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ABSTRACT

High-speed data signals transmitted over mobile broadband channels are seriously distorted by

both time-varying effect and frequency-selective fading (FSF). These distortions introduce chal-

lenges since channel variances in both time-domain and frequency-domain form a two-dimensional

channel matrix which is hard to estimate, but meanwhile provide opportunities for information

security since all signals are directly encrypted by the channels which are adequately random

over time, frequency and space. These challenges and opportunities are studied in this thesis

as two parts. In the first part, we propose a novel time-varying channel estimation (TVCE) al-

gorithm named piece-wise time-invariant approximation (PITIA) to estimate a typical type of

mobile broadband channels - the high-speed train (HST) channels. PITIA customizes general

time-varying channel models according to HST channels’ specific features, and outperforms con-

ventional TVCE algorithms by 5-8 dB in terms of estimation error in typical HST channels. In

the second part, we propose the first physical-layer challenge-response authentication mechanism

(PHY-CRAM) which uses the mobile broadband channels to prevent eavesdropping during au-

thentication. Since pilots and reference signals are eliminated, eavesdroppers cannot demodulate

credential information, while legitimate receivers use the channels’ reciprocal property to cancel

FSF. PITIA is evaluated by computer based simulations, and the effectiveness of PHY-CRAM is

validated by prototyping and real-world experiments. Both pieces of works are built upon a unified

system model and orthogonal frequency-division multiplexing (OFDM) modulation.

Keywords - Wireless communications, OFDM, PITIA, PHY-CRAM, Channel estimation, Au-

thentication

xiii



CHAPTER 1

Introduction

1.1 Background

Wireless radio frequency (RF) communications provide voice and data services for highly mobile

users. As the infrastructure continues to mature, users are offered the promise of ubiquitous voice

and internet connectivity. However, wireless communications face severe challenges as the number

of users, coverage area and data rates grow, because a signal traversing the wireless medium not

only loses energy density at a quadratic rate, but is also disturbed by ground clutter and interfer-

ences. Moreover, relative frequency shifts (e.g. Doppler spread) become more serious when users

move at higher speeds. These challenges must be addressed to provide reliable services to users at

any time and from anywhere.

Over the years, tremendous efforts have been expended in the areas of channel measurements,

channel modelling, and channel estimation to meet the expanding demands of wireless users.

These focuses are motivated by the need to transmit data over dynamic, time varying, frequency

dependent, and location dependent wireless channels, which convolve the data signals and must be

compensated at receivers. Among all wireless channels, the ones experienced by high-speed com-

munication systems in mobile environments are most interested in this thesis and called mobile

broadband channels.

Estimating mobile broadband channels is very challenging, because they have large delay

spread and Doppler spread, and vary drastically in both time-domain and frequency-domain. To
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capture channel variances in both domains simultaneously, channel estimators have to adopt two-

dimensional channel models which contain too many parameters and cannot be estimated directly.

Although various methods are proposed to simplify two-dimensional channel models, they con-

sider general applications and suffer from large modelling error. In this thesis, we propose a novel

channel estimation algorithm with the name piece-wise time-invariant approximation (PITIA) [1],

which is dedicated for specific mobile broadband channels - the high-speed train (HST) channels,

and uses the unique features of HST channels to enhance performance.

On the flip side, mobile broadband channels can also be harnessed by communication systems.

The main motivation for overcoming the challenges of RF signal propagation characteristics de-

scribed above is that mobile users can exchange data over very large coverage areas. This same

property also introduces privacy and security concerns, because the transmitted signal is directly

available to all receivers including legitimate users and eavesdroppers, and the capability for high

speed data transaction over a large coverage area exacerbates these concerns. As eavesdroppers

face the same obstacle of channel estimation as legitimate users do, the characteristics of mobile

broadband channels complicate eavesdropping and may enhance information security.

Mobile broadband channels are able to secure confidential information much better than other

channels do, since the former ones vary much faster over time, frequency and space, and contain

significantly larger amount of randomness which is crucial for information security. Moreover,

such randomness exists in nature, while that in conventional security systems is generated arti-

ficially and need to be secured cryptographically. The ever-increasing computation power and

enhanced mathematical theories may break conventional security systems, but cannot guess the

randomness in mobile broadband channels. These unique features provide great opportunities for

security systems. While most related works focus on key generation through wireless channels, this

thesis studies non-cryptographic challenge-response authentication which has not been touched in
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academy before, and devises a novel system named PHY-CRAM [2]. In this system, shared keys

exchanged by legitimate users during authentication are secured directly by the channel, and the

feasibility of this mechanism is validated by prototyping and extensive real-world experiments.

In short, this thesis discusses both challenges and opportunities of mobile broadband channels.

The challenges are addressed by PITIA which estimates HST channels with improved accuracy

compared with conventional methods, while the opportunities are leveraged by PHY-CRAM which

is the first non-cryptographic challenge-response authentication mechanism.

1.2 Contributions, Novelties and Significances

1.2.1 Addressing the challenges

In high-mobility environments such as HST environments, Doppler effect becomes a dominant

challenge for mobile broadband systems, and the reasons are given below. Conventional single-

carrier modulation schemes in wireless/mobile environments can only offer a few Mbps bandwidth

which is insufficient for broadband applications, and must be replaced by orthogonal frequency-

division multiplexing (OFDM) [3]. However, OFDM is designed for quasi-static environments

where wireless channels are time-invariant, while mobile broadband systems experience serious

Doppler effect and time-varying effect especially when users travel very fast. Consequently, con-

ventional OFDM systems suffer from very high noise-floor in mobile broadband channels, and the

symbol error rates (SER’s) at OFDM receivers approach a constant high value no matter how high

signal-to-noise ratio (SNR) is. Specifically, when normalized Doppler spread equals to 0.064, the

best SER achieved by a conventional OFDM receiver is only 0.08 [4], which is unacceptable for

most applications even with channel coding.

The prevailing technique to estimate time-varying channels is called basis expansion model
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(BEM), which approximates the channels by a series of basis functions and reconstructs them by

BEM coefficients. This way, estimating a time-varying channel is equivalent to estimating BEM

coefficients. Being different from BEM, PITIA approximates the time-varying channel by a series

of time-invariant channels, and is more suitable for HST channels which usually have large Doppler

spread, small delay spread and high SNR.

PITIA outperforms BEM by 5-8 dB with respect to estimation error in HST channels, and has

low computational complexity. The main reason for this improvement is that, PITIA considers the

unique features of HST channels and reduces the number of parameters to model them, while less

parameters lead to less estimation error according to estimation theories [5]. To achieve satisfactory

modelling error, a L-tap HST channel is modelled by only 2L parameters in PITIA, i.e., L complex

gains (linear parameters) and L Doppler shifts (non-linear parameters), compared with at least

3L parameters in BEM. Some existing channel estimation algorithms [6] [7] also adopt the same

non-linear channel model as the one used by PITIA, but since estimating non-linear parameters

(Doppler shifts) is very hard, their computational efforts are prohibitively large. PITIA models

HST channels with the least channel parameters, decouples the FSF and time-varying effect in

HST channels for the first time, and is the simplest one among all algorithms that estimate Doppler

shifts directly.

1.2.2 Leveraging the opportunities

Two features of mobile broadband channels are favoured by information security: (1) channel

responses at different times, locations and frequencies are random and uncorrelated; (2) channel

responses are reciprocal (or symmetrical) in both directions, i.e., channel responses from A to B

and from B to A at the same time are exactly the same. The randomness and reciprocal property

have potential to achieve a high level of privacy, since such randomness exists in nature and can
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be perceived only by legitimate users, while attackers reside at different locations and perceive

different channel responses. The amount of randomness, quantified by entropy, is proportional to

multipath delay spread στ, channel bandwidth B, relative velocity v between legitimate users, and

time span. For example, if στ = 0.2μs, B = 10MHz, v = 110km/h and central frequency equals to

5.9 GHz, the overall entropy during one second is about 66,000 bits, which is huge compared with

the lengths of secret keys in most cryptographic security protocols.

Researchers have used the randomness and reciprocal property of mobile broadband channels

to enhance or replace cryptographic protocols, such as message authentication [8, 9] and key ex-

change protocols [10–13]. Being different from them, we propose a novel authentication mecha-

nism named PHY-CRAM, where legitimate users do not transmit any pilots or reference signals

for channel estimation, but cancel the effect of channels by an reciprocal operation. In this way,

legitimate receivers can decode the secret information while eavesdroppers get nothing.

Contributions of PHY-CRAM are two-fold: (1) it is the first non-cryptographic challenge-

response user authentication mechanism in the literature; (2) it is the first OFDM system that

uses reciprocal operation to eliminate channel estimation. Due to the first contribution, PHY-

CRAM does not need to increase its key length in order to maintain the same security strength if

the attacker’s computational power is increased, while conventional authentication schemes (such

as CRAM-MD5 [14] and CHAP [15]) must increase key lengths in this case. Longer keys usu-

ally imply more computation overhead, energy consumption and storage overhead, which are not

desirable in resource constrained networks, such as wireless sensor networks. Moreover, the recip-

rocal operation in the second contribution eliminates channel estimation, prevents attackers from

probing the channel, and increases security strength.

The significance of PHY-CRAM is further enhanced by field-programmable gate array (FPGA)

based prototyping and real-world experiments. FPGA provides us with two benefits: (1) it reduces
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processing delay and maintains the channel’s reciprocal property; (2) it is very close to an ASIC

(application specific integrated circuit) in a commercial device, and makes the experimental results

more convening. The one-way processing delay in our prototype is only 40μs during which the

reciprocal property of mobile broadband channels is well maintained, and PHY-CRAM maintains

a high level of confidentiality during authentication according to the real-world experiments.

1.2.3 Publications related to this thesis

PITIA is presented in part in [16], and its journal version is in the final revision stage [17]. PHY-

CRAM is published in [2], and is enhanced in [18] to cover multi-hop networks. Moreover, the

hardware/software platform which prototypes PHY-CRAM is based on the work presented in [19],

and is also used by our research works on cognitive radios [20, 21].

1.3 Related works

1.3.1 Basic channel estimation algorithms for OFDM

Basic channel estimation algorithms for OFDM assume that the channel response is constant over

the entire OFDM block (also called OFDM symbol). Such channel has the name time-invariant

channel (with the implication that there exists frequency-selective fading), and is synonymous

with frequency-selective fading (FSF) channel throughout this thesis. Although these algorithms

cannot be used to estimate HST channels, they are the foundation of advanced channel estimation

algorithms including PITIA.

Existing algorithms for FSF channel estimation can be grouped into two types: blind (or semi-

blind) estimation algorithms [22–26] and pilot-aided ones [27–37]. Some blind estimation algo-

rithms [22, 23] first calculate the covariance matrix of the received signal for each OFDM block,
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and then derive the channel impulse response (CIR) through singular value decomposition (SVD)

of this covariance matrix. Another set of (semi-)blind estimation methods conduct channel estima-

tion and data symbol detection iteratively or jointly [24] [25], and are called EM-type estimator.

Some EM-type estimators are semi-blind because they need knowledges about the channel re-

sponses in initial stages, which can be derived from the pilots only at the beginnings of all frames.

Afterwards, EM-type estimator is merged into Turbo decoder for Turbo-coded OFDM systems to

further enhance the bit error rate (BER) performance [26].

Since most blind estimators suffer from high complexity, practical OFDM systems rely on pilots

(also called reference signals) for channel estimation. Among these pilots-aided channel estima-

tion algorithms, minimum mean square error (MMSE) [27,28,30], maximum likelihood (ML) [29]

and lease squares (LS) [30] estimators are the most famous ones, and they are all derived from sta-

tistical signal processing theories [5]. MMSE estimator has the best performance with the highest

complexity among all algorithms, since it utilizes both SNR and a priori information about the

correlation of channel responses on adjacent subcarriers. Derivation of channel correlation is not

as simple as SNR, and is discussed in [32, 33]. Although MMSE estimator reaches a certain

degree of optimality, it considers all subcarriers as a whole and requires either matrix inverse oper-

ation or pre-known pilots at all subcarriers, both of which may not be realistic in practical OFDM

systems. A simplified version of MMSE estimator named LMMSE (linear MMSE) estimator is

proposed in [28], which derives rough channel estimates with LS estimator first and then corrects

them. LMMSE replaces matrix inverse with matrix multiplication, which is simpler but still too

computationally demanding for embedded devices. To further reduce complexity, the channel re-

sponse on each pilot subcarrier can be estimated one by one [34]. This method utilizes neither

SNR nor frequency-domain correlation of the channel, and is classified as LS or zero-forcing (ZF)

estimator. The channel responses on data subcarriers can be derived from various interpolators,
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like the linear interpolator [35], polynomial interpolator [28], MMSE interpolator [34] or some

other ones [36, 37]. Furthermore, recovered data symbols can also be used for channel estimation

for the next OFDM block or iteratively for current OFDM block, generating the decision-directed

estimators [25, 38].

Channel parameters in PITIA are estimated by LS estimator which can effectively resist noise

with low computational complexity. Although LS estimator is designed for linear systems, PITIA

uses it to estimate non-linear parameters - Doppler shifts, and such usage is rarely found in the

literature. PHY-CRAM does not use any estimator since channel estimation is eliminated.

1.3.2 Time-varying channel estimation

The wireless channel whose response varies during each OFDM block is called time-varying chan-

nel (with the implication that there exists frequency-selective fading), and is synonymous with

double-selective fading (DSF) channel throughout the thesis. Existing time-varying channel esti-

mators are built upon general time-varying channel models, while PITIA is built upon a specific

model for HST channels.

OFDM systems exposed to time-varying channels suffer from inter-carrier interferences (ICI’s),

which is the cause of noise floor and calls for advanced remedies [39, 40]. In early works, ICI’s

are cancelled by diversity over subcarriers [41–43] and estimated by grouped pilots on continuous

subcarriers [44], both with very low spectrum efficiency. Since ICI’s come from the sidelobes of

adjacent subcarriers, a Hanning windowing (instead of a rectangular window) used by the pulse

shaping filter reduces ICIs significantly [45], but also increases the complexity greatly, since the

fast Fourier transform (FFT) operation can no longer be used to simplify OFDM modulation. The

windowing and diversity methods are combined and generalized in [46], with the same issue of

low spectrum efficiency.
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Most ICI cancellation/mitigation methods adopt multi-tap frequency-domain equalizers instead

of the one-tap equalizers for time-invariant channels. Estimating the weights of all taps on all

subcarriers is challenging, since these weights form a two-dimensional matrix with too many pa-

rameters to estimate [47]. In other words, a non-diagonal channel matrix can fully describe the

time-varying channel [48], and if this channel matrix can be estimated, the unknown data at the

transmitter can be derived from matrix inverse operation. This idea is realized in [49], where a

time-domain reference signal is transmitted periodically to facilitate channel matrix estimation;

however, very few OFDM systems have this kind of reference signal.

