z(k)� H̃Ũ(k � 1) + H̃Ũ⇤(k � 1). (50)

Finally, we define the retrospective cost function

J(Ũ⇤(k � 1), k)
4
= ẐT(k)R(k)Ẑ(k), (51)

where R(k) 2 Rslz⇥slz is a positive-definite performance weighting. The goal is to determine refined sub-
system outputs Ũ⇤(k � 1) that would have provided better performance than the subsystem outputs U(k)
that were applied to the system. The refined subsystem outputs values Ũ⇤(k � 1) are subsequently used to
update the subsystem estimate.
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III.C.1. Cost Function Optimization with Adaptive Regularization

To ensure that (51) has a global minimizer, we consider the regularized cost

J̄(Ũ⇤(k � 1), k)
4
= ẐT(k)R(k)Ẑ(k) + ⌘(k)Ũ⇤T(k � 1)Ũ⇤(k � 1), (52)

where ⌘(k) = ⌘̄zT(k)z(k) and ⌘̄ � 0. Substituting (50) into (52) yields

J̄(Ũ⇤(k � 1), k) = Ũ⇤(k � 1)TA(k)Ũ⇤(k � 1) +B(k)Ũ⇤(k � 1) + C(k), (53)

where

A(k)
4
= H̃TR(k)H̃ + ⌘(k)I

lŨ
, (54)

B(k)
4
= 2H̃TR(k)[Z(k)� H̃Ũ(k � 1)], (55)

C(k)
4
= ZT(k)R(k)Z(k)� 2ZT(k)R(k)H̃Ũ(k � 1) + ŨT(k � 1)H̃TR(k)H̃Ũ(k � 1). (56)

If either H̃ has full column rank or ⌘(k) > 0, then A(k) is positive definite. In this case, J̄(Ũ⇤(k� 1), k) has
the unique global minimizer

Ũ⇤(k � 1) = �1

2
A�1(k)B(k). (57)

III.C.2. Subsystem Modeling

The subsystem output û(k) is given by the strictly proper FIR time-series model of order n
c

given by

û(k) =
ncX

i=1

N
i

(k)ŷ(k � i), (58)

where, for all i = 1, . . . , n
c

, N
i

(k) 2 Rlû⇥lŷ . The subsystem output (58) can be expressed as û(k) =
✓(k)�(k � 1), where ✓(k) 2 Rlû⇥nclŷ and �(k) 2 Rnclŷ ,

✓(k)
4
= [N

1

(k) · · · N
nc(k)] , (59)

�(k � 1)
4
=
⇥
ŷT(k � 1) · · · ŷT(k � n

c

)
⇤
T

. (60)

If n
c

= 1, then

û(k) = ✓(k)ŷ(k � 1) = N
1

(k)ŷ(k � 1). (61)

Thus, ✓(k) is the estimate of the uncertain parameter .

III.C.3. Recursive Least Squares Update

Let d > 0 such that Ũ⇤(k � 1) contains u⇤(k � d), and define the cost

J
R

(✓(k))
4
=

kX

i=1

�k�i||u⇤T(k � d)� �T(k � d� 1)✓T(k)||2 + �k(✓(k)� ✓(0))P�1(0)(✓(k)� ✓(0))T, (62)
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where �(k � d) is given by (60), k · k is the Euclidean norm, and �(k) 2 (0, 1] is the forgetting factor.
Minimizing the cumulative cost function recursively yields

✓T(k) = ✓T(k � 1) + P (k)�(k � d� 1) · (u⇤(k � d)� �T(k � d� 1)✓T(k � 1)), (63)

P (k) = ��1(k)P (k � 1)� ��1(k)P (k � 1)�(k � d� 1) · [�T(k � d� 1)P (k � 1)�(k � d) + �(k)]�1

· �T(k � d� 1)P (k � 1). (64)

We initialize P (0) = �I, where � > 0.

IV. Mass-Spring-Damper Example with Uncertain Constant Sti↵ness

Consider the mass-spring-damper system

mq̈ + cq̇ + q = w,

y = q̇ + ⌫, (65)

where q and q̇ are the position and velocity of the mass, respectively, m = 1, c = 5, and  = 10 are the mass,
damping, and spring constants, respectively, w is the force input, and ⌫ is white Gaussian noise with mean
µ
⌫

and variance �2

⌫

. The sti↵ness is assumed to be constant and uncertain. The state space representation
of (65) is given by

"
q̇

q̈

#
=

"
0 1

� 

m

� c

m

#"
q

q̇

#
+

"
0
1

m

#
w, (66)

y =
h
0 1

i "
q

q̇

#
+ v. (67)

Euler discretization of (66) and (67) with sampling time T
s

= 0.1 yields

"
x
1

(k + 1)

x
2

(k + 1)

#
=

"
1 T

s

�Ts
m

1� cTs
m

#"
x
1

(k)

x
2

(k)