Another famous ICI cancellation method is called minimum-mean-squared error with succes-

sive interference cancellation (SIC) scheme (MMSE-SIC), which makes decision on the value

of the strongest symbol in current loop and nulls its waveform based on the decision iteratively

[50, 51]. However, this method suffers from the error propagation issue that, a wrong decision in

one symbol affects the decisions of many other symbols. In order to solve this problem, [52] adds

a Turbo decoder in the receiver with a penalty of much higher complexity. A similar work is found

in [52], where the EM-type channel estimation algorithm is combined with MMSE-SIC.

Recent works in time-varying channel estimation (TVCE) model the time-varying channel as

h(t,τ) where t and τ denote time and channel dispersion, respectively. Some algorithms focus on

the estimation of h(t,τ) [53–67], while others are devoted to designing low-complexity channel

equalizers when h(t,τ) has been estimated [68, 69]. In this thesis, we focus on the first problem -

estimation of h(t,τ).

The two-dimensional channel model h(t,τ) contains too many parameters and must be sim-

plified to facilitate TVCE. For examples, h(t,τ) is approximated by linear functions in [70] and

by polynomials in in [65]. The first model has smaller number of channel parameters and better

ability to resist noises, but suffers from larger modelling error, while the latter one shows opposite
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properties. PITIA achieves a better balance between modelling error and the ability to resist noise,

compared to these two techniques.

BEM is widely adopted to simplify time-varying channels, and TVCE downgrades to the es-

timation of BEM coefficients. In [58], LS and LMMSE estimators are used to estimate BEM

coefficients through a group of clustered pilots. For OFDM systems without pilots, blind esti-

mation methods are proposed in [66] with very high computational complexity. Moreover, BEM

coefficients can also be estimated through superimposed training [67].

Proper design on basis functions is crucial for BEM based TVCE algorithms (named BEM

methods hereafter), since these basis functions must model the variance of time-varying chan-

nels precisely, so that the modelling error could be reduced. Various types of basis functions are

proposed, including complex-exponential BEM (CE-BEM) [71], generalized complex-exponential

BEM (GCE-BEM) [53], polynomial BEM (P-BEM) [54], discrete-prolate spheroidal BEM (DPS-

BEM) [55], discrete Legendre polynomial BEM (DLP-BEM) [61, 64] and discrete Karhunen-

Loeve BEM (DKL-BEM) [56] etc. Actually the polynomial channel model in [65] is a special

P-BEM. These models require either a large number of basis functions or preknown channel statis-

tics to keep modelling error small, and require more basis functions when Doppler spread grows.

According to our study, BEM methods require at least 3L channel parameters to model a HST

channel with L resolvable multipath, while PITIA requires only 2L ones with similar modelling

error. Fewer number of parameters to be estimated result in smaller estimation error according to

estimation theories [5].

The proposed algorithm falls into the category of pilot-assisted TVCE algorithms, in which

pilots suffer from interference generated by data symbols. This problem can be mitigated by joint

channel estimation, equalization and data detection algorithms [64, 72]. However, computation

complexity of these algorithms is at least O(N2L) for N subcarriers, which is too high for LTE and
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WiMax systems where N > 1000.

The channel model proposed in this work is similar to the ones adopted in [6] and [7], where the

2L channel parameters are derived from multidimentional minimization algorithms whose compu-

tational complexities are extremely high. Other methods to solve multidimentional minimization

problems also suffer from high complexity, for examples, ML [5], MUSIC [73] and ESPRIT [74].

Compared to these works, PITIA has much lower computation complexity with closed-form ex-

pressions for all estimates.

PITIA is fundamentally different from piece-wise linear approximation (PWLA) [70] although

they have similar names. PITIA assumes that the phase of a channel response at each channel tap

changes linearly over time, while PWLA assumes that the real and imaginary parts of a channel

response are linear. As a result, the channel model in PITIA is non-linear while that in PWLA

is linear. Due to this difference, PITIA shows very small modelling error in the channels with

small delay spread and large Doppler spread, for example, the HST channels, while PWLA is only

applicable in low-mobility environments.

Finally, [75] proposes a TVCE algorithm for HST channels which adopts P-BEM and relies on

block-type pilots embedded in LTE uplink channel, while PITIA favours both block-type pilots

and comb-type pilots. Again, PITIA has fewer number of channel parameters than [75] has.

1.3.3 Physical-layer security

Existing works on physical-layer security can generally be categorized into four types: (1) the ones

based on transceiver hardware differences, i.e., RF fingerprinting [76–78], (2) the ones based on

wireless channels [8, 9, 79–81], (3) physical layer signal watermarking [82, 83] and (4) key gener-

ation from wireless channels [10–13]. None of them study challenge-response user authentication

while PHY-CRAM does.
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(1) RF fingerprinting exploits the transceivers’ hardware impairments to identify different wire-

less devices. Two main approaches for RF fingerprinting are introduced in the literature: transient-

based method [76] and modulation-based method [77]. The former one identifies devices ac-

cording to the transient behaviours of the devices’ amplifiers during the switch from idle state to

transmission state, while the latter one applies the imperfection of modulated signals. It was re-

cently found that RF fingerprinting is vulnerable to impersonation attack [78], while PHY-CRAM

is immune to such attack. To attack the existing RF fingerprinting schemes, an attacker does not

necessarily reproduce a legitimate radio, but only needs to reproduce/replay the signal used for RF

fingerprint verification. Furthermore, measurements on RF fingerprinting are expensive, since they

need high-end signal analysers to extract subtle differences in the signals. Lastly, RF fingerprinting

usually requires a relatively stationary channel condition to accurately extract fingerprints.

(2) Wireless channel based authentication mechanism is based on the fact that the channel

state information (CSI) is location-specific due to path loss and channel fading [8, 9]. In a relative

stable environment, an attacker, whose location is different from the legitimate user’s location, will

present different CSI profile or link signature from the legitimate one. This type of authentication

requires a legitimate user to be authenticated at a specific location, and might not work well in

highly dynamic environments where channel states change drastically over time due to fading or

mobility. The authentication algorithm may need a large number of samples to ensure a desirable

performance, and is also subject to mimicry attacks [84] where an attacker can gain the legitimate

channel information when it is close to the legitimate devices. A recent remedy is proposed to

prevent mimicry attacks, but it requires time synchronization among legitimate parties [81].

Time correlation property of the wireless channels is also exploited to support message authen-

tication in time-varying channels [79, 80]. For example, [75] proposes a physical-layer authenti-

cation algorithm that utilizes channel probing and hypothesis testing to determine whether current
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and prior communication attempts are made by the same transmit terminal. If the time interval

between two frames coming from the same transmitter is smaller than channel coherence time,

CSI [79] or received signal strength (RSS) [80] of these two frames should be highly correlated.

A similar approach based on RSS is proposed in [80]. These authentication mechanisms check

the message authenticity during communication sessions, while they assume that the very first

message (frame) is already authenticated.

PHY-CRAM does not require the legitimate user be at a specific location, and eliminates chan-

nel profile training/probing. Moreover, PHY-CRAM utilizes the randomness in the channels to

hide the shared secret used for authentication, while channel based authentication decides if the

frames are sent from the same channel or not.

(3) Physical layer signal watermarking or fingerprinting is a mechanism to convey a cryp-

tographically secured authentication code/tag along with the primary transmission or message

[82, 83]. General signal watermarking through low-power perturbations of the signal constella-

tion is proposed in [82], with the basic idea that a low-power signal for message authentication is

superimposed on the waveforms carrying data information.

From a methodological point of view, PHY-CRAM is different from signal watermarking since

it does not add any authentication code or tag into the signal. Moreover, PHY-CRAM initializes

a secure communication, while signal watermarking applies to message authentication during the

communication session.

(4) PHY-CRAM is different from physical layer key generation algorithms [10–13] although

they are based on common physical layer foundations (i.e., channel reciprocity, randomness, and

location decorrelation). First, they serve for different purposes, since the former is for authentica-

tion and the latter is for shared key generation. Second, PHY-CRAM exploits the reciprocity to

“decrypt” the shared secret used for authentication, while wireless channel key generation relies on
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the reciprocity to ensure that channel states observed by the two key generation parties are highly

similar. Furthermore, PHY-CRAM does not need to sound the channel explicitly or to reconcile

the key disagreement, and none of the participants knows CSI after authentication. Elimination

of (explicit) channel sounding operation not only simplifies the mechanism, but also increases the

security strength. For example, the “Man-In-The-Middle” (MITM) attack introduced in [85] is not

applicable to PHY-CRAM.
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CHAPTER 2

System Model

In this chapter, we first introduce OFDM which is adopted as the modulation scheme for most

mobile broadband systems. Then channel models and problem definitions are introduced in section

2.2 and section 2.3, respectively. Finally, the experimental set up and design tools are introduced

in section 2.4.

2.1 Basics of OFDM

An OFDM system divides a frequency-selective fading channel into N narrow-band channels (sub-

carriers) and transmits data symbols over them, so that all data symbols experience flat fading

channels which can be easily estimated and compensated.

The block diagram of OFDM system is shown in figure 2.1. At the transmitter, binary data to be

transmitted are first mapped to symbols according to a certain constellation, for examples, binary

phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK). Then pilots and nulls are

mixed with data symbols for channel estimation and spectrum control, respectively. Next, inverse

discrete Fourier transformation (IDFT) is conducted over all symbols, and a cyclic prefix (CP) is

inserted at the beginning of the output signal x to overcome multipath. When the length of CP

is larger than the maximum delay spread of multipath, adjacent OFDM symbols (IDFT blocks)

are separated by CP and immune from inter-symbol-interference (ISI). The final baseband signal

samples are denoted as x̃, which are sent to digital-to-analogue converter (DAC) and RF front-end

for transmission. At the receiver side, timing and frequency synchronization are first achieved
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Figure 2.1: The block diagram of an OFDM system

through CP and synchronization header. Then discrete Fourier transformation (DFT) is conducted

over received signal samples within appropriate time window, which is also called observation

window and should just cover a single OFDM block. Finally, channel estimation and equalization

are conducted after DFT, and binary data are recovered.

According to the analysis above, x = F−1X where F denotes the N×N Vandermonde matrix in

which the jth element at the ith line equals to ωi j with ω := exp(−2πi/N).

2.2 Channel Models for Mobile Broadband Systems

The wireless channels in mobile broadband systems have two major characteristics: frequency-

selective fading (FSF) and time-varying effect.

FSF arises when the root mean squared (RMS) delay spread of multipath, denoted as στ, is

much larger than the duration of a data symbol. This situation usually happens when the data rate is

very high (so that symbol duration is short), as the case in broadband systems. Frequency-domain
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analysis is widely used in broadband systems, and we consider a channel as FSF when channel

bandwidth B is larger than coherence bandwidth BC, which is approximated by 1/(5στ) [86]. For

example, when Long Term Evolution (LTE) operates in open area, στ ≈ 0.5μs, BC ≈ 400 kHz

while B = 20 MHz; therefore, the LTE system experiences serious FSF. OFDM introduced in

the previous section is the best technique to overcome FSF so far, and is adopted by almost all

broadband systems including LTE.

The time-varying effect of a wireless channel is caused by Doppler effect which happens in

high-mobility environments. Doppler effect both shifts a signal’s spectrum in frequency-domain

and rotates a signal’s phase in time domain, and cannot be compensated easily in multipath envi-

ronments since Doppler shifts on different multipath components may be different. Time-varying

effect is usually studied in time-domain, and we consider a channel as time-varying when the

observation window (DFT window for OFDM) for channel estimation is comparable to chan-

nel coherence time TC, which can be approximated by 0.423/ fd where fd denotes the maximum

Doppler shift. For example, when LTE operates on a high-speed train, fd may be as big as 1 kHz,

TC ≈ 423μs, and the observation window equals to the duration of one OFDM symbol which is 70

μs. Therefore, this HST channel is considered as time-varying when LTE is adopted. On the flip

side, when a Dedicated Short-Range Communications (DSRC) [87] system operates in urban area,

TC is at the level of mini-second [88], while observation window (or duration of one OFDM sym-

bol) is only 8 μs. As a result, DSRC channel is considered as time-invariant by channel estimators.

Note that time-invariant channels in mobile environments also vary over time.

A wireless channel exhibiting both FSF and time-varying effect has the name double-selective

fading (DSF) channel which is very hard to estimate, and the HST channel falls into this category

according to the analysis above. On the flip side, a DSRC channel exhibits only FSF and we call it

FSF channel, which can be easily estimated [89].
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2.2.1 The DSF channel

The DSF channel is modelled by h(t,τ) where t and τ denote time and channel dispersion, re-

spectively. It has a digitized version gn,m, where n and m denote time index and channel tap

index respectively, with 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ L− 1. Here N represents the number of

samples in observation window, and L denotes the number of multipath components. Define

x(k) := [x0(k), ...,xN−1(k)]T as the time-domain samples within the kth OFDM block at the trans-

mitter, and x̃(k) := [xN−L(k), ...,xN−1(k),x(k)T ]T as the transmitter’s final output with CP. We will

drop index (k) when necessary. By assuming that the receiver is synchronized to the first path of

signal x0 and CP is disregarded, the received signal y := [y0, ...,yN−1]
T is given by

y = Gx+n (2.1)

where G is a N×N matrix defined as

G :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0,0 0 ... 0 g0,L−1 ... g0,1

...

gL−2,L−2 ... gL−2,0 0 ... 0 gL−2,L−1

gL−1,L−1 ... gL−1,0 0 ... 0

0 ... ... ...

0 ... 0 gN−1,L−1 ... gN−1,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

Here, 2.2 is the time-varying channel model which is well-accepted by the literature.
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2.2.2 The FSF channel

In a FSF channel, an OFDM system can be considered as the superposition of N independent

narrow band subsystems that experience flat-fading channels, and each subsystem is modelled

simply by

Yn = HnXn +Wn,n = 0, ...,N−1 (2.3)

where Yn and Xn denote the frequency-domain symbols at the receiver and the transmitter, re-

spectively, Wn the additive white Gaussian noise (AWGN), and Hn the frequency-domain channel

response, all at subcarrier n. Here Xn is also the nth element in X.