#
+

"
0
Ts
m

#
w(k), (68)

y(k) =
h
0 1

i "
x
1

(k)

x
2

(k)

#
+ v(k), (69)

where x
1

(k)
4
= q(kT

s

) and x
2

(k)
4
= q̇(kT

s

). For each algorithm, we use ̂(0) = 0, x̂
1

(0) = 0.1 and x̂
2

(0) = 0.01.
For EKF, we use R = �2

⌫

and Q = diag([0.1, 0.1, 5000]), for UKF, we use R = �2

⌫

and Q = diag([0.1, 0.1, 200]),
for EAKF, we use R̂ = 10�5, � = 1.10 and �2

i

= 0.25, and, for RCMR, we use � = 0.42, � = 1, ⌘ = 0, and
H̃ = [H

1

H
2

], unless otherwise specified.

Example IV.1. (µ
v

= 0 and �2

v

= 0) We first consider the case where there is no measurement noise.
Figure 2 shows that all algorithms estimate the unknown parameter with roughly the same accuracy.

Example IV.2. (µ
v

= 0 and �2

v

= 10�5) We now consider measurement noise where �2

v

= 10�5.
Figure 3 shows that EKF, UKF, and RCMR yield estimates of  with smaller error than EAKF.

Example IV.3. (µ
v

= 10�3 and �2

v

= 0) We now consider the case where v represents sensor bias.
Specifically, µ

v

= 10�3 and �2

v

= 0. Figure 4 shows that EKF, UKF, and RCMR yield estimates of  with
smaller error than EAKF.

Example IV.4. (µ
v

= 10�3 and �2

v

= 10�5) We now consider the case where µ
v

= 10�3 and
�2

v

= 10�5. Figure 5 shows that EKF, UKF, and RCMR yield estimates of  with smaller error than EAKF.
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Figure 2. Example IV.1 Estimates of constant sti↵ness  with µv = 0 and �

2
v = 0. (a) EKF, (b) UKF, (c) EAKF, (d)

RCMR.
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Figure 3. Example IV.2. Estimates of constant sti↵ness  with µv = 0 and �

2
v = 10

�5
. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.
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Figure 4. Example IV.3. Estimates of constant sti↵ness  with µv = 10

�3
and �

2
v = 0. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.

V. Mass-Spring-Damper with Uncertain Time-Varying Sti↵ness

We consider the same model as in Section IV, but with time-varying . Specifically,

 =

8
><

>:

10, k < 200,

10 + (k � 200)/20, 200  k  400,

20, k > 400.

For each algorithm, we use ̂(0) = 0, x̂
1

(0) = 0.1 and x̂
2

(0) = 0.01. For EKF, we use R = �2

⌫

and
Q = diag([0.1, 0.1, 5000]), for UKF, we use R = �2

⌫

and Q = diag([0.1, 0.1, 200]), for EAKF, we use R̂ = 10�5,
� = 1.10 and �2

i

= 0.25, and, for RCMR, we use � = 0.3, � = 0.985, ⌘ = 0, and H̃ = [H
1

H
2

], unless otherwise
specified.
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Figure 5. Example IV.4. Estimates of constant sti↵ness  with µv = 10

�3
and �

2
v = 10

�5
. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.

Example V.1. (µ
v

= 0 and �2

v

= 0) We first consider the case where there is no measurement noise.
Figure 6 shows that all algorithms identify the unknown parameter with roughly the same accuracy.
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Figure 6. Example V.1. Estimates of time-varying sti↵ness  with µv = 0 and �

2
v = 0. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.

Example V.2. (µ
v

= 0 and �2

v

= 10�5) We now consider the case where �2

⌫

= 10�5. Figure 7 shows
that RCMR yields an estimate of  with smaller error than EKF, UKF, and EAKF.
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Figure 7. Example V.2. Estimates of time-varying sti↵ness  with µv = 0 and �

2
v = 10

�5
. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.

Example V.3. (µ
v

= 10�3 and �2

v

= 0) We now consider the case where v represents sensor bias.
Specifically, µ

v

= 10�3. Figure 8 shows that all algorithms identify the unknown parameter with roughly
the same accuracy.

Example V.4. (µ
v

= 10�3 and �2

v

= 10�5) We now consider the case where µ
v

= 10�3 and
�2

v

= 10�5. Figure 9 shows that RCMR yields an estimate of  with smaller error than EKF, UKF, and
EAKF.
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Figure 8. Example V.3. Estimates of time-varying sti↵ness  with µv = 10

�3
and �

2
v = 0. (a) EKF, (b) UKF, (c) EAKF,

(d) RCMR.
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Figure 9. Example V.4. Estimates of time-varying sti↵ness  with µv = 10

�3
and �

2
v = 10

�5
. (a) EKF, (b) UKF, (c)

EAKF, (d) RCMR.