2.2.3 Discussions

While the models for a DSF channel and a FSF channel appear quite different, they share a funda-

mental theoretical connection. To show this, we concatenate Yn, Xn and Wn for n = 0, ...,N−1 into

vectors Y, X and W, and rewrite 2.3 in a matrix format:

Y = HX+W (2.4)

where H is a diagonal matrix with Hn as its nth element on the main diagonal.

Meanwhile, 2.1 can be formatted as

Fy = Y = FGF−1X+Fn (2.5)

and obviously Fn = W. As a result, both channels may use the same channel Y = HX+W, where

H is a diagonal matrix for FSF channel, and H = FGF−1 for DSF channel. One may verify that, if

the channel is time-varying, i.e., gm,k �= gn,k when m �= k, FGF−1 is a non-diagonal matrix whose
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non-zero elements surround the main diagonal. On the flip side, when the channel is time-invariant,

gm,k = gn,k for any 0≤m < N and 0≤ k < L, and interestingly, FGF−1 becomes a diagonal matrix,

and 2.4 is equivalent to 2.5.

2.3 Problem Definition

We first focus on the DSF channel modelled in 2.1. In each OFDM symbol, the channel matrix G

has NL non-zero elements, while there are only N observations since the received signal y is with

length N. Unfortunately, conventional estimators like LS and LMMSE require that the observations

are more than the parameters to be estimated [5], which is not the case at here. Moreover, x = F−1X

may not be fully known by the receiver, since X may contains both data and pilots. Last but not the

least, mobile broadband applications run on embedded devices and cannot afford computationally

demanding channel estimation algorithms.

Problem 1: Given the model in 2.1 with x = F−1X where X is partially or fully known by the

receiver, find out an estimate to G, denoted as Ĝ, which is accurate enough to recover all the data

with affordable computation complexity for embedded devices.

Next, we notice that the FSF channel model 2.3 is very simple and can be easily estimated.

However, the frequency-domain channel response Hn is random and only perceivable by the re-

ceiver. This fact can be leveraged to enhance information security.

Problem 2: Given the model in 2.3, design a mechanism to enhance information security utiliz-

ing the random value Hn.

Problem 1 falls into the research area of TVCE, while Problem 2 belongs to physical-layer

security. These two problems represent the negative side and positive side of the same physical

phenomenon - the mobile broadband channel. In Problem 1 we mainly focus on the application of

a LTE system running on a HST. Problem 2 finds its applications in general mobile and wireless
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systems, and is extremely interested in vehicular and ad hoc network (VANET) like DSRC, where

channel responses change drastically over time and frequency, but the channel response during one

OFDM symbol is constant [90].
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Figure 2.2: The block diagram of a LTE simulator developed to evaluate the performance of PITIA
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Figure 2.3: The photo of the FPGA-based prototype for PHY-CRAM

2.4 Research Methods

2.4.1 The research method for Problem 1

Problem 1 looks like a pure mathematical problem, but it’s closely related to the physical properties

of mobile broadband channels, because current statistical signal processing theories cannot directly

solve equation 2.1 where unknown parameters are more than observations. Instead, researchers

first examine the stochastic properties of channel model G through extensive channel measurement

campaigns, then try to approximate G by simpler models where the number of unknown parameters

is much less than N and estimate G. This is the prevailing research method for TVCE, and has

four major steps: (1) channel measurements; (2) channel modelling; (3) parameter estimation; and

(4) performance evaluation.

Step (1) is time consuming and expensive. Fortunately, there are already lots of such works,

and their outcomes are collected by an empirical channel model named WINNER II [91], which is

22



adopted by 3rd Generation Partnership Project (3GPP) as a standard evaluation tool for LTE chan-

nels. WINNER II provides a set of Matlab programs that generate time-domain channel responses

(the matrix G) with given conditions, for examples, speed of mobile terminal, channel type (urban,

rural or hilly), frequency band, bandwidth, and antenna gains. It covers the HST scenario which is

the focus of this thesis.

With the channel responses generated by WINNER II, we study the specific characteristics of

HST channels, find out a mathematical model that describes G with fewer parameters than those

in conventional models, and propose a novel algorithm PITIA to estimate these parameters.

Similar to most research works on channel estimation, the performances of PITIA are evaluated

by computer based simulations. To this end, we design a set of Matlab programs (a LTE simulator)

to study LTE’s physical-layer according to 3GPP specification [92], as shown in figure 2.2. The

wireless channel is simulated by WINNER II as described above, and channel estimation is con-

ducted by both BEM methods and PITIA for performance comparison. We focus on the physical

downlink shared channel (PDSCH) which is the major data pipe for broadband access, and only

consider the single-antenna case.

2.4.2 The research method for Problem 2

To address Problem 2, we propose a novel challenge-response user authentication mechanism

named PHY-CRAM, which is built upon OFDM and adopts the FSF channel model 2.3. We

both develop a Matlab simulation program and design a hardware prototype to evaluate PHY-

CRAM’s performance, which is characterized by successful authentication rate β (the rate that a

legitimate user passes authentication) and false acceptance rate α (the rate that an attacker passes

authentication).

In simulations, we follow DSRC’s physical-layer specification [87], and adopt a FSF channel
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model [93] with rural and urban scenarios. Two legitimate users are assumed to share a set of

secret keys, while two attackers who do not have these keys pretend to be one of them and conduct

authentication with the counterpart. Under this scenario, we derive α and β under different SNR

and channel conditions.

Performance of PHY-CRAM is determined by not only the coherence time and coherence band-

width of mobile broad channels, but also the processing delay, since PHY-CRAM utilizes the chan-

nel’s reciprocity which is valid only in a very short period. Therefore, we develop a FPGA-based

prototype for PHY-CRAM to ensure low processing delay, and conduct extensive real-world ex-

periments. The RF front end is designed by discrete RF components, and the whole prototype is

put on a cart to support mobility, as shown in figure 2.3. The FPGA together with RF front end

serve as a software-defined radio (SDR) that is also used for many other research works . Two sets

of the prototype perform as legitimate users, while another two sets perform as a naive attacker and

a smart attacker, respectively. Data frames for authentication are generated by FPGA at transmit-

ters, while the baseband I/Q signals at receivers are captured by an oscilloscope. These I/Q signal

samples are then copied to a computer which runs a Matlab program to get α and β. The Matlab

simulation program, which is a float-point program by default, is converted to a fixed-point one

and serves as the golden reference for FPGA design.
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CHAPTER 3

Channel Estimation in HST Environments

3.1 Overview

With the rapid deployment of HST’s around the world and development of intelligent transporta-

tion systems, providing broadband wireless communications between a HST and infrastructure is

becoming indispensable to support various attractive services, such as Internet access, on-board

data services, and multimedia advertisements, etc [94, 95]. The most prospective solutions for

the broadband communication are Long Term Evolution (LTE) [92] and Worldwide Interoperabil-

ity for Microwave Access (WiMax) [96], which adopt OFDM due to its immunity to multipath,

especially when the communication range is long. However, the high-mobility feature of HST’s

introduces DSF channel which is very hard to estimate.

Since FSF is inevitable in broadband OFDM systems, a HST channel is considered as a DSF

channel when Doppler spread is comparable to subcarrier spacing. As an example, in a LTE system

which will be equipped on HST’s in many countries [97, 98], subcarrier spacing is 15 kHz while

Doppler spread is 0.84 kHz when the travelling speed of the HST is 350 km/h; therefore, the HST

channel is considered as time-varying by this LTE system. It is well-known that, time-varying

channels cause ICI’s in OFDM systems and increase the noise floor if a traditional single-tap

channel equalizer is adopted [99].

Time-varying channels contain much more parameters than those of time-invariant channel.

When an OFDM system with N subcarriers runs in a time-varying channel with L taps (L resolv-
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able multipath components), the general time-varying channel matrix G contains NL unknown

parameters, which is much more than the observations at the receiver (at most N +L observations

for each OFDM symbol). This challenge is formulated as Problem 1 in chapter 2. Reducing the

number of channel parameters is essential for TVCE, but is also risky since fewer parameters often

lead to larger modelling error. To address this issue, we use the specific features of HST channels

to reduce the number of channel parameters, which are then estimated by a novel algorithm named

PITIA.

The most important feature of HST channels is that, there exists only one Doppler shift on each

resolvable multipath component in most cases, and this fact is validated by WINNER II channel

model. Motivated by this finding and the necessity to reduce the number of channel parameters, we

propose a novel TVCE algorithm for HST channels based on this simplified channel model. The

major challenge introduced by this channel model is to estimate non-linear parameters - Doppler

shifts. To this end, we approximate the channel by a bunch of time-invariant channels whose CIR’s

can be estimated through pilots, and name this technique as PIece-wise Time-Invariant Approxi-

mation (PITIA). Then the variations of these CIR’s derive both Doppler shifts and complex channel

gains for all channel taps, from which h(t,τ) is reconstructed. In other words, PITIA decouples

FSF and time-varying effect in HST channels and estimates them in two separate steps, each with

very simple operations. The computational complexity of PITIA is O(NL) which is affordable for

most OFDM receivers.

Since PITIA reduces the number of channel parameters without increasing modelling error,

the proposed algorithm is expected to get better performance, and this expectation is validated

by our LTE simulator. Specifically, PITIA’s performance is better than and comparable to the

performances of typical BEM methods [58] in high SNR regime and low SNR regime, respectively,

while LTE channels have clear line-of-sight (LOS) and enjoy high SNR most of time. Although
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the proposed algorithm is designed for HST channels, it is also suitable for other applications with

the following three channel characteristics: short delay spread, large Doppler spread, and only one

Doppler shift on each resolvable multipath component.

3.2 The HST Channel Model

The wireless channel between the infrastructure and a HST is a typical time-varying channel given

in (2.1) with specific characteristics. Based on the field testing and channel models found in the

literature, we customize the general time-varying channel model for HST channels, and set up the

foundation for PITIA.

The measurement campaigns reported in [97] show that, HST channels at 2.1 GHz frequency

band have very small root-mean-squared (RMS) delay spread, typically smaller than half microsec-

ond. Consequently, L = 16 is large enough in the model given in section 2, when baseband sam-

pling rate is 30.72 MHz according to LTE specifications. This is due to the fact that, most HST

systems operate in rural or open areas. When a HST reaches a city with an urban channel, it slows

down and becomes a normal-speed train; as a result, the “time-varying channel" degrades to a

time-invariant channel. The hilly channel is an exceptional case, where the train travels along a big

mountain, travelling velocity is very high and delay spread is large. We focus on the HST channels

in open and rural areas where L is small, while considering the hilly channel as future works.

We further evaluate the features of HST channels through WINNER II channel model. This

channel model not only validates the fact of small delay spread, but also reveals a very important

characteristic that, there exists only one Doppler shift on most channel taps. To show this feature,

we generate gn,m for n = 0, ...,2047 and m = 0, ...,14 using the simulation code provided by WIN-

NER II channel model with HST scenario, and examine the phase changes on each channel tap

(indexed by m).
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Figure 3.1 shows a snapshot of gn,m’s phases, which change linearly over m. Since the slope

of phase changes denotes Doppler shift, a constant slope means that there is only one Doppler

shift. This characteristic can be explained by two reasons. Firstly, the wireless channels in open

and rural areas contain limited number of multipath components, and there is very little chance

that multiple multipath components fall into the same channel tap. Secondly, in case that some

multipath components collide with each other, they likely come from the reflectors located close to

each other and suffer from similar Doppler shifts. When several multipath components have equal

time delay and similar Doppler shifts, they can be considered as a single but stronger multipath

component.

With this feature, there is no need to identify the wireless channel’s Doppler spectrum, for

example, the bell-shaped Doppler spectrum predicted by Jakes model [100]; instead, the time-

varying channel can be represented by the following simple model

gn,m = gme j2πδmn/N (3.1)

where gm := g0,m denotes the complex channel gain at time index 0, and δm denotes the normalized

Doppler shift with respect to BS, i.e., Δ fm/BS where Δ fm denotes the Doppler shift in hertz, all for

channel tap m. This channel model shares the same form as the ones adopted in [6, 7], where

the time-varying channel is solely determined by gm and δm for m = 0, ...,L− 1; however, these

algorithms suffer from high complexity due to the nonlinearity of this model. PITIA introduces a

much simpler algorithm to estimate these 2L channel parameters in the next section.

Note that in the channel model (3.1), the delay of each multipath component is represented by

index m implicitly. When channel tap m1 contains a multipath component, gm1 is a non-zero value;

on the contrary, when channel tap m2 contains no multipath, gm2 equals to 0, and the phase of gn,m2
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Figure 3.1: Phases of the time-varying channel response on channel taps 1 to 8 derived from WIN-
NER II channel model; x-coordinate denotes n while y-coordinate denotes the phase of g(n,m) for
a given number of m

.

is defined as 0 too, as shown in figure 3.1.

Given the channel model in (3.1), estimating a time-varying channel is equivalent to estimating

2L parameters gm and δm for m = 0, ...,L−1. As a comparison, BEM methods model the channel

by L(Q+ 1) parameters where (Q+ 1) denotes the number of basis functions. Note that Q is

mainly determined by fM, instead of the number of distinguished Doppler shifts in each multipath
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component. In HST channels where fM is high, Q is usually larger than 1. As a result, the number

of channel parameters in BEM methods is larger than 2L. Moreover, for a linear system with fixed

number of observations, fewer parameters lead to better NMSE performance [5]. Therefore, the

proposed channel estimation algorithm based on a simplified channel model customized for HST

channels is expected to outperform BEM methods.

3.3 The Proposed Algorithm

3.3.1 Piece-wise time-invariant approximation

PITIA is inspired by the specific features of HST channels. Consider the channel model (3.1)

where Doppler shifts δm for all m dominate the time-varying characteristic of the wireless channel.

Note that δm ≤ fM and in most practical OFDM systems the normalized Doppler shift with respect

to subcarrier spacing fM < 0.1. As an example, fM equals to 0.064 in a LTE system operating at

2.6 GHz (which is the highest frequency band allocated for LTE in Europe and Asia) on a HST

with travelling speed 400 km/h. Moreover, the maximum delay spread L is in the order of 0.1N for

most practical systems, and is in the order of 0.01N in HST channel according to the analysis in

subsection 3.2 (considering that N = 2048 according to LTE specification, and L = 16). Therefore,

phase changes caused by Doppler shifts during time span L, which is 2πδmL/N, is in the order of

1E-3 and can be neglected. This property serves as the foundation of PITIA.

In order to utilize this property, G is partitioned into N/LK1 matrixes from top to bottom, each

of which has the size LK1×N where K1 = 2K0 where K0 is a positive integer. From (2.1) we have

y(u)=G(u)a+n(u) (3.2)
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where y(u) := [yuLK1 , ...,y(u+1)LK1−1]
T , n(u) := [nuLK1 , ...,n(u+1)LK1−1]

T and G(u) :=

[GT
uLK1

, ...,GT
(u+1)LK1−1]

T where Gn denotes the nth row of G, for u = 0, ...,N/LK1−1. Given any

u with 0 < u < N/LK1−1, let’s rewrite (3.2) in the following form

⎡
⎢⎢⎢⎢⎣

yuLK1

...

y(u+1)LK1−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

... 0 guLK1,L−1 ... guLK1,0 0 ...

...

... 0 g(u+1)LK1,L−1 ... g(u+1)LK1,0 0 ...

⎤
⎥⎥⎥⎥⎦∗

⎡
⎢⎢⎢⎢⎣

a0

...

aN−1

⎤
⎥⎥⎥⎥⎦+n(u)

(3.3)

and make an approximation that gn,m = g(u+1/2)LK1,l for n = uLK1, ...,(u+ 1)LK1− 1 and m =

0, ...,L−1, as stated in the beginning of this section. Then (6) becomes

⎡
⎢⎢⎢⎢⎣

yuLK1

...

y(u+1)LK1−1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

auLK1 ... auLK1−L+1

...

a(u+1)LK1 ... a(u+1)LK1−L+1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

g(u+ 1
2 )LK1,0

...

g(u+ 1
2 )LK1,L−1

⎤
⎥⎥⎥⎥⎦+n(u)

de f
= A(u)g(u) +n(u).

(3.4)

Note that (3.4) only holds for u = 1, ...,N/LK1− 1; when u = 0, all the negative indices on a

should be added by N. The physical meaning of (3.4) is that, a time-varying channel over time

period N is approximated by N/LK1 time-invariant channels with CIRs g(u) for u = 0, ...,N/LK1−
1, as shown in figure 3.2. The channel response within time index 0 to LK1−1 is considered to be

constant and approximated by CIR g(0), while channel response within time index LK1 to 2LK1−1
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Figure 3.2: The basic principle of PITIA: the time varying channel gn,m is approximated by a series
of ĝ(u)

.

is again considered to be constant (but may be different from the previous one) and approximated

by CIR g(1), and so on. This technique is called PITIA.

In this technique, LK1 determines the duration of time-invariant channels used to approximate

the time-varying channel. We consider K1 as an important design parameter, since it determines

both modelling error and anti-noise ability. Larger K1 results in larger modelling error and better

anti-noise ability and vice versus. When K1 = N/L, PITIA approximates the time-varying channel

by a single time-invariant channel, and (3.4) downgrades to the conventional channel estimation

algorithms in time-invariant channels. Moreover, K1 must be larger than or equal to 1, so that g(u)

can be estimated by the method below.

If a is known by the receiver, A(u) is also known, and g(u) can be derived from the LS estimator

[5]:

ĝ(u) = ((A(u))HA(u))−1(A(u))Hy(u) (3.5)

where ((A(u))HA(u))−1(A(u))H can be derived offline, and the estimator enjoys low complexity.

The MMSE estimator [5] and LMMSE estimator [28] are not considered to ensure low computation

complexity.
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All the channel parameters gm and δm for m = 0, ...,L− 1 can be derived from ĝ(u), and the

whole time-varying channel G can be reconstructed.

Note that the receiver may not fully know a since it may contain both pilots and data symbols.

To address this issue, we discuss the pilot allocation scheme in the next section, which is followed

by the method to estimate ĝ(u) through pilots.

3.3.2 Pilot allocation schemes

Two different pilot allocation schemes are widely used in pilot assisted OFDM systems: comb-type

and block-type, as shown in Fig. 1 (a) and (b) respectively, where solid ellipses and rotundities

denote pilot subcarriers, while circles denote null subcarriers. All blank areas are occupied by data

symbols.

When block-type pilots exist, A(u) is known by the receiver, ĝ(u) in pilot blocks can be derived

from (3.5) directly, and ĝ(u) in data blocks can be derived from interpolation. However, when

comb-type pilots are adopted, A(u) cannot be derived directly, and this situation is further discussed

below.

We denote the distance between two adjacent combs, the width of each pilot cluster, and the

width of each null subcarrier group as Nb, Np and Nf , respectively, as shown in figure 3. Moreover,

the number of null subcarriers used for channel estimation at the receiver is denoted as N(R)
f , and

usually 0≤ N(R)
f ≤ Nf . When Np = 1, the corresponding pilot pattern is referred to as frequency-

domain Kronecker delta (FDKD) [63], as shown in figure 3(c). It is very important to adapt these

three parameters to channel characteristics. In channels with large delay spread and dense mul-

tipath, Nb must be small, while channels with large Doppler spread favour large Nf . Moreover,

pilots and null subcarriers should not occupy all subcarriers, i.e., Np +2Nf < Nb. As a result, Nb,

Np and Nf may vary significantly for OFDM systems working in different channel environments.
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Figure 3.3: Comb-type (a), block type (b) and FDKD (c) pilot allocation schemes

HST channels with small delay spread and large Doppler spread favour large Nb and large Nf .

3.3.3 Channel estimation through pilots

Although a is partially known by the receiver, ĝ(u) can still be estimated by the method introduced

in this section, which has been published in [16] in part.

Define ΞV as the set of indices of the subcarriers used for channel estimation. Then the

time-domain pilot signal ap := [b0, ...,bN−1]
T is derived from bn = ∑

k∈ΞV

Xke j2πnk/N where Xk =

N−1
∑

n=0
ane− j2πnk/N , or equivalently

ap=F−1QVFa (3.6)

where F denotes the N×N Vandermonde matrix whose jth element at the ith line equals to ωi j
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with ω := exp(−2πi/N). Moreover, QV := diag(e0, ...,eN−1) where

ei =

⎧⎪⎨
⎪⎩

0, i f i /∈ ΞV

1, i f i ∈ ΞV

, f or i = 0, ...,N−1.

The matrix F−1QVF serves as a comb-type filter that rejects data symbols and accepts pilots.

Similarly, the time-domain data signal is obtained by

ad = F−1(IN−QV)Fa (3.7)

Obviously a =ad+ap, and from (2.1) we get

y = G(ad+ap)+n. (3.8)

Applying the same filter F−1QVF on y we get

yp := F−1QVFy

= F−1QVFGap+F−1QVFGad+F−1QVFn.
(3.9)

Define M := F−1QVFGad which is the second term in (3.9) and represents the interference of

data over pilots. From (3.7) we have M = F−1QV(FGF−1)(IN −QV)Fa where FGF−1 denotes

the frequency-domain channel matrix. When Doppler spread equals to 0, FGF−1 is a diagonal

matrix, and M = 0 accordingly. When Doppler spread is non-zero, FGF−1 is close to a diagonal

matrix, the values of whose items diminish rapidly around the main diagonal. Here we consider M
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as extra noise for simplicity. Then (3.9) becomes

yp=F−1QVFGap+np

=F−1QV(FGF−1)QVFa+np

≈ F−1(FGF−1)QVQVFa+np

= GF−1QVFa+np

= Gap+np

(3.10)

where
np := F−1QVFGad +F−1QVFn

:= ep +wp

(3.11)

denotes the sum of noise wp at pilot subcarriers and interference ep coming from data symbols.

The reason for the approximation in (3.10) is that, FGF−1 is close to a diagonal matrix, and for

two diagonal matrices QA and QB, QAQB = QBQA. Adopting the same operations as shown in

section III.A, we have

y
(u)
p =G(u)ap+n

(u)
p = P(u)g(u)+n

(u)
p (3.12)

where y
(u)
p := [yp,uLK1 , ...,yp,(u+1)LK1−1]

T , n
(u)
p := [np,uLK1 , ...,np,(u+1)LK1−1]

T and

P(u) :=

⎡
⎢⎢⎢⎢⎣

buLK1 ... buLK1−L+1

...

b(u+1)LK1 ... b(u+1)LK1−L+1

⎤
⎥⎥⎥⎥⎦ (3.13)

where yp,m and np,m denote the mth element in yp and np, respectively, and P(u) is determined
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solely by pilots. Then g(u) can be estimated by

ĝ(u) = ((P(u))HP(u))−1(P(u))Hy
(u)
p . (3.14)

3.3.4 Channel reconstruction

Let ĝ(u)m denote the mth element in ĝ(u). For a given u, ĝ(u) denotes the L-tap CIR at time index

(u+1/2)LK1, or in other words, the L non-zero elements at the (u+1/2)LK1’th row of matrix G

defined in (2.2). For a given m on the other hand, the function ĝ(u)m over u reveals the variation of

channel tap m over time. These relationships are shown in figure 2.

There are various ways to derive all the channel parameters gm and δm from ĝ
(u)
m , and the whole

channel matrix G can be reconstructed. Since the main purpose of this work is to introduce piece-

wise time-invariant approximation, we only demonstrate a simple and effective method here. Per-

formance improvement may be achieved if more advanced approaches are adopted in future works.

We denote the phase of ĝ(u)m as � ĝ(u)m for u = 0,1, ...,N/LK1− 1, and plot a snapshot of these

values derived in a very noisy channel in figure 4. Since these phase shifts are caused by a single

Doppler shift, they can be regressed by a straight line whose slope Vm determines the Doppler shift

δm, and whose start point Qm determines the phase of gm at n = 0. Such linear regression can be

conducted for each m = 0,1, ...,L−1, while gm and δm are hereby estimated by

δ̂m =
1

LK1

Vm

2π
(3.15)

and

ĝm =
LK1

N
e jQm

N/LK1−1

∑
u=0

|ĝ(u)m | (3.16)

In (3.15), there is a coefficient 1/LK1 because u at x-coordinate in figure 4 grows LK1 times
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Figure 3.4: Phases of ĝ
(u)
m for u = 0,1, ...,N/LK1−1; the phase of gm and the Doppler shift δm are

derived from the start point Gm and the slope of the dashed straight line that fits all the data points
with least squares approach, respectively.

faster than n in the channel model (3.1). The amplitude of gm is estimated by averaging the am-

plitudes of ĝ(u)m over u in (3.16), while the phase of gm is estimated by Qm directly. At here, two

parameters δ̂m and ĝm are derived from N/(LK1) values, i.e., ĝ(u)m u = 0,1, ...,N/LK1−1, and there

exists much redundancy since both L and K1 are much smaller than N. As a result, the noise is

reduced significantly in this estimation process.

Finally, the time-varying channel response gn,m is estimated by

ĝn,m = ĝme j2πδ̂mn (3.17)

and the channel matrix G can be reconstructed according to (2.2).

Note that the operator � makes the proposed TVCE algorithm non-linear. We will evaluate the

performance of this non-linear operation in section 3.4.
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Figure 3.5: The workflow of PITIA

3.3.5 The overall workflow

The overall workflow of the proposed algorithm is shown in figure 5. Firstly, observations y are

sent to a FFT processor, and symbols on subcarriers allocated for pilots and (part of) nulls are sent

to an IFFT processor, with zeros inserted on data subcarriers. These operations, called step (0),

serve as a comb-type filter that extracts the pilots for channel estimation. The outputs of step (0)

are denoted as yp which derive ĝ(u) as CIR samples of the time-varying channel according to the

estimator (3.14) in step (1). Finally, in step (2), all ĝ(u) for u = 0,1, ...,N/LK1− 1 derive the 2L

channel parameters gm and δm by (3.15) and (3.16), respectively, and the estimated channel matrix

Ĝ can be constructed according to (3.17). We refer to this step as “channel reconstruction”.

We use the term PITIA to represent only step (1) while introducing the proposed algorithm, and

use it to represent the whole algorithm during performance comparison with conventional methods.

3.4 Performance Analysis

The performance of PITIA is determined by various factors which are discussed in this section.
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First of all, the comb-type filter in PITIA cannot completely isolate pilots and data symbols,

and pilots used for channel estimation are interfered by data symbols. This is because the power

of each subcarrier is dispersed over a large frequency band in high-mobility environments. We

model these interference as extra AWGN noise ep in (3.11). This is not an inherent problem of

PITIA, since BEM methods also suffer from the same issue. These interferences may be resisted by

advanced signal processing techniques [58,64,72] regardless of the channel estimation algorithms

(either PITIA or BEM) used. To conduct fair comparison, we assume that BEM methods also treat

these interferences as extra AWGN noise, so that both types of methods have similar computation

complexity.

Secondly, PITIA has an modelling error introduced by the operation to approximate the time-

varying channel during LK1 samples by a time-invariant channel. As shown in the next subsection,

this error is determined by fMLK1. This property is different from that of BEM, whose modelling

error is determined only by fM if basis functions are given. As a result, PITIA is able to reduce

modelling error in channels with small delay spread, and fits HST channels well. We will give the

upper bound of the modelling error in PITIA, and compare it with the PWLA approach [70] and

BEM methods with LS estimator [58].

Finally, the modelling error in step (2) arises when multiple multipath components with distin-

guished Doppler shifts fall into a single channel tap. We ignore this situation in theoretical studies,

but evaluate its effect using WINNER II channel model through simulations. The overall perfor-

mance of PITIA in noisy HST channels is evaluated by the LTE simulator introduced in section

2.4.1, where the ground truth of channel responses are derived from either the channel model from

(3.1) or WINNER II channel model.
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3.4.1 The modelling error of PITIA and BEM

Modelling error refers to the error introduced during channel approximation, and is determined

solely by the method to simplify a time-varying channel rather than SNR. The normalized mod-

elling errors σ2
M of both PITIA and BEM with respect to the energy of |gn,m| are evaluated by

theoretical studies and/or simulations in this subsection.

As shown in figure 2, the HST channel gn,m modelled by (3.1) during the time span from uLK1

to (u+1)LK1−1 is approximated by g(u+1/2)LK1,m, for u = 0, ...,N/LK1−1 and m = 0, ...,L−1.

Therefore, the normalized modelling error of PITIA is given by

σ2
M,PIT IA

:= 1
PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
|guLK1+k,m−g(u+ 1

2 )LK1,m
|2

= 1
PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
|gme jpm,k,u−gme jqm,k,u |2

= 1
PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
|gm||e jpm,k,u− e jqm,k,u |2

(3.18)

where pm,k,u := 2πδm(uLK1 + k)/N, qm,k,u := 2πδm(u+1/2)LK1)/N and PH :=
N−1
∑

n=0

L−1
∑

m=0
|gn,m|2.