VI. Estimation of Linearized Aircraft Dynamics in the Presence of Modeling
Errors

In this section we consider an example where entries of A and B that are not being estimated have

modeling errors. We consider a discretized model of a hypersonic aircraft, where x =
h
� P R �

i
T

.

The true system model is obtained by Euler discretization of a continuous-time plant with T
s

= 0.001. The
discrete-time matrices are given by

A
true

=

2

6664

0.9999 0.000269 �0.000963 �0.000039

A
2,1

1.00021 0.000099 0

0.00041 0.000037 0.9973 0

0 0.00100 �0.00042 1.0000

3

7775
, B

true

=

2

6664

0

0.002519

�0.0000665

0

3

7775
, (70)

C
true

=
h
0 1 0 0

i
, (71)

where

A
2,1

=

8
><

>:

�0.02560 k < 25000,

�0.02560� 1.6640⇥ 10�6k 25000  k  75000,

�0.1088 k > 75000.

(72)
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However, aside from A
2,1

, we assume that the (3, 1) entry of A and the (3, 1) component of B are erroneous
and are given by

A
model

=

2

6664

0.9999 0.000269 �0.000963 �0.000039

Â
2,1

1.00021 0.000099 0

0.000616 0.000037 0.9973 0

0 0.00100 �0.00042 1.0000

3

7775
, B

model

=

2

6664

0

0.002519

�0.0000222

0

3

7775
, (73)

C
model

=
h
0 1 0 0

i
. (74)

The goal is to thus estimate A
2,1

, despite A
model

and B
model

having erroneous entries.
In all subsequent examples, the input signal w is measurement noise with µ

w

= 0 and �2

w

= 0.001, the
initial estimate is Â

2,1

(0) = �0.2560, and the initial conditions are x(0) = 0. The examples below consider
parameter estimation for each algorithim under various scenarios of noise and bias in the measurement.

In all cases, for RCMR, � = 1 and ⌘ = 0. We do not compare UKF or EAKF since these were found
to be di�cult to tune. In fact, considerable retuning was required for each case when using EKF.

Example VI.1. We first consider the case where no measurement noise is present. We choose
� = 0.97 for this case. Figure 10 shows the accuracy of EKF and RCMR.
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Figure 10. Estimates of A2,1 with µv = 0 and �

2
v = 0. (a) EKF, (b) RCMR.

Example VI.2. We next consider the case where zero-mean measurement noise is present. We
assume µ

v

= 0, �2

v

= 1⇥ 10�8 and choose � = 0.999. Figure 11 shows the accuracy of EKF and RCMR for
the hypersonic aircraft in this case.

0 1 2 3 4 5 6 7 8

x 10
4

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time Step (k)

P
a
ra

m
e
te

r 
E

st
im

a
te

 

 

EKF estimate
Initial estimate
True parameter

(a)

0 1 2 3 4 5 6 7 8

x 10
4

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

Time Step (k)

P
a
ra

m
e
te

r 
E

st
im

a
te

 

 

RCMR estimate
Initial estimate
True parameter

(b)

Figure 11. Estimates of A2,1 with µv = 0 and �

2
v = 1 ⇥ 10

�8
. (a) EKF, (b) RCMR.
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Example VI.3. We next consider the case where biased measurement noise is present. We assume
µ
v

= 1⇥ 10�2, �2

v

= 0 and choose � = 0.97. Figure 12 shows the accuracy of RCMR. Note that EKF is not
able to estimate the parameter correctly despite considerable tuning e↵ort. Note that we do not attempt to
measure the measurement bias when using the EKF.
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Figure 12. Estimates of A2,1 with µv = 1 ⇥ 10

�2
and �

2
v = 0. (a) EKF, (b) RCMR.

Example VI.4. We next consider the case of nonzero-mean measurement noise. We assume µ
v

=
1⇥10�2, �2

v

= 1⇥10�8 and choose � = 0.995 for this case. Figure 13 shows the estimate accuracy of RCMR
for the hypersonic aircraft in this case.
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Figure 13. Estimates of A2,1 with µv = 1 ⇥ 10

�2
and �

2
v = 1 ⇥ 10

�8
.

VII. Conclusions

The goal of this paper is to compare the accuracy of techniques for parameter estimation. A plethora of
techniques exists for nonlinear estimation, and all of these algorithms are candidates for parameter estimation.
In this paper we focused on three nonlinear estimation algorithms. We also considered retrospective cost
model refinement (RCMR), which is not an estimation technique but rather is intended for subsystem
identification, of which parameter estimation is a special case. These results suggest that RCMR is less
sensitive to measurement noise, particularly, biased measurements. No attampt was made to estimate
the measurement bias. Since RCMR does not involve an ensemble of models, it is computationally e�cient
compared to EAKF and UKF. However, unlike EAKF and UKF, RCMR does not provide an error probability
distribution for the parameter estimates. The results of this paper can also provide a starting point for
comparison with additional nonlinear estimation techniques in future work.
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