Lemma 1: When π/2 > |c4− c3| ≥ |c2− c1|, |e jc4− e jc3 |2 ≥ |e jc2− e jc1 |2.

This lemma is simple and we omit the proof for it.

Proposition 1 : The upper bound of σ2
M,PIT IA defined in (3.18) is well approximated by (π fMLK1/N)2.

Proof. For k = 0, ...,LK1−1, |pm,k,u−qm,k,u| ≤ πδmLK1/N ≤ π fMLK1/N. According to the chan-

nel model given in section 2, π fMLK1/N is in the order of 1E-3 and much smaller than π/2.
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According to Lemma 1 we have

σ2
M,PIT IA = 1

PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
gm|e jpm,k,u− e jqm,k,u |2

≤ 1
PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
gm|e jπ fMLK1/N− e j0|2

≈ 1
PH

N
LK1
−1

∑
u=0

LK1−1
∑

k=0

L−1
∑

m=0
gm(π fMLK1/N)2

= (π fMLK1/N)2

(3.19)

It is shown in Proposition 1 that, the modelling error of PITIA is quadratically proportional to

Doppler shift fM, the maximum delay spread L in number of samples, and the design parameter

K1. Therefore, PITIA favours the channels with small L, like HST channels.

The upper bound in Proposition 1 as a function of fM is plotted in figure 6, together with the

modelling errors of PITIA, PWLA, GCE-BEM [53] and DLP-BEM [61] derived by simulations.

For GCE-BEM, Q must be odd and no smaller than 2, while for DLP-BEM proposed in [61], Q= 2

is large enough for most practical OFDM systems. The simulations use the channel model in (3.1)

as ground truth with N = 2048 and L = 16. It is shown that the modelling error of BEM with a

large Q enjoys small modelling error, for example, DLP-BEM with Q = 2 and GCE-BEM with

Q = 4. However, since the number of BEM coefficients equals to L(Q+1), larger Q leads to more

channel parameters, and the estimation performance in noisy environments would be degraded.

PWLA and DLP-BEM with Q = 1 approximate the channel by 2L parameters like PITIA does.

Compared to these two methods, PITIA shows smaller modelling error when K1 = 1. When K1 = 2

and K1 = 4, PITIA outperforms them when fM > 0.02 and fM > 0.04, respectively, as shown in

figure 6. Therefore, K1 controls the balance between the modelling error and the error caused by
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noises and interferences. Smaller K1 leads to smaller modelling error and vice versus, while its

optimal value is evaluated in sections 3.4.3 and 3.4.4. When Q = 1, DLP-BEM is equivalent to

PWLA which suffers from large modelling error in HST channels with large Doppler shifts. As a

result, DLP-BEM should set Q ≥ 2 in order to estimate HST channels, and the number of BEM

coefficients is equal to or larger than 3L.
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Figure 3.6: Modelling errors of PITIA, piece-wise linear approximation, GCE-BEM and DLP-
BEM, with N = 2048 and L = 16; the curve labelled with “linear" denotes “piese-wise linear
approximation".
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3.4.2 Complexity analysis

As shown in figure 5, PITIA contains three functional blocks: FFT, CIR estimation, and chan-

nel reconstruction through linear regression. The complexity of FFT operation is in the order

of O(Nlog(N)). CIR estimates are derived from (3.5) with complexity O(NL), which is slightly

larger than O(Nlog(N)). The complexity of linear regression is around O(N/K1) and is negligible.

Therefore, the overall complexity of PITIA is at the level of O(NL) which is similar to that of BEM

methods.

3.4.3 The overall performance

The overall performances of PITIA and BEM methods are characterized by normalized mean

squared error (NMSE) σ2
All , which is defined as

σ2
All :=

1
PH

N−1

∑
n=0

L−1

∑
m=0

|gn,m− ĝn,m|2 (3.20)

where ĝn,m denotes the channel estimates. This expression contains channel modelling error σ2
M,

the estimation error σ2
NI caused by noise and interference, and extra errors σ2

Extra introduced by

error propagation along multiple estimation steps and the non-linear operation to get � ĝ(u)m . In

other words, σ2
All is approximated by

σ2
All = σ2

M +σ2
NI +σ2

Extra. (3.21)

The definition in (3.20) is equivalent to the definition of interference plus noise to signal ratio

(INSR), or the reciprocal of signal to interference plus noise ratio (SINR), if we consider channel

estimates as “signals”. According to [5], for a linear system with No independent observations and
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p variables, the LS estimator enhances the SINR of these p variables by No/p times, or in other

words, reduces the INSR by No/p times, given that the interferences follow Gaussian distribution.

For BEM methods, No equals to the number of subcarriers used for channel estimation, which

equals to the size of ΞV denoted as NV , while p equals to L(Q+ 1). As a result, σ2
NI of BEM

methods is estimated by

σ2
NI,BEM =

1
ϒin

L(Q+1)
NV

(3.22)

where ϒin denotes the SINR at the input the receiver. According to its definition, ϒin is obtained by

ϒin =
PS

PN +PI
(3.23)

where PN := E{wH
p wp} denotes the energy of noise, PI := E{eH

p ep} the energy of interference and

PS := E{(Gap)
HGap} the energy of pilot signals.

Combining (3.21) and (3.22), σ2
All of BEM methods is estimated by

σ2
All,BEM =

1
ϒin

L(Q+1)
NV

+σ2
M,BEM +σ2

Extra,BEM (3.24)

where σ2
M,BEM and σ2

Extra,BEM denote the modelling error and extra noises in BEM methods, re-

spectively.

Similarly, NMSE of PITIA which is denoted as σ2
All,PIT IA can also be derived. For example,

the original INSR at the input, which equals to 1/ϒin, is reduced by K1 times in step (1) and by

NV/(2LK1) times in step (2), and changes to 1/(K1ϒin) and 2L/(ϒinNV ), respectively. Moreover,

we consider that the operator � introduces extra noises whose power is proportional to the power
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of noise and interference in ĝ(u)m . According to these analysis, σ2
All,PIT IA is approximated by

σ2
All,PIT IA =

1
ϒin

2L
NV

+(π fMLK1/N)2 +
C1

K1ϒin
(3.25)

where C1 is a constant.

3.4.4 Parameter optimization

It is shown in (3.25) that, NMSE of the proposed algorithm contains three items: 1) the estimation

error caused by noises and interferences, 2) the modelling error σ2
M and 3) extra errors caused by

error propagation and non-linear operations. Moreover, we consider that SINR ϒin, channel length

L, the number of subcarriers N and the number of pilots NV are determined by the application or

the wireless channel, while K1 is the only design parameter in PITIA.

Obviously, (3.25) as a function of K1 is convex, and there exists a certain value of K1 that

minimizes (3.25), or in other words, maximizes the NMSE performance of PITIA. By setting the

first derivative of (3.25) to 0, this optimal value is obtained by

K∗1 = argmin
K1

σ2
All,PIT IA = (C1/2ϒin)

1/3(N/(π fML))2/3 (3.26)

which shows that larger C1 and smaller maximum Doppler shift fM lead to larger K∗1 . However,

K∗1 is insensitive to these factors due to the exponential operations (·)1/3 and (·)2/3.

3.4.5 Numerical results

We further evaluate K∗1 and NMSE with the simulation tool developed in section 2.4.1, with

N = 2048 and BS = 15kHz as specified in LTE, and L = 16 as analysed in section 3.2. The corre-
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sponding sampling rate over baseband signal is 30.72MHz. QPSK modulation is adopted for both

data and pilots with equal transmission powers. The comb-type pilot pattern as shown in figure

3(a) is adopted, with Nb = 16, Nf = 2 and Np = 3.

The NMSE values as a function of K1 under different SNR and Doppler shift conditions are

plotted in figure 7, where K1 = 2 shows best performance in most cases, while K1 = 4 is slightly

better than K1 = 2 when SNR is low. This result is consistent with (3.26) where smaller SINR

results in larger value of K∗1 . These curves also validate the fact that the optimal design parameter

K∗1 is not sensitive to channel conditions, and PITIA is able to reach optimality with K1 = 2 in most

conditions. As a result, we set K1 = 2 and proceed with two scenarios.
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Figure 3.7: NMSE changes over K1 under different SNR and Doppler shift conditions

In scenario 1, the ground truth of the time-varying channel gn,m is generated by (3.1) which has

a single Doppler shift and a random initial phase evenly distributed over [0,2π] on each multipath

component. Powers of multipath components decay exponentially over channel dispersion with a

1-dB random shadowing factor. Maximum Doppler shift is set to fmax = 841 Hz and fmax = 361
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Figure 3.8: NMSE of the proposed algorithm, piece-wise linear approximation, GCE-BEM and
DLP-BEM, with N = 2048, L = 16 and fmax = 841 Hz; “ground truth" of the wireless channel is
simulated by (3.1).

Hz ( fM = 0.056 and fM = 0.024), respectively, which correspond to a travelling speed of 350

km/h and 150 km/h if carrier frequency equals to 2.6 GHz. It is shown in figures 8 and 9 that, the

proposed algorithm with K1 = 2 outperforms all BEM methods when SNR is higher than 13 dB

and 25 dB when fmax = 841 Hz and fmax = 361 Hz, respectively. In low-SNR regimes, both types

of algorithms have similar performances.

In scenario 2, gn,m is generated by a more realistic channel model - WINNER II channel model

with HST scenario, while other conditions are the same as those in scenario 1. This scenario

differ from the previous one in that, the order of the channel responses in simulations may exceed

16 occasionally, and there may be more than one Doppler shifts on a few multipath components.

Simulations results are plotted in figures 10 and 11, which are similar as those in scenario 1. It
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Figure 3.9: NMSE of the proposed algorithm, piece-wise linear approximation, GCE-BEM and
DLP-BEM, with N = 2048, L = 16 and and fmax = 361 Hz; “ground truth" of the wireless channel
is simulated by (3.1).

is also shown that, the degree of performance enhancement does not vary significantly with the

change of fmax, because fmax in WINNER II channel model is stochastic and we can only define

its mean value. We claim that HST channels are modelled by (3.1) properly, and PITIA works well

when there is occasional mismatch between the assumed channel model (3.1) and the ground truth.

Moreover, these simulation results show consistence with (3.24) and (3.25). First of all, σ2
All is

mainly determined by the number of channel parameters and the corresponding channel modelling

error. When Q = 1, modelling errors (i.e., the first term) in (3.24) and (3.25) equal each other, but

σ2
M,BEM > σ2

M,PIT IA (with K1 = 2 and fM = 0.056/0.024), as shown in subsection 3.4.1. When

Q > 1, σ2
M,BEM < σ2

M,PIT IA, but the modelling error in (3.24) is larger than that in (3.25). In short,

PITIA achieves a better balance between the number of channel parameters and the modelling
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Figure 3.10: NMSE of the proposed algorithm, piece-wise linear approximation, GCE-BEM and
DLP-BEM, with N = 2048 and L = 16; “ground truth" of the wireless channel is simulated by
WINNER II, and fmax is around 841 Hz.

error, compared with BEM methods. Moreover, the power of extra noises in (3.25) is small when

SNR is high, and performance enhancement is thereby achieved in high SNR regime.

We conclude that PITIA outperforms BEM methods in high-mobility and high-SNR environ-

ments.

3.4.6 Discussions

Simulation results show that, NMSE of PITIA is 1-2 dB lower in low SNR regime, but 5-8 dB

higher in high SNR regime, compared to that of BEM methods. If we model the SNR at receiver

as a random variable distributed evenly over 0 to 40 dB, the proposed algorithm is able to re-

duce the mean value of NMSE significantly. Moreover, as HST’s often operate in rural and open

50



0 5 10 15 20 25 30 35 40

10 4

10 3

10 2

10 1

SNR (dB)

N
M

S
E

PITIA,K1=2
GCE BEM,Q=2
GCE BEM,Q=4
DLP BEM,Q=1
DLP BEM,Q=2

Figure 3.11: NMSE of the proposed algorithm, piece-wise linear approximation, GCE-BEM and
DLP-BEM, with N = 2048 and L = 16; “ground truth" of the wireless channel is simulated by
WINNER II, and fmax is around 361 Hz.

environments, they enjoy high SNR most of the time.

PITIA requires that clustered pilots are embedded at the transmitter. This requirement is popular

in existing TVCE algorithms, but is not fulfilled by current LTE systems. We argue that LTE

systems should be enhanced to facilitate TVCE in HST and other high-mobility environments.

3.5 Summary

We propose a simple and effective TVCE algorithm named PITIA to address the challenges intro-

duced by mobile broadband channels. It is based on the finding that there exists only one Doppler
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shift on each resolvable multipath component. It reduces the number of channel parameters to

be estimated while keeping modelling error low, and thereby reduces estimation error. We de-

rive PITIA’s optimal design parameter K1 whose value is stable under various channel conditions.

Moreover, the computation complexity of PITIA is comparable with that of a FFT operation. As a

result, PITIA is suitable for practical OFDM systems on HST’s.
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CHAPTER 4

PHY-CRAM: Harnessing Mobile Broadband Channels

4.1 Overview

With the rapid advancement of wireless communication technology and ever-increasing mobile

applications, securing wireless communication becomes more and more important and challeng-

ing. Compared to a wired network, ensuring security in a wireless/mobile network faces greater

challenges mainly due to its “open air” nature since an attacker can easily eavesdrop or intercept

the wireless communication channel. On the flip side, the inherent and unique properties of mobile

broadband channels can be exploited to enhance the wireless network security. There has been an

increasing interest in complementing or enhancing authentication in wireless networks by exploit-

ing physical layer characteristics [8,9,76–83,101–103]. Physical layer authentication/identification

benefits a number of wireless applications such as forensics [104], identity-based attack detec-

tion [105], access control [106, 107], malfunctioning detection [108], and tracking [109, 110] etc.

In this chapter, we propose the first physical layer challenge-response authentication mechanism

(PHY-CRAM) to leverage the opportunities provided by mobile broadband channels and to address

Problem 2. Being different from encryption based challenge-response authentication techniques,

PHY-CRAM exchanges unencrypted shared secrets among participants. These shared secrets are

masked by a random number and the channel fading, while the verifier is able to verify the secrets

without knowing the channel state information (CSI) owing to a reverse operation in the response

signal and channel reciprocity. An attacker, on the other hand, cannot experience exactly the same
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channel fading as any legitimate user experiences due to location distinction, and can hardly learn

the shared secrets from the signals transmitted from legitimate users.

The security strength of PHY-CRAM depends on the randomness of the fading channel and

the relative geographic location between the attacker and legitimate users, but not depends on the

computation complexity. That is, even when the attacker’s computational power is increased, PHY-

CRAM does not need to increase its key length in order to maintain the same security strength, as

long as the channel randomness is remained. This property is not owned by conventional authen-

tication schemes (such as CRAM-MD5 [14] and CHAP [15]).

PHY-CRAM features another unique characteristic that, it eliminates channel coding, channel

estimation and frequency offset compensation for most messages during the challenge-response

authentication. This feature does not only simplifies the baseband design, but also prevents the

attackers from probing the channel and provides better security strength.

PHY-CRAM is also unique compared to other existing physical layer authentication mecha-

nisms. Being different from the existing RF fingerprinting schemes [76–78,102,103], PHY-CRAM

is immune to impersonation attacks, it does not require a high end signal analyzer, and it favors

dynamic environments. Compared to wireless channel based authentication [8, 9, 79–81, 101], it

does not require the legitimate user to be at a specific location and does not need channel estima-

tion or training. PHY-CRAM is also different from signal watermarking [82,83], which conveys a

cryptographically secure digital signature along with the primary transmission by superposition or

superimposing. In short, PHY-CRAM is simple, secure, robust, and flexible, and can be applied in

any wireless networks for authenticating nodes that share a secret without the requirements of any

auxiliary instruments, channel estimation or being at a specific location.
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4.2 System Setup

4.2.1 Application model

We consider a wireless network with I legitimate users Bi, i = 0, ..., I− 1. Node pairs that need

to authenticate each other share a set of secrets. For example, in a wireless local area network

(WLAN), the access point shares different secret keys with each client. Specifically, the shared

keys (bit strings) between B j and Bk are denoted as {X( j,k)
j ,X

( j,k)
k }, where X

( j,k)
j := [X ( j,k)

0, j , ...,X ( j,k)
M−1, j]

T ,

X ( j,k)
m, j ∈ {0,1} (m = 0, ...,M− 1) is the (m+ 1)th bit, and M is the key length. X

( j,k)
k follows the

same definition. For one-way authentication, only one key is necessary, while for mutual authenti-

cation two keys are used in PHY-CRAM. For simplicity, we drop the index ( j,k) whenever there is

no misunderstanding.

Each legitimate user B j has a Media Access Control (MAC) address, which is equipped in most

MAC protocols. Security of the system relies on the secrecy of {X j,Xk}. If an attacker knowns

{X j,Xk}, it has the ability to impersonate either B j or Bk.

4.2.2 Communication model

A frequency band with bandwidth W is occupied by the wireless network, where the users who

want to authenticate each other are within their communication ranges. We consider a three-layer

communication model: (1) the physical-layer modulation scheme, (2) the MAC protocol, and (3)

the authentication scheme running as an application. PHY-CRAM contributes in (1) and (3), while

adopts conventional MAC protocols, for examples, carrier sense multiple access (CSMA) for ad

hoc networks or time division multiple access (TDMA) for centralized networks.

Orthogonal frequency-division multiplexing (OFDM) is adopted as the physical layer tech-

nique, since it enjoys high spectrum efficiency and good immunity to multipath, and can utilize
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the reciprocal feature of wireless channels easily. Many modern wireless network standards adopt

OFDM technology, such as 802.11 (WiFi), 802.16 (WiMax), LTE, etc. Users in the network may

be indoor, outdoor, static or mobile, resulting in different channel types. Each channel associates

with a channel coherence time TC, below which the channel is considered as temporally correlated.

Define N and L as the number of subcarriers and length of cyclic prefix (CP) in OFDM modu-

lation, respectively. Then the subcarrier spacing equals to W/N. A proper design on the system

guarantees that N and L are large enough to overcome frequency-selective fading, while N is also

small enough to overcome the Doppler shifts in mobile environments [111].

4.2.3 Attacker model

We assume a very powerful attacker E, who knows all the communication protocols and authen-

tication schemes adopted in the network. Besides, E is able to monitor and replay any messages

and signals sent in the network. E may be very close to a legitimate user, say just one or few

wavelengths away from legitimate users. The radio on E is assumed to be perfect, with no LO drift

or modulation error. However, E does not know {X j,Xk}. E’s goal is to pass the authentication

with legitimate user(s).

4.3 The Physical Layer Mutual Authentication Mechanism: PHY-CRAM

4.3.1 The basics

PHY-CRAM is realized by transmission and reception of a bunch of wireless frames between two

participants. All these frames have (K1 +K2) OFDM symbols. The first K1 symbol is modulated

with differential phase shift keying (DPSK) scheme, and contains binary data regarding the traffic

information and user information, like frame type, MAC address, and time stamp etc (referred to
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Figure 4.1: Frame structure of PHY-CRAM messages

as traffic information). Due to the importance of traffic information, data interleaving, convolu-

tional encoding and cyclic redundancy check (CRC) are adopted. We randomize the amplitude of

each subcarrier since equal power level reveals CSI to the attacker, while CSI is not required to

demodulate DPSK signal.

The last K2 symbols in each frame carry PHY-CRAM information, which contains the shared

keys X j and Xk, as well as a set of random values Dn. PHY-CRAM information may be repeated

for several times to resist noise. For simplicity, we assume that both traffic information and PHY-

CRAM information can be accommodated in a single OFDM symbol (however, PHY-CRAM is

not confined to this condition). As a result, K1 = 1 and K2 equals to the number of repetitions for

PHY-CRAM information, and the corresponding frame structure is shown in figure 4.1.

Note that the DPSK modulation for traffic information does not require at least two OFDM

symbols or an “initial” OFDM symbol with pre-known phase information, since the differential

encoding can be conducted subcarrier-by-subcarrier [112]. Taking DQPSK as an example, the

phase difference between subcarrier 10 and subcarrier 11 carries two bits, while the phase differ-

ence between subcarrier 12 and subcarrier 13 carries another two bits (all these subcarriers are

within one OFDM symbol). Since the subcarrier spacing is designed to be much smaller than the

coherence bandwidth, the channel responses on two adjacent subcarriers are highly correlated. The

phases at subcarriers 10 and 12 may be randomized to further increase the security strength.

The term “frame” may be misunderstood such that it only defines the data at MAC layer, which
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is further encapsulated at physical layer. Actually, all “frames” defined here refer to the final

signal “in the air”. More importantly, these frames do not contain any pre-known synchronization

header, pilots or reference signals. Timing and frequency synchronization to these frames at the

receiver are realized simply through autocorrelation on CP [113]. Throughout the procedure of

PHY-CRAM, channel estimation is never needed.

Based on the communication model given in subsection 4.2.2, Doppler spread caused by relative

speed between two participants are neglected, and there is no inter-carrier interference (ICI) in the

system. As a result, the OFDM system can be considered as the superposition of N independent

narrow band subsystems that experience flat-fading channels, and each subsystem is modelled

simply by 2.1. Due to its simplicity, frequency-domain representation is used throughout this

chapter.

Without loss of generality, we map the M-length shared key X j or Xk onto the subset of sub-

carriers with M smallest indices; for example, X0, j is mapped onto subcarrier 0, and XM−1, j onto

subcarrier M− 1 etc. Then the index n in Xn, j or Xn,k denotes both the subcarrier index and bit

location.

4.3.2 The authentication procedure

We use subcarrier n to show the basic principle of PHY-CRAM, with two participants B j and

Bk. Without loss of generality, assume that Bk wants to start a conversation with B j. The mutual

authentication between them contains three stages as shown in figure 4.2.

In stage 0, Bk sends an “authentication request” frame to B j. The frame contains only traffic

information, so only symbol 1 is used. All the information in this frame is not encrypted. This

frame does not reveal CSI information to the attackers, since there is no pilot or synchronization

header and the amplitudes of all subcarriers are randomized.
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After receiving the authentication request, B j authenticates Bk in stage 1. If Bk passes the

authentication, B j will also be authenticated by Bk (actually Bk does not need to know the result

in stage 1, but can always send challenge to start the authentication; however, B j responds to this

challenge only if Bk passes the authentication in stage 1). The mutual authentication succeeds if

and only if both stage 1 and stage 2 show positive results. One-way authentication can be realized

by only applying stage 0 and stage 1.

Figure 4.2: The basic procedure of PHY-CRAM

During stages 1 and 2, a typical challenge-response procedure is defined. Detailed steps of

stage 1 are shown in figure 4.3, while those of stage 2 can be derived by switching two partici-

pants. These steps include:

Step (1) At time t1, B j uses a random number Dn within the range [K3,K4] to modulate am-

plitudes of subcarriers in the last K2 OFDM symbols, where 0 < K3 < 1 < K4, and transmits the
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resulting frame to Bk. Here Dn is a random number with the purpose to prevent the attacker from

probing the channel. This frame is actually a challenge for authentication.

Step (2) Bk receives DnHjk,n +W (1)
n , where Hjk,n denotes the wireless channel between B j and

Bk at the nth subcarrier, and W (1)
n the AWGN. As a response to the challenge, M (Xn,k)/(DnHjk,n +W (1)

n )

is transmitted by Bk at time t2, where Xn,k is the nth element in Xk and M (·) denotes a constellation

mapping scheme. The shared key Xk is masked by the wireless channel Hjk,n. At time t3, this

frame arrives at B j , who authenticates Bk according to its received signal. Both B j and Bk should

do these processing fast enough to ensure that t3− t1 � TC.

The signals defined in these two steps as shown in figure 4.3 are classified as PHY-CRAM

information, and are modulated on the last K2 OFDM symbols. Similar to the “authentication

request” frame, traffic information in stage 1 and stage 2 is carried in the first OFDM symbol.

The constellation mapping scheme M (·) is defined as

M (x) =

⎧⎪⎨
⎪⎩

K3,x = 0

K4,x = 1
(4.1)

which maps the binary values to positive real values K3 or K4. In other words, we adopt amplitude

modulation (AM) for PHY-CRAM information, while K3 and K4 determine both the randomness

of Dn and the euclidean distance of the constellation. The ratio K4/K3 should be large enough to

hide the CSI, while too large value of K4/K3 leads to high transmission power at some subcarriers.

In practice, [K3,K4] should have the similar range as the channel fading (the normalized value of

Hjk,n) has. For example, if the largest channel gain is 10 dB larger than the smallest channel gain

in all subcarriers, it is appropriate to set K3 = 0.5 and K4 = 1.5.

The key feature of this authentication mechanism is that, the shared key Xn,k is secured by the

wireless channel which is cancelled out at the verifier, and only the verifier can derive Xn,k in
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Figure 4.3: Detailed steps in stage 1 of PHY-CRAM

multipath environments.

We denote the symbols at subcarrier n in step u before and after transmission as T (u)
n and R(u)

n ,

respectively; for example,

R(2)
n =

Xn,kHk j,n

DnHjk,n +W (1)
n

+W (2)
n . (4.2)

In real systems, all the signals modulated on subcarriers are complex values, with real and

imaginary parts represented by I-branch and Q-branch respectively. However, phases of all sig-

nals defined in steps (1) and (2) are useless, since they adopt AM modulation. Therefore, all the

notations defined in this section represent their absolute values.

Timing must be met during the procedure, otherwise the wireless channel is no longer recipro-

cal. In static channels with pedestrians walking around at a speed of 1 m/s, TC is around 20 ms,

while in high mobility environments with moving speed 30 m/s, TC is around 0.7 ms, when carrier

frequency equals to 2.4 GHz. On the other hand, off-the-shelf wireless devices can maintain the

round-trip delay well below 0.7 ms (not including the processing delay at application layer), while

our prototype achieves a round-trip delay of only 36 μs.
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4.3.3 The verification scheme

In step (2) of stage 1, B j needs to verify that whether the counterpart is legal or not through the

response received, while Bk meets exactly the same problem in stage 2. So we only take B j as an

example.

To enhance the signal quality, B j combines the received signals on all subcarriers, and get

R(2) := [R(2)
0 , ...,R(2)

M−1]
T . (4.3)

Moreover, B j knowns Xk since it is the shared key. Then B j wants to verity the identity of Bk

through comparison between R(2) and Xk. To be precise, we define this problem as follows:

Problem 1 : Given R(2) and Xk, make a decision on whether frame (2) is sent from Bk or not.

To solve this problem, we first ignore the noise, and make an approximation that Hk j,n = Hjk,n.

Then (4.2) becomes

R(2)
n =

Xn,k

Dn
(4.4)

where n≤M−1, and (2.2) becomes

R(2) =

[
X0,k

D0
, ...,

XM−1,k

DM−1

]T

. (4.5)

Then we get the following relationship

R(2)	D = [X0,k, ...,XM−1,k]
T = Xk (4.6)

where D := [D0, ...,DM−1]
T is known by B j (since D is generated by B j), while the unknown

channel responses Hk j,n and Hjk,n cancel each other.
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With existence of low noises and slight difference between Hk j,n and Hjk,n, R(2)	D and Xk are

not exactly the same, but should be similar. Therefore, a straightforward solution to Problem 1 is

to check the Euclidean distance between Xk and R(2)	D:

Solution 1: Frame (2) is sent from Bk if and only if ||R(2)	D−Xk|| < C0, where C0 is a

constant real number.

�

However, it is hard to determine C0, since bounding Euclidean distance is hard. On the other

hand, the value of cross-correlation is tightly bounded between [0,1]. Then we define R̄D and X̄k

as mean values of R(2)	D and Xk respectively, and give another solution:

Solution 2: Frame (2) is sent from Bk if and only if

(R(2)	D− R̄D)
H · (Xk− X̄k)

||R(2)	D− R̄D|| · ||Xk− X̄k||
<C1. (4.7)

�

The value of parameter C1 in Solution 2 must be selected properly in order to get a balance between

the successful authentication rate β (the rate that a legitimate user passes the authentication) and

false acceptance rate α (the rate that an attacker passes the authentication). We will use receiver

operating characteristic (ROC) to evaluate PHY-CRAM’s performance.

4.3.4 Peak reduction

Let’s focus on the response T (2)
n := M (Xn,k)/(DnHjk,n +W (1)

n ) sent by Bk in step (2) of stage 1.

The absolute value of T (2)
n may be extremely large if (1) M (Xn,k) = K4, (2) Dn = K3 and (3)

Hjk,n experiences deep fading (|Hjk,n| � 1). The probability that these three conditions occur
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simultaneously is low; as a result, the number of high peaks is small compared to the number

of subcarrier N. However, a few high peaks at frequency-domain may cause multiple issues for

wireless communication systems. For examples, the transmission powers at some subcarriers may

exceed the limitation defined by the regulator, and the peak-to-average power ratio (PAPR) may

be deteriorated. Note that, we always normalize the baseband signal so that the average power

over all subcarriers is constant, in order to fit the dynamic range of downstream components at

the transmitter (like digital-to-analogue converter and amplifier). As a result, the high peaks at

some subcarriers does not increase the the total transmission power, but actually decrease the

transmission power at other subcarriers, and may reduce the spectrum efficiency.

We solve the high-peak issue by adding a peak reduction operation defined as follows:

T̃ (2)
n =

⎧⎪⎨
⎪⎩

T (2)
n , i f |T (2)

n | ≤ Amax

AmaxT (2)
n /|T (2)

n |, otherwise
(4.8)

where T̃ (2)
n denotes the signal after peak reduction, and Amax denotes the maximum allowable

amplitude of the signal at any subcarrier.

In (4.8), all the high peaks are cut off, and the channel effect cannot be cancelled out. However,

since all subcarriers are independent, the peak reduction operation does not affect the subcarriers

without high peaks (named good subcarriers). Since good subcarriers dominate the system, the

peak reduction operation does not affect the value of C1 too much, and, as a result, have limited

effect on the verification scheme (either Solution 1 or Solution 2).
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4.3.5 Effect of timing offset

When CP is used for timing synchronization, timing offset is more serious, since the peak of CP-

correlator is smooth. Performance of traditional OFDM systems is not affected as long as the

timing offset plus channel delay spread (in number of samples) does not exceeds L (we call this

kind of timing offset as “tolerated timing offset"), since the effect of timing offset is absorbed by

channel estimation [114]. Now we analyse the effect of tolerated timing offset to PHY-CRAM

where channel estimation is absent.

Assume that the timing offset at Bk in step (1) and at B j in step (2) are δk and δ j respectively.

Then according to [115], the equivalent channel response from B j to Bk, and from Bk to B j, are

H
′
jk,n =Hjk,ne j2πδk/N and H

′
k j,n =Hk j,ne j2πδ j/N respectively. Then in the ideal case of static channel

with no noise, (4.5) changes to

R(2)′ = [
X0,k
D0

e j2π(δ j−δk)0/N , ...,

XM−1,k
DM−1

e j2π(δ j−δk)(N−1)/N ]T
(4.9)

which has the same amplitude but different phase compared with (4.5). As only the amplitude is

used for further processing, the performance of PHY-CRAM with existence of tolerated timing

offsets at either B j or Bk is not affected. Once δk or δ j exceed L, SNR is reduced dramatically, and

CRC in symbol 1 may be wrong; we classify this situation as frame drop/error, rather than timing

offset. Any frame drop/error causes time-out and triggers retransmission of the same frame.

4.3.6 Effect of frequency offset

Frequency offset comes from two sources: LO drift between Tx and Rx, and Doppler effect. It

imposes two impairments to OFDM systems: ICI and phase shifts [116]. Most short range OFDM
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systems have large subcarrier spacing, which is much bigger than frequency offset caused by LO

drift and Doppler shift. For example, the WiFi system features subcarrier spacing of 312.5 KHz,

while the frequency offset mentioned above is at the level of 3 KHz. As a result, ICI can been

ignored in such system. Due to the same reason analysed in subsection 4.3.5, phase shifts caused

by either timing offset or frequency offset do not affect PHY-CRAM. Therefore, frequency offset

estimation and compensation are unnecessary in PHY-CRAM. The real-world testing we conduct

show good results without frequency offset compensation.

4.4 Analyses on the attacks

To evaluate the security strength of PHY-CRAM, we analyse various types of attackers in this

section. Without loss of generality, we only take subcarrier n for example.

4.4.1 Passive attackers

A passive attacker EP only monitors all frames inside the network during authentication, and tries

to learn {X j,Xk} from whatever it gets. If EP learns something in {X j,Xk}, it may initiate an

authentication procedure with some users; however, as long as EP is silent during legitimate users’

authentication procedure, it is still considered as passive.

Stage 0 does not need to be secured, since it does not reveal the shared key or CSI.

As shown in figure 4.3, stages 1 and 2 are symmetrical with each other and undergo the same

passive attacks. Therefore, we only analyse stage 1.

We first assume that EP is not too close to B j and Bk, so that h jk, h jE and hkE are all uncorrelated

(case 1). The noises at EP’s receiver are ignored. Then all the frames received by EP, except “link
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set up request" which contain no information about the shared keys, are

R(1)
E,n = DnHjE,n (4.10)

and

R(2)
E,n =

Xn,kHkE,n

DnHjk,n +W (1)
n

(4.11)

where HjE,n and HkE,n denotes the wireless channels between B j and EP, and between Bk and EP,

respectively. In (4.10) and (4.11), five unknown factors exist in two equations, despite of the noise.

Therefore, there is no way for EP to derive Xk.

Note that if Dn is not random but a value known by everyone, EP is able to estimate HjE,n in

stage 1 and HkE,n in stage 2, according to (4.10). Then EP can estimate Xn,k/Hjk,n in stage 1 and

Xn, j/Hjk,n in stage 2 according to (4.11). As a result, Xn,k/Xn, j is known by EP, and the shared

keys between B j and Bk are compromised to some degree.

Then we consider two more aggressive cases that, EP is very close to B j (case 2) and Bk (case

3) respectively. Then besides (4.10) and (4.11), EP gets more information. For case 2, it gets

HjE,n ≈ 1 (4.12)

because the direct path between EP and B j is much stronger than any multipath if they are very

close to each other, and

Hjk,n ≈ HkE,n (4.13)

which is obvious.
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Combing 4.10 to 4.13 and ignoring the noise, we have

Xn,k ≈ R(1)
E,nR(2)

E,n (4.14)

and interestingly, for case 3, we get the same result as in (4.14).

As a result, EP is able to get a rough estimate on Xk through what it hears for both case 2 and

case 3. It seems dangerous to PHY-CRAM. However, EP cannot be too close to B j or Bk, since

each radio occupies a certain area of space, and it is impossible in most cases for EP to go inside of

another radio. Furthermore, due to the approximation in (4.12) and (4.13), Xk estimated by EP is

very noisy (due to the channel variations over space), while Bk has perfect information about Xk.

Therefore, the attacker EP is still identifiable.

A passive attacker is able to derive part of the information in Xk from channel correlation among

adjacent subcarriers. We consider this as a truncation to the shared key. Actually if we modulate

shared keys on a selected set of subcarriers with a spacing bigger than the coherence bandwidth, a

passive attacker will learn nothing about Xk through channel correlation. The maximum number of

shared keys in this ideal case determines the security strength of PHY-CRAM, which is analysed

in section 4.5.4.

4.4.2 Active attackers

A passive attacker EA may transmit messages to facilitate his attacks.

If an attacker initiates stage 0 (sends authentication request to B j), it will be authenticated by B j

in stage 1, and it can hardly succeed since it does not have the shared key. On the other hand, stage

1 is more vulnerable than the other two stages, since during stage 0 Bk does not know the legality

of its counterpart. After procedure 1 is finished successfully, B j will know that whether Bk is legal
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or not, and any further response to Bk is safe. Therefore, a threat to PHY-CRAM comes from step

(2) in procedure 1, since Bk needs to identify whether the challenge is sent from B j or not.

We first assume that all users are active and will respond to all requests timely. Therefore,

in step (1) B j will definitely sends a challenge. Moreover, since the channel is symmetrical in

two directions, B j is able to adjust its transmission power properly to guarantee a nearly constant

SNR at Bk, with the help from its received signal’s SNR at stage 0. The underlying assumption

here is that, in stage 0 the transmission power of Bk must be constant (transmission power on each

subcarrier is random, but the overall transmission power is constant). In this way, any active attacks

during step (1) or (2) can be easily detected. For example, if EA tries to overcast B j’s signal by

using high transmission power, Bk detects the attack directly; on the other hand, if EA maintains the

signal at the same power level, it cannot effectively modify the challenge information as it wants.

Note that due to the absence of any pre-known signal contained in all OFDM symbols, there is no

way for EA to estimate the channel between itself and Bk in order to modify the challenge signal

precisely; the only way EA can modify the challenge is to overcast it by high transmission power.

As a result, PHY-CRAM is still safe facing active attackers.

In case that B j does not send respond to Bk timely, EA may take the role of B j successfully, and

steal Xk from the response of Bk. We solve this problem by sharing two distinguished keys, X j

and Xk, between B j and B j. After Bk has been authenticated by B j, Bk also authenticates B j; if B j

cannot provide a valid response, Bk would consider that its shared key has been compromised and

revoke it. Moreover, EA cannot actively steal the shared key since it impersonates B j; it can only

wait for other users to initiate the conversation, as shown in figure 4.2.

The active attack introduced in [85] requires that both participants in the authentication pro-

cedure send pre-known sounding signals. However, in PHY-CRAM, the sounding signals Dn are

random signals, so neither two participants nor attackers can derive CSI.
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4.4.3 Impersonation attacks

Although impersonation attacks [78] belong to active attacks, it is emphasized here due to its

significant threat to other physical-layer security schemes [76, 77, 102, 103, 106, 117]. Two kinds

of impersonation attacks, signal replay attack, and feature replay attack, are analysed here.

In a signal replay attack, the attacker E stores the waveforms shown in (4.10) and (4.11), and

use 4.11 to impersonate Bk. However, E cannot succeed for two reasons. Firstly, the challenge

sent from B j contains a random number Dn, and an old version of (4.11) cannot be used in future

authentication procedures. Secondly, even if Dn is unchanged, HkE,n also randomizes (4.11) and

makes this waveforms useless.

Feature replay attack is also similar to “mimicry attack” as introduced in [81]. Conventional

physical-layer security schemes rely on training sequence and synchronization sequences for chan-

nel estimation and timing/frequency synchronization at the counterpart. As a result, CSIs become

no longer random to the attacker, while the attacker is able to forge frames that show legal shared

key at B j.

However, in PHY-CRAM no training or synchronization sequences exist, and the challenge

signal is randomized by Dn. Timing and frequency synchronization are realized by CP, while

channel estimation is not necessary. Therefore, the attacker cannot derive CSI, and cannot control

the signal arrives at legitimate users. As a result, feature replay becomes impossible, only except

that the attacker is very close to one of the participants.

We notice that, the information contained in OFDM symbol 1 are related with the identity of Tx

and Rx, as well as the logic of PHY-CRAM protocol. If an attacker knows that B j is authenticating

Bk, it knows the content of source/destination MAC address and frame type directly. As a result,

by using the known information in symbol 1 as a “training signal”, the attacker would be able

to estimate the channel. However, what the attacker gets here is just phase information (because
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symbol 1 is DPSK modulated with randomized amplitude on each subcarrier), while the shared

keys are represented by amplitudes, which show little correlation to the phase. Therefore, by

using different modulation schemes, PHY-CRAM is able to keep the useful CSI (the amplitudes of

subcarriers) secret to the attacker.

4.5 Performance Evaluation

Performance of PHY-CRAM is determined by many factors, including signal quality, randomness

of the channel over space, processing delay, key length M, and distance between legitimate user

and attacker etc.

Signal quality affects PHY-CRAM’s performance dramatically. When signal quality is good,

the cross-correlation in (4.7) generates a high value, the threshold C1 can be high, and the false

alarm rate is low accordingly, and vice versus. As introduced in section 4.3, frequency offset

and tolerated timing offset does not affect PHY-CRAM, and channel estimation is unnecessary.

Therefore, signal quality in PHY-CRAM is mainly determined by noises and deep fading. We will

evaluate how these two factors affect PHY-CRAM’s performance by computer based simulations.

Randomness of the channel over space determines the ability of PHY-CRAM to resist passive

attackers and feature replay attackers that are very close to one of the legitimate users, as discussed

in subsection 4.4. Processing delay determines how small t3− t1 could be, and how well the re-

ciprocal property of the wireless channel is maintained. These factors are closely related with

channel’s spatial and temporal correlation characteristics, as well as implementation issues. As

a result, we design a prototype for PHY-CRAM and conduct extensive real-world testing in vari-

ous channel environments to evaluate these factors. The prototype contains MAC, baseband and

radio frequency (RF) designs, among those the baseband signal processing algorithms and MAC

protocol are realized on a field-programmable gate array (FPGA) platform to ensure low latency.
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4.5.1 Simulation results

We conduct Monte Carlo simulation to get an initial estimate on the performance of PHY-CRAM

with respect to noises, multipaths, the number of repetitions K2, and key length M, while W , N

and L are fixed at 10 MHz, 64 and 16, respectively. There are 100 pairs of legitimate users. The

rural/urban channels defined in [93] are selected as channel models, with 10/20 multipaths, fixed

amplitudes and random phase shifts. Maximum delay spread of two channels equal to 0.528 μs

and 2.14 μs, respectively, the latter of which exceeds the length of CP adopted in the simulation.

In other words, we select a very bad urban channel in order to evaluate the effect of deep fading

to PHY-CRAM’s performance. We adopt DQPSK modulation for symbol 1 due to its good bal-

ance between spectrum efficiency and BER performance, and conduct peak reduction for the rest

symbols.

Figure 4.4 plots a snapshot of the frequency-domain channel response’s amplitudes (|Hjk,n|) in

urban channel, where most amplitudes fall in the range of [0.5,2.5]. The fading condition in rural

channel is much better. As a result, we set K3 = 0.5, K4 = 2.5 and Amax = 5 in the simulations.

Performance of PHY-CRAM is represented by ROC, which reflects successful authentication

rate (the rate that two legitimate users pass the authentication, denoted as β) versus false acceptance

rate (the rate that an attacker passes the authentication conducted by a legitimate user, denoted

as α). Moreover, the performance of both one-way authentication (stages 0 and 1) and mutual

authentication (stages 0, 1 and 2) are evaluated. For both cases, legitimate users use shared keys

for authentication, while a naive attacker generates length-M random vectors for authentication.

The performance of PHY-CRAM with respect to K2 is shown in figure 4.5, where all ROC

curves are derived in the rural channel with SNR=10 dB. It is shown that, the performance en-

hancement is not obvious when K2 > 3. Since larger K2 leads to larger energy consumption, we

set K2 = 3 in the following simulations.
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by simulation, with various settings for K2
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Figures 4.6 and 4.7 plot the ROC curves for one-way and mutual authentication under rural and

urban channels with key length M = 40 and 60, respectively. As expected, larger M and higher

SNR lead to better results. In both channels, the performance is very good when M = 60 and SNR

≥ 15 dB.
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Figure 4.6: ROC curves of PHY-CRAM for one-way (a)(b) and mutual (c)(d) authentication under
rural channel (a)(c) and urban channel (b)(d) derived by simulation, with key length M = 40
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Figure 4.7: ROC curves of PHY-CRAM for one-way (a)(b) and mutual (c)(d) authentication under
rural channel (a)(c) and urban channel (b)(d) derived by simulation, with key length M = 60
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Figure 4.8: Block diagram of the prototype

Figure 4.9: Receiver branch of RF circuits designed by discrete RF components

4.5.2 Design of the prototype

Block diagram of the prototype is given in figure 4.8, which is composed of Altera Cyclone III

FPGA, analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC) fabricated

by ADI, RF circuits, a switch and an antenna. The FPGA features 120K logic elements, 4M

memory, 288 multipliers and 531 I/O pins, and is mounted on a Terasic Cyclone III development

board, while ADC and DAC on a daughter board are manufactured by the same company. These

two boards connect each other through the High Speed Mezzanine Card (HSMC) interface defined
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by Altera. Analogue inputs/outputs of the daughter board are connected to Rx/Tx branch of RF

circuits, which are designed using discrete RF components. These two branches are connected

to a switch to realize a half duplex transceiver. On/off state of the switch is controlled by FPGA

through I/O pins. Figure 4.8 shows the picture of the whole prototype.

Moreover, principle of Rx branch in the RF circuits is shown in figure 4.9. The RF signal from

switch is amplified by one or two low-noise amplifiers (LNAs), split into two identical streams,

and sent to the ‘RF’ ports of two mixers, respectively. Meanwhile, the carrier signal from signal

generator (the LO) is sent to another power splitter with 90◦ phase shift between two outputs, in

order to get in-phase and quadrature carriers. Then these two carriers are sent to the ‘LO’ ports,

and the baseband signal with real part (I-branch) and imaginary part (Q-branch) can be derived

from the ‘IF’ ports, of two mixers respectively. The Tx branch has the same structure as that of

the Rx branch with different signal directions. The system operates on 2412 MHz which falls into

the industrial, scientific and medical (ISM) band. Transmission power for all frames is between -5

dBm to 5 dBm according to the distance between Tx and Rx.

The whole PHY-CRAM mechanism is implemented on FPGA to ensure low processing delay.

4.5.3 The real-world testing

We conduct extensive real-world testing using the prototype to further evaluate PHY-CRAM’s per-

formance. Four channel types are considered: line-of-sight (LOS) with 3-meter distance between

Tx and Rx (LOS-3m), LOS-6m, non-line-of-sight (NLOS) with 6-meter distance (NLOS-6m), and

LOS-28m. The first three channels are inside of a garage with a truck and metal roof, while the

last one locates at a courtyard with concrete ground and surrounded by walls. Radios of legiti-

mate users use CP for timing synchronization, while do not conduct frequency offset estimation

or compensation. Two sets of prototype acts as B j and Bk respectively, while other two sets of
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prototype act as two attackers, who mounts their antennae 10 m and 0.1 m away from B j respec-

tively. Bk starts the conversation and is identified by B j, as introduced in subsection 4.3.2. During

the authentication procedure, attackers record all the frames and try to figure out Xk. The nearby

attacker estimates Xk according to (4.14) (we call it smart attacker), while the far away attacker

generates values for Xk randomly (we call it naive attacker). The naive attacker defined here helps

us to evaluate the upper-bound of PHY-CRAM’s performance, as well as to detect any hardware

imperfection. Finally, two attackers start their conversations with B j and uses their estimates on

Xk as the response to B j’s challenge.

Although in real situation Bk only has one set of Xk, 99 different values of Xk are tested in

different runs in order to cover a more general case. In other words, we test 99 different legitimate

users with one pair of radios by changing the software, while each user’s authentication procedure

is repeated for 5 times. The successful authentication rates for all users in all runs in a certain

channel are averaged, while results belonging to different channels are separated. SNRs at Rx for

all frames are maintained at 15 dB to 20 dB, by adjusting the transmission power and the gain

of Rx’s LNA. We set K1 = 0.5 and K2 = 1.5 since the frequency-domain channel response on all

subcarriers fall in the range of [0.5,1.5] in most cases in all channel conditions, and K2 = 3. Amax

is set to 8 due to hardware limitations (mainly due to the maximum range of integers that can be

presented by FPGA in our design). All other design parameters adopt the same values as used in

the simulations.

We first measure t3 − t1 (the round-trip latency of one-way authentication defined in figure

4.3) by examining the signal received by passive attackers (the attacker might never expect that it

facilitates system testing). It is found that t3− t1 is as low as 36 μs, and is pretty stable. This is the

benefit we get from FPGA design, with the price of much longer development time compared with

that of the digital signal processor (DSP) based solution.
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The ROC curves with existence of the naive attacker under four channel types are plotted in fig-

ure 4.10, which shows very good performance under all channel types. Successful authentication

rate and false acceptance rate follow the same definitions as those in subsection 4.5.1. Perfor-

mance of PHY-CRAM in short-distance channels is even better than those obtained by simulation,

because the delay spreads in these channels are much lower than those assumed in the simulations,

and the low-SNR case (SNR=10 dB) is avoided. Figure 4.10 also validates the reciprocal property

of the wireless channel, and shows the near-perfect upper-bound of PHY-CRAM’s performance in

good channel conditions.

The ROC curves with existence of a smart attacker under four channel types are plotted in figure

4.11. Performance differs dramatically in different channels. Short-distance LOS channels show

the best performance, followed by short-distance NLOS case. Long distance LOS channel is the

worst case, since 0.1 m is too short compared with 28 m, and the approximation in (4.13) becomes

more precise. However, the attacker does not always have chance to stay so close to the legitimate

user.
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Figure 4.10: ROC curves of PHY-CRAM for one-way (a) and mutual (b) authentication derived
from real-world testing under four channels, with existence of a naive attacker
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Figure 4.11: ROC curves of PHY-CRAM for one-way (a) and mutual (b) authentication derived
from real-world testing under four channels, with existence of a smart attacker

4.5.4 Security analysis

Shared keys are encrypted by the wireless channel in PHY-CRAM, so the security strength of PHY-

CRAM is determined by the entropy of wireless channel. The real-world experiments in [118]

reveals that, each independent channel provides 4.38 bits of entropy with 0.5 dB quantization

accuracy, and 3.5 bits of entropy with 1 dB quantization accuracy, while the quantization accuracy

is mainly determined by SNR. In PHY-CRAM, there is no quantization step. However, higher SNR

leads to a larger value of C1 in (4.7), and as a result, more efforts for attackers to forge a shared

key that satisfies (4.7); this is equivalent to a larger entropy on the encryption key that secures the

shared keys.

Given the works in [118], we make a moderate assumption that each independent channel pro-

vides 4 bits of entropy. Then the overall entropy of the wireless channel is determined by the

number of independent channels over the frequency band occupied by the wireless network, which

equals to W/BC, where BC denotes the coherence bandwidth. According to [86], BC = 1/(5στ),

where στ denotes the root mean square (RMS) delay of the wireless channel. For a WiFi system

running at 20 MHz bandwidth with στ = 0.2 μs, the overall entropy is 80 bits.
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Note that the system provided in this chapter is only a baseline of PHY-CRAM. Additional

entropy can be obtained by utilizing the time-varying characteristic of the wireless channel, i.e., to

partition the shared keys into multiple pieces and conduct authentication for all of them in multiple

runs of the baseline PHY-CRAM procedure. The time interval between two runs should be larger

than the channel coherence time TC. In this case, β of each run will be enhanced; this can be easily

achieved by increasing SNR or enlarging K2. Doing this kind of repetition does not leak more

information to attackers, but takes more time and consumes more energy.

4.5.5 Comparison with conventional authentication algorithms

Compared with conventional challenge-response authentication schemes, PHY-CRAM consumes

less power at transceivers’ baseband, due to the missing of channel estimation and frequency offset

estimation for all OFDM symbols, and the missing of channel coding and decoding for PHY-

CRAM information.

On the flip side, PHY-CRAM requires higher transmission power compared with conventional

schemes. For performance comparison, we assume that the length of (encrypted) shared key is

60 bits, K2 = 2, while conventional schemes adopt rate 1/2 convolutional encoder, Viterbi decoder

and LMMSE estimator [119]. Conventional schemes need to maintain a BER of 8E-4 to keep β in

one-way authentication above 95%, and the corresponding SNR under the rural channels simulated

in subsection (4.5.1) is about 10 dB, while PHY-CRAM requires 13-15 dB SNR under the same

conditions.

Figure 4.12 gives rough estimation on the dynamic power consumptions of both transceivers

with respect to the distance between Tx and Rx, if the baseband of transceiver is designed by

FPGA, DSP and application-specific integrated circuit (ASIC), respectively. We consider that dy-

namic power consumption equals PBS (dynamic power consumed at baseband) plus PRF (dynamic
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power consumed at RF). In our FPGA design, PBS ≈ 100 mW, which is about 15 mW less than

the power consumption of conventional baseband; this is mainly due to the elimination of Viterbi

decoder IP core, which consumes 12 mW dynamic power [120]. DSP design and ASIC design

for the same function are believed to consume about 10 times [121] and 10% [122] of the power

consumed by FPGA, respectively. We ignore the power consumed at the Rx’s RF circuitry and

assume that PRF = ηPT , where η and PT denote the power efficiency and power level of the RF

amplifier at Tx. Moreover, the signal power at Rx with distance d is modelled by PT/(L0dγ), which

must satisfy the SNR requirements (15 dB for PHY-CRAM and 10 dB for conventional system),

with L0 and γ denoting pathloss at d = 1m and pathloss exponent, respectively. We assume that

W = 10 MHz, noise floor equals to -114 dBm/MHz, η = 0.25, L0 = 104, and γ = 3.3 [123]. Based

on these conditions, PHY-CRAM consumes less power than the cryptographic system when com-

munication range is shorter than 20 m, 40 m and 10 m, if FPGA, DSP and ASIC are adopted,

respectively.
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Figure 4.12: Rough estimation on the power consumptions of conventional wireless transceiver
during authentication and the transceiver of PHY-CRAM
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4.6 Summary

We proposed a novel mutual challenge-response authentication mechanism named PHY-CRAM,

which is simple, low-complexity, robust, and flexible. By eliminating any training and synchro-

nization sequences, the CSI is kept secret to attackers, while the transmission of shared keys are

secured by CSI. We analyzed the security strength of PHY-CRAM under various attacks. With the

existence of a naive feature replay attacker, PHY-CRAM achieves almost perfect performance in

dense multipath environments. When there exists a smart attacker, PHY-CRAM still works well

under various channel conditions.

Moreover, PHY-CRAM is prototyped by FPGA and discrete RF components. Based on this

prototype, we conducted real-world tests to validate PHY-CRAM’s performance, and eliminated

channel modelling error. These testing results show that the reciprocal property of wireless channel

is well maintained when processing delays of the challenge-response signals are less than 40 μs,

and that PHY-CRAM is robust under various channel environments.

Security strength of PHY-CRAM increases proportionally to RMS delay and bandwidth of the

wireless channel. Energy consumption of PHY-CRAM can be comparable to or even lower than

that of cryptographic authentication schemes in short range applications. As a result, PHY-CRAM

can be a good alternative to traditional authentication schemes.
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CHAPTER 5

Conclusions

Mobile broadband channels, which suffer from time-varying effect and FSF, are experienced by

4G communication systems in mobile environments. We argue that these channels not only in-

crease the complexity of these 4G systems, but also provide new opportunities for information

security. The main body of this thesis can be divided into two parts, which discuss challenges and

opportunities respectively.

In the first part, a channel estimation algorithm named piece-wise time-invariant approxima-

tion (PITIA) is proposed to effectively estimate HST channels which are typical mobile broadband

channels. PITIA first identifies a specific feature of HST channels which is not discussed in con-

ventional TVCE algorithm, and adopts a non-linear channel model which has the smallest number

of parameters among all channel models. Then this non-linear and time-varying channel model

is approximated by a series of linear and time-invariant channels, through which the time-varying

effect and FSF are decoupled and estimated separately. This novel design both reduces estima-

tion error and maintains low computation complexity. According to extensive simulation results

derived from a self-developed LTE simulator, PITIA outperforms conventional BEM methods in

typical HST environments by 5-8 dB in high-SNR regime.

PITIA not only serves as a novel TVCE algorithm, but also showcases a general idea to solve

complex problems: dividing the whole task into multiple simpler ones and solving them individu-

ally. The same idea may apply to other fields of studies, for example, non-linear system analysis

where the non-linear system may be approximated by a series of linear systems and analysed one
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by one. Performances of PITIA can be further enhanced by several ways: (1) more advanced

non-linear signal processing techniques may be adopted to reduce the extra noise generated during

channel reconstruction; (2) interference coming from data symbols may also be reduced by joint

channel estimation and data detection algorithms. Moreover, PITIA is not fully compatible with

LTE specification, since PITIA requires that pilots are surrounded by nulls while LTE is not de-

signed like this. Compatibility with commercial OFDM systems is still a challenge for most TVCE

algorithms.

In the second part, we devise the first non-cryptographic challenge-response authentication

mechanism (PHY-CRAM) to leverage new opportunities. During authentication, no pilot is trans-

mitted, and the shared keys between both participants are randomized by mobile broadband chan-

nels. The FSF’s perceived by both participants at the same time are identical and cancelled by

an division operation, while an eavesdropper, locating at a different place for sure and perceiving

different FSF, can neither estimate channel nor decode shared keys. Performance of PHY-CRAM

is evaluated by a FPGA-based hardware platform and real-world experiments, which validate that

PHY-CRAM achieves very high successful authentication rate when false acceptance rate is very

low, even if there is an eavesdropper nearby. Moreover, PHY-CRAM achieves higher energy ef-

ficiency in small-scale networks compared with cryptographic authentication protocols, and finds

applications in WLAN and DSRC.

PHY-CRAM validates the previously mentioned concept that mobile broadband channels bene-

fit information security, and we believe that these channels may also benefit other fields of studies,

for examples, information forensics and localization. PHY-CRAM adopts the FSF channel model

which does not fully utilize the randomness of mobile broadband channels, while the DSF chan-

nel model is a better but more challenging choice. Furthermore, the phases in channel responses

are abandoned in PHY-CRAM, since they are sensitive to timing synchronization error and hard-
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ware imperfection, and may not be perfectly cancelled. The performance of PHY-CRAM may be

enhanced by further addressing these issues.

Finally, the thesis is concluded by a philosophy that, challenges and opportunities are two sides

of a coin, and researchers should never be frustrated by the sophistication of the nature.
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